
DOCTORAL THESIS

On Representation Learning in Speech
Processing and Automatic Speech

Recognition

Benjamin Milde

An der Universität Hamburg eingereichte Dissertation
zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr.rer.nat.).

Fakultät für Mathematik, Informatik und Naturwissenschaften, Fachbereich Informatik.

2022

http://www.uni-hamburg.de

ii

Examiners:

1. Prof. Dr. Chris Biemann

2. Prof. Dr.-Ing. Timo Gerkmann

3. Prof. Dr.-Ing. Florian Metze

Date of the doctoral examination: 27.10.2022

iii

Declaration of Authorship
Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift

selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel be-
nutzt habe.

I herewith declare on oath that I have written this dissertation thesis myself and
have not used any sources and aids other than those indicated.

Signed:

Date:

v

“We can only see a short distance ahead, but we can see plenty that needs to be done.”

- Alan Turing

vii

Abstract
On Representation Learning in Speech Processing and Automatic Speech

Recognition

Speech processing is a difficult task for computers, owing to many factors of
variance present in any speech signal. In Automatic Speech Recognition (ASR), a
person’s voice, the environment and how and where speech sounds are recorded
can drastically alter the appearance of a speech signal without changing the content
of what is being said. Meanwhile, humans deal seemingly effortlessly with these
factors of variance in understanding spoken language.

A central question in automatic speech processing is how and what representa-
tions to use, to facilitate further processing and to apply machine learning methods
to automate speech processing tasks. A focus in this thesis is on learning models
and representations from speech data itself. Artificial neural networks have recently
reemerged as an important ingredient of acoustic and language modelling and have
produced promising results and error reductions over previous methods. They are
now a widespread tool in learning good and robust representations for speech sig-
nals in ASR and are also typically used in language modelling. After an introduc-
tion to speech processing in Chapter 1, this thesis provides an overview of com-
mon (deep) neural network techniques and models in Chapter 2. An introduction to
speech processing and ASR is given in Chapter 3.

In Chapter 4, a study on transfer learning is conducted on an isolated paralin-
guistic speech task, namely eating condition recognition. With the system presented
in this chapter, we also participated in a paralinguistic speech challenge. The model
was pre-trained on a language identification task and transfer learning was success-
fully used for the target task with little training data.

In Chapter 5 of this thesis, we propose Unspeech context embeddings. Un-
speech models are trained on unannotated speech data using contrastive learning,
with Siamese convolutional neural networks. The model is built on the idea that
speech sounds that are close in time share the same contexts. The model can be
trained on vast amounts of unannotated data, as evidenced by training it on up to
10,000 hours of speech data. We evaluate the model and its embeddings in auto-
matic speech recognition tasks and several other downstream tasks, such as short
command recognition, emotion recognition and speaker recognition.

In Chapter 6, we propose Sparsespeech, a neural model for discrete acoustic unit
discovery in unannotated speech data. In the proposed model, we aim to represent
speech as discretized units together with a context embedding. Unspeech embed-
dings can be used as context embedding or an alternative implicit context vector.
The model is evaluated with the ABX error measure on English read speech data,
using the largescale ASR benchmark Libri-light for ASR learning scenarios that are
either unsupervised or with limited supervision.

viii

Multitask learning for grapheme-to-phoneme (G2P) conversion is proposed in
Chapter 7, where a neural G2P model based on the sequence-to-sequence architec-
ture is trained on multiple languages (English and German). An error evaluation
reveals that irregularly pronounced words, such as English loan words, are often
wrongly predicted by the model. In Chapter 8, a recipe to train TDNN-HMM ASR
models for German ASR on 1,700 hours of freely available audio data from different
sources is presented. The models are evaluated on the Tuda-De test set, with the
best model yielding strong WER results that beat previously published end-to-end
systems. It is also evaluated on the Verbmobil test set, showing that good results can
also be obtained for conversational speech.

Real world use is demonstrated by applying the model to automatic subtitle
generation, where additional tasks such as subtitle segmentation and punctuation
reconstruction need to be considered. Insights gained from Chapter 7 are used to ex-
tend a freely available lexicon to add English loan words as well as current German
vocabulary to the lexicon. The words are added semi-manually, by predicting mul-
tiple possible pronunciations and by using an active learning approach with Text-
To-Speech (TTS) feedback. In another demo application, the feasibility of online de-
coding in a speech application that transcribes meetings on-the-fly is demonstrated
with the application being able to summarize meetings as well.

In Chapter 9, another speech application is presented that ambiently researches
relevant information, in the form of proposing relevant documents to users who
passively listen to spoken language. In contrast to other personal assistants, this
system is not specifically triggered, as it unobtrusively listens to speech streams in
the background and implicitly queries an index of documents.

In Chapter 10, the thesis concludes that representation learning is key to a wide
range of speech processing tasks and that alternative machine learning paradigms,
other than purely supervised ones promise to harvest untapped potential.

ix

Zusammenfassung

Die Verarbeitung der gesprochenen Sprache stellt Computer vor besondere Her-
ausforderungen, da einzelne Sprachsignale eine hohe Varianz aufzeigen können. Bei
der automatischen Spracherkennung (engl. Automatic Speech Recognition, ASR)
können die Stimme einer Person, die Umgebung und die Art und Weise, wie und
wo Sprache aufgezeichnet wird, das Erscheinungsbild eines Sprachsignals drastisch
beeinflussen, ohne den Inhalt des Gesagten zu verändern. Gleichzeitig kommt der
Mensch mit diesen Faktoren beim Verstehen gesprochener Sprache scheinbar müh-
elos zurecht.

Eine zentrale Frage bei der automatischen Sprachverarbeitung ist daher, wie und
welche Repräsentationen verwendet werden sollen, um die weitere Verarbeitung zu
erleichtern und um Methoden des maschinellen Lernens zur Automatisierung der
Sprachverarbeitung einzusetzen. Ein Schwerpunkt dieser Arbeit ist das Lernen von
Modellen und Repräsentationen aus den Sprachdaten selbst. Künstliche neuronale
Netze sind inzwischen ein wichtiger Bestandteil der akustischen und sprachlichen
Modellierung und haben vielversprechende Ergebnisse und Fehlerreduzierungen
gegenüber früheren Methoden erbracht. Sie sind heute ein weit verbreitetes Werk-
zeug zum Erlernen guter und robuster Repräsentationen für Sprachsignale und wer-
den auch typischerweise in der Sprachmodellierung eingesetzt. Nach einer Ein-
führung in die Sprachverarbeitung in Kapitel 1 gibt diese Arbeit in Kapitel 2 einen
Überblick über gängige (tiefe) neuronale Netzwerktechniken und -modelle. Eine
Einführung in die Sprachverarbeitung und ASR wird in Kapitel 3 gegeben.

In Kapitel 4 wird eine Studie zum Transferlernen an einer paralinguistischen
Sprachanwendung, der Erkennung von Schmatzgeräuschen beim Reden und gle-
ichzeitigen Essen, durchgeführt. Mit dem vorgeschlagenen System wurde auch an
einem paralinguistischen Wettbewerb teilgenommen. Das Modell wurde mit einer
Spracherkennungsaufgabe vortrainiert und das Transferlernen wurde erfolgreich
für die Zielaufgabe mit wenigen Trainingsdaten eingesetzt.

In Kapitel 5 dieser Arbeit schlagen wir Unspeech-Kontexteinbettungen vor. Un-
speech-Modelle werden auf nichtannotierten Sprachdaten mit kontrastivem Lernen
und siamesischen neuronalen Netzen trainiert. Das Modell basiert auf der Idee, dass
zeitlich nahe beieinander liegende Sprachlaute denselben Kontext teilen. Das Mod-
ell kann auf riesigen Mengen nichtannotierter Daten trainiert werden, was durch das
Training mit bis zu 10.000 Stunden Sprachdaten bewiesen wurde. Wir evaluieren das
Modell und seine Einbettungen mit einem ASR-System und verschiedenen anderen
nachgelagerten Aufgaben, wie z.B. der Erkennung kurzer Befehle, sowie der Erken-
nung von Emotionen in der gesprochenen Sprache und der Sprechererkennung.

In Kapitel 6 wird Sparsespeech vorgeschlagen, ein neuronales Modell zur Erken-
nung diskreter akustischer Einheiten in nichtannotierten Sprachdaten. Das vorge-
schlagene Modell zielt darauf ab, Sprache als diskrete Einheiten zusammen mit einer

x

Kontexteinbettung darzustellen. Nichtsprachliche Einbettungen können als Kon-
texteinbettung oder als alternativer impliziter Kontextvektor verwendet werden.
Das Modell wird mit dem ABX-Fehlermaß für englische gelesene Sprachdaten eval-
uiert, wobei der große ASR-Benchmark Libri-light für ASR-Lernszenarien verwen-
det wird, die entweder unbeaufsichtigt oder mit begrenzter Überwachung durchge-
führt werden.

Multitasking-Lernen für die Graphem-Phonem-Konvertierung (G2P) wird in Ka-
pitel 7 vorgeschlagen, bei dem ein neuronales G2P-Modell, das auf der Sequenz-zu-
Sequenz-Architektur basiert, auf mehreren Sprachen (Englisch und Deutsch) trainiert
wird. Eine Fehlerauswertung zeigt, dass unregelmäßig ausgesprochene Wörter, wie
z.B. Anglizismen, vom Modell oft falsch vorhergesagt werden. In Kapitel 8 wird
ein Rezept zum Trainieren von TDNN-HMM ASR-Modellen für deutsche ASR auf
1.700 Stunden frei verfügbarer Audiodaten aus verschiedenen Quellen vorgestellt.
Die Modelle werden auf dem Tuda-De Testset evaluiert, wobei das beste Modell sehr
gute Ergebnisse bei der Wortfehlerrate liefert, die zuvor veröffentlichte End-to-End-
Systeme übertreffen. Es wird auch mit dem Verbmobil-Testsatz evaluiert, was zeigt,
dass auch bei Konversationssprache gute Ergebnisse erzielt werden können.

Die Anwendung des Modells auf die automatische Generierung von Untertiteln,
bei der zusätzliche Aufgaben wie die Segmentierung von Untertiteln und die Rekon-
struktion der Satzzeichen berücksichtigt werden müssen, verdeutlicht die praktis-
che Anwendung. Die in Kapitel 7 gewonnenen Erkenntnisse werden genutzt, um
ein frei verfügbares Lexikon um Anglizismen sowie um aktuellen deutschen Wort-
schatz zu erweitern. Die Wörter werden halbmanuell hinzugefügt, indem mehrere
mögliche Aussprachen vorhergesagt werden und ein aktiver Lernansatz mit Sprach-
synthese-Feedback verwendet wird. In einer weiteren Demoanwendung wird die
Machbarkeit der Online-Dekodierung in einer Sprachanwendung demonstriert, die
Meetings transkribiert, wobei die Anwendung auch in der Lage ist, Meetings zusam-
menzufassen.

In Kapitel 9 wird eine weitere Sprachanwendung vorgestellt, die in Konversa-
tionen in der Umgebung relevante Informationen recherchiert und relevante Doku-
mente dem Nutzer vorschlägt. Das System hört dem Sprachgeschehen passiv zu.
Im Gegensatz zu anderen persönlichen Assistenten wird dieses System nicht gezielt
ausgelöst, da es unauffällig im Hintergrund den Sprachströmen lauscht und implizit
einen Dokumentenindex abfragt.

In Kapitel 10 kommt die Arbeit zu dem Schluss, dass Repräsentationslernen für
eine Vielzahl von Sprachverarbeitungsaufgaben von zentraler Bedeutung ist und
dass alternative maschinelle Lernparadigmen, die nicht rein überwacht sind, un-
genutztes Potenzial versprechen.

xi

Acknowledgements
Firstly, I would like to thank Prof. Dr. Chris Biemann for his excellent supervi-

sion and guidance. You are an exceptional mentor! To all my colleagues from the
LT group at Universität Hamburg: I have fond memories of our time together and
there was always some one there for discussing research ideas over a cup of coffee.
Thank you all!

I also thank Prof. Dr. Chris Biemann, Prof. Dr.-Ing. Timo Gerkmann and Prof.
Dr.-Ing. Florian Metze for reviewing my thesis and the suggestions of small editorial
changes for this final version. I would like to thank Steffen Remus, Eugen Ruppert,
Dr. Martin Riedl and Dr. Jinseok Nam for insightful discussions and comments on
the topic of transfer learning in neural networks (Chapter 4). I would like to thank
Prof. Dr. Timo Baumann for discussions on models I developed as well as other
ASR-related topics. Thank you Tim Fischer and Steffen Remus for collaborating on
MoM bot (Chapter 8). Furthermore, I would like to thank Dr. Arne Köhn and Prof.
Dr. Timo Baumann for collaborating on the Spoken Wikipedia Corpus SWC integra-
tion into the German Kaldi ASR recipe (also Chapter 8). I also like to thank anyone
who contributed to the uhh-lt/kaldi-tuda-de, german-asr-lm-tools and subtitle2go
open source projects. I thank Michael Henretty and Mozilla for giving me access to
Common Voice V1 speaker information (for Chapter 5).

My PhD thesis would not have been possible without funding. Again special
thanks to Prof. Dr. Chris Biemann, for funding of the initial exploratory phases of
this thesis at TU-Darmstadt as well as bridging any gaps between projects. I am
also grateful to Telecooperation Lab at TU-Darmstadt, in particular Prof. Dr. Max
Mühlhäuser and BMBF for funding research on ASR with Ambient Search. I would
also like to thank Dr. Joachim Köhler and Dr. Chistoph Schmidt for making my re-
search visit at Fraunhofer IAIS in St. Augustin possible and supervising me on dif-
ferent aspects of German broadcast ASR. I thank Universität Hamburg for funding
my seminars and for giving me the opportunity to teach. I thank Deutsche Telekom
AG for financially supporting the development of MoM bot. Also my grateful thank
you to the Lecture2go team, particularly Martin Kriszat, for funding a project on
automatic subtitling. It was really rewarding to see part of my work over the years
being deployed to a production system and having it assist to make lectures at Uni-
versität Hamburg more accessible through subtitles.

I am grateful for the support of students and research assistants (HiWis). In par-
ticular Alexander Hendrich, as well as Jonas Wacker, Tim Fischer, Robert Geislinger,
with whom I co-authored papers as well. I thank Sarah Milde and Sebastian Gon-
sior for proofreading. I profoundly thank Michelle Sandbrink, for always having my
back and for never complaining in stressful periods or cancelled weekend plans due
to paper deadlines. Furthermore, for also proofreading this thesis as well as helping
to add countless German lexicon entries with the speech-lex-edit software and also
with helping out with the annotation of relevance judgements in Chapter 9.

xii

I have dedicated this thesis to my parents, who shaped my academic career and
supported me through studies in Darmstadt and have always supported me and
followed my scientific endeavours. I am truly grateful.

Of course, I would also like to thank the countless anonymous reviewers for
their time to review my paper submissions and the valuable feedback they provided.
Finally, there is a good chance that I missed naming you. To anybody not named
above, thank you for helping to improve or shape this work in one way or another,
even if it was just for mental support.

xiii

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements xi

1 Introduction 1
1.1 Challenges in Automatic Speech Processing and Speech Recognition . 3

1.1.1 Speaker Variability . 4
1.1.2 Pronunciation Variability . 5
1.1.3 Background and Channel Variability 5
1.1.4 Extra-Linguistic Variability . 5
1.1.5 In Summary . 5

1.2 Overview and research directions of this thesis 6
1.2.1 Thesis overview . 7
1.2.2 Publications forming the basis of this thesis 8

2 Machine Learning and Neural Networks 11
2.1 Supervised Learning . 12
2.2 Unsupervised Learning . 13

2.2.1 Clustering . 13
2.2.2 K-Means . 14
2.2.3 DBSCAN . 15

2.3 Self-supervised Learning . 16
2.4 Semi-supervised Learning . 17
2.5 Transfer Learning . 17
2.6 Evaluation . 17

2.6.1 In Supervised Learning . 18
2.6.2 In Unsupervised Learning . 18

2.7 Artificial Neural Networks . 20
2.8 Feed Forward Networks . 21
2.9 Loss Function . 22
2.10 Back-propagation . 24
2.11 Gradient Descent . 24
2.12 Stochastic Gradient Descent . 25
2.13 Vanishing Gradient Problem . 25

xiv

2.14 Deep Neural Networks . 26
2.14.1 Unsupervised pre-training . 26
2.14.2 Other types of non-linearities . 27
2.14.3 Weight Initialization . 29
2.14.4 Advances in gradient descent methods 29
2.14.5 Dropout . 30

2.15 Convolutional Neural Networks . 30
2.16 Convolution Layer . 30
2.17 Pooling Layer . 31
2.18 CNN Network Structures . 32
2.19 Autoencoders . 35
2.20 Undercomplete Autoencoders . 35
2.21 Regularized Autoencoders . 35
2.22 Denoising Autoencoders . 36
2.23 Recurrent Neural Networks . 37

2.23.1 LSTM . 38
2.23.2 Bi-directional . 39

2.24 Neural Sequence-to-Sequence Models 40

3 Automatic Speech Recognition 43
3.1 ASR search space . 43
3.2 ASR components . 44
3.3 Speech Features . 45

3.3.1 FBANK . 45
3.3.2 MFCC features . 47
3.3.3 Delta features . 47
3.3.4 CMVN . 48
3.3.5 PLP features . 48

3.4 Hidden Markov Models . 49
3.4.1 Evaluation . 49
3.4.2 Recognition . 50
3.4.3 Training . 50

3.5 GMM-HMMs . 50
3.6 Context Dependent Phones . 50
3.7 Decoding . 51
3.8 Evaluation . 52
3.9 Speech Recognition with WFSTs . 52
3.10 Language Models . 53

3.10.1 Maximum Likelihood Estimation 53
3.10.2 Smoothing . 53
3.10.3 Neural Language Models . 54
3.10.4 Recurrent LM . 54

xv

3.11 DNN-HMM Acoustic Model Hybrids 55
3.11.1 TDNN-HMMs . 56

3.12 Connectionist Temporal Classification 57
3.13 Unsupervised ASR . 58

3.13.1 Contrastive Predictive Coding 59
3.14 Distributions in Spoken Language . 60

3.14.1 Phoneme frequencies . 61
3.14.2 Average phoneme durations . 61
3.14.3 Word frequencies . 62

4 Supervised Representation Learning for a Paralinguistic Speech Task 65
4.1 Introduction . 66
4.2 Methods and approaches . 67

4.2.1 CNN-based audio sequence classification 67
4.2.2 Weighted Majority Voting . 68
4.2.3 Regularization . 68
4.2.4 Data Augmentation . 68
4.2.5 Transfer Learning . 69
4.2.6 Hyperparameters . 69

4.3 Results . 71
4.3.1 Insights . 72
4.3.2 Challenge Results . 73

4.4 Conclusion . 75
4.5 Additional Remarks . 75

5 Unsupervised Representation Learning for Speech Contexts 77
5.1 Introduction . 78
5.2 Related Work . 79
5.3 Proposed Models . 81

5.3.1 Objective Function . 81
5.3.2 Model Architecture . 82
5.3.3 Implementation Details . 83

5.4 Evaluation . 85
5.4.1 Same/Different Speaker Experiment 85
5.4.2 Clustering Utterances . 86
5.4.3 Acoustic Models With Unspeech Cluster IDs 87
5.4.4 Unspeech Context Vectors in TDNN-HMM Models 89

5.5 Negative Sampling Methods . 90
5.5.1 Word-Level Phonetic Information 91
5.5.2 Unspeech Embeddings in Acoustic Models for Out-Of-Domain

Test Data . 91
5.5.3 Unspeech Embeddings in Down-Stream Classification Tasks . . 94

5.6 Conclusion . 95

xvi

6 Self-Supervised Discrete Representation Learning from Speech 97
6.1 Unsupervised Acoustic Unit Discovery 98

6.1.1 Related Work . 99
6.1.2 Proposed Sparsespeech Model 100

Memory Component . 101
Enforcing Sparsity . 102
Context Vector . 102
Enforcing Diversity . 103
Training Procedure . 103

6.1.3 Implementation . 104
6.1.4 Evaluation . 104
6.1.5 Conclusion . 107

6.2 Categorical Reparameterization . 108
6.2.1 Setup . 109

6.3 Evaluation . 111
6.4 End-to-end Sparsespeech model . 114

6.4.1 Implementation details . 117
6.4.2 ABX evaluation . 117

6.5 Conclusion . 118

7 Multitask Grapheme-to-Phoneme Conversion 121
7.1 Related Work . 122
7.2 Neural Grapheme-to-Phoneme Models 123
7.3 Evaluation . 123
7.4 Results . 126
7.5 Conclusion . 127

8 Automatic subtitling 129
8.1 German ASR . 129

8.1.1 Data Resources . 130
8.1.2 Lexicon . 131
8.1.3 Language Model Resources . 132
8.1.4 Experiments and Evaluation . 133

Comparison to other systems . 135
Conversational Speech . 136

8.2 Subtitling Pipeline . 137
8.2.1 Punctuation . 137
8.2.2 Subtitle Segmentation . 138
8.2.3 Evaluation . 139
8.2.4 Decoding Speed . 139
8.2.5 Online Decoding . 141
8.2.6 Conclusions and Outlook . 143

xvii

9 A Document Retrieval System for Speech Streams 145
9.1 Related Work . 146
9.2 Our Approach to Ambient Search . 147

9.2.1 Speech Decoding . 147
9.2.2 Keyphrase Extraction . 148
9.2.3 Term Ranking . 149
9.2.4 Index Queries . 150
9.2.5 Visual Presentation . 151
9.2.6 Implementation Details . 151

9.3 Evaluation . 152
9.3.1 Keyphrase and Document Retrieval 152
9.3.2 Results . 153
9.3.3 Error Analysis . 155

9.4 Conclusion . 156

10 Conclusion 159

Bibliography 163

Appendix 191

xix

List of Figures

1.1 Waveform of the utterance ”dusk was falling as the boy arrived with
his herd at an abandoned church” from the Common Voice V1 corpus
(train_valid: sample-055799.mp3). 2

1.2 Corresponding spectrogram to the utterance ”dusk was falling as the
boy arrived with his herd at an abandoned church”. 2

1.3 FBANK representations (similar to a spectogram) of two phonemes. . 3
1.4 Local comparison of the same phoneme uttered by different speakers,

together with its surrounding context. Example in the style of Jansen
et al. (2013). 4

1.5 Overview of research directions and chapters in this thesis. 8

2.1 Example unit with three inputs in a Feed Forward Network. 21
2.2 The sigmoid activation function . 22
2.3 Mean squared error (MSE) and Huber loss 23
2.4 The ReLU activation function . 28
2.5 Example a plots for the PReLU activation function 28
2.6 Example of a 3x3 convolution kernel applied to an 2D input matrix. . . 31
2.7 LeNet-5, a convolutional neural network for handwritten digit recog-

nition. Figure taken from (LeCun et al., 1998). 32
2.8 VGGA and VGG16, two networks of the VGGNet family 33
2.9 VGGNet-19 compared to ResNet-34 without residual connections and

with them. Figure from (He et al., 2016). 34
2.10 Generic structure of an autoencoder. 35
2.11 Schema of a Recurrent Neural Network (RNN) with a state h, input

transformation function i and an output transformation o. Drawn in
similar style as (Yan, 2015). 37

2.12 Schema of a Long short-term memory (LSTM) cell. Drawn in the style
of Yan (2015). 38

2.13 Schema of a bi-directional RNN, unfolded in three time steps t−1,t,t+
1. Drawn in style of Schuster and Paliwal (1997). 39

3.1 Overview of the components in a typical (traditional) ASR system.
Figure in similar style as in (Milde, 2014). 44

xx

3.2 Pipeline steps to compute filter bank frames from speech. The output
of these steps is partially computed for the utterance "dusk was falling
as the boy arrived with his herd at an abandoned church" from the
Common Voice V1 corpus (train_valid: sample-055799.mp3) 46

3.3 Final step to compute MFCCs from logarithmic Mel filter banks. The
output of this steps is partially computed for the utterance "dusk was
falling as the boy arrived with his herd at an abandoned church" from
the Common Voice V1 corpus (train_valid: sample-055799.mp3) 47

3.4 MFCC frame with delta features. 47
3.5 Processing steps for PLP speech features. 48
3.6 Example of state tying (taken from Gales, Young, et al. (2008)). 51
3.7 RNN language model . 54
3.8 The DNN-HMM acoustic model. Drawn in the style of Dahl et al. (2012). 55
3.9 A TDNN with and without subsampling. Figure taken from Peddinti

et al. (2015). 56
3.10 Possible paths aligning the word ”cat” to T many acoustic observa-

tions. Black nodes are non-blank labels, while a white nodes are blank
labels. The sum of all path probabilities can be efficiently computed
with dynamic programming by visiting every node only once. Figure
taken from Graves et al. (2006). 57

