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Abstract

Referential gaze is a fundamental phenomenon
for psycholinguistics and human-human com-
munication. However, modeling referential
gaze for real-world scenarios, e.g. for task-
oriented communication, is lacking the well-
deserved attention from the NLP community.
In this paper, we address this challenging is-
sue by proposing a novel multimodal NLP task;
namely predicting when the gaze is referential.
We further investigate how to model referen-
tial gaze and transfer gaze features to adapt
to unseen situated settings that target different
referential complexities than the training en-
vironment. We train (i) a sequential attention-
based LSTM model and (ii) a multivariate trans-
former encoder architecture to predict whether
the gaze is on a referent object. The models
are evaluated on the three complexity datasets.
The results indicate that the gaze features can
be transferred not only among various simi-
lar tasks and scenes but also across various
complexity levels. Taking the referential com-
plexity of a scene into account is important for
successful target prediction using gaze parame-
ters especially when there is not much data for
fine-tuning.

1 Introduction

In a situated interaction, interlocutors produce and
interpret complex communicative signals and in-
tertwine their verbal utterances with non-verbal
signals like gaze. For instance, when referring to
objects in the visual environment, speakers tend
to fixate the target referent, listeners gaze at the
objects they believe to be referred to by the speaker
and, importantly, listeners monitor the speaker’s
gaze in case it provides reliable information about
the referent (Staudte and Crocker, 2011b). In noisy
environments, listeners (that need to resolve refer-
ences to objects) might even face situations where

∗* Remote research-intern at the Language Technology
Group, University of Hamburg

Figure 1: An example task-oriented scenario

gaze provides a more reliable cue than spoken
words. For example, in the scenario depicted in
Figure 1, “the glasses” in the command illustrates
an ambiguous reference and during human-human
communication, such ambiguities can be easily re-
solved via tracking referential gaze.

Referential gaze as a communication modality
is a well researched / fundamental phenomenon in
Psycholinguistics and Cognitive Science (Koller
et al., 2012; Staudte and Crocker, 2011a; Prasov
and Chai, 2008). Mainstream Natural Language
Processing (NLP) systems — on the other hand —
still usually employ language-only approaches,
where the performance is highly dependent on the
completeness of the language modality. Despite
the fact that reference resolution in visual environ-
ments has become a very popular task in recent
NLP and Computer Vision research (Kazemzadeh
et al., 2014; Schlangen et al., 2016; De Vries et al.,
2017; Cirik et al., 2018; Yu et al., 2018; Kalpakchi
and Boye, 2019; Chen et al., 2020), there is very
little work on reference resolution models that ex-
ploit eye gaze for this task. They fall short on
modeling referential gaze for realistic scenarios for
task-oriented communication that go beyond sim-
ple settings. One main reason behind this is human
gaze’s intricate nature of being complex (a multi-
variate sequence) and multi-functional (e.g. referen-
tial gaze, social gaze and so on) (Somashekarappa
et al., 2020). In this paper, we propose a novel task
of predicting when the gaze is referential during



198

the communication, aiming at modeling referential
gaze for various multimodal settings.

Most recently, daily devices like laptops start to
utilize eye-tracking technology (Brousseau et al.,
2020; Rogers, 2019; Khamis et al., 2018). As a
result, incorporating eye-movements in language
comprehension models is an inevitable goal for
NLP emerging from these developments, and this
motivates systematic research on the interaction
of different communicative modalities. However,
the collection and pre-processing of eye-movement
data is a very costly process, and this is another
main reason why there are only a few large eye-
movement datasets available (Alaçam et al., 2020;
Wilming et al., 2017; Ehinger et al., 2009).

Eye-movements are highly influenced by bottom-
up perceptual and top-down conceptual proper-
ties of the task (e.g. free viewing, search, etc.)
and the properties of the visual environment (Ein-
häuser et al., 2008; Zelinsky et al., 2006; Hen-
derson, 2003). Besides, their patterns (pupil size,
saccade velocity, fixation duration, etc.) are very
user-dependent (Rayner et al., 2007). All these fac-
tors introduce challenges in (i) learning meaningful
patterns from limited data, (ii) generalizing well
enough to different kinds of situations of real-world
complexities and (iii) successfully incorporating it
to NLP systems for reference resolution and mean-
ing recovery. To mitigate these problems, transfer
learning can be used to adapt the knowledge ob-
tained from one setting to another, benefiting from
its added generalization capabilities.

2 Background

In this paper, we apply transformer-based time-
series modeling and transfer learning to the phe-
nomenon of referential gaze. Section 2.1 discusses
the background for technical modeling, and Sec-
tion 2.2 introduces referential gaze.

2.1 Transfer Learning and Time-series
Multivariate Classification

Time-series analysis have been generally ap-
proached using more traditional machine learning
techniques such as XGboost (Chen and Guestrin,
2016), and Dynamic Time Wrapping (Lei et al.,
2019). There has been also successful recurrent
models like RNNs (LSTMs and GRUs) with addi-
tional enhancements to address the intricacies of
multivariate time series (Wu et al., 2020; Bianchi
et al., 2019). By taking the close relation of the

referential gaze with language, LSTM solutions are
considered as an adequate baseline for the task.

With the development of the auto-encoder ar-
chitectures (Vaswani et al., 2017), most machine
learning domains are dominated by transformer
solutions. Transformer models for uni-variate time-
series forecasting and classification has been stud-
ied broadly. However, as eye-trackers can record
multiple parameters simultaneously (such as veloc-
ity, acceleration, pupil size, etc.), this makes the
collected data a multivariate time series. Despite
the simultaneity, many of these features might have
their unique onsets and offsets in regards to changes
in the top-down (mental, cognitive) or bottom-up
(perceptual) factors. Thus, modeling referential
gaze and classification based on a set of various
raw gaze features requires a multivariate approach,
which has recently received some attention in the
literature.

Liu et al. (2021)’s simple but effective solution of
combining a gating mechanism with transformer ar-
chitectures seems to provide state-of-the-art results
for time-series forecasting. A novel approach on
supervised and unsupervised representation learn-
ing for a series of multivariate tasks (such as re-
gression, classification and forecasting) has been
proposed by Zerveas et al. (2021). Pretraining and
fine-tuning procedures exhibit high resemblance to
language modeling, but they are modified to pro-
cess multivariate time series. The model only uses
an encoder part, this provides great computational
power. Their unsupervised pre-training scheme,
evaluated on several benchmark datasets, surpasses
the performance of all current state-of-the-art su-
pervised methods including their own.

