
D I S S E R T A T I O N

Dealing with Spelling Variation in

Non-Standard Texts

Fabian Barteld

An der Universität Hamburg eingereichte Dissertation
zur Erlangung des akademischen Grades
Doctor rerum naturalium (Dr.rer.nat.)

Fakultät für Mathematik, Informatik und Naturwissenschaften

Fachbereich Informatik

2021



Prüfungskommission

Prof. Dr. Chris Biemann (Betreuer, Gutachter)
Prof. Dr. Stefanie Dipper (Gutachterin)
Prof. Dr. Simone Frintrop (stellv. Vorsitz)
Prof. Dr. Ricardo Usbeck (Vorsitz)
Prof. Dr.Heike Zinsmeister (Betreuerin, Gutachterin)

Tag der Disputation

07.03.2022



Abstract

In this thesis, we introduce and analyze ways to deal with spelling variation for the
automatic processing of texts. Spelling variation is the phenomenon that words are
written di�erently throughout a text, which appears frequently in so-called non-
standard texts. We concentrate on dialectal historical German texts from between
1050 and 1650 as an example for non-standard texts.
Spelling variation complicates the automatic processing of texts. Such processing

includes the annotation of texts with parts of speech (POS) and lemmas but also
simply searching in these texts. Since non-standard texts have received increasing
attention in computational linguistics, there has also been a rising interest in auto-
matically dealing with spelling variation in recent years. What sets the approaches
presented in this thesis apart from the approaches in most of the literature is that
spelling variation is dealt with without resorting to a given standard. This is helpful
for non-standard data without closely related standard data.
We look at two approaches to spelling variation: simpli�cation and spelling vari-

ant detection. We evaluate our approaches in two evaluation settings that we have
designed to approximate the utility of approaches for searching in non-standard
texts and for applying Natural Language Processing (NLP) tools to the texts.
Simpli�cation aims to map di�erent spelling variants to the same word form such

that the overall variation in the texts is reduced. Di�ering from normalization, the
results of the mapping do not need to be existing word forms from a standardized
language. For simpli�cation, we propose a rule-based approach in which the rules
are derived from pairs of equivalent characters or a character and a character bi-
gram. These pairs can either be manually created or learned from known spelling
variants.
The goal of spelling variant detection is to �nd spelling variants for a given word

form. For this, we propose a pipeline in which candidates for spelling variants
are �rst generated using string similarity. These candidates are then �ltered to
remove falsely generated candidates. For this, we train a Machine Learning (ML)
algorithm to distinguish spelling variants from pairs of word forms that are not
spelling variants. The features used for this are the surface di�erences between the
two word forms as well as the contexts in which they appear.
Regarding NLP, we look into the tasks of POS tagging and lemmatization in

more detail. For both tasks, we use statistical tools that have been developed with
standard data in mind and adapt them for non-standard data. We show that by
slightly adapting the ML approach but also by using the automatic spelling variant
detection presented in this thesis, the performance of such tools on non-standard
texts can be improved without the need for additional data.
With the presented approaches, we show examples of how dealing with spelling

variation is possible without the usage of a de�ned standard. These techniques
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allow to improve the automatic processing for historical but also other kinds of
non-standard texts and are helpful when either no closely related standard or no
training data for normalization is available.
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Zusammenfassung

In dieser Arbeit präsentieren und analysieren wir Möglichkeiten zum Umgang mit
Schreibvariation für die automatische Verarbeitung von Texten. Schreibvariation
ist das Phänomen, dass Wörter in einem Text unterschiedlich geschrieben werden.
Dies tritt häu�g in sogenannten Nicht-Standard-Texten auf. Wir konzentrieren uns
auf dialektale historische deutsche Texte aus der Zeit zwischen 1050 und 1650 als
Beispiel für solche Texte.
Schreibvariation erschwert die automatische Verarbeitung von Texten. Verarbei-

tung umfasst sowohl die Annotation von Texten mit Wortarten � parts of speech
(POS) � und Lemmata, aber auch das einfache Durchsuchen solcher Texte. Da
Nicht-Standard-Texte zunehmende Aufmerksamkeit in der Computerlinguistik ge-
funden haben, hat auch das Interesse an der automatischen Verarbeitung von Schreib-
variation in den letzten Jahren zugenommen. Die in dieser Arbeit vorgestellten An-
sätze unterscheiden sich von den üblichen Ansätzen dadurch, dass auf die Variation
der Schreibweise eingegangen wird ohne Bezug zu einem vorgegebenen Standard.
Dies ist hilfreich für Nicht-Standard-Daten ohne engen Bezug zu Standarddaten.
Wir betrachten zwei Ansätze zur Verarbeitung von Schreibvariation: Vereinfa-

chung (simpli�cation) und Erkennung von Schreibvarianten (spelling variant detec-
tion). Wir evaluieren unsere Ansätze auf zwei unterschiedlche Arten, um einerseits
den Nutzen der Ansätze für die Suche in Nicht-Standard-Texten und andererseits für
die Anwendung von Werkzeugen zur automatischen Sprachverarbeitung � Natural
Language Processing (NLP) � abzuschätzen.
Bei der Vereinfachung wird darauf abgezielt, verschiedene Schreibvarianten der-

selben Wortform zuzuordnen, wodurch die Variation in den Texten reduziert wird.
Abweichend von Normalisierung muss bei der Vereinfachung das Ergebnis des Map-
pings keine existierende Wortform aus einer Standardsprache sein. Für die Ver-
einfachung schlagen wir einen regelbasierten Ansatz vor, bei dem die Regeln aus
Paaren äquivalenter Zeichen oder einem Zeichen und einem Zeichen-Bigramm ab-
geleitet werden. Solche Paare können entweder manuell erstellt oder aus bekannten
Schreibvarianten gelernt werden.
Das Ziel der Erkennung von Schreibvarianten ist es, für eine gegebene Wortform

Schreibvarianten zu �nden. Dazu schlagen wir eine Pipeline vor, in der Kandidaten
für Schreibvarianten zunächst unter Verwendung der Ähnlichkeit von Zeichenket-
ten erzeugt werden. Diese Kandidaten werden dann ge�ltert um falsch generierte
Kandidaten zu entfernen. Dafür wenden wir Methoden des maschinellen Lernens �
Machine Learning (ML) � an. Wir trainieren einen Algorithmus, um Schreibvari-
anten von anderen Paaren zu unterscheiden. Die hierfür verwendeten Features sind
einerseits die Ober�ächenunterschiede zwischen den beiden Wortformen sowie die
Kontexte, in denen sie auftreten.
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Bezüglich NLP betrachten wir POS-Tagging und Lemmatisierung ausführlicher.
Für beide Aufgaben verwenden wir statistische Tools, die unter Berücksichtigung
von Standarddaten entwickelt wurden und die wir für Nicht-Standard-Daten ange-
passt haben. Wir zeigen, dass durch eine leichte Anpassung des Machine-Learning-
Ansatzes, aber auch durch die Verwendung von der in dieser Arbeit vorgestellten
automatischen Erkennung von Schreibvarianten, die Qualität der mit solchen Tools
erstellten Annotationen bei Nicht-Standard-Texten verbessert werden kann, ohne
dass zusätzliche Daten oder Annotationen nötig sind.
Mit den vorgestellten Ansätzen zeigen wir Beispiele für den Umgang mit Schreib-

variation die ohne die Verwendung eines de�nierten Standards auskommen. Diese
Techniken ermöglichen eine Verbesserung der automatischen Verarbeitung von his-
torischen, aber auch andere Arten von Nicht-Standard-Texten, für die entweder kein
eng verwandter Standard existiert oder keine Trainingsdaten für die Normalisierung
vorhanden sind.
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Chapter 1.

Introduction

Contrary to standardized written language that is found, e. g., in modern newspa-
pers, non-standardized written language, like in historical texts or in computer-
mediated communication, is full of spelling variation. Spelling variation is the
phenomenon that the same word appears written di�erently. This thesis is about
dealing with spelling variation for the automatic processing of such non-standard
texts. More speci�cally, we conduct experiments with texts from Middle Low Ger-
man (GML), a group of German dialects from the 13th to the 17th century, and
Middle High German (GMH), a group of German dialects from the 11th to the
14th century, on how spelling variants can be automatically identi�ed and removed
or used when further processing the texts. The following examples show spelling
variation in GML:1

(1) a. Unde
and

dachte
thought

nycht
not

vp
about

vergenckelyck
ephemeral

gud
good

tho
to

krygene
acquire

and did not think about acquiring ephemeral goods

vnde

and
ouede
practiced

syck
himself

in
in

wiltwarck
wild game

to
to

iagen
hunt

and practiced hunting game
(Griseldis)

b. ¶ Wo
how

Johan
Johann

wedder
again

na
to

Parysz

Paris
reeth
rode

to
to

Ambrosio.
Ambosio

How Johann rides again to Paris to Ambrosio

de
who

dar
there

sinre
he.GEN

vorbeydende
waiting

was.
was

who was waiting there for him.

1. The GML text examples in this thesis are from the Reference Corpus Middle Low Ger-
man/Low Rhenish (1200�1650) (ReN 1.0). The texts containing the examples are referenced
with the sigles given the texts in this corpus (cf. abbr_ddd in the documentation of the meta-
data, Metadatendokumentation_2019-08-14.pdf, which is part of the release of the ReN 1.0,
http://hdl.handle.net/11022/0000-0007-D829-8). For labeling morphological categories in the
examples, we use abbreviations following the Leipzig glossing rules (https://www.eva.mpg.de/
lingua/resources/glossing-rules.php, last visited October 4, 2021).
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Chapter 1. Introduction

DAr na
After that

sumede
hesitated

he
he

nicht
not

lange.
long

After that he did not hesitate long

sunder
but

in
with

groter
great

vrolicheit
happiness

reeth
rode

he
he

na
to

Parys

Paris
but he happily rode to Paris
(Veer Koeplude)

Spelling variation can be due to dialectal or temporal di�erences between texts.
However, spelling variants even appear close to each other in the same text: Example
(1a) shows adjacent lines of the text Griseldis in which the word unde (`and')
appears as Unde and vnde. And even proper nouns show variation. In Example
(1b) the city name Parys (`Paris') is written as Parysz in a caption and as Parys
directly in the beginning of the following paragraph. These kinds of spelling variants
lead to problems when working with digitized versions of these texts. For example,
when extracting all mentions of the city Paris from the text Veer Koeplude, one
needs to know that the city name appears with at least the two spellings shown
above.
In computational linguistics, spelling variation has been examined in historical

texts but also in other types of texts like computer-mediated communication as it
appears in forums or chats and learner texts. These types of texts can be grouped
under the term non-standard texts to distinguish them from standard texts used
in computational linguistics, i. e., mainly newspaper texts (Plank 2016). When
dealing with non-standard texts, common methods from computational linguistics
often show shortcomings due to the idiosyncrasies of these texts such as spelling
variation. E. g., simply extracting word frequencies becomes problematic (Baron,
Rayson, and Archer 2009). Hence, handling spelling variation is important. A
common way to do this is by normalization. When normalizing a non-standard
text, spelling variants are mapped to the variant that appears in closely related
standard texts. Thereby spelling variation is removed and the texts are changed in
order to become more similar to standard texts.
In this thesis, however, we look at ways to automatically deal with spelling varia-

tion without resorting to a related standard language. For this, we exploit the fact
that the variation in the spelling is not random but follows certain patterns. The
alternation of u and v, for instance, as shown in Example (1a), is very common
in GML texts. So one way to deal with spelling variation is to train a Machine
Learning (ML) algorithm on examples of spelling variants from GML in order to
distinguish pairs like unde and vnde from pairs like unde and hunde (`dogs') using
such patterns of variation.
We are mainly interested in using learned patterns of variation to improve the per-

formance of Natural Language Processing (NLP) tools. NLP is a �eld of computer
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1.1. Motivation

science that explores techniques for automatically processing natural language. Ac-
cording to Manning and Schütze (1999) the long term goal of NLP �is to parse
and understand language� (p. 341). To achieve this goal in the long run �much re-
search in NLP has focused on intermediate tasks that make sense of some of the
structure inherent in language without requiring complete understanding� (Man-
ning and Schütze 1999, p. 341). Two common NLP tasks, which we look at in this
thesis, are part-of-speech (POS) tagging and lemmatization.
POS tagging is the task to �nd the corresponding sequence of POS tags for a

sequence of words, often a sentence. Lemmatization is the task to map in�ected
forms of a word to a common form that one would use as base form in a dictionary,
i. e., the lemma. The commonality of both tasks is that both aim to group word
forms that are observed in natural language under more abstract categories, the
POS and the lemma. This way systematics underlying a sequence of words are
revealed. Therefore, POS tagging and lemmatization help in the overall goal of
parsing and understanding language. Example (2) shows an English sentence with
POS information and lemmas. The sentence contains two determiners (DT), a verb
(VBZ) and a noun (NN). The three POS categories in the example are encoded
with tags using the Penn tagset as used in the Penn treebank for English (Marcus,
Santorini, and Marcinkiewicz 1993).

(2) token
POS
lemma

This
DT
this

is
VBZ
be

an
DT
an

example
NN
example

In Section 1.1, we further motivate the topic of this thesis. We also motivate the
approaches to dealing with spelling variation that are used in this thesis in com-
parison with other approaches, mainly contrasting dealing with spelling variation
without reference to a standard language in contrast to approaches like normaliza-
tion that use a standard language as reference. Section 1.2 gives an overview of the
structure of the thesis.

1.1. Motivation

The rise of Digital Humanities (DH) has increased interest in processing non-
standard data to computational linguistics.2 Non-standard data is as diverse as
user-generated content from the internet, learner data or historical texts (Dipper,
Lüdeling, and Reznicek 2013). While each of these types of non-standard data poses
di�erent challenges to NLP, non-standard data also has commonalities�especially

2. See also the workshop series on Language Technology for Cultural Heritage, Social Sciences,
and Humanities (LaTeCH) by ACL SIGHUM (https://sighum.wordpress.com, last visited Oc-
tober 4, 2021).
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Chapter 1. Introduction

Figure 1.1.: First page of the `Nibelungenlied' (Manuscript C) � Cod. Donaueschin-
gen 63, Bl. 1r, Karlsruhe: Badische Landesbibliothek, 2003 (URN
urn:nbn:de:bsz:31-28918), License: CC BY 4.0

when compared to newswire that �has and actually still does dominate [computa-
tional linguistics]� (Plank 2016). This thesis focuses on one particular property of
non-standard texts, namely spelling variation�the phenomenon in which one and
the same word is spelled in di�erent ways. This variation is�for di�erent reasons�
characteristic of all the above-mentioned types of non-standard data. Here, we will
focus on spelling variation in historical texts, speci�cally German historical texts.
Elmentaler (2018, p. 14) illustrates spelling variation in historical texts with the

beginning of the famous Nibelungenlied (The song of the Nibelungs). In manuscript
C of this German text from the 13th century, the word unde, which is the GMH
equivalent of `and ', appears written as un and vn.3 These two variants are marked
with red in Figure 1.1 showing the beginning of this manuscript.
For readers having internalized a modern standardized writing system, this is

unfamiliar. Such readers�and writers as well�are used to existing rules for spelling
and therefore expect only little variability or even invariability in one text. When
they know the rules of a speci�c writing system, readers can more easily decode a
text since there is no need to interpret new spelling variants that they encounter
(Elmentaler 2018, p. 15). However, as Elmentaler (2018, pp. 15) points out, �xed
rules limit the freedom of writers, e. g., when di�erent pronunciations cannot be

3. The overline signi�es an abbreviation.
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1.1. Motivation

displayed adequately. Deviations from a spelling norm can also be used without
reference to pronunciation, e. g., for emphasis as it appears in communications with
smartphones, in advertising or in literature, for instance by capitalizing a whole
word.
However, invariability in spelling is not only useful when simply reading texts.

It is also useful when using texts as a corpus for linguistic analyses or as source
for other disciplines. When working with an unannotated corpus, variation in the
spelling decreases the utility of the data, e. g., by reducing the recall for queries and
distorting keyword frequencies (Baron, Rayson, and Archer 2009), or by leading
to a decreased quality of learned representations for words and sentences (Kumar,
Makhija, and Gupta 2020). Furthermore, the variation makes it harder to annotate
this data automatically (cf. Bollmann 2018, p. 4 for theoretical considerations and
Giesbrecht and Evert 2009 for an example regarding POS tagging). One reason for
this is that a word form that does not appear in texts used to train an NLP tool is less
likely to be annotated correctly by the tool than a known spelling.4 In non-standard
texts with spelling variation, the number of word forms that do not appear in
the training data�out-of-vocabulary (OOV) words in NLP terminology� is higher
when compared to the same amount of standard data. In addition, during training
time, instances of the same word appear as di�erent types, thereby distributing the
information about one word over these types.
Dipper (2011) compares type/token ratios (TTRs) for equally sized parts of mod-

ern German and GMH corpora and uses the TTRs as indicators for the quality of
automatic POS tagging. The TTR of the normalized GMH texts is lower than the
TTR of the modern German texts. This indicates that tagging normalized GMH
is easier than the modern texts. Without normalization, however, the TTR of the
GMH texts is higher. Therefore, spelling variation as a property of non-standard
texts makes processing this kind of data inherently harder than processing standard
data. Consequently, researchers in computational linguistics are searching for ways
to deal with spelling variation.
Plank (2016) identi�es three general strategies to deal with non-standard data for

tasks in computational linguistics:

1. Annotate more data, i. e., creating more training data for the non-standard
domain to train tools on it.

2. Make training and test data more similar by either normalization, i. e., map-
ping non-standard data to related standard data, or (less commonly) by in-
troducing properties of the non-standard data like spelling variation to the
standard data used to train tools on.

4. See Chapter 4 for more details on ML basics.
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3. Domain adaptation, i. e., adapting models trained on standard data to non-
standard domains.

Research in computational linguistics has focused mainly on the second and the
third way. This can be explained by the fact that these two strategies allow using
resources existing for standard data like annotated corpora and existing NLP tools.
However, they both rely on the existence of a standard variety that is closely related
to the non-standard data. Thus approaches following these two strategies are often
congruent with the view of a reader or writer of a standard language where spelling
variation can be viewed as deviation from that standard. Such a view can be found,
e. g., in the title of a paper on normalizing non-standard computer mediated com-
munication by Eisenstein (2013): `What to do about bad language on the internet'.
This view can also be seen in the analysis of the decreased accuracy of POS taggers
in non-newspaper texts by Giesbrecht and Evert (2009). The authors describe some
of the datasets they looked at as containing �[w]eb-speci�c text genres that have
not been carefully edited like the newspaper articles in the TIGER treebank. As
a result, they contain many typographical and grammatical mistakes� (Giesbrecht
and Evert 2009, p. 32).
The deviation between standard and non-standard data can be looked at from

either the standard or the non-standard data. Normalization, a common approach
using the second strategy, is looking from non-standard to standard data (Eisenstein
2013 for user-generated content; Jurish 2010a for historical texts): While there
are di�erent ways of approaching normalization (e. g., as spelling correction or as
machine translation, cf. Kobus, Yvon, and Damnati 2008), the necessary common
point of all approaches is the reference to a target language, i. e., a closely related
standard that the non-standard data is normalized to. Thus, for non-standard data
for which no closely-related standard exists normalization is problematic:

In cases where the language under investigation di�ers considerably from
its standard form, text normalization is a problem that is di�cult to
model. Errors made in the normalization propagate down to subsequent
processing steps which in�uence the results of the �nal analysis. More-
over, text normalization requires a considerable amount of training data
which DH projects are often lacking. Commonly, deviations from the
standard form are exactly the focus of the investigation and thus have
to be handled with care.

(Schulz 2018, p. 89)

This is also true for domain adaptation, the third strategy, which is approaching
non-standard and standard data the other way around by changing tools developed
for and with standard data so that they work with closely related non-standard
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data: This task also becomes more di�cult when the non-standard data di�ers
considerably from the standard data.
The �rst approach�creating more training data�is a viable way to go when work-

ing with non-standard data without closely related non-standard data. However, it
is also costly and time-consuming. Furthermore, as mentioned above, spelling vari-
ation makes the automatic annotation of non-standard texts harder. Hence, to get
results of the same quality, more annotated data is needed for non-standard data in
comparison to standard data. Therefore, even when using the strategy to annotate
more of the non-standard data under consideration, it is important to deal with
spelling variation. Another factor is that while creating more training data might
be viable for a speci�c domain of a speci�c language, �[w]e will never be able to
create annotated data that spans all possible combinations� (Plank 2016, p. 14) of
domains and languages. This is why it is crucial to deal with spelling variation in-
dependently of a standard language. In this thesis, we approach this by identifying
spelling variants and/or removing variation. We introduce and analyze respective
approaches in Chapter 6 and Chapter 7.
Automatically detected spelling variants can either be directly used for research

(see e. g., Andrews 2016; Dipper and Waldenberger 2017; Spadini 2019 for examples
of using variants in DH and linguistic research) or for improving the automatic
analysis of texts. In this thesis, we look at the utility of detecting spelling variants
for further processing of the texts using standard NLP tools in Chapter 8.
For applying NLP tools to non-standard texts, we consider two basic strategies

to deal with spelling variation without referring to a standard language, adding
to the strategies described by Plank (2016): The �rst approach is a task-speci�c
adaptation of tools to the needs of non-standard domains, e. g., by including features
that help the respective tools to learn variant spellings (e. g., Gimpel et al. 2011;
Koleva et al. 2017). Di�ering from domain adaptation where the goal is to train
a model on standard data and adapt the learned model to non-standard data, we
train a model directly on the non-standard data.
The second approach is to utilize detected spelling variants in order to remove

variation from the data and thus improve the performance of the respective NLP
tool. For such processing, detecting spelling variants without referring to a standard
language can be useful in two situations: a) when there is missing or sparse training
data for normalization, and b) when the non-standard data lacks a closely related
standard. Regarding training data, Odebrecht et al. (2017) state for a corpus of
Early New High German (1350-1650) texts that they encountered problems with
the quality of automatic normalization:

Statistically learned rules for normalization have not worked well so far
either, as the corpus is too small for statistical training as applied e. g.,
by Jurish (2010b), Bollmann et al. (2011, 2012), or Archer et al. (2015),
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for an overview see Piotrowski (2012). A key problem for a diachronic
corpus is that orthography is changing across periods, and each text
would require its own normalization rules.

(Odebrecht et al. 2017, p. 715)

Recently, the problem of sparse training data for normalization has been ad-
dressed by leveraging resources for the target language to obtain better normaliza-
tions (Makarov and Clematide 2020). While approaches like this might improve
the quality of the normalization, the problem gets worse for variants of German
that di�er more from modern Standard German like the older variant GMH or for
historical variants that do not come from the High German dialects but from Low
German like GML. This is also true in other contexts, e. g., when working with
low-resourced endangered languages (Littell, Chelliah, and Levow 2016).
The lack of training data points to another issue relevant in the context of non-

standard data: the lack of resources in general. While there are already a lot of
resources and tools for standardized modern German, this is not the case for histori-
cal German especially when looking at early stages of German like Old High German
(750�1050) where even existing text data is rather sparse and highly heterogeneous
(cf. Flick 2019). Therefore, we look at di�erent approaches to detecting spelling
variants in the context of low-resource scenarios and use them for NLP tasks.
The main dataset that is used for this thesis is a corpus of GML texts. Example

(3) shows two sentences from the same text from this corpus. These two sentences
contain two spelling variants where i varies with j (in and jn, `in') and with y (steit
and steyt, `is indicated').5

(3) a. in
in

dem
the

seuenden
seventh

steit
is_indicated

b. JN
in

dem
the

elenboghen
elbow

steyt
is_indicated

(Brem. Ssp.)

Contrary to High German, the Low German dialects have not developed a stan-
dardized variant. Hence, the texts di�er not only because of language change over
time from modern Standard German but also because of the dialectal di�erences be-
tween High and Low German. Therefore, GML is an example for non-standard data
for which no closely related standard language exists. Furthermore, Low German
bears similarities to German, Dutch and English (Sanders 1982), which makes the
choice of a target language less obvious and normalization to any of these languages
harder. We discuss GML in more detail in Section 2.1.
In the next section, we give an overview of the parts of this thesis.

5. In all experiments in this thesis, we ignore di�erences in the capitalization. All types are
lowercased before applying and evaluating the presented methods.
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1.2. Outline and Main Contributions

As we have argued in the previous section, dealing with spelling variation without
reference to a standard language is important. In this thesis, we introduce and
evaluate approaches to automatically dealing with spelling variation. For this, we
use data from GML and GMH that we introduce in Chapter 2.

Our �rst contribution is to formally introduce two approaches for dealing with
spelling variation without reference to a standard language, namely spelling variant
detection and simpli�cation in Chapter 3. To this end we also de�ne what counts
as spelling variant in this thesis and give formal de�nitions for common ways of
dealing with spelling variation using a standard language, i. e., normalization and
non-standard variant detection. These are contrasted with spelling variant detection
and simpli�cation.

Our second contribution is to create and evaluate implementations of spelling
variant detection and simpli�cation. For the implementation, we use ML as it is
common in modern NLP (Goldberg 2017, p. xvii). In Chapter 4, we present the
methods from ML that are used in this thesis, thereby providing a basic under-
standing of these methods for researchers without a background in ML.
The main focus of the following chapters is to introduce a pipeline for detect-

ing spelling variants of a given type (or token) in a data-driven way by �rst gen-
erating a set of spelling variant candidates and then �ltering this candidate set.
An implementation of all methods presented in this thesis is made available at
https://github.com/fab-bar/SpellvarDetection making the approaches read-
ily usable (cf. Appendix B). This part consists of three chapters:
In Chapter 5, two settings for evaluating spelling variant detection are presented.

These two settings are used to compare di�erent approaches for simpli�cation and
spelling variant detection. We have designed these settings in order to approximate
the utility of the approaches for searching in texts and for improving the performance
of NLP tools.
In Chapter 6, di�erent simpli�cation approaches are introduced and compared.
Chapter 7 presents experiments with our pipeline for spelling variant detection.

Our third contribution is to evaluate methods on adapting machine learning mod-
els for NLP tasks to non-standard data in Chapter 8. There, we look at POS tag-
ging and lemmatization, two basic NLP applications, in the context of low-resource
non-standard text scenarios, i. e., the situation where texts should be annotated
automatically with POS tags or lemmas with only a small amount of training data
for the task available. We look at adapting tools to the non-standard nature of the
data, i. e., allow them to handle spelling variation. Furthermore, we look at ways to
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use the pipeline for spelling variant detection presented in Chapter 7 in order to im-
prove the results of POS tagging and lemmatization. With our experiments we show
that spelling variant detection and simpli�cation are useful for improving the perfor-
mance of a POS tagger and a lemmatizer in this context. The experiments with POS
tagging are found in Section 8.3. In Section 8.4, we present the experiments with
lemmatization. The scripts used to run the POS and lemmatization experiments
are available at https://github.com/fab-bar/thesis-POS_lemma_experiments.
Our additions to the tool for lemmatization Lemming are available at https:

//github.com/fab-bar/cistern/.

Chapter 9 concludes this thesis and points to possible directions for future re-
search.

1.3. Publication Record

In this section, we list the parts of this thesis that have been previously published.
A list of our related publications from the time working on this thesis is given in
Appendix A.
Section 1.1 contains parts of Section 1 from Barteld, Biemann, and Zinsmeister

(2019) and Section 1 from Barteld (2017).
Section 2.2 contains parts of Section 3 from Barteld, Biemann, and Zinsmeister

(2018).
Section 2.3 contains parts of Section 4 from Barteld, Biemann, and Zinsmeis-

ter (2019). Section 2.3 contains parts of Section 3 from Barteld, Biemann, and
Zinsmeister (2018).
Chapter 3 is based on Section 3 of Barteld (2017) and Section 2 of Barteld,

Biemann, and Zinsmeister (2019).
Chapter 5 is a revised version of Section 5 from Barteld, Biemann, and Zinsmeister

(2019).
Chapter 6 is based on Section 8.2 from Barteld, Biemann, and Zinsmeister (2019),

the contained experiments and results have been updated in the context of this thesis
and with an updated version of the code.
Chapter 7 is an updated and expanded version of Section 6 to Section 10 from

Barteld, Biemann, and Zinsmeister (2019). Section 7.1.1 and Section 7.1.3 present
new experiments with n-gram similarities and a �lter based on Brown clusters pre-
sented �rst in Barteld, Schröder, and Zinsmeister (2015) and Barteld, Schröder,
and Zinsmeister (2016) and contain parts from these papers. Section 7.2.2 adds
new experiments with the surface-based �lters presented in Barteld, Schröder, and
Zinsmeister (2016) and Barteld (2017) as well as experiments with the binary-
classi�cation �lter from Barteld (2017). It also contains parts from these papers.
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Section 8.2 contains parts of Section 2 from Barteld, Biemann, and Zinsmeister
(2018). Section 8.3 is based on Section 4, Section 5, Section 6 and Section 7 from
Barteld, Biemann, and Zinsmeister (2018). Section 8.5 contains parts of Section 8
from Barteld, Biemann, and Zinsmeister (2018).
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Chapter 2.

The Data

In Section 1.1, we have argued that normalization or similar approaches to spelling
variation that use a standard language get harder with increasing di�erences be-
tween the non-standard and the standard data. For our experiments with ap-
proaches to spelling variation without the reference to a standard, we use texts
from Middle Low German (GML) and Middle High German (GMH). Schulz (2018)
uses GMH as an example for non-standard data where normalization �is a problem
that is di�cult to model� (p. 89) as it di�ers considerably from modern Standard
German. GML even di�ers more from modern Standard German as it comprises the
Low German dialects in contrast to the High German dialects, from which modern
Standard German developed.
Recently, four projects have created and released annotated corpora for di�erent

variants of historical German (Dipper 2015, pp. 522�523) that allow for experiments
on spelling variant detection. For the experiments in this thesis, we use two of these
datasets: the Reference Corpus Middle Low German/Low Rhenish (1200�1650)
(ReN) (Schröder 2014) containing GML texts and the Reference Corpus Middle
High German (1050�1350) (ReM) (Petran et al. 2016) containing GMH texts. In
this chapter, we give a short overview of the history of the German language and
its di�erent dialects and describe the two corpora.

2.1. A Short Introduction to Middle High and Middle

Low German

As has been pointed out in Section 1.1, modern written German is standardized
by rules, the orthography. The current set of rules is given by Rat für deutsche
Rechtschreibung (2018). However, an orthographic convention for the German lan-
guage was �rst established only in 1901/02 (Wegera, Waldenberger, and Lemke
2018, p. 80). Before that, there was merely a discourse about the implementation of
a correct spelling but not a standardization as there is today. This discourse reached
a greater public through the rise of the printing press in the second half of the 15th

century. Rule sets for orthography were developed and �nally culminated in the

13



Chapter 2. The Data

orthographic convention mentioned above that was established in the beginning of
the 20th century and was largely based on the rule set developed by Konrad Duden
in 1872 and 1880 (Wegera, Waldenberger, and Lemke 2018, p. 81).
Hence, before the orthographic convention, writers had to decide how to spell

words. Doing that they had to choose between di�erent alternatives, e. g., by fol-
lowing the examples of other writers, local rule sets, e. g., those by the printing
o�ce, or trying to write as they would speak (Wegera, Waldenberger, and Lemke
2018, p. 78). This choice could be di�erent for di�erent words in a text�it could
also be di�erent for appearances of the same word in a text. Recent studies on
spelling variation in historical texts even suggest the deliberate use of variants by a
writer assuming the aesthetic idea of variation as a guiding principle (variatio delec-
tat) (Wegera, Waldenberger, and Lemke 2018, p. 80). All this led to the spelling
variation that is observable in historical German texts.
When looking at the corpora as a whole instead of single texts, the variation

that appears is ampli�ed by dialectal di�erences between writers. At every point
of its history, the German language has been a conglomerate of di�erent dialects
that can be subsumed under two broad dialect groups (Wegera, Waldenberger, and
Lemke 2018, p. 18): the High and the Low German dialects that are represented in
the ReM and the ReN. The Low German dialects are the dialects in the northern
part of the German-speaking area and the High German dialects are the dialects in
the southern part. Dialects belonging to the same of the two groups share many
commonalities. Figure 2.1 on the facing page gives a schematic overview of dialect
areas and their location in the German-speaking area.
The main commonality for the dialects in the Low German group�and at the

same time the main distinction from the High German dialect group�is the absence
of the second Germanic (or High German) consonant shift. This consonant shift is a
collection of pronunciation changes. The main changes a�ect the three consonants
/p/, /t/ and /k/ that shift to corresponding fricatives or a�ricates like /�/ and
/
>
ts/ (cf. Nübling et al. 2017, pp. 42). The High German consonant shift supposedly
took place between the 5th and 7th/8th century (Wegera, Waldenberger, and Lemke
2018, p. 134). It is one of the main features that distinguishes (High) German from
other Germanic languages like English. This can be seen when looking at word
pairs from modern English and German like ape � A�e and apple � Apfel. Since
the Low German dialects did not undergo the consonant shift, they share features
with English as well as with modern Standard German.
The border between a dialect in which a shift has happened and a dialect in

which the same shift has not happened for certain words is called isoglosse. The
High German and the Low German dialects are separated by the Benrath isogloss,
named after Benrath, a part of Düsseldorf. This isogloss is also called the maken-
machen isogloss after the forms of the German word machen (`to make'). In dialects
that are spoken to the north of the Benrath isogloss, the Low German form maken
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Low German

High German

Middle German

Upper German

West Low German

• Northern Low Saxon

• Westphalian

• Eastphalian

East Low German

• Mecklenburgish-
WestPomeranian

• Brandenburgish

West Central German

• Ripuarian

• Moselle Franconian

• Rhine Franconian

East Central German

• Thuringian

• Upper Saxon

East Franconian

West Upper German

• Alemannic

• Swabian

East Upper German

• Bavarian

Figure 2.1.: Schematic overview of the dialects of German (translated version of
Figure 1.5 from Wegera, Waldenberger, and Lemke 2018, p. 19)

is used. In dialects to the south of this isogloss, the form machen is found (Wegera,
Waldenberger, and Lemke 2018, p. 135).
Despite this commonality between the dialects in the High and the Low German

dialect group respectively�which allows to group these dialects into the two broad
dialect groups in the �rst place�one has to keep in mind that these groups are not
homogeneous and there are clearly regional spelling variants (cf. XVII. Regional-
sprachgeschichte in Besch et al. 2003).
So the ReM and the ReN both collect texts from di�erent dialects leading to

spelling variation between the di�erent texts�alongside the variation in texts that
exists due to the lack of an orthography. However, the lack of a norm and the
di�erent dialects are not the only reasons for spelling variation in the corpora: both
the ReM and the ReN also contain texts from a period of over 200 years. When
considering that language change is not a sudden and abrupt change but a gradual
and constant process (Wegera, Waldenberger, and Lemke 2018, pp. 24), the periods
covered in the corpora include a lot of changes that are also visible as spelling
di�erences.
The history of the High German dialect group is usually divided into four peri-

ods: the Old High German, the Middle High German (GMH), the Early New High
German and New or Modern High German periods. The GMH period, from which
the texts in the ReM are, is between 1050 and 1350. So, while the GMH dialects
are predecessors of modern Standard German, they di�er considerably from modern
Standard German due to their diachronic distance. This makes normalization to
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standard German possible but hard (Schulz 2018, p. 89). Research about normal-
ization often considers more recent historical predecessors. One example are the
datasets compiled for the large scale study by Bollmann (2018; 2019) where the
oldest texts (German and overall) are from the 14th century (the Early New High
German period). The datasets provided by Bollmann (2018) have also been used in
other recent normalization studies (e. g., Makarov and Clematide 2020). Therefore,
due to their diachronic distance to modern Standard German, the texts in the ReM
are good candidates for using alternative ways of dealing with spelling variation.
However, regarding normalization of GMH, there is an alternative to normalizing

to modern Standard German: 19th century philologists edited GMH texts in order
to reconstruct a standard GMH supposedly used by poets (Kragl 2015, p. 3). While
using such normalized editions as basis of linguistic studies has been criticized since
it leads to the description of an arti�cial GMH (Wegera 2000), the language of these
editions is a standardized GMH�whether or not it has been used by poets or is
arti�cial. The ReM includes such a normalized version of the texts. This version
has been used to train a POS tagger by Schulz and Ketschik (2019, pp. 849). We
compare normalizing the texts to that arti�cial standard GMH before training and
applying a tool for automatic annotation with using our approaches that do not use
a standardized target language in order to improve a POS tagger in Section 8.3 and
a lemmatizer in Section 8.4.
For Low German, three periods are distinguished, which are similar to the periods

for High German: Old Low German, Middle Low German (GML) and New Low
German. However, the periods are dated di�erently: The GML period overlaps
with but is not the same as the GMH period. It ranges from 1200 to 1650.
GML as the written language used by the Hanse was important as a cross-regional

commercial language for northern Europe, especially in the 14th and 15th century
(Sanders 1982, p. 145). Due to this role, there were standardization tendencies.
However, there were still regional variations that are characteristic for di�erent
dialects (Niebaum 2000, p. 1422). With the rise of the printing press in the 15th

century, the Low German dialects lost their relevance (see König, Elspaÿ, and Möller
2005, p. 103 for a short overview of the development of the Low German dialects).
It was �nally replaced by High German in the 16th century (Sanders 1982, p. 161).
Consequently, no standardized version of the Low German dialects exists today.
This leaves modern Standard German, Dutch or probably English as the closest
related standard language. Furthermore, the modern Low German dialects are low-
resourced with only recently started e�orts to create annotated corpora (Siewert,
Scherrer, and Tiedemann 2021). Combined with the diachronic distance this makes
the texts in ReN good candidates for experiments as described in this thesis.
In the following sections, we describe how the texts are presented in the corpora

and which parts of the corpora are used in the di�erent experiments.

