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Abstract

We apply neural coreference resolution to
German, surpassing the previous state-of-the-
art performance by a wide margin of 10–
30 points F1 across three established datasets
for German. This is achieved by a neural
end-to-end approach, training contextual word-
embeddings jointly with mention and entity
similarity scores. We explore the impact of var-
ious parameters such as language models, pre-
training and computational limits with respect
to German data. In an effort to support datasets
representing the domains of both news and lit-
erature, we make use of two distinct model
architectures: a mention linking-based and an
incremental entity-based approach that should
scale to very long documents such as literary
works. Our code and ready-to-use models are
publicly available.

1 Introduction

Coreference resolution is the task of resolving text
spans in documents that refer to the same entities.
These are grouped into mention-clusters with each
cluster representing one entity. Figure 1 shows
coreference annotations on a literary text with dif-
ferent entities being denoted by both subscripts
and colors. Tasks such as question answering (Mor-
ton, 1999) or text summarization (Steinberger et al.,
2007) can rely on coreference resolution as part of
the language processing pipeline. Bamman et al.
(2014) demonstrated that coreference resolution
is also applicable to literary analysis. The task
has recently seen large improvements as systems
moved from rule-based (e.g. Roesiger and Kuhn,
2016; Lee et al., 2011) to neural approaches (e.g.
Lee et al., 2017; Joshi et al., 2019). This advance-
ment from a CoNLL-F1-score of 57.8, achieved by
a rule-based system in the original CoNLL-2012
shared task (Pradhan et al., 2012), to 67.2 in the

∗denotes equal contribution

[Alice]1	was	not	a	bit	hurt,	and	[she]1	jumped	up	on	to

[her]1	 feet	 in	a	moment:	 [she]1	 looked	up,	but	 it	was
all	 dark	 overhead;	 before	 [her]1	 was	 [another	 long
passage]2,	and	 [the	White	Rabbit]3	was	still	 in	sight,
hurrying	down	[ it]2.

Figure 1: Coreference gold annotations for “Alice’s Ad-
ventures in Wonderland” (annotations from Bamman
et al., 2020)

first end-to-end neural system (Lee et al., 2017) has
shown that neural systems are key to state-of-the-
art performance.

Coreference resolution on German using neural
networks has received little attention. There has, to
our knowledge, no work been reported on German
news datasets using neural networks yet. This work
is also the first to use cross-task learning to improve
performance on German literary datasets.

We apply and adapt exiting approaches to coref-
erence on German, making our code and models
publicaly available.1 There are two approaches to
neural coreference resolution that we consider: A
mention-linking-based and an entity-linking-based
approach. Both have an initial mention proposal
step, finding text spans that are likely to represent
mentions. In mention-linking approaches, out of
the cross-products of mentions, those mentions
with the highest likelihood are considered. Each
such mention is connected to its highest-scoring
antecedent with transitively connected mentions
forming entities.

The entity-representation-based approach also
involves the initial mention proposal step. How-
ever, rather then creating links on a per-mention
basis, initial mentions are considered to be entity
representations, with each subsequent mention be-

1https://github.com/uhh-lt/
neural-coref/tree/konvens

https://github.com/uhh-lt/neural-coref/tree/konvens
https://github.com/uhh-lt/neural-coref/tree/konvens


ing compared to existing entity representations and
assigned to those that match them best. This way
memory usage and computational effort can be re-
duced, as it is proportional to the number of entities,
rather than the square of the number of mentions.

2 Related Work

Relevant prior work can be put into two distinct cat-
egories: (a) Neural, state-of-the-art coreference res-
olution developed primarily on English (b) Coref-
erence resolution applied to German.

Most neural coreference resolution models per-
form a ranking of antecedents based on the pair-
wise scores of mention candidates (Wiseman et al.,
2015; Clark and Manning, 2016a; Lee et al., 2017),
at this only relying on local decisions that may not
be globally optimal to form coherent entities (Lee
et al., 2018). This general architecture has been
improved on in multiple ways.

To address the issue of global optimization,
Clark and Manning (2016b) and Wiseman et al.
(2016) create entity representations during the rank-
ing step. Lee et al. (2018); Kantor and Globerson
(2019) iteratively refine mention representations
with associated antecedent information, perform-
ing what they refer to as higher-order inference.

