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Abstract

To build machine learning-based applications
for sensitive domains like medical, legal, etc.
where the digitized text contains private in-
formation, anonymization of text is required
for preserving privacy. Sequence tagging, e.g.
as used for Named Entity Recognition (NER),
can help to detect private information. How-
ever, to train sequence tagging models, a suf-
ficient amount of labeled data are required
but for privacy-sensitive domains, such la-
beled data also can not be shared directly. In
this paper, we investigate the applicability of
a privacy-preserving framework for sequence
tagging tasks, specifically NER. Hence, we an-
alyze a framework for the NER task, which
incorporates two levels of privacy protection.
Firstly, we deploy a federated learning (FL)
framework where the labeled data are neither
shared with the centralized server nor with
the peer clients. Secondly, we apply differen-
tial privacy (DP) while the models are being
trained in each client instance. While both pri-
vacy measures are suitable for privacy-aware
models, their combination results in unstable
models. To our knowledge, this is the first
study of its kind on privacy-aware sequence
tagging models.

1 Introduction

The emergence of substantial amounts of digitized
unstructured text gives rise to train machine learn-
ing models for various downstream applications.
But for sensitive domains like medical, legal, etc.,
the text documents contain private sensitive infor-
mation, which is supposed to be anonymized for
preserving privacy. The first step for anonymiz-
ing text is to detect the span of the private infor-
mation and identify the type of information. Se-
quence tagging is the kind of task that can help
in anonymization. However, to train such a se-
quence tagging model, a significant amount of
labeled data are required. But the labeled data

contains – by definition – private sensitive in-
formation and are often divided across different
data silos. There are legal regulatory policies
as well by the US Health Insurance Portability
and Accountability Act (HIPAA)1 and EU Gen-
eral Data Protection Regulation (GDPR) (Agencia-
Espanola-Proteccion-Datos, 2019), which restricts
such sensitive data access. On the other hand, to
train a centralized machine learning model, there
is a requirement of aggregating such distributed
data in a central server, which can cause privacy
breaches. Hence, there is a requirement for a
privacy-preserving sequence tagging framework
that complies with the data protection policies.

Federated learning (FL) (McMahan et al., 2017)
is one such paradigm that provides a framework to
train a centralized machine learning model with-
out sharing the distributed data from different data
silos. Since the raw data from different data silos
are not being shared in this framework, the primary
level of privacy is maintained. However, the FL
framework is also vulnerable to several inference
attacks (Bagdasaryan et al., 2020; Bonawitz et al.,
2017; Geyer et al., 2017) in some scenarios. To
mitigate such inference attacks, differential privacy
(Dwork et al., 2006) was developed, which comes
with a theoretically guaranteed measurement of
privacy. There have been many recent research
works on deploying the FL framework in several
applications like image classification (Wang et al.,
2019), emotion detection (Chhikara et al., 2021),
anonymization (Choudhury et al., 2020), robotics
(Imteaj and Amini, 2020), etc. and also in medical
domain (Rajendran et al., 2021; Kerkouche et al.,
2021; Choudhury et al., 2019; Ge et al., 2020).
Researchers also investigated the scope of the dif-
ferentially private algorithm in several applications
(Zhao et al., 2020; Koda et al., 2020; Hu et al.,
2020; Chen et al., 2018). However, for sequence

1
https://www.hhs.gov/hipaa/for-professionals/privacy/

special-topics/de-identification/index.html

mailto:jana@informatik.uni-hamburg.de
mailto:biemann@informatik.uni-hamburg.de
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html


tagging tasks, the applicability of the FL frame-
work along with differential privacy (DP) is yet to
be explored. For our study, we focus on one such
sequence tagging task, namely named entity recog-
nition (NER). We argue that this is quite close to
a sequence-tagging based anonymization task and
it allows us to study the effects of privatization
measures in the task performance.