Moreover, transformer architectures can extract
patterns from low-level features without exten-
sive feature engineering because of their multi-
layer structure and effective attention mechanisms.
This might have particular advantages for eye-
movement processing since many approaches uses
fixation-based parameters where a series of rule-
based assumptions are needed to define a fixation.
And each researcher and each eye-tracking device
producer might come up with their own criteria.
Being able to work on low-level features might
eliminate these inconsistencies.

2.2 Referential Gaze

Prior research indicates that incorporating eye
movements of a speaker or a listener improves the
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performance of many NLP tasks, e.g. in predict-
ing / resolving which entity is being referred to in
a complex visual environment (Mitev et al., 2018;
Koleva et al., 2015). As shown by Koleva et al.
(2015), listener gaze can be highly beneficial to pre-
dict which entity is being referred to in the sentence
and to understand the intention of the listener when
the targets and their referentially possible competi-
tors are located close-by. A gaze-contingent system
may react to changes in its environment by track-
ing the probability of the fixations per each item
in the scene over time. However, Henderson et al.
(2009) point out that the success of such a system
is dependent on utilizing an effective combination
of several fixation parameters. A study by Klerke
and Plank (2019) indicates that globally-aggregated
measures can also capture the central tendency or
variability of gaze data instead of customizing to-
wards individual participants.

Only a few studies embed a set of eye-
movements (e.g. velocity, acceleration, pupil size)
into a rich vector space (Sood et al., 2020; Takmaz
et al., 2020; Park et al., 2019; Karessli et al., 2017).
Nevertheless, those models are limited to relatively
simple scenes or reading activities (e.g. CMCL
Shared Task 2021-2022 (Hollenstein et al., 2021;
Barrett and Hollenstein, 2020). Situated language
understanding in a referentially complex environ-
ment imposes a different level of challenge as it
requires more complex visual search due to ambi-
guity resolution among possible options.

3 Approach

We investigate the modeling of eye-movements and
ask whether different referential complexities need
individual referential gaze models or whether we
can use transfer learning (pre-training on larger col-
lections and fine-tuning on task-specific dataset).
We build a model that predicts when the gaze of
a participant is referential, i.e., when she looks at
the target object referred to by the speaker. For a
low-complexity scene (i.e., with few objects) and
an unambiguous verbal description, this task can be
considered as straightforward, since the user will
quickly identify the target and not have to visually
search for it. In a complex visual scene — with
occluded objects and complex or ambiguous verbal
descriptions — eye-movements can provide highly
distinctive information to resolve ambiguities, but
may also show more complex and challenging gaze
patterns in return. Therefore, in this study, we min-

imize the contribution of accompanying linguistic
and contextual information and focus on the influ-
ence and capabilities of gaze features.

3.1 Task

We frame the learning problem as a supervised se-
quence tagging task where the input is a multivari-
ate time series (i.e., with multiple eye-movement
parameters) and the output is a sequence of binary
labels. The label indicates whether the participant’s
gaze is currently referential. Thus, we train our
model to predict for each time frame whether the
gaze of the participant is on the target object while
the spoken sentence unfolds.

Given that verbal descriptions of referents vary
in their complexity, different labeling schemes for
“target objects” can be adopted. To illustrate, the
second referring expression in Table 1 has a sin-
gle global target, i.e., cage_1, as the object of the
intended action. But, the expression mentions fur-
ther referents (table_1 and man_1, see Figure 2a)
which are local targets that are likely to be gazed
at as well. To account for this, we distinguish two
different task settings: (i) in Task-A, we consider
time frames as referential, where the gaze is on the
global target; in (i) Task-B, we label all time frames
as referential where the gaze is on a global or local
target object.

3.2 Referential Complexity

Referential complexity is a complex notion in it-
self and has been investigated in different fields and
with different terminologies, cf. Clarke et al. (2013).
In this study, we use the complexity classification
provided by Alaçam et al. (2020)’s Eye4Ref Bench-
mark to account for reproducibility. Thus, we in-
vestigate three complexity levels — LOW, MEDIUM

and HIGH — which differ in the way the scene and
descriptions are composed. Sample stimuli and
the basic descriptive statistics of each complexity
level are given in Figure 2. In the LOW referential
complexity, the focus lies on identifying the target
and the targeted location with no ambiguity. In the
HIGH and MEDIUM conditions, for each mentioned
object in the scene, there are also distractor objects
that share properties with the targets (e.g. type or
color). Unlike other two, the HIGH condition con-
tains not only objects but also people and actions.
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Table 1: Sample (translated) sentences with varying complexities (Experiment language is German)

Complexity Sentence

High It is a book on a couch that he reads quietly.
High It is a cage on a table that he moves. (Figure 2a)
Medium Bring me the blue mug from the counter. (Figure 2b)
Medium Bring me the mug, the blue mug, from the counter. (Figure 2b)
Low Put the mug on the counter, on the blue one.
Low Put the mug on the counter, next to the blue one. (Figure 2c)

(a) Set-1: HIGH RC: 28 participants,
36 scenes, 548K timestamps

(b) Set-2: MEDIUM RC: 27 participants,
46 scenes, 565K timestamps

(c) Set-3: LOW RC: 21 participants,
17 scenes, 290K timestamps

Figure 2: Sample scenes and descriptive statistics for the three referential complexity (RC) Eye4Ref datasets

4 Experiments

4.1 Data

We use the Eye4Ref Benchmark that consists of
three datasets (Alaçam et al., 2020) where gaze
data was collected from human participants on ref-
erentially complex situated settings using a SR Eye-
link 1000 Plus eye tracker with a sampling rate
of 1000 Hz. For all datasets, the eye-tracking data
of the participants were recorded while they are
presented with images and accompanying spoken
descriptions like (put object X onto Y) and descrip-
tions like (there is an object X that Y interacts with),
as summarized in Table 1. The language of the
experiments is German. For simplicity, in our illus-
trations, we use the translated sentences from the
dataset. Referential complexity of the studies is de-
fined in terms of visual manipulations (e.g. number
of objects, visibility of the target items, presence of
distractor objects that share the same class with the
target objects) and linguistic ones (e.g. the position
of the disambiguating word in a sentence). For the
details of the dataset and data collection, please
refer to (Alaçam et al., 2020).