While the end-to-end coreference model of Lee
et al. (2017) uses a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) to produce span represen-
tations, Lee et al. (2018) see a 3.2 F1 score increase
on the English CoNLL-2012 shared task by addi-
tionally using ELMo (Peters et al., 2018) embed-
dings. Lee et al. (2018) also modify the model to
perform coarse-to-fine antecedent pruning enabling
an efficient computation and potentially allowing
the processing of longer documents. Joshi et al.
(2019) and Kantor and Globerson (2019) improve
upon this by using BERT (Devlin et al., 2019) em-
beddings instead of the LSTM-based representa-
tions and gain another 3.3 F1 points.

Recently, Joshi et al. (2020) presented a model
optimized for span representations named Span-
BERT and saw another 2.5 point increase in F1
score, which has been reproduced by Xu and Choi
(2020). Wu et al. (2020) have taken a different ap-
proach to coreference resolution; they outperform
previous state of the art by 3.5 F1 points in part
due to the ability to recover missed mentions by
framing the task as a question-answering problem.

Toshniwal et al. (2020); Xia et al. (2020) both
introduce incremental approaches to coreference

resolution. Instead of comparing mention pairs like
Lee et al. (2017), they compare mentions with en-
tity representations, with the entity representations
being produced from a linear combination of their
mentions. Both approaches work by iteratively pro-
cessing all mentions and scoring each mention with
regard to a set of entities; as a result, an evaluation
of the full cross-product of mentions is not neces-
sary. The two approaches differ slightly in how
they handle the introduction of new entities.

For coreference resolution on German texts, pub-
lished work predates the age of neural networks
in natural language processing. The CorZu sys-
tem (Klenner and Tuggener, 2011; Tuggener and
Klenner, 2014) is a rule-based incremental entity-
mention model that has been extended with Markov
Logic Networks for the antecedent selection.

Roesiger and Kuhn (2016) adapted the English
system of Björkelund and Kuhn (2014) to German.
A directed tree where each node represents a men-
tion is used to model the coreferences in a doc-
ument. For determining antecedents, both local
and non-local handcrafted features are employed.
They created the current state-of-the-art approach
for German news datasets, evaluating their system
on the SemEval-2010 shared task and on version
10 of the TüBa-D/Z dataset.

The domain of literature has, for both German
and English, received increased attention in recent
years with regard to coreference resolution. Roe-
siger et al. (2018) considered the domain specific
challenges and phenomena of literature. Bamman
et al. (2020) released an English dataset and Krug
et al. (2018) released a German dataset (see Sec-
tion 3.2 for details). While Krug (2020) performed
coreference resolution on German literary data,
Toshniwal et al. (2020) used the English dataset.
Krug (2020) compare various approaches to coref-
erence resolution on German historic novels using
the DROC dataset (Krug et al., 2018). Their best-
performing system in a gold-mention scenario uses
a rule-based Stanford Sieve approach (Lee et al.,
2011), iteratively applying rules starting from the
most precise rule, going to less precise rules. When
mention spans are generated by the model, the end-
to-end neural network, based on the approach by
Lee et al. (2017), performs about on par with the
rule-based systems in conjunction with preprocess-
ing pipelines.

Evaluation of coreference data presents a chal-
lenge, different proposed metrics emphasise differ-



ent aspects of a model’s performance. An average
of the three metrics MUC, B3, and CEAFφ4 has
been used in the CoNLL-2012 task (Pradhan et al.,
2012). As these metrics are widely used we fo-
cus on them for reporting our results, including an
average of the three, the CoNLL-F1 score.

3 German Coreference Datasets

3.1 News

The standard corpus for coreference resolution in
German is TüBa-D/Z (Telljohann et al., 2017; Nau-
mann and Möller, 2006), a manually annotated col-
lection of newspaper articles released in multiple
versions that incrementally add more documents.
It was also used as the data source for the German
part of the SemEval-2010 shared task on corefer-
ence resolution (Recasens et al., 2010).