16



2.2. The Reference Corpora of Historical German

2.2. The Reference Corpora of Historical German

As described above, the corpora used in this thesis have been created as part of an
initiative to create reference corpora of historical German. This initiative comprises
the four corpora Reference Corpus Old German (ReA, 750�1050)6, Reference Corpus
Early New High German (ReF, 1350�1650)7, and the aforementioned ReM and
ReN. The texts for the corpora have been carefully selected in order to represent
the respective historical variant of German (cf. Lemnitzer and Zinsmeister 2015,
Section 7.2 for a de�nition of reference corpus). The selection of texts has been
described by Petran et al. (2016) for the ReM and by Barteld et al. (2017) for the
ReN.
For both the ReM and the ReN, the selected texts have been manually tran-

scribed from the original manuscripts or prints, tokenized and split into sentences.
Following Dipper et al. (2013, p. 3) both corpora distinguish two tokenizations of the
underlying text: a diplomatic tokenization that follows the usage of whitespace in
the text and a so-called modernized tokenization. While the diplomatic tokenization
is useful to recreate the original form of the text including the usage of whitespace
as well as line and page breaks, the modernized tokenization is more similar to what
is usually meant by tokenization: a segmentation of the text into words (following
a mostly syntactic view).
The di�erence between these tokenizations can be seen with two examples from

Reinke de Vos 1539 in Figure 2.2 on the next page. In the ReN, the part marked in
red corresponds to the two tokens d e

o and gentryke in the diplomatic tokenization
because of the whitespace between e

o and g. In the modernized tokenization it
corresponds to one token, the word d

e
ogentryke (`full of virtue'). The other example

for di�ering diplomatic and modernized tokenizations is given by the part marked
with blue. Due to the absence of whitespace it corresponds to the diplomatic token
wolgebarn but to the two tokens wol (`good') and gebarn (`born') in the modernized
tokenization. The two words appear with whitespace between them earlier on the
page as well, marked with gray in Figure 2.2. Figure 2.3 on page 20 shows the
transcription of these two examples in the ReN. The diplomatic tokenization is
labeled with tok_dipl, the modernized tokenization with tok_anno. Please note that
the two tokenizations only di�er in the segmentation of the transcription. The tokens
from the modernized tokenization are then annotated. We use this segmentation
for all of our experiments and refer to it simply as the tokenization of the texts.
The corpora present the modernized tokens in three di�erent versions, which we

exemplify with the word biſt (`(you) are'):8

6. http://www.deutschdiachrondigital.de/, last visited October 4, 2021.
7. https://www.linguistics.rub.de/ref/, last visited October 4, 2021.
8. They are called trans, utf and ascii in the CorA-XML format (https://cora.readthedocs.

io/en/latest/document-model/#token-representations, last visited October 4, 2021), which is
the main �le format in which the corpora are published.
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Figure 2.2.: Page 6v from `Reynke Vosz de olde' (Rozstock: Dyetz, 1539; Borch-
ling & Claussen 1312) � Library: Niedersächsische Staats- und Uni-
versitätsbibliothek Göttingen, Signature: 8 P GERM II, 1413 RARA,
http://resolver.sub.uni-goettingen.de/purl?PPN633656895
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1. transcription: This version uses speci�c markup developed in the projects
and encodes a lot of the peculiarities of the script, e. g., *(b*)i$t|, where *(X*)
indicates the usage of an initial, $ encodes a long s (ſ), which was used nearly
interchangeably with the graph s, and | encodes that there is no space after
this word.

2. strict: This version encodes many of the peculiarities using Unicode, but does
abstract away from features of the script such as initials, e. g., biſt.

3. simple: This version removes variation mainly by mapping non-ASCII char-
acters to their ASCII counterparts, e. g., the long s (ſ) to s, as in bist. This
version has been created with rule-based mappings. Basically, it is a version
of the texts with removed spelling variation by applying a simpli�cation as
de�ned in Chapter 3.

For our experiments, we use the strict and the simple version. The strict version
captures a lot of the spelling variation in the texts while not using project-speci�c
markup. Models trained on this version will be more useful with other resources.
The simple version is used as a reference for experiments on reducing spelling vari-
ation with rule-based simpli�cations. With the ReN, simple does not deviate much
from strict. For this corpus, we use the rules presented by Koleva et al. (2017)
to prepare an alternative simpli�ed version. This is described in more detail in
Chapter 6. Capitalization is ignored in all experiments.
These two corpora are large resources of historical German and allow for training

NLP tools for GMH and GML with a good amount of training data. Yet, for
researchers working with historical texts from other periods or from speci�c genres,
training data is sparse. This is why in this thesis we are interested in low-resource
settings, using only subsets of the corpora. For the POS tagging and lemmatization
experiments in Chapter 8, for example, we limit ourselves to a selection of six texts
from each of the corpora and train the taggers on only about 12,000 tokens.
In the next two sections we describe the ReN and the ReM in more detail.

2.2.1. The Reference Corpus Middle Low German/Low Rhenish

The ReN (http://referenzkorpus-mnd-nrh.de, last visited October 4, 2021), the
main dataset used in this thesis, has been created in a project funded by the Ger-
man Research Foundation between 2013 and 2019. This project was a cooperation
between the universities of Hamburg (led by Ingrid Schröder) and Münster (led by
Robert Peters). The corpus design and its motivation has been described in Peters
and Nagel (2014) and Schröder (2014).
Version 1.0 of the dataset (http://hdl.handle.net/11022/0000-0007-D829-8)

contains 146 texts with 1,415,362 tokens annotated with sentence boundaries, lem-
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Figure 2.3.: Example from `Reinke de Vos 1539' with annotations from the Reference
Corpus Middle Low German/Low Rhenish (1200�1650)

mas and POS tags including morphological information using the Historisches Nieder-
deutsch Tagset (HiNTS) (Barteld et al. 2018), a tagset speci�cally developed for
GML based on the Historisches Tagset (HiTS), which has been used for the ReM
(Dipper et al. 2013). Figure 2.3 shows an example from `Reinke de Vos 1539' (com-
pare Figure 2.2 on page 18) with all annotations from the ReN as they are visualized
in ANNIS (Krause and Zeldes 2016), the query and visualization system that can be
used to work with the reference corpora. In addition to the fully annotated texts,
the ReN 1.0 contains additional 89 texts annotated only with sentence boundaries
consisting of 908,682 tokens.
One of the main aims of the corpus design is to create a resource for grammatical

analyses of GML. Examples of how to use the corpus for analyses of syntactic
phenomena can be found in Barteld et al. (2019) and Ihden (2020). Furthermore,
there is an ongoing project to create a grammar of GML based on the ReN. In
the context of this project new annotated texts are added to the corpus as well
(cf. Ihden and Schröder 2021 and the already published version 1.1 of the dataset,
http://doi.org/10.25592/uhhfdm.9195).
During the development of the corpus �nished texts have been released on a

regular basis to allow the usage of these texts for research before the �nal release.
All in all there have been 9 releases before version 1.0. Note that the experiments
presented in this thesis have been conducted with di�erent pre-release versions of
the ReN, since this thesis was created during the process of the corpus development.
We point to the speci�c versions when describing the datasets in Section 2.3 and
Section 2.4.
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Figure 2.4.: Example from the `Nibelungenlied' with annotations from the Reference
Corpus Middle High German (1050�1350)

2.2.2. The Reference Corpus Middle High German

We use the ReM as additional dataset in the experiments with POS tagging (Sec-
tion 8.3) and lemmatization (Section 8.4). The ReM consists of 394 texts with
2,448,379 tokens annotated with POS tags, morphology and lemma. The tagset
used for the POS annotation is the HiTS, which has been speci�cally developed
for the reference corpus projects (Dipper et al. 2013). The HiTS has been derived
from the STTS (Schiller et al. 1999), a tagset for modern Standard German. Fig-
ure 2.4 shows the beginning of the `Nibelungenlied' from the ReM as visualized in
ANNIS (Krause and Zeldes 2016) (see Figure 1.1 on page 4 for the corresponding
manuscript page).
In addition to the annotation that can be found in the ReN as well, the ReM

also contains a normalized GMH form. Importantly�as has been pointed out
above�this normalization is not modern Standard German but this annotation
layer �contains automatically-created word forms that closely correspond to word
forms as used in traditional editions of historical manuscripts in German� (Petran
et al. 2016, p. 4). The script that creates the automatic normalization uses the
text as well as lemma, POS tag and morphology annotation (cf. Klein and Dipper
2016, p. 8). We use this normalization to compare reduction of spelling variation
using a normalization approach with an approach using spelling variant detection
as presented in Chapter 7 in order to improve POS tagging and lemmatization.

2.3. Datasets Used for Simpli�cation and Spelling

Variant Detection

For the experiments with simpli�cation and spelling variant detection in Chapter 6
and Chapter 7 we have used the ReN. Most of the experiments have been con-

21



Chapter 2. The Data

ducted with Version 0.3 (http://hdl.handle.net/11022/0000-0006-473B-9) of
the corpus. The one exception are the experiments with di�erent hyperparameters
for the Support Vector Machine (SVM)-based �lter in Section 7.2.2. They have
been conducted with Version 0.1 of the corpus (http://hdl.handle.net/11022/
0000-0001-B002-5).
Version 0.3 consists of 32 texts with 200,664 annotated tokens. We split the data

into training (24 texts, 160,240 tokens), development (6 texts, 20,736 tokens) and
test (2 texts, 19,688 tokens) sets.9 Texts are not split between training, development
and test set, but included as whole into one of the three sets. This simulates a
situation, where the spelling variants are known for a given set of texts�the training
set�and spelling variant detection is to be applied to new texts. While the texts
in the training set are from di�erent language areas with 11 texts from the North
Low Saxon area, the texts in the development and test sets are all from the North
Low Saxon area.
The development set contains 3,991 types. 1,959 of them do not appear in the

training set but almost half of them (841) have spelling variants in the training set.
The test set has a slightly less diverse vocabulary. It contains only 3,063 types,
1,681 of them do not appear in the training set, 623 of them have spelling variants
in the training set. This means that by mapping all unknown or OOV types from
the development and test data to spelling variants in the training data could reduce
the OOV rates of 0.49 (development) and 0.55 (test) to 0.28 (development) and 0.35
(test), respectively.
As a background corpus (cf. Section 4.1.4), which we use for the computation

of Brown clusters and word embeddings (cf. Section 4.8.2) for the experiments in
Chapter 7, we have used transcripts of 69 other texts from the ReN. Since the
transcription and annotation of these texts had not been �nished when we conducted
the experiments, these texts have not been released in that version. Furthermore,
these texts where not manually tokenized when we were compiling the background
corpus. The texts therefore have been split at whitespace and special characters
leading to 1,730,614 tokens. This however overestimates the size of the background
corpus since the whole corpus with 146 texts consists of only 1,414,362 tokens when
manually tokenized. Using this tokenization will lead to the situation that some
types might appear in the background corpus but are split by the simple automatic
tokenization and are therefore not recognized. But this is a realistic setting as a
background corpus will often not be manually tokenized.

9. See Section 4.2 for how training, development and test sets are used for evaluating di�erent
approaches.
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2.4. Datasets Used for Part-of-Speech Tagging and

Lemmatization

For the experiments with POS tagging and lemmatization in Chapter 8 we have used
texts from the ReM 1.0 (http://islrn.org/resources/332-536-136-099-5) and
the ReN 0.6 (http://hdl.handle.net/11022/0000-0007-C64C-5) for training, de-
velopment and test as well as background data.
We limit ourselves to a selection of the data in these releases to emulate a low-

resource scenario. Schulz (2018) shows for GMH that the learning curve of a statis-
tical POS tagger �attens after 12,000 tokens. After that, adding 2,000 tokens more
as training data only leads to small improvements below 1%. This suggests that
12,000 tokens would be a good start in a setting where training data for a tagger
needs to be generated.
For our selection, we have picked texts that come from similar points in time and

dialects to minimize the amount of spelling variation that is due to temporal and
dialectal di�erences. For the ReM, we limit our selection to texts from its MiGraKo
subcorpus (Klein and Dipper 2016, p. 3) and use only prose texts from the upper
German dialect area from the �rst half of the 13th century. This selection leads to
six texts. For the ReN, the selected texts have been limited to texts from the 14th

century. We have taken four texts from Northern Low Saxon and two texts from
Eastphalian.
As training data, we use roughly the �rst 2,000 tokens (always using complete

sentences) from each text of both datasets. This simulates the approach where a
POS tagger for a low-resourced language is created by annotating the beginnings of
texts used for training a model that automatically annotates the remaining parts of
the texts. For development, we use the following 1,000 tokens and for testing the
next 1,000 tokens (again, complete sentences).
Table 2.1 on the following page shows statistics on the datasets regarding POS

tags and lemmas. The tagsets used for the POS annotation are �ne-grained and
therefore include many tags. One speci�city introduced in HiTS�which has also
been adopted for HiNTS�is the usage of two types of POS tags: a context-speci�c
tag and a lexeme-speci�c tag. For our experiments, we use the concatenation of
both tags as POS tag. For lemmatization, we use only the context-speci�c lemma
for the ReM, for the ReN, we use the lemma without word sense disambiguation.
Spelling variation is measured by giving the proportion of morphological words that
are realized by more than one type in the data (cf. Section 3.1). Strict and simple
refer to the di�erent versions of the tokens described in Section 2.2. Norm refers to
the normalization contained in the ReM described in Section 2.2.2.
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ReM ReN

Number of tokens

training set 12,108 12,025
development set 6,064 6,024
test set 6,062 5,667

Spelling variation in training set

strict 22.81% 18.11%
simple 18.12% 16.81%
norm 5.56% �

Number of POS tags in training set 79 70
Number of lemmas in training set 1778 1346

Table 2.1.: Statistics of the datasets used for the Natural Language Processing ex-
periments
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Spelling Variation

The predominant approach for dealing with spelling variation in non-standard data
is normalization, i. e., transforming the non-standard data in order to make it more
similar to standard data. For historical variants of modern standard languages,
normalization can be de�ned as the task of mapping words from the historical
text to their �canonical cognates, preserving both the root(s) and morphosyntactic
features of the associated historical form(s), which should su�ce (modulo major
grammatical and/or lexical semantic shifts) for most natural language processing
tasks� (Jurish 2010a, p. 72). This approach is often coupled with the aim to use
resources that exist for the standard language, e. g., a POS tagger (Bollmann 2013b).
Conversely, spelling variation can be approached by what we call non-standard
variant detection (Pilz et al. 2006; Ernst-Gerlach and Fuhr 2006; Hauser and Schulz
2007), i. e., by �nding the set of historical (or non-standard) words corresponding
to a given contemporary or canonical query term. This approach can be found in
the context of searching in historical texts (as e. g., Pilz et al. 2006).
However, both approaches use a given standard language as basis. If no closely

related standard language is available�as it is the case with GML since modern Low
German does not have a standardized orthography either (cf. Section 2.1)�these
approaches cannot be applied in a straightforward manner or are hard to model.
Furthermore, historical languages are often analyzed using di�ering categories from
their modern counterparts. One example is the usage of specialized POS tagsets
like HiTS (Dipper et al. 2013) and HiNTS (Barteld et al. 2018) that di�er from the
tagsets used for contemporary language data. In these cases, applying a POS tagger
trained on modern data on a normalized version of historical texts would not lead
to a text annotated with the POS tags as used by historical linguists complicating
the adaptation of tools to historical texts. We look more closely at POS tagging for
historical texts in Section 8.3.
In contrast to normalization and non-standard variant detection, we approach

spelling variation without the reference to a standard language such that the pre-
sented methods are readily usable in the situations described above. The two alter-
natives to normalization and non-standard variant detection pursued in this thesis
are simpli�cation and spelling variant detection. When using simpli�cation, spelling
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variation is reduced by applying rewrite rules to the data. For spelling variant detec-
tion, the set of variants for a given token from the non-standard data is generated.
Implementations and evaluations of these two approaches are presented in Chapter 6
and Chapter 7. In order to clarify the similarities and di�erences between normal-
ization and non-standard variant detection on the one hand and simpli�cation and
spelling variant detection on the other hand, we give formal de�nitions for spelling
variation and the related tasks in this chapter.

3.1. De�ning and Quantifying Spelling Variation

According to Elmentaler (2018), the di�erence between historical and modern writ-
ing systems can be seen in the existence of variation: while readers and writers of
historical texts accept variability, the orthography of modern texts is based on in-
variability (p. 14).10 Spelling variation in historical texts has been illustrated with
the two variants unde and vnde for the GML word unde (`and') in Example (1) on
page 1.
Spelling variation is studied as part of graphematics, a branch of linguistics that

explores spelling regularities in language systems (cf. Elmentaler 2018). The
basic unit within the �eld of graphematics is the grapheme. Graphematics of-
ten relates such graphemes to phonemes, the smallest functional units of sound
(Dürscheid 2016, pp. 134). Accordingly, Niebaum (2000), who presents an inven-
tory of graphemes for GML, de�nes grapheme as �the smallest distinctive unit of
written language that represents a phoneme (or sometimes a sequence of phonemes)�
(pp. 1422, own translation11). As an example for a grapheme, Niebaum (2000) lists
<u>. According to this study, this grapheme has, among others, the variants u and
v. We have already seen this variation in Example (1a) on page 1 and, for GMH,
in the Nibelungenlied (cf. Figure 1.1 on page 4).
Such variation can have various reasons. E. g., for GML vowel graphemes, Niebaum

(2000) distinguishes four main types (p. 1424). For the purposes of this thesis, it
su�ces to give an overview of the types of phenomena that have to be covered
for spelling variant detection or simpli�cation. In order to do this, the following
constructed pair of GML sentences illustrates three di�erent types of spelling vari-
ation.12

10. In this thesis, we are only concerned with spelling variation and therefore ignore other aspects
of standard and non-standard texts.
11. [. . . ] wird im Rahmen dieses Beitrags das Graphem als kleinste distinktive Einheit

geschriebener Sprache aufgefaÿt, die ein Phonem (bzw. gelegentlich auch eine Phonemfolge)
repräsentiert.
12. For a description of the abbreviations see Footnote 1 on page 1.
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(4) Do
DO
when

he
he
he

komen
ghecomen
come.PTC

was
was
was

van
uan
from

deme
dem
the

kloster
kloster
cloister

`when he had been coming from the cloister'

The three types of spelling variation are: a) spelling variation in a narrow sense,
i. e., two types for which the same pronunciation is assumed, b) spelling variation
that corresponds to di�erences in the pronunciation, and c) spelling variation due
to the presence or absence of a morphological marker. {Do, DO} and {van, uan}
from Example (4) illustrate spelling variation in the narrow sense. {deme, dem}
and {komeen, gehcomen} are variants, where the �nal <e> and the initial ge can
be assumed to correspond to a di�erence in the pronunciation (cf. Lasch 2011, � 221
VI for a description of the variation with ge).
A clear-cut distinction between those two types of variation is not always possible:

{deme, dem} could also be a spelling variant in the narrow sense, as it cannot be
decided for a single instance if there actually was a di�erence in the pronunciation.
Furthermore, the di�erence between a missing and a realized �nal <e> can also
be seen as morphological variation, treating the <e> as the overt dative marker
(cf. Lasch 2011, � 381 for feminine i-stems without e in the nominative).
Another source for variation that we also cover under the term spelling variation

are spelling errors. Errors are usually de�ned as a deviation from a norm (Brill and
Moore 2000). In the case of the lack of a norm as with GML such a de�nition is
not applicable. Therefore, we de�ne errors as a type of variant that is unlikely to
appear, it may even appear only once. The GML corpus, for instance, contains one
instance of gesprok as the past participle of speak, whereas other instances of the
past participle are realized with the su�x -en. For this example, it can be assumed
that this su�x was to be realized as an abbreviation, a dash over the k, and was
simply forgotten. In practice, however, the distinction between spelling variation
and spelling errors is often not possible in the context of a missing standard.
Regarding corpora containing historical texts, spelling variation can also result

from errors in the transcription (done manually or with optical character recognition,
cf. Amrhein and Clematide 2018). While these are de�nitely not variations that are
of interest in historical graphematics, they lead to spelling variants in the data
that should be discovered by an algorithm for spelling variant detection as well.
Consequently, we cover not only variation that is strict spelling variation as it would
be analyzed in historical graphematics but also variation that stems from potential
errors�either in the manuscript or in the transcription.
In order to formalize what we cover under the term spelling variant, we use the

de�nition of language as a system of binary signs that has been introduced into
language science by Saussure ([1931] 2001). In general, a binary sign consists of a
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signi�ed and a signifying part. For Saussure ([1931] 2001), a language sign consists of
the combination between a concept and a sound-image (pp. 76). For our purposes�
since we are interested in spelling�we take possible spellings, types, as signifying
parts. Furthermore, we are not interested in the actual concept signi�ed by a type.
Instead, we are concerned with the possibility of a given type to denote di�erent
concepts or not. Therefore, we do not aim to precisely represent the signi�ed part
of a sign, but we resort to morphological words. Morphological words are in�ected
word forms of a language. For de�ning spelling variation, we consider the signs
making up a language to be the possible pairings of a type or word (form) and
a morphological word. Please note that we use the terms type and word (form)
interchangeably in this thesis due to the established usage of word in NLP, e. g., in
word embedding (see Section 4.8) or OOV word.
Spelling variation as described above leads to the situation that in non-standard

texts the same morphological word is often realized by multiple types, i. e., there are
signs with the same morphological word signi�ed by di�erent types. For instance, in
the ReN 1.0, the �rst person personal pronoun is realized by 38 di�erent types.13

A selection of frequent variants is given in Example (5).

(5) ic, ick, ik, jc, jck, jk, yck, yk

This example shows variation between i, j and y that appear in general mostly
interchangeable in GML manuscripts and prints. Only bi-graphs like ei are an
exception to this rule.
For our purposes, the notion morphological word can be operationalized by com-

bining POS, morphological information and lemma including a word sense disam-
biguation if necessary: Each combination of these attributes is an abstract repre-
sentation of a morphological word. For example {Personal Pronoun, Nominative
Sg., ik} is the morphological word representing the nominative singular of the �rst
person personal pronoun in GML. As ik is not ambiguous, no word sense disam-
biguation is shown. An example for an ambiguous lemma is the modern German
type Bank meaning either `bench' or `bank'. Therefore, the lemma Bank should
include word sense disambiguation.
The tendency to invariability that Elmentaler (2018) mentions for modern writing

systems or standard texts can now be modeled by a mapping between morphological
words and types: For a strictly standardized language, a unique mapping from a
morphological word to a type would be expected. For instance, {Personal Pronoun,
Nominative Sg., I} is usually realized as `I' in Modern English. On the other hand,
the GML morphological word {Personal Pronoun, Nominative Sg., ik} is realized

13. We ignore di�erences in the capitalization. Including capitalization there are 56 di�erent
types.
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with�among others�the types given in Example (5), exhibiting the variation typ-
ically found in historical writing systems or non-standard texts.
More formally, given the types of a language L ⊆ Σ∗, where Σ denotes the

alphabet, and a set of morphological words Lmorph, we de�ne the left- and right-
total binary relation S, the spelling relation:

S ⊆ Lmorph × L (3.1)

S relates all morphological words with their potential spellings and all types with
the morphological words they can realize. We represent a morphological word as a
tuple of POS, morphological information and a lemma (p,m, l). If S is functional,
i. e., for each morphological word there is only one type as potential spelling, we say
that the language represented by L is a strictly standardized language, otherwise
we call it a non-standard language. In general S is not injective, i. e., there will be
types that realize multiple morphological words, e. g., due to ambiguities as shown
above with the German example Bank (`bench' or `bank').
Example (6) shows GML sentences with yk and ik (variants of the lexeme ik shown

in Example (5)) from the ReN 1.0 with the POS and morphological annotations for
yk and ik using the HiNTS (Barteld et al. 2018) (cf. Section 2.2.1). These examples
illustrate the variation between yk and ik. Example (6c) where ik is labeled as
accusative is actually an instance where ik is falsely labeled as being accusative
case. This shows that, when relying on the annotation in a corpus to identify
spelling variants, annotation errors can be a reason for spelling variation.

(6) a. Vorwar

in truth

segghe

tell

yk

PPER.1.Sg._.Nom
I

iuw

you.PL

.

I tell you in truth

b. vorwar

in truth

segghe

tell

ik

PPER.1.Sg._.Nom
I

di

you.SG

.

I tell you in truth
(Lüb. Bibel 1494)

c. Dat

that

wolde

wanted

ik

PPER.1.Sg._.Akk
I

alle

all

na halen

make up for
I wanted to make up for that all
(Lüb. Dod. Dantz 1489)

Figure 3.1 on the next page shows the two GML types ik and yk and their relations
to the two morphological words for the nominative and the accusative singular of
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Personal Pronoun, Nominative Sg., ik

Personal Pronoun, Accusative Sg., ik

ik

yk

Figure 3.1.: Examples for Middle Low German morphological words and their
spelling. Morphological words are shown in rectangles, types are shown
in circles.

the �rst person personal pronoun ik according to the annotations in Example (6).
The �gure illustrates that the type ik is ambiguous since it can be used to realize
both morphological words, while yk can only be used to realize the nominative
singular. Looking at the morphological words, there is spelling variation regarding
the nominative singular as both yk and ik can be used to realize the morphological
word {Personal Pronoun, Nominative Sg., ik}. The accusative singular, in contrast,
is only realized by ik.
In theory, we have a strict distinction between standard and non-standard lan-

guages: either there is a unique mapping from morphological words to types or there
is not. In practice, however, there are hardly any languages that would be catego-
rized as standard language according to this strict de�nition. Modern German, for
instance, has certain words for which the writing norm allows di�erent spellings,
e. g., Joghurt `yogurt', which can also be spelled Jogurt.14

Another example for spelling variation in modern Standard German is the usage
of ÿ and ss. While there are rules governing their distribution (cf. Rat für deutsche
Rechtschreibung 2018, � 25), there still is variation. The o�cial norm even mentions
the substitution of ÿ with ss when ÿ is not available, e. g., when it is missing on a
keyboard (cf. Rat für deutsche Rechtschreibung 2018, � 25, E2).
Hence, in practice, there is no strict separation between standard and non-

standard languages, but only a continuum of more or less variation in spellings.
While there are examples like Joghurt/Jogurt and ss/ÿ in modern Standard Ger-
man, most morphological words will be realized by only one type. In GML, however,
there is substantially more variation. Even the �rst person personal pronoun shows
variant spelling as shown in Example (6). So, it su�ces for a language to be con-
sidered a standard language to have only a small amount of variation.
For our experiments, we approximate the spelling relation S (cf. Equation (3.1) on

the preceding page) from an annotated corpus as follows: Given a corpus C = (ti)
n
1

with n tokens ti in which each token consists of a type w ∈ L, its associated POS
(p), morphological information (m) and lemma (l), i. e., each token ti is a tuple

14. See `Joghurt' at Duden online (https://www.duden.de/node/73447/revision/73483, last
visited October 4, 2021).
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(w, p,m, l), we de�ne the relation S′ ⊆ Lmorph × L on the basis of the corpus
such that ((p,m, l), w) ∈ S′ if (w, p,m, l) ∈ C. S′ will only approximate S since a
corpus might not contain all types that can potentially realize a morphological word.
Furthermore, S′ will often contain more variation than S either due to spelling errors
or annotation errors (as already illustrated by Example (6)). We discuss further
implications of the e�ect of annotation errors for the evaluation of spelling variant
detection in Chapter 5.
The relation S can be used to de�ne a spelling variant relation SV ⊆ L × L as

follows:

(w, v) ∈ SV ⇔ ∃(p,m, l) ∈ Lmorph : ((p,m, l), w) ∈ S ∧ ((p,m, l), v) ∈ S (3.2)

That is, two types w ∈ L and v ∈ L are de�ned as spelling variants if they are
spellings of the same morphological word, i. e., they can be used to represent the
same morphological word in a text.
Compatible with the view of relating spelling variation in non-standard data to

the corresponding standard data (cf. Section 1.1), quanti�cation of spelling variation
often quanti�es the deviation from standard data. For example Baron, Rayson, and
Archer (2009) mark all word forms that are not contained in a modern word list for
English as spelling variants in order to quantify the extent of spelling variation in a
corpus of Early Modern English. However, this quanti�cation of spelling variation
is not informative about the internal consistency of the data, it only quanti�es the
di�erence from the standard language. For NLP purposes this quanti�cation informs
us if a tool for the standard language might be applied to the data with some success
but it is not informative about the inherent spelling variation in the data that makes
training a tool on the non-standard data harder than on the standard data.
In contrast, we use S to quantify the amount of spelling variation in a language

as the number of morphological words that have more than one spelling:

v := |{m ∈ Lmorph|∃t1, t2 ∈ L : t1 6= t2 ∧ (m, t1) ∈ S ∧ (m, t2) ∈ S}| (3.3)

When L, Lmorph, and S are induced from a corpus, v can be given as a ratio since
Lmorph is necessarily �nite. In this case, v quanti�es the proportion of morphological
words that are realized by more than one type. For this, we exclude morphological
words that are instantiated only once in the corpus as they cannot exhibit possible
variance.
Given these de�nitions of L, S and SV , we now discuss the di�erent approaches

to spelling variation in more detail.
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3.2. De�ning How to Deal with Spelling Variation

The task of �nding spelling variants is similar to grouping morphological words with
lexemes: A lexeme like the English verb (to) be appears in the form of di�erent mor-
phological words in texts, e. g., the present tense �rst person singular and the past
tense 3rd person singular, realized by the types am and was. In lemmatization,
the task is to assign the same lemma to the types realizing di�erent morphological
words of the same lexeme, thereby abstracting over in�ectional di�erences. Simi-
larly, the aim of spelling variant detection is to detect the types that belong to the
same morphological word. However, while the morphological words belonging to
the same lexeme di�er with respect to their morphology, the types that belong to
the same morphological word only di�er in their spelling.
Given a set of morphological words Lmorph, types of a non-standard language L

and types of a standard language Ls with the corresponding spelling relations SL
and SLs (cf. Equation (3.1) on page 29)15 and the power sets P(L) and P(Ls), we
can de�ne (type-based) normalization, non-standard variant and spelling variant
detection more precisely:

• Normalization is the function n : L→ P(Ls) with

n(t) := {ts ∈ Ls|∃m ∈ S−1
Ls

(ts) : (m, t) ∈ SL}

• Non-standard variant detection is the function e : Ls → P(L) with:

e(ts) := {v ∈ L|∃m ∈ S−1
Ls

(ts) : (m, v) ∈ SL}

• Spelling variant detection is the function s : L→ P(L) with:

s(t) := {v ∈ L|∃m ∈ Lmorph : (m, t) ∈ SL ∧ (m, v) ∈ SL}

S−1
L (t) denotes the morphological words that can be realized by the type t, i. e.,

the set {m ∈ Lmorph|(m, t) ∈ SL}.
Normalization and non-standard variant detection are closely related, as the fol-

lowing de�nitions demonstrate. They show how a non-standard variant detection
e(ts) can be induced given a normalization n(t) and the other way around:

e(ts) = {v ∈ L|ts ∈ n(v)}
n(t) = {ts ∈ Ls|t ∈ e(ts)}

15. Please note that we assume for the set of morphological words Lmorph that it is identical for the
non-standard and the standard language. While this is not always the case, at least a substantial
overlap between the sets of morphological words is needed when using normalization in order to use
tools developed for the standard data on the non-standard data as described in Bollmann (2013b).
To obtain a full set of morphological words, the union of the sets of morphological words for both
languages can be used as Lmorph.
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Furthermore, a normalization induces a spelling variant detection sn(t):

sn(t) = {v ∈ L|n(t) ∩ n(v) 6= ∅}

However, while normalization and non-standard variant detection need to refer to
the types of a language Ls, spelling variant detection does not need such a reference
as can be seen by the presence and absence of Ls in the de�nitions given above.
So far, we have only de�ned type-based variants of these three approaches. The

token-based variants operate on tokens, which we represent as types with a given
left and right context. In the case of normalization the token-based version will re-
turn only one element from Ls. Usually, models for normalization are token-based
in that sense, i. e., they output a single normalization for a given token. However,
most of these models do not use the context to �nd the normalization and there-
fore normalize the same type to the same standard type irrespective of its context
(cf. Bollmann 2019). For non-standard variant and spelling variant detection, the
token-based versions return subsets of the type-based version, because some of the
potential variants of the given type can be excluded given a speci�c context. We
discuss token-based spelling variant detection in more detail in Chapter 5.
We want to use the quanti�cation of spelling variance (Equation (3.3) on page 31)

to introduce simpli�cation more formally and to bridge the gap from the theoretical
de�nitions given above and existing normalization approaches. For many applica-
tions, it is not necessary that the target language is an existing standard language.
It su�ces if the language resulting from the mapping exhibits less variation than
the non-standard language. Such an operation is commonplace for Twitter data,
i. e., the removal of repeated characters as a preprocessing step (Han, Cook, and
Baldwin 2013). This removal reduces variation, which can be easily seen by looking
at variations that users create for expressive reasons, e. g., loool and loooool instead
of lol. This, however, is not a normalization in the sense of mapping to an existing
standard since lol is not a standard word, a corresponding normalization would map
loool, loooool, and lol to laughing out loud.
Bowers (1989) discusses this distinction in the context of creating critical edi-

tions of texts (compare also the discussion of normalization in Bollmann 2018),
distinguishing normalization from regularization:

The two means by which a critical editor creates some order from anoma-
lous irregularities I label regularization and normalization. [. . . ] I con-
strue regularization as the bringing of inconsistent elements in a text
into conformity by the adjustment of variants to some one regular form
already present and assumed to be authorial. Normalization I conceive
as imposing an external standard of regularity without the evidence of
some speci�c precedent in the text being edited, but one that is guided
by evidence derived from similar authorial documents.

(p. 82)

33



Chapter 3. Spelling Variation

While following this distinction, we use the term simpli�cation instead of regular-
ization due to the usage of regularization in ML (Hastie, Tibshirani, and Friedman
2009, Chapter 18).
More formally, a mapping r from the types of a language L to the types of a

language L∗ is a simpli�cation if it reduces variation.16 In this sense, normalization
is a special kind of simpli�cation where L∗ contains the types of an existing standard
language.17 As mentioned above, when L∗ is an existing standard language, this
allows the usage of tools and resources that are available for L∗ for L. While this is
not the case for a general simpli�cation, simpli�cation still is bene�cial: From the
viewpoint of Information Retrieval (IR), a search term s given by the user can be
mapped to r(s) and the user can be presented with results for all types from L that
are mapped to r(s) as well, i. e., r−1(r(s)) improving the recall of the search. From
the viewpoint of NLP, L∗ will have less variation, which results in less data sparsity
and OOV words. Similar to normalization simpli�cation also induces a spelling
variant detection. Since simpli�cation does not need the reference to a standard
language, this is one way to achieve spelling variant detection in the absence of a
standard language. Please note that we only consider token-based simpli�cation,
i. e., a simpli�cation approach that maps a type t ∈ L to one type ts ∈ L∗. This does,
however, not mean that the context in which t appears is used for the simpli�cation.
In this section, we have de�ned the methods that we look at in the following

sections of this thesis: simpli�cation and spelling variant detection. As we have
shown in this chapter, both do not refer to a standard language to deal with spelling
variation. In the next section, we present the ML methods that we use to learn
simpli�cation and spelling variant detection from a given dataset.

16. Simpli�cation does not mean that the resulting types are simpler in the sense that they
are shorter. For a language with a variation between g and gh as in the GML words gecomen

and ghecomen�the past participle of k	omen (`(to) come')�, adding an h after every g that is
not already followed by one could be an example of a simpli�cation as this change removes the
variation between g and gh.
17. Compare also the remark by Jurish (2011) that �[t]he range of a canonicalization function

need not be restricted to extant forms; in particular a phonetization function mapping arbitrary
input strings to unique phonetic forms can be considered a canonicalization function in this sense�
(p. 115). With our de�nitions, a phonetization function would be a simpli�cation. However, we do
not restrict (type-based) normalizations and simpli�cations to map to unique elements but allow
for them to map to multiple elements.
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Machine Learning Methods

In the previous chapter, we have de�ned spelling variant detection and similar meth-
ods to deal with spelling variation. We implement these approaches using techniques
from ML and data mining, i. e., �techniques for �nding patterns in data, patterns
that provide insight or enable fast and accurate decision making� (Witten et al.
2017, p. 9). While knowledge about spelling variation extracted from a collection
of texts either in the form of simpli�cation rules (cf. Chapter 6) or in the form of a
spelling variant relation can be used to understand the spelling variation, our focus
lies in using the structures either for predicting spelling variants for given types,
i. e., spelling variant detection (Chapter 7), or for improving the prediction of other
properties of a token such as POS and lemma (Chapter 8). In this chapter, we give
an overview of the methods and relevant concepts that we use for the automatic
prediction of spelling variants as well as POS tagging and lemmatization and for
evaluating the results.
Mitchell (1997, p. 2) de�nes learning in the context of computer programs by

stating that the program or algorithm�the learner�improves its performance for a
given task with experience. In the experiments for this thesis, the tasks encompass
spelling variant detection or simpli�cations, POS tagging and lemmatization. The
experience comes from training data containing spelling variation. Based on what
information the training data contains, di�erent kinds of learning are distinguished
in the ML literature. We describe the di�erent kinds that are relevant in the context
of this thesis in Section 4.1. Performance is measured on development and test data
that is di�erent from the training data. Depending on the task at hand, we use
di�erent measures, which are described in Section 4.2.
From an ML perspective, we approach the di�erent tasks tackled in this thesis

with the following techniques: learning of rules for simpli�cation (cf. Witten et al.
2017, Section 3.4), binary classi�cation for spelling variant detection (cf. Goldberg
2017, Section 2.3.1), multiclass labeling for lemmatization (cf. Goldberg 2017, Sec-
tion 2.3.3) and sequence labeling for POS tagging (cf. Goldberg 2017, Chapter
19).
We have de�ned simpli�cation as the task to learn a mapping from a type to a

di�erent type with the objective that the amount of spelling variation in the lan-
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guage is reduced (cf. Section 3.2). For the implementation, we treat simpli�cation
as the task of applying a set of rules that transform a given type into its simpli-
�ed version. For learning such rules, we extract possible transformation rules for
individual characters from the training data. These rules are then �ltered using
the support, i. e., how many instances of the training data the rule covers, and the
con�dence, i. e., how often the application of the rule actually leads to a spelling
variant (Witten et al. 2017, Section 3.4). The approach is described in more detail
in Chapter 6.
For spelling variant detection, we apply a �lter that decides for a pair of words

if they are actually spelling variants or not. For this, we use algorithms for binary
classi�cation that we describe in Section 4.3. Since the training data for this task
has more negative than positive examples, we present approaches for dealing with
such imbalanced training data in Section 4.4.
In contrast to the binary decision used in spelling variant detection, both POS

tagging and lemmatization are multiclass classi�cation problems: For each token,
the best of multiple classes (the POS tags or the lemmas) is chosen. We describe
multiclass classi�cation in Section 4.5. However, the number of labels for lemmati-
zation is huge (potentially in�nite). This makes a naive approach hard to compute.
Ways to �nd good labels for lemmatization are described in Section 4.6.
While it is possible to simply apply multiclass labeling approaches for POS tagging

and lemmatization that output the label for an individual token, especially POS
tagging approaches like those that we use below use methods that directly �nd an
optimal sequence of labels for a sequence of words. We introduce sequence tagging or
sequence labeling approaches in Section 4.7. For lemmatization, it is not as relevant
to take the whole sequence into account when POS tags are used as features. This
is because POS tags already provide a contextualized clue for the lemmatization.
The tool that we use for lemmatization, therefore, uses a simple multiclass labeling
approach. The speci�c tools that we use for POS tagging and lemmatization in the
experiments with spelling variation are described in Section 8.1.
As pointed out above, ML algorithms take instances from the training data in

order to improve their performance on the given task. One important aspect of
learning from training instances is how the instances or examples are presented to
the algorithms. Usually, this happens in the form of �values on a �xed, prede�ned
set of features� (Witten et al. 2017, p. 53). We discuss features for spelling variant
detection in Section 4.8.