3.11 Unsupervised ASR training with generative adversarial networks. Drawn
in the style of Baevski et al. (2021). 59

3.12 Contrastive Predictive Coding in a 1D time series. Drawn in the style
of Oord et al. (2018). 59

3.13 Most frequent phonemes (SAMPA notation) in English transcriptions
of the TED-LIUM 2 corpus. 61

3.14 Average phone durations (with standard deviation) of each phoneme
used in TED-LIUM, as automatically force-aligned by a GMM-HMM
acoustic model over the full training set. The phonemes are sorted
from longest average duration to smallest. 62

3.15 Frequency versus rank for all words occurring in the TED-LIUM 2
corpus. Both axes are plotted on a logarithmic scale. 63

3.16 Frequency versus rank for all words and special tokens occurring in
the Switchboard conversational corpus. Both axes are plotted on a
logarithmic scale. 64

4.1 The CNN architecture used for learning on local FBANK patches xi

of a full sequence X . Contribution weights wi are learned separately
with linear models (one for each class), which assign a weight to the
local classification’s contribution to the full classification of a sequence. 67

xxi

4.2 Minimizing the objective function: training loss per epoch for a CNN
with completely random initialization and one with transferred weights.
Validation loss is measured on held-out data from already known
speakers. 72

4.3 Classification of (yet unseen) train utterance train_0112.wav by a
CNN model. The correct class is ’Crisp’. From top to bottom: FBANK
features, CNN embedding and the 7 class probabilities for its cor-
responding window. Orange/red colours represent higher values,
while dark blue represents zero. 73

5.1 The initial sequence of FBANK vectors as generated by Kaldi (40-
dimensional, with 100 frames per second). 80

5.2 The initial sequence with unnormalized FBANK vectors: we choose
one target window and two left and right contexts. All windows are
of the same size. 80

5.3 Sampling examples for two left contexts and two right contexts from
the figure above. Positive example pairs are of class C = 1, negative
sampled pairs are C = 0. In this example, each window has a size of
50 FBANK frames (0.5 seconds). 81

5.4 Unspeech embeddings are trained using a Siamese neural network
architecture combined with a dot product. We use a VGG-like CNN
network as embedding transformation in the yellow boxes (a convo-
lutional neural network with 16 layers). 82

5.5 Hyperparameters and layer structure for two convolutional neural
networks, in VGG-style with two successive convolutions followed
by a pooling layer. "VGGsmall" is on the left, "VGG" is on the right. . . 84

5.6 TSNE plot of local-context Unspeech-32 embeddings over common phoneme
5-grams, see also Table 5.8. These embeddings have higher affinity to-
wards phonetic content of the target window (32 frames = 320ms). . . 92

5.7 TSNE plot of global Unspeech-32 embeddings over common phoneme
5-grams, see also Table 5.8. There is a strong affinity to preserve
speaker and channel characteristics, while ignoring the phonetic con-
tent. The clusters largely correspond to the TED talks where the 5-
grams have been taken from. 93

6.1 In Sparsespeech, we train a model that can represent an utterance as
a sequence of discrete units together with a context embedding. The
sequence is masked randomly and the missing elements must be in-
ferred from context. 98

6.2 Sequence encoder / decoder with a memory component as sparsity
bottleneck (Milde and Biemann, 2019). 101

6.3 Memory module consisting of an input query key adressing network
and a value memory bank containing fixed-sized embeddings. 102

xxii

6.4 Sparsespeech training procedure illustrated as bricks that are sepa-
rately trained until the full system is trained in the final training. . . . 103

6.5 Training runs with varying sparsity weights (n=16). 105
6.6 Drawing samples with different temperatures with the Gumbel-Softmax

from a discrete distribution. 109
6.7 The Sparsespeech unsupervised acoustic model with Gumbel-Softmax

(Milde and Biemann, 2020). 110
6.8 Example feature representations generated by the Sparsespeech model

”S6000h-n42-τ2 → 0.1” with varying temperature. 112
6.9 Raw encoder for the Sparsespeech model. Follows the implementa-

tion in (Oord et al., 2018) and (Kahn et al., 2020). 115
6.10 Raw decoder for the Sparsespeech model. 116

7.1 Seq2Seq model for G2P conversion with attention and character/-
phoneme embeddings, inputs are reversed. For multitask learning,
we extend the source vocabulary with additional markers for the sub-
task that are placed at the beginning of each word. 123

8.1 Screenshot of the lexicon editor using a G2P model for pronunciation
suggestions. 132

8.2 Subtitling pipeline and processing steps. 137
8.3 WER for 17 German lectures, with topics ranging from education sci-

ence to computer science. The 14 anonymised speakers are sorted
according to their average WER. 139

8.4 Computation time needed for all processing steps for different video
and beam sizes. Timings were measured on one core of an Intel server
CPU (Xeon E5-2620 v4). 140

8.5 WER on the Lecture2Go test set, depending on the beamsize. 140
8.6 Architecture of MoM bot. The backend consists of a model server and

various microservices, while the frontend is a VUE browser app. . . . 141
8.7 Example screenshot of the meeting bot system. Taken from (Milde et

al., 2021a). 142
8.8 Example screenshot of video conferencing software BigBlueButton with

live subtitling. Taken from Geislinger et al. (2021). 142

9.1 Processing steps of Ambient search . 147
9.2 Screenshot of the system after listening to the first minutes of the TED

talk “We’re too late to prevent climate change - here is how we adapt”
by Alice Bows Larkin . 150

xxiii

List of Tables

4.1 UAR mean and standard deviation with 5-fold speaker independent
cross validation, using the training data of iHEARu-EAT. In each split
the data of 16 speakers were used for training the classifier(s) and the
utterances of the remaining 4 speakers were used to evaluate classifi-
cation performance. 70

4.2 7-class UAR and accuracy scores on the official test set, as reported by
the official challenge test submission system. Each new submission
is an ensemble which also includes previous models. Five individual
submissions were allowed. 72

4.3 Overview of the submitted systems and methods used for the Com-
ParE2015 iHEARu-EAT subtask challenge. Not all submissions to the
challenge resulted in a paper at Interspeech. We listed these as N/A
in the table, but neither the authors nor the methods used are known. . 74

5.1 Comparison of English speech data sets used to train Unspeech em-
beddings. 85

5.2 Equal error rates (EER) on TED-LIUM V2 – Unspeech embeddings
correlate with speaker embeddings. 86

5.3 Comparing clustered utterances from TED-LIUM using i-vectors and
(normalized) Unspeech embeddings with speaker labels from the cor-
pus. "-sp" denotes embeddings trained with speed-perturbed training
data. 86

5.4 Comparing the effect of two speaker division baselines (One speaker
per talk, one speaker per utterance) and clustering with Unspeech
on WER with GMM-HMM and TDNN-HMM chain acoustic models
trained on TED-LIUM. 87

5.5 WER for TDNN-HMM chain models trained with Unspeech embed-
dings on TED-LIUM. 88

5.6 WER comparison on the DiSCo test corpus, with acoustic models trained
with 1005h of German broadcast speech (GerTV1000h). 89

5.7 Decoding Common Voice V1 utterances. Mozilla’s open source dataset
provides a challenging test set, which is out-of-domain for an acoustic
model trained on TED-LIUM. 89

5.8 Most common 5-grams in a subset of TED-LIUM train utterances. . . . 91

xxiv

5.9 WER for TDNN-HMM chain models trained with Unspeech embed-
dings on decoding TED-LIUM and Common Voice dev and test utter-
ances. Unspeech models to provide context vectors were trained on
different datasets, while the acoustic models are only trained on TED-
LIUM speech data (+ context vector). Resc. means rescoring with
a 5-gram Kneser-Ney (Kneser and Ney, 1995) language model, plain
means only Kaldi’s FST is used in decoding, but no further language
model rescoring. 92

5.10 Unspeech classification results (accuracy) for down stream speech clas-
sification tasks. MFCC, openSMILE, YAMNet, VGGish and TRILL re-
sults are taken from (Shor et al., 2020). 94

6.1 Baseline ABX values on English (Librispeech). 105
6.2 Word and triphone minimal pair ABX error rates of the proposed

model on 360 hours of English read speech (Librispeech). 105
6.3 Triphone minimal pair ABX error rates on the ZeroSpeech 2017 test

set (English), lower is better. 106
6.4 ABX error rates on features/posteriograms generated by our model

for the Libri-light dev set, with varying temperature τ 111
6.5 ABX error on features/posteriograms generated by our model for the

Libri-light dev set with different n (components in the memory bank).
Best results of each section in bold. 113

6.6 ABX error on features/posteriograms generated by our model for the
Libri-light test set. CPC results are from (Kahn et al., 2020). 114

6.7 PER error for training a very simple phoneme recognizer with 10h of
data on: PLP features, CPC model features or Sparsespeech model
features. 115

6.8 ABX error on features/posteriograms generated for the Libri-light
dev set with the end-to-end Sparsespeech model. 117

7.1 Comparing Sequitur G2P and seq2seq-attn on the German Phonolex
lexicon test data, with stress markers removed. (Best scores for single

models and system combinations in bold.) . 124
7.2 WER and PER performance for different classes of words in the Ger-

man Phonolex task. While regular German words can be phonetized
with relatively small errors, loan words and named entities are par-
ticularly problematic in this G2P task. 124

7.3 Comparing Sequitur G2P and seq2seq-attn on a CMUDICT test set,
with stress markers removed. Results shown here are for a recent
version of the lexicon (v0.7b). 125

xxv

8.1 WER results on the Tuda-De dev and test sets. The scores are for de-
coding combined data from Kinect (Beam and RAW), Samson and
Yamaha microphones. 133

8.2 WER comparison to other systems on the Tuda-De test set. All sys-
tems use additional training data, with varying amounts. 135

8.3 WER results on the Verbmobil (VM1) dev and test data. 136

9.1 Comparison of TF-IDF baseline keyword and keyphrase extraction
methods, the proposed LDA based keyword extraction method by
Habibi and Popescu-Belis, 2015 and our proposed method based on
DRUID, Word2vec and TF-IDF. The comparison is based on the same
Kaldi transcriptions and the same training resources (Simple English
Wikipedia from May 2016). 153

9.2 Comparison of the proposed LDA based keyword extraction method
by (Habibi and Popescu-Belis, 2015) and our proposed method based
on DRUID, Word2vec and TF-IDF on manual TED talk transcripts. . . 154

xxvii

List of Abbreviations

ASR Automatic Speech Recognition
ARI Adjusted Rand Index
ARPA Advanced Research Projects Agency
BLAS Basic Linear Algebra Subprograms
CMVN Cepstral Mean and Variance Normalization
CNN Convolutional Neural Network
CPC Contrastive Predictive Coding
CTC Connectionist Temporal Classification
CV Cross Validation
DBSCAN Density Based Spatial Clustering of Applications with Noise
DNN Deep Neural Network
DPGMM Dirichlet Process Gaussian Mixture Model
DTW Dynamic Time Warping
FBANK Filter Bank
FIR Finite Impulse Response
FNN Feed-forward Neural Network
FST Finite State Transducer
G2P Grapheme to Phoneme
GMM Gaussian Mixture Model
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HTML HyperText Markup Language
HMM Hidden Markov Model
IPA International Phonetic Alphabet
JSON JavaScript Object Notation
KL Kullback Leibler
LDA Latent Dirichlet Allocation
LM Language Model
LPC Linear Predictive Coding
LSTM Long Short-Term Memory
LVCSR Large Vocabulary Continuous Speech Recognition
MFCC Mel Frequency Cepstral Coefficients
MLE Maximum Likelihood Estimation
MMI Maximum Mutual Information
MSE Mean Squared Error

xxviii

NLP Natural Language Processing
NLU Natural Language Understanding
NMI Normalized Mutual Information
NN Neural Network
OOV Out Of Vocabulary
PCA Principal Component Analysis
PER Phoneme Error Rate
PLP Perceptual Linear Predictive
RNN Recurrent Neural Network
SAMPA Speech Assessment Methods Phonetic Alphabet
SGD Stochastic Gradient Descent
STFT Short-time Fourier transform
TDNN Time-Delayed Neural Network
TF Tensor Flow
TSNE T-distributed Stochastic Neighbor Embedding
TTS Text To Speech
VAD Voice Activity Detection
VGG Visual Geometry Group
VQ Vector Quantization
VTLN Vocal Tract Length Normalization
VTLP Vocal Tract Length Perturbation
WER Word Error Rate
WFST Weighted Finite State Transducer

xxix

Dedicated to my parents.

1

Chapter 1

Introduction

The ability to understand and transcribe spoken words is an elemental skill for hu-
mans and has been an active research field in computer science for the past decades.
Even before the day we are born, we are surrounded by spoken language (Choi et
al., 2017). It is one of the most important ways to communicate for us. And seem-
ingly, understanding spoken words is easy for most people: we are effortlessly able
to listen and understand our mother tongue on a daily basis. We quickly forget that
this ability is shaped by years of training. Considering an average language devel-
opment, we utter and understand our first 3-50 words when we are 18 months old
(Lenneberg, 1967). What follows is a remarkable explosion of learning and language
acquisition. Usually, after three years the speaking vocabulary has reached over a
thousand words and a basic understanding of a languages’ fundamental structure
and grammar, e.g. forming questions, negations, past tenses, plurals is acquired. By
age four, the essentials of one’s native tongue are mastered (Lenneberg, 1967).

Learning a foreign languages later in life serves as a reminder of the difficulty
and challenge associated with understanding spoken words. It takes a great deal of
effort to learn to listen to it, let alone to learn to understand and speak it. In most
cases, we will have to deal with a new inventory of the language: its vocabulary and
grammar and in most cases even new phonetic sounds.

Teaching machines to understand and transcribe our spoken language is like-
wise faced with several difficulties. Today’s computers record speech digitally as
discretized samples at discretized time steps. A typical sampling rate for human
speech in automatic speech processing is 16kHz, i.e. 16000 measurements per sec-
ond of the oscillation of a microphone’s membrane, measuring pressure differentials
of the sound wave propagating through the air. In Figure 1.1, we show the oscillation
of an example recording, from an utterance taken from the Common Voice corpus
(release 1, train_valid: sample-055799.mp3), with the microphone’s measurements
normalized to values between -1.0 and 1.0.

A typical conversion of this one-dimensional signal is a decomposition into its
frequency components, usually accomplished by a fast Fourier transformation (Coo-
ley and Tukey, 1965). The result is a frequency domain representation in two dimen-
sions that is easier to interpret for both machines and humans. This representation is
frequently used to visualize speech and it is commonly referred to as the spectogram

2 Chapter 1. Introduction

of an utterance. Figure 1.2 shows such a spectogram of the same utterance.

0 10000 20000 30000 40000 50000 60000 70000 80000
Samples

0.5

0.0

0.5

15500
Samples

0.4

0.2

0.0

0.2

0.4

15000

... ...

➝

FIGURE 1.1: Waveform of the utterance ”dusk was falling as the boy
arrived with his herd at an abandoned church” from the Common

Voice V1 corpus (train_valid: sample-055799.mp3).

1 2 3 4
Time [sec]

0

2000

4000

6000

8000

Fr
e
q

u
e
n
cy

 [
H

z]

FIGURE 1.2: Corresponding spectrogram to the utterance ”dusk was
falling as the boy arrived with his herd at an abandoned church”.

Spectograms of speech show a few unexpected occurrences – it is difficult to tell
where individual words start and begin, even though we seem to perceive clear "sep-
arations" between words in our minds when we listen to speech. Recorded speech
signals also show an enormous spectrum of variability, even though they could con-
vey literally the same message. Many factors contribute to that variability, like char-
acteristics of the speaker: e.g. gender, age and accent, but also the environment, how
speech is recorded (what microphone is being used) and where speech is recorded.
A central question in the field of automatic speech recognition is thus, how should
speech be represented in order to aid its automatic recognition? Is there a transfor-
mation that could capture the space of variability, and ideally reduce it for further
processing? Or should a speech recognition model be able to just learn to deal with
this variability?

Over the past decades, a set of standard representations for representing speech
for automatic speech processing has been established, most importantly filter bank
(FBANK) representations and Mel-frequency cepstral coefficients (MFCC). These 2D
representations are biologically inspired by the human ear, particularly FBANK fea-
tures are also very similar to spectograms of speech. These common representations
are discussed in more detail in Chapter 3.3.

1.1. Challenges in Automatic Speech Processing and Speech Recognition 3

However, over the past few years, the landscape of automatic speech process-
ing has dramatically changed: characteristic of state-of-the-art models is the use of
(deep) artificial neural networks that enabled dramatic error reductions in speech
processing and recognition (see Section 2.7 for an introduction to artificial neural
networks). Representations, or rather transformations over representations are indi-
vidually trained for each network – within the network itself. This additional mod-
elling capacity and an intrinsic capability to learn to deal with variability (instead
of expecting it to be not present in the input representation) is what is commonly
believed to be behind the recent rapid progress in reducing transcription errors for
difficult large vocabulary speech recognition tasks.

Also, training acoustic models does now usually involve computations on pow-
erful graphic processor units (GPUs), that evolved from being computing devices
specific to computer graphics to general purpose accelerators. Through this heritage,
processing capabilities of GPUs are ideal for vast parallelism and floating point op-
erations. They allow to significantly speed up the matrix multiplications needed
to optimize large and deep neural networks for speech processing and have been a
contributing factor to their success.

New ways of modelling the temporal aspects of speech are also explored, chal-
lenging the Hidden Markov Model (HMM) framework (see Section 3.4 for a brief in-
troduction to HMMs). End-to-end learning casts the problem of transcribing speech
into a pure end-to-end machine learning problem, without any programmed signal
processing steps. In some of these systems, no linguistic assumptions are made and
there is no predefined set of linguistic building blocks of speech such as phonemes.
This is a stark deviation from the status quo in automatic speech processing.

1.1 Challenges in Automatic Speech Processing and Speech
Recognition

= ?

FIGURE 1.3: FBANK representations (similar to a spectogram) of two
phonemes.

Figure 1.3 shows an example of a local phoneme comparision. It is quite difficult
to tell from the two local spectograms if the same phoneme is being uttered or dif-
ferent ones. In Figure 1.4 we show that one of FBANK spectrograms is a recording
of a woman taken from TIMIT (Garofolo et al., 1993), the other FBANK spectrum
is for the same utterance, but spoken by a man. Recognizing the phoneme locally

4 Chapter 1. Introduction

0 50 100 150
0
5

10
15
20
25
30
35

0 50 100 150
0
5

10
15
20
25
30
35

[time in frames]

...

...

FIGURE 1.4: Local comparison of the same phoneme uttered by dif-
ferent speakers, together with its surrounding context. Example in

the style of Jansen et al. (2013).

is difficult, as its (spectrogram) representations can differ drastically and contain a
lot of variance. However, with the help of surrounding context, their similarity be-
comes much more apparent. In the remainder of the thesis, we describe such factors
of variance also as the context of an utterance; speech sounds that occur close in time
share similar contexts.

Recent acoustic models for automatic speech recognition (ASR) incorporate some
form of (deep) neural network that can learn to deal with part of this variance by us-
ing supervised training data and the ability to learn representations as part of the
model. It can also make sense to explicitly model some of these factors as dense
speaker embeddings, so that these representations can also be used to compare sim-
ilarity of speakers (Saon et al., 2013).

In the following sections we discuss the largest sources of variability in recorded
speech signals. Making automatic speech systems robust and invariant towards
these sources of variability is a fundamental problem.

1.1.1 Speaker Variability

Speaker variability is one of the biggest contributing factors of variance in speech
signals. Physical shape and size of the vocal tract and nasal cavities directly results
in large variations in speech characteristics (Mullennix et al., 1989). This also means
that acoustic properties of individual phonemes change from speaker to speaker.
The resulting speaker variability can be most substantially observed in vowels (Pe-
terson and Barney, 1952).

Joos (1948) noted that vowels are most likely not perceived in isolation, but that
they are perceived in the context of other vowels from the same speaker. Listeners

1.1. Challenges in Automatic Speech Processing and Speech Recognition 5

can compensate differences in speakers. There is a degree of habituation for famil-
iar voices (e.g. family, friends) and these are more intelligible than voices of new
persons (Nygaard and Pisoni, 1998). There is also further information, that gives a
listener clues about a speakers’ gender, age, cultural background and identity.

1.1.2 Pronunciation Variability

In a statistical analysis of speech variability, the second most important factor be-
sides speaker variability is accent (Huang et al., 2001). It is also well known that
foreign and accented speech is degrading speech recognition performance in a sys-
tem trained on native speech (Huang et al., 2004). Accent deviation at the acoustic
level and pronunciation errors are the two biggest sources of variation (Bouselmi
et al., 2008). Note that humans of course face the same kind of variability in un-
derstanding speech, with unfamiliar accents being also problematic to understand
(Mattys et al., 2012).

1.1.3 Background and Channel Variability

Background noises are usually present when speech is recorded in real-life scenar-
ios. They are also usually undesirable in speech processing applications. Ambient
noise, cars and other machine noise for instance may be overlayed in the signal.
But even without any additive noise sources, variabilty due to room acoustics might
be present. For example, reverberation from surface reflections in a room will also
change and influence the recorded signal as well as spectral shaping from record-
ing equipment itself (Acero and Stern, 1990). Another large source of variability of
speech recordings is the distance to a microphone. Particular speech recorded at a
distance makes automatic recognition more difficult (Wölfel and McDonough, 2009)
and degrades recording quality.

1.1.4 Extra-Linguistic Variability

A person can influence his voice to be more quiet, even whisper, or to be louder,
more tense or softer (Benzeghiba et al., 2007) or might speak at a faster or slower pace
than usual. All these factors might again change the acoustic signal drastically, but
do not change the transcription of an utterance. These changes in a recorded speech
signal are known as extra-linguistic variability and can also depend on context, e.g.
a speaker countering a particularly noisy background environment.

1.1.5 In Summary

To summarize, there are many highly non-linear interactions in spoken language
and recorded speech signals. This makes static pattern matching and methods that
do not account for variability prone to errors and challenging to build in a robust

6 Chapter 1. Introduction

manner. It is, in most cases, also difficult to anticipate all forms of variability pro-
grammatically. This makes a strong case for machine learning algorithms and repre-
sentations that are learned from data, where robustness to speech variability has to
be learned from the speech data itself.

1.2 Overview and research directions of this thesis

Humans and computers learn spoken language differently. Computers are usually
”exposed” to parallel corpora of speech data, i.e. isolated utterances of speech with
matching transcriptions, to learn to transcribe speech. Humans learn speech and lan-
guage simultaneously, from direct to indirect supervision and feedback through im-
itation (Whitehurst and Vasta, 1975). Most strikingly, humans also learn from being
exposed to language, and there is mounting evidence that infants learn the statisti-
cal distributions of speech through ambient language (Kuhl, 2004). In dataset terms,
this calls for a mixture of different learning paradigms, such as supervised learning,
unsupervised learning, semi-supervised learning, transfer learning and multi-task
learning. This raises the following questions:

What can we do if there is little training data for a speech task? Models can
be pre-trained on auxiliary tasks before they are applied to a target task with little
labeled data. Chapter 4 explores this data scenario on a study on an isolated paralin-
guistic speech task with neural networks. An auxiliary task, in this case language
identification, has lots of training examples that can be easily obtained in large quan-
tities and the target paralinguistic speech task has a few hundert labeled examples.
Traditionally, neural networks are known to overfit on such a small labeled data set,
but recent regularization techniques such as dropout and the use of transfer learn-
ing counter this effectively. The speech representation learned on the auxiliary task
proves to be useful for the target task as well.

What can we do with unlabeled speech data in automatic speech processing?
Transcribing speech data to automatic speech processing systems is a tedious man-
ual task. The 2004 Fisher effort to collect 2,000 hours of conversational English
speech estimated 6 hours to 20 hours of manual labor per collected hour of speech
(Cieri et al., 2004). The effort is dependent on the quality of the transcriptions. To
collect 2,000 hours of high-quality transcriptions, up to 40,000 hours of manual la-
bor might be necessary. On the other hand, unlabeled speech data can be collected
with ease – vast amounts of audio data can be readily collected from the internet, as
demonstrated in later chapters of this thesis (see e.g. Chapter 5) with dataset sizes
of up to 10,000 hours.

Experiments with the proposed models Unspeech and Sparsespeech in Chapter 5
and Chapter 6, which are both trained on untranscribed audio data, target this re-
search question. While Unspeech targets speaker and background characteristics,

1.2. Overview and research directions of this thesis 7

Sparsespeech targets unsupervised acoustic unit discovery and unsupervised acous-
tic modeling. Furthermore, Sparsespeech uses the "feedback through imitation" pa-
radigm to learn representations of speech, as Sparsespeech is a generative model as
well.

What other parts of the ASR pipeline can benefit from alternatives to super-
vised learning? In Chapter 7, we use multi-task learning to learn an embedding re-
presentation with sequence encoder/decoder networks that can be used to predict
pronunciations of unknown words (graphemes). Similarly to transcribing speech
data, manual dictionary compilation is a tedious process as well. Grapheme-to-
phoneme (G2P) models are an important tool for automatic dictionary expansion
in ASR systems and also helpful for assisting semi-manual dictionary compilation
as well. G2P is also used in current unsupervised ASR systems, to convert texts into
sequences of phonetic units.

