
ActiveAnno: General-Purpose Document-Level Annotation Tool with
Active Learning Integration

Max Wiechmann, Seid Muhie Yimam, Chris Biemann
Language Technology group, Universität Hamburg, Germany

mail@maxwiechmann.de
{yimam,biemann}@informatik.uni-hamburg.de

Abstract

ACTIVEANNO is a novel annotation tool fo-
cused on document-level annotation tasks de-
veloped both for industry and research set-
tings. It is designed to be a general-purpose
tool with a wide variety of use cases. It fea-
tures a modern and responsive web UI for cre-
ating annotation projects, conducting annota-
tions, adjudicating disagreements, and analyz-
ing annotation results. ACTIVEANNO embeds
a highly configurable and interactive user inter-
face. The tool also integrates a RESTful API
that enables integration into other software sys-
tems, including an API for machine learning
integration. ACTIVEANNO is built with ex-
tensible design and easy deployment in mind,
all to enable users to perform annotation tasks
with high efficiency and high-quality annota-
tion results.

1 Introduction

Lots of tasks in industry and research require the
manual annotation of a potentially large number
of documents, for example in content analysis re-
search or supervised machine learning. Existing
tools, such as WebAnno (Yimam et al., 2013), al-
low for span-level annotation tasks like NER and
POS tagging. As Neves and Ševa (2019) point out
in their review of annotation tools, document-level
annotation is a feature missing in most existing
tools. ACTIVEANNO is a novel tool created to
fill this void. It was created based on five cen-
tral design goals: 1) Creating annotations of high
quality in an efficient manner (quality). 2) Sup-
port a broad range of use cases without any ad-
ditional programming effort (configurability). 3)
provide a good user experience through a mod-
ern, responsive web application to be more at-
tractive than specialized prototypes of annotation
software (responsiveness). 4) Publicly available
to extend for future use cases (open source). 5)
Provide APIs for easy integration into existing

software systems and easy deployment to mini-
mize the upfront effort for using ACTIVEANNO

(extensibility). Through this approach, we would
like to put forward ACTIVEANNO as a candidate
for the default option for document-level annota-
tion in industry and research.

2 Related Work

Neves and Ševa (2019) conducted an extensive re-
view of 78 annotation tools in total, comparing 15
which met their minimum criteria. Five of those
tools support document-level annotations: MAT,
MyMiner, tagtog, prodigy, and LightTag. MAT1

(Bayer, 2015) is designed for what they call the
“tag-a-little, learn-a-little (TALLAL) loop” to in-
crementally build up an annotation corpus, but it
is only a research prototype and is not ready to
be used in production. MyMiner (Salgado et al.,
2012) is an online-only tool without a login or user
system. Its main purpose is to classify scientific
documents in a biomedical context, which is lim-
ited in scope and configuration options and not suit-
able as a general-purpose tool. The tools tagtog2

(Cejuela et al., 2014), prodigy3, and LightTag 4 are
all feature-rich and support some form of machine
learning integration, but are commercial with either
no free version or a free version with limited func-
tionality. This makes these tools less accessible for
projects with limited monetary resources.

According to Neves and Ševa (2019), WebAnno
is the best tool fitting their criteria, however,
it does not support document-level annotations.
WebAnno is a notable example of an annotation
tool which is open-source, widely used and feature-
rich. We adapt some of the functionalities into our
ACTIVEANNO document-level annotation tool.

1http://mat-annotation.sourceforge.
net/

2https://www.tagtog.net/
3https://prodi.gy/
4https://www.lighttag.io/

http://mat-annotation.sourceforge.net/
http://mat-annotation.sourceforge.net/
https://www.tagtog.net/
https://prodi.gy/
https://www.lighttag.io/


Another annotation tool with limited sup-
port for document-level annotations is Doccano5

(Nakayama et al., 2018), though it is not mentioned
in the evaluation of Neves and Ševa. The open-
source tool currently supports three distinct anno-
tation tasks: text classification, sequence labeling,
and sequence to sequence tasks.

3 Architecture of ACTIVEANNO

Figure 1: The system architecture of ACTIVEANNO.