4.1. Di�erent Kinds of Learning from Data

The data that we use for learning to deal with spelling variants are historical texts.
The speci�c datasets are described in Chapter 2. For all the experiments, we assume
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that the texts are tokenized, i. e., segmented into a list of tokens. Depending on
additional information available when training the ML algorithm, di�erent types of
learning from data are distinguished. In this section, we discuss learning types that
are relevant in the context of this thesis.

4.1.1. Supervised Learning

Learning is called supervised when the training data contains information that in-
cludes the information to be learned. In this case, the knowledge about correct
outcomes can be used to guide the learning process (Witten et al. 2017, p. 44). For
spelling variant detection, it is the spelling variant relation for a given dictionary
that should be learned. In our experiments with spelling variant detection using
supervised learning, we assume that a collection of texts is available for which a
spelling variant relation is known. The task is then to train an ML algorithm to
identify spelling variants in these texts in order to generalize to other texts for which
the spelling variant relation is not known.
In our speci�c case, we use annotations with lemma, POS and morphology to

extract a spelling variant relation from the training texts (cf. Chapter 3). However,
this spelling variant relation that we use to guide the learning only approximates the
real (unknown) spelling variant relation: we can say that spelling variants that are
in the relation also exist in the unknown spelling variant relation unless there are
errors in the annotation, whereas pairs that are not in the spelling variant relation
might actually be spelling variants according to the unknown true spelling variant
relation.
Therefore, it is not a fully supervised learning scenario but more like a scenario

where we are learning from positive and unlabeled examples (PU learning) (Li and
Liu 2005). The learner acts under the assumption that the unlabeled examples
(pairs that are not part of the spelling variant relation) are often actually nega-
tive examples, i. e., they are not spelling variants, but some of them are positive
examples. We elaborate on this in Section 5.3.

4.1.2. Learning with Distant/ Weak Supervision

Sometimes neither the spelling variant relation for a given set of texts is known,
nor are the texts annotated in a way that the relation can be extracted. However,
there might still be information available that helps us to deduce or approximate
the spelling variant relation. One example that we use is a text annotated only
with lemmas. Two types that appear with the same lemma are either di�erent
morphological words of the same lexeme or they are spelling variants of the same
morphological word. When using lemmas to deduce a spelling variant relation, this
spelling variant relation will contain pairs of types that are not actually spelling
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variants. Hence, we can apply supervised learning but have to be aware that our
training data contains errors. This learning scenario has been called weak supervi-
sion since the training data is only �weakly labelled� (Craven and Kumlien 1999).
In the context of relation extraction, Mintz et al. (2009) coined the alternative term
distant supervision for this kind of learning. This term emphasizes that the supervi-
sion does not come directly from the data used to learn but leverages other (distant)
resources. This concept has also been used for other tasks, e. g., POS tagging (Plank
et al. 2014). Distant supervision is similar to PU learning but in distant supervision,
there is noise in both sets not only in the unlabeled part, i. e., the positive examples
may contain instances that are actually negative and the negative examples may
contain instances that are positive.
We apply this learning scenario in Chapter 8 where the overall goal is not to learn

a spelling variant relation but to learn POS tags and lemmas. We assume that for
these tasks training data for supervised training is available (i. e., a collection of texts
annotated with POS tags or lemmas) and evaluate the idea that the learning of POS
tags or lemmas can be improved by providing information about spelling variants.
While the explicit knowledge about the spelling variant relation for the training data
might not be available, the training data for POS tagging or lemmatization can be
leveraged to approximate a spelling variant relation leading to a weakly supervised
learning scenario.

4.1.3. Unsupervised Learning

In supervised and weakly supervised learning the spelling variant relation is�at
least approximately�known for the training data and used to guide the learner.
In unsupervised learning, however, the spelling variant relation is not known. The
learner can only use the tokenized text for learning how to identify spelling variants.
This type of learning has also been called structure discovery, �the research line
of algorithmic descriptions that �nd and employ structural regularities in natural
language data� (Biemann 2012, p. 3). Structural regularities that are relevant for
spelling variation are, for instance, their surface similarity or the context in which
they appear in texts. We present approaches for unsupervised learning to identify
spelling variants in Section 7.1. This type of learning is especially relevant for
searching in a collection of texts when the spelling variant relation is not known and
no training data that contains spelling variation which is similar to the variation in
the target texts is available.

4.1.4. Semi-Supervised Learning

Semi-supervised learning is the combination of supervised and unsupervised learn-
ing. In this setting, the training data for supervised learning is augmented by
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an unlabeled dataset, a background corpus. One type of semi-supervised learning
is using structures discovered in the unlabeled data as features in the supervised
learning. Thereby the performance of the learner can often be improved (cf. Miller,
Guinness, and Zamanian 2004). This is especially helpful in the case where only
a small amount of training data is available. We apply this approach when using
word embeddings as features (see Section 4.8) for representing the context in which
types appear. In order to compute the embeddings, we rely on a background corpus
of unlabeled text.

4.2. Evaluating the Performance

In order to guide the learning in supervised settings and to compare di�erent ap-
proaches, the performance of the learners has to be measured. For this, we apply
standard metrics depending on the task. In this section, we describe the metrics for
the performance of a learner that are used in this thesis.
In Chapter 6 and Chapter 7, we present experiments where for a given set of types

their spelling variants are predicted and compared with known spelling variants as
described in detail in Chapter 5. For this comparison, we use the standard metrics
precision (p), recall (r) and F1-score also called F1-value, F1 or sometimes simply
F-score. They are de�ned as follows:

p =

{
tp

tp+fp tp+ fp > 0

1 tp+ fp = 0
(4.1)

r =
tp

tp+ fn
(4.2)

F1 = 2
p× r
p+ r

(4.3)

Every type that is predicted to be a spelling variant for a given input can either
actually be a spelling variant�a true positive�or not�a false positive. In Equation
(4.1) and Equation (4.2) tp is the number of true positives and fp is the number of
false positives. fn is the number of spelling variants that have not been predicted
to be spelling variants, i. e., have not been discovered by the algorithm, the so-called
false negatives. Precision (Equation (4.1)) measures the proportion of actual spelling
variants among the predicted variants, while recall (Equation (4.2)) measures the
proportion of predicted variants among the actual spelling variants. These two
measures focus on di�erent aspects. For recall, it is not relevant how many potential
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spelling variants a measure predicts, but only how many of the existing spelling
variants are found. Therefore, it is easy to get a good recall by simply predicting
every type to be a spelling variant. For precision, on the other hand, it is not
relevant how many of the actual spelling variants are found, but only how many
of the predicted variants are correct. To get a high precision, it is a good strategy
to only predict a few variants for which the certainty of being an actual spelling
variant is high. For extreme cases, where nothing is predicted, i. e., tp and fp are
both zero, p cannot be calculated. We set the precision to be 1 for such cases.
Because of the opposite e�ects that precision and recall measure, it is often their

harmonic mean that is used to measure the overall performance of a learner. The
harmonic mean measures the compromise between identifying spelling variants (re-
call) and at the same time not reporting too many false positives (precision). This
mean is called F1-score if both precision and recall are weighted equally.
In the following experiments, the spelling variants for multiple types or tokens

are predicted. The di�erent precision, recall and F1 values for each of the types
have to be combined to an overall average. There are di�erent ways to do this.
In this thesis, we use the so-called micro-average, i. e., we sum the number of true
and false positives respectively negatives for all the types/ tokens before calculating
the precision, recall and F1-score. This way, we get an overall measure to compare
di�erent methods for spelling variant detection on the data.
When looking at applications for spelling variant detection in Chapter 8, we look

at POS tagging and lemmatization. These tasks di�er from spelling variant de-
tection regarding that for each token exactly one label (POS tag or lemma) has
to be found while in spelling variant detection for each token an unknown num-
ber (including 0) of spelling variants have to be identi�ed. We use accuracy, i. e.,
the proportion of tokens where the predicted label is correct, to compare di�erent
approaches of handling spelling variation for POS tagging and lemmatization.
The performance of an approach is measured on data that is di�erent from the

training data and the potentially used background corpus. It is a common practice
to use�in addition to the training data�two separate parts of the datasets for
comparing and evaluating the di�erent approaches: the development set (sometimes
also called validation set) and the test set (Witten et al. 2017, Section 5.1). Di�erent
settings for the approaches are compared on the development set in order to select
the best settings for an approach. The performance of an approach that is an
estimate for the performance on similar but unseen data is then measured on the
test set. In Chapter 2 we have described how the ReM and the ReN are divided
into training development and test sets for the di�erent experiments.
For POS tagging and lemmatization, we use statistical testing in order to test the

null hypothesis that an observed di�erence in the accuracy for two approaches is
only due to chance and would not be observable on a similar but alternative test set.
As the approaches are applied to the same data, a statistical test that works with
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paired data is needed. We use McNemar's test (McNemar 1947) with continuity
correction (Edwards 1948) to test the null hypothesis that the probability of the
�rst approach predicting the correct label in cases where the second approach does
not predict the correct label is the same as the probability of the second approach
predicting the correct label while the �rst approach does not. If one of the two
approaches is indeed better than the other, we would expect this hypothesis to be
false. Consequently, McNemar's test should result in a low p value and therefore
allow us to reject the null hypothesis. The test statistic is:

χ2
1 =

(|a1 − a2| − 1)2

a1 + a2

a1 is the number of tokens for which only the �rst approach predicts the correct
tag. a2 is the number of tokens for which only the second approach predicts the
correct tag. Under the null hypothesis, this statistic follows a Chi-square distribu-
tion with one degree of freedom. We use this distribution to calculate the p-value
and reject the null hypothesis if p < 0.05.

4.3. Binary Classi�cation

For spelling variant detection, we apply a binary classi�cation approach: for a given
pair of two word forms, we train an ML algorithm to decide whether the given pair
is a pair of spelling variants or not. The classi�cation either simply uses two types as
input for type-based spelling variant detection or one type with its context and the
potential spelling variant for token-based spelling variant detection. As algorithms,
we apply a Support Vector Machine (SVM) for the type-based and a Convolutional
Neural Network (CNN) for the token-based classi�cation. We describe SVMs in
Section 4.3.1. The CNN uses a logistic regression layer for the binary classi�cation.
We describe logistic regression in Section 4.3.2. The convolutional layers, which give
the CNN its name, are described in Section 4.8.3.
A naive approach for using binary classi�cation in spelling variant detection would

be to apply these algorithms to every possible pair of types in the dictionary. How-
ever, for a dictionary with size n this would lead to assessing

(
n
2

)
= n∗(n−1)

2 pairs,
which leads to a quadratic runtime regarding the number of types in the dictionary.
To improve the runtime, we use a generator to get probable spelling variants for a
given type. Such a generator should have a high recall. While the precision does not
have to be very high, it should be high enough to substantially reduce the number of
pairs that have to be evaluated compared to simply evaluating every possible pair.
The general pipeline approach for spelling variant detection using a generator and
�lters is described in Chapter 7.
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To get an idea of the binary classi�cation task, we use the following pairs of types
from GML:

(7) Pairs of spelling variants of GML unde (`and')

a. un (22), vnnd (350)

b. und (498), vn (229)

c. vnnd (350), vnnde (177)

(8) Pairs of a spelling variant of unde (`and') and a spelling variant of ander
(`second/other')

a. andren (36), vn (229)

b. vne (6), andern (189)

The examples are taken from the ReN 1.0 (cf. Section 2.2.1). The numbers in the
parentheses are the frequencies for these types appearing written exactly as this in
the corpus respecting capitalization. While the pairs in Example (7) are spelling
variants, the pairs in Example (8) are not.18

For our binary classi�cation example, we use two numeric properties to represent
the pairs of types for the algorithm in order to decide if the given pair is a pair
of spelling variants or not. We use the di�erence in length of the types and the
di�erence in frequency, leading to a two-dimensional numeric representation for
each pair. Regarding frequency di�erences, we put these into classes by calculating
b f

100c from the di�erence in the frequencies f . As it should not matter in which
order the pair is represented, we use the absolute values of the di�erences. Please
note that these two features of the word pairs serve only for a simple presentation
of the used ML approaches. In our experiments, we use the features presented in
Section 4.8. Figure 4.1a shows the data points for the �ve pairs from Example (7)
and (8) in the two-dimensional space. The frequency di�erence is shown on the
y-axis, the length di�erence on the x-axis. The squares represent known spelling
variant pairs, the triangles represent pairs that are known not to be spelling variants.
This is the training data for the binary classi�cation. Additionally, the �gure shows
a potential new data point�the circle�that should be labeled as either positive or
negative.
The basic approach in binary classi�cation is to �nd a separation between the

points (or vectors) that represent spelling variants and that do not represent spelling
variants in the training data. Once learned on this data, this separation can be used
to decide for a new pair of types whether they are spelling variants. In our two-
dimensional example, this separation, the so-called decision boundary, can be real-
ized by a straight line�called a hyperplane when generalized to an arbitrary number

18. The pairs have been chosen simply for illustration and are not complete. The corpus contains
other spelling variants of unde. In the pipeline for spelling variant detection presented in Chapter 7,
the word-pairs to which the binary classi�cation is applied are selected by surface similarity.
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(a) Examples for di�erent decision boundaries
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(b) Maximum margin hyperplane as decision boundary

Figure 4.1.: Di�erent decision boundaries for a binary classi�cation problem in a
2-dimensional space.
The classes are represented with squares and triangles. The circle rep-
resents a data point that needs to be labeled by the algorithm.

of dimensions. The three lines in Figure 4.1a show potential decision boundaries for
the given training data. While all shown decision boundaries perfectly separate the
training data, they di�er with respect to the additional data point. The di�erence
between learning algorithms for binary classi�cation can be conceptualized regard-
ing how they �nd and model the decision boundary. In the following two sections,
we describe how this is achieved with SVMs and with logistic regression.

4.3.1. Support Vector Machines

An SVM is an algorithm for binary classi�cation that uses the maximum margin hy-
perplane as decision boundary. The maximum margin hyperplane is the hyperplane
with the maximum distance to the closest data point. This decision boundary is
shown in Figure 4.1b for our example. The dashed lines perpendicular to the maxi-
mum margin hyperplane show the distance to the closest data points in the training
set. This distance is maximized by the shown decision boundary.
Formally, a hyperplane is given by the following set of points:

{x : f(x) = xTβ + β0 = 0} (4.4)

A hyperplane separates a given space into two parts and f(x) gives the signed
distance (weighted by the length of β) between the hyperplane and the given point
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x. Furthermore, the sign of f(x) denotes on which side of the hyperplane x lies. If
we denote the two classes in the binary classi�cation problem with 1 and −1, each
point can be assigned a respective class with respect to the hyperplane de�ned by
f(x) = 0 by the decision function G(x) (Hastie, Tibshirani, and Friedman 2009,
p. 418):

G(x) = sgn(f(x)) (4.5)

sgn denotes the sign function which returns either 1 or −1.
The absolute normalized distance of a hyperplane to any point in the training

data can be obtained by multiplying f(x) with the class label t (to remove the sign)
and dividing the result by the length of the parameters of f(x), i. e., ‖β‖. The
margin of a hyperplane with respect to the training data is de�ned as the smallest
distance between the hyperplane and any point in the training data. Now, the
maximum margin hyperplane de�ned by fmax(x) can be obtained by �nding β and
β0 such that the margin is maximized:

arg max
β,β0

{ 1

‖β‖
min
n

[tnf(xn)]} (4.6)

n iterates over the training set. Finding β and β0 that maximize Equation (4.6)
can be shown to be equivalent with the optimization problem

arg min
β,β0

1

2
‖β‖2 (4.7)

given the constraint that each data point from the training set has a distance of
at least 1 to the hyperplane:

tnf(xn) ≥ 1 (4.8)

See Bishop (2006, pp. 327) for more details.
As can be seen from Figure 4.1b, not all vectors are relevant regarding the max-

imum margin hyperplane. Only the vectors that are closest to the hyperplane are
relevant. If, for example, the data point (4, 1) in Figure 4.1b changed to (5, 1) it
would not a�ect the decision boundary of the SVM. The relevant vectors�(1, 2),
(2, 3) and (3, 1) in Figure 4.1b�are called support vectors and give the SVM its
name. These are the vectors xn for which the equality tnf(xn) = 1 holds in Equation
(4.8).
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Figure 4.2.: Non-linear decision boundary.
The decision boundary is the decision boundary from Figure 4.1b pro-
jected into the space of the examples where the sign of the di�erences
is kept.

As the data points in the training data are often not linearly separable, two
extensions of this basic idea are usually applied with SVMs. The �rst of these
two extensions is the usage of a function that maps the original data points into a
di�erent, maybe higher dimensional, space that we refer to as feature space. The
linear separation learned for the feature space can be non-linear in the original space,
which allows using an SVM for non-linear separation problems. One example for
such a mapping into a feature space is using the absolute values for the elements of
the data points as described above. While this was justi�ed with the commutativity
of the pairs, this is also a way to obtain a non-linear decision boundary in the original
space where the sign of the numbers is kept as shown in Figure 4.2. In this space,
the two classes are not linearly separable. However, they are separated by the non-
linear decision boundary obtained by projecting the linear decision boundary back
from the feature space into the original space.
So instead of calculating the maximum margin hyperplane in the original space,

it is calculated in the feature space. For this, Equation (4.4) has to be changed to
the following equation:

{x : f(x) = h(x)Tβ + β0 = 0} (4.9)

h(x) is a function that maps the original data points to the feature space.
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As an alternative to the decision function from Equation (4.5) its dual represen-
tation can be used (Boser, Guyon, and Vapnik 1992):

G(x) = sgn(

m∑
i=1

αitih(x)Th(xi) + b) (4.10)

The xi are the support vectors of the maximum margin hyperplane. This dual
representation allows substituting the usage of the feature map h(x) with a suitable
kernel function (Schölkopf and Smola 2001, pp. 201�204). A kernel function k(x, x′)
is a function that returns the dot product for two vectors with respect to some
function h, i. e.,

k(x, x′) = h(x)Th(x′) (4.11)

Therefore, in order to use an SVM, the feature map does not need to be given ex-
plicitly but can be de�ned by using a kernel. In our experiments we use a (Gaussian)
Radial Basis Function (RBF) kernel, which has the form

k(x, x′) =
1

exp(γ‖x− x′‖2)
(4.12)

γ > 0 is not a parameter that is learned together with the other parameters β
and β0. It is a so-called hyperparameter that has to be chosen before calculating
the hyperplane. As can be seen from Equation (4.12), the RBF kernel is a decaying
function of the distance between two points in the original space. γ in�uences how
fast this function decays, i. e., the width of the bell shaped (Gaussian) curve. With
higher values of γ, k(x, x′) will decrease faster for increasing distances between x
and x′.
The second approach to deal with data that is not linearly separable is the soft-

margin SVM (Cortes and Vapnik 1995) that we use in the experiments of this
thesis. So far we have assumed that a maximum margin hyperplane exists. But
as we have seen above this is not always the case, cf. Figure 4.2. And even when
using a feature map it is not guaranteed that the data points are linearly separable
in the feature space. In these cases, it is not possible to ful�ll the constraints given
in Equation (4.8). This is due to the fact that for data points on the wrong side
of the hyperplane tnf(h(xn)) will result in a negative value. In order to allow
for misclassi�ed data points in the training set, the soft-margin SVM algorithm
introduces variables ξn ≥ 0 for each data point in the training set. With these slack
variables the constraints from Equation (4.8) are relaxed:

tnf(h(xn)) ≥ 1− ξn (4.13)
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Now it is possible to ful�ll the constraint for data points on the wrong side of the
hyperplane by choosing a respective value for ξn. In order to �nd a balance between
a large margin and allowing for misclassi�cations with high values of ξn, the ξn are
included into the optimization as well:

arg min
β,β0

1

2
‖β‖2 + C

∑
n

ξn (4.14)

The constant C can be interpreted as a cost parameter. With a high value for C,
classi�cation errors lead to a higher value of Equation (4.14) and should be avoided
to �nd the optimal solution. When C approaches ∞, all ξn need to be zero for
the optimal solution, leading to the strict maximum margin hyperplane. Looking
at the linearly separable case, the interaction between the two terms and the role
of C in Equation (4.14) can be illustrated as follows: Since the data is linearly
separable there is a maximum margin hyperplane and the ξn are not needed, i. e.,
the constraints in Equation (4.13) can be ful�lled with all ξn = 0. For a solution
where at least one ξn > 0 to lead to a lower value in Equation (4.14), ‖β‖2 needs
to be smaller in order for the sum to be smaller. This is equivalent to a larger
margin which now includes the data points for which ξn > 0. So the soft-margin
constraints allow for ignoring some data points with respect to the margin of the
chosen hyperplane. The optimal solution depends on C: For small values of C, the
margin of the hyperplane gets larger with possibly many data points lying inside
the margin or even on the wrong side of the hyperplane. Increasing values of C lead
to smaller margins with less data points inside.
Instead of solving Equation (4.14) directly, the equivalent dual problem in Equa-

tion (4.15) can be maximized in order to �nd a solution using a kernel function as
described above (Hastie, Tibshirani, and Friedman 2009, pp. 420�421):

arg max
αn

∑
n

αn −
1

2

∑
n

∑
m

αmαntmtnk(xm, xn) (4.15)

with the constraints

0 ≤ αn ≤ C (4.16)

∑
n

αntn = 0 (4.17)
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When employing a (soft-margin) SVM for classi�cation, the user needs to choose
the cost parameter C and a feature map h(x) before training the SVM. Since we
use an RBF kernel instead of h(x) the hyperparameter γ needs to be chosen as well.
An alternative to an SVM for binary classi�cation that is often found in conjunc-

tion with neural networks is logistic regression. We describe logistic regression in
the following section.

4.3.2. Logistic Regression and Neural Networks

Logistic regression uses a linear model to �nd the decision boundary. A generalized
linear model is given by

p(x) = g(wTh(x) + wb) (4.18)

g(x) is a nonlinear function called activation function in the context of neural
networks and h is a feature map as described for SVMs. w is a vector containing
the parameters that are learned during training. The parameter wb is called bias.
Notationally, the bias can be omitted by using the convention that x0 = 1 and
w0 = wb (Bishop 2006, p. 229).
In the case of binary classi�cation, the basic generalized linear model is called

logistic regression. A logistic regression function models the probability of the data
points to belong to one of the two classes. In our case, this is the probability of a
data point representing spelling variants. When classifying an unseen pair of types,
the model says that it is a spelling variant pair if this probability is at least 0.5. In
order to model such probabilities, for logistic regression, the sigmoid function σ is
used as activation function:

σ(a) =
1

1 + exp(−a)
(4.19)

The sigmoid function results in a value between 0 and 1. When looking at points
for which the probability is exactly 0.5, one can show that they form a hyperplane
(or a line in the two-dimensional case), a linear decision boundary as presented
above for SVMs. As with the SVM, it is desirable to introduce a mapping into a
feature space for cases where the original data points are not linearly separable. In
contrast to using a �xed feature mapping as in the case of SVMs where a kernel with
a �xed-parametrization is chosen before searching the maximum margin hyperplane
for the training data, another way to do this is simply to use another linear model
with a non-linear activation as a feature map. The parameters of this linear model
are learned when training the whole model.
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x0 x1 x2 . . . xn−2 xn−1 xn

sigmoid

(a) Logistic regression

x0 x1 x2 . . . xn−2 xn−1 xn

h0 h1 h2 . . . hn−2 hn−1 hn

sigmoid

(b) Feed-forward network with one
hidden layer

Figure 4.3.: Neural Network diagrams

This is the basic idea behind (feed-forward) neural networks: stacking linear
models (with non-linear activation functions) as for example the logistic regression
model onto each other (Bishop 2006, p. 227). Mathematically a neural network
is simply a �nonlinear statistical model� (Hastie, Tibshirani, and Friedman 2009,
p. 392). Neural networks are often depicted in a diagram to give an overview of the
function. Figure 4.3a shows a visualization of the simple logistic regression model
with h(x) = id(x). The dotted lines represent the multiplication with the respective
parameter. In theory, such functions can be stacked arbitrarily deep, hence the term
deep learning that is often found in conjunction with neural networks (Goodfellow,
Bengio, and Courville 2016, pp. 164-165).
Above we have assumed that w is a vector. In general, w can be a matrix, leading

to a vector as the result of the linear model. A neural network with h(x) = a(whx)
where wh is a quadratic matrix with the same length as x is shown in Figure 4.3b.
Layers like h(x) that are neither the input nor the output of the network are called
hidden layers. In the diagrams, the activation function a is omitted. While we
use sigmoid as activation function for the output layer, we apply a recti�ed linear
function r or Recti�ed Linear Unit (ReLU) activation for hidden layers, which is
given in the following equation:

r(a) = max(0, a) (4.20)

In Section 4.8.3 we describe using convolutions for mapping the data points to a
feature space for token-based spelling variant detection.
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4.4. Imbalanced Training Data

When training a �lter for spelling variant detection, the number of positive examples
will be substantially smaller than the number of negative examples. This is due to
the fact that most types only have a few spelling variants but at the same time
many similar types that are not spelling variants, e. g., in�ectional variants. This
leads to the class imbalance problem:

In these cases, standard classi�er learning algorithms have a bias toward
the classes with greater number of instances, since rules that correctly
predict those instances are positively weighted in favor of the accuracy
metric, whereas speci�c rules that predict examples from the minority
class are usually ignored (treating them as noise), because more general
rules are preferred. In such a way, minority class instances are more
often misclassi�ed than those from the other classes.

(Galar et al. 2012, p. 465)

As the instances of the minority class are the spelling variants, that would mean
that the algorithm would often discard spelling variants. In order to tackle class
imbalance, di�erent approaches have been suggested. We apply two of these in our
experiments: random undersampling and bagging.
Random undersampling can be used to create balanced training data by taking a

random sample that contains an equal amount of positive and negative data points.
While this is a simple and e�ective approach, the learner does not use the whole
training data but only a subset. Therefore, information from the removed data
points is lost.
Bagging is not only an approach for imbalanced training data but it is a meta-

algorithm that can be used with di�erent learning approaches in order to improve
their performance. Bagging exploits the fact that multiple decision boundaries exist
as shown in Figure 4.1a on page 43 43. In bagging, multiple decision boundaries are
combined with equal vote. The category with the most votes is chosen. A classi�er
combining the decision boundaries shown in Figure 4.1a would group the new data
point, the circle, with the squares following two of the three decision boundaries.
One way to apply bagging is by training learners on random samples of the training
dataset, omitting and duplicating some instances. Due to variation in the training
data, di�erent learners lead to di�erent decision boundaries (Witten et al. 2017,
Section 12.2).
However, bagging can also be used to handle the imbalanced data problem (Galar

et al. 2012). In this thesis, we apply UnderBagging (Galar et al. 2012, p. 472),
where each sampled training set contains all the positive data points and equally
many randomly sampled negative data points. Using bagging with SVMs has been
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proposed for PU learning by Mordelet and Vert (2014). So we use bagging with
SVMs to obtain a better decision boundary given the imbalanced and noisy training
set.

4.5. Multiclass Labeling

ML approaches for binary classi�cation as described in Section 4.3 can be easily
adapted to the multiclass problem. Simple adaptations are the one-versus-the-rest
or one-vs-one approaches (Bishop 2006, p. Section 7.1.3). An example for a POS
tagger using the one-versus-the-rest approach with SVMs is SVMTool (Giménez
and Màrquez 2004). In this approach, a separate SVM is trained for each POS tag.
These SVMs learn to discriminate between the respective POS tag and all other
tags. So for a given word, each of the trained SVMs decides whether the word
should be labeled with the respective tag or any of the other tags (one-vs-the-rest).
However, there are also learning approaches that directly allow multiple classes.

One of these approaches is a special class of log-linear models which is called mul-
ticlass logistic regression or softmax regression. We use such a log-linear model for
lemmatization. Multiclass logistic regression is also the basis for sequence labeling
using Conditional Random Fields (CRFs) that we introduce in Section 4.7.2.
Multiclass logistic regression models use the basic generalized linear model for bi-

nary classi�cation from Equation (4.18) on page 48. But instead of using the sigmoid
function from Equation (4.19) as activation function g, for multiclass classi�cation
the softmax function is used (Goldberg 2017, pp. 24):

softmax(a)c =
exp(ac)∑
j exp(aj)

(4.21)

c ∈ C indicate one of the possible classes, a is a vector containing one number for
each class. j iterates over the classes. By combining Equation (4.18) with Equation
(4.21), one gets a generalized linear model for multiclass classi�cation:

p(x)c = softmax(wTh(x) + wb)c =
exp(wTc h(x) + wbc)∑
j∈C exp(w

T
j h(x) + wbj )

(4.22)

The model returns a value for each of the labels c. Due to the normalizing
denominator in the softmax function, the values are all positive numbers and sum
to 1. Therefore, p(x)c can be seen as a probability distribution over the di�erent
classes c given the observed value x. Note that w and wb are matrices which contain
the di�erent parameter vectors wc and wbc for each of the labels c. In order to
avoid having multiple parameter vectors wc, an alternative notation can be used
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using feature functions fk and one parameter vector w (Sutton and McCallum 2012,
pp. 279):

p(x)c = softmax(
∑
k

wkfk(c, x))c =
exp(

∑
k wkfk(c, x))∑

j exp(
∑

k wkfk(j, x))
(4.23)

fk(c, x) ∈ {fc′,j(c, x) = 1{c′=c}h(x)j} ∪ {fc′(c, x) = 1{c′=c}} and wk is the respec-
tive parameter from wc or bias parameter from wbc in Equation (4.22).

4.6. Learning Labels for Lemmatization

Lemmatization is the task of labeling a sequence of tokens with the corresponding
lemmas or base forms as shown in Example (2) on page 3. As pointed out above,
approaching this task as a labeling task is not trivial since the number of labels
is large, even potentially in�nite. A large number of labels has consequences for
training and applying statistical models. For example, when estimating probabilities
for the lemmas from an annotated corpus, there will be many lemmas with only a
few appearances in the corpus and even many lemmas that do not appear in the
corpus at all. Furthermore, the excessive number of labels will make it impractically
slow to �nd the best label when applying the trained model.
To solve this issue and apply (sequence-)labeling to lemmatization, Chrupaªa

(2006) introduces the idea to use transformation rules as labels. The rules that are
used as labels can then be used to transform a token into the corresponding lemma.
As the rules generalize over multiple token-lemma pairs, the number of labels are
reduced. Chrupaªa (2006) uses the shortest edit script between the reversed type
and the reversed lemma for this, which

is a set of instructions (insertions and deletions) which, when applied
to sequence a, transform it into sequence b. An instruction speci�es
whether an insertion or a deletion should be performed, at which position
in sequence a, and which element is to be inserted or deleted.

(Chrupaªa 2006, p. 122).

Type and lemma are reversed in order for the edit scripts to better generalize
over su�xes. The shortest edit scripts are automatically obtained from the training
data.
This approach has been improved in Chrupaªa (2008) by using an Edit Tree (ET)

instead of the shortest edit script:

The idea is to �nd the longest common substring (LCS) between the
form w and the lemma w′. We know that the portions of the string in
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(2,1)

e/ε(0,1)

ä/aø
(a) Bäume → Baum

�trees - (the) tree�

(3,1)

e/ε(0,1)

ä/aø
(b) Träume → Traum
�dreams - (the) dream�

ä e

X Y

a
(c) Lexical correspondence for

Träume → Traum,
Bäume → Baum

Figure 4.4.: Edit Trees and Lexical Correspondence for the a-umlaut + -e in�ection
pattern from Barteld, Schröder, and Zinsmeister (2016)

the lemma before (pre�x) and after (su�x) the LCS need to be modi�ed
in some way, while the LCS (stem) stays the same. If there is no LCS,
then we simply record that we need to replace w with w′.

(p. 130)

To obtain the full ET, the procedure of �nding the LCS is applied recursively to
the found pre�x and su�x. This kind of transformation rule encodes changes in the
beginning and the end of the word form in the same way irrespective of its length.
While Chrupaªa, Dinu, and van Genabith (2008) use these transformation rules

as labels, Müller et al. (2015) use the lemmas directly as labels but include a support
function hw(l) into a log-linear model p(l|w,m) ∝ hw(l)× exp(f(l, w,m)T θ) which
is 1 for possible lemmas and 0 for all the other lemmas. hw is 1 for all lemmas that
can be obtained by applying a �xed set of ETs to the word form w. The set of ETs
is extracted from the training set.
In Barteld, Schröder, and Zinsmeister (2016), we have introduced the usage of

Lexical Correspondences (LCs) as an alternative to ETs in order to better generalize
over word-internal modi�cation as it appears in the morphology of languages like
German and Dutch (Jongejan and Dalianis 2009). One example is the umlaut in
Baum (`tree') � Bäume (`trees') and in Traum (`dream') � Träme (`dreams'). The
corresponding ETs are shown in Figure 4.4a and Figure 4.4b. The numbers at
the nodes of the ETs denote the start and the end of the LCS, measured from
the beginning and the end of the type respectively. Since um�the LCS of both
pairs Bäume � Baum and Träume � Traum�starts at a di�erent position, the
corresponding ETs di�er.
LCs have been introduced formally by Fulop and Neuvel (2013) and have been

used in morphological learning (Neuvel and Fulop 2002). As they do not encode
the position of the common substrings, they do not di�er for the example Bäume
� Baum and Träume � Traum as can be seen in Figure (4.4c). Hence, when the
training data only contains examples like Bäume, the usage of LCs allows to predict
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the correct lemma for Träume. This is not possible with ETs. However, LCs
are also ambiguous in certain cases, which leads to the creation of many lemma
candidates. Therefore, we have tested variants of lexical correspondences for the
support function in Lemming. In this thesis, we use LCs with anchored insertions
and refer to them simply as LC. See Barteld, Schröder, and Zinsmeister (2016) for
a more detailed discussion.
In Barteld, Schröder, and Zinsmeister (2016) we have used LCs as a means to

deal with morphological word-internal modi�cation. However, spelling variation also
leads to word-internal di�erences. Hence, LCs can also be seen as a way to deal with
word-internal modi�cations that are due to spelling variation. So in Section 8.4, we
test using LCs instead of ETs for adapting Lemming to historical texts with spelling
variation.

4.7. Sequence Tagging

When predicting POS tags for a sentence, the choices for individual labels in�uence
choices for other surrounding labels. When applying a multiclass classi�er to each
token in a sequence individually, this dependency is lost.
In SVMTool (Giménez and Màrquez 2004), which is the POS tagger mentioned

in Section 4.5, SVM classi�ers are applied to each of the tokens in a sentence to
�nd the best POS tag. To include the dependency between the tokens, the features
for an individual target token include tokens and their POS tags before and after
the target token. While the tags for the left context are the tags predicted by
the tagger, the tags for the right context are not known when tagging the tokens
sequentially. Therefore, in SVMTool ambiguity tags are used, i. e., concatenations of
all possible tags for the given type that are found in the training data (Giménez and
Marquez 2012, Section 3.3.2). This way, the SVMs can learn dependencies between
the tags, e. g., if the previous tag is a determiner the current tag is not likely to
be a preposition but might be a noun or an adjective. This is a simple approach
to include the sequence information. However, many tools for POS tagging use
approaches that model the dependencies between the tags in the sequence more
explicitly. The tools that we use for the POS tagging experiments each use either
a Hidden Markov Model (HMM) or a CRF, which we introduce in the following
sections.

4.7.1. Hidden Markov Model

A Hidden Markov Model (HMM) models the probabilities of tag sequences. To do
this, two assumptions are used: �rst, the Markov assumption and second, station-
arity (Manning and Schütze 1999, p. 345). The Markov assumption states that the
probability of a tag only depends on the previous tag instead of all previous tags,
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DT VBZ DT NN

This is an example

p(DT) p(VBZ|DT) p(DT|VBZ) p(NN|DT)

p(This|DT) p(is|VBZ) p(an|DT) p(example|NN)

Figure 4.5.: Graphical representation of a Hidden Markov Model for the part-of-
speech sequence of an example sentence. Observed states, i. e., the
words, are shown in gray.

so p(ti|t1:i−1) = p(ti|ti−1). Stationarity means that p(ti|ti−1) = p(tj |tj−1) for any
i 6= j where ti = tj and ti−1 = tj−1. I. e., the probability of a given tag sequence
does not depend on its position in the whole sequence, e. g., the probability that a
noun follows a preposition is the same in the beginning, the middle and the end of
a sentence.
Given these two simplifying assumptions, the probability of a tag sequence t1:n

can be calculated as follows:

p(t1:n) = p(t1)p(t2|t1)p(t3|t2) . . . p(tn|tn−1) (4.24)

Yet, this does only model the probability of tag sequences. But we want to
model the probability of a tag sequence together with the corresponding sequence
of types. In an HMM the tags are modeled as hidden states that emit types wi
with probabilities p(wi|ti). Figure 4.5 shows a graphical representation of an HMM
indicating the transition and emission probabilities for the sentence from Example
(2) on page 3.
Given such an HMM, the probability that a sequence of tags t1:n emits an observed

sequence of words w1:n can be calculated simply as the product of the emission
probabilities:

p(w1:n|t1:n) =
n∏
i=1

p(wi|ti) (4.25)

For training an HMM, the transition and emission probabilities have to be found.
This is usually done with Maximum Likelihood Estimation (MLE) using an anno-
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tated corpus. To account for rare and unseen words, smoothing can be applied (cf.
Manning and Schütze 1999, pp. 346).
For tagging, we are looking for the optimal sequence of tags t1:n for a given

sequence of words w1:n, i. e., arg maxt1:n p(t1:n|w1:n). While this cannot be calculated
directly with an HMM, it is equivalent to �nding arg maxt1:n p(w1:n|t1:n)p(t1:n) (cf.
Manning and Schütze 1999, p. 347), which can be calculated with Equation (4.24)
and Equation (4.25). To �nd the optimal sequence, the Viterbi algorithm is usually
applied. This algorithm uses a trellis to store the possible tag sequences and dynamic
programming to �nd the optimal sequence (Manning and Schütze 1999, pp. 331�
333).
A common variant of the simple HMM as described above is to take more con-

text into account for the transitions. Instead of using the described bigram model
that uses only the previous state (p(ti|ti−1)), trigram models use the previous two
states for the transition probabilities (p(ti|ti−2, ti−1)) and so on. Furthermore,
the emission probabilities can also use more context, e. g., the surrounding tags
(p(wi|ti−1, ti, ti+1)).
One shortcoming with HMMs that is relevant in the context of spelling variation

stems from the fact that they are so-called generative models, i. e., they model the
sequence of observations, the tokens, as being generated (emitted) by the sequence
of labels. Therefore, it is not straightforward to incorporate probabilities for unseen
events (e. g., words that do not appear in the training data) into the model (cf.
Manning and Schütze 1999, pp. 351�353). The HMM-based taggers that we use in
the POS tagging experiments both use the tag distribution over word su�xes in the
training data to estimate emission probabilities for OOV words.
An alternative to a generative model is to model the sequence of labels as being

based on the observations, a so-called discriminative model. An example for a dis-
criminative model is (multiclass) logistic regression. Since a discriminative model
models the probability of the (sequence of) labels given an observation�or more
precisely some features of the observation�, unseen events in the observation are
easily handled by the model as long as the unseen events comprise known features.
This seems favorable for texts with spelling variation. The discriminative counter-
part to the generative HMMs is a subclass of CRFs which we describe in the next
section.