Finally, how do practical systems benefit from speech technology? In the final
chapters of this thesis, application of speech at the intersection of NLP and ASR are
explored. In Chapter 8 a system for German automatic subtitling is presented – an
otherwise tedious manual task for human transcribers. In fully automatic subtitling,
NLP tasks such as punctuation reconstruction and subtitle segmentation need to to
be considered as well. A live subtitling application, Meetingbot, is presented as well
that can transcribe meeting participants and can create an automatic summary, with
on-the-fly speech decoding and visualization.

In Chapter 9, a speech application dubbed Ambient Search is presented. It is a
system that ambiently researches relevant information, in the form of proposing rel-
evant documents to users in conversations or users who passively listen to spoken
language. In contrast to other personal assistants, this system is not specifically trig-
gered, as it unobtrusively listens to speech streams in the background and implicitly
queries an index of documents.

1.2.1 Thesis overview

Figure 1.5 provides an overview of the chapters of this thesis. The thesis can be
roughly divided into three parts. The first part covers the introduction and two
background chapters. Chapter 2 provides background information regarding ma-
chine learning, clustering and (deep) neural networks. Chapter 3 provides an intro-
duction to automatic speech recognition.

In the second part, speech processing models are proposed and evaluated that
are related to (mostly unsupervised) ASR. A model for speech embeddings is built in
Chapter 5, a neural model for discrete units in Chapter 6 and a multi task model for
G2P in Chapter 7 . Chapter 5, 6, 7 are models that are prerequisites to unsupervised
ASR (see also Figure 3.11).

In the third part, practical speech systems at the intersection of ASR and NLP are
proposed and evaluated. An ASR model for German speech recognition is devel-
oped and applied to automatic lecture subtitling. The applications also make use of

8 Chapter 1. Introduction

Chapter 4

Study on
transfer learning

Chapter 5 Chapter 6

Ambient Search
transcribing dicussions

ASR/NLP
prototypes

German ASR models
Automatic subtitling
Meeting summarization

Chapter 7

Unspeech:
unsupervised
context rep.

Sparsespeech:
unsupervised
acoustic model

Unsupervised ASR

G2P:
dictionary
learning

Chapter 1 Chapter 2

Introduction Background
Neural networks

Chapter 3

Background
Speech processing and ASR

Chapter 9Chapter 8

Conclusions

Chapter 10

FIGURE 1.5: Overview of research directions and chapters in this the-
sis.

an active learning approach with G2P to extend the ASR system’s lexicon as needed.
A second speech application gives an example of an unobtrusive personal assistant
that ambiently fetches relevant articles while passively listing to a discussion or lec-
ture, for instance.

1.2.2 Publications forming the basis of this thesis

Parts of this thesis are based on previously published and co-authored peer-reviewed
content. In the following, we list all contributing peer-reviewed publications, along
with details to where and when they were published and comments to the degree of
authorship if applicable.

1. Benjamin Milde and Chris Biemann (2015). ”Using Representation Learning
and Out-of-domain Data for a Paralinguistic Speech Task”. In: Proceedings of
Interspeech 2015. Dresden, Germany, pp. 904–908. (*)

2. Benjamin Milde, Jonas Wacker, Stefan Radomski, Max Mühlhäuser, and Chris
Biemann (2016). ”Demonstrating ambient search: Implicit document retrieval

1.2. Overview and research directions of this thesis 9

for speech streams”. In Proceedings of COLING 2016 (system demonstra-
tions), Osaka, Japan, pp. 233–237.

3. Benjamin Milde, Jonas Wacker, Stefan Radomski, Max Mühlhäuser, and Chris
Biemann (2016). ”Ambient search: A document retrieval system for speech
streams”. In Proceedings of COLING 2016, Osaka, Japan, pp. 2082–2091.

4. Benjamin Milde, Christoph Schmidt, and Joachim Köhler (2017). ”Multitask
sequence-to- sequence models for grapheme-to-phoneme conversion.” In: Pro-
ceedings of Interspeech 2017, Stockholm, Sweden, pp. 2536–2540.

5. Benjamin Milde and Arne Köhn (2018). ”Open Source Automatic Speech Recog-
nition for German”. In: Proceedings of 13th ITG Conference on Speech Com-
munication 2018, Oldenburg, pp. 251–255.

6. Benjamin Milde and Chris Biemann (2018). ”Unspeech: Unsupervised Speech
Context Embeddings”. In: Proceedings of Interspeech 2018. Hyderabad, India,
pp. 2693–2697.

7. Benjamin Milde and Chris Biemann (2019). ”SparseSpeech: Unsupervised
Acoustic Unit Discovery with Memory-Augmented Sequence Autoencoders”.
In: Proceedings of Interspeech 2019. Graz, Austria, pp. 256–260.

8. Benjamin Milde and Chris Biemann (2020). ”Improving Unsupervised Sparse-
speech Acoustic Models with Categorical Reparameterization”. In: Proceed-
ings of Interspeech 2020. Virtual Shanghai, China, pp. 2747–2751.

9. Benjamin Milde, Robert Geislinger, Irina Lindt, and Timo Baumann (2021).
”Open Source Automatic Lecture Subtitling”. In: Proceedings of ESSV 2021.
Virtual Berlin, Germany, pp. 128–134.

10. Benjamin Milde, Tim Fischer, Steffen Remus, and Chris Biemann (2021). ”MoM:
Minutes of Meeting Bot”. In: Proceedings of Interspeech 2021. Brno, Czech Re-
public, pp. 3311–3312.

11. Robert Geislinger, Benjamin Milde, Timo Baumann and Chris Biemann (2021).
”Live Subtitling for BigBlueButton with Open-Source Software”. In: Proceed-
ings of Interspeech 2021. Brno, Czech Republic, pp. 3319–3320.

(*) Nominated for the ISCA best student paper award at Interspeech 2015.

Comments on the degree of authorship. In publications (1,6,7) and (8), I de-
signed and carried out all experiments and wrote the paper, while Chris Biemann
commented on the research and writing in his role as supervisor. In (1) Steffen Re-
mus, Martin Riedl and Jinseok Nam were acknowledged for insightful discussions
on the topic of transfer learning. In (2,3) I did the majority of the experiments, while
Jonas Wacker helped with the implementation of the demo system, specifically the

10 Chapter 1. Introduction

keyword/keyphrase extraction. Stefan Radomski, Max Mühlhäuser, and Chris Bie-
mann commented on the research and writing. Alexander Hendrich was acknowl-
eged for contributing to improve the HTML5/JS display client and Michelle Sand-
brink for helping out with the relevance judgements of the retrieved documents. In
(4) I carried out all experiments and wrote the paper, while Christoph Schmidt and
Joachim Köhler commented on the research and writing. In (5) I wrote the majority
of the paper and did the experiments, while Arne Köhn gave me access to the Spo-
ken Wikipedia Corpus (SWC) that he specifically filtered for ASR model training
with Kaldi, also writing an exporter for the Kaldi corpus format. Arne Köhn wrote
Section 2.1 about the SWC corpus in this paper and helped with the error analysis
in Section 3.1. In (9) I wrote most of the paper and carried out most experiments,
while Robert Geislinger and Irina Lindt helped with implementing the Software
Subtitle2Go. Robert Geislinger evaluated Punctuator models for German texts to
restore punctuation and wrote the section about it. Timo Baumann commented on
the research in his role of supervising the Subtitle2Go project and helped to improve
the writing style of the paper. In (10) I spearheaded the paper and programmed
most of the backend modules. Tim Fischer implemented the frontend as well as the
summarization and partially wrote the section on the interface and summarization.
Steffen Remus wrote most of related works section and helped with containerizing
Meetingbot for deployment. In (11), Robert Geislinger spearheaded the paper and
carried out experiments and the evaluation, while I helped with kaldi-model-server
and trouble shooting decoding problems, as well as improving and adding to the
paper overall.

Relation to chapters of this thesis. Most chapters of this thesis are based on the
listed publications. Specifically, Chapter 4 is based on (1), Chapter 5 is based on (6),
while Chapter 6 is based on (7,8). Chapter 7 is based on (4) and Chapter 8 is based on
(5,9,10) and includes a small text snippet and screenshot of (11). Chapter 9 is based
on (2,3).

11

Chapter 2

Machine Learning and Neural
Networks

In a procedural computer program, a programmer defines sequences of command
statements. These statements govern how a program should react to a given input
and how it should compute and output results of a computation. The programmer
has to anticipate all possible scenarios and abstract logical rules that cover them with
a procedural solution.

For some problems, determining such a procedural solution manually becomes
a difficult task. Problems from the field of natural language processing and speech
processing tend to fit this profile. Let us consider the following NLP problem: we
want to determine the sentiment of a sentence. We could determine a set of procedu-
ral statements that lead to making decision A (positive) or decision B (negative), for
example create lists of positive words and negative words. Then we count the num-
ber of positive and negative words and compute the sentiment according to what
class of words was counted more often. We then look at example sentences and see
how well this solves the problem. For example, we might discover that negations are
not handled well with the current solution and create additional procedural rules to
handle this problem. In a way, this is also executing a type of learning. Only that
in this case, the adaption of the program happens manually by the programmer. In
contrast, the field of machine learning deals with a fundamentally different class of
programs:

”The field of machine learning is concerned with the question of how
to construct computer programs that automatically improve with expe-
rience” (Mitchell, 1997).

Programs in machine learning usually interact with models. The program itself
is a set of rules that define how the model is constructed, how it should be updated
and adapted given some data and eventually (in most cases) how it is applied to new
data. This also means a shift in the way the programmer approaches the problem.
Instead, he does not have to anticipate every possible future scenario by creating
fixed and static program rules. He is now concerned with questions such as: What
is a good model for the given problem? How is this model trained and improved

12 Chapter 2. Machine Learning and Neural Networks

with data? What is a good representation of the data, i.e. how is the data processed
and presented to the model? How is the data and potentially its labeling created?

In speech processing and automatic speech recognition, solutions that rely on
machine learning have produced the best results so far. For example, if we want
to solve the sentiment problem with recordings of speech instead of texts: There is
more to spoken utterances, than just the contents of words – if want to classify the
sentiment of a spoken utterance the way how something is said will also play a role.
But what exactly constitutes a friendly and positive tone in an utterance and how
would the procedural statements look like?

There is simply no easy way to anticipate and account for the vast amount of
variations in speaker voices, background noises and so on that a simple procedural
solution could be easily formulated. A learning algorithm that discovers patterns
in the speech data automatically and learns from examples makes the problem ap-
proachable. As our understanding of learning algorithms and the field of machine
learning expands, as well as the amount of data that is used to train and learn from,
it will undoubtedly continue to play a major role in computer science and funda-
mentally shape our experiences interacting with machines.

In the following, we categorize the main types of learning scenarios in machine
learning:

2.1 Supervised Learning

In supervised learning, we are interested in computing a target label y for a data
point x. In the context of a probabilistic model, we estimate y as P(y|x). We typically
have training data, a collection of labeled data points, that we use to fit parameters
of a model. All data points are annotated using a finite set of target labels. Ideally,
given enough training examples, the model can be used and applied to the target
task on unseen and new examples and is able to generalize from what it learned.
This usually involves a trade-off; either the model will memorize the training exam-
ples well but overfits on them leading to issues with generalization, or some of the
training examples will be misclassified, but overall the model will generalize better
to unseen examples.

In automatic speech recognition, the most common way to introduce supervision
is by having matching transcriptions for speech data. In this case, no single labels
y are available as training data: instead w is usually a sequence of words match-
ing o, a sequence of observations. We then estimate the conditional probability as
P(w|o) = P(w1, ..., wn|o1, ..., om) (Jurafsky and Martin, 2008). In other words, while
there is supervised data, the precise alignment of which oi matches what wi is un-
known. Appropriate models are then used, such as Hidden Markov Models (see
Section 3.4) that can jointly infer alignment and classification from the training data.
Because of this difference, sometimes, this form of supervision is categorized in its
own category as a transcription task (Goodfellow et al., 2016).

2.2. Unsupervised Learning 13

2.2 Unsupervised Learning

In practice, collecting large amounts of unlabeled data is much easier than collecting
labelled data. Large amounts of video, audio and texts can be readily downloaded
from the Internet, video and speech data can also be obtained by recording broadcast
media. Annotated data on the other hand is usually obtained from human annota-
tors and is costly to create. Making use of large amounts of unannotated data in
machine learning is thus of high practical interest.

In unsupervised learning, we are concerned with training scenarios where no
labels y are present. We are usually interested in p(x) or the latent structure, dis-
covering patterns in p(x) (Murphy, 2014) or distribution and interesting properties
of p(x) (Goodfellow et al., 2016). A popular method to discover structure in data is
clustering, where similar data points x are grouped. This can also be understood as
a form of representation learning: after all data points are clustered, each data point
can be represented by a single discrete label. Another form of unsupervised learning
is unsupervised feature and representation learning. An example is the projection
of data points into an embedded space where distances then explicitly exhibit latent
properties of the data. Such models and the features they learn can also be incorpo-
rated into supervised tasks.

The lines between supervised and unsupervised learning can sometimes be blurry,
as it is possible to reformulate the p(x) problem as a supervised task by decomposing
the modelling of p(x) into n supervised problems (Goodfellow et al., 2016):

p(x) =

n∏
i=1

p(xi|x1, ..., xi − 1)

That also means that supervised machine learning machinery can be applied to
unsupervised learning. An example for this can be found in Chapter 5 of this the-
sis, where a discriminative model is used with unannotated data for unsupervised
learning in speech processing.

2.2.1 Clustering

Categorizing data into clusters to infer interesting properties of p(x) is one of the ma-
jor diciplines in unsupervised learning. In clustering, we assign a categorical label y
to every data point x. Note that clustering can be an ill-posed problem (Jain, 2010).
There are many potential ways to categorize data and each could be equally valid.
Finding a good clustering with a clustering algorithm is a matter of perspective – this
problem becomes really apparent when we cluster audio and speech data. There are
many interesting ways to partition raw speech data and all are equally desirable in
different scenarios. We could for instance cluster and partition utterances accord-
ing to speakers, speaker characteristics, microphone and quality of the recordings.
Alternatively, if we are concerned with semantic properties of the speech data and
would like to cluster utterances according to topics. If we want to find clusters of

14 Chapter 2. Machine Learning and Neural Networks

words, syllables or phonemes – we might require an additional segmentation of the
available data points x. Each of these problems has very different desired clusters
of data and will need different approaches and possibly different cluster algorithms.
Another general issue is how fine-grained the clustering should be, i.e. how many
clusters there should be. While heuristics exist, this is typically a parameter of the al-
gorithm or approach that needs to be tuned in one way or another. Ultimately, what
constitutes a good clustering of a collection of data points will strongly be dependent
on the intended application.

Another form of clustering is soft clustering. Compared to a hard decision of
assigning a single cluster to each data point, we assign a weight vector to each data
point x, expressing the degree of cluster membership to every cluster. A soft clus-
tering can always be transformed into a hard clustering by selecting the categorical
label belonging to the largest degree of cluster membership for each data point.

2.2.2 K-Means

In the k-means problem, datapoints x ∈ X ⊂ Rd must be assigned to k clusters
c1, ..., ck so that it minimizes (notation follows Arthur and Vassilvitskii (2007)):

φ =
∑
x∈X

min
c∈C

||x− c||2

where we minimize the sum of all distances from all x to their respective cluster
centers c. Solving this problem exactly is NP hard, but a simple and fast algorithm
exists to solve it approximately, known as k-means or Lloyd’s algorithm (Lloyd,
1982):

1. Choose k cluster centers c1, ..., ck randomly from X .

2. Assign all data points to the closest cluster center ck. The cluster Ci is the set
of points assigned to it.

3. Recalculate the cluster centers as ci = 1
|Ci|
∑

x∈Ci
x.

4. Repeat step 2 and 3 until the cluster assignment converges.

K-means can give poor results and large variations in the resulting clusters, de-
pending on the randomly selected initial cluster centers. The following cluster cen-
ter initialization algorithm has become popular as it is simple and fast, yet effective
in selecting better initial cluster centers than choosing them uniformly at random.
Let D(x) denote the shortest distance from a data point to the closest center of all
previously chosen centers ci (Arthur and Vassilvitskii, 2007):

1. Take one center c1, chosen uniformly at random from X .

2. Take a new center ci, choosing x ∈ X with probability D(x)2∑
x∈X D(x)2

.

2.2. Unsupervised Learning 15

3. Repeat Step 2 until there are k centers.

Step 2 weights new centers according to their squared distance to already chosen
cluster centers, spreading the initial cluster centers across the dataset. The combined
algorithm using regular k-means on the output of this cluster center initialization is
known as k-means++ and it outperforms regular k-means in speed and accurarcy,
often by a large margin (Arthur and Vassilvitskii, 2007). Thus, k-means++ is used
throughout this thesis in all experiments that use k-means clustering, such as in the
initialization technique in Section 6.1.2.

2.2.3 DBSCAN

DBSCAN (Density Based Spatial Clustering of Applications with Noise) (Ester et
al., 1996) is a popular density-based clustering algorithm that clusters data points
according to their differences in density. The motivation for this clustering algorithm
is the observation that regions with a higher density of points lying close together in
a space typically form clusters, while those clusters are usually separated by regions
of lower point densities.

The algorithm also has a notion of data points that are outliers, i.e. data points
that do not belong to any cluster. Also, an advantage of a density-based clustering
algorithm is that it can cluster data of arbitrary shape. We sketch the DBSCAN algo-
rithm in the following. DBSCAN uses the notion of points that are density-reachable
as an important mechanism to decide cluster membership:

A point p is directly density-reachable from another point q if it lies in its eps-
neighborhood, i.e. its distance is less or equal than the eps parameter and it has at
least a certain amount of points, as set by the MinPts threshold. DBSCAN distin-
guishes between two types of points: Core points that lie in the eps-neighborhood
with a MinPts at or above threshold and border points in the eps-neighborhood with
a MinPts below threshold.

1. Start with an arbitrary unclassified point p.

2. Query its eps-neighborhood and assign the same cluster ID to all points if it is
a core point.

3. Assign the noise label if p is a border point.

4. Recursively iterate through unclassified points of the eps-neighborhood.

5. Go to step 1 if there are still unclassified points.

Note that points that are assigned to the noise label can be assigned a cluster ID
at a later stage, if they are in the eps-neighborhood of another core point. The region
query (finding points in the eps-neighborhood of a point p) is also known as a nearest
neighbor search. Computing a region query exactly is a computationally expensive
operation due to the curse of dimensionality (Beyer et al., 1999). There are however

16 Chapter 2. Machine Learning and Neural Networks

efficient indexing structures that allow approximate nearest neighbor searches, with
a trade-off between computation time (construction of the index and search time)
and accuracy of the query. These can also be used to significantly speed-up DBSCAN
in practice, allowing very large datasets to be clustered. While DBSCAN can be used
with any distance function, most approximate nearest neighbor search methods are
designed for the Euclidean distance between points.

Classic and popular algorithms include k-d trees (Bentley, 1975) and ball trees
(Beyer et al., 1999), addressing efficiency problems of k-d trees in higher dimen-
sions. R*-tree (Beckmann et al., 1990) was recommended in the original DBSCAN
paper description (Ester et al., 1996). Recent approximate nearest neighbor methods
such as IVFADC (Jegou et al., 2010) are known to scale well into very large datasets
containing billions of vectors (Johnson et al., 2019).

The eps parameter in DBSCAN also needs tuning in practice, but in some cases,
a good eps parameter can also be chosen by knowledge of special properties of the
data. Otherwise, it needs to be fine tuned and it can often be very sensitive: bad
eps parameters might give degenerate solutions such as putting everything into one
cluster (eps too large) or putting every data point in its own cluster (eps too small).

HDBSCAN (McInnes et al., 2017) is a state-of-the-art extension to DBSCAN, ef-
fectively converting DBSCAN into a hierarchical clustering algorithm. The advan-
tage of HDBSCAN over DBSCAN is that it works on datasets with clusters of vary-
ing densities and does not need tuning of the eps parameter. When an appropriate
approximate nearest neighbor search is used, it also scales well to large amounts of
data points like DBSCAN does. We make use of this advantage in Section 5.4.2 to
cluster speech data.

2.3 Self-supervised Learning

In self-supervised learning, the input data itself is used for supervision. An arti-
ficial supervised learning task is created, for example by generating pseudo labels
through an automatic process. Self-supervised learning is regarded as a form of un-
supervised learning (Jing and Tian, 2020), as no manual labels are needed to train a
model. It can be categorized into generative and contrastive self-supervised learn-
ing (Liu et al., 2021). In generative self-supervised learning, parts of the input data
are usually masked, distorted or corrupted and need to be inferred from other data
points. In contrastive self-supervised learning, two or more data points are con-
trasted with each other, for example by a binary classification between data points
that are somehow similar or share a common trait and randomly chosen ones. Usu-
ally, co-occuring inputs and related information are used in self-supervised learning
tasks (Liu et al., 2021), so that the model needs to learn how data points relate to
each other in order to solve the task. The models and its learned representation can
then often be used to facilitate downstream tasks that are supervised, improving
classification performance through the self-supervised pre-training. Applications of

2.4. Semi-supervised Learning 17

self-supervised learning can be found in Chapter 5 (contrastive) and Chapter 6 (gen-
erative).

2.4 Semi-supervised Learning

Another type of supervised machine learning is semi-supervised learning, which
deals with a learning problem where only some of the data is labeled and some of it
is unlabeled. Typically, the number of unlabeled data points is much larger than the
number of labeled points. Self-training is one of the most well-known and straight-
forward techniques in semi-supervised learning (Zhu, 2005). For this technique, a
bootstrap model is trained on the labeled data and is then used to predict unlabeled
data points. All or some of the predicted data points are then added to the training
data and the model is retrained. Data point selection, e.g. only adding high confi-
dence predictions to the training data, is common. Self-training has been applied to
many tasks, for example in word sense disambiguation (Yarowsky, 1995) and learn-
ing subjective nouns (Riloff et al., 2003). In Veselỳ et al. (2013), this has been applied
to speech recognition with neural networks, yielding small improvements.

A variant of self-training is label propagation (Zhu and Ghahramani, 2002). The
method uses a combination of random walk and clamping to assign labels to unla-
beled data points. Ladder networks (Rasmus et al., 2015) is another recent technique,
where supervised learning and unsupervised learning is combined in a single (deep)
neural network.

2.5 Transfer Learning

In a transfer learning setting, a model is first trained on an auxiliary task. The model
is then fully or partially transferred and trained on a target task (Caruana, 1997; Pan
and Yang, 2009). This technique is often applied in a setting where a related auxiliary
task has a lot of training data while the target task has limited training data. An
example in speech processing would be language identification of an utterance as
an auxiliary task (lots of training data), with dialect identification as the target task
(likely much less training data). Pretraining on an auxiliary task with more data
might then improve generalization of the model on the target task. Some of what
can be learned from the auxiliary task might also be useful for the target task.

2.6 Evaluation

In the following, we list common evaluation metrics that are used in supervised and
semi-supervised learning tasks, as well as metrics commonly used in unsupervised
learning. These metrics are also used in machine learning experiments in this thesis.

18 Chapter 2. Machine Learning and Neural Networks

2.6.1 In Supervised Learning

Accuracy is a simple performance metric for supervised machine learning. It is the
fraction of correct classifications c in all tested classifications n:

Accuracy =
c

n

If the labels of a dataset are imbalanced, then the following evaluation metrics
are usually more useful:

Precision and recall are two popular metrics that are rooted in information re-
trieval and are defined in the context of relevance of retrieved documents, as judged
by users of an information retrieval system. They are also applicable to machine
learning problems (Mitchell, 1997; Witten et al., 2016) by categorizing classifications
of a system compared to true labels into true positives (TP), false positives (FP), true
negative (TN) and false negatives (FN):

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Another common metric is the F-measure, defined as

Fβ =
(1 + β)PR

β(P +R)

where β is a parameter that weights precision and recall. The F1 measure (β =

1) weights precision and recall equally and is equivalent to the harmonic mean of
precision (P) and recall (R):

F1 =
2PR

P +R

Typically, performance metrics are evaluated on one or more held out sets. A
common setup is a split of a dataset into training data, a development set and a test
set. Overfitting and over estimation of a performance metric can still occur when
the held out sets are repeatedly used for testing. Cross-validation (Stone, 1974) may
produce a more robust estimate of the classifier’s performance than a held out set: in
k-fold cross validation, a dataset is split k times into k distinct sets. The model is then
trained and evaluated k times, using k − 1 sets to train a model and the remaining
set to test its performance, until every set is evaluated once. The final performance
metric is then averaged over all k runs.

2.6.2 In Unsupervised Learning

In the following, we list common and well-established metrics to compare a cluster-
ing to a gold clustering, typically in the form of manual labels or categories. In con-
trast to supervised evaluation metrics, cluster evaluation metrics need to consider

2.6. Evaluation 19

that the number of clusters is different in the two sets that are compared. Cluster
IDs may also be in a different order. It is desirable for the evaluation metrics that
a mapping between the best matching cluster IDs does not need to be provided or
found.