4.2 Gaze Feature Vector and Labels

Employing a simple approach which uses only one
selected gaze parameter (e.g. gaze location at one
point of time) may yield successful results only if
the number of objects is limited (low referential
complexity). Furthermore, a lot of assumptions

need to be made to decide when the aggregated
group of eye-movements forms a fixation or sac-
cade. Thus, regarding the goals of the project ad-
dressing various complexities, an elaborated param-
eter selection is required to establish crossmodal
mapping. We use a time-series format that re-
quires fewer assumptions on the raw data. For
computational efficiency reasons, we use binning,
where each bin corresponds to a cumulative sam-
pling for 20 ms such as average fixation duration,
gaze velocity, or list of targeted area of interest
(AOIs). Eye4Ref provides pre-processed data for
each scene and participant in each dataset. For
each timestamp (20 ms bin), all linguistic, contex-
tual and gaze features are provided in a CSV format.
The number of the features (on average 230 values)
is dependent on the number of items in the scene.
Forty-five of them correspond to participant- and
study-related information as well as the set of eye-
movement parameters. Approximately 180 values
correspond to one-hot encoded fixation location
parameters addressing all the objects in the respec-
tive scene, indicating whether the gaze is fixated
on that object. For our purposes, we have reduced
the size of this scene-specific vector part to two
scene-agnostic binary output variables: whether
the gaze is (i) on the target object or (ii) on a com-
municatively relevant object (all referents). The
dimension of the final fixed-sized feature vector is
16, consisting of only gaze and scene information
such as gaze acceleration, velocity, pupil diameter,
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object count of the scene as a general referential
complexity measure, etc (see Appendix A.1). In
order to be able to generalize better, gaze coordi-
nates of the eye-movements are not included in the
training since this information would be only use-
ful in static images, where the objects have a fixed
location.

4.2.1 Normalization Parameters
One of the manipulated variables in this study is
the scope of normalization for the eye-movement
parameters. We normalized the continuous scale
gaze features in three ways: (i) within participant
(across items), (ii) within dataset (across partici-
pants and items), and (iii) across all datasets. These
parameters are directly retrieved from the original
dataset. Since eye-movements are highly task and
participant dependent, one common approach is to
train models for each user and each task, which is
a big challenge for incorporating eye-movements.
On the other hand, with the advancements deep
learning methods, this problem can be overcome
through transfer learning and pre-training. This
experimentation allows us to investigate to what
extent a normalization scope should be extended
for a successful transfer.

4.3 Splits and Testing Conditions

Each complexity set has been split item-wise into
training (80 %), validation (10 %) and test (10 %)
sets. This means that each set has distinct items
in their repertoire. To investigate the effect of size
and diversity of training data, we introduce the
COMBINED condition, where the new sets are cre-
ated by concatenating the respective subsets of all
conditions. In the end, we obtain 16 train–test com-
binations (Appendix A.5).

• Within-complexity tests: training and test-
ing on the same complexity e.g. TrainLOW →
TestLOW

• Data-diversity tests: training on COMBINED

and testing on each complexity condition
e.g. TrainCOMBINED → TestLOW

• Cross-complexity tests: training and testing
in a cross-complexity way e.g. TrainLOW →
TestMEDIUM

5 Model Architectures

To establish the performance of within- and cross-
complexity performances, we employ two deep

learning approaches; (i) LSTM as a sequential base
model and (ii) transformer architecture (Vaswani
et al., 2017). We use a transfer learning approach
to establish the compatibility of different complexi-
ties. This is done because there are not many large
datasets available and we want to study options
of how an available benchmark (Eye4Ref) can be
utilized as a baseline that is then adapted on a small
set of individual, task-specific data. Transfer learn-
ing only trains the final layer (the output layer and
all dense layers are frozen), thus the input repre-
sentation stays the same. Therefore, we further
experiment with fine-tuning the layers to arrive at
an input encoding that better fits the small target
data. The full code, and model summaries are pro-
vided under supplementary material.

Baseline LSTM Model We experimented with
two variations of a bi-directional LSTM architec-
ture (Hochreiter and Schmidhuber, 1997). Since
we are dealing with a sequence classification task,
attention mechanisms can help to improve the per-
formance of our model by guiding the model to
give more weight to the relevant time-frames in the
sequence. In the second variation, we use a variant
of self-attention (Bahdanau et al., 2015) known as
the Sequential Self Attention by Keras. The details
of the models are provided in Appendix A.3.

Time-series Transformer Model (TST) In-
spired by Zerveas et al. (2021), we utilize their
working solution (TST for classification) as our
Transformer architecture1. For the sake of sys-
tematicity, the scope of this paper is restricted to
supervised pretraining and further fine-tuning, by
leaving unsupervised pretraining to future studies.

For input, we create sequences of 25 times-
tamps, spanning 500 ms of input data. We use
class weights to treat the imbalance in the size of
the datasets. If the model predicts a referential
gaze for a timestep sequence, then the most visited
area-of-interest during that period is accessed and
compared against the true label. The final represen-
tation vectors corresponding to all time steps are
concatenated into a single vector (an input vector).
For the classification problem, the predictions are
passed through a softmax function to obtain a distri-
bution over classes, and its cross-entropy with the
categorical ground truth labels will be the sample
loss.

1For the details, please visit the original paper. The
modified code is available at https://gitlab.com/alacam/
referential-gaze-modeling

https://gitlab.com/alacam/referential-gaze-modeling
https://gitlab.com/alacam/referential-gaze-modeling
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Figure 3: F1-Scores for various model variations on the
MEDIUM complexity model

Each training sample, which is a multivariate
time series of varying length l and 18 different
variables, constitutes a sequence of l feature vectors
such as [x1, x2, ..., xl]. The original feature vectors
are linearly projected onto a 50- (for LSTM) and
64-dimensional vector space, (for TST) where d is
the dimension of the model.

The first setting (Supervised Pretraining) is a
simple use of pretrained models after training the
models on the training sets via supervised learning.
The parameters are provided in Appendix A.3 and
runtime details in Appendix A.4. In the second
variation (+fine-tuned), we do fine-tuning on the
pre-trained model by further training with a lower
learning rate on the validation set for 20 epochs.
With this, we aim to improve the results by incre-
mentally adapting the pre-trained gaze features to
new data.

6 Results

6.1 Model Variations

Before looking into transfer learning, we test for
appropriate model architectures for learning gaze
parameters. We choose MEDIUM condition to
compare the variations; (i) simple bi-LSTM , (ii)
attention-based LSTM, (iii) attention-based LSTM
with object count parameter, (iv) TST (time se-
ries transformer) without object count and (v) the
previous condition with object count. As shown
in Figure 3, on MEDIUM condition, incorporating
attention mechanism is crucial for LSTM architec-

ture. In addition, including the number of objects
in the scene as a complexity feature boosts the per-
formance. When the object count (as an indicator
of referential complexity) is excluded from the fea-
ture vector during training with the LSTM model,
the F1-Scores drops on average by .06, while both
COMBINED and MEDIUM benefit from this param-
eter. TST variations beats the LSTM models in all
conditions. Yet, unlike the LSTM model, includ-
ing object count only benefits the low and com-
bined condition with small margin but impairs the
medium and high condition.