To be comparable with previous work, we chose
to use SemEval-2010 and TüBa-D/Z release 10.0
instead of the marginally larger 11.0 for most of
our experiments. As there is no official split for the
TüBa-D/Z, we use the same splits as previous work
(Roesiger and Kuhn, 2016).2

While TüBa-D/Z does not contain singletons (on
average 3.65 mentions per entity, 10.89 entities per
article), these mentions are annotated in SemEval-
2010 (on average 1.34 mentions per entity, 73.07
entities per article). Across the dataset, 84.6% of all
entities and 64.1% of all mentions are singletons.

Compared to the standard English coreference
corpus, OntoNotes (Weischedel et al., 2013), used
in the CoNLL-2012 shared task on coreference res-
olution (Pradhan et al., 2012), TüBa-D/Z neither
contains different genres of texts nor additional
metadata such as speaker information. Regarding
statistics such as average mentions per entity, men-
tions/sentence length and tokens/sentences/entities
per document, German TüBa-D/Z 10.0 and English
OntoNotes 5.0 are remarkably similar.

3.2 Literature

The DROC dataset (Krug et al., 2018) contains 90
coreference annotated literary documents where
each document comprises one chapter with an av-
erage length of 4369.49 tokens. We use the splits
established by Krug (2020), i.e. 58 training, 14 de-
velopment and 18 test documents. There is a total
of 51 797 mentions in 5365 clusters, 2409 of these
are singleton clusters. As a result, while 45% of

2for corpus statistics, see Table 9 in the appendix

Mention-F1 MUC-F1 B3-F1 CEAFφ4-F1 CoNLL-F1

97.05 93.67 84.69 69.25 82.54

Table 1: Inter-annotator F1 scores for DROC as calcu-
lated using the scorer by Pradhan et al. (2012) based on
the individual annotator’s data by Krug et al. (2018).

clusters are singleton clusters, only 4.7% of men-
tions are singletons. Our calculations for the perfor-
mance of human annotators on the subset of DROC
are listed in Table 1, providing an upper bound for
our performance expectations. In contrast to other
datasets (e.g. Bamman et al., 2020), only mention
heads are annotated, rather than whole nominal
phrases. This means that in the sentence, “and [the
driver] was none other than [that cursed English-
man]” (from the dataset by Bamman et al. (2020)
“The Scarlet Pimpernel”), only the spans “English-
man” and “driver” would be annotated as corefer-
ring instead. Thus, only spans up to a short length
need to be considered in the mention proposal step.
DROC also differentiates itself from other datasets
in that it only annotates references to characters.

More generally, literary data, when compared to
news texts, comes with the added challenge of doc-
ument length. Longer documents tend to come with
more mentions, DROC, for example, contains an
average of 575.52 mentions per document whereas
SemEval only has an average of 97.79. In general,
increased document length lead to longer process-
ing time, larger computational effort and higher
memory requirements.

4 Model

In this section, we describe our German corefer-
ence resolution models in detail. We build on the
widely adapted neural end-to-end architecture de-
veloped by Lee et al. (2017, 2018), improved by
Joshi et al. (2019) and re-implemented in PyTorch
(Paszke et al., 2019) by Xu and Choi (2020). Al-
though the CorefQA system (Wu et al., 2020) is
currently the top-performing system for English,
we chose to not build upon it because it is more
complex and requires vastly more computational
resources than our chosen approach.

The general idea of our models is to first de-
tect mentions and then to link them. Each docu-
ment is processed individually during both training
and inference; Figure 2 visualizes a single docu-
ment being processed by both model variants. First,
contextual ELECTRA (Clark et al., 2020) embed-
dings are obtained for each token and all possible
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Figure 2: Conceptual visualization of our two end-to-end model variants processing an example document. Both
models are based on the same mention proposal step. While the incremental model operates on an ever-growing
set of entities, the coarse-to-fine model performs one comparison on the cross product of all mentions. Dark green
color indicates a good match between mention and its assignment candidate, whereas black squares indicate that,
due to filtering, no scoring was performed. All values are manually chosen for illustration purposes.

mention spans up to a configurable length are enu-
merated. Mention embeddings are created, con-
taining start and end token embeddings and the
attention-weighted average of all span tokens. In
contrast to the English models, our models con-
tain neither genre nor speaker embeddings as the
German datasets do not supply this information.