Rand Index (RI) The Rand Index (RI) (Rand, 1971) is a measure based on how all(
n
2

)
possible pairs between all elements of X and Y can be partitioned as being:

1. type (I): pairs of elements that are in the same cluster in X and Y

2. type (II): pairs of elements that are in distinct clusters in X and Y

3. type (III): pairs of elements that are in the same cluster in X and in distinct
clusters in Y

4. type (IV): pairs of elements that are in distinct clusters in X and in the same
cluster in Y .

These are all possible variants of a pair of elements in X and Y , i.e. the number
of occurrences of type (I) + type (II) + type (III) + type (IV) = all possible pairs =(
n
2

)
. Intuitively, pairs of type (I) and type (II) can be interpreted as agreeing on a

clustering, while type (III) and (IV) are data points where the partitions X and Y

differ on the clustering. Let a be the number of pairs of type (1) and b the number of
pairs of type (II) between a partitioning X and Y , then the Rand Index is defined as:

RI(X,Y) =
a+ b(

n
2

)
Adjusted Rand Index (ARI) Adjusted Rand Index (ARI) (Hubert and Arabie, 1985)
is adjusted for chance and cluster labels with a perfect match that would yield a score
of 1.0. If RI(X,Y) is defined as above as the Rand Index and E(RI(X,Y)) the ex-
pectation of random mappings, then:

ARI(X,Y) =
Index − Expected Index

Maximum Index − Expected Index
=

RI(X,Y)− E(RI(X,Y))

1− E(RI(X,Y))

Mutual Information (MI) Mutual information (MI) between discrete random vari-
ables X and Y is a well-known measure, emerging from the foundations in informa-
tion theory (Shannon, 1948).

Let H(X) be the entropy of X and H(X|Y) the conditional entropy of X given
Y (notation follows (Kvålseth, 2017)), then:

I(X;Y) = H(X)−H(X|Y)

Using common definitions of the entropy and conditional entropy, we can also
formulate this as:

20 Chapter 2. Machine Learning and Neural Networks

H(X)−H(X|Y) = −
I∑

i=1

p(xi)logp(xi) +
I∑

i=1

J∑
j=1

p(xi, yi)logp(xi|yj) (2.1)

=
I∑

i=1

J∑
j=1

p(xi, yi)log

(
p(xi|yj)
p(xi)

)
(2.2)

where p(xi) and p(yi) are the marginal probabilities and p(xi, yi) the joint proba-
bility.

Normalized Mutual Information (NMI) While MI can be used to compare to clus-
terings X and Y, it is unbound. Normalized Mutual Information (NMI) (Strehl, 2002)
is a popular normalized variant of MI. It is generally between zero and one, with
random clusterings approaching zero and an identical clustering one. Thus, NMI
provides an interpretable score that can be directly applied to clustering and its ref-
erence clustering, to provide a score of relative goodness between the clustering and
its reference.

NMI(X;Y) =
2 · I(X;Y)

H(X) +H(Y)

No assumptions about what clusters are matching needs to be made, the measure
also works if the number of classes are not balanced between a clustering and a
reference clustering. However, in the unbalanced case, NMI is always smaller than
one (Strehl, 2002).

V-measure The popular V-measure (Rosenberg and Hirschberg, 2007) is calculated
differently, but yields a measure that is identical to NMI, c.f. proof in (Remus and
Biemann, 2013). We prefer to refer to the measure as NMI throughout the thesis.

2.7 Artificial Neural Networks

“It is probably wise to include a random element in a learning machine.”

- Alan Turing, 1950 (Turing, 1950)

Artificial neural networks (ANNs) are machine learning models that are inspired
by the human brain. While they work very differently as compared to neurons in
a human brain, the abstraction shares the idea of individual connected nodes that
pass on information through outputs to inputs of other nodes. Perception tasks,
where the underlying inputs are difficult to interpret directly, have recently benefited
from the use of large artificial neural networks (see also Section 2.14). This is in part
attributed to representation learning that is implicitly a part of the model, enabling

2.8. Feed Forward Networks 21

it to learn hierarchical features that are beneficial to perception tasks (Farabet et al.,
2013). Also, linear models tend to underfit and under-utilize computing resources
(Lipton et al., 2015). Back-propagation (see Section 2.10) and Stochastic Gradient
Descent (see Section 2.12) is commonly used to train artificial neural networks. The
following sections give an overview over past and current models, as well as their
training methods.

2.8 Feed Forward Networks

Σ

inputs

·w1

·w2

·w3

+b

output

FIGURE 2.1: Example unit with three inputs in a Feed Forward Net-
work.

Feed Forward Networks (FFN) are artificial neural networks, in which the inter-
connections of the network do not form any loops (Fiesler and Beale, 1996). FNNs
are also known as multilayer perceptrons, mainly for historical reasons (Jurafsky
and Martin, 2018). FNNs usually consist of units that are connected, Figure 2.1 de-
picts a single unit. It consists of a multiplication of a weight value with an input and
a summation of all results (Rumelhart et al., 1986):

y = fa(

n∑
i=1

wixi + b)

where fa is the activation function. A well known activation function is the sig-
moid function σ (plotted in Figure 2.2). In machine learning, the sigmoid function
usually refers to the logistic function (Mitchell, 1997):

σ =
1

1 + e−x

The output values of this function are bound between 0 and 1.

In the simplest form of a FNN, multiple of such units are organized in multiple
layers, with connections between all units of consecutive layers (Rumelhart et al.,
1986). A layer of this form is also called a fully connected layer. The computation of
a fully connected layer can also be expressed compactly as a matrix multiplication
and a vector addition:

22 Chapter 2. Machine Learning and Neural Networks

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

S
ig

m
o
id

 f
u
n
ct

io
n

FIGURE 2.2: The sigmoid activation function

fa(wx+ b)

The activation function adds a non-linearity to the network that is important for
stacking fully connected layers. Combining linear functions yields another linear
function – the non-linearity however allows the network to learn and perform non-
linear computations.

2.9 Loss Function

When training neural networks, we typically minimize an objective function. It is
usually a loss function that associates a cost between the output of a neural network
and the desired output for a particular data point. In the following, we list the most
common loss functions:

Mean Squared Error (MSE) loss function:

MSE(Y, Y ′) =
1

n

n∑
i=1

(Yi − Y ′
i)

2

where n is the number of outputs, Y the output vector of the network and Y ′

is the reference vector. MSE is often used in regression tasks, where the network
should learn to output numeric values. A downside of MSE is that it gives a height
weight to outliers. The Huber loss (Huber, 1964) is a piecewise function that can be
used instead, giving less weight to outliers:

Lk(t) =

{
1
2 t

2 for |t| < k

k|t| − 1
2k

2 for |t| ≥ k

where t refers to the difference between the output of the network and the ref-
erence value and k is a constant that can be set to control the influence of outliers.
Figure 2.3 visualizes MSE and Huber loss. Huber loss is used in Chapter 6 and
yielded better results than MSE on the self-supervised task in that Chapter.

2.9. Loss Function 23

6 4 2 0 2 4 6
t

2

1

0

1

2

3

4

5

6

lo
ss

MSE
Huber (k=1)
Huber (k=2)

FIGURE 2.3: Mean squared error (MSE) and Huber loss

For classification problems, softmax (Bridle, 1990) is often applied to output of a
network before the loss is computed. The softmax normalizes the network’s output
by squishing it so that all outputs sum up to one. The outputs σ(x)i can then be
interpreted as pseudo-probabilities:

σ(x)i =
exi∑n
j=1 e

x
j

The Kullback-Leibler divergence (Kullback and Leibler, 1951) defines a measure
to compare two discrete probability functions P and Q. It is rooted in information
theory:

DKL(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
Cross entropy is a loss that is often used for classification in neural networks and

it is closely related to Kullback-Leibler divergence:

H(P,Q) = −
∑
x∈X

P (x) log (Q(x))

One of the first uses and mentions of cross entropy in neural networs appears in
(Hinton et al., 1995). Cross entropy can be used in multi-label classification, the
argmax of output vector yields the most probably classification according to the
trained network for a data point.

H(P, y) = − 1

N

N∑
i=1

(yi logPi) + (1− yi) log (1− Pi)

where yi is the label for the i-th data point and Pi is the estimated (pseudo-)prob-
ability that the i-th label is positive (1).

Binary cross entropy is loss that is applied to classification tasks with one single
label, which is either positive or negative. In this case, a single network output is
trained to be in the range of 0 to 1. The decision boundary is then usually set to

24 Chapter 2. Machine Learning and Neural Networks

0.5 (but can also be set to any other value) with values above the boundary being
interpreted as a positive classification and values below as a negative classification.

2.10 Back-propagation

Back-propagation (backprop) is an algorithm to determine an analytical gradient
function for a neural network. In a forward pass (also known as forward propaga-
tion) the output function of the network is computed. Back-propagation then de-
termines a gradient function with respect to a given loss function and each weight
of the network. While the term is often misused, back-propagation strictly refers to
the computation of the gradient function (Goodfellow et al., 2016), while SGD (see
2.12) or a similar algorithm is used to optimize a neural network given a gradient
function.

The first NN-specific application appeared in (Werbos, 1982) and the algorithm
was popularized by Rumelhart et al. (1986). Back-propagation is also known as the
reverse mode of automatic differentiation. See Griewank (2012) for an extended dis-
cussion on the origins of the reverse mode of automatic differentiation, some work
in other fields is predating its first successful application to neural networks by a
large margin (e.g. Hachtel et al. (1971) for using it in optimization of circuit design).

Back-propagation applies the chain rule of calculus recursively to obtain the gra-
dient of a function composed of other functions whose gradients are known.

If y = g(x) and z = f(g(x)) = f(y), then the chain rule of calculus states (notation
follows Goodfellow et al. (2016)):

dz

dx
=

dz

dy

dy

dx

This can be extended to vectors x and y with:

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

For a more in depth introduction to the algorithm, see Goodfellow et al. (2016).

2.11 Gradient Descent

In Gradient Descent (GD), the weights w of a neural network are updated according
to the following recursive function (Rumelhart et al., 1986; Bottou, 2010):

wt+1 = wtγ
1

n

n∑
i=1

∆wl(fw(xi), yi) (2.3)

where γ is the learning rate, fw(xi) the forward pass of the network for a data
point xi, l the loss function that quantifies how different fw(xi) is to the desired

2.12. Stochastic Gradient Descent 25

output yi and ∆wl is the gradient of the loss. In Gradient Descent, the update of the
weights is calculated over the average of all data samples.

2.12 Stochastic Gradient Descent

In Stochastic Gradient Descent (SGD) (Robinds and Monro, 1951), the recursive up-
date of the weights is modified to operate on single randomly drawn data points
xi:

wt+1 = wtγ∆wl(fw(xi), yi) (2.4)

Equation 2.4 simplifies and approximates the calculation of the gradient and
weight updates can be calculated without passing through the whole dataset at once.
However, when used to optimize neural networks, this also decreases the possibility
for exploiting possible parallelism. In practice, mini-batch SGD is often used. This
is a compromise between updating the weights with single data points and all data
points at once, as it operates on a small number of randomly chosen data points
those gradients are averaged (using Equation 2.3).

2.13 Vanishing Gradient Problem

The vanishing gradient problem can appear while training neural networks with
gradient based training methods (Hochreiter, 1991; Bengio et al., 1994). For each
weight in a neural network, a partial derivative is computed by back-propagation
and the chain rule, chaining gradient computations from the loss function back-
wards through each layer of a network towards the inputs. In some network struc-
tures, particularly operations such as some activation functions those gradients are
bound between 0 and 1, the gradient diminishes exponentially with each layer to-
wards the input layer. In fact gradients of the front layers can than become so small
that learning in those layers becomes impossible using standard floating-point arith-
metic, as the weight changes are effectively zeroed out. While it is not an inherent
problem of neural networks, gradient based optimization techniques are the most
popular and usually the most efficient for training them, making successful training
of neural networks more difficult as the number of operations and layers in a neural
network increases (Goodfellow et al., 2016).

A related problem is the exploding gradient problem (Bengio et al., 1994) – typ-
ically encountered in chaining operations that grow the gradient computation ex-
ponentially towards the input layer instead of diminishing it, making computations
with floating point arithmetic impossible once the numbers grow too large (and can
only expressed as ’infinity’).

26 Chapter 2. Machine Learning and Neural Networks

Overcoming the vanishing and exploding gradient problem encountered with
very deep neural structures is part of the success of recent advances in neural net-
works. The study of such deep neural networks is also known as deep learning
(LeCun et al., 2015). Key methods and techniques are described in the following
sections.

2.14 Deep Neural Networks

Deep Neural Networks (DNN) describe networks that are deep in their structure,
e.g. have more than 3 layers. They are also characterized by training procedures and
design decisions that permit training of the networks with many layers without en-
countering the vanishing gradient problem. Empirically, it has been demonstrated
that deeper networks learn hierarchical features and that the network learns ap-
propriate (non-linear) feature transformations for the problem (Farabet et al., 2013).
Since representation learning is an integral part of deep neural networks, hand-
crafted features become optional for many problems – one appeal of DNNs is that
they can often be applied directly to the underlying raw data.

In contrast to "shallow" standard feed forward networks (as described in Section
2.8), there are more changes than simply adding more layers to the network. They
can be summarized as better initialization functions, a change of the non-linearities
in the network, regularization and refined optimization algorithms. The following
sections describe these solutions that were mainly developed in the past decade and
help to train deep neural networks successfully. Today, the field concerned with
training, understanding and applying deep neural networks is known as deep learn-
ing. Note that some early pioneering work on training such deep networks success-
fully predates the most recent literature by a wide margin (Fukushima and Miyake,
1982; LeCun and Bengio, 1995; Hochreiter and Schmidhuber, 1997). The following
sections concentrate mainly on the advances of the past decade, but also mention
some earlier work in a few places where appropriate.

2.14.1 Unsupervised pre-training

Hinton and Salakhutdinov (2006) proposed a practical solution to train deep neu-
ral networks. The idea is to split the training of the network into two phases: first,
a good initialization is found by pre-training the network layer by layer using Re-
stricted Boltzmann Machines (RBMs) (Rumelhart et al., 1987; Hinton, 2002) in an
unsupervised fashion. In a second step, standard back propagation and SGD is ap-
plied to fine-tune the weights of the network.

The success of applying unsupervised pre-training in difficult supervised ma-
chine learning tasks, for example in allowing large reductions in word error rates in
speech recognition (Dahl et al., 2012), helped to highlight an important realization:

2.14. Deep Neural Networks 27

”[...] the standard training schemes (based on random initialization) tend to place
the parameters in regions of the parameters space that generalize poorly [...]” (Erhan
et al., 2010)

In turn, this insight led to modern training recipes for DNNs and rekindled in-
terest in (deep) neural networks. Nowadays, unsupervised pre-training of RBMs
as originally proposed by Hinton et al. (2006) is rarely used anymore in supervised
training tasks. It is largely superseded by employing better (static) initialization
methods, advances in refining optimization algorithms, the choice of non-linearities
and regularization methods that have shown fast convergence and better results in
many practical tasks. But the idea of unsupervised pre-training ultimately led to key
observations that facilitated practical solutions for optimizing deep neural networks.

2.14.2 Other types of non-linearities

In the following, we highlight a few non-linearities that are popular in modern deep
neural networks and that typically replace the sigmoid activation function.

Rectifier / ReLU. The rectifier activation function is defined as:

fr(x) =

x, if x > 0

0, if x ≤ 0
. (2.5)

and is equivalent to fr(x) = max(x, 0).
Neurons (units) in a network that use the rectifier activation function are also

called rectified linear units (ReLUs). This activation function was popularized by
(Glorot et al., 2011). Currently, this is one of the most common choices for an acti-
vation function in dense and convolutional networks (see also some recent variants
of ReLUs in the following sections). Using it instead of a sigmoid function has the
advantage that it leads to exact sparsity in the internal representations of a network,
since the activation function returns (exactly) zero for all negative inputs. In prac-
tice, with a uniform initialization around zero, over 50% of a network’s ReLUs will
be initialized to output exactly zero on average. It has been empirically shown that
this rate rises while the network is trained and that sparsity is both advantageous to
convergence and performance of the network (Glorot et al., 2011). It is not uncom-
mon that after successful training only 20% of the networks neurons have a non-zero
output, i.e. that the resulting final network is sparse.

While sparsity can also be achieved by imposing additional regularization con-
straints such as L1 and L2 regularization on the weights when optimizing a network
with standard sigmoid activations, this will typically yield outputs that are close to
zero, but not exactly zero. To achieve a value that is close to zero, the pre-activation
output has to be a large negative number. Also, with a standard uniform initializa-
tion around zero, its outputs will be initialized to a non-zero mean, leading to poor
learning dynamics (LeCun et al., 2012; Glorot and Bengio, 2010).

28 Chapter 2. Machine Learning and Neural Networks

Empirically, ReLU also makes unsupervised pre-training obsolete and very deep
neural networks can be successfully trained with standard back-propagation. This is
usually attributed to the non-attenuating property of ReLUs, where positive values
will be passed on without scaling. Since sigmoid activations would attenuate the
input signal in every layer and this can be a contributing factor to the vanishing
gradient problem.

0

0

R
e
ct

if
ie

d
 l
in

e
a
r

u
n
it

 (
R

e
LU

)

FIGURE 2.4: The ReLU activation function

1 0

0

P
a
ra

m
e
tr

ic
 R

e
ct

if
ie

d
 L

in
e
a
r

U
n
it

 (
P
R

e
LU

)

a=0.01

a=0.1

a=0.5

FIGURE 2.5: Example a plots for the PReLU activation function

PReLU. In Parametric rectified linear units (PReLU) (He et al., 2015), an addi-
tional parameter a is introduced (see Equation 2.6). This learnable parameter is also
optimized with the rest of the networks parameters. PReLUs introduce a small num-
ber of extra learnable parameters in the network (either one per layer or one for every
neuron), but the network can learn a fitting activation function according to the data
it is trained on. Figure illustrates different parameters a

fPR(yi) =

x, if x > 0

ax, if x ≤ 0
. (2.6)

This solves the dying neuron problem (He et al., 2015) that can often be observed
with ReLUs.

2.14. Deep Neural Networks 29

LReLU. Leaky rectified linear units (LReLU) are similar to PReLUs, the only dif-
ference is that they use a fixed value for a (e.g. a = 0.05). They also counter the
dying neuron problem, but they do not add additional trainable parameters to the
network.

2.14.3 Weight Initialization

A commonly used heuristic prior to recent work on improving initialization meth-
ods in DNNs was the following random weight initialization:

Wij ∼ U

[
− 1√

n
,

1√
n

]
where n is the width of a layer i. As demonstrated in (Jia et al., 2014), this ran-

dom initialization is susceptible to the vanishing gradient problem with the sigmoid
activation function. Assuming a flat layer structure of a neural network, Xavier ini-
tialization (Jia et al., 2014) is a proposed alternative initialization that mitigates this
problem by setting the variance of weights Wi to:

V ar(Wi) =
2

ni + ni+1

More generally, ni = nin the number of inputs to a layer and ni+1 = nout the
number of outputs of a layer. The variance constraint can be satisfied by drawing
weights W from the following normal distribution with zero mean:

W ∼ N
(
0,

√
2

nin + nout

)
He-Initialization: (He et al., 2015) adapted this strategy for the ReLU activation

function (see Section 2.5):

W ∼ N
(
0,

√
2

nin

)
and more generally:

W ∼ N

(
0,

√
2

(1 + a2)nin

)
for any LReLU/PReLU activation function. When the negative slope parameter

a = 0, the initialization and the activation function become ReLU as a special case.

2.14.4 Advances in gradient descent methods

Recent advances in gradient descent methods highlight the importance of adaptive
learning rates: In Nesterov momentum (Nesterov, 1983; Sutskever et al., 2013), a ve-
locity vector is accumulated to help accelerate gradient descent. AdaGrad (Duchi et
al., 2011) and AdaDelta (Zeiler, 2012) introduce an individual learning rate for each

30 Chapter 2. Machine Learning and Neural Networks

parameter of a network. The individual learning rates are estimated from past gradi-
ent updates. AdaGrad estimates from all past gradient updates, eventually leading
to very small learning rates. AdaDelta and RMSProp with decay (Tieleman and Hin-
ton, 2012) improve this by a decaying average over past squared gradients, giving
more weight to recent gradient updates. While this expands the needed memory
to train a network, this improves convergence and training speed. Adam (Kingma
and Ba, 2014) also tracks momentum of the gradients, together with an adaptive
learning rate from the decaying average over squared gradients as in AdaDelta and
RMSProp. Adam and related optimizers are currently the preferred choice in most
instances of DNN training (Liu et al., 2020). Adam is used in most neural network
experiments in this thesis as well.

2.14.5 Dropout

Dropout is a simple yet effective technique to regularize a neural network and coun-
ter overfitting (Srivastava et al., 2014). While training the network, units and their
connections are randomly dropped at each training step. At test time, the full net-
work without any dropped units is used. The dropout rate is the probability for
dropping a unit, a higher dropout rate will deactivate more units on average at train-
ing time.

A theoretical connection can be made to ensemble theory, in that the final net-
work is an ensemble of all stochastically "thinned" networks at training time (Sri-
vastava et al., 2014).

2.15 Convolutional Neural Networks

Convolutional neural networks (CNNs, also ConvNets) are neural networks that
contain a convolution operation. One of the first succesful applications was hand
written digit recognition (LeCun et al., 1989). A similar model structure, called
the neocognitron was also earlier described by Fukushima and Miyake (1982). The
structure is inspired by studies of the mammalian brain (Murphy, 2014). A pooling
operation (max-pooling), still widely used in conjunction with convolutional layers,
was described in (Zhou and Chellappa, 1988). In the following sections we first de-
scribe he convolution operator, then a convolutional layer and max pooling. The
typical modern convolutional neural network structures, as also used in later chap-
ters of this thesis are described next.

2.16 Convolution Layer

The 2D convolution operation (∗) between an input matrix and a kernel of size (m,n)

is:

2.17. Pooling Layer 31

a b c d
e f g h

i j k l

m n o p

q r s
t u v

w x y

input kernel

* =
aq + br + cs +
et + fu + gv +
iw + jx + ky

FIGURE 2.6: Example of a 3x3 convolution kernel applied to an 2D
input matrix.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

See also Figure 2.6 for a visualization of this operation. Most machine-learning
libraries implement convolution as cross correlation (Goodfellow et al., 2016). When
used with SGD, the only difference is that the learned kernel would be flipped com-
pared to the convolution operation:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

A convolutional layer typically consists of multiple kernels, each with its own
set of learnable weights. The input is usually much larger than the kernel size and
all kernels are applied to all possible positions in the input (or some pattern). The
resulting output of all kernels on all positions is the feature map of the convolutional
layer and can be passed on as input to a subsequent layer as part of a larger neural
network. The learned parameters of a convolutional layer are the weights of the
kernels, hyperparameters are the size of kernels and the number of kernels, as well
as the number of input and output channels. Multiple input channels are usually
used for representing for instance RGB colors in an image, as red, green and blue
would be separate input channels. In this thesis we will only use single-channel
convolution, as standard feature representations of speech are represented with one
channel for mono audio signals.

2.17 Pooling Layer

Max-pooling (Zhou and Chellappa, 1988) (also (Weng et al., 1993)) is a simple layer
without learnable parameters. It is usually used following a convolutional layer
and can also be applied to 2D spatial input. The output of a pooling operation is
the maximum of its inputs. Like the kernels in a convolutional layer, the pooling
operation operates on window sizes that are usually smaller than its inputs and the
operation can be applied as a sliding window across its inputs. In average pooling,
a similar operation, the output is the average of all inputs instead of the maximum.

32 Chapter 2. Machine Learning and Neural Networks

2.18 CNN Network Structures

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

FIGURE 2.7: LeNet-5, a convolutional neural network for handwrit-
ten digit recognition. Figure taken from (LeCun et al., 1998).

LeNet-5 (LeCun et al., 1998) is a classic convolutional neural network structure
and by current standards comparatively small. Figure 2.7 shows the topology of
the network. A set of convolutional kernels (C1) follows a subsampling step (S2),
another convolutional layer (C3) is then followed by subsampling (S4), with the final
layers being a fully connected (C5, F6). The subsampling layer uses average pooling,
with a kernel size of 2x2 and the convolutional kernels have a size of 5x5. All layers
use the tanh activation function.

In the following, we list some newer and larger CNN network structures that
build and extend the principles of LeNet-5:

AlexNet (Krizhevsky et al., 2012) was one of the first very deep convolutional
neural networks, scaling up the LeNet architecture. The network design has a focus
on GPU parallelization and consists of two 8 layer networks split onto two different
GPUs. Each network consists of 5 convolutional layers (with 3x3 and 5x5 kernels),
each followed by max pooling. Further architectural changes are the use of the ReLU
activation function throughout the network and a larger number of kernels per con-
volutional layer, increasing from 48 kernels in the first convolutional layers to 192
convolutional layers in the last ones. The final fully connected layers of the network
are also significantly larger with 2048 neurons. Dropout and image data augmenta-
tion was used to train the network.