ACTIVEANNO is a client-server application as
depicted in Figure 1. On the server-side, the main
component is a backend service written in Kotlin
using the Ktor framework. The backend service
is stateless, allowing for horizontal scaling for ad-
vanced performance requirements. It is connected
to a MongoDB database that is used to store doc-
uments and annotation projects. There is also a
minimal authentication service written in Python
and Django, which provides a simple user man-
agement UI and the authentication mechanism of
JSON web token (JWT) that is used by the fron-
tend and backend components. The authentication
part is extracted into this service such that it can be
exchanged for an existing or a more sophisticated
user management service, if needed. Finally, the
frontend is written in Javascript using React, which
is served by an Nginx. All backend components
are deployed as Docker containers through existing
Docker Compose files. The communication be-
tween the client and server is done through HTTP
requests via the JSON format.
ACTIVEANNO documents: A document is repre-
sented as a JSON object with a textual field con-

5https://github.com/doccano/doccano

taining the document text, for example the text of
a tweet or the abstract of a paper. It can option-
ally have additional fields with meta data that can
also be displayed to support the annotation process.
Metadata examples include the date and username
for tweets, the authors and publication for papers,
or the number of stars for an app review. Docu-
ments are imported through the UI or API in the
JSON format and can be annotated for multiple
annotation projects afterward.
Annotation definitions: Annotation projects de-
fine an annotation task for one or more annota-
tion definitions. An annotation definition describes
the required type and form of the annotation that
should be created. The typical example is a tag set
annotation, where a document is annotated with
one or more predefined tags such as spam/no spam,
the sentiment or the topic classification of a text.
ACTIVEANNO also supports boolean, number, and
text annotations with various configuration options
such as minimum/maximum values.
Annotations and annotation results: For an an-
notation project, every document can be annotated
for every annotation definition of the annotation
project, resulting in one annotation per definition.
Together, all annotations for a document from a
single annotator form an annotation result. Every
annotation of the annotation result has a different
value structure depending on the type of annotation
definition. Additionally, every annotation value can
have an associated probability used in the context
of automatically generated annotations through the
machine learning integration.
Annotation process: ACTIVEANNO has a two-
step annotation process. In the first step, annota-
tion results are created. They can be created either
by annotators, annotation generators (see Section
4), or they can be imported through the import an-
notation API (see Section 3.2). After every new
annotation result, a finalization policy logic is ap-
plied to the document and its annotation results.
This logic decides if the annotation process is fin-
ished for the document and a final annotation result
exists. The logic is dependent on the project con-
figuration. The manager of a project can set the
number of annotators per document. This is the
minimum number of different annotators required
for each document until any additional logic is ap-
plied. For example, if the number of annotators
is set to three, every document will be shown to
the annotators until the document is annotated by
three users. One annotator can only annotate every

https://github.com/doccano/doccano


document once. After three annotation results were
created, the finalization policy is applied. Depend-
ing on the selected policy, the annotation results
will either be exported individually, or the annota-
tions are merged based on a majority calculation.
If no majority is observed, the document can ei-
ther be presented to an additional annotator until
a majority is reached, or to a curator to decide on
the correct annotation result. It is also possible to
always require a curator for use cases with very
high-quality requirements.

3.1 Web UI
ACTIVEANNO is a modern single-page and respon-
sive web application. It is fully localized, currently
supporting English and German. By using a persis-
tent web database, the application state and there-
fore the created annotations are automatically per-
sisted. A configurable role system allows for the
proper authorization of endpoints. The two main
roles are user and manager. A user can be an an-
notator or curator, a manager has the ability to edit
projects as well as analyze the results. There are
also the roles producer and consumer to allow the
protection of the API of ACTIVEANNO. Producers
are allowed to push data into ACTIVEANNO while
consumers are allowed to read the annotation re-
sults through the export API. Though slightly mod-
ified, the user roles were inspired by WebAnno’s
user management.

The web interface is composed of the login page,
a landing page and pages for annotation, curation,
and management. On the landing page, users can
see their areas of responsibility and switch the ap-
plication language. The manage page is for users
with the manager role, allowing them to create
and edit projects, annotation definitions, annotation
generators, and the analysis of annotation results.