4.7.2. Conditional Random Field

Conditional Random Fields (CRFs) are generalizations of (multiclass) logistic re-
gression to sequences (Sutton and McCallum 2012). The multiclass logistic re-
gression model from Equation (4.23) on page 52 can be easily adapted for sequence
labeling by modeling p(x1:n)c1:n as the product of the individual unnormalized prob-
abilities exp(

∑
k wkfk(ct, xt)) for the di�erent time steps t. The denominators have
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to be adapted respectively to acquire values that sum to 1. While this is a way
to model probabilities for label sequences c1:n that are conditioned on the observed
token sequence x1:n, there is no dependency between the labels as there is with the
transition probabilities in an HMM. Such dependencies can be achieved by allow-
ing more general feature functions that not only depend on one label ct and one
observation xt but on multiple of these elements. A simple but often used example
is the linear-chain CRF, where two neighboring labels ct and ct−1 are used in the
feature functions (Sutton and McCallum 2012, p. 288):

p(x1:n)c1:n =

∏
t exp(

∑
k wkfk(ct, ct−1, x1:n, t))∑

c′1:n

∏
t exp(

∑
k wkfk(c

′
t, c
′
t−1, x1:n, t))

(4.26)

The feature functions fk(ct, ct−1, x1:n, t) now depend on the labels at the time
steps t − 1 and t. Furthermore, we have added the whole input sequence x1:n and
the time step t. This way, the feature functions can depend on observations for all
time steps, e. g., features for the previous or the next word can be included.
A simple choice for feature functions that lead to a linear-chain CRF that resem-

bles an HMM are two types of functions that serve similar purposes as the emission
(Equation (4.27)) and transition (Equation (4.28)) probabilities in an HMM, see
e. g., Silfverberg et al. (2014).

fc′t,j(ct, ct−1, x1:n, t) = 1{c′t=ct}h(x1:n, t)j (4.27)

fc′t,c′t−1
(ct, ct−1, x1:n, t) = 1{c′t−1=ct−1}1{c′t=ct} (4.28)

Using these feature functions, Equation (4.26) can be factorized as in the following
equation:

p(x1:n)c1:n =

∏
t ΨtΦt∑

c′1:n

∏
t ΨtΦt

(4.29)

with

Ψt = exp(
∑
c′t,j

wc′t,jfc′t,j(ct, ct−1, x1:n, t)), and

Φt = exp(
∑
c′t,c
′
t−1

wc′t,c′t−1
fc′t,c′t−1

(ct, ct−1, x1:n, t))

This factorization with the de�nitions from Equation (4.27) and Equation (4.28)
can be visualized as the factor graph (Sutton and McCallum 2012, p. 275) shown
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c1 Φ2 c2 Φ3
. . . Φn−1 cn−1 Φn cn

x1:n

Ψ1 Ψ2 Ψn−1 Ψn

Figure 4.6.: Factor graph for a linear-chain Conditional Random Field.
The graph corresponds to the CRF given in Equation (4.29)

in Figure 4.6. This graph depicts the labels c1:n and the tokens x1:n in circles, the
factors are depicted in rectangles. The lines connect the factors with the labels
and tokens that are included in it. Observed variables�in this case the sequence
of tokens�are colored in gray. The graph does not show individual nodes for the
tokens since the feature functions take the whole token sequence as input and extract
the relevant features for the given time step. These features might include features
from tokens before or after the given time step.
However, CRFs are not limited to this kind of connections. One variant is to

use the observed x1:n in the transition features shown in Equation (4.28) as well.
Another variant is to include more context, which leads to a higher-order CRF
instead of a linear-chain CRF. Higher-order CRFs can be described by using the
whole label sequence in the feature functions:

p(x1:n)c1:n =

∏
t exp(

∑
k wkfk(c1:n, x1:n, t))∑

c′1:n

∏
t exp(

∑
k wkfk(c

′
1:n, x1:n, t))

(4.30)

Training a CRF is more complex than training an HMM. The goal is to �nd
a set of parameters W that lead to a CRF that best describes the training data.
Mathematically this can be modeled using the likelihood function:

l(W ) =
∑
(i)

p(x
(i)
1:n)

c
(i)
1:n

l(W ) can be calculated on the training data D = (x
(i)
1:n, c

(i)
1:n). The aim is now

to �nd arg maxW l(W ). This is equivalent to �nding arg minW −log(l(W )). This
minimization can be solved using gradient-based methods. We describe such mini-
mization methods for training CNNs in Section 4.8.3.
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For tagging, we are looking again for the sequence of tags with the highest prob-
ability given the input sequence, i. e., arg maxc1:n p(c1:n|x1:n). In contrast to an
HMM, these probabilities can be directly computed with a CRF. For linear-chain
CRFs this can be done e�ciently using similar algorithms as for HMMs (Sutton
and McCallum 2012, Section 4.1).
In general, though, both training and tagging CRFs can be computationally ex-

pensive since in both cases the probabilities for all possible tag sequences have to be
computed. For instance, when minimizing the (log-)likelihood with a gradient-based
method in order to �nd the best model for the training data, the gradient contains
the marginal probabilities for the tag sequences, i. e., a sum over all possible tag
sequences c1:n.

The training and also decoding times thus depend polynomially on the
size of the tagset and exponentially on the order of the CRF. This prob-
ably explains why CRFs, despite their outstanding accuracy, normally
only are applied to tasks with small tagsets such as Named Entity Recog-
nition and Chunking; if they are applied to tasks with bigger tagsets �
e.g., to part-of-speech (POS) tagging for English � then they generally
are used as 1st-order models.

(Müller, Schmid, and Schütze 2013, p. 322).

In order to allow using higher-order CRFs for POS tagging, Müller, Schmid, and
Schütze (2013) present pruned CRFs: during training and tagging probable tag
sequences are determined using the CRF with a lower order, starting with a 0-order
CRF. That is, for a given time step the tag probabilities are �rst calculated based
only on the observed sequence (0-order CRF). Then a pruned �rst-order or linear-
chain CRF is built by adding transition features but removing those tags from the
possible sequences that have a low probability according to the 0-order CRF. Thus,
during training and inference, fewer sequences have to be considered for the �rst-
order CRF. This pruning strategy is repeated until the desired order is reached.
We use such pruned CRFs in our POS tagging experiments.

4.8. Features for Describing Spelling Variants

In the previous sections, we have described ML algorithms that learn to separate
data points that belong to di�erent classes. For these algorithms, the data points
need to be represented in a vector space. For words�or in our case pairs of words�
the simplest way to represent them in a vector space is a one-hot representation, i. e.,
a vector in which each dimension represents a speci�c word. To represent a word,
only one dimension is set to 1, all other dimensions are set to 0. This representation,
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however, has a lot of drawbacks, one being that it does not allow an ML algorithm
like an SVM to learn generalizations over di�erent words or pairs of words as they
are all represented di�erently and with equal distance to each other. Therefore,
the data points are presented to the SVM with their values for prede�ned features.
In this section, we present the features that we use for spelling variant detection.
We also present distance or similarity measures that we use for generating spelling
variant candidates in the pipeline.
As de�ned in Chapter 3, spelling variants are di�erent surface realizations of the

same morphological word. While not always the case, spelling variants often share
similarities regarding this surface realization. Additionally�as spelling variants
are basically the same morphological word�the contexts in which they appear are
similar. Therefore, we use surface features and contextual features. In the following
two sections, we present an overview of the surface and contextual features that are
used in the experiments of this thesis. Furthermore, we also apply parameterized
feature maps which map a representation of a data point into a di�erent space
(cf. Section 4.3.2). We apply this technique for the token-based spelling variant
detection using a CNN, which we describe in Section 4.8.3.

4.8.1. Surface Similarities

Surface similarity between two word forms a and b can be operationalized by looking
at how to transform type a into type b. The changes that are allowed to do this
are called edit operations, e. g., deleting, adding or substituting a letter. These edit
operations can be used to quantify the surface similarity between two words. For
this, each edit operation is assigned a cost. By �nding a list of edit operations
to transform a into b and summing the costs associated with the edit operations,
a numerical distance between the two word forms can be computed. The cost of
the sequence of edit operations to transform a into b with the minimal cost is
called edit distance. Given a pair of types it can be found e�ciently using dynamic
programming (Wagner and Fischer 1974).
There are several variants of edit distances that di�er with respect to the allowed

edit operations and their associated cost. One is the Levenshtein distance (Leven-
shtein 1966), which allows insertions, deletions and substitutions, each with a cost
1. We use it to generate spelling variant candidates for a given type by extracting
all types from a dictionary that have a small edit distance to the type under consid-
eration (cf. Section 7.1). Given the types vnnde, vnnd and un�all three variants of
the GML morphological word unde (`and')�using this generator with a distance of
2 or 1 would include vnnde as spelling variant candidate for vnnd but not un as the
pair un and vnnde has a Levenshtein distance of 3 (see Figure 4.7a on the facing
page). To e�ciently �nd all types from the dictionary with a given edit distance
to the target type, we use Levenshtein automata as proposed by Schulz and Mihov
(2002).
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(b) Jaccard index

Figure 4.7.: Examples for the Levenshtein distance and the Jaccard Index

An alternative way of measuring the similarity of two word forms is by looking at
the combinations of characters (character n-grams) that appear in the words. The
similarity can then be calculated by using the Jaccard Index (Levandowsky and
Winter 1971). Figure 4.7b shows an example for vnnd and vnnde using character
2-grams. The words are padded with $ before extracting the n-grams. The Jaccard
Index is 4

7 , the number of elements in the intersection of the sets (4) divided by the
number of elements in the union of the sets (7). Instead of only using consecutive
characters, gaps between the two characters can be allowed which leads to skip-
grams (Guthrie et al. 2006).
We compare the Jaccard Index and other n-gram based similarity measures with

edit-operation based measures in Section 7.1.1. When representing a pair of words
for the SVM, we experiment with di�erent representations based on character n-
grams around mismatches between the words. This does not only take character
n-grams into account but also their position within the words. The features are
described in more detail in Section 7.2.2. For the token-based �lter, we represent
the spelling variant candidate as a sequence of one-hot encodings of the individual
characters and use the CNN with an embedding layer to learn relevant surface
features for the individual types (cf. Section 4.8.3).

4.8.2. Contextual Similarities

The context in which a word appears has often been used to create representa-
tions for words in NLP. Based on the distributional hypothesis, which states that
words with similar meanings often occur in similar contexts (cf. Harris 1954), such
representations can be seen to approximate the meaning of words.
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One way to obtain context representations is to assign words to di�erent clus-
ters based on their context. Brown clustering (Brown et al. 1992) is one way to
achieve such a clustering. It has been frequently used to generate features for NLP
applications (Derczynski, Chester, and Bøgh 2015). Brown clustering is based on
a class-based n-gram model, a speci�c type of language model. A statistical lan-
guage model assigns a probability to a word wi given its preceding words wi−1

1

(Manning and Schütze 1999, Chapter 6). N-gram models apply the Markov as-
sumption (cf. Section 4.7.1) and reduce the history of a word to n − 1 words, i. e.,
in an n-gram model p(wi|wi−1

1 ) = p(wi|wi−1
i−n−1). In the case of a 2-gram or bigram

model, only the previous word is considered, p(wi|wi−1
1 ) = p(wi|wi−1). The proba-

bilities of the n-grams can be estimated based on a training corpus. A class-based
n-gram model now does not consider the actual sequence of words preceding wi but
the history of classes that the words are assigned to for a given partitioning, i. e.,
p(wi|wi−1

i−n−1) = p(wi|ci)p(ci|ci−1
i−n−1) (Brown et al. 1992, p. 471).

Brown et al. (1992) show that the probability that a class-based bigram model
assigns to the training texts depends only on �the average mutual information of
adjacent classes� (p. 472). By �nding a clustering of words that optimizes this
average mutual information, one �nds a clustering that maximizes the probability
of a class-based bigram model for the training data. While Brown et al. (1992)
do not give a method for exactly �nding such a clustering, they present a method
to approximate it by starting with each word in a separate cluster and greedily
merging clusters based on their average mutual information. The implementation
of this method that we use for the experiments in this thesis is from Liang (2005).19

We use Brown clusters to �lter spelling variant candidates in Section 7.1.3.
Another way to use context to learn representations for words is to create vector

representations such that words that appear in similar contexts are represented by
similar vectors. Baroni, Dinu, and Kruszewski (2014) distinguish count and predict
models for this. Count models are�as the name suggests�based on counting words
that appear in the context of a target word. By putting these counts in a vector
where each dimension represents a context word, a word representation can be
obtained from a corpus. In practice, instead of raw counts other values are used, e. g.,
positive Pointwise Mutual Information (PPMI). Furthermore, the dimensionality of
the resulting vectors is reduced by applying Singular Value Decomposition (SVD)
(Manning and Schütze 1999, Chapter 15.4.2).
Predict models have been popularized by Mikolov et al. (2013). The authors

present two models for learning word representations. In the Skip-Gram with Neg-
ative Sampling (SGNS) model, which we use in this thesis, a neural network is
trained to predict context words of a given word. The pairs of target and contexts

19. The source code is available at https://github.com/percyliang/brown-cluster, last visited
October 4, 2021.
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x1 x2 x3 . . . xn−2 xn−1 xn

h1 h2 . . . hm−1 hm

o1 o2 o3 . . . on−2 on−1 on

Figure 4.8.: Skip-gram model for word embedding

words are skip-bigrams (cf. Section 4.8.1), wich give the model its name. The neu-
ral network is shown in Figure 4.8. The input vector x = (x1, . . . , xn) is a one-hot
vector encoding the target word. The output layer o = (o1, . . . , on) is a softmax
layer (cf. Section 4.5) over the vocabulary. By training this network, an embed-
ding function is learned. This embedding function maps one-hot encoded words
to dense vector representations h, which are then used and thereby optimized to
predict context words. After training the network, only the embedding function is
used to obtain the word representations. The size m of the hidden layer�the word
embedding�is a hyperparameter.
In practice, training such a network with a huge number of labels�the whole

vocabulary�is computationally expensive. This is why Mikolov, Yih, and Zweig
(2013) present approximations for computing the full softmax layer. SGNS uses
negative sampling. Negative sampling can be thought of as turning the multiclass
classi�cation into multiple binary classi�cation tasks: Instead of learning a single
probability distribution over the whole vocabulary with softmax, for each word of
the vocabulary a logistic regression classi�er is trained to decide whether this word
appears in the context of a given input word or not. Now the classi�ers are only
trained with actual pairs of target and context words from the corpus and a �xed
number of randomly sampled words for each target word, representing negative
examples. So for each word in the vocabulary, not all classi�ers are updated but
only the classi�ers for the actual context words and for the negative samples.
A shortcoming of PPMI-SVD and SGNS is that both methods only create word

representations for words in the training data. An extension of SGNS that solves
this shortcoming is fastText (Bojanowski et al. 2017). In the fastText model, the
input is a one-hot representation of a word combined with a vector that encodes the
character n-grams contained in the word. Each dimension represents a character
n-gram. The dimensions representing the character n-grams contained in the target
word are set to 1, all other dimensions to 0. This way, the model learns an embedding
for the words in the vocabulary but also for the character n-grams. The vector h,
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which is used as the word embedding, is the sum of the individual embeddings for
the target word and the embeddings of its character n-grams. An embedding for an
OOV word can be generated by simply summing the character n-gram embeddings.
We do not make use of this feature of fastText, however, using character n-grams
�provides very good word vectors even when using very small training datasets�
(Bojanowski et al. 2017, p. 141), which is helpful in low-resource settings.
While prediction-based models have been declared to be superior to count-based

models (cf. Baroni, Dinu, and Kruszewski 2014), Hamilton, Leskovec, and Jurafsky
(2016) have found with diachronical data that �[b]etween [count-based PPMI-]SVD
and [prediction-based] SGNS the results are somewhat equivocal, as both perform
best on two out of the four tasks� (p. 1494) that they examine. In our pipeline for
spelling variant detection, we use word representations obtained using PPMI-SVD.
We use these representations as features for the type-based SVM (Section 7.2.2) and
the token-based CNN �lter (Section 7.2.3). For POS tagging, we compare PPMI-
SVD, SGNS and fastText embeddings as word representations in Section 8.3.
Since context-based word representations are extracted from unlabeled texts, they

can be computed on a large background corpus. Using these representations as
features when training an ML algorithm on a smaller set of labeled training data
is a simple example of semi-supervised learning (cf. Section 4.1.4). For the token-
based �lter we combine this semi-supervised learning with a function that learns
task-speci�c representations on the training data using a CNN that we describe in
the next section.

4.8.3. Convolutional Neural Network

For the token-based �lter, we apply a CNN that �lters out spelling variant candi-
dates that do not �t in the given token context. For this, we apply a CNN similar to
that of Kim (2014). A CNN is a speci�c type of neural network. We have described
the basics of neural networks for binary classi�cation in Section 4.3.2.
As noted above, the feature map h in Equation (4.18) on page 48 can consist

of multiple composed functions. In our case, we use an embedding layer e and a
convolution layer c, such that h(x) = (c ◦ e)(x). We describe both layers in more
detail.
Conceptually, an embedding layer is simply a lookup that is often used as the

�rst layer in a neural network when working with categorical data: for each of the
input categories, an associated vector is chosen. Mathematically, an embedding
layer can be described as e(x) = wex, where we is a matrix. The input vectors x are
from {0, 1}n with ‖x‖ = 1, the already described one-hot vectors. The dimension
that contains the 1 denotes the category encoded in the vector. An embedding
function is useful to encode similarities between distinct categories (Goldberg 2017,
Chapter 8). In the case of spelling variation, we use embeddings for words and
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4.8. Features for Describing Spelling Variants

characters. This allows the network, for example, to learn to embed characters like
u and v that often appear interchangeably in the data to a similar representation.
The embedding function can be trained directly with the neural network. However,
it is also possible and common to use an embedding function with parameters �xed
before training. In NLP this is often done with word embeddings obtained from a
background corpus using the distributional hypothesis as described in Section 4.8.2.
Since we are working with tokens, the input to the CNN is a potential spelling

variant with its left and right context, which we present to the CNN as a sequence of
one-hot encoded words that are mapped to a sequence of vectors using the described
feature maps. The embedding approach that we use applies word embeddings ob-
tained using the distributional hypothesis combined with a vector representation
obtained from the sequence of characters using embeddings and convolutions as
well. So the sequence of words is mapped to a sequence of vectors that represent
the contexts in which a word appears and its surface form. Hence, e is a function
composed of multiple functions in our case. This speci�c model is described in more
detail in Section 7.2.3. As input to the convolutional function, we use word rep-
resentations that are combined from a prelearned context-based representation as
described in Section 4.8.2 and surface-based representations that are learned with
the rest of the parameters on the training data.
Such a representation, e(x), for each word is then used as the input of c before

the logistic regression is applied. c is a function that transforms the sequence of
vectors to a single vector. In our case, we apply a convolution layer, hence the name
CNN.20

The input to this convolution is a matrix, where each column is the dense vec-
tor representation of the corresponding element in the input sequence. A one-
dimensional convolution operation, which we apply in this work, can be seen as
sliding a matrix�the �lter F�with the same number of rows m but a smaller
number of columns n over the input matrix I. At each position, the overlaying
matrix elements are multiplied and �nally summed. The results are collected in a
vector S(i). This is shown in Figure 4.9a. The input is padded with column vectors
containing zeroes. The number of padding vectors is n− 1. The vectors are evenly
distributed to the left and to the right of I starting at the right. This way, the
resulting vector will have exactly as many elements as the input sequence.

20. The convolution function described here�and that is implemented in the Keras/Tensor�ow
framework that we apply for our neural network experiments�is actually a cross-correlation and
not a convolution in the strict sense. However, we follow the usage in neural network literature
and use the term convolution (Goodfellow, Bengio, and Courville 2016, p. 329).
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Figure 4.9.: Convolutional Neural Network diagrams

The S(i) are given by the following equation, which shows the convolution and
also includes a bias b and the activation function r (in our case ReLU):

S(i) = r(bi + (F ∗ I)(i)) = r(bi +
∑
m

∑
n

I(m,n+ i− 1)F (m,n)) (4.31)

i denotes the position of the sliding window, and (F ∗I) is the convolution between
the �lter of the convolution operation F and the input I. The values of the �lter
F (i, j) are parameters that are learned during training.
In a CNN, usually multiple convolutional �lters with di�ering lengths are applied.

This leads to multiple resulting vectors. One way to combine these vectors into one
vector that we apply in this thesis is pooling, speci�cally max pooling (Goodfellow,
Bengio, and Courville 2016, Chapter 9.3). With max pooling each vector resulting
from the convolutions is summarized by its maximum. Conceptually, this can be
understood as each �lter scanning the input for the presence of a speci�c feature
and reporting the result, i. e., the presence or absence of that feature. So after
applying the convolutions with max pooling, we have a vector with one number for
each convolutional �lter. The whole convolutional layer with multiple �lters and
pooling is shown in Figure 4.9b.
In sum, the CNN that we use applies a logistic regression on a feature vector. This

feature vector is not the input of the neural network but it is obtained by applying
convolutions with max pooling to the input, which is obtained via an embedding
function from the categorical inputs. Like the logistic regression function, the con-
volution is a parameterized function as well. The parameter settings are learned in
combination with the parameters for the logistic regression.
Training the CNN means �nding a parametrization that leads to a good distinc-

tion between negative and positive examples on the test set. For this, a loss function
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4.8. Features for Describing Spelling Variants

is used, which quanti�es the quality of the predictions on the dataset. We use cross
entropy (Mitchell 1997, p. 170):

−
∑
i

(di ln(pi) + (1− di) ln(1− pi)) (4.32)

di is the label (1 for spelling variants and 0 for non spelling variants) and pi is
the predicted probability of the pair being a spelling variant, i. e., the output of the
neural network. The summands for the individual data points are 0 if pi = di and
will get higher, the more pi deviates from di.
The aim is now to �nd a parametrization for the neural network such that the

cross entropy (Equation (4.32)) is minimal. Because neural networks are complex
non-linear functions, it is not always possible to directly �nd a minimum. Instead,
neural networks are usually optimized by starting with a random parametrization
and adapting this parametrization iteratively such that Equation (4.32) gets smaller
(Bishop 2006, p. 237). To inform the updates of the parametrization the gradient
of the loss function can be used to guide the update into the direction where the
decrease is highest (Bishop 2006, pp. 239).21 The basic form of a gradient-based
iterative minimization is given in the following formula:

wt = wt−1 − µ∇L(wt−1) (4.33)

wt−1 are the parameters of the network before the update and wt are the param-
eters after the update. L is the loss function, in our case cross entropy given in
Equation (4.32), and µ is the learning rate, a hyperparameter that has to be de-
�ned by the user. Instead of calculating the gradient∇L(wt−1) exactly for the whole
training data, it is often approximated by taking only a randomly chosen subset,
so-called mini batches, of the training data for calculating an update (Goodfellow,
Bengio, and Courville 2016, Chapter 8.1.3).
For training the CNN, we use the gradient-based optimization method called

Adam (Kingma and Ba 2015) with mini batches. Adam incorporates two ideas into
basic mini-batch-based gradient descent. First, instead of using only the gradient
calculated on the current mini batch for the update, Adam uses a decaying average
of the previous gradients thereby avoiding oscillation of the updates. Secondly,
instead of using the same learning rate for each parameter, Adam applies individual
learning rates for each parameter. This is achieved by calculating the learning rate
using a decaying average of the squared past gradients.

21. The function that we use is actually not fully di�erentiable. One reason for this is the ReLU
activation, for which the gradient is not de�ned for an input of zero. In practice this is not
problematic as the input to the ReLU will seldom be exactly zero and if, any of the subgradients
can be used (Goodfellow, Bengio, and Courville 2016, 188).
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The update rule of Adam is:

wt = wt−1 −
µ√
vt

1−βt
2

+ ε

mt

1− βt1
(4.34)

mt, the decaying average of the gradients, is de�ned as:

mt = β1mt−1 + (1− β1)∇L(wt−1) (4.35)

vt, which is used to calculate the actual learning rate, is de�ned as:

vt = β2vt−1 + (1− β2)(∇L(wt−1))2 (4.36)

The decay rates β1 and β2 as well as ε are hyperparameters. ε can be seen as a
smoothing constant to avoid divisions by zero. µ is the learning rate. We use the
following settings: µ = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−7 (see Kingma and
Ba 2015, p. 2).
The divisions by (1−β1) and (1−β2) can be understood by looking at mt and vt

as estimators of the mean and the uncentered variance of the gradients with respect
to a stochastic loss function. In our case, the loss function is stochastic due to using
mini batches. As mt and vt are initialized with zero, these estimators are biased.
The divisions lead to unbiased estimators.
While gradient descent and similar methods �nd a good parametrization for the

network, this parametrization is not guaranteed to be the optimal solution for the
training set. It might also be a local minimum. Therefore, �tting a neural network
to training data using a gradient-based method does not necessarily lead to the
same decision boundaries for multiple iterations. However, neural networks with
the parameterized feature map tend to over�t a dataset, i. e., �nd a solution that
works well on the training set but does not generalize well to other datasets. There-
fore, the parametrization that leads to minimal loss on the training set might not
be a parametrization that generalizes best to other datasets. Consequently, when
training neural networks measures are used to avoid over�tting. In this thesis, we
apply a simple method by only training for a �xed number of epochs�an epoch is
a pass over all training instances�instead of updating until convergence, i. e., until
a (local or global) minimum is reached (Hastie, Tibshirani, and Friedman 2009,
p. 398).
After having described the various ML methods that we apply in our experiments,

in the next chapter, we present the evaluation settings that we use for spelling
variant detection.
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Chapter 5.

Intrinsic Evaluation of Spelling Variant

Detection

In this chapter, we introduce two evaluation settings that we employ for comparing
our approaches to simpli�cation and spelling variant detection, which we present
in Chapter 6 and Chapter 7. With these two evaluation settings, we perform an
intrinsic evaluation, i. e., we measure the quality of the proposed techniques directly
regarding spelling variation. In Chapter 8, we present extrinsic evaluations, i. e.,
we evaluate the pipeline for spelling variant detection regarding its utility for POS
tagging and lemmatization (see Resnik and Lin 2010 for a description of intrinsic
and extrinsic evaluation).
The two evaluation settings that we present in this chapter are inspired by two

di�erent perspectives that are relevant for Digital Humanities: From an IR perspec-
tive, spelling variation leads to a low recall when searching for documents contain-
ing a speci�c word unless the user knows the possible spelling variants. This makes
searching in non-standard texts challenging. Spelling variant detection can facilitate
it by generating spelling variants for the query term. From an NLP perspective,
spelling variation leads to a situation in which training information that actually
belongs to one and the same morphological word is distributed over its di�erent
spelling variants, e. g., steit and steyt in Example (3) on page 8. Furthermore,
spelling variation leads to a high number of OOV words when applying a trained
supervised ML model to unseen data. This causes NLP tools to perform much
worse than they would on standard data. This e�ect can be mitigated by using the
generated spelling variants instead of unknown words when applying an NLP tool.
To estimate the utility of our approaches for both applications, we introduce and
use two evaluation settings that capture relevant aspects of these tasks.
In the following sections, we describe the two evaluation settings and how we

apply them in our experiments.
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desse

dessen

desseme

desem
dessem

dissem

dissen

dussem

dusseme

dyssem

de
ussem

dv
ussem

deseme

dezen

Ltrain Ltest

LGML

Figure 5.1.: Spelling variants of desse, dit in the Reference Corpus Middle Low
German/Low Rhenish (1200�1650) (ReN 0.3)

5.1. Evaluation Settings

Before we discuss the two settings in more detail, we need to clarify the in- and
output for our simpli�cation and spelling variant detection approaches: Given a
dictionary LT that contains the types that appear in textual data T and some
token t, i. e., a type that may or may not occur in T and its context, the aim is to
produce a list of all types of LT that are spelling variants for t (cf. the de�nitions
in Chapter 3).
With both evaluation settings, we evaluate the pipeline on tokens from the test

(respectively the development) set. Which dictionary is used for producing and
evaluating the spelling variants for these tokens (Ltrain or Ltest) depends on the
evaluation setting.
We illustrate these two settings with the spelling variants of the GML masculine-

neuter demonstrative pronoun desse, dit in the dative singular form. Figure 5.1
shows their distribution over the datasets. For our example, we use the training,
development and test sets from the ReN as described in Section 2.3. From these sets,
we extract three dictionaries Ltrain, Ldevel, and Ltest, each containing the types that
appear in the respective set of the data. LGML, the unknown complete dictionary
of GML, is approximated by the complete dataset, Ltrain ∪ Ldevelop ∪ Ltest. We
illustrate the situation when applying the pipeline on the test set, therefore the
development set is not marked explicitly in the �gure.
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Detection of spelling variants in texts (text-eval) With the �rst evaluation set-
ting, we evaluate for each token in the test set the identi�cation of its spelling
variants in the very same test set, i. e., in Ltest. It is motivated by an IR or search
scenario for which we assume that the aim is to search in data that is distinct from
the data that has been used to train the pipeline. In particular, for each occurrence
of desse, desseme, dessen, and deseme in the test set, the pipeline has to determine
the spelling variants that appear in this set, i. e., for each token a subset of desse,
desseme, dessen and deseme.

Detection of known spelling variants for unknown types (OOV-eval) With the
second evaluation setting, we evaluate the mapping of words from the test data
that do not appear in the training data, i. e., OOV words, to spelling variants in the
training data. It is motivated by the assumption that the training data is used to
train the spelling variant detection pipeline as well as an NLP tool. Hence, when
applying the NLP tool to unseen data, e. g., the test set, the aim is to produce
spelling variants that are known to the tool (i. e., types from Ltrain) for unknown
types in the test data. In our example this means generating the spelling variants
for each token of deseme as a subset of dissen, d v

ussem, d e
ussem, dusseme, dyssem,

dussem, dessem, desem, dissem, desse, desseme, and dessen.

In sum, spelling variants are always generated and evaluated with respect to a
speci�c dictionary and not with regard of an (unknown) complete dictionary LGML.
Consequently, in our example, dezen is never generated because it does neither
appear in the training data nor in the test data.

5.2. E�ects of Data Sparsity for a Data-Based De�nition

of Morphological Word

A crucial requisite for evaluating which tokens should be considered as spelling vari-
ants is a proper de�nition of what a morphological word is. This is not a trivial task
because a word can be de�ned in di�erent ways (cf. for lemmatization Weiÿweiler
and Fraser 2018). For our evaluation based on the GML texts in the ReN 0.3, we
employ a de�nition that is based on the lexical and syntactic annotation of the
corpus which we have described in Section 2.2.1: Two tokens with the same POS
label, the same morphology and the same lemma22 are considered to be instances
of the same morphological word�and consequently, if the spelling di�ers, spelling
variants (cf. Chapter 3).23

22. The lemmatization in the corpus includes word sense disambiguation such that homonyms
are distinguished.
23. This de�nition leads to a broad de�nition of spelling variation, as types that are not spelling

variants in a strict sense might be con�ated due to the lemmatization. One example are the adverbs
vele `a lot' and mehr `more' that are derived from the positive and the comparative form of the
adjective vele and are therefore lemmatized the same.
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Type POS Morph. Freq.

pylatus proper noun (M) NOM.SG 13
pilatus proper noun (M) GEN.SG 1

gheystlyk adjective F.DAT/ACC 2
geystlich adjective N.NOM 1

frage verb 1SG 3
vrage verb IMP.SG 2
vrage common noun (F) ACC.SG 1
vraghe common noun (F) NOM.SG 1
frage common noun (F) NOM.SG 1
frage verb 3SG 1
vrage verb 3SG 1
vrage verb 2PL 1

Table 5.1.: Examples for spelling variants that do not appear with the same an-
notation in the Reference Corpus Middle Low German/Low Rhenish
(1200�1650) (ReN 0.3)

This de�nition has a data sparsity issue when used for evaluation: Infrequent
but ambiguous types might not appear as instances of every possible morphological
word that they can represent. Therefore, some pairs of types that are seen as actual
spelling variants by human experts are counted as false positives according to this
evaluation scheme. This is illustrated by the examples pilatus (`Pontius Pilate'),
gheystlich (`clerical') and frage (`(the/to) question') in Table 5.1. The column POS
and Morph. show the categories with which the types appear in the corpus.24

All the types in one of the three sections of the table are considered spelling
variants by experts. However, only vraghe and frage, printed in bold in the table,
and frage and vrage, printed in italics in the table, are considered to be spelling
variants by the data driven de�nition since they are the only two pairs of types that
appear with the same annotation in the texts. So, in a type-based approach, frage,
vraghe and vrage would be considered spelling variants, in a token-based approach
vraghe and frage would be considered spelling variants when used as the nominative
singular of the noun as well as frage and vrage when used as the 3rd person singular
of the verb. Though, e. g., pilatus could appear in nominative case, due to data
sparsity it only appears in genitive case and is therefore not considered as spelling
variant of pylatus by our data-driven de�nition. This problem is obviously connected

24. For a description of the abbreviations see Footnote 1 on page 1.
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Type Morph Freq.

koning NOM.SG 51
common noun (M) ACC.SG 22

GEN.SG 6
DAT.SG 5

koninge DAT.SG 15
common noun (M) NOM.PL 5

ACC.PL 1
ACC.SG 1

Table 5.2.: Ambiguity of koning and koninge in the Reference Corpus Middle Low
German/Low Rhenish (1200�1650) (ReN 0.3)

to low-frequency types: If two low-frequency types are ambiguous, they are likely
to not overlap with their grammatical function in the corpus. Therefore, the actual
precision of the pipeline will be higher than measured on this dataset.
It is important to note that we use two di�erent parts of the dataset for assessing

which types are spelling variants. For training, we only use the training set to de�ne
spelling variants since this is the only data source that is available when training.
For evaluating, we use the whole dataset in order to get closer to the real spelling
variant relation. This leads to the situation that the training set contains pairs of
types that are labeled as not being spelling variants but that are considered spelling
variants for the evaluation. For GML unde (`and'), the training set contains the
following spelling variants: [ en, un, und, van, vn, vnd, vnde, vnnd, vnnde, vude,
�vnde, . . . nde ].25 The full corpus, however, also contains noch, unnde, and vnn
as further variants. While noch appears in the training set, it does only appear
as spelling variant of unde in the development set. In general, a spelling variant
relation induced from data as described above will contain pairs of types that are
falsely labeled as not being spelling variants. This has to be taken into account when
training tools for spelling variant detection, e. g., by addressing this as PU learning
(see Section 4.1.1). We come back to this when describing the actual pipeline for
spelling variant detection in Chapter 7.

5.3. Token-Level Evaluation

For most experiments in the following sections, the evaluation is performed on the
token level. If this is not the case, it is pointed out in the description of the eval-

25. The ellipses in . . . nde encodes that the beginning of the word is not readable in the original
manuscript.
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P R F1 C

0.32 1.00 0.49 14.38± 16.31

Table 5.3.: Precision, recall, F1, and average number of candidates for the lookup
approach (training set)

uation. Using the token level for evaluation has two implications. First, each type
is weighted by its frequency as each token instance of a type is counted separately.
We argue that it is more important to get frequent tokens right, which�with the
exception of high-frequency function words�holds for a search application. Sec-
ond, ambiguities that appear on the type level are resolved on the token level (see
Jurish 2010b for a discussion of token-level normalization). This is illustrated by
the example koning and koninge (`king'). Table 5.2 on the preceding page shows
all morphological annotations of these two types in the corpus. As can be seen
from these examples, koninge is analyzed as spelling variant of koning if the latter
appears in dative or�as in example (9b)�in accusative case but not in nominative
case as in example (9a).

(9) a. Do
Then

sprak
said

de
the

koning
king.NOM

b. Vnde
And

wundede
injured

den
the

koning
king.ACC

(Alexander Helmst.)

To see the e�ect of resolving type ambiguities on the token level, Table 5.3 shows
micro-averaged precision (P), recall (R), F1 values (see Section 4.2), and the average
number of spelling variant candidates (C)�given as arithmetic mean with standard
deviation�on the training data, when for each token, all types that appear as
spelling variants of the respective type are added. While the recall is 1, the precision
is rather low (0.32) due to the ambiguity on the token level. This low precision of
0.32 is an upper bound for type-based approaches that detect all spelling variants
(i. e., that have a recall of 1).
We use the evaluation settings presented in this chapter for the experiments with

simpli�cation and spelling variant detection in the following two chapters.

74



Chapter 6.