VGGNet (Simonyan and Zisserman, 2015) is a series of differently sized CNNs.
In Figure 2.8 we exemplary show VGGa and VGG16. VGGNets stack convolutional
layers to increase the receptive window, while requiring less parameters than a sin-
gle convolutional layer of the same receptive size. Stacking two 3x3 convolutional
layers gives an effective receptive window of 5x5 and stacking three 3x3 convolu-
tionals an effective window of 7x7. All pooling layers are max pooling. The activa-
tion function is also ReLU. ResNet (He et al., 2016) is another popular convolutional
neural network, that improves ease of learning by adding residual connections. A
residual component, a building block of ResNet, has the form (Equation 2.7):

y = F(x,Wi) + x (2.7)

2.18. CNN Network Structures 33

3x3 conv

2x2 pool

x64

3x3 conv

2x2 pool

x128

3x3 conv

3x3 conv

2x2 pool

x512

3x3 conv

3x3 conv

2x2 pool

x256

3x3 conv

3x3 conv

2x2 pool

x64

3x3 conv

3x3 conv

2x2 pool

x128

3x3 conv

3x3 conv

2x2 pool

x256

3x3 conv

3x3 conv

2x2 pool

x512

fc1 4069

fc2 4069

3x3 conv

3x3 conv

2x2 pool

x512

ꜜꜜ

ꜜ

fc3 1000

2x2 pool

3x3 conv

3x3 conv

x512

fc1 4069

fc2 4069

ꜜ

fc3 1000

VggA

softmax

softmax

Vgg16

3x3 conv

3x3 conv

}

}

}

}

}

}

2D input 2D input

output

output

FIGURE 2.8: VGGA and VGG16, two networks of the VGGNet family

where x are inputs and y outputs. F represents the residual mapping that is
being learned, usually spanning multiple layers, e.g. F = W2σ(W1x) (He et al.,
2016). With a single layer residual component of the form y = W1x + x it becomes
similar to a one layer neural network (y = W1x + b, b = x) and no benefits were
observed for this structure.

In Figure 2.9, ResNet-34 is illustrated and compared to VGG-19. The residual
mappings are additional arrows in the network structure. Unlike VGGNet, ResNet
can be scaled up to a large number of layers without degradation of learning per-
formance, with the most popular configurations being ResNet-50, ResNet-101 and
ResNet-152 (each named after the number of layers). The use of the PReLU activa-
tion function (see also Section 2.14.2) instead of ReLU further improves the network
structure (He et al., 2015).

34 Chapter 2. Machine Learning and Neural Networks

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output
size: 112

output
size: 224

output
size: 56

output
size: 28

output
size: 14

output
size: 7

output
size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

FIGURE 2.9: VGGNet-19 compared to ResNet-34 without residual
connections and with them. Figure from (He et al., 2016).

2.19. Autoencoders 35

2.19 Autoencoders

x h rf(x) g(h)

FIGURE 2.10: Generic structure of an autoencoder.

An autoencoder is a neural network that reconstructs its own inputs (Rumelhart
et al., 1986; Baldi and Hornik, 1989), with the goal of learning useful properties of
the underlying data. Figure 2.10 illustrates an autoencoder consisting of an encoder
f(x), mapping x to the internal representation h and g(h) mapping h to the recon-
structed output r. The encoder and the internal representation h is what is then
typically used as a learned representation of the data.

2.20 Undercomplete Autoencoders

An undercomplete autoencoder learns a representation that has a smaller dimension
than the input representation (Goodfellow et al., 2016). Figure 2.10 shows such an
example autoencoder neural network structure. The idea of an undercomplete au-
toencoder is that by introducing a bottleneck with a smaller bandwidth than what
is required to simply copy the inputs to the outputs, the autoencoder must learn to
capture the most salient information in the data.

Typically, an autoencoder is trained with SGD, optimizing the error between the
input representation x and g(f(x))(Goodfellow et al., 2016), see Equation 2.8.

L(x, g(f(x))) (2.8)

L is the loss function for comparing these, usually a loss functions for regression
tasks such as mean squared error (MSE) or the Huber loss (see also Section 2.9).

2.21 Regularized Autoencoders

Regularized autoencoders add a regularization term to the loss function, either en-
couraging network weights or representations with certain properties. One of the
simplest forms of a regularized autoencoder is one with L2 regularization (Rifai et
al., 2011), where as a regularization term all weights of the network are squared and
summed up:

L(x, g(f(x))) + λ
∑
ij

W 2
ij (2.9)

36 Chapter 2. Machine Learning and Neural Networks

where λ controls the weight (strength) of the regularization, with larger values
yielding smaller network weights.

Another example of regularized autoencoders are sparse autoencoders. They are
able to train useful representation that are over-complete, i.e. with a dimensional-
ity larger than the input dimension. In (Ng, 2011) and also in (Lee et al., 2008) a
simple sparsity regularization loss is proposed, that is applied on the hidden units
activations:

L(x, g(f(x))) +

n∑
j=1

ρlog

(
ρ

ρ̂j

)
+ (1− ρ)log

(
1− ρ

1− ρ̂j

)
(2.10)

where n is the number of neurons in the hidden layer, ρ̂j is the average activation
of hidden unit j and ρ is the sparsity parameter, usually a small value close to zero.
This can also be interpreted as

∑n
j=1KL(ρ, ρ̂j) (Ng, 2011), comparing two Bernoulli

random variables with mean ρ and ρ̂j with KL divergence.
In contractive autoencoders (Rifai et al., 2011), the following regularization is

proposed:

L(x, g(f(x))) + λ||Jf (x)||2F (2.11)

where ||Jf (x)||2F is the Frobenius norm of the Jacobian of the encoder’s activa-
tions with respect to the input x (Rifai et al., 2011). The hypothesis is that a good
learned representation of x is one that is locally invariant in many directions of
change in respect to x. This type of representation is what the penalty term in Equa-
tion 2.11 encourages.

2.22 Denoising Autoencoders

Denoising autoencoders (Vincent et al., 2010) corrupt the input representation x into
x̃, the loss becomes (Equation 2.12, notation follows Goodfellow et al. (2016)):

L(x, g(f(x̃))) (2.12)

In other words, the autoencoder must learn to reconstruct the original x from a
noisy input x̃. Denoising autoencoders build on the idea that a good representation
of the input data is one that can be generated from corrupted inputs to allow recov-
ery of the original inputs (Vincent et al., 2010). Denoising is also a more challenging
self-learning task than the reproduction of inputs of regular autoencoders.

2.23. Recurrent Neural Networks 37

2.23 Recurrent Neural Networks

The network of the architectures all require that the inputs are of the same size. Un-
less specifically preprocessed into a fixed vector representation, language is usually
a sequence: input texts in NLP typically vary in length; in speech processing inputs
typically vary in duration.

Recurrent neural networks (RNNs) are good models for sequential data, as they
can be applied to inputs of varying length. With these networks, the inputs can be
presented to the network one at a time. A distributed hidden state allows RNNs
to store information about past time steps efficiently, while the state can be ma-
nipulated in complicated ways through non-linear interactions and transformations
(Hinton, 2013).

Hopfield networks, proposed as an artificial neural associative memory, was one
of the first architectures to propose the idea of recurrence in neural networks (Hop-
field, 1982). Werbos (1988) and Williams and Zipser (1995) popularized recurrent
neural networks and learning within the back propagation framework (calling it
Back Propagation Through Time, BPTT).

A standard Recurrent Neural Network will have a state h, an input transforma-
tion function (i) and an output transformation (o):

h

i

o

h

h

h

0000 ... 0

0

1

2

hn

..
.

i

i

i

i nn

2

1

0

o

o2
o1

o0

FIGURE 2.11: Schema of a Recurrent Neural Network (RNN) with a
state h, input transformation function i and an output transformation

o. Drawn in similar style as (Yan, 2015).

If we unroll the recurrence of a static RNN with a fixed number of time steps, as
depicted in Figure 2.11, we can also interpret the unrolled network as a DNN that
has as many layers as there are time steps. This means that RNNs are by design
very deep networks, but unlike standard feed forward networks, there is an input at
every layer. Furthermore, another major difference is that the weights of the layers
are all tied. In other word the same transformation is applied at every time step
(and accordingly optimized when trained). If we consider a classification problem,
where we are only interested in the output of the last layer, then small changes to
the weights will have potentiating effects throughout a sequence to the final output
of the network. The same (matrix) multiplication is applied to the state as many
times as there are time steps. This is why in practice, training such networks with
SGD will be extremely difficult, as they encounter the vanishing gradient problem
(Hochreiter, 1991) and also the opposite problem of exploding gradients very easily.

38 Chapter 2. Machine Learning and Neural Networks

2.23.1 LSTM

The Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is a so-
lution to the vanishing gradient problem in vanilla RNNs. It introduces the concept
of gating into the recurrence of the network. Gates control information flow. They
are used within the recurrent cell to control how much the state should be changed
given the current input at each step and also allowing to forget some of the old state,
allowing adaptive changes to the state. This in turn solves the issue of potentiating
changes throughout a sequence.

σ σ tanh σ

xt

concat

x +
tanh

x x

ht

CtCt-1

ht-1

layer (with trainable parameters)

point-wise operation

legend:

forget gate input gate

output

output gate

function

FIGURE 2.12: Schema of a Long short-term memory (LSTM) cell.
Drawn in the style of Yan (2015).

In the following, we consider the canocial form of a standard LSTM with a forget
gate from (Gers et al., 1999) and we follow the LSTM notation of (Goodfellow et al.,
2016) for all equations. In Figure 2.12 we illustrate an LSTM cell, that is then recur-
sively applied to a sequence. The gates are used in an LSTM, the forget, input and
output gate. Each gate is a layer with trainable parameters followed by a sigmoid
function, putting the output values of a gate in the range [0, 1]. When the output of a
gate is element-wise multiplied with some other input, it can control the amount of
information that is passing through it. In the forget gate unit, this is directly applied
to the cell state, allowing certain cell state values to be reset (”forgotten”). Similarly,
the input gate controls how much new input changes the cell state. Finally, the out-
put gate then controls the flow and computation of an output from a current cell
state for a particular time step.

The forget gate unit fi(t) is formally defined as (Gers et al., 1999; Goodfellow
et al., 2016):

fi
(t) = σ

bfi +
∑
j

Uf
i,jxj

(t) +
∑
j

W f
i,jhj

(t−1)

 (2.13)

where bf , Uf and Wf are trainable parameters (biases, input weights and recur-
rent weights) of the forget gate, x(t) is the input at time step t and h(t) the hidden
layer vector at time step t.

The internal cell state s is updated as follows:

2.23. Recurrent Neural Networks 39

s
(t)
i = fi

(t)si
(t−1) + g

(t)
i tanh

bi +
∑
j

Ui,jxj
(t) +

∑
j

Wi,jhj
(t−1)

 (2.14)

where b, U and W are trainable parameters (biases, input weights and recurrent
weights). The external input gate unit g is defined as:

gi
(t) = σ

bgi +
∑
j

Ug
i,jxj

(t) +
∑
j

W g
i,jhj

(t−1)

 (2.15)

with its own set of trainable parameters bg, Ug and W g. The output hit at time
step t of the LSTM cell is computed as:

hi
t = tanh

(
q
(t)
i si

(t)
)

(2.16)

where the output gate qi
t is defined as:

qi
(t) = σ

bi
o +

∑
j

Uo
i,jxj(t) +

∑
j

W o
i,jxj(t− 1)

 (2.17)

Many alternative recurrent neural architectures and variants of the LSTM have
also been proposed, e.g. (Cho et al., 2014b; Zhou et al., 2016; Wu et al., 2016b; Krause
et al., 2017; Zilly et al., 2017). In Jozefowicz et al. (2015), a meta search with 10,000
different recurrent architectures was conducted. One of the findings of the ablative
study is that the forget gate is one of the most important elements of the LSTM. It
is not always easy to quantify which recurrent architecture is better than another, as
the performance of a particular variant can be task-dependent.

2.23.2 Bi-directional

t-1

... ...

t+1t

backward

forward

states

states

FIGURE 2.13: Schema of a bi-directional RNN, unfolded in three time
steps t− 1,t,t+ 1. Drawn in style of Schuster and Paliwal (1997).

40 Chapter 2. Machine Learning and Neural Networks

A bi-directional RNNs allows outputs at each time step that are dependent on
past and future time steps (Schuster and Paliwal, 1997). Figure 2.13 shows the gen-
eral structure of a bi-directional RNN. It is also possible to use LSTM or GRU cells.

2.24 Neural Sequence-to-Sequence Models

Neural sequence-to-sequence models can learn a conditional distribution over a
variable length sequence conditioned on another sequence p(y1, ..., yT |x1, ..., xT ′),
where T ′ can be different from T (Cho et al., 2014b).

Plain Seq2Seq models. A plain Seq2Seq model follows an encoder and decoder
design, where the input sequence is encoded token by token and the output se-
quence is generated token by token. Typically, recurrent neural networks are used in
both the decoder and encoder network. The RNN unit is usually one with a gating
mechanism, e.g. a Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) or a Gated Recurrent Unit (GRU) (Cho et al., 2014a), to counter the vanish-
ing gradient problem inherent in RNNs (Hochreiter, 1991). The output sequence
y1, ..., yT is conditioned on a single vector that is generated with the encoder of the
network, by initializing the RNN decoder state to the last RNN state of the encoder.

Encoder/decoder inputs. We use character embeddings for the encoder and
phoneme embeddings for the decoder as inputs. For both we choose n=10 as the
embedding size. The embeddings are trained as part of the model training. Follow-
ing (Sutskever et al., 2014), we reverse the input character sequence.

Attention mechanism. A drawback of the plain Seq2Seq model is that all the
source information has to pass through a single vector and needs to be carried for-
ward in the decoder’s state. In order to facilitate information flow from the source
sequence to the target sequence and to relieve the decoder from having to remember
the input sequence in its state, a context vector can be computed as a weighted sum
over all encoder hidden states, dependent on the last decoder state (Bahdanau et al.,
2015). The attention vector is either added or appended to the RNN decoder inputs.
Different variations of this mechanism exist, which can be divided into local and
global attention mechanisms (Luong et al., 2015). We use global attention, where an
attention vector is generated at each phoneme generation step over the full character
input sequence.

Stacked bi-directional LSTM. The encoder can also be extended to represent
past and future dependencies, with two RNNs that read a word in opposite direc-
tions. Figure 7.1 depicts a Seq2Seq architecture for G2P with a bi-directional LSTM
encoder using a decoder with global attention. Furthermore, LSTM cells can also be
stacked vertically, by passing the output of a LSTM cell as input to another LSTM
cell. We combine the outputs of the forward and backward encoder with a vector
sum (an alternative would be to stack both vectors).

Residual connections. The residual network (He et al., 2016) provides skip-
connections between layers of a network. The main idea is that learning the identity

2.24. Neural Sequence-to-Sequence Models 41

function is simpler with a residual connection, because bypassing the layer’s com-
putation means that the output of a layer needs to produce a zero output and not
the identity function. We make use of a simple residual connection between LSTM
layers, where the output of an LSTM layer is added to its input before passing it to
the next LSTM layer:

y = F (x;W) + x

where y is the output of a layer and x the input. F (x;W) is a function with an
internal parameter W (Kim et al., 2017). We use the LSTM unit directly as F when
stacking LSTM units, i.e. we do not add skip connections between time steps.

Decoding. At each decoding step, the decoder generates a softmax distribution
over the output vocabulary. The simplest method to generate the output sequence
is to feed the argmax token to the next decoding step. However, a greedy decoder
might not be able to find the sequence with the best joint probability. Beam decoding
can be used to approximately search for the sequence with the best joint probability
(as predicted by the model). It keeps n different best paths while decoding and
explores only these in a further step, feeding and generating n new sequences per
path.

43

Chapter 3

Automatic Speech Recognition

Automatic speech recognition (ASR) is a very active research area. General-purpose
automatic speech recognition has evolved from a hopeless dream (Pierce, 1969) to
systems that can reliably recognize conversational speech in the past 50 years1. In
the following sections, we give an overview over the most common modern archi-
tectures and components. Two important strategies to approach ASR have had re-
markable success. One is the statistical interpretation of the problem and a mathe-
matically sound model that can be applied to it: Hidden Markov Models (HMMs,
see Section 3.4) were instrumental in developing the first successful large-vocabulary
recognition systems and also the first commercial systems (Juang and Rabiner, 2005).
Since the 1980s, these models gained wide-spread traction in speech processing (Ra-
biner, 1989) they have been a dominant modeling technique and remain in wide-
spread use today.

Another strategy, the integration of neural networks into the speech processing
pipeline, has recently become prevalent and offers a large increase in recognition
accuracy. This is currently also one of the most active research areas in speech pro-
cessing. Neural models seem to scale well to large speech corpora and can effectively
leverage today’s increased computer power (Section 2.7). Some of these new archi-
tectures are hybrids, as they combine deep neural networks with HMMs. Some are
deviating from the classical speech recognition pipeline and architecture and they
do not use the HMM framework anymore (see also Sections 3.11 and 3.12). A search
space is usually established for most probable transcription given an utterance ac-
cording to the model, as detailed in the next section.

3.1 ASR search space

The search space for the likeliest transcription given some speech input is usually
modelled using sequences of observations (O) and words (W):

O = o1, o2, o3, ..., on

W = w1, w2, w3, ..., wn

1See also Juang and Rabiner (2005) for a historic overview of systems from the past century.

44 Chapter 3. Automatic Speech Recognition

The likeliest transcription can then be defined as (Jurafsky and Martin, 2008):

W̃ = argmax
W

P (W |O)

In other words, we are interested in the most probable sequence of words, given
a sequence of observations. Using Bayes’ rule (Bayes et al., 1763) this can also be
transformed to:

W̃ = argmax
W

P (O|W) · P (W)

P (O)
= argmax

W
P (O|W) · P (W)

An interpretation of the formula above is that we model the likeliest transcrip-
tion as the one being the likeliest explanation for how the observations were gen-
erated. Computationally, this also has several advantages: P (W) can be indepen-
dently modelled as the prior probability of a transcription. Language models (see
Section 3.10) are used to estimate this probability and they can be effectively trained
on large datasets of texts, without needing corresponding speech data. P (O|W),
also called the observation likelihood, can for instance be estimated with Gaussian
Mixture Model – Hidden Markov Models (GMM-HMMs). For a more detailed de-
scription, see Section 3.5. If we are interested in the likeliest transcriptions, P (O)

does not need to be modelled since it is constant and scales all probabilities with the
same factor. Because of the argmax, it can be omitted from the equation.

Using words for modelling the search space is the most common choice. How-
ever, this design decision is also language dependent. Morphologically productive
languages such as German, Turkish, Estonian and Finnish might benefit from other
choices such as subword-units or syllables (Smit et al., 2017). End-to-end models
might also model the output sequence directly using letters, with the advantage that
out of vocabulary (OOV) words are still potentially recognizable.

3.2 ASR components

Speech Signal
Feature
representation

Decoder

Lexicon

Acoustic
Model

Language
Model

Decoded textSearch
space

FIGURE 3.1: Overview of the components in a typical (traditional)
ASR system. Figure in similar style as in (Milde, 2014).

In Figure 3.1 we illustrate a typical traditional ASR system. Note that some
recent end-to-end ASR architectures deviate from this traditional architecture. A
recorded signal is first transformed, often into some sort of representation derived

3.3. Speech Features 45

from spectral features (observation O). A decoder then searches for the most likely
transcription according to the observations, using information derived from three
components: the acoustic model, lexicon and language model. The acoustic model
relates acoustic observations to internal states, for example using context dependent
phonemes. The lexicon defines a closed vocabulary and usually relates words to se-
quences of phonemes. The language model models the likelihood of word sequences
independently of the acoustic model. It is used by the decoder to weigh more likely
word sequences higher than unlikely ones. The language model, dictionary and a
translation between internal states and hypothesized word sequences can efficiently
be combined and expressed as a single weighted finite state transducer (WFST), see
Section 3.9. In the following, we describe these components and common modeling
techniques in more detail, starting with common (hand-crafted) speech features.

3.3 Speech Features

Good speech features should preserve most of the desired content, while also of-
fering a compact representation of the speech signal (Gales, Young, et al., 2008). In
the following sections we describe typical speech features that are used in speech
recognition and other speech processing tasks.

Most of the discriminative information in human speech is in a frequency range
below 10 kHz (Jurafsky and Martin, 2008). Recorded digital speech is sampled, i.e.
amplitudes are measured at sampled time steps. The sampling rate is the number
of samples taken per second. Due to Nyquists theorem (Nyquist, 1928), the high-
est frequency that can be accurately measured is half the sampling rate. A typical
sampling rate for speech recorded with microphones that is going to be used for
automatic speech processing is 16 kHz.

Another typical preprocessing step is windowing, where speech is segmented
into small overlapping windows of speech. While speech is non-stationary at large,
we can make the approximation and assume that it is somewhat stationary in small
windows (Jurafsky and Martin, 2008). This approximation also makes further com-
putation easier. Such small windows of speech are also called speech frames.

3.3.1 FBANK

Figure 3.2 depicts a typical pipeline to compute FBANK vectors, along with example
outputs at each stage. In the pre-emphasis step, higher frequencies are amplified
(higher frequencies usually have smaller magnitudes). This can be done in time
domain for an input x[n] and 0.9 < α < 1.0 (Jurafsky and Martin, 2008):

y[n] = x[n]− αx[n− 1].

In the next step, windows are extracted from the signal to eventually compute
features at discrete time steps. A typical resolution for FBANK features is to calculate

46 Chapter 3. Automatic Speech Recognition

0 2000 4000 6000 8000 10000
Samples

0.4

0.2

0.0

0.2

0.4

0.6

A
m

p
lit

u
d

e

Input signal Pre-emphasis

0 2000 4000 6000 8000 10000
Samples

0.75

0.50

0.25

0.00

0.25

0.50

0.75

A
m

p
lit

u
d

e

Windowing

0.5

0.0

0.5

0.25

0.00

0.25

0.25

0.00

0 250

0.0

0.2

0 250 0 250 0 250

...

Power spectrum (STFT)

0 10 20 30 40 50
Frames

0

50

100

150

200

250

Fe
a
tu

re
 d

im

0 10 20 30 40 50 60
Frames

0

10

20

30

Fe
at

u
re

 d
im

Log Mel filter banks

FIGURE 3.2: Pipeline steps to compute filter bank frames from speech.
The output of these steps is partially computed for the utterance
"dusk was falling as the boy arrived with his herd at an abandoned
church" from the Common Voice V1 corpus (train_valid: sample-

055799.mp3)

a frame for a window of 25 ms of speech, using overlapping speech frames every 10
ms. Discontinuities are problematic at edges of the windows, thus it is typically
necessary to apply a window function. A common choice is the Hamming window,
defined as:

w[n] = α− βcos(
2πn

L
) with α =

25

46
≈ 0.54 and β = 1− α ≈ 0.46

There is a trade-off when the above window function is applied. The effects of
discontinuities are diminished at the ends of the window, but at the same time the
signal is changed. The Hamming window with the fixed parameters α = 0.54 and
β = 0.46 (rounded to two digits) is a common choice as the windowing function for
extracting speech processing features. The exact value α = 25

46 minimizes spectral
leakage of the first sidelobe optimally, c.f. (Harris, 1978).

After windowing the signal, Discrete Fourier Transforms (DFTs) are applied in-
dividually to all windows of the signal to extract spectral information (Jurafsky and
Martin, 2008). This is also known as a short-time Fourier transform (STFT) (Allen,
1977; Griffin and Lim, 1984). Commonly Fast Fourier Transformations (FFTs) (Op-
penheim and Schafer, 1989) are applied to a signal due to its computational effi-
ciency. To compute the power spectrum, the absolute value of the complex output
of the STFT is squared for each frequency bin (this is equivalent to sums of squaring
the real and imaginary parts of the STFT).

Filters are then spaced linearly at lower frequencies (below 1000Hz) and logarith-
mically at higher frequencies (higher than 1000Hz) (Davis and Mermelstein, 1980).
This mimics the sensitivity to frequencies of the human ear and its known variations

3.3. Speech Features 47

in critical bandwidths (Fletcher, 1940; Bullock and Evans, 1977; Davis and Mermel-
stein, 1980). This specific filter bank is also called a Mel filter bank (Jurafsky and
Martin, 2008) due to its relation and similarity to the Mel scale (Stevens et al., 1937).

Finally, taking the logarithm of the output values of the filter banks compresses
the dynamic range of the output and mimics the human perception of different sig-
nal levels (Jurafsky and Martin, 2008). The example outputs in Figure 3.2 only show
logarithmic output, as the raw filter values are difficult to display otherwise due to
large variations in magnitudes.