Figure 2 (left) shows the UI (Mobile version) for
editing the basic properties of an example project,
like name and description. Besides, the other parts
of the manage project component allow configur-
ing the filter condition to query documents from
the database, defining which documents are rel-
evant for the project, as well as the field and or-
der of how to sort documents when querying the
database. Both the filter and sort inputs translate
to MongoDB queries. Additionally, the manager
of the project can configure the annotation schema,
which is composed of the annotation definitions
for the project. From this and the document map-
ping step, where the manager defines which part

Figure 2: Left: Edit project UI, Right: Annotation UI

(as JSON keys) of the imported documents are rel-
evant for the project, the layout for the annotation
task gets generated. The generated layout shows all
the metadata, the document text, and the annotation
definitions with default input types. Figure 2 (right)
shows an example layout for the annotation view
(Mobile version). Lastly, the manager can config-
ure how annotation results are able to be exported:
either through the REST API, webhooks, or both
(see Section 3.2 for the details of the API).

Figure 3 shows the annotation UI for a more
complex annotation task, in this case on a desktop
layout, with six annotation definitions of different
types, including Yes/No annotations, single and
multi-select tag set annotations (some displayed
as buttons, some as drop-down inputs), a number
annotation visualized as a slider, an extensible tag
input (where annotators select tags created by other
annotators or create their own), and an open text
input. After a manager created a project and docu-
ments are imported into ACTIVEANNO, the anno-
tators can annotate the documents according to the
project set up in the annotate subarea. Depending
on how the project is set up, the annotated docu-
ments might be checked and possibly overwritten
by a curator in the curation subarea. In the curation
UI, curators can see all previously created annota-
tion results. Curators have the authority to decide
if an annotation created by annotators is correct, to
provide a final verdict.

After annotation results are finalized, they can
be analyzed by the project managers. In addition
to accuracy, the inter-annotator agreement (simple
agreement with exact matching), as well as the
annotation duration is generated as charts in the
UI. There is also a table of individual documents,
showing the correctness of every annotator and



Figure 3: Complex annotation example

their agreements for the document. The UI has fil-
ter inputs to restrict analyzed annotation results by
annotator, date range, or more fine-grained filters.

3.2 Import and Export API

ACTIVEANNO provides multiple API endpoints to
enable automated document processing and inte-
gration into larger software systems. The import
document endpoint allows uploading any JSON
document or an array of JSON documents. Doc-
uments will be assigned a unique ID, stored in
the MongoDB, and the IDs will be returned to the
caller, so they can be used for future reference,
e.g. to export from ACTIVEANNO. The ID is also
used to import externally created annotations into
ACTIVEANNO for a specific project and document.
Imported annotations can be treated like any other
created annotation in the agreement process, or as
pre-annotations for human annotators.

Through a single export endpoint, annotation
results can be exported into other applications for
further processing. Through the GET parameters,
it can be filtered which annotation results will be

exported, for example, based on the timestamp or
document IDs. As an alternative to the export API,
every project can define a list of webhook URLs,
which will be called once a document is finalized.

4 Annotation Generator

The integration of machine learning and the ability
to automate parts of the annotation process are im-
portant to increase the efficiency of the annotation
process. The basis for automation is the ability to
automatically generate annotations without a hu-
man annotator. To generalize the concept and to
allow for other ways to automatically create an-
notations, ACTIVEANNO defines the concept of
annotation generators. An annotation generator
is anything capable of creating an annotation for a
specific annotation definition given a document and
potentially other previously generated annotations
for other annotation definitions. An annotation gen-
erator is defined through an abstract class with a
generateAnnotation method that every gen-
erator needs to implement. Every annotation gener-
ator also has to define what is the input to use for



the actual annotation generation. It can be any field
from the original document, or it can be any value
from another created annotation that is part of the
same annotation schema, allowing for chaining or
conditional connecting of annotation generators.