6.2 Normalization Parameters
Figure 4 shows each TST model’s performance on
the three normalization scopes. Within-participant
normalization is the most simple approach where
each parameter collected within a trial are “min-
max” normalized producing values between 0
and 1. For within-study normalization (WS), “min-
max” normalization is applied by taking all the
trials collected for each study separately. Across-
study (AS) normalization is the most comprehen-
sive approach since all gaze parameters are nor-
malized by taking all produced values for that pa-
rameter in the entire benchmark. WP normaliza-
tion produces comparable scores to more global ap-
proaches. Using more sophisticated methods seems
to be beneficial especially for fine-tuning and the
long-tail conditions such as LOW and HIGH. These
results indicate that if the training size is limited or
has different referential complexity than the target
set, applying more global way of normalization
might be preferred.

6.3 Within-Complexity Results
On target referent prediction (Task-A), the negative
class has a proportion between 87 and 92%, render-
ing the task of identifying the sparser positive class
somewhat difficult. When we take all referents
into account (Task-B), the most frequent negative
class has a share between 68 and 75%. All within-
complexity test results beat their (most frequent
class) baseline on the accuracy metric (Lowbaseline:
0.683, Mediumbaseline: 0.755, Highbaseline: 0.728,
Combinedbaseline: 0.73), indicating that even with
gaze information alone, communicative object pre-
diction is possible.

Within-complexity results are provided in Fig-
ure 5 (details in Appendix A.6). Since further fine-
tuning does not make sense for the within com-
plexity conditions, fine-tuning values are marked
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Figure 4: F1-scores (on the positive class) for varying normalization scopes

(a) Task-A: LSTM Model for Global Target Objects

(b) Task-A: TST Model for Global Target Objects

(c) Task-B: LSTM Model for Local Target Objects

(d) Task-B: TST Model for Local Target Objects

Figure 5: F1-scores on the positive class for Task-A and Task-B. Light green corresponds to pre-training, and the
dark green to fine-tuning.

as empty in the graphs and as non-applicable (NA)
on the Tables. Here we interpret the results from
pre-training and testing on the same conditions. For
the Task-A (referential gaze on target), transformer

model (TST) produces a better performance over-
all; the within complexity train-test cycle resulted
in +0.15% better for the LOW case compared to
the LSTM Model, +0.06% for the MEDIUM. And
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there is slight decrease −0.02% for the HIGH con-
dition. The results for the Task-B is less conclusive.
While TST performs better for the LOW condi-
tion to a substantial degree +0.20%, LSTM’s per-
formance surpasses TST on the HIGH condition
+0.22%. And there is no difference in terms of
performance on the MEDIUM condition.

6.4 Effect of Data Diversity
Results from training on COMBINED and testing on
each condition shows the effect of using a larger
and well representative dataset that contains vari-
ous referential complexity settings, shown in the
right-most graphs in Figure 5. Here, we observe
that with rich data variety, without transfer learn-
ing, good results on both target and any referent
prediction can be achieved. For the Task-A, the
COMBINED condition provides the second best so-
lution for the HIGH condition (almost comparable
to the MEDIUM). In terms of model architecture,
the TST model displays an advantage over LSTM
in supervised learning from rich data. On the other
hand, with further fine-tuning, LSTM results ap-
proach and even exceed the TST scores.

6.5 Cross-Complexity Results
Figure 5 shows the F1-scores (on the positive
class) when transferring the LSTM and TST mod-
els across complexities (see Appendix A.6 for fur-
ther details). The light green bars show results for
pre-trained models, and the dark ones refer to the
fine-tuned models. Overall, the most striking result
is that the TST model trained in the LOW condition
transfers very well to the MEDIUM and HIGH condi-
tion, even without fine-tuning. In effect, the overall
best results on MEDIUM and HIGH are achieved by
the TST model that is trained on the LOW condi-
tion. This is the case for both Task-A and Task-
B (see the leftmost column in Figure 5). Gener-
ally, the TST model seems to benefit little from
fine-tuning which may indicate that this additional
training step introduces overfitting. This seems to
be the pattern while testing on lower complexities
than the training one (e.g. TrainHigh–TestMedium, or
TrainCombined–TestLow) In contrast, the fine-tuning
is highly instrumental on the LSTM’s performance.
Unlike TST, LSTM model is better at generalizing
from the MEDIUM condition.

Moreover, training on the HIGH condition and
testing on conditions of lower complexity does
not seem to be successful in any model (see the
third column in Figure 5). Overall, training on the

Figure 6: Aggregated model predictions on one image
(medium condition) against the aggregated truth labels
(from all participants)

MEDIUM condition achieves a medium accuracy
which remains at a medium level in the other con-
ditions. This pattern indicates that it is important
to do the pretraining of gaze embeddings on a con-
dition where the model can achieve high accuracy
in referential gaze predictions. This leads to gaze
representations that can be transferred well to other
conditions.

At first glance, a stronger prediction perfor-
mance on the LOW complexity is expected com-
pared to other conditions. However, only TST
model performs in line with this assumption. The
number of objects is relatively small and has a low
range (10 to 12) for all the scenes in that condi-
tion. It is possible that after detecting the relevant
items, other objects are also being looked at by
the participants until the trial ends (non-referential
gaze). LSTM recurrent mechanism might be less
sensitive about distinguishing referential gaze from
other kinds of eye behaviors (like free viewing).

6.6 Scene-Specific Analysis
Further scene-specific analysis on the predictions
provides insights about the temporal dimension of
such predictions. However, first it should be noted
that each participant might look at the referent ob-
jects at different point of time even while they are
looking at the same image and hearing the same
audio. This means that each participant produces
unique ground truth labels (Appendix A.7). This
makes the error analysis extremely challenging on
referential gaze data. To address this issue, we be-
lieve that a sound method for error analysis will
need to be developed and tested with care.

Although a full-scale error analysis is not in the
scope of this study, we can look at the aggregated
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data of all participants who saw the same scene.
Figure 6 shows ground truth and TST models’ pre-
dictions on a specific image. For each time interval
(in the range of 1 to 10), we have aggregated the
data collected from all participants in this condi-
tion as ground truth and model predictions respec-
tively. For the sake of readability, individual model
comparisons to ground truth have been presented
separately per condition in the Appendix, Figure 9
to Figure 12.