3.3.2 MFCC features

0 10 20 30 40 50 60
Frames

0

10

20

30

Fe
at

u
re

 d
im

Log Mel filter banks MFCCs + energy

0 10 20 30 40 50 60
Frames

0

2

4

6

8

10

12

Fe
a
tu

re
 d

im

DCT

energy

FIGURE 3.3: Final step to compute MFCCs from logarithmic Mel fil-
ter banks. The output of this steps is partially computed for the
utterance "dusk was falling as the boy arrived with his herd at an
abandoned church" from the Common Voice V1 corpus (train_valid:

sample-055799.mp3)

Mel-frequency cepstral coefficients (MFCCs) (Mermelstein, 1976) are the most
ubiquitous and well-known features in speech processing. To compute MFCC speech
frames an additional discrete cosine transform (DCT) (Ahmed et al., 1974) is applied
to the Mel-scaled filter banks from the previous section. The DCT smoothes the spec-
tral estimate and decorrelates the feature elements (Gales, Young, et al., 2008). This
is important when used in GMM-HMM acoustic models (see also Section 3.5). Fig-
ure 3.3 shows an example output for this computation. The most common MFCC
representation is with 12 coefficients and an additional energy feature, totaling 13
dimensions per frame. The energy feature can be computed directly in the time do-
main by summing up the squares of all samples in the audio signals window.

3.3.3 Delta features

12 MFCC coefficients + energy Δ ΔΔ

39 dim MFCCs ΔΔ

FIGURE 3.4: MFCC frame with delta features.

∆and ∆∆features are commonly applied to MFCCs in many acoustic models
recipes (Jurafsky and Martin, 2008). ∆features measure how MFCC cepstral com-
ponents and the energy feature change (velocity). A simple way to compute this is

48 Chapter 3. Automatic Speech Recognition

to calculate the (discrete) difference between neighboringing MFCC frames. ∆∆fea-
tures capture the rate of change of ∆features (acceleration). Figure 3.4 illustrates one
MFCC speech frame with delta features, usually calculated on a window of 25ms ev-
ery 10ms of a speech signal. The standard dimension for MFCCs with delta features
is (3 · 13) = 39.

3.3.4 CMVN

Cepstral mean and variance normalization (CMVN) (Liu et al., 1993; Viikki and
Laurila, 1998), are simple and often effective normalization techniques for cepstral
speech features. In cepstral mean normalization (CMN) (Liu et al., 1993), the mean
of cepstral vectors is substracted from all frames in an utterance:

y[n] = x[n]− 1

N

N∑
n=1

x[n] (3.1)

for all frames n in an utterance. Additionally, variance can also be normalized
by dividing by σ(x[n]) (CMVN).

3.3.5 PLP features

Hamming |FFT|² Bark filterbank

singal windowing
equal-loudness
pre-emphasis

intensity loudness (·)0.33 Linear prediction (LP) PLP features

FIGURE 3.5: Processing steps for PLP speech features.

Perceptual linear predictive (PLP) (Hermansky, 1990) speech features are an al-
ternative to MFCC features. Figure 3.5 shows a schematic view of all processing
steps in PLP speech features. Both MFCC and PLP share several processing steps,
such as applying a Hamming window, squaring the absolute values of the complex
STFT and a filter bank computation. PLP uses the Bark scale (Schroeder, 1977) in-
stead of the Mel-Scale for its filter banks. Compared to the Mel scale, Bark uses a
different number and width of the filters and their shape is different (Hönig et al.,
2005). While with MFCC pre-emphasis is applied in the time domain, with PLP fea-
tures pre-emphasis is applied to the power spectrum, as each coefficient is multiplied
with a weight that dependents on the frequency in Hertz. The intensity-to-loudness
conversion used in PLP raises the power spectrum coefficients to the power of 0.33.
This decreases dynamic variability and flattens peaks in the power spectrum (Hönig
et al., 2005).

3.4. Hidden Markov Models 49

The final step in PLP is spectral linear prediction (LP) (Makhoul, 1975), by fit-
ting the power spectrum coefficients onto an M th-order all-pole model (Herman-
sky, 1990). Additionally, the autoregressive coefficients are usually transformed into
cepstral coefficients of the all-pole model.

3.4 Hidden Markov Models

A Hidden Markov Model (HMM) λ can be characterised by λ = (A,B,π), where A

are state transition probabilities, B observation symbol probability distribution for
all states and π the initial state probabilities (Rabiner, 1989). Implicitly, λ also defines
the alphabet V = S1, S2, ..., SM , a set of discrete output symbols and a number of
states S = S1, S2, ..., SN .

HMMs are generative models. Given the parameters λ = (A,B,π) of a model, a
sequence of T observations can be generated as follows (Rabiner, 1989) with Algo-
rithm 1:

Data: HMM λ = (A,B,π), T the number of observations that should be
generated.

Result: An observation sequence O = o1, o2, ..., oT

t = 1 ;
From the initial state distribution π, choose a state qt. ;
for t in 1, ..., T do

Choose an observation ot according to the observation symbol
probability distribution of qt. ;

Transit to a new state qt+1 according to the transition probabilities of qt ;

end
Algorithm 1: Generating a sequence with an HMM model.

There are three fundamental problems in HMMs (Rabiner, 1989): (1) Evaluation:
compute the probability (likelihood) of an observation given a model λ (2) Recog-
nition: find the state sequence Q = q1, q2, ..., qn that gives the best explanation for
an observation sequence O = o1, o2, ..., on (3) Training: find or adjust model pa-
rameters that maximize P (O|λ) given an observation sequence O. In the following
sections we briefly discuss these fundamental problems in HMMs and their relation
to speech recognition.

3.4.1 Evaluation

In the evaluation problem, we seek to calculate the probability that a model λ gen-
erated a given observation sequence O = o1, o2, ..., on. The forward algorithm (Ra-
biner, 1989) can be used to calculate this probability.

50 Chapter 3. Automatic Speech Recognition

3.4.2 Recognition

An HMM can be used for recognition by estimating the most likely explanation (path
through the hidden states) for a sequence of observations O = o1, o2, ..., on. If for
example the hidden states of the HMM correspond to phonemes, then the sequence
of hidden states in the most probable path is the recognized output. A well-known
algorithm that is used for decoding with HMMs is the Viterbi algorithm (Viterbi,
1967), see Section 3.7.

3.4.3 Training

When training an HMM, we are given an observation sequence O = o1, o2, ..., on

and we want to fit the model parameters λ = (A,B,π) of the HMM. For maximum
likelihood estimation, several algorithms exist, such as Baum-welch (Baum et al.,
1970), Expectation-Maximization (Dempster et al., 1977) and Extended Baum-Welch
(Gopalakrishnan et al., 1989). Gradient based optimization methods are also possi-
ble (Katagiri et al., 1991).

3.5 GMM-HMMs

In Gaussian Mixture Model – Hidden Markov Models (GMM-HMMs), HMM states
and observation vectors are modelled as a mixture of multi-variate Gaussians. For
each HMM state j with a mean vector µj , covariance Σj and an observation vec-
tor ot (D-Dimensional), the multi-variate Gaussian probability can be computed as
(notation follows (Jurafsky and Martin, 2008)):

bj(ot) =
1

(2π)
D
2 |Σ|

1
2

e

(
− 1

2
(ot−µj)

TΣ−1
j (ot−µj))

)
(3.2)

In a Gaussian mixture model, M multi-variate Gaussians are used to compute
the output likelihood function bj(ot):

bj(ot) =
M∑
k=1

cjm
1√

(2π)|Σjm|
e

(
(ot−µjm)TΣ−1

jm(ot−µjm))
)

(3.3)

3.6 Context Dependent Phones

The realization of a phone depends strongly on its surrounding context. Phoneti-
cians have been studying these effects (Oshika et al., 1975) from the perspective
of human perception before automatic speech processing became popular. Most
speech recognition systems account for this effect by modeling context dependent
phones. A tri-phone model would make use of context information from a phone’s

3.7. Decoding 51

t-ih+n t-ih+ng f-ih+l s-ih+l

t-ih+n t-ih+ng f-ih+l s-ih+l

Tie similar
states

FIGURE 3.6: Example of state tying (taken from Gales, Young, et al.
(2008)).

left and right neighboring phone. A model without context-dependent phones would
be called a mono phone model (Gales, Young, et al., 2008).

However, if there were N phones, a tri-phone model would raise the number
of states to potentially N3, causing problems due to data sparsity (some tri-phone
combinations would be very rare, some would never be seen in the training data).
A typical techniques to mitigate this is to merge similar contexts. These can also
be data driven, for example with the construction of binary decision trees and tree
based clustering (Bahl et al., 1991).

In a tied-state HMM (Young et al., 1994), parameters are not tied at the state but
rather at the model level. The aim of a tied state HMM is to ensure that there is
enough training data for each set of state output distribution parameters. Figure 3.6
illustrates a tied-state HMM model.

3.7 Decoding

As noted in Section 3.1, the most likely transcription W̃ is part of a search space
of all possible transcriptions W , explaining the observation sequence O. While an
exhaustive search becomes computationally infeasible, the most likely transcription
can be efficiently computed with the Viterbi algorithm (Viterbi, 1967):

Let φ(j)
t = maxθ p(O1:t, θt = sj ;λ) be the maximum probability of observing the

partial observation sequence O1:t with state sj at time t and model parameters λ =
[{aij}, {bj()}], where aij are transition probability parameters and bj() is the output
likelihood function. φ(j)

t can then be computed as (Gales, Young, et al., 2008):

φ
(j)
t = max

i

{
φ
(i)
t−1

}
bj(ot) (3.4)

52 Chapter 3. Automatic Speech Recognition

The recursive function is initialized by setting φ
(j)
0 to 1 for the initial state and 0

for all others. Every maximization decision is recorded for maxj

{
φ
(j)
T

}
, a traceback

gives the best matching state sequence (Gales, Young, et al., 2008).

3.8 Evaluation

The de facto standard evaluation metric in speech recognition is word error rate
(WER). It measures the number of insertions (I), deletions (D) and substitutions (S)
necessary to match a reference transcript to a decoded transcript hypothesis:

WER = 100 · I +D + S

N

where N is the number of words in the reference transcript. WER can be effi-
ciently computed by dynamic programming algorithms, such as the Wagner-Fisher
algorithm (Wagner and Fischer, 1974) or another improved variant (Navarro, 2001).
Note that WER can be above 100%, as the number of necessary insertions can be
higher than the sequence length of the reference transcript.

3.9 Speech Recognition with WFSTs

A finite-state transducer is an automaton that consumes an input sequence while
also producing an output sequence. Transitions are weighted, i.e. there is weight
encoded with each transition. The weights are used to accumulate an overall quan-
tity along a path. For example, these can be probabilities, durations or penalties
(Mohri et al., 2002).

Using weighted finite-state transducers in the decoding process of an ASR de-
coder allows all relevant auxillary information (phoneme lexicon, language model)
to be represented by one compact network (Gales, Young, et al., 2008). The decoding
FST is usually built and optimized a priori. This in turn allows very efficient decod-
ing of utterances. FSTs are ubiquitous in speech processing, with popular speech
recognition toolkits such as Kaldi (Povey et al., 2011) being based on FST decoding.

A decoding FST is usually constructed by combination (◦) of its relevant sub
FSTs. In an HMM based speech recognition system, it is usually combined in the
following steps, where G is either a grammar or a language model encoded as WFST
and L is the lexicon FST. Then:

L ◦G

is a transducer that maps sequences of phones to word sequences restricted to G
(Mohri et al., 2002).

C ◦ L ◦G

3.10. Language Models 53

is a transducer that maps sequences of context-dependent phones to word se-
quences restricted to G. And finally,

H ◦ C ◦ L ◦G

is a transducer that maps sequences of HMM states to word sequences restricted
to G.

3.10 Language Models

A language model can estimate the likelihood of a word sequence in natural lan-
guage, one of its main uses in an ASR model. It can also be used as a generative
model, i.e. new text can be sampled from the language model. N-gram language
models are statistical models that calculate the probabilities, up to an order of n,
from text collections.

N-gram language models approximate the conditional probability of a word that
follows a word sequence with the estimate (Jurafsky and Martin, 2008):

P (wn
1) ≈

n∏
k=1

P (wk|wk−1) (3.5)

3.10.1 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) (Jurafsky and Martin, 2008) is a simple tech-
nique to estimate n-gram probabilities:

P (wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.6)

Where C(x) is the count of x, i.e. the number of times x appears in the training
text data.

3.10.2 Smoothing

Unfortunately, MLE estimation is not very robust for out-of-vocabulary words and
infrequent words. For out-of-vocabulary words and n-grams, a zero probability is
assigned, in consequence the model usually overestimates n-grams with non-zero
count (Chen and Rosenfeld, 2000).

There are several techniques to combat this issue: discounting, interpolation and
back-off. Discounting generally refers to lowering the probabilities of observed n-
grams in order to distribute probability mass to unobserved ones (Jurafsky and Mar-
tin, 2008). A simple technique is to add one to all counts including unseen ones, this
is also known as Laplace smoothing (Lidstone, 1920).

54 Chapter 3. Automatic Speech Recognition

In interpolation models, several individual n-gram models with different n are
computed and each n-gram estimate is interpolated from them. Examples of this
technique include simple linear interpolation of all models or a recursive linear in-
terpolation as in Jelinek and Mercer (1980).

In back-off models, n-grams are recursively estimated under certain conditions
from lower order n − 1 models. For example an n-gram being observed less than
a specific number of times in the training data leads to a back off to a (n − 1)-
gram model, otherwise the n−gram is robust enough to provide the estimate on
its own. Examples of well known back-off models are Katz smoothing (Katz, 1987)
and Kneser-Ney (Ney et al., 1994). For the n-gram language models used in ASR
models in experiments of this thesis, Kneser-Ney language models are used.

3.10.3 Neural Language Models

Neural probabilistic language models were first described in (Miikkulainen and
Dyer, 1991; Bengio et al., 2003). In such a language model, a neural network es-
timates the probability distribution over a fixed vocabulary V with a fixed-sized
context of n words. Most neural LMs use the next word prediction task for self-
supervision, i.e. the network is trained to predict posterior probability for a word
wn + 1 following a history hi = w1...wn of previous words.

3.10.4 Recurrent LM

Input(t) Output(t)

S
o
ft
m
a
x

Context(t)

Posterior
distribution

Context(t-1)

FIGURE 3.7: RNN language model

In RNN language models, a recurrent neural network is trained to predict the
next word given a history hi = w1...wn of previous words:

P (w1...wn) =
∏
i

= 1nP (wi|hi) (3.7)

3.11. DNN-HMM Acoustic Model Hybrids 55

The RNN is typically a LSTM (see Section 2.23.1) or GRU to combat the vanishing
gradient problem. One of the advantages of a recurrent language model is that the
context size is not fixed, since the posterior probability of the next word problem is
estimated from the hidden state of the network. In practice, this allows a recurrent
model to learn from much longer contexts than what is usually possible with n-gram
models, since computation costs do not rise exponentially in n.

3.11 DNN-HMM Acoustic Model Hybrids

as1s1
as2s2

asₖsₖ
as s K K

s1 s1 sk sK... ...

...

h(M)

h(M-1)

h(1)

HMM

DNN

W¹

WM

v

......

{ { { { {

Observations

as1s2
as2s3

ask-1sk

Transition Probabilities

Observation

Probabilities

FIGURE 3.8: The DNN-HMM acoustic model. Drawn in the style of
Dahl et al. (2012).

The DNN-HMM (Dahl et al., 2012) model is a hybrid HMMs acoustic model,
based on DNNs that replace GMM modeling of the acoustic data in conventional
GMM-HMMs. Some work on integrating NNs into an HMM predate DNN-HMMs,
but the DNN-HMM is the first model to yield large performance gains in recognition
accuracy. The architecture is illustrated in Figure 3.8. Input to the DNN are observa-
tions, usually in the form of multiple speech frames of speech features concatenated
to a super vector. The DNN then computes the posterior probability over the (tied)
states of the HMM.

The main training procedure of an DNN-HMM is as follows: First, a conven-
tional GMM-HMM with state tying (see Section 3.6) is trained. Then, all tri-phone
states are mapped to senone ids. Senones are tied tri-phone HMM states, see also
Section 3.6. Now the training data is force-aligned with the GMM-HMM, i.e. we
decode the training data, forcing the decoder to select the best path through the ut-
terance matching the known transcription. The result is a mapping of each frame of

56 Chapter 3. Automatic Speech Recognition

all the training data with a particular senone id. Then the DNN is trained separately
on the force-aligned data, usually on a window of several speech frames, to give ad-
ditional context to the neural network. Finally, the HMM structure is then borrowed
and the transition probabilities are re-estimated. The resulting DNN-HMM can also
be used to force-align the training data another time, repeating the process to train a
new DNN, but this is rarely done in practice.

3.11.1 TDNN-HMMs

t-4

-1 +2

t

t-7 t+2

t-10 t-1 t+5

t-11 t+7

t-13 t+9

-7 +2

-1 +2

-2 +2

-1 +2 -1 +2

-3 +3 -3 +3

t+1 t+4t-2t-5t-8

Layer 4

Layer 3

Layer 2

Layer 1

FIGURE 3.9: A TDNN with and without subsampling. Figure taken
from Peddinti et al. (2015).

Time-delayed neural networks (TDNNs) have been originally introduced in (Wai-
bel et al., 1990) for phoneme recognition, but were only recently combined with
HMMs and trained on larger amounts of training data. In modern TDNN-HMMs,
as popularized by Peddinti et al. (2015), subsampling is also used. Figure 3.9 shows a
TDNN with and without subsampling. The TDNN is used as a replacement for the
DNN-HMM and the training procedure is similar to bootstrapping from a GMM-
HMM. Due to the hierarchical structure of a TDNN, the context to the local clas-
sification can be much larger, while subsampling keeps the number of parameters
comparatively small. Since the weights of the TDNN are tied across time steps, they
offer time invariance in speech signals, similar to translation invariance in CNNs.
TDNNs are one-dimensional convolutional networks applied to time series (Mur-
phy, 2014) and as such regarded as precursor to CNNs (Peddinti et al., 2015) (see
Section 2.15).

3.12. Connectionist Temporal Classification 57

3.12 Connectionist Temporal Classification

FIGURE 3.10: Possible paths aligning the word ”cat” to T many
acoustic observations. Black nodes are non-blank labels, while a
white nodes are blank labels. The sum of all path probabilities can
be efficiently computed with dynamic programming by visiting ev-

ery node only once. Figure taken from Graves et al. (2006).

Connectionist Temporal Classification (CTC) (Graves et al., 2006) is an objec-
tive function that allows to compare a sequence of observation to a sequence of
labels without any alignments, where the observation sequence is longer than the
label sequence. In these models, no bootstrapping with conventional GMM-HMM
is needed, as no frame-level labels are needed. CTC is fully differantiable and can
be used with standard back propagation and SGD.

CTC introduces a blank label ”_”, i.e. to indicate no label. The shorter label
sequence can be expanded with blanks and repetitions to match the observation
length. There are an exponential number of ways (paths) to match a label sequence
to an observation sequence in this manner and CTC sums over all possible paths:

p(l|x) =
∑

π∈B−1(l)

p(π|x) (3.8)

This defines a conditional probability of a given labeling l as the sum of the prob-
abilities of all paths π corresponding to it. B is a mapping function that removes
repetitions in sequences, e.g. B(aa_bbb_b_a) = B(aa_b__b_a) = a_b_b_a. B−1 is
the corresponding inverse of this function. CTC then uses dynamic programming
to compute the sum, with the CTC forward backward algorithm. See Figure 3.10 for
an illustration of all possible paths aligning the word ”cat” with acoustic observa-
tions. Summing all paths naively would otherwise be computationally unfeasible
for longer sequences, but can be done efficiently with the CTC forward backward
algorithm, c.f. (Graves et al., 2006).

58 Chapter 3. Automatic Speech Recognition

3.13 Unsupervised ASR

In fully unsupervised ASR, the training process for an ASR system uses text data and
audio without any alignments. That means there are two separate datasets of audio
and text of the same language, with no transcriptions. Gathering such datasets is
in most cases easily accomplished if enough text and audio resources of a language
exist on the internet. In principle, this means that an alignment needs to be found
between speech and text. In contrast to supervised ASR, the alignments have to be
found not in short segments of parallel data, but between two large and independent
collections of data. It can be approached by first learning self-supervised phonetic
representations (see also Chapter 6) and then training another model to match these
representations to symbolic sequences of real phonemes generated from text. In
the following, we describe very recent advancements in making unsupervised ASR
tractable in practice:

A precursor to fully unsupervised ASR is unsupervised phoneme recognition
with known boundaries (Liu et al., 2018). Here, real phone boundaries are known
in the training process, but the phone identity is inferred from the data. The main
idea is to make use of a Generative Adversarial Network (GAN) (Goodfellow et al.,
2014) to discriminate between imposter phoneme sequences and real ones. A gen-
erator takes as input discovered and unsupervised phone representations to output
imposter phones. A discriminator learns to distinguish between imposter and real
phone sequences. Over time, the generator might make use of the input representa-
tions to output good imposter phones. This in turn means a connection between the
discovered and real phones is made.

In Unsupervised ASR, this principle is used in a full ASR system, so that a speech
recognition system can be trained on audio and text data without matching tran-
scriptions. Figure 3.11 illustrates the general training procedure. Through acoustic
unit discovery, basic units of speech are discovered and embedded. A typical goal is
to learn representations that attenuate speaker and channel differences and empha-
sizes phonetic content. Boundaries are not known a priori and need to be discovered
from data as well, to enable unit discovery with varying unit lengths. Embeddings
of these units are then the input to GAN training, effectively yielding a basic phone
recognition model after training. For a full ASR system, regular FST-based decoding
can be used to transcribe speech into words (see Section 3.9).

In (Baevski et al., 2021), a practical unsupervised ASR was proposed. It uses
unsupervised speech representations that are learned with Wav2Vec (Schneider et
al., 2019; Baevski et al., 2020b) to learn representations suitable for phone recog-
nition and acoustic units discovery through clustering (K-Means) to obtain larger
segments of varying size. These segments are then represented with average pooled
dense vectors from the Wav2vec embeddings. Wav2vec is a self-supervised repre-
sentation learning model based on Contrastive Predictive Coding (see below) that

3.13. Unsupervised ASR 59

learns embeddings of raw speech data in the time domain. Depending on the lan-
guage, the proposed learning scheme uses a phonetic lexicon to translate texts into
phoneme sequences and may use G2P on out-of-vocabulary words. The training
process may be iteratively rerun.

LM text data

Unlabeled speech
data

acoustic unit
discovery

convert to
phoneme sequences

Discriminator:
real or fake?

Generator

G
A
N

 training

 DH IH S IH Z AH F OW
N IY M S IY K W AH N S

...

segment
representations

F EY K L AE NG G W AH JH

FIGURE 3.11: Unsupervised ASR training with generative adversar-
ial networks. Drawn in the style of Baevski et al. (2021).

3.13.1 Contrastive Predictive Coding

gar gar gar
? ? ?

Ct

imposter

embedding

| xt-2 | xt-1 | xt | xt+1 | xt+2 | xt+3 |

contextualized embedding

Predictions

zt zt+1 zt+2 zt+3

genc genc genc genc genc genc

FIGURE 3.12: Contrastive Predictive Coding in a 1D time series.
Drawn in the style of Oord et al. (2018).

Contrastive Predictive Coding (CPC) (Oord et al., 2018) is a universal method
for unsupervised learning where individual data points are spatially connected or
are from time series (or can be interpreted as such). It has been applied to modal-
ities such images, text, speech and reinforcement learning. It has recently become
popular in learning self-supervised representations for speech. Figure 3.12 depicts
the CPC architecture for a 1D time series. Instead of predicting future data points,
future representations are predicted. The main idea is that this forces the model to
learn representations that are good for being predicted and disregards unpredictable
information, such as noise. It is made tractable by using contrastive learning. The

60 Chapter 3. Automatic Speech Recognition

main task is to discriminate a true representation of a future data point from im-
poster ones, as encoded by the model. Imposter representations are usually sampled
from the dataset that the model is trained on.

Fully trained, the model can encode in two types of representations. Either the
embeddings from the encoder genc can be used for downstream tasks, or the con-
textualized embeddings from gar. As context plays an important role in speech pro-
cessing, typically gar is used for downstream tasks in the speech modality.

A typical choice for gar are neural networks that a frequently used in temporal
learning, such as LSTM or GRUs (see Section 2.23). genc is usually convolutional
(stacked 1D convolutions). It is common to use the raw 1D waveform time domain
data in speech. In 16kHz recordings, speech is encoded in intervals of 160 data
points, yielding 100 embeddings per second, as is typical for other speech features
such as MFCCs. If the goal is to learn representations for speech recognition, nega-
tive samples are typically sampled from the same speaker (within speaker negative
sampling).

3.14 Distributions in Spoken Language

One of the first empirical analyses of distributions in spoken language appears in
(Zipf, 1929). Zipf’s famous fundamental thesis of spoken language is:

Principle of Frequency. The accent, or degree of conspicuousness, of any
word, syllable, or sound, is inversely proportionate to the relative fre-
quency of that word, syllable, or sound, among its fellow words, sylla-
bles, or sounds, in the stream of spoken language.

Zipf’s law has been named after the author of this hypothesis. It can also be ob-
served in collections of written text and has been observed in all natural languages,
where word frequencies are inversely proportional to their rank when sorted by fre-
quency. After the most common word in written English (”the”), the second-most
common word ”of” appears approximately 1/2 as often, the third most common
word 1/3 as often and so on.