Currently, ACTIVEANNO has three inbuilt an-
notation generator implementations. The first one
automatically detects the language of the generator
input using the language detection library Lingua6.
This is an example of a statistical and rule-based
annotation generator as compared to a machine
learning-based generator. The second annotation
generator allows calling an external machine learn-
ing service through a URL for tag set annotation
definitions, which will take the response and map
it into the tag set options from the annotation defi-
nition. This can be used when an already trained
machine learning model exists. The model would
have to be wrapped by an HTTP API to comply
with the API definition of ACTIVEANNO for this
annotation generator. The API is structured to al-
low for multiple documents to be predicted at once.
The third annotation generator is similar to the sec-
ond one, but also supports automatically updating
the external machine learning model by sending an
HTTP request with the training data in the body.
To support this functionality, the concept of an up-
datable annotation generator exists. This kind of
generator extends the base annotation generator,
but also requires its subclasses to implement an
update method, where the training data will be
aggregated and used to train or update the anno-
tation generator. For this, updatable annotation
generators also need to define a threshold when
to start the training and when to update an exist-
ing model. For example, the first model should be
trained after 100 training samples are generated,
and then it should be updated for every 25 new
training samples. An updatable annotation gen-
erator is versioned with a version number and an
update state, to ensure the version is actually usable
to generate new annotations.

Annotation generators can be triggered to
generate/re-generate annotations for a project when
appropriate, and they can be triggered to update
themselves if they are updatable annotation gener-
ators and enough new training data is created to
allow for a model update.

6https://github.com/pemistahl/lingua

4.1 Machine Learning Integration
Once the annotation definitions and annotation gen-
erators are created and an external machine learn-
ing service is provided in compliance with the API
of ACTIVEANNO, the last step is to integrate the
machine learning module into ACTIVEANNO. For
this, a project has multiple configuration possibili-
ties. The first one is the handling policy of gener-
ated annotation results. This policy can be set to
use the generated annotations as pre-annotations
for the annotators. In this case, the annotations will
fill out or select the inputs in the annotation panel,
giving the annotators the option to just accept the
automatically generated annotations, which can
reduce the annotation effort. Alternatively, it is
possible to set the generator results to be treated
equally to an annotator where the results will be
included in the finalization logic.

The other important configuration is the sorting
policy. With regards to generated annotations, it is
possible to overwrite the normal sorting order of
the project. This can be set to prefer documents
with existing generated annotation results. In this
case, if only a subset of documents has received
their generated annotations at a point in time, they
will be preferred in sending them to the annotators.
This means that if pre-annotations are available,
they will always be shown before documents with-
out pre-annotations. The second option is to set
the sorting to active learning with uncertainty sam-
pling. This is used to support active learning, where
the documents with the lowest confidence values
associated with the generated annotations will be
preferred (see Section 4.2). We also have an alter-
native approach for machine learning integration
that relies on the import annotation API. Imported
annotations can be used instead of internally gener-
ated annotations. For updating a machine learning
model, the REST API or webhook support can be
used to get the final annotation results. In this case,
all the logic regarding how to extract the data and
when to update the model need to be implemented
externally. This approach might be more useful
if the required logic or process is vastly different
from the inbuilt annotation generator concept.

4.2 Active Learning Process
When there is no existing training data for an an-
notation definition, ACTIVEANNO can be used to
build up a training dataset based on active learning
with uncertainty sampling. The training data can
either be imported once at the start of the active

https://github.com/pemistahl/lingua


learning process or continuously, for example, if
the data comes from a news crawler or the Twitter
API. The active learning process would work as
follows: First, when there is no training data, doc-
uments get manually labeled by an annotator. If
a threshold of the annotation generator is reached,
triggering the update of the generator will result in
the training data being aggregated and sent to the
external service. Triggering the generate annota-
tions functionality (from the UI or via an API) will
result in the newly trained generator model that
will create predictions for all remaining documents
in the project. Afterwards, when the projects sort-
ing policy is set to active learning, the confidence
values from the newly generated annotations will
be used to sort the documents for annotation, those
with the lowest confidence being presented first.

This process can then be repeated until the ma-
chine learning model is performing well enough to
be partly or fully automated. This is similar to the
“tag-a-little, learn-a-little loop” from MAT (Bayer,
2015). If combined with enabling pre-annotations,
it is also very similar to the annotation process of
RapTAT (Gobbel et al., 2014). To partly automate
the process, the project has to be configured to treat
the generator as an annotator and to require one
annotator per document. Additionally, the configu-
ration option of the finalize condition has to be set
to some confidence threshold, for example, 80%.
Then, only the documents with a confidence value
below 80% will be required to be annotated further.
To fully automate the process, the finalize condition
should be set to always to accept the annotations
automatically without additional conditions.