A naı̈ve approach of comparing each mention
candidate with every other to find links between
them raises computational issues, quickly becom-
ing infeasible to compute as it requires O(M2)
comparisons for M = max mention length · |D|
mention candidates, for a document D where |D|
is the document length in word-piece tokens. To
reduce computational effort over a naı̈ve approach
to find the best antecedent for each mention, we
employ two established strategies: A coarse-to-fine
and an incremental approach, with the incremen-
tal approach being able to handle documents of
arbitrary length with limited memory.

4.1 Coarse-to-fine

Our model is based on the implementation by Xu
and Choi (2020). For each mention span, the model
learns a distribution over its antecedents based on
how likely both individual spans are to be valid
mentions and how likely they to refer to the same
entity. Two pruning steps are used to make this
mention linking computationally feasible.

To reduce the number of mentions, all mention
embeddings are scored individually with a feed-
forward neural network (FFNN). For each docu-

mentD only the top n = min(4096, 0.4·|D|) men-
tions are kept after pruning. Instead of performing a
pairwise comparison of allN mentions, only a frac-
tion is used. Thus, removing obvious non-mentions
and limiting the complexity toO(n2 � N2), a step
that we refer to as mention filtering.

In the coarse antecedent pruning step, the pair-
wise similarity scores of the remaining mention em-
beddings are summed with the individual mention
scores. A subsequent fine-grained ranking is per-
formed with the top a = 64 antecedents per men-
tion; to this effect, pairwise mention-antecedent
embeddings consisting of mention, antecedent and
similarity embedding are created. These embed-
dings are scored with a FFNN and combined with
scores from the coarse step resulting in scores for
the top antecedents per mention. We do not use
so-called higher-order inference as this effectively
doubles the computational cost of the fine-grained
antecedent scoring without improving the quality
according to Xu and Choi (2020).

During training, the model learns to optimize
the marginal log-likelihood of possibly correct an-
tecedents for each mention, i.e. for each antecedent
the score should be 1 if mention and antecedent
belong to the same gold entity, 0 otherwise.

During inference, an undirected graph of men-
tions is created by connecting each mention with
its highest-scoring antecedent. In this graph, each
connected component of mentions forms an entity.



4.2 Incremental

The general approach of the incremental model fol-
lows Xia et al. (2020) and Toshniwal et al. (2020).
Mention filtering is performed as in the course-
to-fine model. We process the document itera-
tively, splitting the document into multiple win-
dows for transformer language model inference.
Unlike Toshniwal et al. (2020) but following Xia
et al. (2020) we reuse all model weights, including
both the transformer weights and all task-specific
layers.

In a step we call entity assignment, every men-
tion candidate chooses its entity in an iterative fash-
ion. In our standard setup, this is modeled as a clas-
sification task with a dynamic number of classes
and the initial set of classes, each class representing
an entity C0 = {∅}. If, for any mention embed-
ding m being processed, ∅ is selected as the class,
the mention is added as a new class. Entity rep-
resentations are tracked with R(En) being set to
m when the n-th entity is added. As a result, after
the first mention is processed the set of classes is
always extended: C1 = {∅, E0}. Subsequently,
new mentions Ex are added iteratively. Whenever
any existing Ex is selected as the best fitting entity,
its representation is updated using an update gate:
R(Ex) := (1− α)m+ αR(Ex).

Training is done by means of cross entropy loss
across all existing entities and the new entity class,
with the gold class for each entity being its most
recently assigned mention gold class. As a result,
early in training many entity representations likely
contain mentions that, from a gold label perspec-
tive, should not belong together. Toshniwal et al.
(2020) use teacher forcing to address this issue
and thereby reach earlier convergence; we test this
approach in our setup, assigning each mention to
its gold class for further computations, rather than
relying on predicted classes.

The only way mention candidates can be dis-
carded (either because they are not a mention or
because they are singleton mentions) is by means
of creating a new entity and never assigning any ad-
ditional mentions to it, in postprocessing any such
singleton entity would be removed, yielding the
final output entities. To support detection of single-
ton mentions, we follow Xia et al. (2020) in adding
an additional class representing the discarding of
any given entity. In this “discard” scenario, single-
ton mentions are not removed in postprocessing
since non-mentions are modeled explicitly.