In this paper, we prepare an FL framework fol-
lowing the FederatedAveraging (McMahan et al.,
2017) approach and deploy a differentially private
stochastic gradient descent (Abadi et al., 2016) op-
timizer while training to obtain differential privacy
for the NER task. As base NER models, we con-
sider two variants of one of the state-of-the-art ap-
proaches for sequence labeling, that uses the LSTM
variant (Hochreiter and Schmidhuber, 1997) of
bidirectional recurrent neural networks (BiLSTMs).
Note that the aim of our work is not to produce a
state-of-the-art performance for NER tasks. Rather,
our focus is to analyze how the performance of
NER models varies in a differentially private feder-
ated learning framework. Therefore, we do a com-
prehensive analysis using CoNLL 2003 English
NER dataset and investigate the effect of differ-
ent levels of privacy on the performance of NER
models.

2 Methodology

As we deal with the named entity recognition
(NER) task, we attempt with two variations of
BiLSTM based models. In one variant we keep
TimeDistributed Dense layer (TDDL) as the final
layer with activation function – ‘softmax’ and in
another variant, we keep the conditional random
field (CRF) (Huang et al., 2015) as the final layer.
In a nutshell, both the variants have three layers:
Input embedding layer, Bidirectional LSTM layer,
and either TDDL or CRF as the final layer. We
refer to those model variants ‘BI-LSTM-TDDL’
and ‘BI-LSTM-CRF’ respectively for our study.
Next, we will discuss the two privacy mechanisms:
Federated Learning and Differential Privacy.
Federated Learning: The objective of the Feder-
ated Learning framework is to train a centralized
model from data distributed across multiple client
data silos, eliminating the need for raw data sharing.
We adapt the well-accepted FederatedAveraging al-
gorithm proposed by McMahan et al. (2017). As
per the process, first, a global model from the server
site is shared across n client sites. Next, each client

site trains the model based on its local data. After
the training is complete, the parameter updates of
the local models are then subsequently sent to the
central aggregation server. Next, the central server
computes the average of all the model parameters
over n clients and updates the global model accord-
ingly. The whole process continues for specified
number of rounds (t) and in each round a random
set of m clients ( m <= n) participate. For this
study, in each round we allow all the n client sites
to participate in the process.
Differential Privacy: The objective of differen-
tial privacy is to provide a strong criterion for pri-
vacy preservation of distributed data processing
systems. This is a widely used privacy-preserving
mechanism due to its strong information-theoretic
guarantees (Dwork and Roth, 2014), algorithmic
simplicity, and relatively small systems overhead.
By definition, any randomized algorithm A(D) sat-
isfies ε - differential privacy if for all datasets D
and D′, that differ by a single record, and for all
sets S ∈ R, where R is the range of A,

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S]
where ε, is a non-negative number. ε measures the
strength of the privacy guarantee of the algorithm.
It gives a bound on how much the probability of
particular model output can vary by including (or
removing) a single training example. The lower the
value of ε, the higher the privacy. There are several
methods for incorporating differential privacy in an
algorithm. For this study, we adopt the approach
that relies on Differentially Private Stochastic Gra-
dient Descent (DP-SGD) optimizer proposed by
Abadi et al. (2016). As per this approach, after
sampling a micro-batch of training points we need
to compute the loss and gradient of the loss. There-
after, we need to clip gradients, per the training
example included in the micro-batch. Next, we
need to add random noise to the clipped gradients
and multiply these clipped and noised gradients by
the learning rate and apply the product to update
model parameters.

3 Experiments and Discussions

Since the objective of our work is to investigate
the effect of federated learning (FL) framework
and differential privacy (DP) on the state-of-the-art
NER model, we design our analysis in four differ-
ent phases. First, we observe the basic NER model
performance without using FL as well as DP. In the
second phase, we incorporate DP in the optimizer



of the NER model and analyze its behavior. Third,
we analyze the performance of the NER model in
an FL framework, but none of the optimizers of
the clients are DP enabled. In the fourth phase, we
investigate the performance of the NER model by
deploying the FL framework and incorporating DP
into the client-side optimizers. For our analysis,
we use CoNLL 2003 English NER dataset, hav-
ing a training set size of 14987, validation set size
of 3466, and test set size of 3684. Each token in
the dataset is tagged with other (O) or one of the
four entity types: Person (PER), Location (LOC),
Organization (ORG), Miscellaneous (MISC). Con-
sidering the BIO2 annotation standard, the number
of possible labels for each token is 9.

Model Precision Recall F-measure
BI-LSTM-TDDL 0.916 0.922 0.916
BI-LSTM-CRF 0.892 0.862 0.864

Table 1: Performance of Basic NER models.