5 Use Cases
ACTIVEANNO is designed to be applicable in many
settings, including industry and research; for small
projects on a local machine and large projects with
many users on the internet; for use cases with
and without machine learning components. We
have used ACTIVEANNO in two industry setups,
to test its suitability to collect real-world annota-
tion requirements. It was directly deployed on the
service cluster of a company, configured via envi-
ronment variables, and connected to the existing
system via its API with some small additions to
the existing software system to get documents into
ACTIVEANNO. For the machine learning integra-
tion, a small Python service wrapping fastText (Bo-
janowski et al., 2017) models was employed. The
data for the experiments were around 250,000 Ger-

man textual feedback comments obtained from a
retail context.

The first experiment was set up to analyze the ef-
fects of pre-annotations on annotation quality and
efficiency. Three annotation definitions, namely
spam/not spam, sentiment, and topic classification
were annotated by two annotators employed at the
company. One condition was provided without
pre-annotations while the other one was provided
with pre-annotations for all three annotation defini-
tions. The annotations were created by pre-trained
machine learning models that are integrated into
ACTIVEANNO through the annotation generator
and the machine learning-related APIs. Through
the analyze functionality of ACTIVEANNO, the
inter-annotator agreement (IAA), annotation dura-
tion, and the accuracy of annotators as well as the
machine learning models are compared inside the
tool. The final result showed a 28% faster anno-
tation without any change of annotation accuracy
or annotator agreement for the condition with pre-
annotations. ACTIVEANNO enabled the research
project itself while the annotators reported a posi-
tive user experience using the tool. They reported
that the tool is easy, fast, and convenient to use.

The second experiment explored the incremental
and active learning capabilities of ACTIVEANNO.
A new annotation definition about the utility (or in-
formation quality) of a comment with three classes
(useful, okay, spam) was created as it was a new
business requirement to create such annotations for
further aggregation and processing. During the ex-
periment, multiple new machine learning models
for different conditions were created by annotating
new comments inside ACTIVEANNO and trigger-
ing the automatic annotation generator updating
and re-annotating functionality. By additionally
enabling pre-annotations, annotators had reduced
effort for selecting the correct annotation option,
once the model had an acceptable level of accu-
racy. Selecting the best performing model based
on the experiment conditions then enables and im-
proves the regular annotation process of the com-
pany. Once the model performs well enough while
being used for pre-annotation, it could then be used
to partly automate the process as described by sim-
ply editing the project configuration.

Finally, as both experiments were conducted on
non-publicly available data, we created another
example project based on the OffensEval 2019
shared task (Zampieri et al., 2019), specifically
sub-task A. The task is directly integrated as an



example project in ACTIVEANNO, including a
machine learning component that can be updated
through ACTIVEANNO. Please refer to the demo7

and video8 to see this use case in action.

6 Conclusion and Future Work

ACTIVEANNO supports several mechanisms to pro-
duce high-quality annotations with an efficient an-
notation process, like the number of annotators
per document, a configurable agreement logic, cu-
rators, machine learning integration through an-
notation generators, pre-annotations, treating an-
notation generators as annotators, partly or fully
automating annotations, and updating annotation
generators with incremental or active learning. A
fully configurable annotation schema with anno-
tation definition types like tag sets, numbers and
texts, a modern and responsive web UI, as well as
flexible user management allows ACTIVEANNO

to be adaptable to many different kinds of anno-
tation process requirements. The RESTful API
and webhooks allow for easy integration with other
software components.

Future work planned is to add in-app feedback
between curators and annotators for improving an-
notator performance, adding more in-built annota-
tion generators for other types of annotation def-
initions, UI improvements (layout editor, better
display of very long documents) and span-level an-
notations as well as hybrid-level annotations which
can be defined either on a span or document level.

Most importantly, ACTIVEANNO was designed
with extensibility and flexibility in mind. It is avail-
able as open-source software under the MIT li-
cense.

References
Samuel Bayer. 2015. MITRE Annotation Toolkit

(MAT). http://mat-annotation.
sourceforge.net/.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Juan Miguel Cejuela, Peter McQuilton, Laura Ponting,
Steven J. Marygold, Raymund Stefancsik, Gillian H.