Language Model CoNLL-F1

BERT-Base, multilingual uncased 74.50
BERT-Base, multilingual cased 74.60
GBERT base, cased 75.35
GELECTRA base, cased 77.01
GNG ELECTRA base, uncased 77.86

GBERT large, cased 79.05
GELECTRA large, cased 79.24

Table 2: TüBa-D/Z 10 development score of coarse-to-
fine models with different language models (using 512
as segment size)

5 Experiments: News Domain

We perform preliminary experiments to select the
best pre-trained German language model, its best
context size and to optimize other hyperparameters.
For the main experiments on the news datasets
TüBa-D/Z 10 and SemEval-2010, we train and
evaluate our coarse-to-fine model as it is easily
capable of processing the typically rather short doc-
uments. We use the training, development and test
splits as described in Section 3.1. The SemEval
dataset contains singletons, but our coarse-to-fine
model predicts only clusters of at least two entities.
Following Roesiger and Kuhn (2016), we ignore
singletons when scoring our systems’ predictions.

5.1 Pre-trained Language Models

We evaluated multiple pre-trained language models
for our coreference resolution model. As a baseline,
we include the multilingual BERT-Base model (in
both the cased and uncased variants) by Devlin et al.
(2019). Chan et al. (2020) recently published Ger-
man BERT and ELECTRA (cased, both base and
large) denoted as GBERT / GELECTRA in Table 2.
In addition, we included another ELECTRA model
(uncased, base) by German-NLP-Group denoted as
GNG ELECTRA3.

We find that all of the recent German lan-
guage models perform better than the multilingual
BERT. For the base models, ELECTRA outper-
forms BERT by a substantial margin. Using large
models, ELECTRA performs marginally better.
Based on the results shown in Table 2, we selected
GNG ELECTRA as the base and GELECTRA as
the large model for our remaining experiments.

3Model description at
https://huggingface.co/german-nlp-group/
electra-base-german-uncased

https://huggingface.co/german-nlp-group/electra-base-german-uncased
https://huggingface.co/german-nlp-group/electra-base-german-uncased


Segment Length F1 (base) F1 (large)

128 75.69 76.28
256 76.56 77.29
384 77.01 78.51
512 77.50 79.27

Table 3: TüBa-D/Z 10 development score of coarse-to-
fine models GNG ELECTRA (base) and GELECTRA
(large) with different segment lengths.

5.2 ELECTRA Context Size

Following Joshi et al. (2019), we split documents
into non-overlapping ELECTRA contexts, evaluat-
ing different splits for contexts as shown in Table 3.
While Joshi et al. (2019) show that for English
BERT-base/large a segment length of 128/384 is
optimal, this does not hold true for our German
models and dataset where larger segment lengths
perform better. Our results are in line with the
intuition that larger context sizes provide more con-
textual information for any given mention. Thus,
we use a segment length of 512 in our models.

5.3 Hyperparameters

In general, parameters affecting computational lim-
its have a large impact, all other parameters that
we tested had only limited effect. Parameters con-
trolling the pruning (top span ratio, max top spans
and max top antecedents) have a strong negative
effect when set too low, resulting in too aggressive
pruning. Higher values increase evaluation scores
with quickly diminishing returns; yet strongly in-
crease computation time and memory.

To reduce GPU memory usage and computation
time, we reduced the size of all feed-forward neu-
ral networks from 3000 used in previous work to
2048 without seeing distinct score changes on the
TüBa-D/Z 10 development set. We also increased
the size to 4096, resulting in more memory usage
and slower computation, but negligible changes in
evaluation performance.

6 Experiments: Literature Domain

For the literary dataset (DROC), we explore the
use of both model variants. We initialize the incre-
mental model with weights from the coarse-to-fine
variant.

CoNLL-F1
News-Pretrain

3 7

Singletons
3 61.66± 0.52 59.93± 0.33
7 65.58 ± 0.46 64.26 ± 0.51

Table 4: The effect of using pre-training on the DROC
coarse-to-fine model on data with and without single-
tons. All results were averaged over 5 runs and the
standard deviation is given.

6.1 Coarse-to-fine Model

Given the relatively small size of the DROC dataset,
we explore the impact of pretrained weights from
the news tasks. We expected that while the dif-
ferent approaches to mention annotation (heads or
entire noun phrases) would somewhat limit appli-
cability of existing weights they would still lead to
an improvement.