Simpli�cation

When applying NLP tools to non-standard data, spelling variation has to be taken
care of. One way to do this is by removing variation in a preprocessing step. Such
preprocessing can be a full normalization or a simpli�cation to reduce some of
the variation in the data.26 Simpli�cation can be as simple as removing extensive
repetitions of characters as they are used for emphasis in Twitter messages (Han and
Baldwin 2011) or more sophisticated by mapping allographs to one representation
(e. g., Odebrecht et al. 2017 where characters or character-combinations speci�c
for Early New High German are mapped to their modern equivalents, or even by
spelling out abbreviations as described by Dipper 2010 for GMH).
In all the examples above, hand-crafted rules are used and their e�ectiveness of

reducing variation (without at the same time introducing ambiguities) is not directly
evaluated, only in terms of the task that the simpli�cation rules are used for. We
evaluate rule-based simpli�cation for POS tagging and lemmatization in Chapter 8.
In this chapter, we present a way to learn a set of simpli�cation rules from spelling
variant pairs, and compare this ruleset (Sup) with two approaches to simpli�cation
using hand-crafted rules (Kol and Nie) by evaluating them on GML data in the
two settings described in Chapter 5.

6.1. Creating Simpli�cation Rules � Di�erent

Approaches

The �rst set of simpli�cation rules (Kol) consists of 26 rewrite rules that are applied
to all types. These rules have been developed by linguists using three GML texts
(Koleva et al. 2017).27 They use regular expressions with lookahead and lookbehind,
such as in Example (10) on the next page, which substitutes g with gh unless the g
appears after an n or a g or before any of g, h or t.

26. See the de�nition of normalization and simpli�cation in Chapter 3.
27. The script has been created by Melissa Farasyn in the project `Corpus of Historical Low

German' (CHLG; http://www.chlg.ac.uk/index.html) and contains rules by Melissa Farasyn
with additions by Sarah Ihden and Katharina Dreessen both from the project `Reference Corpus
Middle Low German/ Low Rhenish (1200-1650)'.
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(10) (?<![ng])g(?![ght]) → gh

There are no other limitations regarding the rules or their order. An advantage
of such a ruleset is that it allows for a very �ne-grained handling of spelling vari-
ation, e. g., treating characters di�erently according to their context. However, a
disadvantage is that creating such a ruleset requires expert knowledge and is time-
consuming. Furthermore, adding new rules is hard since interactions with existing
rules have to be considered.
We compare this ruleset with other rulesets (Nie and Sup) that are deliberately

more restricted regarding the expressiveness of the individual rules. While this leads
to sacri�ces regarding the granularity of the rules, we argue that it is easier to create
and maintain such a ruleset.
The rulesets are simply de�ned by a set of undirected correspondences between

characters or one character and a character bigram as in Example (12a) on the
facing page. This allows the correspondences to model the edit operations given in
Example (11).

(11) a. deletion/insertion with one character from the left or right context
(e. g., gh → g)

b. substitution
(e. g., i → j )

c. merges/splits
(e. g., ij → y)

Using these edit operations to de�ne a ruleset leads to rule patterns that are
similar to the rule patterns used by Pilz et al. (2006) with the di�erence that the
rules are not weighted.
To transform the set of undirected correspondences into a ruleset with a unique

order, two sorting operations are applied. First, each of the correspondences is
sorted internally by length and then alphabetically such that correspondences like
[`g', `gh'] and [`gh', `g'] or [`i', `j'] and [`j', `i'] lead to the same rules irrespective of
their order, namely gh → g and i → j, respectively. Then the rules themselves are
sorted by length and alphabetically, to get the �xed ordering in which the rules are
applied. Finally, rules that would substitute the same character are substituted with
rules that map all of the characters involved in these rules to the same character.
As an example, the two correspondences [`i', `j'] and [`y', `i'] lead, after sorting, to
the two rules i → j and i → y, in that order. As all instances of i are replaced by
j due to the application of the �rst rule, the second rule would never be applied,
leaving the characters j and y separate in the simpli�ed language. To avoid this,
these rules are replaced with the rules i → y and j → y. This matches the fact that
i, j, and y are equivalent according to the given correspondences. The ruleset for
the correspondences in Example (12a) is given in Example (12b).
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(12) a. [[`g', `gh'], [`i', `j'], [`y', `i']]

b. gh → g
i → y
j → y

For a speci�c type, the rules are applied in the speci�ed order. With the rules in
Example (12b) the spelling variants ghjnc and ginc (`went') will both be simpli�ed
to gync.
For these rulesets that are obtained from correspondences between characters, we

compare a manually created set of such correspondences (Nie) with a set extracted
from the training set (Sup). We have created Nie on the basis of a list of graphemes
and allographes in GML taken from Niebaum (2000), a comprehensive overview of
allographs in GML.
For Sup, we take all the spelling variant pairs from the training set that have an

edit distance of 1 using the edit operations given in Example (11), each with a cost
of 1. We extract the correspondences from these pairs. This set of correspondences
is then pruned using measures for support and con�dence (see Section 4.3). As
support, we use a simple frequency threshold for the correspondences, i. e., a minimal
number of pairs that a correspondence appears with. In the experiments, we use 10,
20, 30, and 40 as frequency thresholds. Among others, this helps to avoid extracting
correspondences from errors (potential misspellings as well as transcription and
annotation errors, cf. Chapter 3). As a con�dence measure, we use the precision
for the correspondences (Ernst-Gerlach and Fuhr 2006) on the training set. We
experiment with the values between 0.4 and 0.85, incrementing in steps of 0.05.
The two manually created rulesets represent two approaches to rule-based sim-

pli�cation: Kol exempli�es a ruleset that has been manually created with a high
precision in mind and allowing the rule creators to use regular expressions with
lookahead and lookbehind on the left-hand side of the rule. Nie on the other hand
uses a simple mechanism to de�ne the ruleset. Furthermore, the list of rules is
based on a comprehensive list of GML grapheme variants given in Niebaum (2000).
Hence, while Kol lays more emphasis on precision, Nie is more tailored towards
recall.

6.2. Evaluation

Table 6.1 on the next page shows the results for the two rulesets Nie and Kol and
the rulesets extracted from the training set (Sup) with di�erent thresholds for the
frequency (Freq.) and the precision (Prec.) for the included rules. Regarding the
manually created rulesets, they behave as expected: Nie has the higher recall in
both settings (0.33 / 0.34). However, the aim of Niebaum (2000) is a presentation of
possible grapheme variants and therefore does not take the precision of the variation
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text-eval OOV-eval
Freq. Prec. P R F1 C P R F1 C

Kol 0.81 0.16 0.27 0.56± 0.98 0.65 0.09 0.16 0.22± 0.71
Nie 0.16 0.33 0.21 5.77± 7.32 0.09 0.34 0.14 6.00± 11.52

20 0.45 0.68 0.39 0.50 1.61± 1.72 0.44 0.31 0.36 1.08± 2.27
30 0.45 0.69 0.39 0.50 1.55± 1.72 0.46 0.27 0.34 0.91± 1.98
40 0.45 0.70 0.37 0.49 1.50± 1.68 0.46 0.24 0.32 0.81± 1.80
30 0.40 0.50 0.44 0.47 2.47± 3.56 0.33 0.31 0.32 1.41± 3.52
20 0.40 0.47 0.45 0.46 2.66± 3.81 0.31 0.35 0.33 1.70± 3.93
40 0.40 0.50 0.43 0.46 2.42± 3.56 0.33 0.28 0.30 1.28± 3.27
20 0.50 0.78 0.29 0.42 1.03± 1.11 0.58 0.25 0.35 0.65± 1.31
20 0.55 0.78 0.29 0.42 1.03± 1.11 0.58 0.25 0.35 0.65± 1.31
30 0.50 0.79 0.28 0.42 0.99± 1.10 0.58 0.24 0.34 0.63± 1.27
30 0.55 0.79 0.28 0.42 0.99± 1.10 0.58 0.24 0.34 0.63± 1.27
10 0.45 0.43 0.40 0.41 2.58± 2.73 0.27 0.29 0.28 1.63± 3.57
40 0.55 0.80 0.27 0.41 0.95± 1.07 0.58 0.21 0.31 0.55± 1.15
40 0.50 0.80 0.27 0.41 0.95± 1.07 0.58 0.21 0.31 0.55± 1.15
10 0.40 0.40 0.40 0.40 2.83± 3.06 0.26 0.30 0.28 1.80± 3.92
30 0.60 0.79 0.27 0.40 0.95± 1.07 0.59 0.23 0.33 0.59± 1.21
20 0.60 0.79 0.27 0.40 0.95± 1.07 0.59 0.23 0.33 0.60± 1.22
10 0.55 0.48 0.33 0.39 1.88± 2.05 0.36 0.27 0.31 1.16± 2.34
40 0.60 0.80 0.26 0.39 0.91± 1.04 0.59 0.20 0.30 0.52± 1.10
10 0.65 0.79 0.26 0.39 0.90± 1.07 0.61 0.23 0.33 0.57± 1.09
10 0.60 0.76 0.26 0.39 0.97± 1.13 0.55 0.24 0.33 0.66± 1.30
10 0.50 0.45 0.32 0.38 2.01± 2.27 0.34 0.25 0.29 1.16± 2.47
20 0.65 0.82 0.25 0.38 0.84± 0.95 0.62 0.20 0.31 0.50± 1.00
30 0.65 0.82 0.25 0.38 0.84± 0.95 0.62 0.20 0.31 0.50± 1.00
10 0.70 0.79 0.25 0.38 0.88± 1.07 0.62 0.22 0.32 0.54± 1.06
40 0.65 0.83 0.24 0.37 0.80± 0.92 0.64 0.19 0.29 0.45± 0.93
30 0.70 0.82 0.24 0.37 0.82± 0.95 0.63 0.19 0.29 0.47± 0.96
20 0.70 0.82 0.24 0.37 0.82± 0.95 0.62 0.19 0.30 0.48± 0.97
40 0.70 0.83 0.23 0.36 0.78± 0.91 0.64 0.18 0.28 0.42± 0.89
10 0.75 0.81 0.16 0.27 0.56± 0.82 0.65 0.14 0.23 0.32± 0.80
30 0.75 0.84 0.16 0.26 0.51± 0.82 0.64 0.13 0.22 0.31± 0.78
20 0.75 0.84 0.16 0.26 0.51± 0.82 0.64 0.13 0.22 0.31± 0.79
40 0.75 0.84 0.15 0.26 0.51± 0.81 0.65 0.13 0.21 0.29± 0.75
10 0.80 0.85 0.07 0.13 0.22± 0.53 0.51 0.02 0.04 0.06± 0.27
40 0.80 0.94 0.06 0.12 0.19± 0.51 0.52 0.02 0.04 0.05± 0.25
30 0.80 0.94 0.06 0.12 0.19± 0.51 0.52 0.02 0.04 0.05± 0.25
20 0.80 0.94 0.06 0.12 0.19± 0.52 0.51 0.02 0.04 0.06± 0.26
30 0.85 0.94 0.01 0.01 0.02± 0.13 0.67 0.00 0.00 0.00± 0.05
40 0.85 0.94 0.01 0.01 0.02± 0.13 0.67 0.00 0.00 0.00± 0.05
20 0.85 0.92 0.01 0.01 0.02± 0.13 0.53 0.00 0.00 0.01± 0.09
10 0.85 0.64 0.01 0.01 0.02± 0.16 0.56 0.00 0.00 0.01± 0.09

Table 6.1.: Precision, recall, F1, and average number of candidates for di�erent sim-
pli�cation rulesets (development set) � sorted by F1 value of text-eval



6.2. Evaluation

into account. Consequently, the precision of the ruleset is quite low. Kol shows a
better precision. This is expected as the ruleset from Koleva et al. (2017) applies
the rules in a context-dependent fashion and has been created with high precision
in mind.
The best of the rulesets regarding F1 that are learned from the spelling variant

pairs has a better recall then Kol and Nie in the text-eval setting (0.39). In
the OOV-eval setting, the recall is slightly lower than that of Nie (0.31). And
this ruleset does not show the same low precision as the ruleset based on Niebaum
(2000), leading to the best F1 values in the experiment for both settings, with having
a frequency threshold of 20 and a precision threshold of 0.45. When precision is more
important than recall, there are settings that lead to rulesets with a precision similar
to that of Kol and a recall comparable with Nie for text-eval, e. g., a frequency
threshold of 40 with a precision threshold of 0.5 or 0.55 (precision: 0.80 vs. 0.81,
recall: 0.27 vs. 0.33).
In the OOV-eval setting, there is a smaller gap between the recall of Nie and

that of the learned rules. The reason for this might be that the rules learned from
the training set model the general variation in the development set well, as seen by
the performance in the text-eval setting. But the rules miss unknown variants of
words from the training set in the development set that are modeled by the more
comprehensive ruleset Nie. What is interesting is that the recall obtainable with the
learned ruleset is higher than that obtained by Nie. Table 6.2 on the following page
shows all the correspondences from Nie and Sup. One reason for the better recall
of the learned rules is that this set contains rules which cover sources of variation
that go beyond simple allographs, e. g., the omission of a grapheme instead as in
the rule ge → g.
In this chapter, we have presented an approach to learn a simple ruleset from

spelling variants. Compared with two di�erent manually created rulesets we are able
to obtain better results for the task of spelling variant detection. While evaluated
here in the context of detecting spelling variants, as mentioned above, the rules can
be used to remove variation from non-standard data before applying statistical NLP
methods to it.
The correspondences between characters obtained by the presented method can

also be useful for linguists studying spelling variation. For comparison, Dipper and
Waldenberger (2017) present a method for automatically extracting variation pat-
terns between dialects. While similar, their rules are directed, describing a di�erence
between two dialects but cannot be used to describe the variation inside a text.
Regarding the task of spelling variant detection, the presented simpli�cation rules

still have a recall below 0.5, even the ruleset Nie based on a comprehensive list
of graphemic variation in GML. This can be explained by the fact that spelling
variation arises not only from graphematic variation. In the following section, we
look into obtaining better results for spelling variant detection by extracting spelling
variants from a dictionary using surface similarity and by �ltering these spelling
variant candidates afterwards.
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Chapter 6. Simpli�cation

LHS RHS Nie Sup (20, 0.45) LHS RHS Nie Sup (20, 0,45)

aa a x ph v x
ae a x x re r x
ai a x sc s x
e
a a x x ss s x x
ch c x sz s x
ch g x x td t x
ch k x x th d x
dh d x th t x x
de d x tt t x x
dt d x ui u x
ee e x x uw u x
eh e x e

u u x x
ei e x x o

u u x x
ey e x x v

u u x
e
e e x a o x
� f x b p x
� v x c g x
ge g x c k x x
gh g x x d t x x
ii i x e h x
ij i x x e i x
ij y x e e x
e
i i x e y x
jh g x f v x x
jh j x h e x
ll l x x i j x x
me m x i y x x
nc n x j y x x
nd n x k q x
nn n x o u x
oe o x x ö o x
oi o x ö ø x
oo o x s z x x
ou o x u v x x
oy o x u w x
e
o o x x ü u x
v
o o x ü y x
ph p x v w x

Table 6.2.: Comparison of correspondences between characters
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Chapter 7.

A Pipeline for Spelling Variant

Detection

In this chapter, we present experiments for spelling variant detection. Given a token
and a list of types�the dictionary�the aim is to identify spelling variants for the
given token from the dictionary.
The general approach that we apply here consists of three steps. In the �rst step,

spelling variant candidates for the given type are retrieved from the dictionary. For
this, we experiment with di�erent measures for surface similarity (cf. Section 4.8.1).
In this �rst candidate generation step, the context information is ignored. In a
second step, the generated candidates are �ltered using context information and/
or more sophisticated ways to evaluate the surface similarity. In this step, context
information is not the speci�c context of a given token, but the context in which a
type can appear. Hence, the methods presented up to this point generate spelling
variant candidates on the type level. In a third and last step, these candidates are
�ltered taking the speci�c token context into account.28 Figure 7.1 on the next page
gives an overview of these di�erent steps in the whole pipeline.
The presentation of the di�erent steps is divided into two parts: In Section 7.1,

we present methods that do not need annotated training data and are therefore
usable in an unsupervised setting (cf. Section 4.1.3). For candidate generation using
surface similarity, in this setting, we experiment with di�erent edit distances and
variants of the Jaccard Index using character n-grams as similarity features. For
the type-based �lter, we apply Brown clusters (cf. Section 4.8).
For supervised settings (cf. Section 4.1.1), we present approaches in Section 7.2.

We use the training data to improve the candidate generation by combining the list
of generated candidates with known candidates for a given type. The similarity-

28. When generating candidates using a dictionary as in the experiments in the thesis the gener-
ation step can be seen as a �lter as well: The whole dictionary is �ltered to �nd likely candidates.
Hence, the pipeline can also be seen as two �lter steps: �rst, a broad �lter to get probable can-
didates from the dictionary and then a second more �ne-grained �lter that is only applied to
these probable candidates. However, we keep the distinction between generator and �lter as the
candidate generation step does not necessarily have to rely on �ltering a given dictionary (see
Chapter 9).
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Chapter 7. A Pipeline for Spelling Variant Detection

dessem

Lookup
desse
desseme
dessen

Simpli�cation +
Surface
similarity

desses
deseme
. . .

Surface +
context
�lter

deseme
. . .

+

desseFem. tyt
desseMasc. torne
. . .

Filter

desseMasc. torne
. . .

Candidate generation Candidate �ltering

Type-based Token-based

Figure 7.1.: Overview of the spelling variant detection pipeline

based generation is also combined with the simpli�cation approach presented in
the previous chapter by �rst removing variation from the data before measuring
the similarity between types. For the type-based �lter in the second step, di�erent
�lters are presented using the observed di�erences in the surface forms from the
training data to re�ne the surface-similarity measures. We use variants of an edit
distance that assign lower costs for edit operations that are known to potentially
lead to spelling variants from the training data. We apply a variant of SPSim
(Gomes and Lopes 2011) which uses either a cost of 0 or 1 and a self developed
distance measure that uses costs between 0 and 1. We compare these with an SVM
and a Bagging-SVM (BSVM) (Mordelet and Vert 2014), which is better suited for
the training data, using both surface and contextual features (Section 7.2.2).
In the third step, another �lter is applied, using a supervised classi�er. This time

token-context information is taken into account. The idea here is to �rst reduce
the set of generated spelling variant candidates to actual spelling variants for the
given type and afterwards removing spelling variants that are not possible in the
given context. For the token-based �ltering, we apply a CNN to encode the token
sequence using a combination of context and surface based embeddings to represent
the individual words (Section 7.2.3).
The runtime of the candidate generation step is governed by searching in the

dictionary for candidates with an edit distance that is lower than or equal to the
given threshold. For candidate �ltering, the trained classi�ers (SVM and CNN)
have to be applied to each of the candidates, which can be done in parallel.
The intermediate results presented in the following sections are obtained from the

development set. Section 7.3 contains �nal results and an error analysis on the test
set.
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7.1. Unsupervised Detection of Spelling Variants

text-eval OOV-eval
Method Parameters P R F1 C P R F1 C

Lev 1 0.21 0.52 0.30 6.95± 5.83 0.20 0.27 0.23 2.10± 3.22
Lev 2 0.04 0.82 0.07 64.12± 55.31 0.04 0.64 0.07 25.86± 47.71

Table 7.1.: Precision, recall, F1, and average number of candidates for the Leven-
shtein distance (development set)

7.1. Unsupervised Detection of Spelling Variants

For the unsupervised setting, we evaluate di�erent surface (or string) similarity mea-
sures for quickly narrowing down likely spelling variant candidates in a dictionary
for a given type. In a second step, these types are �ltered using Brown clusters
(Brown et al. 1992).
The most obvious candidate for string similarity is the Levenshtein distance (Lev-

enshtein 1966). However, its usage for normalization has been criticized for two main
reasons: �rstly for its computational complexity (Jin 2015) and secondly for its
coarse-grainedness as for the standard Levenshtein distance all di�erences have the
same cost (Bollmann 2013a). Regarding the computational complexity: di�erent ap-
proaches have been proposed that make extracting spelling variant candidates from
a dictionary computationally tractable. One way is to �rst use anagram-hashing to
retrieve the set of anagrams and their neighbors de�ned by deletion, insertion and
substitution (Reynaert 2004) and only �lter this set using the Levenshtein distance.
This way, the Levenshtein distance does not have to be computed for the whole dic-
tionary. For our experiments, we have used the Levenshtein automaton proposed by
Schulz and Mihov (2002) that has been shown to be e�cient for retrieving similar
words from a dictionary. With this approach, the runtime of the generation step is
linear with regard to the size of the dictionary (Schulz and Mihov 2002). The run-
time can also be improved by incorporating �ltering techniques (Mihov and Schulz
2004).
Regarding the coarse-grainedness, Table 7.1 shows recall, precision and F-score as

well as the average number of candidate pairs per type (arithmetic mean and stan-
dard deviation) for spelling variant detection using only the Levenshtein distance
with a maximum distance of 1 and 2 respectively. The precision is always very low,
even at a Levenshtein distance of 1. There are two reasons for the low precision.
One is the fact that many types do not have spelling variants and the other is the
coarse-grainedness of the distance.
Table 7.1 also shows how the number of candidates increases dramatically with a

higher Levenshtein distance. This is illustrated by Example (13). Here, the number
of spelling variant candidates for spyse `dish/food' is increased by the factor of 7
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Chapter 7. A Pipeline for Spelling Variant Detection

between Levenshtein distance 1 and 2 while no new spelling variants are discovered
(only spise and spysze are actual spelling variants of spyse, whereas spysen `(to)
dine' is a related verb).

(13) spyse

a. Distance 1:
spysen, spysze, spise

b. Distance 2:
spise, syde, sesse, spysze, pyne, spysen, pyze, syne, spere, syst, spyede,
swyge, ryse, spade, wyse, syme, spyker, swyne, spele, sluse, spyl, pryse

In the following sections, we compare the Levenshtein distance with other surface
similarity measures, i. e., n-gram similarities that have been used for normalization
and di�erent variants of the edit distance in order to obtain a better balance between
precision and recall.

7.1.1. N-Gram Similarity

One alternative to edit-based distance measures like the Levenshtein distance that
have been used for normalization or detecting spelling variants are similarity mea-
sures based on character n-grams (cf. Section 4.8.1). Kestemont, Daelemans, and
de Pauw (2010) compare the Levenshtein distance with Dice's coe�cient (Dice
1945) using character bigrams of the words to detect spelling variants in Middle
Dutch texts to improve lemmatization. While they report a better performance for
the Levenshtein distance, Jin (2015) achieves good results with the Jaccard Index
(Levandowsky and Winter 1971) for candidate generation in normalizing English
Twitter data and also proposes a weighted version.29 This weighted version is given
in Equation (7.1).

JaccardIndexw(f(t1), f(t2)) = ∑
f∈f(t1)∩f(t2)

w(f)

∑
f∈f(t1)∪f(t2)

w(f)
(7.1)

Here, f(t) ⊆ F is the set of similarity features for a type t and w : F → R is a
weight function. Both can be chosen di�erently allowing to �ne-tune the measure

29. As Dice(x, y) = 2∗JaccardIndex(x,y)
JaccardIndex(x,y)+1

(Egghe 2010) Dice's coe�cient and the Jaccard Index
will give the same results in our threshold setting. We restrict ourselves to the Jaccard Index.
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7.1. Unsupervised Detection of Spelling Variants

text-eval OOV-eval
Sim. Min Max Skip P R F1 C P R F1 C

Levenshtein 1 0.21 0.52 0.30 6.95± 5.83 0.20 0.27 0.23 2.10± 3.22

b
es
t
se
tt
in
gs

fo
r
te
xt
-e
va
l 0.35 2 ∞ 4 0.31 0.34 0.32 3.10± 2.89 0.23 0.17 0.20 1.11± 2.13

0.3 2 ∞ 2 0.30 0.34 0.32 3.21± 2.99 0.21 0.14 0.17 1.03± 1.87
0.35 1 ∞ 3 0.30 0.34 0.32 3.18± 3.03 0.22 0.15 0.17 1.02± 2.13
0.35 1 ∞ 4 0.29 0.35 0.32 3.35± 3.14 0.22 0.18 0.20 1.24± 2.59
0.4 2 4 3 0.29 0.36 0.32 3.37± 2.82 0.18 0.28 0.22 2.36± 2.99
0.4 2 4 4 0.28 0.37 0.32 3.65± 3.14 0.17 0.31 0.22 2.76± 3.66
0.4 1 4 3 0.27 0.38 0.32 3.90± 3.34 0.17 0.29 0.21 2.69± 3.63
0.4 2 ∞ 4 0.32 0.29 0.31 2.56± 2.45 0.26 0.14 0.18 0.81± 1.31
0.3 3 ∞ 3 0.31 0.30 0.31 2.67± 2.47 0.23 0.16 0.19 1.09± 1.96
0.3 3 ∞ 4 0.31 0.31 0.31 2.74± 2.50 0.23 0.19 0.21 1.28± 2.19

b
es
t
se
tt
in
gs

fo
r
O
O
V
-e
va
l 0.25 4 ∞ 4 0.34 0.23 0.27 1.90± 1.98 0.24 0.24 0.24 1.48± 1.98

0.35 4 4 4 0.29 0.17 0.22 1.66± 2.11 0.21 0.26 0.23 1.87± 2.30
0.5 2 4 4 0.34 0.23 0.28 1.93± 1.95 0.25 0.19 0.22 1.21± 1.54
0.4 4 4 4 0.32 0.15 0.20 1.28± 1.71 0.25 0.20 0.22 1.27± 1.58
0.5 1 4 4 0.33 0.24 0.27 2.02± 1.99 0.24 0.21 0.22 1.32± 1.72
0.45 3 4 4 0.31 0.17 0.22 1.49± 1.87 0.24 0.20 0.22 1.27± 1.60
0.5 3 3 4 0.32 0.24 0.27 2.11± 2.21 0.21 0.23 0.22 1.74± 2.37
0.45 2 4 4 0.31 0.25 0.27 2.20± 2.21 0.21 0.23 0.22 1.69± 2.37
0.45 1 4 4 0.29 0.32 0.31 3.06± 2.70 0.20 0.24 0.22 1.85± 2.65
0.4 3 4 4 0.32 0.24 0.27 2.13± 2.24 0.20 0.25 0.22 1.85± 2.51

Table 7.2.: Precision, recall, F1, and average number of candidates for the Jaccard
Index (development set)

for speci�c data and tasks. For normalizing Twitter data, Jin (2015) uses bigrams
and skip-1-bigrams as similarity features. The weight for each feature is set to 1.
We test this measure with di�erent features.
Jin (2015) notes that this similarity measure with the given similarity features is

not a metric since a similarity value of 1 does not mean that the compared strings
are identical. This can be seen with the example lool and loool when using only the
set of character bigrams as features: both words have the same featureset, namely
$l, lo, oo, ol and l$, and therefore have a similarity of 1. This, however, is only the
case if the similarity features do not contain the whole strings as a feature. In our
experiments, we use one setting where we do not limit the maximum length of the
n-grams but allow for an n-gram-size up to the length of the words.
Table 7.2 shows the 10 best results regarding F-value for the unweighted Jaccard

Index (i. e., setting the weight for all features to 1) using character n-grams with
a minimum length ∈ {1, 2, 3, 4} and a maximum length ∈ {2, 3, 4,∞} optionally
allowing skips of the length ∈ {1, 2, 3, 4} for both evaluation settings with similarity
thresholds ∈ {0.1, 0.15, 0.2, 0.25.0.3, 0.35, 0.4, 0.45, 0.5}.
As can be seen from the data, the Jaccard Index reaches slightly better F1 values

than the Levenshtein distance (0.32 / 0.24 vs. 0.30 / 0.23). This result is reached
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Chapter 7. A Pipeline for Spelling Variant Detection

text-eval OOV-eval
Sim. Min Max Skip P R F1 C P R F1 C

Levenshtein 1 0.21 0.52 0.30 6.95± 5.83 0.20 0.27 0.23 2.10± 3.22

0.35 2 4 4 0.23 0.42 0.30 5.06± 4.39 0.12 0.36 0.18 4.41± 5.98
0.15 3 ∞ 1 0.24 0.41 0.30 4.83± 3.75 0.13 0.30 0.18 3.5 ± 4.3
0.30 1 4 2 0.16 0.52 0.25 8.78± 6.95 0.08 0.45 0.14 8.25± 9.20
0.20 2 ∞ 1 0.21 0.45 0.29 5.95± 4.91 0.14 0.29 0.19 3.22± 4.60

0.35 4 4 4 0.29 0.17 0.22 1.66± 2.11 0.21 0.26 0.23 1.87± 2.30
0.25 3 ∞ 3 0.27 0.37 0.31 3.81± 3.45 0.16 0.27 0.20 2.51± 4.21
0.40 3 4 4 0.32 0.24 0.27 2.13± 2.24 0.20 0.25 0.22 1.85± 2.51

Table 7.3.: Precision, recall, F1, and average number of candidates for the Leven-
shtein distance and the Jaccard Index (development set)

through a better trade o� between precision and recall, i. e., the recall is lower than
with the Levenshtein distance while the precision is higher. Notably, the best choice
of similarity features di�ers for both evaluation settings.
For better comparison, Table 7.3 shows the best results of the Jaccard Index with

the same recall, precision and F1 value each as the Levenshtein distance of 1. The
comparison reveals the di�erent trade o�s between precision and recall: with the
same F1 value as the Levenshtein distance, the recall is still lower for the Jaccard
Index. With the same recall, precision is lower, leading to a lower F1 value.
We look into another string similarity measure that uses character n-grams as

similarity features named Proxinette (Hathout 2009, 2014). Proxinette has been
designed to measure the morphological similarity of lexemes and to �nd morpho-
logically related words in a dictionary. We use Proxinette in the variant described
in Hathout (2014), where character n-grams are the only features.
The basic intuition behind Proxinette is the same as the basic intuition behind

the Jaccard Index: the more character n-grams two types share, the more similar
they are. In contrast to the Jaccard Index, the n-grams in Proxinette are weighted
by their frequency in the corpus: More frequent n-grams contribute less to the simi-
larity. In the original version of Proxinette, the character n-grams have a minimum
length of three. However, this leaves spelling variants such as yck and ic (`I') un-
connected leading to a similarity value of 0. Therefore, we vary the minimal n-gram
length as a parameter in our experiments.
Proxinette returns the similarity of two types as a number between 0 and 1: 0

means no similarity (i. e., no shared n-gram), while higher values denote a higher
similarity. The similarity features used in Proxinette are not only character n-grams
of given lengths, but all possible n-grams above a given length including the whole
type. This is a way to prevent a similarity of 1 for two di�erent types as noted
above.
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text-eval OOV-eval
Sim. Min Max Skip P R F1 C P R F1 C

Ja
cc
. 0.35 1 ∞ 0 0.22 0.24 0.23 3.01± 2.57 0.13 0.16 0.14 1.91± 2.36

0.30 1 ∞ 0 0.17 0.32 0.22 5.43± 5.93 0.12 0.28 0.16 3.72± 4.38

P
ro
xi
ne
tt
e

0.025 3 ∞ 0 0.10 0.15 0.12 4.23± 3.91 0.08 0.17 0.10 3.53± 2.28
0.01 2 ∞ 0 0.07 0.25 0.11 9.53± 7.16 0.05 0.23 0.08 7.12± 3.81
0.01 1 ∞ 0 0.08 0.19 0.11 6.62± 5.09 0.06 0.22 0.09 5.97± 3.21
0.025 2 ∞ 0 0.10 0.13 0.11 3.46± 3.11 0.08 0.14 0.11 2.62± 1.79
0.05 3 ∞ 0 0.13 0.09 0.11 2.04± 2.10 0.10 0.11 0.10 1.56± 1.35
0.01 3 ∞ 0 0.06 0.24 0.10 10.61± 9.12 0.04 0.26 0.07 9.18± 5.15
0.025 1 ∞ 0 0.12 0.09 0.10 2.16± 2.19 0.09 0.13 0.11 2.09± 1.53
0.075 3 ∞ 0 0.20 0.06 0.09 0.88± 1.24 0.12 0.07 0.09 0.88± 0.91
0.05 2 ∞ 0 0.19 0.06 0.09 0.89± 1.29 0.12 0.09 0.10 1.09± 1.02
0.05 1 ∞ 0 0.21 0.04 0.07 0.57± 0.96 0.13 0.07 0.09 0.84± 0.87
0.1 3 ∞ 0 0.21 0.03 0.06 0.45± 0.79 0.14 0.06 0.08 0.61± 0.75
0.075 2 ∞ 0 0.22 0.03 0.05 0.39± 0.75 0.14 0.06 0.08 0.62± 0.74
0.001 1 ∞ 0 0.01 0.62 0.03 118.19± 56.87 0.01 0.55 0.02 67.40± 26.86
0.001 3 ∞ 0 0.02 0.49 0.03 84.23± 71.57 0.01 0.59 0.02 85.80± 38.86
0.075 1 ∞ 0 0.20 0.02 0.03 0.22± 0.53 0.16 0.05 0.08 0.48± 0.66
0.1 2 ∞ 0 0.23 0.01 0.03 0.18± 0.47 0.16 0.04 0.07 0.43± 0.62
0.001 2 ∞ 0 0.01 0.66 0.02 147.80± 78.53 0.01 0.59 0.02 80.79± 35.84
0.1 1 ∞ 0 0.16 0.00 0.01 0.09± 0.30 0.18 0.04 0.06 0.32± 0.54

Table 7.4.: Precision, recall, F1, and average number of candidates for Proxinette
(development set)
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Table 7.4 on the preceding page shows the results using Proxinette for spelling
variant candidate generation with varying minimal n-gram size (∈ {1, 2, 3}) and
di�erent similarity thresholds (∈ {0.1, 0.075, 0.05, 0.025, 0.01, 0.001}). For a better
comparison, it also shows the best results using the Jaccard Index without skips and
using n-grams up to the whole type. As is obvious, using the Jaccard Index shows
a better trade o� between precision and recall. The reason for this can be seen
by comparing how the similarity scores are computed. Di�ering from the Jaccard
Index, in Proxinette the similarity score is obtained by the probability of a random
walk in the bipartite graph with types and similarity features as vertices. This leads
to a weight for the features of 1

deg(f) , where deg(f) is the degree of the vertex f that
represents the feature f in the bipartite graph used for calculating Proxinette, i. e.,
the number of types having this similarity feature.
Equation (7.2) on the current page shows the calculation of Proxinette similarity

scores using a random walk and an equivalent formulation using the sum of the
weighted features common to t1 and t2 that allows a direct comparison with the
Jaccard Index in Equation (7.1) on page 84:

Proxinette(t1, t2) =
∑

f∈f(t1)∩f(t2)

1

deg(t1)
∗ 1

deg(f)
=

∑
f∈f(t1)∩f(t2)

1

deg(f)

deg(t1)

w(f)= 1
deg(f)

=

∑
f∈f(t1)∩f(t2)

w(f)

∑
f∈f(t1)

1
(7.2)

As in Equation (7.1), f(t) ⊆ F is the set of similarity features for a given
type t. deg(t) is the degree of the vertex representing the type t in the bipar-
tite graph. It is the number of similarity features used to represent a type, i. e.,
deg(t) = |f(t)| =

∑
f∈f(t1) 1. By setting w(f) = 1

deg(f) , the numerator is the same
as the numerator of the weighted Jaccard Index in Equation (7.1). However, the
denominator di�ers: One problem with respect to spelling variation is that only the
features of the type for which spelling variants should be retrieved, f ∈ f(t1), are
considered in the denominator. Essentially, this means that insertions at the begin-
ning or end of a word do not in�uence the similarity. This results in compounds
being found as spelling variant candidates as can be seen with Example (14). The
example shows some spelling variant candidates generated using Proxinette for the
nominative singular of hus (`house') containing the compounds hus frouwe and hus-
man (`woman/man of the house'). Actual spelling variants are given in bold face.
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(14) hus

a. Proxinette min-n-gram: 1, sim: 0.1:
husz, huse, husze, hus frouwe, husman, husmans

Another di�erence between Proxinette and the weighted Jaccard Index is that the
features are not weighted in the denominator of Proxinette leading to the situation
that a similarity of 1 is not possible if w(f) < 1 is true for any similarity feature f
for a given word t.
To overcome these shortcomings of Proxinette for spelling variant detection, we

use the frequency-based weighting of similarity features with the Jaccard Index.
However, in the original form, the features are weighted by the absolute number of
types they appear with ( 1

deg(f)). Therefore, the weights depend on the corpus size.
We use 1 − relFreq(f) as a weight function. Thereby we keep the general idea of
giving more weight to infrequent similarity features while avoiding the dependency
on the corpus size.30 The relative frequency is estimated based on the dictionary
from which spelling variants are generated leading to a weight of 0 for all features
that appear in every type of the dictionary, and 1 for features that do not appear
in it.
Table 7.5 on the next page shows the 10 best results regarding F-value for the Jac-

card Index using frequency-based weighting and character n-grams with a minimum
length ∈ {1, 2, 3, 4} and a maximum length ∈ {2, 3, 4,∞} optionally allowing skips
of the length ∈ {1, 2, 3, 4} for both evaluation settings with similarity thresholds
∈ {0.1, 0.15, 0.2, 0.25.0.3, 0.35, 0.4, 0.45, 0.5}. For comparison with the unweighted
Jaccard Index, the two best results from Table 7.2 on page 85 have been added as
well. The data show that frequency-weighting leads to a better precision. With
regard to the F-value however, there is no improvement in the OOV-eval setting
and only a small improvement in the text-eval setting.
To conclude, with a similarity measure based on character n-grams with possible

skips it is possible to obtain better F-values than using the Levenshtein distance.
However, the improvements are small and come from a better precision and a lower
recall. When the parameters for the Jaccard Index are chosen such that the recall is
comparable with that of the Levenshtein distance, the precision is lower. Hence, the
Levenshtein distance is a better candidate generator if �ltering is applied afterwards.
In the next section, we look at di�erent edit distances in order to improve the

recall without the high loss in precision that comes with a Levenshtein distance of
2.