Zipf also observed that high-frequency words are usually more reduced and
shorter than low-frequency words (to make the transmission of thoughts more ef-
ficient from speaker to speaker). As words enter common use and are used more
frequently, they often get shorted: e.g. the word ”gas” is a shortened form of ”gaso-
line”, ”movies” was derived from ”moving-pictures” and ”good-bye” from ”God be
with you” (Zipf, 1929).

In the following, we empirically show that Zipf’s law holds for spoken corpora
used in this thesis and that it can be observed in phoneme frequency/rank relations
as well as word frequency/rank relations.

3.14. Distributions in Spoken Language 61

AH T N IH S D R IY L K DH Z M EH AE ER W V P AY B F EY UW AA OW AO NG HH Y G SH AW TH JH CH UH
NSNOY ZH

Rank

104

105

106
Nu

m
be

r o
f O

cc
ur

re
nc

es

FIGURE 3.13: Most frequent phonemes (SAMPA notation) in English
transcriptions of the TED-LIUM 2 corpus.

3.14.1 Phoneme frequencies

Figure 3.13 shows the most frequent phonemes in English, as observed on automatic
phonetic alignment on the TED-LIUM 2 corpus (Rousseau et al., 2014). The ASR
model to generate those alignments was trained with phonetic lexicon entries from
cmudict (Weide, 2005) in SAMPA notation (Wells et al., 1992). In contrast to the
International Phonetic Alphabet (IPA), SAMPA can be typed with standard ASCII
letters and symbols. It is commonly used for phoneme lexicons in English ASR.

The two most frequent phonemes (as estimated on TED-LIUM 2) can unsurpris-
ingly be found in very frequent words:

”AH” is in words such as ”and” (AH N D), ”than” (DH AH N) and ”was” (W
AH Z). ”T” is part of the words ”at” (AE T), ”got” (G AA T) and ”cat” (K AE T). The
least frequent phonemes in English (as estimated on TED-LIUM 2) are OY and ZH.
”OY” can be found in words such as oil (OY L) voice (V OY S) and royal (R OY AH
L). ”ZH” can be found in measure (M EH ZH ER), casual (K AE ZH AH W AH L)
and occasion (AH K EY ZH AH N).

3.14.2 Average phoneme durations

In the following, we analyze average phoneme durations. We derive durations from
automatic alignments of speech corpora. This allows to gain statistics over a vast
number of occurrences, at the expense of accuracy as compared to manually anno-
tated phoneme boundaries. The time durations are given as the number of frames
aligned to a particular phoneme by the ASR system – this means that accuracy is also

62 Chapter 3. Automatic Speech Recognition

SI
L OY AW AY CH EY SH OW
S AO AE Z F JH IY ER TH AA UW NG ZH P K HH
L M EH W G R T V Y B D N IH UH AH NS
N DH

phone

0

5

10

15

20

25

30

35

40

45

du
ra

tio
n

(m
ea

n/
st

d
no

. f
ra

m
es

)

FIGURE 3.14: Average phone durations (with standard deviation) of
each phoneme used in TED-LIUM, as automatically force-aligned by
a GMM-HMM acoustic model over the full training set. The pho-

nemes are sorted from longest average duration to smallest.

dependent on frame spacing being used with the acoustic model. In all of the fol-
lowing plots, the acoustic model used to align the phoneme boundaries was trained
with a standard spacing of 10ms, thus a rough estimate of the actual duration in ms
is the number of frames multiplied by 10ms. Figure 3.14 shows average durations
for the 41 phonemes in the TED-LIUM corpus, as estimated on training corpus. In
total 8,341,339 phoneme occurrences were counted, the average length of aligned
frames per phoneme over all occurrences is 9.76 frames per phoneme.

3.14.3 Word frequencies

Figure 3.15 shows a logarithmic rank/frequency plot of all the tokens in the TED-
LIUM 2 corpus and Figure 3.16 shows the same for the Switchboard corpus. Each
of these corpora contain different modes of spoken language. TED-LIUM is based
on TED talks2, so the utterances are generally from a presentation speaking style.
Switchboard is compiled of natural dyadic conversations recorded over the tele-
phone. The most frequent words in TED-LIUM are function words: "the", "and",
"to", "of" and "a". In contrast, in Switchboard the word ”I” is the most frequent
word, followed by function words. ”You” is also very frequent, owing to the fact
that these words are very frequent in conversations, but not in presentations.

2https://www.ted.com/

https://www.ted.com/

3.14. Distributions in Spoken Language 63

100 101 102 103 104

Rank

100

101

102

103

104

105

Nu
m

be
r o

f O
cc

ur
re

nc
es

the
and

to of a
thatin

you
it

wasthey
aboutat

there
know

really
has

said
need

great
able

power
anything

remember
became

white
solution

continue
draw

charge
fail

operate
linear

microbial
agents

carrot

collapses
kits

unsuspecting

garrett
poet's

safeways

bouyant

FIGURE 3.15: Frequency versus rank for all words occurring in the
TED-LIUM 2 corpus. Both axes are plotted on a logarithmic scale.

64 Chapter 3. Automatic Speech Recognition

100 101 102 103 104

Rank

101

102

103

104

105

106

Nu
m

be
r o

f O
cc

ur
re

nc
es

[silence]

i andthe
youa to

it know
they

so
justthink

um-hum
i'm

some
i've

she
could

anything
done

either
am

hum
hours

York
caught

visit
forward

factor
a[s]-

central
loaded

gross
symphony

bow
broader

Brewers
ba[sically]-

[laughter-spent]
situated

Asleep

FIGURE 3.16: Frequency versus rank for all words and special tokens
occurring in the Switchboard conversational corpus. Both axes are

plotted on a logarithmic scale.

65

Chapter 4

Supervised Representation
Learning for a Paralinguistic
Speech Task

66 Chapter 4. Supervised Representation Learning for a Paralinguistic Speech Task

4.1 Introduction

In this chapter, we discuss representation learning on an isolated audio classification
task. The study of paralinguistic speech involves perceptual speech phenomenons
that lie beyond the pure transcriptional content of spoken speech (Schuller, 2012).
The term paralanguage (Trager, 1958), literally ’alongside language’, was coined by
linguist Archibald Hill. With the advent of computational paralinguistics, such phe-
nomena are attained by automatic means. Automated gender recognition, age esti-
mation (Schuller et al., 2010) and emotional state classification (Schuller et al., 2009)
are some examples with a range of diverse applications in e.g. health care, com-
merce (advertising) and education. Computational paralinguistic speech tasks can
encounter data sparsity problems, as it can be more challenging to find or generate
larger amounts of labelled training examples for the desired domain than in other
areas of speech research.

It is also not easy to argue what constitutes good features for a specific paralin-
guistic regression or classification task and for some of these tasks, even human per-
formance can be suboptimal (Schiel, 2011). However, a specific set of speech features
developed in a particular paralinguistic domain can often be applied to another par-
alinguistic domain with success (Bone et al., 2011). It would certainly be desirable if
features could adapt automatically to a new problem domain, instead of the need to
manually engineer and tune features. Neural network approaches to image, audio
and text classification problems enable such a learning paradigm (see also Section
2.7): promising feature representations can also be learned automatically from the
data of the problem domain (Hinton, 2007).

In the following, we describe the methods we used for our entry in the Eat-
ing Condition (EC) challenge of the Interspeech 2015 Computational Paralinguis-
tics ChallengE (ComParE2015) (Schuller et al., 2015). We use the iHEARu-EAT cor-
pus (Hantke et al., 2015), which consists of 945 training utterances and 469 test ut-
terances. The task is to predict the kind of food someone eats while s/he speaks and
it is posed as a 7-class sequence classification problem with six specific kinds of food
and one class for speech without food (No Food, Banana, Crisp, Nectarine, Haribo,
Apple, Biscuit).

Nonetheless, we think the ideas should be transferable to other paralinguistic
and also audio classification tasks. We particularly address the challenge of hav-
ing only few labelled example sequences for each class and show how the training
process makes meaningful use of out-of-domain data with transfer learning (Caru-
ana, 1997; Pan and Yang, 2009) and data augmentation with synthetic training data
examples. Our main idea is to train local classifiers that automatically learn repre-
sentations on smaller windows of an audio sequence and to combine multiple clas-
sifications from such windows to obtain a classification result for a full sequence in-
put. Alongside better classification performance when compared to systems trained
only on per-sequence openSMILE (Eyben et al., 2010; Eyben et al., 2013) baseline

4.2. Methods and approaches 67

features, our window approach has the advantage that it also enables us to extract
exact positions of an audio sequence that are most relevant for its assigned class.

4.2 Methods and approaches

Our approach bears similarity to the proposed deep learning architecture for lan-
guage identification in (Lopez-Moreno et al., 2014). We have obtained good results
by replacing Deep Neural Networks (DNNs) in this pipeline with Convolutional
Neural Networks (CNNs) (LeCun and Bengio, 1995; LeCun et al., 1998; Krizhevsky
et al., 2012), which have demonstrated recognition accuracy better than or compa-
rable to humans in several visual recognition tasks (Taigman et al., 2014; He et al.,
2015).

4.2.1 CNN-based audio sequence classification

observed
FBANK
window
at position i

Filters = 32
kernel size (KS) = 3

2×2 maxpool, /2

size: 11x40

Convolution + MaxPooling

Filters = 64
KS = 2

2×2 maxpool, /1

Filters = 128
KS = 2

 2×2 maxpool, /1 Hidden Units = 500

kp(X | c)

X i

One
Ridge
regression
model per c { y=0.0 if CNN predicts wrong class

 (on training data)

for a whole sequence,
given observation window X iPredict

weight
 w i

Train using:

y=1.0 if CNN predicts right class
k

Fully connected layers

FIGURE 4.1: The CNN architecture used for learning on local FBANK
patches xi of a full sequence X . Contribution weights wi are learned
separately with linear models (one for each class), which assign a
weight to the local classification’s contribution to the full classifica-

tion of a sequence.

Similarly to the recent work in applying CNNs to the audio and speech do-
main (Sainath et al., 2013; Lee et al., 2009), we interpret overlapping windows in
a frequency spectrum representation as fixed-dimensional 2D input to the CNNs
(comparable to grey scale images). We have used windows of 40-dimensional log
mel filterbank features (FBANK) as input to the classifier. Each FBANK vector is
calculated from a time frame of 25 ms of raw audio and we use a window of +/- 5
feature vectors around a central feature vector as input to the CNN. A window has
thus a height of 40 and a width of 11 elements, totalling 440 inputs. We shift the
FBANK window by 2 vectors through all FBANK frames of the signal.

Figure 4.1 illustrates our CNN architecture, along with a weight prediction scheme
using linear models. We follow the standard CNN design of having alternating con-
volutional and maxpool layers followed by fully connected layers (Krizhevsky et
al., 2012). Initially, we used three convolutional and maxpool layers followed by
two fully connected layers. This is much smaller than proposed architectures for the

68 Chapter 4. Supervised Representation Learning for a Paralinguistic Speech Task

ImageNet classification task (Krizhevsky et al., 2012; He et al., 2015) to account for
the smaller input size of the CNN and the smaller amount of training data avail-
able in iHEARu-EAT. We also use smaller convolution kernel sizes of 3x3 and 2x2,
to achieve an implicit regularization effect (Simonyan and Zisserman, 2015). One
particular challenge of audio sequence classification is that the length of unseen se-
quences is not fixed. We have implemented a simple majority voting strategy that
selects the highest count of individual class predictions across all windows of the se-
quence and a weighted majority voting that learns contribution weights with linear
regression models that we describe in the next subsection.

4.2.2 Weighted Majority Voting

We use one Ridge linear regression (Hoerl and Kennard, 1970) model per class ci,
to predict the weight of a window’s prediction towards the full prediction of the
sequence. A CNN model is trained on all windows Xi of all audio sequences seqs

= seq1, seq2, ..., seqj , Xi ∈ seqj . Each window is assigned the output class ci of the
sequence it belongs to. Then, for each Xi we let the model predict the most prob-
able class ci given its window of observation. We assign y = 0.0 for each wrong
prediction and y = 1.0 for each successful prediction on the training data the model
was trained on. The assumption here is that some windows of a sequence contain
no discriminative information (e.g. only silence). A linear regression model mci

should then learn the connection between all predicted class probabilities of its class
ci given the window of observation Xi and weights wj = y. Ideally, these weight
should be closer to 0.0 if the predicted input class probabilities of the observation Xi

are likely to contribute to an incorrect classification and 1.0 if it supports the full se-
quence’s true class. Then, instead of a simple counting vote to aggregate individual
classifications, we add the predicted weight value wi towards a final vote of class ci.

4.2.3 Regularization

We employ dropout (see also Section 2.14.5) as a first measure to counter overfitting
in training our networks (Srivastava et al., 2014). It has been specifically proposed
for cases where labelled data is scarce and thus where overfitting is likely to occur. It
works by randomly omitting a certain percentage of nodes in the network at training
time, while using the full network at test time.

4.2.4 Data Augmentation

Data augmentation has been widely used in neural network based pattern recogni-
tion tasks (LeCun et al., 1998; Simard et al., 2003; Krizhevsky et al., 2012). In image
processing, data augmentation techniques are usually intuitive and transformations
such as translation, deformation and reflection (Krizhevsky et al., 2012) have led

4.2. Methods and approaches 69

to significant improvements in recognition accuracy. Inspired by these image aug-
mentation techniques, we employ a simple audio augmentation technique: We ar-
tificially generate pitch shifted versions of the original training files and add them
to the training set. We make use of the Rubberband utility1 to generate new files
shifted by one semitone upwards and downwards, without changing the length of
the recordings. We set the ”crispness” level to 6, intended for drum tracks, as this
produced the best sounding pitch-shifted speech output and was deemed somewhat
fitting for smacking noises.

4.2.5 Transfer Learning

The idea of training a neural network on a related problem first and transferring
its weight configuration for a target problem instead of random initialization is an
old one (Pratt et al., 1991; Pratt, 1992). However, literal and naïve weight trans-
fer has been shown to not only be ineffective but also detrimental to the classifiers
performance (Pratt, 1992). These results have now been challenged on several vi-
sual recognition tasks with deep neural networks, where representation transfer has
been shown to be astoundingly effective (Sharif Razavian et al., 2014). Azizpour
et al. (2015) have recently systematically identified the list of factors that affect the
transferability of CNN representations and direct transfer of weight configurations
for visual recognition tasks, with exhaustive experimental evidence showing how
these factors should be set.

An important factor is, unsurprisingly, how related the two problems are. It is
then very important, dependent on the relatednesses of the tasks, how many of the
first layers are transferred, while the remaining layers are randomly initialized as
usual. We have chosen the Voxforge2 corpus for transfer learning as it is freely avail-
able and easily accessible. We build a 7-class language classification problem, where
the sequence should be classified as German, French, Spanish, Italian, Portuguese,
Dutch or Russian. We selected 3000 utterances for each language from the Voxforge
dataset, which is roughly 30 times larger than the iHEARu-EAT dataset. We then
pretrained our CNN model on this problem first and then transferred the model’s
weight matrices to a new CNN model, which we trained on the iHEARu-EAT data.
We have both tested the naïve transfer learning approach where we transfer all lay-
ers and one where we only transfer the weights of convolutional layers, but initialize
the fully connected layers randomly.

4.2.6 Hyperparameters

For training DNNs and CNNs we use Nesterov’s Accelerated Gradient Descent
(NAG, Nesterov momentum) (Nesterov, 1983; Sutskever et al., 2013). For all ran-
dom weight initializations, we have chosen He-initialization, as described in He

1http://breakfastquay.com/rubberband/ (last accessed: December 2021)
2http://www.voxforge.org/ (last accessed: December 2021)

http://breakfastquay.com/rubberband/
http://www.voxforge.org/

70 Chapter 4. Supervised Representation Learning for a Paralinguistic Speech Task

Method UAR 7-class UAR 2-class

Baseline features (SVM)
56.0%

(+/- 2.7%)
94.3%

(+/- 2.3%)

Baseline features (RF)
53.6%

(+/- 2.9%)
91.4%

(+/- 4.3%)
net0:
Baseline features (DNN)

59.2%
(+/- 4.2%)

93.8%
(+/- 3.6%)

net1:
CNNs (simple maj. vote)

57.8%
(+/- 3.6%)

94.4%
(+/- 1.8%)

net2:
net1+dropout

61.6%
(+/- 6.1%)

94.1%
(+/- 2.8%)

net3:
net2+weighted maj.

63.1%
(+/- 1.4%)

95.0%
(+/- 2.2%)

net4:
net3+naïve transfer learning

62.2%
(+/- 3.6%)

95.4%
(+/- 2.2%)

net5:
net3+transfer learning

65.5%
(+/- 2.2%)

96.6%
(+/- 1.4%)

CNN ensemble
(net0+net2+net3+net5)

67.2%
(+/- 2.6%)

96.3%
(+/- 2.0%)

TABLE 4.1: UAR mean and standard deviation with 5-fold speaker in-
dependent cross validation, using the training data of iHEARu-EAT.
In each split the data of 16 speakers were used for training the clas-
sifier(s) and the utterances of the remaining 4 speakers were used to

evaluate classification performance.

et al. (2015). We use categorical cross entropy as objective loss function, i.e. the
measure of error between computed and desired target outputs of the training data,
which we minimize. One of the downsides of gradient-based optimization methods,
which are primarily used in DNNs and CNNs, is that they usually introduce addi-
tional hyperparameters that govern the behavior of the optimization techniques. We
start with reasonable defaults and follow best practices: 0.02 is chosen as the start
learning rate and 0.9 as the start momentum. For transfer learning, we slightly re-
duce the initial learning rate to 0.01 (Azizpour et al., 2015). Then, we linearly reduce
it with each epoch, so that the learning rate for the last epoch is 0.0001. Similarly,
momentum is linearly increased (Sutskever et al., 2013) to 0.999 in the last epoch.
We track performance of the network for each epoch on 1% of all patches, which can
be seen as held-out classification performance on known speakers. We train all our
cross-validation models for 400 epochs. We set dropout to 0.1,0.2 and 0.3 for the first,
second and third convolutional layers and 0.5 for all fully connected layers.

4.3. Results 71

4.3 Results

We implemented the proposed approaches and methods in the previous section us-
ing Nolearn3+Lasagne4 and Scikit-learn (Pedregosa et al., 2012) in Python. Since
Lasagne is based on the Theano (Bergstra et al., 2010) architecture, we could use
GPUs to speed up computations. The official development evaluation is unweighed
average recall (UAR) with leave-one-speaker-out cross-validation (LOSO-CV). This
proved to be computationally impractical for us, as computing one CNN model can
take up to one day on a GPU (Nvidia Geforce 970), depending on the number of
training epochs used. We opted to do 5-fold cross validation over the speakers in-
stead, with 400 epochs of training. Table 4.1 shows our results for this cross vali-
dation method. While this allowed us to test different ideas quicker, it makes our
results not comparable to the baseline LOSO-CV evaluation of the challenge (61.3%
7-class UAR) (Schuller et al., 2015). We thus recomputed the baseline results on ex-
actly the same split with 3 different classifiers: SVM (C=0.001), Random Forests (RF)
and a 3-layer DNN with dropout. CNN results were computed with the architec-
ture shown in Figure 4.1. We performed mean normalization prior to training on the
FBANK patches. For all results shown, we have kept the number of hidden units in
the fully connected layers at 500. Preliminary experiments showed that setting hid-
den units to 1000 or 250 in the two last fully-connected layers of the CNN yielded
worse results.

Without any regularization method, a CNN on FBANK features actually per-
forms worse than a regularized DNN on per-sequence baseline features (net1). How-
ever, if we use dropout, we are able to out-perform the results obtained with the
baseline features (net2). Replacing the simple majority voting with our weighted
majority voting based on linear regression models also improves performance (net3),
but using transfer learning naïvely by transferring all weights from the source task to
the target task produces worse results (net4). However, when the last two fully con-
nected layers are not transferred but initialized randomly, we found transfer learn-
ing to be surprisingly effective (net5), showing a large single-technique contribution.
If we combine the class probability estimates of differently trained CNN models by
their harmonic mean, we can further improve our score, beyond the performance of
any single method (ensemble).

The first ensemble model for predicting on the test set was retrained on the full
training set with the same parameters. With 400 training epochs, this produced a
70.0% 7-class UAR on the official test set, see Table 4.2. We proceeded to make some
changes which extended training time considerably (> 5 days per model) and were
thus only evaluated on the test set: We added one additional convolutional layer and
pooling layer before the network’s fully connected layers with the same parameters
as its previous convolutional and pooling layer and extended the input window to 18

3https://github.com/dnouri/nolearn (last accessed: December 2021)
4https://github.com/benanne/Lasagne (last accessed: December 2021)

https://github.com/dnouri/nolearn
https://github.com/benanne/Lasagne

72 Chapter 4. Supervised Representation Learning for a Paralinguistic Speech Task

Submitted system UAR Acc.

8-layer CNN ensemble (400 epochs) 70.8% 70.0%
+ 10-layer CNN ensemble (3000 epochs) 73.6% 74.4%
+ 10-layer CNN with data aug. (3000 epochs) 75.4% 76.1%
+ Log. regression on CNN features
(trained with SGD, 1000 epochs)

75.9% 76.6%

TABLE 4.2: 7-class UAR and accuracy scores on the official test set, as
reported by the official challenge test submission system. Each new
submission is an ensemble which also includes previous models. Five

individual submissions were allowed.

.

FIGURE 4.2: Minimizing the objective function: training loss per
epoch for a CNN with completely random initialization and one with
transferred weights. Validation loss is measured on held-out data

from already known speakers.

frames with 60 dimensional FBANK features. We also trained the network for 3000
epochs instead of 400 epochs. An ensemble network trained with this larger network
raised our test score to 73.6% UAR. Finally, adding a CNN to the ensemble that
was additionally trained on augmented pitch-shifted training examples and logistic
regression classifiers trained on CNN feature embeddings resulted in an UAR of
75.9%, which is 15% better than the baseline UAR of 65.9% reported in (Schuller et
al., 2015). Figure 4.2 compares validation loss and training loss per epoch for CNNs
with completely random initialization and transferred convolutional kernel weights
from the Voxforge language identification task, where the latter gives an advantage
in all epochs.

4.3.1 Insights

Figure 4.3 shows an example classification on an at training time unseen speaker.
The correct answer is ’Crisp’, which the model assigned correctly. Note that the ’No

4.3. Results 73

...

...

...

No_Food
Banana
Crisp

Nectarine
Haribo
Apple
Biscuit

FIGURE 4.3: Classification of (yet unseen) train utterance
train_0112.wav by a CNN model. The correct class is ’Crisp’.
From top to bottom: FBANK features, CNN embedding and the
7 class probabilities for its corresponding window. Orange/red

colours represent higher values, while dark blue represents zero.

food’ class is relatively inactive for almost the entire utterance, which suggests that
a small window of a whole utterance is sufficient to decide if someone eats while
he speaks or not. The class ’Crisp’ has several distinct spots where classification
probabilities are very high, which correspond to characteristic crunch noises in the
audio. Our classification pipeline is capable of producing insights, as it can point
to sound examples and exact positions in an utterance which are most characteristic
and discriminative of its class.

4.3.2 Challenge Results

The final system was submitted to the Interspeech 2015 Computational Paralinguis-
tics Challenge (ComParE 2015). The resulting final UAR of 75.9% on the closed test
set scored second place among 15 competing systems (including the baseline), see
Table 4.35. Note that there is unfortunately no further information than the UAR
score for systems without an accompanying Interspeech 2015 paper. We still list
these challenge entries in Table 4.3 and denote these systems with N/A.

Most systems made use of OpenSMILE features (3, 6, 7, 9). Otherwise the system
in Wagner et al. (2015) computed filters on raw waveforms, Kaya et al. (2015) uses

5We thank Anton Batliner for sending us slides of the summary results talk at Interspeech 2015.

74 Chapter 4. Supervised Representation Learning for a Paralinguistic Speech Task

Rank System UAR

1. MFCC+PLP, Speaker z-normalization applied after speaker
clustering, Kernel Extreme Learning Machines (Kaya et al.,
2015)

83.1

2. Our system, raw FBANK features, CNN ensemble network
with transfer learning (Milde and Biemann, 2015)

75.9

3. Praat to extract HNR + OpenSMILE features + i-vector
speaker normalization, SVM (Kim et al., 2015)

74.6

4. N/A 73.6
5. N/A 68.9
6. OpenSMILE features, Shallow NN (Pellegrini, 2015) 68.4
7. Wrapper-based feature group selection on OpenSMILE fea-

tures, SVM (Pir and Brown, 2015)
67.9

8. Hierarchical classification, signal processing (HP and EP fil-
ters) (Wagner et al., 2015)

67.6

9. OpenSMILE features, feature selection + hierarchical clas-
sification, SVM (Prasad and Ghosh, 2015)

67.3

10. N/A 66.1
11. baseline, SVM on OpenSMILE features (Schuller et al.,

2015)
65.9

12. N/A 65.1
13. N/A 64.4
14. N/A 60.7
15. N/A 45.5

TABLE 4.3: Overview of the submitted systems and methods used
for the ComParE2015 iHEARu-EAT subtask challenge. Not all sub-
missions to the challenge resulted in a paper at Interspeech. We listed
these as N/A in the table, but neither the authors nor the methods

used are known.

standard ASR MFCC+PLP features. We use standard ASR frequency features (40
dim FBANK), as these are closer to the raw audio signal.