Table 4 shows the development set results for the
DROC dataset, with the same set of initial weights
that was pretrained on TüBa-D/Z 10 being used for
all of our runs. Standard deviation for the ConLL-
F1 scores are given, based on five runs with dif-
ferent random initializations. All layer weights,
including task specific ones as well as language
model ones were reused. The experiment was re-
peated for a variant of the DROC dataset with all
singleton mentions removed.

Using Welch’s t-test we can infer that the per-
trained version does, on average, perform better
for the no singleton variant (p < 0.005). As a
result we will use the news-pretrained model vari-
ant in all our further experiments. This finding is
also supported by the recent publication by (Xia
and Durme, 2021) which establishes that, espe-
cially for short datasets, using pretrained weights
is beneficial. We are unsure if further significant
improvements could be gained by pre-training on
additional datasets, for example GerDraCor (Pagel
and Reiter, 2020), given that TüBa-D/Z is already
a large dataset.

Table 5 shows how two configuration parameters
affect the coarse-to-fine model’s performance. The
two options enable different features, where “seg-
ment info” describes how many BERT segments lie
between the current and candidate mention while
“token info” describes the token distance from the
candidate mention to the document start. Further,
“token info” encodes the length of the candidate
mention span. This experiment was performed as



Distance Features

Segment Token Coarse-To-Fine Incremental

7 7 61.11± 0.57 65.79
3 7 62.31 ± 0.27 64.20
7 3 61.70± 0.22 62.57
3 3 59.93± 0.33 65.42

Table 5: Performance of the coarse-to-fine and incre-
mental models with respect to two configuration param-
eters relevant to recency bias.

CoNLL-F1
Teacher Forcing

3 7

Discard
3 63.92 65.42
7 58.52 57.27

Table 6: DROC incremental model configurations

we saw a recency bias in terms of connecting men-
tions in our early result explorations (see Section
7), an effect that could be caused by these distance
based features. On average, the variant without to-
ken distance representation performs significantly
better than the the one with both features enabled
(p < 0.001). We attribute this to a greater mention
recency bias that is encouraged by the additional
features.

6.2 Incremental Model
The memory usage of the coarse-to-fine approach,
while not prohibitive for the DROC dataset, will
prevent its application to full length literary docu-
ments.

Table 5 illustrates the impact of the same config-
uration parameters that were used for the coarse-to-
fine model. The impact of the parameters appears
to be lessened in the incremental case.

Unsurprisingly, due to the possibility of handling
singleton mentions, Table 6 clearly shows that the
discard functionality is critical to model perfor-
mance. Teacher forcing appears to have a negative
impact on performance; this does come as a sur-
prise but while convergence early in training was
faster the final results were slightly worse.

6.3 Impact of Document Length
We seek to analyze how well incremental models
fare as document length increases. To this end,
we split DROC at the nearest sentence boundary
into sub documents that are no longer than 512,
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Figure 3: The performance of incremental systems
compared to coarse-to-fine model as document lengths
increases.

CoNLL-F1

System TüBa SE’10

German coarse-to-fine base 77.21 72.54
German coarse-to-fine large 78.79 74.46
IMS HotCoref 48.54 48.61

+ gold mentions 65.76 63.61
CorZu 45.82

+ gold mentions 58.11

Table 7: Results of our coarse-to-fine models and pre-
vious systems on the test set of TüBa-D/Z 10 and
SemEval-2010 (without singletons). IMS HotCoref
and CorZu scores as reported by Roesiger and Kuhn
(2016). Full metrics in Table 10 in the appendix.

1024 and 2048 tokens. Previous work (Krug, 2020;
Joshi et al., 2019) has established that, with longer
documents, the performance of coreference sys-
tems drops. This can be interpreted as the inherent
difficulty of the coreference task growing with doc-
ument length. Figure 3 shows that for longer docu-
ments the gap in performance between the model
variants increases slightly.

7 Results & Error Analysis

Our neural coarse-to-fine models outperform the
previous state of the art by a large margin on both
SemEval-2010 (+25.85 F1) and TüBa-D/Z (+30.25
F1) as shown in Table 7. In fact, even if the other
systems are allowed to use gold mentions, our mod-
els still outperform them by more than 10 F1 points.
Using ELECTRA large for contextual embeddings
yields a small improvement over the base model
(+1.58 F1 / +1.92 F1). Figure 4 shows an example
of our systems prediction on an unseen document.