This preliminary analysis supports our quanti-
tative findings on transferring our referential gaze
model from Section 6.5. Thus, the models trained
on the LOW and COMBINED conditions (green and
blue line) achieve the most stable prediction over
the course of the sequence. Furthermore, the anal-
ysis indicates that the temporal dimension of the
prediction is central. While the models exhibit dif-
ficulty to predict a referential gaze in the beginning
of the sentence, the predictions become more reli-
able towards the end, except for the HIGH condition.
When we look at the more stable second-half, we
observe that the only under-generating model (pro-
ducing false negatives) is still the HIGH condition.
On the other hand, over-generation (false-positives)
occurs more frequently with COMBINED and LOW

conditions in the first half.

6.7 Summary

We now summarize the main findings from our in-
vestigation into the modeling of referential gaze.
First of all, our results give some clear indications
with respect to choice of model architecture and
normalization procedures. The time-series trans-
former model (TST) outperforms the more basic
LSTM architecture in most settings. Normalization
of gaze features affects performance and across-
study normalization is beneficial for low-resource
or transfer settings.

Our results also clearly reveal that transferring
gaze features between conditions and settings is
far from trivial. Within-complexity results show
that referential gaze prediction is possible from
gaze features alone. All models beat the major-
ity baselines in Task-A and Task-B (Section 6.3).
Across-complexity results, however, demonstrate
that some of the models are highly tuned to their
specific communicative setting and do not general-
ize well.

The most robust models, in terms of generaliza-
tion capabilities, are the TST model trained jointly

on all conditions (COMBINED), and the TST model
trained on the LOW condition only. Thus, our main
finding is that gaze embeddings learned with mod-
els that achieve high accuracy in referential gaze
prediction transfer well to other settings, even when
they are trained on small amounts of data. We be-
lieve that this points into a very promising direction
for future work on integrating NLP models with
gaze processing.

7 Conclusion

Attending to referential gaze of the interlocutors
is fundamental to face-to-face communication, yet
still mostly ignored by the NLP community. In
this study, we experiment with two deep learning
methods (LSTM and transformer) to model refer-
ential gaze. We target gaze-only reference resolu-
tion and test how we can transfer the gaze features
among various scene settings. Depending on the
task (target or all-referent prediction) and the com-
plexity level, the models exhibit different advan-
tages. While TST is successful at generalizing from
low complexities to higher ones and without the
need of extra fine-tuning step, LSTM beats TST at
generalizing from the MEDIUM conditions. But its
performance is positively affected by fine-tuning.

One of the challenges of eye-movement model-
ing originates from being highly individual, task
and environment dependent, making the generaliza-
tion is more challenging. The results on different
levels of gaze parameter normalization indicate
that long-tail conditions clearly benefit from using
more globally normalization. Within-complexity
comparisons show that gaze features based on one
scenario can be useful for similar new scenes. How-
ever, adopting among various complexities using
pretrained models (with or without fine-tuning) dis-
plays encouraging results. Yet these result also
confirm the challenging nature of the task and pro-
vide stepping stone for modeling referential gaze.
Especially, the results are not trivial considering
that we only use low-level gaze features. In addi-
tion to the gaze parameters, including the number
of objects in the scene as a feature improves ref-
erential gaze prediction, indicating that this infor-
mation makes the model more sensitive to various
referential complexities.



206

References
Özge Alaçam, Eugen Ruppert, Amr R. Salama, To-

bias Staron, and Wolfgang Menzel. 2020. Eye4ref:
A multimodal eye movement dataset of referen-
tially complex situations. In Proceedings of the12th
International Conference on Language Resources
and Evaluation (LREC), page 2396–2404, Marseille,
France.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, pages 1–
15, San Diego, CA, USA.

Maria Barrett and Nora Hollenstein. 2020. Sequence
labelling and sequence classification with gaze:
Novel uses of eye-tracking data for natural language
processing. Language and Linguistics Compass,
14(11):1–16.

Filippo Maria Bianchi, Lorenzo Livi, Karl Øyvind
Mikalsen, Michael Kampffmeyer, and Robert
Jenssen. 2019. Learning representations of multi-
variate time series with missing data. Pattern Recog-
nition, 96:106973.

Braiden Brousseau, Jonathan Rose, and Moshe Eizen-
man. 2020. Hybrid eye-tracking on a smartphone
with cnn feature extraction and an infrared 3d model.
Sensors, 20(2):543.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
785–794.

Zhenfang Chen, Peng Wang, Lin Ma, Kwan-Yee K
Wong, and Qi Wu. 2020. Cops-ref: A new dataset
and task on compositional referring expression com-
prehension. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 10086–10095.

Volkan Cirik, Louis-Philippe Morency, and Taylor Berg-
Kirkpatrick. 2018. Visual referring expression recog-
nition: What do systems actually learn? In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 781–787, New Orleans,
Louisiana.

Alasdair DF Clarke, Micha Elsner, and Hannah Ro-
hde. 2013. Where’s wally: The influence of visual
salience on referring expression generation. Fron-
tiers in psychology, 4:329.

Harm De Vries, Florian Strub, Sarath Chandar, Olivier
Pietquin, Hugo Larochelle, and Aaron Courville.
2017. Guesswhat?! visual object discovery through
multi-modal dialogue. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 5503–5512.

Krista A Ehinger, Barbara Hidalgo-Sotelo, Antonio Tor-
ralba, and Aude Oliva. 2009. Modelling search for
people in 900 scenes: A combined source model of
eye guidance. Visual cognition, 17(6-7):945–978.

Wolfgang Einhäuser, Ueli Rutishauser, Christof Koch,
et al. 2008. Task-demands can immediately reverse
the effects of sensory-driven saliency in complex vi-
sual stimuli. Journal of vision, 8(2):2–2.

John M Henderson. 2003. Human gaze control dur-
ing real-world scene perception. Trends in cognitive
sciences, 7(11):498–504.

John M. Henderson and Tim J. Smith. 2009. How
are eye fixation durations controlled during scene
viewing? further evidence from a scene onset delay
paradigm. Visual Cognition, 17(6-7):1055–1082.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Nora Hollenstein, Emmanuele Chersoni, Cassandra L.
Jacobs, Yohei Oseki, Laurent Prévot, and Enrico San-
tus. 2021. CMCL 2021 shared task on eye-tracking
prediction. In Proceedings of the Workshop on Cogni-
tive Modeling and Computational Linguistics, pages
72–78, Online.