30. This weight is only dependent on the size of the corpus in the sense that bigger corpora lead
to better estimates of the relative frequency.
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text-eval OOV-eval
Sim. Min Max Skip P R F1 C P R F1 C

Levenshtein 1 0.21 0.52 0.30 6.95± 5.83 0.20 0.27 0.23 2.10± 3.22

Ja
cc
. 0.35 2 ∞ 4 0.31 0.34 0.32 3.10± 2.89 0.23 0.17 0.2 1.11± 2.13

0.25 4 ∞ 4 0.34 0.23 0.27 1.90± 1.98 0.24 0.24 0.24 1.48± 1.98

w
Ja
cc
.
�
b
es
t
te
xt
-e
va
l

0.35 2 ∞ 4 0.34 0.33 0.33 2.69± 2.37 0.25 0.16 0.20 0.99± 1.59
0.35 1 ∞ 3 0.33 0.33 0.33 2.82± 2.60 0.24 0.13 0.17 0.85± 1.44
0.35 1 ∞ 4 0.33 0.34 0.33 2.84± 2.50 0.24 0.17 0.20 1.05± 1.80
0.4 1 4 3 0.31 0.34 0.33 3.12± 2.43 0.18 0.27 0.22 2.28± 2.78
0.3 2 ∞ 4 0.29 0.37 0.33 3.48± 2.99 0.20 0.23 0.21 1.79± 2.91
0.4 2 4 3 0.32 0.34 0.32 2.96± 2.32 0.19 0.25 0.22 2.09± 2.63
0.3 2 ∞ 2 0.31 0.33 0.32 2.94± 2.75 0.21 0.13 0.16 0.93± 1.63
0.4 2 4 4 0.31 0.33 0.32 2.98± 2.42 0.19 0.29 0.23 2.32± 2.97
0.3 1 ∞ 2 0.30 0.34 0.32 3.10± 2.82 0.21 0.14 0.17 1.03± 1.77
0.3 2 ∞ 3 0.30 0.35 0.32 3.24± 2.91 0.21 0.18 0.20 1.30± 2.35

w
Ja
cc
.
�
b
es
t
O
O
V
-e
va
l

0.25 4 ∞ 4 0.34 0.23 0.27 1.88± 1.96 0.25 0.23 0.24 1.45± 1.90
0.35 4 4 4 0.30 0.17 0.22 1.59± 1.97 0.22 0.26 0.23 1.82± 2.18
0.4 2 4 4 0.31 0.33 0.32 2.98± 2.42 0.19 0.29 0.23 2.32± 2.97
0.4 1 4 4 0.30 0.35 0.32 3.18± 2.52 0.18 0.30 0.23 2.49± 3.19
0.5 1 4 4 0.38 0.21 0.27 1.59± 1.58 0.26 0.19 0.22 1.13± 1.42
0.45 3 4 4 0.32 0.16 0.21 1.36± 1.71 0.25 0.20 0.22 1.24± 1.55
0.4 4 4 4 0.32 0.15 0.20 1.26± 1.69 0.25 0.20 0.22 1.26± 1.57
0.45 1 4 4 0.32 0.26 0.29 2.29± 1.94 0.22 0.23 0.22 1.58± 1.98
0.45 2 4 4 0.33 0.24 0.28 2.01± 1.96 0.22 0.22 0.22 1.50± 1.83
0.5 3 3 4 0.34 0.21 0.26 1.70± 1.86 0.22 0.23 0.22 1.58± 1.91

Table 7.5.: Precision, recall, F1, and average number of candidates for the Jaccard
Index with frequency-weighted feautures (development set)
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7.1.2. Di�erent Edit Distances

In the previous section, we have seen that with surface similarity measures based
on character n-grams it is possible to get better F1 values compared to using the
Levenshtein distance. However, this improvement comes from an improvement in
precision and a loss in recall. Hence, we use the Levenshtein distance as generator
for the subsequent �ltering. Still, the problem remains that the Levenshtein distance
is very coarse-grained and cannot be easily �ne-tuned. While using a distance of
1 leads to an average of about 7 candidates for each word in the text-eval setting,
using a distance of 2 already leads to an average number of about 64 candidates,
resulting in a drop in precision from 0.21 to 0.04 (cf. Table 7.1 on page 83).
In this section, we present experiments with two options to �nd an edit distance

that is more �ne-grained so that we obtain a better recall without the loss in preci-
sion that comes with a Levenshtein distance of 2. The �rst option is the addition of
edit operations to the Levenshtein distance. The second option is avoiding a �xed
distance threshold for all types and to make the threshold dependent on the length
of the type for which the candidates are obtained.
Regarding the addition of edit operations to the Levenshtein distance, we intro-

duce two variants that can be found in the literature and a new variant:
First, transpositions (T), ab → ba, are sometimes added to the atomic edit opera-

tions that have a cost of 1 (Damerau 1964). A second modi�cation is the treatment
of arbitrary merges and splits (MS) (i. e., ab ↔ c) as atomic operations with a cost
of 1. In GML texts, this appears with ij and y, e. g., in the types gij and gy, which
are spelling variants of ji (`you', 2PL.NOM). As a third modi�cation, we introduce
a new edit operation. It is inspired by a common preprocessing step for social me-
dia data, i. e., the deletion of repeated characters (Han, Cook, and Baldwin 2013).
Instead of removing repetitions in a preprocessing step, we integrate this directly
into the metric by allowing repetitions of common characters (Re) with a cost of 0
(or: after a match, insertions/deletions of the matched character have a cost of 0):

∀n∈N1,x∈Σd(x, xn) = 0 = d(xn, x)

With this addition, the edit distance is no longer a metric in the mathematical
sense as for example d(lol, looool) = 0. We have shown a similar property for n-
gram based distances on page 85 in Section 7.1.1. Furthermore, allowing repetitions
removes the higher penalty of additions when compared to the Jaccard Index. This
behavior of the Jaccard Index and the standard Levenshtein distance regarding
repetitions has been highlighted by Jin (2015) as one of the advantages of the
character n-gram based Jaccard Index.
As noted above, we use Levenshtein automata (Mihov and Schulz 2004) in order

to search the set of all types for the neighbors of a given type. T and MS are

91



Chapter 7. A Pipeline for Spelling Variant Detection

text-eval OOV-eval
T MSRe P R F1 C P R F1 C

- - - 0.21 0.52 0.30 6.95± 5.83 0.20 0.27 0.23 2.10± 3.22

x - - 0.21 0.52 0.30 7.05± 5.92 0.20 0.28 0.23 2.14± 3.29
- x - 0.09 0.64 0.15 20.28± 20.01 0.10 0.35 0.16 5.27± 9.66
- - x 0.20 0.59 0.29 8.31± 7.05 0.18 0.34 0.23 2.96± 5.28

x x - 0.09 0.64 0.15 20.37± 20.10 0.10 0.36 0.16 5.31± 9.71
x - x 0.20 0.59 0.29 8.38± 7.12 0.18 0.34 0.23 2.99± 5.34
- x x 0.09 0.69 0.15 22.28± 21.01 0.09 0.41 0.15 7.12± 13.49

x x x 0.09 0.69 0.15 22.35± 21.09 0.09 0.41 0.15 7.15± 13.54

Table 7.6.: Precision, recall, F1, and average number of candidates for di�erent edit
distances (development set)

added to the automata as described by Schulz and Mihov (2001). Re is added by
introducing states of the form (i#e, x) for a position i in a word, an error value e,
and a character x ∈ Σ to the automaton. These states can be reached from a match
with character x in position i − 1. From this state, insertions and deletions of x
have a cost of 0.
Table 7.6 gives the results of using the di�erent edit distances with a maximum

distance of 1. These results show that adding transpositions and repetitions to the
Levenshtein distance leads to a small improvement in recall with only a small loss
in precision for both the text-eval and the OOV-eval setup. While adding merges
and splits leads to an even higher recall, the loss in precision is higher too. Adding
transpositions and repetitions leads to the same F1 value as using the Levenshtein
distance in the OOV-eval setting with more emphasis on recall. In the text-eval
setting, the F1 value decreases hardly (from 0.3 to 0.29) while recall improves from
0.52 to 0.59. This is exactly what we want to achieve: a better recall with a loss in
precision that is as small as possible.
Regarding the usage of di�erent distance thresholds depending on the given type,

one option is to normalize the edit distance by the length of this type (Yujian and Bo
2007). Setting a threshold 0 < t for the ratio between the length of the type and the
edit distance, the maximum edit distance d to �nd spelling variant candidates for a
given type T with length lT can be computed by using the following formula, note
that we use a minimum Levenshtein distance of 1 in order to generate candidates
for short types as well:

d = max(1, blT ∗ tc)
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text-eval OOV-eval
t P R F1 C P R F1 C

0.1 0.21 0.52 0.30 6.95± 5.83 0.20 0.27 0.23 2.10± 3.22
0.15 0.21 0.52 0.30 6.96± 5.82 0.20 0.27 0.23 2.13± 3.22
0.2 0.21 0.53 0.30 7.05± 5.78 0.20 0.31 0.24 2.39± 3.23
0.25 0.20 0.53 0.29 7.29± 5.70 0.16 0.39 0.22 3.78± 4.64
0.3 0.20 0.54 0.29 7.77± 5.64 0.12 0.47 0.19 6.27± 7.13
0.35 0.16 0.56 0.25 9.95± 8.00 0.06 0.56 0.11 13.30± 17.93
0.4 0.10 0.59 0.18 16.04± 16.87 0.03 0.68 0.06 31.15± 36.82

Table 7.7.: Precision, recall, F1, and average number of candidates for di�erent
thresholds for the normalized Levenshtein distance (development set)

Dist. text-eval OOV-eval
P R F1 C P R F1 C

Lev(1) 0.21 0.52 0.30 6.95± 5.83 0.20 0.27 0.23 2.10± 3.22
edT,Re 0.20 0.59 0.29 8.49± 7.07 0.17 0.38 0.24 3.33± 5.34
Lev(2) 0.04 0.82 0.07 64.12± 55.31 0.04 0.64 0.07 25.86± 47.71

Table 7.8.: Precision, recall, F1, and average number of candidates for the Leven-
shtein distance and edT,Re (development set)

Using di�erent distance thresholds again results in an improvement in recall with
a smaller loss in precision than using a �xed distance > 1 for all types (cf. Table
7.7). 0.2 leads to the best F1 value in the OOV setting and one of the best F1 values
in the text-eval setting. In both evaluation settings recall is improved without any
loss in precision. We use this threshold for further experiments.
Table 7.8 shows the comparison between Levenshtein distances 1, 2, and the

edit distance with the modi�cations presented above (edT,Re), i. e., the combination
of allowing transpositions and repetitions and using a di�erent distance based on
the length of the type with a threshold of 0.2. Through these modi�cations of
the Levenshtein distance, similar F1 values are reached but with more emphasis
on recall. This is exactly opposite to the results using character n-gram similarities
where comparable F1 values have been reached with more balance between precision
and recall. For the following experiments, this combination is used to generate
candidates (edT,Re).
One way to improve the precision is applying a �lter to the generated candidates.

So, before we present ways to improve the candidate generation when training data
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for a speci�c dataset is available, we evaluate �ltering the candidates using Brown
clusters.

7.1.3. Context-Based Filter

The methods for generating spelling variant candidates described so far exploit
only the fact that spelling variants often have similar surface forms. But, since
spelling variants are variants of the same morphological word, they should also
appear in similar contexts. Therefore, we look into contextual features as described
in Section 4.8.2.
As simple context-based features, we use Brown clusters (Brown et al. 1992) using

the implementation by Liang (2005). Since Brown clusters only need unannotated
text in order to be trained (cf. Section 4.8), they are a simple way to apply a �lter
in an unsupervised setting. For obtaining the clusters, we use the unannotated
background corpus described in Section 2.3.
Table 7.9 on the facing page shows the results for the Levenshtein distances 1, 2

and edT,Re �ltered with Brown clusters. The results show that using a small num-
ber of clusters works best. Furthermore, they show that the modi�ed Levensthein
distance leads to the best results regarding F1.
The �lter is only applied to types that are known from the background corpus

used to train the Brown clusters, unknown types are left as spelling variants. This
can explain the di�erent results for the two settings. While applying the �lter
always leads to a better F1 value in the text-eval setting, the F1 value decreases in
the OOV-eval setting except for using a Levenshtein distance of 2. As the OOV-
eval setting tests on unknown words with respect to the training data, more often
the words will not be included in the Brown clusters and therefore the �lter is not
applied. Consequently, the increase in precision is not as pronounced as in the
text-eval setting. The OOV-eval setting is used to approximate the utility for NLP
tasks, where usually training data is available that might also be usable to improve
the spelling variant detection. Methods for this are presented in the next section.

7.2. Supervised Detection of Spelling Variants

In this section, we build on the presented methods for unsupervised detection of
spelling variants in order to improve them using training data in form of pairs of
spelling variants. We �rst present ways to use the training data for the candidate
generation process. Afterwards, we present �lters that use surface similarity as well
as type-based and token-based context.
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text-eval OOV-eval
Dist. Brown P R F1 C P R F1 C

Lev(1) - 0.21 0.52 0.30 6.95± 5.83 0.20 0.27 0.23 2.10± 3.22
Lev(1) 25 0.53 0.32 0.39 1.67± 1.50 0.34 0.14 0.19 0.61± 1.11
Lev(1) 50 0.59 0.28 0.38 1.30± 1.31 0.38 0.12 0.18 0.48± 0.96
edT,Re - 0.20 0.59 0.29 8.49± 7.07 0.17 0.38 0.24 3.33± 5.34
edT,Re 25 0.53 0.37 0.44 1.95± 1.79 0.31 0.18 0.23 0.89± 1.65
edT,Re 50 0.58 0.31 0.41 1.50± 1.51 0.33 0.15 0.21 0.71± 1.38
Lev(2) - 0.04 0.82 0.07 64.12± 55.31 0.04 0.64 0.07 25.86± 47.71
Lev(2) 25 0.17 0.45 0.25 7.50± 6.67 0.09 0.31 0.14 5.20± 11.43
Lev(2) 50 0.18 0.37 0.24 5.72± 5.48 0.10 0.27 0.14 4.28± 10.15

Table 7.9.: Precision, recall, F1, and average number of candidates for edit distances
with Brown clusters (development set)

7.2.1. Improving Candidate Generation with Training Data

When the spelling variant relation for the training data is known, it can be used
to improve the candidate generation step. In this section, we evaluate two ways to
improve the candidate generation which we have described in Section 7.1. First,
by a lexicon-based variant generation, i. e., by a simple lookup of known spelling
variants. And, second, by applying simpli�cation rules as described in Chapter 6 to
reduce variation before generating spelling variant candidates.
Maybe the simplest approach for spelling variant detection with training data is

a lexicon-based lookup of spelling variants. The lexicon lists all known variants for
each known type. It can be extracted from the training data. For normalization, a
similar memorization approach that normalizes each known type to its most frequent
normalization from the training data is a strong baseline (Robertson and Goldwater
2018). Table 7.10 on the next page shows the results for the lookup approach. This
approach cannot generalize to unknown types, therefore it only produces spelling
variant candidates in the text-eval setting. In the OOV-eval setting where the
evaluation is only done on unknown types, no candidates are generated. This leads
to a precision of 131 and a recall of 0.
For the text-eval setting, the lexicon-based lookup is well suited for short and

frequent words and thus complements the generation of candidates based on surface
similarity. The GML personal pronoun ji (`you', 2PL.NOM) for example has the
following spelling variants in the training data: ghy, gi, gij, gv, gy and je. The variant
ghy will be especially hard to identify with an approach that is based on surface
similarity since the two types ji and ghy share no character. Their Levenshtein
distance is 3, which is greater than the length of the type ji.

31. As described in Chapter 4, we de�ne precision to be 1 when there are no candidates generated
as there are no falsely generated candidates.
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text-eval OOV-eval
P R F1 C P R F1 C

0.36 0.74 0.49 5.68± 7.90 1.00 0.00 0.00 0.00± 0.00

Table 7.10.: Precision, recall, F1, and average number of candidates for the lookup
approach (development set)

text-eval OOV-eval
Dist. P R F1 C P R F1 C

Lev(1) 0.22 0.85 0.35 10.61± 10.84 0.20 0.27 0.23 2.10± 3.22
edT,Re 0.21 0.88 0.33 11.94± 11.91 0.17 0.38 0.24 3.33± 5.34
Lev(2) 0.04 0.95 0.08 65.43± 56.47 0.04 0.64 0.07 25.86± 47.71

Table 7.11.: Precision, recall, F1, and average number of candidates for edit dis-
tances with lexicon-based lookup (development set)

Table 7.11 shows this lexicon-based lookup combined with the Levenshtein dis-
tance and edT,Re. Adding known spelling variants improves recall in the text-eval
setting while keeping the same di�erence between the edit distances (cf. Table 7.8).
The following approaches are combined with this lexicon-based lookup, so we show
how well these approaches generalize to spelling variants not covered by a simple
lookup.
A commonly used addition of the basic Levenshtein distance is to assign di�erent

costs to di�erent substitutions or other edit operations (cf. Bollmann, 2012, and
Pettersson, Megyesi, and Nivre, 2013, for normalization of historical texts, Gomes
and Lopes, 2011, for cognate identi�cation). These weights are trained on the
speci�c data. Here, we present a similar approach by combining the rule-based
simpli�cation presented in Chapter 6 with an edit distance. For this, the rules
are applied to all types of the dictionary and to the target type to map them to
a simpli�ed language. Then, all types whose simpli�ed version is below the given
distance threshold are seen as spelling variant candidates. Since di�erences between
types that are covered by rules are removed before the edit distance is calculated,
these di�erences do not contribute to the distance. Therefore, this approach is
similar to assigning a cost of 0 to the speci�c edit operations encoded by the rules.
Consequently, spelling variants with a higher distance than the speci�ed threshold
can be obtained. This is an e�cient way to add weights to some edit-operations,
especially when compared to using the weighted Levenshtein distance (cf. Bollmann
2013a, p. 24). While this, however, allows only for coarse weighting of the edit
operations, note that the type-based �lter applied afterwards, allows for a more
�ne-grained distinction of surface di�erences.
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text-eval OOV-eval
Freq. Prec. P R F1 C P R F1 C

Lev(1) 0.22 0.85 0.35 10.61± 10.84 0.20 0.27 0.23 2.10± 3.22
edT,Re 0.21 0.88 0.33 11.94± 11.91 0.17 0.38 0.24 3.33± 5.34

Kol 0.19 0.89 0.31 13.17± 12.50 0.15 0.52 0.24 5.12± 9.06
Nie 0.01 0.94 0.02 236.95± 166.05 0.00 0.88 0.00 594.24± 674.78

10 0.70 0.15 0.92 0.25 17.45± 15.02 0.13 0.68 0.21 8.25± 13.78
10 0.75 0.15 0.89 0.26 16.24± 14.64 0.14 0.61 0.22 6.87± 11.86
10 0.80 0.18 0.89 0.30 13.64± 13.68 0.17 0.45 0.25 4.03± 6.70
10 0.85 0.20 0.88 0.33 12.12± 12.08 0.17 0.38 0.24 3.42± 5.59
10 0.90 0.21 0.88 0.33 11.94± 11.91 0.17 0.38 0.24 3.33± 5.34
20 0.70 0.16 0.92 0.27 15.86± 14.17 0.13 0.66 0.22 7.53± 12.18
20 0.75 0.17 0.91 0.29 14.96± 13.91 0.15 0.61 0.24 6.42± 10.81
20 0.80 0.19 0.89 0.31 13.26± 13.22 0.17 0.44 0.25 3.92± 6.37
20 0.85 0.20 0.88 0.33 12.05± 11.95 0.17 0.38 0.24 3.39± 5.45
20 0.90 0.21 0.88 0.33 11.94± 11.91 0.17 0.38 0.24 3.33± 5.34
30 0.70 0.16 0.92 0.27 15.85± 14.17 0.13 0.66 0.22 7.50± 12.16
30 0.75 0.17 0.91 0.29 14.95± 13.91 0.15 0.61 0.24 6.39± 10.79
30 0.80 0.19 0.89 0.31 13.24± 13.22 0.17 0.44 0.25 3.87± 6.33
30 0.85 0.20 0.88 0.33 12.04± 11.96 0.17 0.38 0.24 3.38± 5.43
30 0.90 0.21 0.88 0.33 11.94± 11.91 0.17 0.38 0.24 3.33± 5.34
40 0.70 0.16 0.92 0.28 15.72± 14.19 0.14 0.65 0.23 7.10± 11.54
40 0.75 0.17 0.91 0.29 14.93± 13.90 0.15 0.61 0.24 6.34± 10.65
40 0.80 0.19 0.89 0.31 13.24± 13.22 0.17 0.44 0.25 3.87± 6.33
40 0.85 0.20 0.88 0.33 12.04± 11.96 0.17 0.38 0.24 3.38± 5.43
40 0.90 0.21 0.88 0.33 11.94± 11.91 0.17 0.38 0.24 3.33± 5.34

Table 7.12.: Precision, recall, F1, and average number of candidates for di�erent
rulesets combined with an edit distance (development set)
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Table 7.12 on the preceding page shows the results for the di�erent rulesets com-
bined with edT,Re from the previous section.32 Nie, the ruleset based on the list of
GML grapheme variants given in Niebaum (2000), shows the highest recall in both
settings (0.94 / 0.88). However, the precision of the ruleset is extremely low, which
makes the ruleset inappropriate for our purpose. Kol shows a better precision.
The F1 value is therefore a lot better. With the rulesets that are learned from the
spelling variant pairs it is possible to get a better recall then Kol. And despite their
simplicity, they do not show the same high loss in precision as the ruleset based on
Niebaum (2000).
The utility of using simpli�cation rules depends on the evaluation setting: in

the text-eval setting the improvement in recall when compared with using the edit
distance in combination with known spelling variants is only small. However, in the
OOV-eval setting, there is a big improvement in recall. Still, the precision for all
rulesets is quite low since it cannot be better than the precision of using only edT,Re.
This is addressed by the �lters presented in the next section. For the experiments
with the �lter, we use the learned rules with a frequency of at least 40 and a precision
threshold of 0.75 in combination with edT,Re. This combination leads to one of the
rulesets where the F1 value is the same as with edT,Re without using simpli�cation
(0.24) in the OOV-eval setting. However, recall is improved from 0.38 to 0.61 in
this setting. In the text-eval setting, this ruleset leads to one of the results with
the second-best recall (0.91). By combining this ruleset with edT,Re, we are able to
improve recall from 0.88 (text-eval) / 0.38 (OOV-eval) to 0.91 / 0.61 with a loss in
precision of just 0.04 / 0.02, while using a Levenshtein distance of 2 leads to a recall
of 0.95 / 0.64 with a loss in precision of 0.17 and 0.13, respectively. We call this
generator S+edT,Re in the following experiments. However, as mentioned above,
the precision is low (0.17 / 0.15). Therefore, we experiment with training a �lter
for the generated spelling variant candidates in the next section.

7.2.2. Type-Based Filter

In the previous section, we have evaluated methods how to e�ciently generate
spelling variant candidates for a given type from a given dictionary based on sur-
face similarity. In this section, we look at approaches to �lter these spelling variant
candidates in order to remove unlikely candidates utilizing training data.
First, we look at applying a more �ne-grained method to assess surface similarity.

Variants of a weighted Levenshtein distance have been applied in tasks that are
similar to spelling variant detection. Hauser and Schulz (2007) present methods
for learning weights for detecting historical variants of modern words. Gomes and
Lopes (2011) present a similarity measure for cognate detection. Such approaches

32. For this thesis, we reran the experiments with an updated version of the code, therefore the
numbers di�er from the results published in Barteld, Biemann, and Zinsmeister (2019).
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usually employ quasimetrics, i. e., the used metrics are not necessarily symmetric
since the weights learned for edit operations are learned in one direction � i → y may
have a di�erent cost than y → i. This makes sense in the context of normalization
and cognate detection as the comparisons made in these cases are directed as well,
e. g., types from older stages of a language are compared to the modern variant.
However, in the case of spelling variant detection, the weights for both directions
should be equal because next to the pair {ghecomen, komen} from Example (4) on
page 26 there does also exist the pair {ghekomen, comen} where the di�erence c ↔
k appears in the opposite direction.
We present and compare two metrics with di�ering costs for edit operations.

In the �rst metric, only the weights 0 and 1 exist but the context in which the
substitutions appear are relevant. For the other metric, the weights take values
between 0 and 1 but without context.
The �rst metric is an undirected version of the measure SPSim by Gomes and

Lopes (2011). SPSim has been developed for cognate detection. This measure em-
ploys substitution patterns (SPs), i. e., segments of mismatches from the alignment
of the types in the candidate pair with their left and right context. While the orig-
inal version encodes the mismatched characters as ordered pair and is therefore a
quasimetric, our version encodes the mismatches as unordered pair. Example (15)
shows a pair of spelling variants and the corresponding undirected SP with a context
of the length 2 denoted by the triple (left context, {pair of mismatched characters},
right context). The context is padded with $ at the beginning and the end of the
type.

(15) maria, marien
(`ri', {`a', `en'}, `$$')

The measure is trained on positive examples. When applying SPSim, SPs that
appear in the training data get a cost of 0, otherwise their cost is the edit distance
between the mismatched segments. Furthermore, the context is generalized, i. e.,
when a mismatch segment appears in the training data with at least two di�erent
contexts, the mismatch will always get a cost of 0 regardless of the context. Using
this measure, pairs of types where all the changes are known get the maximal
similarity of 1. This allows for improving the precision without losing on recall by
setting a high threshold on the similarity for cognate detection.
Table 7.13 on the following page shows the results for using the undirected version

of SPSim for identifying spelling variants. In this experiment, known spelling vari-
ants from the training data are added as spelling variant candidates. While there is
an improvement in F-score from 0.33 without undirected SPSim to 0.39 in text-eval
and from 0.24 to 0.31 in OOV-eval, the precision is still low (0.25 / 0.22). One
reason for this is that the training data contains a lot of very generic substitutions
that are learned by SPSim.

99



Chapter 7. A Pipeline for Spelling Variant Detection

text-eval OOV-eval
Dist. Sim. P R F1 C P R F1 C

edT,Re - 0.21 0.88 0.33 11.94± 11.91 0.17 0.38 0.24 3.33± 5.34
edT,Re 0.7 0.23 0.88 0.36 10.63± 10.79 0.18 0.38 0.24 3.20± 4.86
edT,Re 0.8 0.24 0.88 0.38 10.21± 10.61 0.19 0.37 0.25 3.03± 4.59
edT,Re 0.9 0.25 0.88 0.39 9.90± 10.64 0.23 0.37 0.28 2.46± 3.74
edT,Re 1.0 0.25 0.88 0.39 9.89± 10.64 0.23 0.37 0.29 2.41± 3.73

S+edT,Re - 0.17 0.91 0.29 14.93± 13.90 0.15 0.61 0.24 6.34± 10.64
S+edT,Re 0.7 0.22 0.90 0.35 11.62± 11.25 0.17 0.58 0.26 5.33± 7.79
S+edT,Re 0.8 0.23 0.90 0.36 11.08± 10.99 0.18 0.57 0.27 4.93± 7.17
S+edT,Re 0.9 0.23 0.90 0.37 10.70± 11.02 0.21 0.56 0.31 4.03± 5.93
S+edT,Re 1.0 0.23 0.90 0.37 10.69± 11.02 0.22 0.56 0.31 3.98± 5.94

Table 7.13.: Precision, recall, F1, and average number of candidates for edit dis-
tances with UndirSPSim (development set)

The following SPs are the SPs that are learned from our training data and involve
a single `a': (∅, {`a', `o'}, ∅), (∅, {`a', `u'}, ∅), (∅, {`a', `e'}, ∅) and (∅, {`a', `en'},
∅). With this generic set of SPs, two types like dach (`(the) roof') and doch (`but')
which di�er only in a vs. any other vowel except for an i will have a similarity of
1. The pattern (∅, {`a', `u'}, ∅) is learned from the two spelling variants {sundighe,
sandige} and {ghehat, ghehut}. However, the �rst pair is likely to be an error in the
original manuscript, the second example is an error in the gold annotation leading
to a wrongly learned generalized SP. In order to avoid such overgeneralizations, we
experiment with a metric where weights with values between 0 and 1 are allowed.
This second metric is similar to that proposed by Loga£ev, Goldschmidt, and

Demske (2014). It is formulated as a probability for two types being spelling vari-
ants. Given an edit operation e, we estimate its probability of leading to a spelling
variant, P (e), by

P (e) =
(
∑
{ti,tj}∈tr(e) 1S({ti, tj})) + 1

|tr(e)|+ 2
(7.3)

tr(e) is de�ned as {{ti, tj}|ti
e←→ tj}, i. e., the set of all unordered pairs of types

{ti, tj} from the training data, such that ti can be transformed into tj or tj into ti
by applying e. 1S is the characteristic function of the spelling variant relation S. To
avoid zero probabilities due to data sparsity, Laplace smoothing is used (Manning
and Schütze 1999, Section 6.2.2). The P (e) for an edit operation e that does not
appear in the training data is set to 1 (instead of 1

2) � thereby the probabilities
capture negative evidence against the assumption that an edit operation leads to a
spelling variant.
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text-eval OOV-eval
Dist. Prob. P R F1 C P R F1 C

edT,Re - 0.21 0.88 0.33 11.94± 11.91 0.17 0.38 0.24 3.33± 5.34
edT,Re 0.05 0.27 0.87 0.41 8.93± 9.93 0.28 0.34 0.31 1.90± 2.74
edT,Re 0.10 0.29 0.86 0.44 8.19± 9.44 0.32 0.31 0.32 1.49± 2.14
edT,Re 0.15 0.32 0.85 0.46 7.48± 8.93 0.35 0.27 0.31 1.17± 1.63
edT,Re 0.20 0.33 0.84 0.47 7.12± 8.67 0.37 0.25 0.30 1.03± 1.42
edT,Re 0.25 0.33 0.81 0.47 6.79± 8.55 0.42 0.22 0.29 0.80± 1.16
edT,Re 0.50 0.36 0.78 0.49 5.99± 8.16 0.56 0.12 0.20 0.34± 0.61

S+edT,Re - 0.17 0.91 0.29 14.93± 13.90 0.15 0.61 0.24 6.34± 10.65
S+edT,Re 0.05 0.25 0.89 0.39 10.05± 10.52 0.25 0.52 0.34 3.23± 5.09
S+edT,Re 0.10 0.28 0.88 0.42 8.81± 9.71 0.29 0.46 0.36 2.38± 3.70
S+edT,Re 0.15 0.31 0.87 0.45 7.85± 9.07 0.33 0.39 0.36 1.82± 2.78
S+edT,Re 0.20 0.32 0.85 0.47 7.40± 8.74 0.36 0.36 0.36 1.51± 2.26
S+edT,Re 0.25 0.33 0.82 0.47 6.98± 8.58 0.39 0.31 0.35 1.20± 1.89
S+edT,Re 0.50 0.36 0.78 0.49 6.02± 8.16 0.51 0.14 0.22 0.42± 0.80

upper bound 0.34 1.00 0.51 8.08± 10.32 0.78 1.00 0.87 1.97± 3.96

Table 7.14.: Precision, recall, F1, and average number of candidates for edit dis-
tances with edit probabilities (development set)

Given a pair of two types (t1, t2), we estimate the probability of (t1, t2) being
spelling variants by the product of the probabilities of all the atomic edit operations
that transform t1 into t2. Using the null hypothesis that the pairs are spelling
variants, any set of possible spelling variants can be �ltered by removing those for
which the probability is below a given threshold.
Results for this �lter are shown in Table 7.14. Known spelling variants from the

training data are added as well. Both �ltering approaches improve the F1 values
in both evaluation settings. However, the di�erence between the two variants of
a weighted edit distance are obvious: if we allow only a cost of 1 or 0 this leads
to a �lter that �lters out wrong spelling variant candidates with a high precision,
i. e., it does only slightly a�ect the recall of the pipeline as most �ltered types
are actually not spelling variants. However, due to the conservative �ltering, the
precision of the pipeline gets only small improvements (cf. Table 7.13). With costs
for edit operations ranging between 0 and 1, precision can be improved further, with
respective losses in recall. Since the generator so far has a high recall with a low
precision, this leads to a better balance and therefore improved F1 values.
In the text-eval setting, the approach using the edit probabilities is close to the

upper bound for a type-based approach with a recall of 1. We get this result by
taking all spelling variants for each type: This gold approach reaches a F1 value of
0.51 while the best F1 value so far is 0.49. In the OOV-eval setting, however, the
gold approach reaches an F1 value of 0.87 where the best result so far is 0.36.
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Chapter 7. A Pipeline for Spelling Variant Detection

As a third approach, we follow Ciobanu and Dinu (2014) who apply a binary clas-
si�er to cognate recognition. We train a binary classi�er on positive and negative
examples for spelling variants to �lter out overgenerated candidate pairs (cf. Sec-
tion 4.3). To represent the similarities and di�erences in the strings, we experiment
with undirected SPs as de�ned above as well as paired character n-grams around
mismatches (Ciobanu and Dinu 2014), and all paired character n-grams (Ciobanu
and Dinu 2015) extracted from the aligned sequences, see Example (16).

(16) maria, marien
2-grams: {$m, $m}, {ma, ma}, . . . ,

{ia, ie}, {a_, en}, {_$, n$}
2-grams(mis): {ia, ie}, {a_, en}, {_$, n$}

For the n-grams, we test all combinations of lengths in {1, 2, 3}. Similarly, for the
SPs we use context sizes of {0, 1, 2}. Furthermore, we combine the n-grams with
SPs.
One bene�t of using a binary classi�er is that it is straightforward to combine

di�erent features for �ltering. We combine the surface features with contextual
features. As contextual feature, we use the cosine similarity between dense vec-
tor representations (vec) obtained using PPMI-SVD calculated on the background
corpus (cf. Section 4.8.2 and Section 2.3). As suggested by Levy, Goldberg, and Da-
gan (2015), we have tested di�erent hyperparameters for the creation of the dense
vectors: dimension ({125, 250, 375, 500}), context window ({2, 5}), and frequency
threshold ({10, 25, 50, 75, 100}). We have also combined the contextual feature with
the best performing surface features and the surface features with the best perform-
ing contextual feature.
The experiments presented below have been conducted with the ReN 0.1. Di�er-

ing from the other experiments in this section, the evaluation of di�erent hyperpa-
rameter settings has been done on the type-level and with the simple Levenshtein
distance. Afterwards, we present the performance of the best settings with the
ReN 0.3, evaluating it on the token level and with S+edT,Re in the text-eval and
OOV-eval settings.
For classi�cation, an SVM is trained (cf. Section 4.3). We use an RBF kernel

and train the model with the wrapper for LibSVM (Chang and Lin 2011) from
Weka (Witten et al. 2017) doing a grid-search over the values {1, 2, . . . , 5} and
{10−2, . . . , 102} for the hyperparameters C and γ on the development set.
The classi�er is trained on positive and negative examples. As positive examples,

we use all the pairs of spelling variants appearing in the training data (1834 pairs).
In order to obtain negative examples, we extract pairs of types with a Levenshtein
distance of 1 and 2 that do not appear with the same annotation using only types
that appear at least 10 times in the training data. The frequency threshold is used to

102



7.2. Supervised Detection of Spelling Variants

reduce the probability that the pair is actually a pair of spelling variants that�due
to ambiguity of the types�does not occur as the same morphological word in the
training data. We use all pairs with a Levenshtein distance of 1. In order to get the
same number of negative and positive examples, we apply random undersampling
(cf. Section 4.4) by adding only a random sample of pairs with a Levenshtein distance
2 to the negative examples. We apply the trained classi�er to all candidate pairs
generated by using the Levenshtein distances 1, 2 and 3. Table 7.15 on the next
page shows the best results for di�erent feature combinations.
Overall, all the features lead to an improvement in F-score over the best F-score

obtained using the Levenshtein distance (0.20) and the undirected SPSim (0.26).
Combining the di�erent types of surface features does not improve the results.
Using only n-grams around mismatches leads to better overall result than using

all n-grams in terms of F-score (0.38 against 0.36), but using all n-grams leads to a
slightly better recall (0.43 against 0.42). This is di�erent from the result obtained
by Ciobanu and Dinu (2015) for discriminating between cognates and borrowings.
Both n-gram features lead to better results than using SPs, which lead to an F-score
of 0.34. However, the di�erences between these three feature types are small and
are not stable across di�erent splits of the dataset.
Using only contextual features, the results are comparable to the results with

surface features, regarding the F-score (0.36). However, this F-score results from a
higher recall and a lower precision. A context size of 2, a small frequency threshold
(10) and the dimensions 500 and 375 lead to the best results on the dataset.
Combining surface and contextual features results in the best F-score (0.42) using

this approach. However, in experiments with vectors obtained from a selection of
the background corpus (739,576 tokens), adding the contextual features has led to
no improvement over using only surface features. This is important regarding true
low-resource settings where even unlabeled data that can be used as a background
corpus is scarce.
Regarding the generation method, the best F-scores are obtained using a Leven-

shtein distance of 1. The increase in recall obtainable by adding further candidate
pairs with a higher Levenshtein distance corresponds to a larger drop in precision.
We now present the results for the SVM �lter on the ReN 0.3. As generator,

we use the di�erent edit distances described above. Furthermore, we present an
alternative way for handling the training data. Above the classi�er is trained on a
training set that consists of generated candidates, which are labeled whether they
are an actual spelling variant pair or not. This dataset has two characteristics
that are relevant for training the classi�er: Firstly, as pointed out above, the set
of instances labeled as negative contains falsely labeled instances. Therefore, this
might best be approached as PU learning (Li and Liu 2005). Secondly, the dataset
is highly imbalanced.
When using a standard SVM as above, we address these two issues of the training

set by including only pairs of types where each type appear at least 10 times in the
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Lev Filter R P F1 C

1 - - - 0.58 0.12 0.20 1.85± 2.42
2 - - - 0.88 0.02 0.04 15.99± 20.06
1 SPSim (0.9) - - 0.48 0.18 0.26 1.11± 1.51
2 SPSim (0.9) - - 0.65 0.09 0.15 2.93± 3.92

SVM
Features C γ

1 n-gram(mis): 1, 2, 3 2 10−1 0.42 0.34 0.38 0.62± 0.86
1 n-gram: 1, 2, 3 3 10−1 0.43 0.31 0.36 0.68± 0.91
1 SP: 0, 1 2 100 0.37 0.31 0.34 0.60± 0.84
1 vec: 500, 2, 10 4 10−1 0.52 0.28 0.36 0.83± 1.08
1 vec: 500, 2, 50, n-gram(mis): 1, 2, 3 2 10−1 0.47 0.37 0.42 0.62± 0.87
1 vec: 375, 2, 25, n-gram(mis): 1, 2, 3 2 10−1 0.47 0.38 0.42 0.62± 0.86
2 vec: 500, 2, 10, n-gram: 3, n-gram(mis): 1, SP: 2 4 10−1 0.58 0.17 0.26 1.48± 1.81

Table 7.15.: Precision, recall, F1, and average number of candidates for the binary
classi�cation approach ReN 0.1

data to get a set of reliable negative instances and by random undersampling to
tackle the imbalance. We compare this approach with a bagging classi�er. Bag-
ging addresses both the imbalanced data and the PU learning (Galar et al. 2012;
Mordelet and Vert 2014). As a base classi�er, we use an SVM as well (cf. Sec-
tion 4.4). For comparing the two approaches, we use the best hyperparameter
(C = 2, γ = 10−1) and feature combinations (vec, 375, 2, 25, n-gram(mis): 1, 2, 3)
from the experiments above.
Table 7.16 on the facing page shows the results. For comparison, we repeat the

results of using only lookup generation as well as S+edT,Re with edit probabilities
as �lter and edit probabilities (EP) combined with Brown clusters. We have also
included the results for the perfect type-based spelling variant detection as an upper
bound.
When comparing the SVM with the BSVM, the results are mixed: In the text-eval

setting, the BSVM performs comparably to the SVM. But in the OOV-eval setting
it outperforms the SVM in terms of F1 value for all generators. This is achieved by
a better balance between precision and recall.
As for candidate generation in the text-eval setting, a Levenshtein distance of 1

and edT,Re show comparable results in terms of F1 value. However, this F1 value
is close to the upper bound for type-based spelling variant detection (with a recall
of 1). This underlines the need for token-based spelling variant detection. In the
OOV-eval setting using edT,Re leads to better results.
For type-based spelling variant detection, we conclude that the combination of

edT,Re with a BSVM �lter is comparable to the results with a Levenshtein distance
of 1 and an SVM but with a better recall in the text-eval setting. In the OOV-eval
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text-eval OOV-eval
Dist. Filter P R F1 C P R F1 C

lookup 0.36 0.74 0.49 5.68± 7.90 1.00 0.00 0.00 0.00± 0.00
S+edT,Re EP (0.5) 0.36 0.78 0.49 6.02± 8.16 0.51 0.14 0.22 0.42± 0.80
S+edT,Re EP (0.5)

+ Brown
0.67 0.41 0.51 1.72± 1.91 0.57 0.08 0.14 0.22± 0.55

Lev(1) � 0.22 0.85 0.35 10.61± 10.84 0.20 0.27 0.23 2.10± 3.22
Lev(1) SVM 0.36 0.80 0.50 6.17± 7.91 0.48 0.20 0.29 0.64± 0.91
Lev(1) BSVM 0.35 0.81 0.49 6.49± 8.16 0.51 0.22 0.31 0.67± 0.94
S+edT,Re � 0.17 0.91 0.29 14.84± 13.96 0.15 0.58 0.24 5.96± 10.72
S+edT,Re SVM 0.33 0.87 0.47 7.44± 8.45 0.23 0.54 0.32 3.64± 6.62
S+edT,Re BSVM 0.34 0.87 0.49 7.20± 8.54 0.41 0.48 0.44 1.81± 2.87
Lev(2) � 0.04 0.95 0.08 65.43± 56.47 0.04 0.64 0.07 25.86± 47.71
Lev(2) SVM 0.17 0.92 0.29 14.99± 14.38 0.10 0.63 0.18 9.37± 15.29
Lev(2) BSVM 0.17 0.91 0.29 14.51± 15.78 0.21 0.60 0.31 4.46± 6.97

upper bound 0.34 1.00 0.51 8.08± 10.32 0.78 1.00 0.87 1.97± 3.96

Table 7.16.: Precision, recall, F1, and average number of candidates for the Support
Vector Machine �lter (development set)

setting, this combination�edT,Re with a BSVM �lter�leads to the best results
overall. In the next section, we look at a token-based �lter for improving these
results.