We manually analyze the predictions of our



[Bahn-Chef]1	 legt	Statistik	 vor.	Bisher	 keine	Erklärung
für	 [das	Unglück	von	 [Eschede]3]2	 [Frankfurt]4	 (
taz	)	-	Der	Eindruck,	daß	sich	die	Unfälle	bei	[der	Bahn]5
häuften,	sei	nur	durch	die	"	Berichterstattung	der	Medien	"
provoziert,	 erklärte	 [der	 Vorstandsvorsitzende	 [der
Deutschen	Bahn	AG]5,	Johannes	Ludewig	(	CDU]1	 ),
gestern	 in	 [Frankfurt]4.	 Zum	 bevorstehenden	 ersten
Jahrestag	 [der	 ICE-Katastrophe	 von	 [Eschede]3]2	 (
3.	 Juni	 )	 verwies	 [Ludewig]1	 auf	 [die	 -	 bahneigene	 -
Statistik]6.	[...]

Figure 4: Excerpt from a TüBa-D/Z 10 test set docu-
ment (in total 438 tokens), where the shown output of
our coarse-to-fine large model is identical to the human
annotation (document score: 89.08 CoNLL-F1)

System Model F1 Score

Krug (2020)
(with singletons)

Sieve 51.53
CR 51.34
E2E-NN 53.17

Ours
(with singletons)

Incremental 64.72
C2F 61.66

Ours (no singletons) C2F 65.50

Table 8: Final results for the DROC dataset on the test
set, with and without singleton mentions included.

coarse-to-fine model and find that it generally pro-
duces accurate coreference links both locally and
document-wide. While entity assignment of men-
tions, identified in both prediction and gold data, is
typically correct, missed and added mentions are
more frequent errors. We assume that one reason
is a contradicting training signal, i.e. while some
mentions are annotated as such in the gold data,
others are not because they are singletons or were
missed in the annotation process.

Our incremental model on data including single-
tons outperforms the existing state of the art for
DROC by 11.6 F1 points (see Table 8). Said re-
sults were achieved in a setup comparable to ours,
with no gold information such as speakers or en-
tity spans being used, except in the case of their
end-to-end neural network (E2E-NN), where direct
speech and speaker information were used.

We manually evaluate our model on entire lit-
erary texts. While we find local coreference rela-
tionships to be surprisingly accurate, when taking a

4Text from: https://www.projekt-gutenberg.
org/bechstei/maerchen/chap053.html

Es	war	 einmal	 ein	 gar	 allerliebstes,	 niedliches	Ding	 von
einen	 [Mädchen]1,	 [das]1	 hatte	 eine	 [Mutter]2
und	eine	[Großmutter]2,	die	waren	gar	gut	und	hatten
das	 kleine	 [Ding]1	 so	 lieb.	 Die	 [Großmutter]2
absonderlich,	[die]2	wußte	gar	nicht,	wie	gut	sie	'	s	mit

dem	[Enkelchen]1	meinen	sollte	[...]

(a) Model with token distance feature

Es	war	 einmal	 ein	 gar	 allerliebstes,	 niedliches	Ding	 von
einen	 [Mädchen]1,	 [das]1	 hatte	 eine	 [Mutter]2
und	eine	[Großmutter]3,	die	waren	gar	gut	und	hatten
das	 kleine	 Ding	 so	 lieb.	 Die	 [Großmutter]3
absonderlich,	[die]3	wußte	gar	nicht,	wie	gut	sie	'	s	mit

dem	[Enkelchen]1	meinen	sollte,	[...]

(b) Model without token distance feature

Figure 5: We observe a recency bias that appears to, in
this case, be fixed by not including an explicit token dis-
tance feature. The term “Großmutter” (grandmother) is
linked to the term “Mutter” (mother).4

more global view, some of our model’s weaknesses
are exposed. When searching the token “Holmes”
in the German translation of “The Hound of the
Baskervilles” 5 which should always refer to the
same character we find the 212 tokens to occur
in 31 different clusters with 4 mentions being as-
signed to no cluster. Our observation is that this
often occurs after a long section of text without
explicit mentions of the name, in fact the average
distance from one mention of Holmes to the pre-
vious is 320.6 tokens whereas it is 655.3 for those
cases where a new class is erroneously introduced.
We suspect, that this could be attributed to the name
taking less prominence in the entity representation
after a while.