Noise-multiplier 0.5 1 5 10 50
ε 3.73 0.688 0.05 0.024 0.022

BI-LSTM-TDDL
Precision 0.915 0.911 0.917 0.914 0.911

Recall 0.919 0.911 0.924 0.912 0.913
F-measure 0.913 0.906 0.916 0.908 0.908

BI-LSTM-CRF
Precision 0.869 0.727 0.825 0.889 0.839

Recall 0.847 0.809 0.786 0.834 0.816
F-measure 0.839 0.75 0.802 0.840 0.815

Table 2: Performance of NER models after incorporat-
ing ε differentially Private SGD.

(n) −→ 2 5 10 15 20
Precision 0.905 0.881 0.824 0.792 0.786

Recall 0.903 0.885 0.830 0.814 0.803
F-measure 0.897 0.874 0.805 0.784 0.766

Table 3: Performance of BI-LSTM-TDDL model in the
FL setup, with increasing number of clients (n).

Training Precision Recall F-measure
Data mean sd mean sd mean sd
20 % 0.756 0.002 0.798 0.000 0.762 0.000
40 % 0.814 0.006 0.824 0.001 0.797 0.001
60 % 0.832 0.001 0.842 0.000 0.820 0.000
80 % 0.845 0.009 0.854 0.000 0.835 0.001
100 % 0.861 0.005 0.863 0.000 0.846 0.001

Table 4: Performance of BI-LSTM-TDDL model in the
FL setup, with increasing % of training data in each
client. Number of clients = 5. Mean and standard devi-
ation (sd) are computed over 5 different simulations.

Without DP, Without FL: We experiment with
two different NER models described in Section 22.
The vector embeddings used is GloVe (trained on

2The hyperparameter settings to train those models are
as follows: epochs- 10, batch size - 32, learning rate - 0.15,
optimizer - Stochastic gradient descent (SGD)

Common Crawl corpus) from spaCy library3, the
dimension of which is 300. The performance of
these two models (BI-LSTM-TDDL, BI-LSTM-
CRF) are presented in Table 1. Note that, since
our objective is not to produce a state-of-the-art
performance for NER tasks, we do not attempt to
tune the hyper-parameters to obtain the best possi-
ble performance. However, the F-measure obtained
by BI-LSTM-TDDL is comparable to the state-of-
the-art (Akbik et al., 2018) F-measure of 0.9309.
On the other hand, we put our effort into analyzing
the behavior of these NER models’ performance in
privacy preserving framework.
With DP, Without FL: Next, we incorporate a
Differentially Private Stochastic gradient descent
(DP-SGD) optimizer for training4. The perfor-
mance of both the models with varying noise-
multiplier (a hyperparameter to add noise) are pre-
sented in Table 2. Note that, by increasing the value

(n) −→ 2 5 10 15 20
Precision 0.835 0.804 0.752 0.731 0.740

Recall 0.867 0.845 0.815 0.810 0.801
F-measure 0.834 0.810 0.772 0.763 0.758

Table 5: Performance of BI-LSTM-TDDL model in
the FL setup along with DP, with increasing number
of clients (n). Noise multiplier = 1, ε = 0.688

of noise-multiplier we add more privacy (lower ε)
to the NER models. We observe, even if the pri-
vacy increases, the BI-LSTM-TDDL model pro-
duces stable performance and does not deteriorate
much compared to its performance while DP is
not present. On the other hand, using DP-SGD,
BI-LSTM-CRF architecture performs poorly and
fluctuates significantly. We observe a negative sig-
nal towards incorporating DP, where model archi-
tecture has CRF in the final layer, for tasks like
NER. Finding out the reason behind such behavior
of CRF-based model and mitigating the problem
would be immediate future work. However, for the
next two phases of analysis, we continue only with
the robust BI-LSTM-TDDL model architecture.
Without DP, With FL: Next, we analyze the FL
setup for NER, where we have one centralized
server and n number of the client sites. The train-
ing and validation data are divided equally among
all the clients. We analyze the framework in two
ways. First, we observe the performance variation
of the aggregated model on test data with the num-
ber of clients, which is presented in Table 3. The