Dmytro Kalpakchi and Johan Boye. 2019. Spac-
eRefNet: A neural approach to spatial reference reso-
lution in a real city environment. In Proceedings of
the 20th Annual SIGdial Meeting on Discourse and
Dialogue, pages 422–431.

Nour Karessli, Zeynep Akata, Bernt Schiele, and An-
dreas Bulling. 2017. Gaze embeddings for zero-shot
image classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 4525–4534.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara Berg. 2014. ReferItGame: Referring to
objects in photographs of natural scenes. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
787–798.

Mohamed Khamis, Florian Alt, and Andreas Bulling.
2018. The past, present, and future of gaze-enabled
handheld mobile devices: survey and lessons learned.
In Proceedings of the 20th International Conference
on Human-Computer Interaction with Mobile De-
vices and Services, pages 1–17, Barcelona, Spain.

Sigrid Klerke and Barbara Plank. 2019. At a glance:
The impact of gaze aggregation views on syntac-
tic tagging. In Proceedings of the Beyond Vision
and LANguage: inTEgrating Real-world kNowledge
(LANTERN), pages 51–61, Hong Kong, China.

Nikolina Koleva, Martín Villalba, Maria Staudte, and
Alexander Koller. 2015. The impact of listener gaze
on predicting reference resolution. In Proceedings
of the 53rd Annual Meeting of the Association for

https://aclanthology.org/2020.lrec-1.292
https://aclanthology.org/2020.lrec-1.292
https://aclanthology.org/2020.lrec-1.292
https://arxiv.org/abs/1409.0473v7
https://arxiv.org/abs/1409.0473v7
https://doi.org/10.1111/lnc3.12396
https://doi.org/10.1111/lnc3.12396
https://doi.org/10.1111/lnc3.12396
https://doi.org/10.1111/lnc3.12396
https://doi.org/10.1016/j.patcog.2019.106973
https://doi.org/10.1016/j.patcog.2019.106973
https://doi.org/10.3390/s20020543
https://doi.org/10.3390/s20020543
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://openaccess.thecvf.com/content_CVPR_2020/html/Chen_Cops-Ref_A_New_Dataset_and_Task_on_Compositional_Referring_Expression_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Chen_Cops-Ref_A_New_Dataset_and_Task_on_Compositional_Referring_Expression_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Chen_Cops-Ref_A_New_Dataset_and_Task_on_Compositional_Referring_Expression_CVPR_2020_paper.html
https://doi.org/10.18653/v1/N18-2123
https://doi.org/10.18653/v1/N18-2123
https://doi.org/10.3389/fpsyg.2013.00329
https://doi.org/10.3389/fpsyg.2013.00329
https://openaccess.thecvf.com/content_cvpr_2017/html/de_Vries_GuessWhat_Visual_Object_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/de_Vries_GuessWhat_Visual_Object_CVPR_2017_paper.html
https://doi.org/10.1080/13506280902834720
https://doi.org/10.1080/13506280902834720
https://doi.org/10.1080/13506280902834720
https://doi.org/10.1167/8.2.2
https://doi.org/10.1167/8.2.2
https://doi.org/10.1167/8.2.2
https://doi.org/10.1016/j.tics.2003.09.006
https://doi.org/10.1016/j.tics.2003.09.006
https://doi.org/10.1080/13506280802685552
https://doi.org/10.1080/13506280802685552
https://doi.org/10.1080/13506280802685552
https://doi.org/10.1080/13506280802685552
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/2021.cmcl-1.7
https://doi.org/10.18653/v1/2021.cmcl-1.7
https://doi.org/10.18653/v1/w19-5949
https://doi.org/10.18653/v1/w19-5949
https://doi.org/10.18653/v1/w19-5949
https://doi.org/https://openaccess.thecvf.com/content_cvpr_2017/html/Karessli_Gaze_Embeddings_for_CVPR_2017_paper.html
https://doi.org/https://openaccess.thecvf.com/content_cvpr_2017/html/Karessli_Gaze_Embeddings_for_CVPR_2017_paper.html
https://doi.org/10.3115/v1/D14-1086
https://doi.org/10.3115/v1/D14-1086
https://doi.org/10.1145/3229434.3229452
https://doi.org/10.1145/3229434.3229452
https://doi.org/10.18653/v1/D19-6408
https://doi.org/10.18653/v1/D19-6408
https://doi.org/10.18653/v1/D19-6408
https://doi.org/10.3115/v1/P15-2133
https://doi.org/10.3115/v1/P15-2133


207

Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing,
volume 2, pages 812–817, Beijing, China.

Alexander Koller, Konstantina Garoufi, Maria Staudte,
and Matthew Crocker. 2012. Enhancing referential
success by tracking hearer gaze. In Proceedings
of the 13th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 30–39,
Stroudsburg, PA, USA.

Qi Lei, Jinfeng Yi, Roman Vaculin, Lingfei Wu, and
Inderjit S Dhillon. 2019. Similarity preserving rep-
resentation learning for time series clustering. In
International Joint Conferences on Artificial Intelli-
gence, volume 19, pages 2845–2851, Macao China.

Minghao Liu, Shengqi Ren, Siyuan Ma, Jiahui Jiao,
Yizhou Chen, Zhiguang Wang, and Wei Song. 2021.
Gated transformer networks for multivariate time se-
ries classification. arXiv:2103.14438.

Nikolina Mitev, Patrick Renner, Thies Pfeiffer, and
Maria Staudte. 2018. Using listener gaze to refer
in installments benefits understanding. In Proceed-
ings of the 40th Annual Meeting of the Cognitive
Science Society, pages 2122–2127, Madison, Wis-
consin, USA.

Tom O’Malley, Elie Bursztein, James Long, François
Chollet, Haifeng Jin, Luca Invernizzi, et al. 2019.
Keras tuner. https://github.com/keras-team/
keras-tuner.

Seonwook Park, Shalini De Mello, Pavlo Molchanov,
Umar Iqbal, Otmar Hilliges, and Jan Kautz. 2019.
Few-shot adaptive gaze estimation. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 9368–9377, Seoul, Korea.

Zahar Prasov and Joyce Y Chai. 2008. What’s in a
Gaze? The Role of Eye-gaze in Reference Reso-
lution in Multimodal Conversational Interfaces. In
Proceedings of the 13th international conference on
Intelligent user interfaces, pages 20–29, Gran Ca-
naria, Spain.

Keith Rayner, Xingshan Li, Carrick C Williams, Kyle R
Cave, and Arnold D Well. 2007. Eye movements
during information processing tasks: Individual
differences and cultural effects. Vision research,
47(21):2714–2726.