7.2.3. Token-Based Filter

The approaches that we have presented above work on the type level, i. e., can-
didates are generated and �ltered regardless of the speci�c context of the target
word. However, as noted above, two types might be spelling variants only in spe-
ci�c contexts. Therefore, we apply a �lter that uses the context to �lter out spelling
variant candidates. For this, we use a neural network that is similar to the CNN
architecture proposed by Kim (2014) for sentence classi�cation on the spelling vari-
ant candidate and n context types before and after (cf. Section 4.3). The network
is depicted in Fig. 7.2a on the next page. The words are represented using the
same (context) embeddings as with the type-based classi�er. Di�ering from Kim
(2014), the embeddings are not �ne-tuned in the training. Furthermore, we con-
catenate a second (surface) embedding to the context embedding. This is similar
to Chakrabarty, Pandit, and Garain (2017), but instead of using a long short-term
memory layer to obtain the surface (what they call syntactic) embedding, we create
it using convolutional �lters of length 2 and 3 that are applied to the (padded) se-
quence of characters for each word. This part of the network is depicted in Fig. 7.2b.
The surface representation is not pre-trained.
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Figure 7.2.: Architecture of the Convolutional Neural Network used as token-based
�lter

For the sequence of words, we apply convolutional �lters of length 2 up to the
context length + 1. In this way, the longest �lters see each of the context words to
one side together with the target word. We apply 50 �lters of each length for the
surface embedding as well as to extract features from the word representations.
For the training data, we generate all candidates for each of the tokens in the

training set. Each pair of token and candidate is labeled whether it is a spelling
variant pair or not. Again, the data is imbalanced. To account for this, the network
is trained on batches of 20 positive and 20 negative pairs sampled randomly from
the training data. We train for 10 epochs, where one epoch consists of training
on npos

20 batches with npos denoting the number of positive training examples. The
parameters are updated via backpropagation using Adam (cf. Section 4.8.3). We
use ReLU for non-linearity (cf. Section 4.3.2).
Table 7.17 on the facing page shows the results for di�erent context sizes. Further-

more, the table contains results for con�gurations using only the context embeddings
or the surface embeddings, respectively. This shows that both representations help
to �lter out candidates that are not spelling variants. However, the results for the
text-eval and the OOV-eval setting diverge: For the text-eval setting, applying the
token-based �lter improves the results with all settings. A context size of 1 or 2
using both context embeddings and surface embeddings to represent the words gives
the best results. For the OOV-eval setting, however, applying the token-based �lter
leads to a drop in F1 value since the loss in recall is not matched by the gain in
precision. In the next section, we look at possible reasons for this.
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text-eval OOV-eval
Embedd Size P R F1 C P R F1 C

S+edT,Re-BSVM 0.34 0.87 0.49 7.20± 8.54 0.41 0.48 0.44 1.91± 2.93

both 1 0.56 0.63 0.59 3.16± 3.48 0.66 0.21 0.31 0.30± 0.77
both 2 0.53 0.65 0.58 3.45± 4.04 0.62 0.22 0.33 0.35± 0.85
both 3 0.53 0.62 0.57 3.24± 4.02 0.62 0.19 0.29 0.29± 0.79
cont. 1 0.53 0.65 0.58 3.44± 3.94 0.69 0.19 0.29 0.26± 0.72
cont. 2 0.48 0.63 0.55 3.63± 4.62 0.62 0.20 0.30 0.31± 0.84
cont. 3 0.49 0.56 0.52 3.20± 4.47 0.64 0.17 0.27 0.26± 0.71
surf. 1 0.48 0.69 0.56 4.03± 4.61 0.62 0.22 0.33 0.35± 0.86
surf. 2 0.45 0.72 0.55 4.45± 5.24 0.59 0.23 0.33 0.38± 0.93
surf. 3 0.47 0.68 0.56 4.02± 4.81 0.59 0.20 0.30 0.34± 0.83

Table 7.17.: Precision, recall, F1, and average number of candidates for the Convo-
lutional Neural Network �lter (development set)

text-eval OOV-eval
Dist. Filter P R F1 C P R F1 C

Lookup 0.29 0.69 0.41 5.62± 7.72 1.00 0.00 0.00 0.00± 0.00
Lev(1) � 0.16 0.85 0.27 12.17± 11.41 0.11 0.24 0.16 3.91± 5.55
S+edT,Re � 0.14 0.87 0.25 14.23± 12.55 0.09 0.39 0.14 8.35± 12.74
Lev(1) SVM 0.25 0.83 0.39 7.72± 8.53 0.22 0.24 0.23 2.06± 2.58
S+edT,Re BSVM 0.28 0.82 0.41 6.95± 8.08 0.27 0.33 0.30 2.28± 2.88
+ CNN (both, 1) 0.47 0.57 0.52 2.80± 3.37 0.41 0.18 0.25 0.80± 1.34
+ CNN (surf., 3) 0.36 0.64 0.46 4.12± 5.29 0.35 0.19 0.25 1.01± 1.59

Table 7.18.: Precision, Recall, F1, and average number of candidates for di�erent
pipelines (test set)

7.3. Results and Error Analysis

In this section, we give results for the best supervised pipelines on the test set,
present an error analysis and discuss some ideas how to improve the spelling variant
detection.
Table 7.18 presents results for selected approaches on the test set: the simple

lookup, Levenshtein distance 1 and S+edT,Re without a �lter and with SVM, BSVM
and CNN �lter. These pipelines show the same behavior as on the development set:
With type-level generation and �ltering, on the one hand, we are able to improve
the recall compared to a simple lookup approach. In the text-eval setting, the loss
in precision is low, leading to a comparable F1 value. In the OOV-eval setting,
where a lookup is not available, both recall and precision are improved compared
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text-eval OOV-eval
Dist. Filter P R F1 C P R F1 C

Lookup 0.54 0.03 0.05 0.03± 0.19 1.00 0.00 0.00 0.00± 0.00
Lev(1) � 0.21 0.51 0.30 1.29± 1.40 0.14 0.25 0.18 1.55± 2.35
S+edT,Re � 0.17 0.65 0.28 1.97± 2.29 0.10 0.49 0.17 4.26± 6.59
Lev(1) SVM 0.29 0.51 0.37 0.93± 1.06 0.21 0.25 0.23 1.04± 1.51
S+edT,Re BSVM 0.45 0.59 0.51 0.69± 0.91 0.34 0.44 0.38 1.18± 1.78
+ CNN (both, 1) 0.54 0.33 0.41 0.32± 0.64 0.43 0.25 0.31 0.51± 1.09
+ CNN (surf., 3) 0.51 0.41 0.45 0.43± 0.76 0.39 0.28 0.32 0.64± 1.23

Table 7.19.: Precision, Recall, F1, and average number of candidates for di�erent
pipelines on types with frequency lower 10 (test set)

to candidate generation using the Levenshtein distance. In both settings S+edT,Re
with a BSVM �lter leads to an improvement over the standard Levenshtein distance
with a distance of 1 and an SVM �lter.
Token-level �ltering, on the other hand, is only helpful (in terms of F1 value) in

the text-eval setting. In the OOV-eval setting, the loss in recall is too high compared
to the gain in precision. The reason for this seems to be the high number of types
that are infrequent in the test set for OOV-eval. This is evident in Table 7.19, which
shows the results calculated without the types that appear more than 10 times in
the whole dataset. Here, the token-based �lter leads to a high drop in recall in
both settings resulting in a lower F1. One reason for this might be that the context
embeddings for such infrequent terms are either not existent or not very reliable.
This is consistent with the fact that using only surface embeddings as features for
the �lter leads to better results with infrequent types. The gain in precision that
the use of context embeddings brings is not enough for infrequent types.
The results also indicate that�especially for the OOV-eval setting where a spelling

variant lookup cannot be used�the recall of the generator still is a bottleneck for
the pipeline: Even though we have been able to improve the recall in the OOV-eval
setting from 0.24 with Levenshtein distance 1 to 0.39 using S+edT,Re, the recall is
still low.
When generating types in the OOV-eval setting�i. e., without the possibility of

using a lookup�and generating types from the test data for the test data, the
generator using S+edT,Re misses spelling variants for 615 types. We have sampled
100 types from these and have looked for patterns regarding the variants that were
not generated.
What we observe from this sample is that most of the missed spelling variants have

a Levenshtein distance of 2, combining two variation patterns that are infrequent
in the data and/or have a low precision. Therefore, they are not captured by
the simpli�cation rules. One example is the type ober (`over'), for which the two
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variants aver and auer are missed. The di�erence [`a', `o'] appears in 129 spelling
variant pairs in the training data, however the precision of this con�ation set on the
training set is only 0.33. The di�erences [`b', `v'] and [`b', `u'] each only appear in
one spelling variant pair in the training set and their precision is well below 0.1.
Interestingly, many of the missing spelling variants involve pre�xation and su�x-

ation. One example of a pre�x that often appears in spelling variant pairs is g(h)e:
richten, gerichten (`(to) sentence'); coft, ghecoft (`(to) buy'); nemet, genomen (`(to)
take'). While in modern Standard German this is an in�ectional pre�x, in historical
variants of German (as well as Low German), the usage of this pre�x often counts
as a mere variation. An example for a su�x from the data is en�or better the lack
of the su�x en. The variation stems from the fact that this in�ectional su�x can
be missing, e. g., in the pairs hunderden, hundert (`hundred') and uint, vinden (`(to)
�nd').
In this chapter, we have evaluated pipelines for spelling variant detection intrinsi-

cally using two evaluation settings that try to measure their utility for two tasks, i. e.,
IR or simply searching in texts and statistical NLP. In the next chapter, we exam-
ine di�erent approaches for improving the performance of NLP tools for texts with
spelling variation. Some of these approaches use spelling variant detection. Since
the experiments in this chapter have shown better results without token-based �lter
in the OOV-eval setting, we apply a type-based �lter in these experiments.
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Chapter 8.

Dealing with Spelling Variation for

Natural Language Processing

In this chapter, we present experiments with two standard NLP tasks on non-
standard data. We train and apply existing tools for statistical POS tagging and
lemmatization on GMH and GML texts. For the experiments, we use a low-resource
setting, using the parts of the ReM and the ReN described in Section 2.4 for training
and testing. In Section 8.1, we describe the tools. Since these tools have been
developed with standard data in mind, we look at methods to adapt them to data
with spelling variation in Section 8.2. In Section 8.3 and Section 8.4, we present
experiments with di�erent adaptation methods. Section 8.5 concludes this chapter
with an overview of the results.

8.1. Tools for Part-of-Speech Tagging and

Lemmatization

For the experiments with POS tagging, we use Marmot (Müller, Schmid, and
Schütze 2013), a CRF tagger, as the main tool. For lemmatization, we use Lemming
(Müller et al. 2015), a log-linear model in which Edit Trees (ETs) are applied to
reduce the number of possible labels. The underlying ML algorithms are described
in Chapter 4. To make sure that these tools are good starting points for adaptation,
we compare them with other tools as baselines. For this, we use all the tools with
their default settings.
For POS tagging, we compare Marmot with HunPos (Halácsy, Kornai, and Oravecz

2007) and RFTagger (Schmid and Laws 2008). Especially RFTagger and the closely
related TreeTagger (Schmid 1995) are often used in DH contexts, e. g., by Echel-
meyer, Reiter, and Schulz (2017) who train the TreeTagger on GMH. Both, HunPos
and RFTagger, are similar in that they are HMM taggers. But they di�er in some
details, which we describe brie�y in the next paragraphs.
HunPos is a trigram HMM tagger based on ideas found in TnT (Brants 2000). In

addition to using trigrams for the transition probabilities, tag bigrams are used for
the emission probabilities as well. OOV words are handled by learning probabilities
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over classes of infrequent words with the same su�xes and using these probabilities
for calculating the emission probabilities of OOV words.
RFTagger allows to choose the number of previous tags considered for the tran-

sition probabilities. Similar to HunPos, we use the two preceding tags. Emission
probabilities are only based on the current tag. For the emission probabilities of
OOV words, the RFTagger uses classes of known words with the same su�x as
well. The main di�erence between the two taggers is that the RFTagger uses de-
cision trees for the transition probabilities. This method has been introduced by
Schmid (1994). The decision trees use binary tests on the identity of the preceding
tags to assemble the tag n-grams in di�erent classes. The probabilities are then
calculated for the di�erent classes in the training data. While the description of
the classes can use the identity of all tags in the n-gram, it can also incorporate
the identity of only one or two of the three tags. Therefore, with limited training
data, small classes of exact tag n-grams that would be used in the standard MLE
estimation of the probabilities are avoided. This is useful in low-resource scenarios.
Another feature of the RFTagger�that it shares with Marmot�is that it de-

composes POS tags with morphological descriptions in order to estimate transition
probabilities. However, since we only use POS tags without morphological descrip-
tion in the experiments, this feature is not used.
Marmot di�ers from HunPos and RFTagger in that it employs a CRF instead of

an HMM. It uses a pruned CRF as described in Section 4.7.2 to allow for e�ective
training of higher-order CRFs. In our experiments, we use a second-order CRF. So
Marmot will use tag trigrams as well as HunPos and RFTagger.
Since Marmot is a CRF tagger, words are represented by features extracted by fea-

ture functions. Marmot uses the following features as described by Müller, Schmid,
and Schütze (2013):

[T]he current, preceding and succeeding words as unigrams and bigrams
and for rare words pre�xes and su�xes up to length 10, and the occur-
rence of capital characters, digits and special characters. We de�ne a
rare word as a word with training set frequency ≤ 10. We concatenate
every feature with the POS [. . . ] tag [. . . ].

[. . . ] We also use an additional binary feature, which indicates whether
the current word has been seen with the current tag or � if the word is
rare � whether the tag is in a set of open tag classes.

(p. 325)

In the POS tagging experiments using additional unlabeled data, we use word
representations as additional features for Marmot as described in Müller and Schütze
(2015).
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In the lemmatization experiments, we always assume that the data contains POS
tags and use the gold POS tags when training and when applying the tools. As
baseline, we use a simple POS dependent lookup, i. e., known combinations of type
and POS tag are lemmatized with the corresponding lemma that appears most
frequently in the training data. OOV words are lemmatized with the type itself.
This method is implemented in a script which is contained in the RFTagger release
and is used to supply the lemmatization when using the RFTagger.33

The main approach to lemmatization that we use is Lemming (Müller et al. 2015).
As described in Section 4.6, Lemming combines a log-linear model with a support
function to exclude unlikely lemmas from the calculation. The support function
applies ETs that are learned individually for the di�erent POS tags from the training
data. For a given word, lemma candidates are generated with the learned ETs. The
word that is to be lemmatized, w, is represented for the log-linear model of Lemming
with the following features as described by Müller et al. (2015):

We use the following three edit tree features of Chrupaªa (2008). (i) The
edit tree e. (ii) The pair 〈e, w〉. This feature is crucial for the model to
memorize irregular forms, e.g., the lemma of was is be. (iii) For each form
a�x (of maximum length 10): its conjunction with e. These features
are useful in learning orthographic and phonological regularities, e.g.,
the lemma of signalling is signal, not signall.

We de�ne the following alignment features. Similar to Toutanova and
Cherry (2009) (TC), we de�ne an alignment between w and l. [. . . ]
[T]he alignment of umgeschaut-umschauen is: u-u, m-m, ge-ε, s-s, c-c,
h-h, a-a, u-u, t-en. Each alignment pair constitutes a feature in our
model. [. . . ]

We de�ne two simple lemma features. (i) We use the lemma itself as a
feature, allowing us to learn which lemmata are common in the language.
(ii) Pre�xes and su�xes of the lemma (of maximum length 10). This
feature allows us to learn that the typical endings of Spanish verbs are
ir, er, ar.

[. . . ] For each feature listed previously, we create a conjunction with the
POS [. . . ].

(pp. 2269�2270)

In the following section, we present existing approaches to adapt tools for POS
tagging and lemmatization to historical data.

33. The script is called lemma-lookup.perl and is found in the folder cmd of the RFTagger release
(https://www.cis.uni-muenchen.de/~schmid/tools/RFTagger/data/RFTagger.zip, last visited
October 4, 2021).

113

https://www.cis.uni-muenchen.de/~schmid/tools/RFTagger/data/RFTagger.zip


Chapter 8. Dealing with Spelling Variation for Natural Language Processing

8.2. Strategies for Dealing with Spelling Variation

Spelling variation negatively a�ects tools for automatically annotating or working
with natural language data. In this section, we present existing work using di�erent
approaches for automatically annotating historical texts. On page 7 in Section 1.1,
we have identi�ed two general ways for dealing with spelling variation: (1) adapting
the respective tool to the non-standard data and (2) using automatic procedures for
simpli�cation and spelling variant detection as presented in Chapter 6 and Chapter 7
to remove the variation before applying a tool. In Section 8.3 and Section 8.4, we
present case studies to see how these two general ways can be used to mitigate the
e�ects of spelling variation on the basic NLP tasks POS tagging and lemmatization.
While spelling variation is an important aspect when working with historical data

like texts from GML, there are other problems that have to be faced as well. One
of these is the low-resource nature of historical texts: Annotated training data is
sparse and also unlabeled data for supporting domain adaption methods and semi-
supervised approaches is not as readily available as it is for most contemporary
languages. Hence, we concentrate on low-resource settings, i. e., training a POS
tagger/ lemmatizer and the tools to deal with spelling variation on a small amount
of data. However, for POS tagging we also look at a third option to improve the
performance: the usage of available external resources, mainly additional unlabeled
texts.
In the following part, we give an overview of the usage of these three strategies

in the existing literature:
1) Tool adaptation. Tool adaptation can be done by including speci�c features

to the models that allow them to learn spelling variation patterns. One example
for this is the solution used by Koleva et al. (2017), who present experiments on
GML texts with a memory-based learner and a CRF tagger with di�erent sets
of features that include, among others, pre�x and su�x n-grams. The authors
conclude that a tagger using such features handles spelling variation itself while
applying the rule-based simpli�cation Kol (cf. Chapter 6), which the authors refer
to as normalization, only leads to marginal improvements of the tagging accuracy.
For lemmatization, Kestemont, Daelemans, and de Pauw (2010) use a memory-
based learner for Middle Dutch texts. For OOV words, they produce known words
that have a high probability of being a spelling variant and use their lemmatization
in the training data to predict the lemma of the unknown word.
In Section 8.3.2, we present experiments with adding additional features to Mar-

mot, a CRF-based POS tagger. In Section 8.4.2, we present experiments with
Lemming, a statistical lemmatizer where the labeling approach for lemmatization
(cf. Section 4.6) is adapted to deal with spelling variation by incorporating lemmas
of likely spelling variants in the support function.
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2) Reduction of spelling variation. This approach deals with spelling varia-
tion not within the used tools, but in a preprocessing step. Dipper (2010) performs
tagging experiments on a corpus of GMH texts�an early version of a part of the
ReM�in three di�erent versions (cf. Section 2.2): A strict transcription that cap-
tures many peculiarities of the script, for example superposed characters, a simpli�ed
version, where most of these peculiarities are removed, e. g., superposed characters
are brought into sequence, and a normalized version where spelling variation is re-
duced by mapping the words to an arti�cial GMH standard that is traditionally
used by philologists. Dipper's experiments show that training and tagging lead to
better results with more variation removed: Normalized data is better than simpli-
�ed data, which in turn is better than using the strict transcription. Rule-based
simpli�cation is also employed in other works, e. g., by Adesam and Bouma (2016)
for POS and morphological tagging of Old Swedish.
One limitation for these approaches is that the simpli�cation as well as the nor-

malization has been done with manually created rules or semi-automatically and�
to our knowledge�there is no work that explores the utility of simpli�cation with
automatically learned rules or automatic normalization in the sense of mapping
words to a standard form when training a tagger except the work of Goot, Plank,
and Nissim (2017), who present experiments on English tweets. They come to the
conclusion that while normalization improves tagging accuracy, using word represen-
tations obtained from a large amount of unlabeled data gives larger improvements.
Combining both only leads to small improvements over using only word representa-
tions. However, this might be di�erent in low-resource settings since there is fewer
data available for obtaining good word representations.
Loga£ev, Goldschmidt, and Demske (2014) as well as Barteld, Schröder, and

Zinsmeister (2015) improve the results for POS tagging by detecting likely pairs
of spelling variants and substituting unknown words with a known word that is
a spelling variant. One way to learn spelling variation patterns for POS tagging
and/ or lemmatization is using distant or weak supervision, by not learning patterns
from exact spelling variant pairs but leveraging the given annotation to approximate
spelling variant pairs (Kestemont, Daelemans, and de Pauw 2010; van Halteren and
Rem 2013; Loga£ev, Goldschmidt, and Demske 2014).
In Section 8.3.3 and Section 8.4.3, we present experiments with rule-based sim-

pli�cation, normalization and spelling variant detection for reducing variation when
training and applying a POS tagger/ lemmatizer.
3) Usage of external resources. The usage of external resources mainly aims

at overcoming the lack of training data. External resources can be as simple as
additional unlabeled texts. But they can also be existing tools. In the case that
a closely related standardized variant exists, normalization to this variant can be
used to apply tools that exist for this variant to the non-standard data achieving
reasonable results (Bollmann 2013b; Tjong Kim Sang et al. 2017). However, the
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datasets in our experiments di�er substantially more from contemporary Standard
German than e. g., Early New High German that has been used in the experiments
of Bollmann (2013b). While there have also been experiments to combine normal-
ization with domain adaptation (Yang and Eisenstein 2016), we do not aim to apply
a POS tagger developed for contemporary German to the data after normalization.
However, instead of directly using the annotation provided by the tools for the stan-
dardized language, these annotations can also be added as a feature when training
an annotation tool on the non-standard data.
In Section 8.3.4, we present experiments with applying a POS tagger trained

on normalized GMH text on automatically normalized texts and on using word
embeddings learned on additional unlabeled data.

8.3. Experiments with Part-of-Speech Tagging

In this section, we present our experiments with POS tagging on the ReN and the
ReM, using the tools described in Section 8.1. In order to overcome the problems
that spelling variation poses to these tagging approaches, we experiment with the
di�erent techniques described in Section 8.2. After establishing baselines by training
the taggers with their default settings in Section 8.3.1, we compare the e�ects of
using an adapted feature set for the CRF tagger Marmot (Section 8.3.2), reducing
the spelling variation before training and applying the tagger (Section 8.3.3) and
making use of additional information from external resources (Section 8.3.4).

8.3.1. Baselines

We train the taggers described in Section 8.1 with their standard settings on the
data to establish some baselines.34 Table 8.1 on the next page shows the results for
the tagger on the strict version of the datasets.35 Marmot leads to the best results
across both datasets. Signi�cant improvements over the tagger below are marked
with `*'.36

In the following sections, we look into how to improve these results with 1) tool
adaptation, 2) reduction of spelling variation, and 3) the usage of external resources.

34. HunPos needs a token consisting only of digits in the training data in order to run successfully.
Since our ReM training data does not contain such a token, we have added one to the data.
35. Tagging results are given as accuracies in percentage points (cf. Section 4.2).
36. For all experiments, we use McNemar's test (McNemar 1947) with continuity correction

(Edwards 1948) and a signi�cance level of 0.05 (cf. Section 4.2).
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Tagger ReM ReN

Marmot 84.05* 85.44

HunPos 82.32 84.78*
RFTagger 81.68 83.95

Table 8.1.: POS tagging results for the baselines (development set). `*' marks a
signi�cant improvement over the tagger below.

8.3.2. Tool Adaptation

Spelling variation increases the risk for a tagger to encounter OOV words, how-
ever spelling variants themselves will often show a large character overlap (cf. Sec-
tion 4.8). Therefore, taking subword information into account seems promising for
tagging historical texts as Dipper (2010) has pointed out. In this section, we present
experiments on tagging the strict version of the texts using character n-gram fea-
tures.
All the baseline taggers already use character n-gram information in some way.

Both RFTagger and HunPos use su�x information to estimate tag probabilities for
unknown words, the maximum length of the su�xes is set to 7 (RFTagger) and
10 (HunPos). Marmot uses pre�xes and su�xes up to a given length as features
for rare words, length 10 in the standard settings. To get an insight about the
impact of subword information, we set the maximum a�x length for Marmot to
{4, 7, 10, 13, 16}. Next to pre�x and su�x features, Marmot also allows integrating
in�x features, which is disabled by default. The length of the in�xes is also governed
by the maximum length parameter. The results for the di�erent lengths with and
without the usage of in�xes are given in Table 8.2 on the following page.
While the best settings di�er for the datasets, there are two general points: 1)

Without in�x features, the numbers show that the increase in the length from 4
to 7 leads to a high increase in accuracy while higher a�x lengths only change the
accuracy marginally, so the default value of 10 is a reasonable choice for our datasets
as well. 2) Adding in�x features leads to improvements for both datasets, however
they are only signi�cant in the case of the ReM. The maximum length of character
n-grams does not lead to signi�cant di�erences in the accuracy when using in�x
features. We use length 4, which leads to the best results for the ReM, for further
experiments.
In the default settings of Marmot, rare words are de�ned as words with a training

data frequency of up to 10. For Modern German, Marmot has been trained on the
�rst 40,474 sentences of the TIGER treebank (Müller, Schmid, and Schütze 2013).
This is a substantially larger dataset than the 12,000 tokens used here. Hence,
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Max. length In�x ReM ReN

16 + 84.83* 85.91
13 + 84.83* 85.91
10 + 84.84* 85.94

7 + 84.88* 85.86
4 + 84.93* 85.89

16 - 84.07 85.51

13 - 84.12 85.51

10 - 84.05 85.44

7 - 84.15 85.38
4 - 83.94 84.88#

Table 8.2.: POS tagging results with character n-gram features (development
set). `*' marks a signi�cant improvement over the standard settings
(Max. length 10, without in�xes), `#' marks a signi�cant loss in perfor-
mance.

using the same frequency threshold leads to an e�ectively lower threshold for rare
words. Still, it might be useful to include character n-grams for more words in
order to enable the tagger to learn spelling variation patterns. We experiment with
setting the maximum frequency for rare words to {5, 10, 15, 20, 25, 30, 35, 40,∞}.
The results in Table 8.3 on the next page show that 10 is a reasonable default for
our data as well: Higher thresholds up to 30 seem to give better results but the
improvements are not signi�cant. We set the frequency for rare words to 30 for
further experiments as this gives the best results for both datasets. Adding the
features to all words (∞) does not improve the tagging accuracy.
Summing up, we can state that the tagging accuracy of Marmot can be improved

for both datasets by adding in�x features and using higher frequency thresholds for
rare words than for Modern German. The utility of these features seems to depend
on the amount of spelling variation in the data as the di�erences are higher for
the ReM, which has a higher proportion of variation (see Table 2.1 on page 24). In
the following experiments, we call Marmot with the original feature set Marmot-orig
and with the tweaked feature set�using pre�xes, su�xes and in�xes of length up to
4 for words with a frequency up to 30 in the training data�Marmot-hist. Table 8.4
on the next page gives a comparison of both on the test sets. While Marmot-hist is
signi�cantly better than Marmot-orig for the ReM, it turns out that Marmot-orig
is better than Marmot-hist for the ReN. However, on this dataset the di�erence is
not signi�cant.
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Freq. ReM ReN

∞ 84.81 86.09
40 84.89 85.91
35 84.93 86.06
30 85.06 86.16

25 85.03 86.12
20 84.86 86.04
15 85.04 86.16

10 84.93 85.89

5 84.96 85.61

Table 8.3.: POS tagging results with di�erent frequency thresholds for rare words
(development set).

Tagger ReM ReN

Marmot-hist 85.86* 83.71
Marmot-orig 84.28 84.15

Table 8.4.: POS tagging results for Marmot with original feature set (Marmot-
orig) and a feature set tweaked for historical texts with spelling vari-
ation (Marmot-hist) (test set). `*' marks a signi�cant improvement of
Marmot-hist over Marmot-orig.
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Tagger ReM ReN

Marmot-hist 85.98* 86.12

Marmot-orig 85.55 85.81

Table 8.5.: POS tagging results with simpli�cation (development set). `*' marks
a signi�cant improvement over tagging the strict version with Marmot-
hist.

8.3.3. Reduction of Spelling Variation

In the previous section, we have looked into character n-gram features to enable
the tagger to better deal with spelling variation. An alternative approach is to
preprocess the texts and remove spelling variation before applying the tagger. In
this section, we look into di�erent ways to achieve this and how they interact with
the enhanced feature set of Marmot-hist.
A simple way to reduce spelling variation is simpli�cation (cf. Chapter 6). One

example for GMH would be to substitute the long s (ſ) with a regular round s,
removing the variation between these two characters. For experiments with this
approach, we use the simple version of the texts (cf. Section 2.2). Table 8.5 con-
tains the tagging accuracy when training and tagging on simple. For the ReM, the
accuracy improves signi�cantly by nearly 1% point with Marmot-hist. Marmot-
orig even improves further, rendering the di�erences between both variants of the
tagger as insigni�cant, indicating that the in�x features actually capture spelling
variation and are less useful for datasets with less variation. Regarding the ReN,
simpli�cation only improves the tagging results for Marmot-orig.
To further investigate the impact of using in�x features, we again experiment with

setting the maximum frequency for rare words to {5, 10, 15, 20, 25, 30, 35, 40,∞}.
Table 8.6 on the facing page shows that in�x features help to improve the tagging
accuracy, however, with less variation it is better to add them to fewer words: For
the ReN, thresholds of 35 and 40 show a signi�cant drop in performance compared
to a threshold of 10.
Dipper (2010) has already shown that making use of normalization leads to even

further improvements regarding GMH. Normalization abstracts dialectal di�erences
away. An example for this is the GMH word maiſters (`master'), its simpli�ed
version is maisters with the long s changed to a round s. Its normalized version
again is meisters, which abstracts away from a general variation between ai and ei
in GMH. In the semi-automatically normalized version of the ReM training data37

37. For some types, e. g., punctuation, no normalization is given. In this case, we use the simple
version.
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Freq. ReM ReN

∞ 85.85 86.29
40 85.82 85.92#
35 85.92 85.99#
30 85.98 86.12
25 85.78 86.14
20 85.95 86.19
15 85.95 86.30

10 86.02 86.49

5 85.92 86.14

Table 8.6.: POS tagging results with di�erent frequency thresholds for rare words
and simpli�cation (development set). `#' marks a signi�cant loss in
performance compared to the max. frequency setting of 10.

only 5.56% of the morphological words are realized by more than one type, which
is a substantial reduction of spelling variation (cf. Table 2.1 on page 24).38

For experiments on automatic normalization of the ReM texts we rely on cSM-
Tiser,39 a normalization tool using character-level machine translation that is one
of the best performing systems in the CLIN27 Shared Task (Tjong Kim Sang et al.
2017). The techniques have been described by Ljube²i¢ et al. (2016) and Scherrer
and Erjavec (2016). We train a normalization model with cSMTiser on the train-
ing set using only tokens. The model normalizes 86.23% tokens correctly on the
development set.40

Table 8.7 on the following page shows that tagging accuracy is signi�cantly higher
when tagging the gold normalized version than the strict version for both feature
sets. With automatic normalization the improvement in tagging accuracy is lower.
For the automatically normalized data�as well as for the gold normalization�,
using Marmot-orig leads to better results than using Marmot-hist. Although the
di�erence is not signi�cant, this shows again that the feature engineering has been
tailored to texts with spelling variation.
As an alternative to simpli�cation and normalization, we experiment with the

pipeline approach to spelling-variant detection presented in Chapter 7. We use
spelling-variant detection to substitute OOV words with their detected spelling

38. There is no normalized version of the ReN available.
39. https://github.com/clarinsi/csmtiser, last visited October 4, 2021.
40. Training a model to normalize whole sentences, thereby including token context into the

normalization, has led to worse results with the small amount of training data.
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Tagger Normalization ReM

Marmot-hist gold 89.51*
Marmot-orig 89.71*

Marmot-hist automatic 85.08
Marmot-orig 85.39

Table 8.7.: POS tagging results for normalized Middle High German (development
set). `*' marks a signi�cant improvement over tagging the strict version
with Marmot-hist.

ReM ReN
Tagger spellvar spellvarpos spellvar spellvarpos

Marmot-hist 86.71* 93.27* 87.30* 91.88*
Marmot-orig 86.20* 92.71* 86.67 91.50*

Table 8.8.: POS tagging results with spelling variant substitution � upper bounds
(development set). `*' marks a signi�cant improvement over tagging the
strict version with Marmot-hist.

ReM ReN
Tagger spellvar spellvarnorm spellvarpos spellvar spellvarpos

Marmot-hist 85.69* 85.69* 85.46* 86.37 86.39

Marmot-orig 84.78 84.76 84.71 85.91 85.62

Table 8.9.: POS tagging results with spelling variant substitution using automatic
spelling-variant detection (development set). `*' marks a signi�cant im-
provement over tagging the strict version with Marmot-hist.
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variant if possible. To get an impression of how much improvement is possible
with this technique, we calculate upper bounds by substituting OOV words with
the most frequent spelling variant from the training data if one exists. Spelling
variants are de�ned by having the same POS tag, morphology and lemma (spellvar)
(cf. Chapter 3). Since not only correct substitutions will help the tagger but also
substitutions with another known word that just has the same POS or distribution
(Barteld, Schröder, and Zinsmeister 2015; Kolachina, Riedl, and Biemann 2017), we
also substitute OOV words with the most frequent known type that has the same
POS (spellvarpos). This can be seen as a weakly supervised learning scenario for
spelling-variant detection as described in Section 4.1.2. Table 8.8 on the preceding
page shows the results for these upper bounds. In contrast to the experiments
with normalization above, this time Marmot-hist performs better than Marmot-
orig. This can be explained by the fact that the variation is not reduced in the
training data. With spelling variant substitution, we achieve an improvement that
is larger than the improvement obtained with automatic normalization but lower
than the improvement using the gold normalization. Applying the not-so-strict
de�nition of spelling variation, leads to substantial gains, which we attribute to the
fact that this excludes unseen words in the task of POS tagging.
For automatic spelling-variant detection, we use a type-based approach as these

led to better results in the OOV-eval setting than the token-based �lter (cf. Sec-
tion 7.2.3). We use a simple generator without the �ne tuning of the edit distance
for GML that we have presented in Section 7.1 to obtain results for a simple version.
So, for all unknown types in the development data, we select all known types with a
Levenshtein distance (Levenshtein 1966) of 1 as candidates and �lter this set using
a Bagging-SVM (cf. Section 7.2.2). We only use aligned character n-gram features
for the SVM as we assume no existing background corpus to learn word representa-
tions on. From the spelling variants identi�ed by this method, we choose the most
frequent type (measured on the training data) for substitution of the OOV word.
Training pairs for the spelling-variant detection can be obtained in di�erent ways.