Figure 5a illustrates a recency bias in our model,
“grandmother” and “mother” were erroneously com-
bined into one entity, presumably because the dis-
tance between the “mother” and “grandmother”
mentions were very small. On a larger scale this
effect can be observable as long sequences of the
same cluster forming, an effect that is especially
prominent in our incremental models. This ob-
servation motivated our experiments with remov-
ing distance features (see Table 5), resulting in
an improved model and, in this case (as seen in
Figure 5b), an improved result. However, this par-
ticular model no longer detects “thing” (Ding) as a

5https://www.projekt-gutenberg.org/
doyle/basker-1/

https://www.projekt-gutenberg.org/bechstei/maerchen/chap053.html
https://www.projekt-gutenberg.org/bechstei/maerchen/chap053.html
https://www.projekt-gutenberg.org/doyle/basker-1/
https://www.projekt-gutenberg.org/doyle/basker-1/


valid mention which could both be a side effect of
removing the distance features or an effect of the
random initialization and training.

8 Conclusion

We apply recent developments in neural architec-
tures for coreference resolution on German data
and achieve a substantial improvement over the
previous state of the art on all three established Ger-
man datasets. We conducted experiments with two
variants: a coarse-to-fine model suitable for rather
short documents, and an incremental model that
should scale to long documents. In our analysis we
found that while the task of coreference resolution
itself becomes more difficult as document sizes
increase, the incremental approach scales worse
than the course-to-fine approach in terms of accu-
racy. While we found local decisions to be accurate,
shortcomings of the incremental model in global
consistency and recency bias were explored.

In future work, we would especially like to ad-
dress remaining challenges for the processing of
long-form literary documents. In spite of the large
improvements we achieved, there is still a con-
siderable headroom for coreference resolution, as
reflected by a large performance gap between the
human baseline of 82.54 F1 and our best model
with 64.7 F1 on the DROC dataset. On a more
theoretic note, another extension worth pursuing
in the future especially for the literary domain is
the notion of subjective coreference. As an exam-
ple, in the fairy tale “Little Red Riding Hood” (see
Figure 5), the girl temporarily perceives a highly
plot-relevant coreference between the grandmother
and the big bad wolf, which is not reflected in ob-
jectivized models.
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A Appendix

dataset articles sentences tokens

SemEval-2010 1,235 26,098 455,046
- training 900 19,233 331,614
- develop. 199 4,129 73,145
- test 136 2,736 50,287

TüBa-D/Z 10.0 3,644 95,595 1,787,801
- training 2190 65,416 1,258,514
- develop. 727 15,593 276,635
- test 727 14,586 252,652

TüBa-D/Z 11.0 3,816 104,787 1,959,474

OntoNotes 5.0 3,493 94,269 1,631,995

DROC 90 18,161 393,164
- training 58 11,368 249,817
- develop. 14 3,570 72,258
- test 18 3,223 70,999

Table 9: Overview of the dataset releases referred to in
this work.
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MUC B3 CEAFφ4 CoNLL LEA

R P F1 R P F1 R P F1 F1 R P F1

TüBa-D/Z 10.0

German c2f base 81.92 79.90 80.90 77.41 73.52 75.41 75.16 75.50 75.33 77.21 74.98 70.82 72.84
German c2f large 82.85 81.61 82.23 78.41 75.73 77.05 76.75 77.44 77.09 78.79 73.25 73.25 74.67
IMS HotCoref 48.54

+ gold mentions 65.76

SemEval-2010

German c2f base 76.64 76.08 76.36 71.18 69.12 70.14 71.83 70.45 71.13 72.54 67.88 65.7 66.77
German c2f large 79.07 76.51 77.77 73.88 70.48 72.14 74.79 72.21 73.47 74.46 70.69 67.18 68.89
IMS HotCoref 48.61

+ gold mentions 63.61
CorZu 45.82

+ gold mentions 58.11

Table 10: Recall, precision and F1 score on the test set of TüBa-D/Z 10 and SemEval-2010 (without singletons).
Our coarse-to-fine (c2f) models use either ELECTRA base or large. IMS HotCoref and CorZu system scores as
reported by Roesiger and Kuhn (2016).