Sol Rogers. 2019. Seven Reasons Why Eye-tracking
Will Fundamentally Change VR. Retrieved on
15.05.2020.

David Schlangen, Sina Zarrieß, and Casey Kennington.
2016. Resolving references to objects in photographs
using the words-as-classifiers model. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1213–1223, Berlin, Germany.

Vidya Somashekarappa, Christine Howes, and Asad
Sayeed. 2020. An annotation approach for social
and referential gaze in dialogue. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 759–765, Marseille, France.

Ekta Sood, Simon Tannert, Philipp Müller, and Andreas
Bulling. 2020. Improving natural language process-
ing tasks with human gaze-guided neural attention.
Advances in Neural Information Processing Systems.

Maria Staudte and Matthew W Crocker. 2011a. Investi-
gating joint attention mechanisms through spoken
human–robot interaction. Cognition, 120(2):268–
291.

Maria Staudte and Matthew W. Crocker. 2011b. Investi-
gating joint attention mechanisms through spoken hu-
man–robot interaction. Cognition, 120(2):268–291.

Ece Takmaz, Sandro Pezzelle, Lisa Beinborn, and
Raquel Fernández. 2020. Generating image descrip-
tions via sequential cross-modal alignment guided
by human gaze. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4664–4677, Online.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In 31st Conference on Neural Information
Processing Systems (NIPS 2017), pages 1–11.

Niklas Wilming, Selim Onat, José P Ossandón, Alper
Açık, Tim C Kietzmann, Kai Kaspar, Ricardo R
Gameiro, Alexandra Vormberg, and Peter König.
2017. An extensive dataset of eye movements during
viewing of complex images. Scientific data, 4(1):1–
11.

Neo Wu, Bradley Green, Xue Ben, and Shawn
O’Banion. 2020. Deep transformer models for time
series forecasting: The influenza prevalence case.
arXiv:2001.08317.

Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu,
Mohit Bansal, and Tamara L Berg. 2018. MattNet:
Modular attention network for referring expression
comprehension. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 1307–1315.

Gregory Zelinsky, Wei Zhang, Bing Yu, Xin Chen, and
Dimitris Samaras. 2006. The role of top-down and
bottom-up processes in guiding eye movements dur-
ing visual search. In Advances in Neural Information
Processing Systems, volume 18, pages 1569 – 1576.

George Zerveas, Srideepika Jayaraman, Dhaval Patel,
Anuradha Bhamidipaty, and Carsten Eickhoff. 2021.
A transformer-based framework for multivariate time
series representation learning. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 2114–2124.

https://doi.org/https://aclanthology.org/W12-1604
https://doi.org/https://aclanthology.org/W12-1604
https://dl.acm.org/doi/abs/10.5555/3367243.3367434
https://dl.acm.org/doi/abs/10.5555/3367243.3367434
https://arxiv.org/abs/2103.14438v1
https://arxiv.org/abs/2103.14438v1
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://openaccess.thecvf.com/content_ICCV_2019/html/Park_Few-Shot_Adaptive_Gaze_Estimation_ICCV_2019_paper.html
https://doi.org/10.1145/1378773.1378777
https://doi.org/10.1145/1378773.1378777
https://doi.org/10.1145/1378773.1378777
https://doi.org/10.1016/j.visres.2007.05.007
https://doi.org/10.1016/j.visres.2007.05.007
https://doi.org/10.1016/j.visres.2007.05.007
https://www.forbes.com/sites/solrogers/2019/02/05/seven-reasons-why-eye-tracking-will-fundamentally-change-vr/
https://www.forbes.com/sites/solrogers/2019/02/05/seven-reasons-why-eye-tracking-will-fundamentally-change-vr/
https://doi.org/10.18653/v1/P16-1115
https://doi.org/10.18653/v1/P16-1115
https://aclanthology.org/2020.lrec-1.95
https://aclanthology.org/2020.lrec-1.95
http://arxiv.org/abs/2010.07891
http://arxiv.org/abs/2010.07891
https://doi.org/10.1016/j.cognition.2011.05.005
https://doi.org/10.1016/j.cognition.2011.05.005
https://doi.org/10.1016/j.cognition.2011.05.005
https://doi.org/https://doi.org/10.1016/j.cognition.2011.05.005
https://doi.org/https://doi.org/10.1016/j.cognition.2011.05.005
https://doi.org/https://doi.org/10.1016/j.cognition.2011.05.005
https://doi.org/10.18653/v1/2020.emnlp-main.377
https://doi.org/10.18653/v1/2020.emnlp-main.377
https://doi.org/10.18653/v1/2020.emnlp-main.377
https://doi.org/10.1038/sdata.2016.126
https://doi.org/10.1038/sdata.2016.126
https://arxiv.org/abs/2001.08317
https://arxiv.org/abs/2001.08317
https://openaccess.thecvf.com/content_cvpr_2018/html/Yu_MAttNet_Modular_Attention_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Yu_MAttNet_Modular_Attention_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Yu_MAttNet_Modular_Attention_CVPR_2018_paper.html
http://papers.nips.cc/paper/2805-the-role-of-top-down-and-bottom-up-processes-in-guiding-eye-movements-during-visual-search
http://papers.nips.cc/paper/2805-the-role-of-top-down-and-bottom-up-processes-in-guiding-eye-movements-during-visual-search
http://papers.nips.cc/paper/2805-the-role-of-top-down-and-bottom-up-processes-in-guiding-eye-movements-during-visual-search
https://doi.org/10.1145/3447548.3467401
https://doi.org/10.1145/3447548.3467401


208

A Supplementary Material

Ethics Statement

The data used in this study involves (transcribed)
verbal descriptions and eye-movements. No per-
sonal data that includes, e.g., name, age and educa-
tion are shared.

Limitations

One of the main limitations is the limited number
of eye-movement data samples that address real-
world complexities. Having more diversity in terms
of linguistic and visual manipulations is crucial to
arrive at better generalization. This bottleneck can
be overcome with an increase in the number of
benchmark datasets. Another crucial component of
this research is the multivariate time-series repre-
sentation learning. As touched upon in Section 2.1,
despite this topic attracting more attention, still
it is at early stages to model intricacies of such
time-series data.