We test three settings: 1) using lemma, POS and morphology (spellvar), 2) using
the normalization (spellvarnorm), and 3) using only POS (spellvarpos). While 1) and
2) lead to reliable training data, option 3), the weakly supervised setting (cf. Sec-
tion 4.1.2), leads to more noisy training data. However, this option is especially
interesting in a low-resource setting as no additional annotation or data is needed.
Table 8.9 on the facing page shows that substituting automatically detected

spelling variants for OOV words results in improvements of the tagging accuracy
that are comparable to the improvements obtained with automatic normalization.
As with the upper-bound experiments, Marmot-hist gets better results. Using only
the POS annotation gives results that are only slightly worse than the ones with
more reliable training data. In the case of the ReN, they are even slightly better
than those.
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ReM ReN
Tagger strict norm simple spellvar spellvarpos strict simple spellvar spellvarpos

Marmot-hist 85.86 87.02* 87.15* 86.47* 85.99 83.71 84.70 84.38 84.01
Marmot-orig 84.28 86.87* 85.88 85.14# 84.91# 84.15 84.45 84.81* 84.65*

Table 8.10.: POS tagging results with spelling variant reduction (test set). `*' marks
a signi�cant improvement over tagging the strict version with Marmot-
hist for the ReM and Marmot-orig for the ReN, `#' marks a signi�cant
loss in accuracy.

Table 8.10 shows a comparison of automatic normalization, simpli�cation and
spelling variant substitution trained with lemma, POS and morphology and only
POS on the test set. All the methods for spelling reduction improve the respective
tagger. For the ReM, the combination of Marmot-hist and simpli�cation leads to
the best results. For the ReN, this combination leads to the second best result. We
obtain the best results with the combination of Marmot-orig and spelling-variant
detection using lemma, POS and morphology.

8.3.4. External Resources

In the previous sections, we have limited ourselves to using approximately 12,000
tokens as training data, for some experiments exploiting additional annotations like
normalization or lemma. In this section, we experiment with using other resources in
addition to the training data. These fall into two categories: word representations
learned on additional unlabeled data (cf. Section 4.8.2) and�in the case of the
ReM�an existing tagger for normalized GMH.
For additional unlabeled data, we use the texts from the corpora that are not

used in the POS tagging experiments. In the case of the ReM these are 392 texts,
2,437,090 tokens, in the case of the ReN only 44 texts, 259,192 tokens. We try
three di�erent ways to obtain word representations from these datasets: PPMI-
SVD, SGNS and fastText (cf. Section 4.8.2). For PPMI-SVD and SGNS, we use
hyperwords (Levy, Goldberg, and Dagan 2015). We run the tools with standard
settings on the additional texts and use the resulting word representations as an
additional feature for Marmot (Müller et al. 2015). While fastText allows obtaining
representations for OOV words by summing the representations of character n-
grams, we do not use this feature as Marmot needs to be trained with a �xed set
of word representations. However, learning representations for words and character
n-grams simultaneously is �according to Bojanowski et al. (2017)�bene�cial for
small datasets and improves the representations for rare words. It might help in the
case of spelling variation as well.
Table 8.11 on the facing page shows the results for tagging the strict version

using the di�erent representations. Marmot-hist leads to the best results since
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ReM ReN
Tagger PPMI-SVD SGNS fastText PPMI-SVD SGNS fastText

Marmot-hist 85.26 85.22 85.95* 86.21 86.32 86.37

Marmot-orig 84.30# 84.25# 85.24 85.52# 85.56# 85.82

Table 8.11.: POS tagging results with word embedding feature (development set).`*'
marks a signi�cant improvement over tagging the strict version with
Marmot-hist, `#' marks a signi�cant loss in accuracy.

ReM ReN
Tagger PPMI-SVD SGNS fastText PPMI-SVD SGNS fastText

Marmot-hist 85.69* 85.67* 86.20* 86.35 86.55 86.25
Marmot-orig 85.08 85.04 85.78* 85.89 85.97 85.97

Table 8.12.: POS tagging results with word embedding feature and spelling-variant
detection (development set).`*' marks a signi�cant improvement over
tagging the strict version with Marmot-hist.

we do not reduce variation in the training data. All three embedding approaches
lead to improvements that are comparable with the results obtained by automatic
normalization and spelling-variant detection. fastText gives the best results for
both datasets, but only for the ReM the improvement is signi�cant over tagging the
strict version with Marmot-hist. The reason for the small improvement might be the
rather small amount of unlabeled data for the ReN. Tuning the hyperparameters
of the embedding methods, e. g., reducing the number of dimensions, might yield
further improvements.
We also combine the embedding feature with spelling-variant detection trained

with lemma, POS and morphology, see Table 8.12. By combining both, again there
is a small improvement. For the ReM, this improvement is signi�cant for all types
of embeddings. For the ReN, there is no signi�cant improvement over Marmot-hist,
indicating that the combination of in�x features and word representations already
covers a lot of the spelling variation.
For GMH, there exists an independently created model for the TreeTagger (Echel-

meyer, Reiter, and Schulz 2017). The tagset used to train the model is coarse-
grained, consisting of only 18 tags. We use the tags predicted by this tagger as an
additional feature for Marmot. We expect this TreeTagger model to work better
on the normalized version of ReM than on the other versions, because the Tree-
Tagger model has been trained on data from the Mittelhochdeutsche Begri�sdaten-
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TreeTagger
Tagger strict norm

Marmot-hist 85.21 88.16*
Marmot-orig 84.83 87.83*

Table 8.13.: POS tagging results for Middle High German with additional part-of-
speech tags (development set).`*' marks a signi�cant improvement over
tagging the strict version with Marmot-hist.

Tagger Normalization ReM

Marmot-orig automatic 87.35*
gold 90.24

Table 8.14.: POS tagging results for normalized Middle High German with addi-
tional part-of-speech tags (development set).`*' marks a signi�cant im-
provement over tagging without the additional part of speech (POS)
feature.

bank (Middle High German Conceptual Database)41, which contains texts from edi-
tions that consist of normalized GMH. This is con�rmed by the results of training
Marmot-orig and Marmot-hist on the strict version of the texts adding as additional
feature the tag produced by the TreeTagger model a) on the strict version, or b) on
the normalized version, see Table 8.13.
When using the TreeTagger tags generated on the strict version, there is no sig-

ni�cant improvement compared to tagging the texts without the additional feature.
We conclude that we need normalized input to get good improvements from the
tagger in this particular setting. Hence, we also train our tagger on the normalized
data. As Marmot-orig performs better for the normalized data, we only use the
original features. Table 8.14 shows the results when training the tagger on normal-
ized data with added tags as predicted by the TreeTagger model. Adding the tags
as features leads to signi�cant improvements only for automatic normalization.

8.4. Experiments with Lemmatization

In this section, we present our experiments with lemmatization of GMH and GML
(cf. Section 2.4). We look at the two main approaches of dealing with spelling

41. http://mhdbdb.sbg.ac.at/, last visited October 4, 2021.
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ReM ReN

Lookup (simple) 75.68* 80.69#
Lemming (strict) 74.84* 83.55*

Lookup (strict) 72.31 80.26

Table 8.15.: Lemmatization results for the baselines (development set). `*' marks a
signi�cant improvement over the tagger below. `#' marks a signi�cant
loss in accuracy.

variation described in Section 8.2: (i) tool adaptation (Section 8.4.2), and (ii) the
reduction of spelling variation in the texts (Section 8.4.3). We use the tools for
lemmatization described in Section 8.1. For all the experiments, we use gold POS
tags for the training, development and test data.

8.4.1. Baselines

As a baseline, we use a simple lookup approach to lemmatization, using the most
frequent lemma for a given pair of word form and POS tag that appears in the
training data. We compare this with Lemming using the default settings. The
results for both approaches are shown in Table 8.15.
As can be seen, Lemming outperforms the simple lookup approach on both

datasets when using the strict version. Therefore, it is a good starting point for
adaptation to non-standard texts. To show the e�ect of spelling variation, the table
also contains the results for the lookup approach using the simpli�ed tokens. For
the ReN, where simpli�cation reduces the amount of spelling variation only from
18.11% to 16.81% (cf. Table 2.1 on page 24), Lemming outperforms both lookup
approaches. For the ReM, where the spelling variation is reduced from 22.81% to
18.12% (cf. Table 2.1 on page 24), using the simple version with the lookup-based
lemmatization leads to a better result than applying Lemming to the strict version
of the texts. However, as we see in the experiments with reducing spelling variation,
Lemming leads to better results on this version of the texts as well (cf. Table 8.19
on page 130).

8.4.2. Tool Adaptation

Barteld, Schröder, and Zinsmeister (2016) have introduced two additions to Lem-
ming: LCs as a means of generating lemma candidates (as opposed to the original
ETs) and a generator that uses known lemmas from predicted spelling variants
in addition to the candidates generated by the ETs or LCs. The authors have
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introduced LCs mainly as a means to deal with morphological word-internal mod-
i�cations. Word-internal modi�cations, however, are also introduced by spelling
variation. Hence, we use LCs for our adaptation of Lemming. Table 8.16 shows the
results of lemmatizing the ReM and the ReN using Lemming with ETs (Lemming-
ET ) and with LCs (Lemming-LC ). For both, the ReM and the ReN, using LCs
leads to slightly better results. However, the di�erences are both not statistically
signi�cant.

Tagger ReM ReN

Lemming-LC 75.05 83.73

Lemming-ET 74.84 83.55

Table 8.16.: Lemmatization results for Lemming with Edit Trees and Lexical Cor-
respondences (development set).

For the second addition, we use an adapted support function for Lemming (cf. Sec-
tion 4.6) to not only use lemmas generated by ETs or LCs as potential labels, but
also lemmas that appear with spelling variants of the target word in the train-
ing data. For spelling variant detection, we do not apply the methods of Barteld,
Schröder, and Zinsmeister (2016). Instead, we use the pipeline approach presented
in Chapter 7 with the same settings as in the POS tagging experiments (cf. Sec-
tion 8.3.3). We train the spelling variant detection using a weak supervision ap-
proach (cf. Section 4.1.2) with POS tag and lemma to de�ne spelling variants. As
Lemming uses POS tags as features, lemmas and POS tags are both available in
the training data. Table 8.17 on the facing page shows the results. Adding informa-
tion about spelling variation into the support function improves the lemmatization
signi�cantly. Again the di�erences between ETs and LCs are not statistically sig-
ni�cant. For the ReM, when using LCs the results are slightly better, for the ReN
they are slightly worse.
For further experiments, we distinguish between Lemming-orig, using ETs to

generate lemma candidates, and Lemming-hist, using LCs and spelling variants to
generate lemma candidates. Table 8.18 on the next page shows the results for
both variants of Lemming on the test set. These results show that Lemming-hist
outperforms Lemming-orig on both datasets.

8.4.3. Reduction of Spelling Variation

As an alternative�or addition�to adapting the annotation tool, we present ex-
periments with removing spelling variation in the data. Table 8.19 on page 130
gives the results with the simple version of the texts. For comparison, we repeat
the results for the lookup approach. The results show that the spelling variation
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Tagger ReM ReN

Lemming-LC 79.63* 86.60*
Lemming-ET 79.47* 86.64*

Table 8.17.: Lemmatization results for Lemming with Edit Trees and Lexical Corre-
spondences and spelling variant generator (development set). `*' marks
a signi�cant improvement over the respective Lemming version without
spelling variant handling.

Tagger ReM ReN

Lemming-hist 78.79* 86.09*

Lemming-orig 74.10 82.48

Table 8.18.: Lemmatization results for Lemming with Edit Trees (Lemming-orig)
and Lemming with Lexical Correspondences and spelling variant gen-
eration (Lemming-hist) (test set). `*' marks a signi�cant improvement
of Lemming-hist over Lemming-orig.

handling in Lemming-hist is capable of handling spelling variation such that using
Lemming-orig with the simple versions leads to worse results than using Lemming-
hist with the strict version (cf. Table 8.17). For the ReM, combining Lemming-hist
with the simple version improves lemmatization. For the ReN there is no signi�cant
di�erence between using Lemming-hist with the simple and with the strict version.
The outcome of the two approaches is similar to the outcome that we have already
seen with POS tagging (cf. Table 8.5 on page 120).
For the ReM, we also use the normalized version of the texts. For automatic

normalization, we apply the same cSMTiser model as for POS tagging (cf. Sec-
tion 8.3.3). Table 8.20 on the next page shows the results. Normalization improves
the results compared to tagging the strict version�irrespective of using Lemming-
orig or Lemming-hist. While using Lemming-hist still improves the results signi�-
cantly for normalized data, the di�erences are less pronounced than when lemma-
tizing the strict or simple version. This shows that the additions introduced in
Lemming-hist are less necessary for data with less spelling variation.
As a last experiment with reducing spelling variation in the data, we substitute

OOV words with spelling variants. Table 8.21 on page 131 shows the results for an
upper-bound using gold spelling variants for the substitution with both the exact
spelling variants and the spelling variants approximated with POS tag and lemma.
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Tagger ReM ReN

Lemming-hist 82.60* 86.92

Lemming-orig 78.83# 83.93#
Lookup 75.68# 80.69#

Table 8.19.: Lemmatization results for Lemming-orig and Lemming-hist on the sim-
ple version (development set). `*' marks a signi�cant improvement over
tagging the strict version with Lemming-hist, `#' marks a signi�cant
loss in accuracy.

Tagger Normalization ReM

Lemming-hist gold 86.99*

Lemming-orig 86.38*

Lemming-hist automatic 81.76*

Lemming-orig 81.28*

Table 8.20.: Lemmatization results for normalized Middle High German (develop-
ment set). `*' marks a signi�cant improvement over tagging the strict
version with Lemming-hist.
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ReM ReN
Tagger spellvar spellvarposlemma spellvar spellvarposlemma

Lemming-hist 82.83* 85.87* 88.84* 90.89*
Lemming-orig 81.38* 85.60* 87.52* 90.82*

Table 8.21.: Lemmatization results with spelling variant substitution � upper-
bounds (development set). `*' marks a signi�cant improvement over
tagging the strict version with Lemming-hist.

ReM ReN
Tagger spellvar spellvarposlemma spellvar spellvarposlemma

Lemming-hist 79.77 79.95* 86.82 86.82
Lemming-orig 78.73# 79.77 85.79# 86.75

Table 8.22.: Lemmatization results with spelling variant substitution using auto-
matic spelling variant detection (development set). `*' marks a signif-
icant improvement over tagging the strict version with Lemming-hist,
`#' marks a signi�cant loss in accuracy.

This improves the results in all settings. Lemming-hist always leads to better results,
however, the di�erences are again less pronounced.
Table 8.22 shows the results for using automatic spelling variant detection with

the same approach as used for the adapted support function of Lemming (cf. Sec-
tion 8.4.2). We compare using the actual spelling variants for training the pipeline
(spellvar) and using weak supervision with only POS tag and lemma for �nding
spelling variant pairs (spellvarposlemma). Spelling variant substitution improves the
performance of Lemming-orig in all settings. Yet, in comparison with Lemming-
hist on the strict version, the performance is slightly worse for spellvar and slightly
better, but not statistically signi�cant, for spellvarposlemma. Combining the usage of
Lemming-hist with spelling variant substitution does improve the accuracy slightly
for the ReM. For the ReN the accuracy is slightly better as well but not statisti-
cally signi�cant. However, it is not surprising that substituting predicted spelling
variants does only slightly improve the results since Lemming-hist already uses the
predicted spelling variants for lemma candidate generation.
Table 8.23 on the following page shows the results for the di�erent ways of re-

ducing spelling variation on the test set. Except for normalization, using Lemming-
hist on the strict version outperforms using Lemming-orig with spelling variant
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ReM ReN
Tagger strict norm simple spellvar spellvarposlemma strict simple spellvar spellvarposlemma

Lemming-hist 78.79 82.02* 81.08* 79.00* 78.98* 86.09 86.62* 86.20 86.17
Lemming-orig 74.10# 81.26* 77.76# 78.03# 78.75 82.48# 83.34# 85.28# 85.81

Table 8.23.: Lemmatization results with spelling variant reduction (test set). `*'
marks a signi�cant improvement over tagging the strict version with
Lemming-hist, `#' marks a signi�cant loss in accuracy.

reduction. Combining Lemming-hist with spelling variant reduction always leads to
improvements that are statistically signi�cant for the ReM but not for the ReN.

8.5. Results

In this chapter, we have investigated training a POS tagger and a lemmatizer for
historical German in a low-resource setting�that is training with only about 12,000
tokens�and we have looked into di�erent ways to deal with spelling variation.
We have found that spelling variation heavily a�ects the performance of the au-

tomatic annotation. Therefore, removing all or most of the spelling variation has
a big impact on the accuracy: Using gold normalization and Marmot without any
adaptations, POS tagging accuracy improves from 84.05% to 89.71% on the devel-
opment set for the ReM. For lemmatization, the accuracy goes up from 74.84% to
86.38% on the same dataset.
However, when not using gold normalization but automatic normalization with a

character-based SMT model trained on the training dataset, the tagging accuracy
drops to 85.39%. For lemmatization, it drops to 81.28%. While these are both
statistically signi�cant improvements, they still need training data for the automatic
normalization. We have evaluated alternative ways to deal with spelling variation
that result in similar improvements without the requirement of training a normalizer.
Firstly, we looked into adapting the tools. For POS tagging, we have evaluated

adding features that enable the model to learn spelling variation patterns. By
adding all character n-grams instead of only pre�xes and su�xes as features for
rare words and adapting the rare word threshold, we have been able to improve
tagging accuracy to 85.06% for the ReM, which is close to the results with automatic
normalization. For the ReN, the dataset with less variation, the improvement in
accuracy using the adapted feature set is not signi�cant on the development set.
On the test set, the original feature set even leads to better results. This shows
that when training a POS tagger on data with spelling variation, it pays o� to use
specialized features instead of simply using the available feature set developed for
standardized languages. However, in�x features�as added for the experiments in
this thesis�only help for data with a certain amount of spelling variation.
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For lemmatization, we have evaluated changing the support function for the lem-
matizer. The main adaptation for spelling variation is to use lemmas that appear
in the training data with spelling variants of OOV words. For the detection of
spelling variants we have applied the pipeline presented in Chapter 7. By training
it with weak supervision, using only the data available when training the lemma-
tizer, we avoid the need for additional data as with normalization. For the ReM the
lemmatization accuracy reaches 79.63%. For the ReN it is 86.60%.
So, for both tasks, we come close to the results obtained with automatic normal-

ization by adapting the tools to better deal with spelling variation.
Secondly, we have evaluated alternatives for normalization to reduce spelling vari-

ation. By applying rule-based simpli�cation in combination with specialized fea-
tures, POS tagging accuracy has improved to 86.02% for the ReM and to 86.49%
for the ReN. The lemmatization accuracy has improved to 82.60% for the ReM and
86.92% for the ReN. So, by creating a small set of rewrite rules to reduce variation,
it is possible to improve tagging accuracy more than with automatic normalization
in a low-resource setting.
As another alternative to normalization, we have evaluated the substitution of

OOV words with automatically detected spelling variants using the pipeline from
Chapter 7. It has been trained using only the information available for the given
task, i. e., POS tags for POS tagging and POS tags and lemmas for lemmatization.
In combination with the specialized feature set, we have reached an accuracy of
85.46% for the ReM, which is similar to the accuracy reached with automatic nor-
malization, and 86.39% for the ReN. For lemmatization, this approach only leads
to minor improvements over simply using the adapted tools: 79.95% (vs. 79.63%)
for the ReM and 86.82% (vs. 86.60%) for the ReN. This is easily explainable as
the adapted lemmatizer already uses the detected spelling variants in the support
function.
Overall, adapting the tools for dealing with spelling variation along with simpli-

�cation and substitution of spelling variants do not lead to the same amount of
improvements in tagging accuracy as using gold normalization does, but they can
be performed automatically with less e�ort. Compared to the automatic normal-
izer trained on 12,000 tokens, we have been able to reach the same or comparable
accuracy without needing any other training data than the data for the POS tagger
and the lemmatizer. Thus, even without any additional data or resources, these
approaches can be used to improve accuracy.
We have shown that the approaches to spelling variation without a reference to a

standard language presented in Chapter 6 and Chapter 7 can be used to improve au-
tomatic annotation with POS tags and lemmas in a low-resource setting. Therefore,
they are a viable alternative to normalization.
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For future work, we see two main research questions:

1. How much training data is necessary to create normalization models that lead
to better tagging results than with the alternative methods presented here?

2. How do the methods explored for this thesis in a low-resource setting behave
with more training data?

The second questions is especially interesting since for historical German the ReM
and the ReN are now fully available, which allows using more training data. In this
context, the methods used here would have to be compared to recent neural net-
work approaches that use character-based recurrent neural networks to create word
representations for POS tagging and additionally sequence to sequence approaches
for lemmatization. Two examples that have been speci�cally designed for historical
texts with spelling variation are RNNTagger (Schmid 2019), which has been tested
on POS tagging the ReM, and PIE (Manjavacas, Kádár, and Kestemont 2019),
which has been tested on lemmatizing the ReN. However, for both approaches sub-
stantially more training data has been used than in our experiments: for training
RNNTagger over 2,000,000 tokens from the ReM and for PIE more than 355,000
tokens from the ReN. It will be interesting to see how these approaches work in
the low-resource setting that we have used in our experiments on the one hand and
how our approaches compare with more training data on the other hand.
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Chapter 9.

Conclusion and Further Work

In this thesis, we have presented approaches to deal with spelling variation, which
is often encountered in non-standard texts, without resorting to a given standard.
Since treating spelling variation as a deviation from a standard�as it is done in
most work on spelling variation�limits the focus of the developed methods to non-
standard texts that are closely related to existing standards, approaching spelling
variation independently of a standard is important. With the methods presented
and evaluated in this thesis, which do not presuppose an existing standard, it is
easier to target languages farther away from any given standard or without training
data for normalization.
To show the similarities and di�erences between the approaches for spelling vari-

ation, we have given formal de�nitions of spelling variation and ways to approach it
like normalization and spelling variant detection in Chapter 3. Consistent with our
basic aim, the given de�nition and measure for quanti�cation of spelling variation in
a corpus do not rely on a given standard. Spelling variation is de�ned and measured
as consistency of the spellings in the corpus.
In Chapter 6 and Chapter 7, we have tested variants of two basic approaches for

handling spelling variation on GML texts. For this, we have used two evaluation
settings that model two basic use cases: searching in non-standard texts as well
as training and applying NLP tools on these non-standard texts (cf. Chapter 5).
The two approaches that we have evaluated are simpli�cation and spelling variant
detection.
Simpli�cation is a common way to reduce spelling variation found in many works

on non-standard texts. Often this is done by applying hand-crafted rules. In this
thesis, we have presented a simple way to de�ne a ruleset by listing corresponding
characters. We have also presented an approach to automatically learn such rules
from given spelling variants.
For spelling variant detection, we have evaluated di�erent string similarity met-

rics and have presented a �ne-tuned edit distance. Combined with Brown clusters
for contextual �ltering, this is a good starting point in unsupervised settings. For
supervised settings, we have presented di�erent ways to learn weights for the di�er-
ence in the surface form and the contexts, getting the best results training an SVM
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for �ltering candidates. Since the context of a token is also relevant for the spelling
variant relation, we have also presented a token-based �lter using a CNN.
Implementations of all the presented approaches are available in our python pack-

age SpellvarDetection (see Appendix B), so that they are readily available for re-
search with non-standard texts and further research into simpli�cation and spelling
variant detection.
In Chapter 8, we have looked at the impact of spelling variation for POS tagging

and lemmatization. Our experiments have shown that by reducing the spelling
variation using simpli�cation or normalization, the accuracy of statistical tools for
automatic annotation can be improved. As an alternative to simpli�cation and
normalization, we have also used spelling variant detection to substitute OOV words
with likely spelling variants. Furthermore, we have presented experiments in which
we have adapted the tools to better handle spelling variation.
After giving a short overview of the main results from our experiments in Sec-

tion 9.1, we outline directions for future work in Section 9.2.

9.1. Main Findings

Regarding simpli�cation, we have found that creating a simple ruleset from corre-
sponding characters as described in Chapter 6 can lead to similar results as perform-
ing simpli�cation with complex handcrafted rules. Therefore, de�ning equivalent
characters for the non-standard language and automatically create simpli�cation
rules from these characters is a good starting point for applying simpli�cation.
When examples for spelling variants are available, equivalent characters can also
be extracted from the data. With the resulting rulesets, we have been able to
outperform two manually created rulesets.
Regarding spelling variant detection, we have found that the Levenshtein dis-

tance, while being coarse-grained, is still usable as a generator for spelling variant
candidates. While we have been able to improve the results with a �ne-tuned edit
distance for GML, still the coarse-grained basic Levenshtein distance is an easy to
use starting point as a generator.
We have achieved the best results �ltering the spelling variant candidates with

an SVM with contextual features (cosine distance between word embeddings) and
surface features (character n-grams around mismatches). While both surface and
contextual features improve the results, we have also achieved good results using
only contextual features. This is especially relevant in low-resource settings where
no background corpus is available to learn word representations from. In our exper-
iments with token-based �ltering, we have been able to improve the results in the
evaluation setting that we have created for search tasks but not in the evaluation
setting for NLP tasks, which focuses on infrequent words.
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Regarding the usage of spelling variant detection in order to improve NLP tasks,
we have found for POS tagging and lemmatization that substituting OOV words
with known spelling variants improves the accuracy for both tasks. This even works
when training the pipeline for spelling variant detection with distant supervision
using only the annotation available for the speci�c task. Therefore, no additional
data is needed. We have compared this approach with adaptations of the tools
to non-standard data. By doing this, we have reached similar and for some tasks
slightly better results than by substituting OOV words. However, while adapting a
tool is di�erent for di�erent tasks, the substitution of spelling variants can always be
applied and is therefore a simple way to improve the performance of NLP tools when
applying them to non-standard data. Moreover, the combination of tool adaptation
and OOV word substitution can further improve the performance
For the ReM, we have also looked at normalization to an arti�cial standard GMH

as a way to reduce spelling variation. While normalization has led to a slightly
better performance for both POS tagging and lemmatization, it needs additional
training data in order to be used. So, if such training data is not available, spelling
variant detection is an easy to use alternative.

9.2. Directions for Future Work

While the approaches in this thesis do not rely on the existence of normalized
training data or even the existence of a target language for normalization, they rely
on the data to be tokenized. Tokenization is an easy task for modern standard
texts in languages where whitespace is systematically used to delimit words. This
is, however, not the case for every writing system (e. g., Chinese, cf. Huang and
Zhao 2006) and also not for the historical non-standard data that we have used in
the experiments. Makarov and Clematide (2020) say that �[t]okenization remains
a challenge for normalization of unpreprocessed non-standard data� (p. 7291). The
same holds for the approaches presented in this thesis. This is especially relevant
in the context of unsupervised settings where spelling variant detection is used to
help users search in unprocessed data.
In order to improve simpli�cation and spelling variant detection for tokenized

texts, there are several directions that appear as promising next steps to us.
The spelling variant candidate generator used in our pipeline depends on a dic-

tionary of types. Types that do not appear in that dictionary cannot be generated.
A promising next step would be to get rid of that dependency. This could probably
be done by using an encoder-decoder architecture. Neural encoder-decoder models
have been applied for normalization e. g., by Lusetti et al. (2018). In order to gen-
erate di�erent spelling variants for a given type, the encoder-decoder model could
be combined with a Variational Auto-Encoder (Kingma and Welling 2014) as for
instance in Serban et al. (2017).

137



Chapter 9. Conclusion and Further Work

Regarding the �lter for spelling variant candidates, instead of the SVM applied in
this thesis, a Siamese Neural Network architecture could be used. Rama (2016) has
applied Siamese CNNs for cognate identi�cation. His experiments lead to promising
results even with small amounts training data.
Another possible branch of improvements comes from using spelling variant de-

tection for simpli�cation. So, instead of learning rules for simpli�cation, one could
use the learned spelling variant relation to select the simpli�ed version from the set
of related spelling variants. If done in a way that makes the dictionary uniform,
i. e., takes variants with the same form for morphemes like ghe and ge, this might
help to model spelling variation better than with simple rules.
Regarding the applications, we have looked into POS tagging and lemmatization

but spelling variant detection might be useful for other tasks as well. While we have
presented spelling variant detection as an alternative to normalization, it would be
interesting to see, if spelling variant detection can be helpful for normalization
approaches. The idea behind this is that normalization approaches have to learn
two things at once: While their aim is to map non-standard words to standard
words, they also have to learn to handle the variation in the non-standard words,
i. e., map di�erent variants of a non-standard word to the same standard word.
Using spelling variant detection and simpli�cation as presented in this thesis might
improve normalization since it could be used to untangle these two tasks.
Two other examples for tasks where spelling variant detection might be useful

are automatic error-detection for annotations and topic modeling. For annotation
error-detection, Dickinson and Meurers (2003) have proposed utilizing variation n-
grams, i. e., type n-grams that appear with di�ering annotations in the corpus, in
order to identify annotation errors in manually annotated texts. We assume that
spelling variation negatively a�ects the recall of this method since spelling variants
will be grouped in di�erent variation n-grams.
Topic modeling (Blei 2012) is popular in DH research (Meeks and Weingart 2012).

That spelling variation can in�uence topics has been noted by Sakr and Hasegawa-
Johnson (2013) who analyze Arabic texts. The authors try reducing the variation
applying hand-crafted rules but are not able to improve topic modeling for their
data. Applying the methods developed in this thesis seems a promising way for
improving topic modeling for texts with spelling variation.
In future work, it would also be interesting to evaluate in detail how the measure

for spelling variation that we have presented correlates with the performance of NLP
tools on given data.
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Appendix B.

SpellvarDetection

An open-source Python implementation of the di�erent approaches for simpli�ca-
tion and spelling variant detection presented in this thesis is available at https:

//github.com/fab-bar/SpellvarDetection. It allows users to create and apply
pipelines for spelling variant detection using the di�erent presented approaches for
generating and �ltering spelling variant candidates for a given type or token.
For the SVM-�lter and bagging, the Python libraries Scikit-learn (Pedregosa et al.

2011) and Imbalanced-learn (Lemaitre, Nogueira, and Aridas 2017) are used. The
CNN-�lter is implemented using Keras (Chollet 2015).
After installing the package and its dependencies, type-based spelling variant de-

tection can be performed using the command spellvardetection generate. This
command takes a list of types for which to generate spelling variants as JSON42 ar-
ray, a description of the pipeline as JSON object, and�if needed by the pipeline�a
dictionary of types from which to generate the candidates. The command returns a
JSON object with the target types as keys and JSON arrays with generated spelling
variant candidates as values.
A token-based �lter can be applied with the command spellvardetection fil-

ter_tokens. This command takes a list of tokens as JSON array and a JSON object
containing spelling variant candidates in the same format as the output of spell-
vardetection generate. A token is a JSON object with the keys type, left_context,
and right_context, which contains the type as a string and the left respectively the
right context as lists of strings. The object can contain additional information, e. g.,
the corpus from which the token is extracted. The output is the list of tokens with
the type-based spelling variant candidates under the key candidates and the �ltered
spelling variant candidates under the key �ltered_candidates.
A more detailed description of how to use the tool can be found at https://

spellvardetection.readthedocs.io. In this chapter, we give an overview of the
JSON description of the di�erent parts of the pipelines used for the experiments in
Chapter 7.

42. https://www.json.org, last visited October 4, 2021.
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B.1. Type-Based Pipelines

B.1.1. Generators

Edit Distance

The Levenshtein distance can be used with the following settings:

{

"type": "levenshtein",

"options": {

"max_dist": 1

}

}

The additional edit operations introduced in Section 7.1.2 can be used by adding
the respective options to this generator. Adding transpositions and repetitions to
the Levenshtein distance and using it with a distance of 1 for generating candidates
can be done with the following options:

{

"type": "levenshtein",

"options": {

"max_dist": 1,

"transposition": true,

"repetitions": true,

"merge_split": false

}

}

In order to use di�erent distance thresholds depending on the length of the given
type, use the following generator (here given with the options for edT,Re with a
maximum distance of 5 which speeds up computation for long types without losses
in recall in our experiments):

{

"type": "levenshtein_normalized",

"options": {

"dist_thresh": 0.2,

"max_dist": 5,

"no_zero_dist": true,

"transposition": true,

"repetitions": true,

"merge_split": false

}

}
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N-Gram Similarity

The n-gram similarity measures described in Section 7.1.1 can be used by using ei-
ther jaccard for the Jaccard Index, proxinette for Proxinette or frequency_wjaccard
for the Jaccard Index with frequency weighting for the features as type of the gen-
erator .
The types of n-grams can be changed by adding an option feature_extractor which

takes the description of the n-gram extractor, which allows setting parameters like
the lengths of the n-grams and potential skips.
The best settings for the Jaccard Index with frequency-weighted features accord-

ing to F1 in the text-eval and the OOV-eval settings (cf. Table 7.5 on page 90) are
given with the following two settings:

{

"type": "frequency_wjaccard",

"options": {

"sim_thresh": 0.35,

"feature_extractor": {

"type": "ngram",

"options": {

"min_ngram_size": 2,

"skip_size": 4,

"pad_ngrams": true

}

}

}

}

{

"type": "frequency_wjaccard",

"options": {

"sim_thresh": 0.25,

"feature_extractor": {

"type": "ngram",

"options": {

"min_ngram_size": 4,

"skip_size": 4,

"pad_ngrams": true

}

}

}

}
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Lexicon-based lookup

The generator type union can be used to add known variants to the generated
variants as described in Section 7.2.1. It takes a list of generators as an option. The
following generator adds unde to the spelling variant candidates generated using a
Levenshtein distance of 1:

{

"type": "union",

"options": {

"generators": [

{

"type": "levenshtein",

"options": {

"max_dist": 1

}

},

{

"type": "lookup",

"options": {

"spellvar_dictionary": {"vnd": ["unde"] }

}

}

]

}

}

Simpli�cation

Rule-based simpli�cation for generating spelling variant candidates as described
in Section 7.2.1 can be used with the generators gent_gml_simpli�cation�which
implements Kol�and simpli�cation�which allows specifying corresponding char-
acters as described in Chapter 6 with the option ruleset. Both take the option
generator to de�ne a generator that is applied after simplifying all types. The
following example uses a simpli�cation in combination with a edT,Re candidate gen-
eration which essentially leads to a weighted edit distance, where the substitutions
u ↔ v and i ↔ j have a cost of 0:

{

"type": "simplification",

"options": {

"ruleset": [["u", "v"], ["i", "j"]],
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"generator": {

"type": "levenshtein_normalized",

"options": {

"dist_thresh": 0.2,

"max_dist": 5,

"no_zero_dist": true,

"transposition": true,

"repetitions": true,

"merge_split": false

}

}

}

}

The ruleset used for S+edT,Re is given by the following correspondences:

[

["ij", "i"], ["s", "z"], ["i", "j"], ["ff", "f"],

["j", "y"], ["a\u0364", "a"], ["f", "v"], ["gh", "g"],

["u", "v"], ["ij", "y"], ["sz", "s"], ["th", "t"]

]

B.1.2. Filters

For the �lters, the type pipeline has to be used. The �lter is de�ned in the �eld
type_�lter. A generator has to be given in the �eld generator. The generator can
either be de�ned directly or by giving the name of a �le that contains the de�nition.
Here, any �lter as described above or even a full pipeline can be used.
The type �lters using the undirected SPSim and the (B)SVM need to be trained

using the command spellvardetection train filter, which takes the de�nition
of the �lter as well as negative and positive pairs and a �lename for the resulting
model.

Brown Filter

In order to use Brown clusters to �lter generated candidates, the type_�lter with
the type cluster can be used. cluster_type brown allows using the output of https:
//github.com/percyliang/brown-cluster (last visited October 4, 2021) to de�ne
the clusters.
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{

"type": "pipeline",

"options": {

"generator": "generator_definition.json",

"type_filter": {

"type": "cluster",

"options": {

"cluster_type": "brown",

"cluster_file": "path/to/clusters/paths"

}

}

}

}

UndirSPSim

Calling the command spellvardetection train filter with the �lter type usp-
sim extracts the undirected SPs from the training data. The resulting �le needs to
be speci�ed when applying the �lter:

{

"type": "pipeline",

"options": {

"generator": "generator_definition.json",

"type_filter": {

"type": "uspsim",

"options": {

"spsim_filename": "file_with_sps",

"sim_thresh": 1

}

}

}

}

Edit Probabilities

Edit probabilities can be learned from known spelling variants with the command
spellvardetection learn edit_probabilities. The command takes the known
spelling variants and outputs the edit probabilities. The resulting �le needs to be
speci�ed when applying the �lter:

170



B.1. Type-Based Pipelines

{

"type": "pipeline",

"options": {

"generator": "generator_definition.json",

"type_filter": {

"type": "edit_probabilities",

"options": {

"probabilities": "file_with_probabilities",

"sim_thresh": 0.5

}

}

}

}

SVM

The type �lter sklearn allows to use models for binary classi�cation trained with
scikit-learn. It takes the classname of the classi�er and settings for hyperparameters
as options for training. For the (B)SVM �lter, the special names __svm__ and
__bagging_svm__ can be used. Using these options, the hyperparameters C and
gamma are set to the best values from our experiments, 2 and 10−1, by default.
The used features are set by de�ning feature extractors and setting the respective

options. The type surface extracts alignment n-grams from the pairs of types, by
default using the lengths 1, 2 and 3 and only n-grams around mismatches. The type
context uses word embeddings to extract the contextual similarity for the types, it
needs a �le with embeddings as option. vector_type hyperwords allows to use the
output of hyperwords which can be used to create embeddings using PPMI-SVD as
well as SGNS.43

{

"type": "sklearn",

"options": {

"classifier_clsname": "__bagging_svm__",

"feature_extractors": [

{ "type": "surface" },

{ "type": "context",

"options": {

"vector_type": "hyperwords",

43. Note that hyperwords is no longer available at http://bitbucket.org/omerlevy/hyperwords
(last visited October 4, 2021), the URL given in Levy, Goldberg, and Dagan (2015).
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"vectorfile_name": "file_with_embeddings"

}

}

]

}

}

For applying the �lter, only the model�le_name has to be given as option.

B.2. Token-Based Filter

The token-based �lter presented in Section 7.2.3 can be trained with the command
spellvardetection train token_filter which takes the description of the �lter,
the name of the �le in which the trained model is saved, training data in the form
of a list of tokens and a spelling variant dictionary. The following description trains
the CNN �lter with the settings that have led to the best results for the text-eval
settings:

{

"type": "cnn",

"options": {

"left_context_len": 1,

"right_context_len": 1,

"vector_type": "hyperwords",

"vectorfile_name": "file_with_embeddings"

}

}

For applying the �lter, the command spellvardetection filter_tokens has to
be used, which takes a list of tokens, a dictionary with spelling variant candidates
and the description of the �lter as arguments. For the description of the �lter only
the model�le_name has to be given.
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