3
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4we use Tensorflow Privacy library https://github.com/
tensorflow/privacy/blob/master/tensorflow_privacy. The hyperpa-
rameter settings: micro-batch size - 1, normalization clip - 1.5
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Training Precision Recall F-measure
Data mean sd mean sd mean sd
20 % 0.767 0.008 0.745 0.033 0.744 0.013
40 % 0.773 0.006 0.738 0.029 0.744 0.013
60 % 0.707 0.102 0.123 0.063 0.171 0.104
80 % 0.812 0.052 0.113 0.172 0.106 0.231
100 % 0.585 0.556 0.137 0.228 0.123 0.269

Table 6: Performance of BI-LSTM-TDDL model in the
FL setup along with DP, with increasing % of training
data used in each client. Mean and standard deviation
(sd) are computed over 5 different simulation. Number
of clients = 5, Noise multiplier = 1, ε = 0.688.

results are reported only after one communication
round, i.e. all the client models are trained with
their respective training data (full) and the client
models’ parameters are transferred to the central
server once for aggregation. From the result in Ta-
ble 3, we see with the increasing number of clients
the performance of the centralized NER model de-
creases. Given that the number of the training
sample is constant and those are divided among
the clients equally, the observed performance fits
our intuitions. As the number of clients increases,
the amount of training data per client decreases,
and the client models are trained with a smaller
amount of training data5. Secondly, we observe
how the central model behaves if model parame-
ters are shared from clients after training the client
models with x% of the local training data. For our
study we keep x = 10, which implies client model
aggregation and global model update cycle is being
executed after each pass of model training with 10
% of local data on the client-side. Since the x%
of data is picked randomly, we simulate indepen-
dently for 5 times and report the mean and standard
deviation (sd) of all metrics. From the results pre-
sented in Table 4, we observe that even in such
an incremental training scenario we achieve an F-
measure of 0.846 with 100% training data, which
is comparable to the non-incremental version of
training (0.874 as per Table 3). The FL setup for
the NER model looks promising in the incremental
approach as well, making it suitable even for the
scenario while on the client-side a large amount of
training data is not available at once.
With DP, With FL: We attempt two different
analyses following the same experimental setup
as ‘Without DP, With FL’, but during client-side
training, we use DP-SGD instead of SGD as the
optimizer. In Table 5, we see that the trend of de-
creasing F-measure with the increasing number of

5The hyperparameter settings for training client model:
epochs - 10, batch size - 32, learning rate - 0.15, optimizer -
Stochastic gradient descent (SGD).

clients, which is the same as the non-private perfor-
mance. Note that, when we incorporate DP in FL
setup it reduces the F-measure about 1-6 %. The
result for the second type of analysis is presented
in Table 6. We note that with increasing percentage
(%) of training data, the F-measure does not im-
prove, and after some point (60 %) the F-measure
drops significantly. DP does not seem promising
for incremental setup, while in each phase the train-
ing data used is sufficiently small. Note that, in
each phase, only x = 10% training data (approx.
300 data points) is being used for training.

4 Conclusion

In this work, we presented an analysis of the behav-
ior of one sequence tagging task namely NER in
a federated learning framework along with differ-
ential privacy, which is the first-ever attempt of its
kind. From the investigation, we observed that with
DP-SGD optimizer, the performance of CRF based
model tends to decrease significantly in our current
experimental setup. In the federated framework,
we observed that with the increase of the number
of clients with smaller training data, the perfor-
mance of aggregated models decrease significantly,
whereas the performance shoots up when client
models are trained in an incremental approach and
the incremental models are communicated to the
server after each training phase. On the other hand,
when a DP-SGD optimizer is deployed in each
client training phase, even the incremental training
policy works only till 60% of the training data is
used and thereafter performance drops. Immediate
future work would be to find out the root cause of
such a phenomenon and mitigate it, as a combi-
nation of privacy measures would be very much
desired in privacy-aware application scenarios.

To extend this study, we plan to explore several
other NER datasets (even low-resource datasets) to
find out more general behavior. Hyper-parameter
tuning is another direction of our future work to
find out the best performance for each set-up. The
broader goal is to build a differentially private fed-
erated framework for sequence tagging tasks with
compromising performance as little as possible.
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