7Source code, documentation and the link to the demo
can be found here: https://github.com/MaxMello/
ActiveAnno

8Demo Video: https://youtu.be/ryCi4XeReDg

Millburn, Burkhard Rost, and the FlyBase Consor-
tium. 2014. tagtog: interactive and text-mining-
assisted annotation of gene mentions in PLOS full-
text articles. Database, 2014. Bau033.

Glenn T. Gobbel, Jennifer Garvin, Ruth Reeves,
Robert M. Cronin, Julia Heavirland, Jenifer
Williams, Allison Weaver, Shrimalini Jayaramaraja,
Dario Giuse, Theodore Speroff, Steven H. Brown,
Hua Xu, and Michael E. Matheny. 2014. Assisted
annotation of medical free text using RapTAT. Jour-
nal of the American Medical Informatics Associa-
tion, 21(5):833–841.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Ya-
sufumi Taniguchi, and Xu Liang. 2018. doccano:
Text annotation tool for human. Software available
from https://github.com/doccano/doccano.

Mariana Neves and Jurica Ševa. 2019. An extensive
review of tools for manual annotation of documents.
Briefings in Bioinformatics, 22(1):146–163.

David Salgado, Martin Krallinger, Marc Depaule,
Elodie Drula, Ashish V. Tendulkar, Florian Leitner,
Alfonso Valencia, and Christophe Marcelle. 2012.
MyMiner: a web application for computer-assisted
biocuration and text annotation. Bioinformatics,
28(17):2285–2287.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
WebAnno: A flexible, web-based and visually
supported system for distributed annotations. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 1–6, Sofia, Bulgaria.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. SemEval-2019 Task 6: Identifying and cat-
egorizing offensive language in social media (Offen-
sEval). In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 75–86,
Minneapolis, Minnesota, USA.

http://mat-annotation.sourceforge.net/
http://mat-annotation.sourceforge.net/
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://github.com/MaxMello/ActiveAnno
https://github.com/MaxMello/ActiveAnno
https://youtu.be/ryCi4XeReDg
https://doi.org/10.1093/database/bau033
https://doi.org/10.1093/database/bau033
https://doi.org/10.1093/database/bau033
https://doi.org/10.1136/amiajnl-2013-002255
https://doi.org/10.1136/amiajnl-2013-002255
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://doi.org/10.1093/bib/bbz130
https://doi.org/10.1093/bib/bbz130
https://doi.org/10.1093/bioinformatics/bts435
https://doi.org/10.1093/bioinformatics/bts435
https://www.aclweb.org/anthology/P13-4001
https://www.aclweb.org/anthology/P13-4001
https://www.aclweb.org/anthology/S19-2010
https://www.aclweb.org/anthology/S19-2010
https://www.aclweb.org/anthology/S19-2010


A Supplemental Material
The following supplemental material features vari-
ous screenshots of ACTIVEANNO in order to dis-
play the scope of the project.

A.1 Home Page

Figure 4: Home page

Figure 4 shows the home page of ACTIVEANNO,
including navigation options to all subareas as well
as the language switcher.

A.2 Manage UI

Figure 5: Editing an annotation definition

The manage UI has various parts, such as the
ability to edit annotation definitions as depicted in
Figure 5, here a number annotation. Another part is
creating and editing annotation projects. Figure 6
shows the basic properties of an annotation project,
like name, description and user associated to their
roles. Figure 7 shows the annotation schema, which
is comprised of all the annotation definitions of the
project. Finally, Figure 8 shows part of the analy-
sis UI where annotation results can be statistically
evaluated. It features graphs of annotation duration,
inter-annotator agreement, and accuracy. Not de-
picted are the filter options to only analyze a subset
of all annotation results of the project, for example,
based on the annotators or time, and an extensive
table showing statistics (agreement, correctness of
annotation) for every document analyzed.

A.3 Curation UI
The curation UI, as shown in Figure 9, is an exten-
sion of the annotation UI, featuring an additional

Figure 6: Editing project basic properties

Figure 7: Editing project annotation schema

panel where all annotation results for the document
are displayed. The curator can either accept one
of those results as correct, copy the result into the
annotation area below, or annotate the document
themselves in said annotation area.



Figure 8: Analysis UI with duration, inter-annotator
agreement and accuracy

Figure 9: Curation UI