In this study, the object count is used as an ref-
erential complexity parameter. However, it is not
an expressive parameter especially for the LOW

condition and draws the model further away from
the other conditions, which differ substantially in
terms of this parameter. This is probably also the
reason why fine-tuning does not benefit the LOW

condition. On the other hand, as expected, the
HIGH complexity contains too much noisy data to
be easily generalizable for LOW complexity models.
Adapting gaze features between different extremes
(e.g. TrainLOW → TestHIGH) is not as successful as
adapting between similar complexities. The re-
sults highlight the importance of incorporating ref-
erential complexity, which also increases the gain
from transfer learning by making models implic-
itly adaptive to referential complexity. However,
the coarse-grain complexity definition provided in
the original dataset is one of the main limitations
to fairly evaluate the effect of this parameter. In
further studies, we will focus on feature-based and
more sophisticated referential complexity detection
approaches.

A.1 Feature Vector and Labels
• Label for the target referent (1: if the gaze is on the

target)

• Label for the all referents (1: if the gaze is on the any of
the referents)

• Average time in blink

• Average time in saccade

• Resolution X
• Resolution Y
• Average pupil size
• Acceleration magnitude on X-axis
• Acceleration direction on X-axis
• Acceleration magnitude on Y-axis
• Acceleration direction on Y-axis
• Velocity magnitude on X-axis
• Velocity direction on X-axis
• Velocity magnitude on Y-axis
• Velocity direction on Y-axis
• ObjectCount’

A.2 Normalization
• Within-participant (WP) normalization
• Within-study (WS) normalization
• Across-study (AS) normalization

A.3 Architectures and Best Hyper-parameters
LSTM base model has 50 LSTM nodes. After the
LSTM layer, we use two dense layers with 20 and
10 nodes respectively. For the binary classification
on the single output layer, we use Sigmoid activa-
tion. Overall, the model contains 15,441 parame-
ters. Best meta parameters after grid search; Learn-
ing rate = 0.0001; Loss = binary cross-entropy;
Optimizer = Adam; Batch size = 128; Epochs =
100.

For the TST model, RAdam optimizer has been
used. TST model size is set to 64-dimension. We
used the implementation provided in the original
Pytorch TST Library (Zerveas et al., 2021). Best
meta parameters after grid search; Learning rate =
0.0001; Loss = binary cross-entropy; Optimizer =
RAdam; Batch size = 64; Epochs = 50.

A.4 Runtime Settings
The experiments were conducted on a GPU server
featuring 32 cores, 256 GB memory and 4 Geforce
1080Ti GPUs. No GPU parallelization was used.
The average running time (including data input,
model training and transfer learning on all test sets)
is 75 minutes for the simplest condition with LSTM
and 12 minutes with TST.
Hyperparameter Search The Keras Tuner li-
brary2 (O’Malley et al., 2019) is used for find-
ing best hyperparameters for different prediction
tasks. We utilize the Random Search tuner with
100 epochs for LSTM and 50 for TST per run. A
summary of the best performing model parameters
can be found in Appendix A.

2https://www.tensorflow.org/tutorials/keras/
keras_tuner

https://www.tensorflow.org/tutorials/keras/keras_tuner
https://www.tensorflow.org/tutorials/keras/keras_tuner
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Table 2: Best hyperparameters of LSTM for the prediction tasks for (i) the target object, (ii) all communicatively
relevant objects including the target

Target Referent All Relevant Referents
Low Medium High Combined Low Medium High Combined

Learning rate 0.01 0.01 0.001 0.001 0.0001 0.001 0.001 0.001
LSTM nodes (units) 30 30 50 50 40 30 50
Dense-1 (units) 11 18 14 17 16 18 16
Dense-2 (units) 10 10 10 10 10 15 10

Table 3: Transfer learning with TST on within-class and between-class testing for all referents prediction task
(Normalization Type: WP). (F1-scores on the positive class; Underlined values indicate best performance between
models for each training set, bold values are the best on each test set.)

Testset Low Medium High
Model Pretrained +Fine-tuned Pretrained +Fine-tuned Pretrained +Fine-tuned

Tr
ai

ni
ng Low 0.683 NA 0.675 0.659 0.722 0.699

Medium 0.544 0.586 0.571 NA 0.529 0.559
High 0.201 0.274 0.299 0.226 0.284 NA
Combined 0.568 0.575 0.577 0.569 0.522 0.589

Table 4: Transfer learning with LSTM on within-class and between-class testing for all referents prediction task.
(F1-scores on the positive class; Underlined values indicate best performance between models for each training set,
bold values are the best on each test set.)

Testset Low Medium High
Model Pretrained +Fine-tuned Pretrained +Fine-tuned Pretrained +Fine-tuned

Tr
ai

ni
ng

Low 0.479 NA 0.412 0.412 0.329 0.379
Medium 0.489 0.369 0.569 NA 0.437 0.413
High 0.305 0.383 0.372 0.415 0.505 NA
Combined 0.463 0.416 0.546 0.519 0.423 0.411

A.5 Train-Test conditions

A.5.1 Within-complexity Conditions

TrainLow TestLow

TrainMedium TestMedium

TrainHigh TestHigh

TrainCombined TestCombined

A.5.2 Effect of Data Diversity

TestLow

TestMedium

TestHigh

TestCombined

A.5.3 Transfer Learning conditions

TrainLow TestLow

TrainMedium TestMedium

TrainHigh TestHigh

A.6 Results Tables

The detailed scores for both models are presented
in Tables 3 and 4.

A.7 Scene-specific Participant Analysis

In the following Figures, a ground truth and COM-
BINED model’s predictions on test trials coming
from two participants have been visualized. Both
trials belong to same test image from MEDIUM

condition and prediction results are taken from
COMBINED model. As mentioned before, each
participant produces different pattern and when we
take the all participants and scenes in the study in
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interaction with controlled parameters of this study,
such analysis becomes highly complex.

Figure 7: Participant-23 in MEDIUM condition (Scene
16), TrainCombined

Figure 8: Participant-6 in MEDIUM condition (Scene
16), TrainCombined

A.8 Scene-specific Aggregated Analysis
The following figures illustrate individual TST
model comparisons to the ground truths on a spe-
cific image separately per condition. For each time
interval (in the range of 1 to 10), the model pre-
dictions for each participant are aggregated and
compared against the ground truth.

Figure 9: Aggregated TrainLow model predictions on
one image (medium condition) against the truth labels

A.9 Code Repository
The code and its documentation is available in
this GitLab repository: https://gitlab.com/
alacam/referential-gaze-modeling.

Figure 10: Aggregated TrainMedium model predictions on
one image (medium condition) against the truth labels

Figure 11: Aggregated TrainHigh model predictions on
one image (medium condition) against the truth labels

Figure 12: Aggregated TrainCombined model predictions
on one image (medium condition) against the truth la-
bels

https://gitlab.com/alacam/referential-gaze-modeling
https://gitlab.com/alacam/referential-gaze-modeling
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