Feature selection of the baseline OpenSMILE features and hierarchical classifi-
cation were explored by some participants (7, 8, 9), with small improvements over
the baseline scores in system 11. The systems by Kaya et al. (2015) and Kim et al.
(2015) (1, 3) made use of explicit speaker adaptation and clustering. In both cases,
despite very different machine learning models (SVM vs. Kernel Extreme Learning
Machines (Huang and Siew, 2004; Huang et al., 2006)), a large increase in UAR was
noted. The authors of the winning system noted an increase from 70.4% to 77.0%
UAR solely due to speaker normalization for the non-ensemble system (Kaya et al.,
2015), while Kim et al. (2015) observed that UAR increased from 65.3% to 75.7% due
to speaker normalization (cross-validated on the training set).

Integrating some form of explicit speaker clustering and speaker adaptation might
have helped to improve our system as well. In Chapter 5 of this thesis, an unsu-
pervised speaker clustering method is developed and used in the context of ASR
systems.

4.4. Conclusion 75

4.4 Conclusion

The eating challenge (EC) provides an interesting audio classification task, where
relatively few samples per class are available, but good automated classification per-
formance can still be attained. Prior to 2012, when neural networks were renowned
for their propensity to overfit, they would have probably not been considered for
such a learning task. Without techniques like dropout and transfer learning, it would
have been difficult to beat the baseline results. On the cross-validation results, the
use of additional speech data via transfer learning to initialize early layers of the
CNN showed a large single-technique improvement and overall best performance
was achieved with a voting scheme between several CNNs. At the expense of a
longer training time, we could also further improve our test set result with data
augmentation and a larger network, yielding a final improvement of 15% relative to
the baseline score.

We have opted for a pipeline where individual classification results are averaged
across a sequence, to produce a combined classification result for the full sequence.
Examination of the feature representation of the last fully connected layer suggests
that such an automatically learned representation is fairly sparse. Our results con-
cerning the transferability of convolutional neural network weights are in line with
newer results and insights obtained on visual object recognition tasks (Azizpour et
al., 2015): It is paramount to only transfer the first layers to the target task and to ini-
tialize the last layers of the target network at random, since these are very specific to
the target task, while the first layers of a CNN can encode more generic feature trans-
formations. A different dataset than the Voxforge corpus would probably be a better
fit for this kind of transfer learning, as literature and intuition suggests that the close-
ness of the source to the target task is related to how well the transfer learning works.
But especially considering that the Voxforge corpus is recorded in very mixed and
varying conditions and that its recording quality is varies due to the crowdsourced
nature of the project, the obtained results are surprisingly good. We believe that the
classification pipeline presented in this chapter could also be interesting to other –
not only paralinguistic – audio classification tasks.6

4.5 Additional Remarks

This study on transfer learning was previously published in (Milde and Biemann,
2015), when transfer learning and the use of CNNs in speech and paralinguistic
speech was very recent. It was one of the first such studies showing that even on
rather small labeled paralinguistic speech datasets, CNNs can be trained effectively
and learn useful representations that outperform standard paralinguistic features
of speech signals by a large margin. This sparked a now well-known discussion in
(Trigeorgis et al., 2016) about the relevance of manually designed features in the field

6Source code: https://github.com/bmilde/deepschmatzing (last accessed: April 2022)

https://github.com/bmilde/deepschmatzing

76 Chapter 4. Supervised Representation Learning for a Paralinguistic Speech Task

of paralinguistic speech processing (this work also cites (Milde and Biemann, 2015)).
The conclusion from this discussion going forward is that deep neural networks
such as CNNs yield significantly better classification results than models trained on
manually designed paralinguistic features and representations of speech.

77

Chapter 5

Unsupervised Representation
Learning for Speech Contexts

78 Chapter 5. Unsupervised Representation Learning for Speech Contexts

5.1 Introduction

Unsupervised speech processing (or also zero resource speech processing) is a rela-
tively new and growing field that deals with speech processing tasks where usually
no transcriptions or labels are known. In many tasks, only raw audio data is avail-
able. One of the first successful applications is voice search by example, where a
potentially large collection of audio data can be queried by an example audio query
(Zhang and Glass, 2009). Just as with many other unsupervised methods (see also
Section 2.2), one major advantage is that such systems are language-independent
and speech data without transcriptions is usually easier to gather in large quantities.

Variance and variability in recordings of speech and its representations are a
common problem in automatic speech processing tasks. For example speaker, en-
vironment characteristics and the type of microphone will cause large differences in
typical speech representations (e.g. FBANK, MFCC), making direct similarity com-
parisons difficult. We can describe such factors of variance also as the context of an
utterance; speech sounds that occur close in time share similar contexts. Based on
this idea, we propose to learn representations of such contexts in an unsupervised
way, without needing further speaker IDs, channel information or transcriptions of
the data.

In this chapter we introduce ”Unspeech” embeddings, which are based on unsu-
pervised learning of context feature representations for spoken language. These em-
beddings can be trained on speech data without transcriptions or annonated speaker
information and can be used to cluster speech data as well as augment ASR models
with context information. The learning objective is based on context and non-context
discrimination, where a model has to learn whether two speech segments appeared
close in time or are unrelated.

Recent acoustic models for automatic speech recognition (ASR) incorporate some
form of (deep) neural network that can learn to deal with part of this variance by us-
ing supervised training data in combination with the ability to learn representations
as part of the model. A growing trend is to incorporate larger context views of the
data explicitly into the neural network. In Deep Neural Network Hidden Markov
Model (DNN-HMM) hybrids, fixed-length speaker embeddings like i-vectors are
made available for the neural network as additional input features (Saon et al., 2013).
Typically, larger temporal windows than single speech frames are also used as input
to the neural network to make context available to local predictions. This can for
instance be achieved by either stacking consecutive speech frames or by using Time-
Delayed Neural Networks (TDNNs) (Waibel et al., 1990; Peddinti et al., 2015).

On the other hand, ”Unspeech” embedding models embed a window of speech
into a fixed-length vector so that corresponding points are close, if they share similar con-
texts. Unsupervised training of the embedding function is inspired by negative sam-
pling in word2vec (Mikolov et al., 2013) – where words that share a similar meaning

5.2. Related Work 79

are embedded in similar regions in a dense vector space. In this chapter, we demon-
strate that the learned Unspeech context embeddings encode speaker characteristics
and also can be used to cluster a speech corpus. As an additional context input fea-
ture, they can also improve supervised speech recognition tasks with TDNN-HMM
acoustic models, in particular when adaptation to out-of-domain data is needed.

Building on the speech clustering that the Unspeech embedding provides, we
also introduce a local-context variant of Unspeech embeddings in this chapter. This
embedding can be used in speaker-independent tasks such as emotion and com-
mand recognition. In contrast to the previous chapter, the first task is employing
self-supervised training on unlabeled speech data. Transfer learning then happens
from this model to the target task, which is supervised but might only have a few
annotated utterances.

5.2 Related Work

Speaker embeddings and phonetic embeddings are two major groups of proposed
embeddings in speech: While speaker embeddings seek to model utterances from
the same speaker so that they share similar regions in a dense vector space, in pho-
netic embeddings, the same or similar phonetic content is close.

I-vectors (Dehak et al., 2011) are well-known, popular speaker vectors. Recently,
supervised neural network-based speaker embeddings also succeeded to show good
speaker discriminative properties (Snyder et al., 2016; Snyder et al., 2017; Li et al.,
2017), particularly on short utterances. Bengio and Heigold (2014) proposed su-
pervised word embeddings for speech recognition, where words are nearby in the
vector space if they sound alike. Kamper et al. (2015) showed that auto-encoders can
also be used in conjunction with top-down information for unsupervised phonetic
representation learning in speech. Chung et al. (2016) proposed audio word2vec,
based on sequence-to-sequence auto-encoders trained on a dictionary of isolated
spoken words. By analogy of auto-encoders, Pathak et al. (2016) introduced context
encoders, a class of models that learn context embeddings in images. There is also
growing interest in representation learning on non-speech audio by using learning
objectives directly related to contexts. Jansen et al. (2018) encoded the notion that
(non-speech) sounds occurring in context are more related.

Bromley et al. (1994) introduced Siamese neural networks: two (time-delayed)
neural networks that embed digital signatures and a learning objective based on
discriminating between true and false signatures. This idea has recently been revis-
ited in the context of joint phoneme and speaker embeddigs learning in a weakly
supervised setting, where speaker annotation, same word information and segmen-
tation is available (Synnaeve and Dupoux, 2014; Zeghidour et al., 2016). Gutmann
and Hyvärinen (2010) introduced Noise-Contrastive Estimation (NCE), an estima-
tor based on discriminating between observed data and some artificially generated
noise. Jati and Georgiou (2017) proposed Speaker2vec for speaker segmentation,

80 Chapter 5. Unsupervised Representation Learning for Speech Contexts

0 50 100 150 200
0

20

FIGURE 5.1: The initial sequence of FBANK vectors as generated by
Kaldi (40-dimensional, with 100 frames per second).

0 50 100 150 200

0

20

targetcontextcontext context context

FIGURE 5.2: The initial sequence with unnormalized FBANK vectors:
we choose one target window and two left and right contexts. All

windows are of the same size.

with unsupervised training using a neural encoder/decoder. Very recently and in
parallel to our efforts, Jati and Georgiou (2019) also proposed (unsupervised) neural
predictive coding to learn speaker characteristics.

In (Jin et al., 1997) unsupervised speaker clustering was proposed to yield labels
for speaker adaptation in acoustic models, based on the idea that consecutive win-
dows of speech are likely from the same speaker. Several forms of context/speaker
embeddings have also been used for (speaker) adaptation in state-of-the-art speech
recognition acoustic models: i-vector speaker embeddings are by far the most pop-
ular (Saon et al., 2013; Senior and Lopez-Moreno, 2014; Miao et al., 2015). Veselỳ
et al. (2016) proposed sequence summary neural networks for speaker adaptation,
where utterance context vectors are averaged from the speech feature representa-
tion. Gupta et al. (2017) showed that visual features, in the form of activations from
a pre-trained CNN for object detection on videos can also be used as context vectors
in the acoustic model.

YAMnet (Plakal and Ellis, 2020) is a pretrained deep neural network that is trained
on a dataset of 521 audio event classes (supervised). It can be used for transfer learn-
ing or for generating audio embeddings. Shor et al. (2020) proposed TRILL embed-
dings with an unsupervised triplet-loss objective that can also be used for fine tuning
on audio/speech embeddings. Several down-stream benchmark classification tasks
are proposed, where the unsupervised embeddings are fine-tuned on audio/speech
classification tasks. We also make use of the proposed benchmarks in Section 5.5.3
to evaluate Unspeech embeddings. TRILL and YAMnet use raw audio waveforms
as input, i.e. they are end-to-end networks.

5.3. Proposed Models 81

0

25

0

25

0

25

0

25

0

25

0

25

0

25

0 25 50 75
0

25

} }C=0C=1

0 25 50 75

FIGURE 5.3: Sampling examples for two left contexts and two right
contexts from the figure above. Positive example pairs are of class
C = 1, negative sampled pairs are C = 0. In this example, each

window has a size of 50 FBANK frames (0.5 seconds).

5.3 Proposed Models

Our goal is to train a model that learns a speech context embedding transformation.
To train this model, we construct an artificial binary classification task with logistic
regression, where two fixed-sized windows are compared. One target window can
have multiple context windows, depending on the number of left and right contexts.
For every left and right context, a pair with the target is created. Figure 5.1 and 5.2
illustrates this with two right and left contexts, yielding four positive contexts and
four randomly sampled negative contexts. For the target window we denote embt

as the target embedding transformation, taking a window of FBANK features and
producing a fixed sized output vector, embc as the embedding of a true context and
embneg as the embedding of a randomly sampled context. The pair of (embedded)
speech windows is considered to be of class C = 1 if one window is the context of
the other, or C = 0 if they are not. For C = 1, we sample the pairs from consecutive
windows, for C = 0 we use negative sampling to construct a pair of speech windows
that are unrelated with high probability: We uniformly sample a random utterance
u and then uniformly a random position in u.

5.3.1 Objective Function

With the scalar x as the output of the model for a particular data point, σ the sigmoid
function and C its true class ∈ (0, 1), the logistic loss for a binary classification task
is:

loss(x,C) = C(−log(σ(x))) + (1− C)(−log(1− σ(x))) (5.1)

with x = embTt embc, the dot product over target and context embedding trans-
formations if C = 1 and x = embneg1

T
i embneg2i, the dot product over two negative

82 Chapter 5. Unsupervised Representation Learning for Speech Contexts

sampled embedding transformations if C = 0, for k = number of negative samples
we can thus obtain:

NEGloss = −k · log(σ(embTt embc))

−
k∑

i=1

log(1− σ(embTneg1iembneg2i))
(5.2)

Note that in the similar NCE loss formulation (Gutmann and Hyvärinen, 2010),
P (C = 1) = P (C = 0) = 1

2 , i.e. the number of data points where C = 1 and C = 0 are
the same, while we could have more negative than positive target/context embed-
ding pairs, depending on k. Instead, for C = 1 we multiply with k = the number of
negative samples, to penalize errors on positive and negative context pairs equally.
Another difference is that we sample two unrelated embedding windows instead of
one.

5.3.2 Model Architecture

embedding transformation, e.g. VGG16} }

embedding
of size n

embedding
of size n

dot product→

logistic loss,
C=1 if true context, C=0 if negative sampled context

negative
embedding transformation, e.g. VGG16

target window FBANK 64x40 FBANK 64x40context window

t c
·α ·α

} }

FIGURE 5.4: Unspeech embeddings are trained using a Siamese neu-
ral network architecture combined with a dot product. We use a
VGG-like CNN network as embedding transformation in the yellow

boxes (a convolutional neural network with 16 layers).

Figure 5.4 shows our architecture for FBANK input features. We project two
dimensional input windows into two fixed sized embeddings, which are combined
with a dot product. Since this is sensitive to the scaling of output embeddings, we
multiply them with a single scalar parameter α, which is trained with the rest of the

5.3. Proposed Models 83

network. Direct normalization to unit length (making the dot product equivalent to
a cosine distance) hampers convergence of the loss and was discarded early on.

Many different architectures are possible for converting the input representation
into a fixed sized embedding, but we mainly evaluated with a VGG-style CNN ar-
chitecture (Model A in (Simonyan and Zisserman, 2015)), as it is well established
and it can exploit the two dimensional structure in the FBANK signal. We share the
weights of the convolutional layers of both embedding transformations, but keep
the fully connected layers separate. Dropout is used for fully connected layers (0.1)
and L2 regularization is used on the weights (0.0001), for all experiments we opti-
mize with ADAM (Kingma and Ba, 2014). We make use of leaky ReLUs (Maas et al.,
2013).

5.3.3 Implementation Details

We implemented all models in TensorFlow (Abadi et al., 2016) version 1.4 and Python
3.6. The CNN architectures VGG and ResNetv2 are adapted from the examples in
the TF-slim package1 FBANK input features are computed using Kaldi’s (Povey et
al., 2011) feature generation tools with the standard configuration for FBANK vec-
tors: 40 banks, hamming windows of 25 ms, sampled every 10 ms.

For the loss function, we use the sigmoid_cross_entropy_with_logits

function in TensorFlow, as it provides a stable reformulation of the logistic loss that
ensures stability and avoids floating point overflow. Specifically2, with σ(x) = 1

1+e−x

(standard sigmoid function) and x = logits, C = labels:

loss(x,C) = C · (−log(σ(x))) + (1− C) · (−log(1− σ(x)))

= C · (−log(
1

1 + e−x
)) + (1− C) · (−log(

e−x

1 + e−x
))

= C · log(1 + e−x) + (1− C) · (−log(e−x) + log(1 + e−x))

= C · log(1 + e−x) + (1− C) · (x+ log(1 + e−x)

= (1− C) · x+ log(1 + e−x)

= x− x · C + log(1 + e−x)

= log(ex)− x · C + log(1 + e−x)

= −x · C + log(1 + ex)

To avoid overflow and for numeric stability, TF uses this alternative formulation:

max(x, 0)− x · C + log(1 + e−abs(x))

1TF-Slim is a high-level library for common NN layers in TensorFlow.
2The formulas and derivations are taken from the TensorFlow v1.14 documentation:

https://github.com/tensorflow/docs/blob/r1.14/site/en/api_docs/python/
tf/nn/sigmoid_cross_entropy_with_logits.md (last accessed: December 2021)

https://github.com/tensorflow/docs/blob/r1.14/site/en/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits.md
https://github.com/tensorflow/docs/blob/r1.14/site/en/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits.md

84 Chapter 5. Unsupervised Representation Learning for Speech Contexts

3x3 conv

3x3 conv

2x2 pool

x16

3x3 conv

3x3 conv

2x2 pool

x32

3x3 conv

3x3 conv

2x2 pool

x64

3x3 conv

3x3 conv

2x2 pool

x128

fc1 512*

fc2 100

3x3 conv

3x3 conv

2x2 pool

x32

3x3 conv

3x3 conv

2x2 pool

x64

3x3 conv

3x3 conv

2x2 pool

x128

3x3 conv

3x3 conv

2x2 pool

x256

fc1 512*

fc2 100

3x3 conv

3x3 conv

2x2 pool

x256

ꜜꜜ

ꜜ

ꜜ
FIGURE 5.5: Hyperparameters and layer structure for two convolu-
tional neural networks, in VGG-style with two successive convolu-
tions followed by a pooling layer. "VGGsmall" is on the left, "VGG" is

on the right.

Many different architectures are possible for converting the input representation
into a fixed-sized embedding, but we mainly evaluated with a VGG style CNN ar-
chitecture (Simonyan and Zisserman, 2015), as it is well established and it can exploit
the two dimensional structure in the FBANK signal. We reduce the size of both CNN
architectures so that two networks can fit better on the memory of one 12GB graph-
ics card, so that training the complete network on a single GPU remained possible
(in 2018). See Figure 5.5 for detailed hyperparameter choices of the convolution and
pooling layers of the VGG net. Since the width of the window is reduced by half in
every 2x2 pooling layers, the minimal input size to the network is 32 FBANK frames
(≈ 320 ms). If a smaller input size is needed, VGGsmall can also be used as shown in
Figure, with a minimal input size of 16 frames. Dropout is used for fully connected
layers and set to 0.1. L2 regularization is used on the weights and set to 0.0001. For
all experiments we optimize the network with ADAM (Kingma and Ba, 2014).

5.4. Evaluation 85

5.4 Evaluation

TABLE 5.1: Comparison of English speech data sets used to train Un-
speech embeddings.

hours speakers

dataset train dev test train dev test

TED-LIUM V2 211 2 1 1,273+3 14+4 13+2
Common Voice V1 242 5 5 16,677 2,728 2,768
TEDx (crawled) 9,505 41,520 talks

Table 5.1 characterizes the datasets we used in our evaluation. TED-LIUM V2
(Rousseau et al., 2014) has a comparatively small number of speakers, especially in
the development and test set of the corpus. TED-LIUM and Common Voice (Ardila
et al., 2020) are segmented at the utterance level, both are similar in the number of
hours. In Common Voice, volunteers from all over the world recorded predefined
prompts, in TED-LIUM utterances are segmented from and aligned to TED talks3.
In order to explore large-scale training, we also downloaded all TEDx talks from 01-
01-2016 until 03-01-2018 from YouTube, giving us 41,520 talks (0.5 TB compressed
audio data) with a total of 9,505 hours of unannotated audio. While the majority of
TEDx talks are in English, a very small number of them are in other languages or
contain only music. We did not segment or clean the TEDx data in any way and
kept all downloaded talks.

5.4.1 Same/Different Speaker Experiment

In the same/different speaker experiment, we evaluate a binary classification task:
given two utterances, are they uttered from the same or different speakers? Our hy-
pothesis is that Unspeech embeddings can be used for this task, because one strategy
to discriminate samples of true contexts from negative sampled ones is modelling
speaker traits. In Table 5.2 we show equal error rates (EER)4 on same/different
speaker comparisons of all utterance pairs, limiting the number of speakers to 100
in the train sets of TED-LIUM and Common Voice corpus in this experiment. The
embedding dimension is 100 in all experiments. We train Unspeech models with dif-
ferent target window widths (32, 64, 128) and i-vectors are trained/extracted with
Kaldi (Povey et al., 2011). For all experiments, we use two left and two right context
windows and use the VGG structure as shown in Figure 5.5 on the right side.

The distance function d1(a, b) = σ(embt(a)
T embc(b)) to compare two segments a

and b correspond to the distance function in the Unspeech training process. The
cosine distance, or equally after normalization to unit length, the Euclidean dis-
tance on vectors produced by embt also produces good comparison results, so that

3https://www.ted.com/ (last accessed: December 2021)
4The error rate where the number of false positive and false negatives is the same, calculated using

pyannote.metrics (Bredin, 2017)

https://www.ted.com/

86 Chapter 5. Unsupervised Representation Learning for Speech Contexts

TABLE 5.2: Equal error rates (EER) on TED-LIUM V2 – Unspeech
embeddings correlate with speaker embeddings.

Embedding EER

TED-LIUM: train dev test

(1) i-vector 7.59% 0.46% 1.09%
(2) i-vector-sp 7.57% 0.47% 0.93%
(3) unspeech-32-sp 13.84% 5.56% 3.73%
(4) unspeech-64 15.42% 5.35% 2.40%
(5) unspeech-64-sp 13.92% 3.4% 3.31%
(6) unspeech-64-tedx 19.56% 7.96% 4.96%
(7) unspeech-128-tedx 20.32% 5.56% 5.45%

TABLE 5.3: Comparing clustered utterances from TED-LIUM using
i-vectors and (normalized) Unspeech embeddings with speaker la-
bels from the corpus. "-sp" denotes embeddings trained with speed-

perturbed training data.

Embedding Num. clusters Outliers ARI NMI

train dev test train dev test train dev test train dev test

TED-LIUM IDs
1,273
(1,492)

14 13 3 4 2 1.0 1.0 1.0 1.0 1.0 1.0

i-vector 1,630 12 10 8,699 1 2 0.8713 0.9717 0.9792 0.9605 0.9804 0.9598
i-vector-sp 1,623 12 10 9,068 1 2 0.8641 0.9717 0.9792 0.9592 0.9804 0.9598
unspeech-32-sp 1,686 16 12 3235 22 32 0.9313 0.9456 0.9178 0.9780 0.9536 0.9146
unspeech-64 1,690 16 11 5,690 14 21 0.8130 0.9537 0.9458 0.9636 0.9636 0.9493
unspeech-64-sp 1,702 15 11 3,705 23 25 0.9205 0.9517 0.9340 0.9730 0.9633 0.9366

d2(a, b) = ||embt(a)− embt(b)|| can be used for comparing two Unspeech segments.
Sequences that are longer than the trained target window can be windowed and av-
eraged to obtain a single vector for the whole sequence, since vectors that are close in
time share contexts and correlate highly. However, EER on i-vectors trained with su-
pervised speaker labels compared with the cosine distance (results with d2(a, b) are
identical after normalization) are lower than on Unspeech embeddings with d2(a, b)

(1,2 vs 3,4,5). Training Unspeech on TEDx talks instead of TED-LIUM also produces
higher EER as a speaker embedding (6,7). "-sp" denotes training on speed-perturbed
data: adding copies of the raw training data at 0.9 and 1.1 playing speed, as recom-
mended in (Ko et al., 2015).

5.4.2 Clustering Utterances

We can also use the generated vectors to cluster a corpus of utterances to gain insight
into what kind of utterances get clustered together. We use HDBSCAN (McInnes et
al., 2017), a modern hierarchical density-based clustering algorithm for our experi-
ments, since it scales very well to a large number of utterances and the number of
clusters does not need to be known a priori. See Section 2.2.3 in Chapter 2 for de-
tails. It uses an approximate nearest neighbor search if the comparison metric is Eu-
clidean, making it significantly faster on a large number of utterances as compared

5.4. Evaluation 87

to other speaker clustering methods that require distance computations of all utter-
ance pairs (including greedy hierarchical clustering with BIC (Zhou and Hansen,
2000)).

We use Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) and Normalized
Mutual Information (NMI) (Strehl, 2002) to compare the clusters to the speaker IDs
provided by the TED-LIUM corpus in Table 5.3. We found that Unspeech embed-
dings and i-vectors give a sensible number of clusters, without much tweaking of
HDBSCAN’s two parameters (min. cluster size, min. samples)5. On the train set,
Unspeech embeddings will provide slightly higher cluster scores, while i-vectors
provide better scores for dev and test, which have a significantly smaller number of
speakers. Unspeech-64 is slightly better than Unspeech-32 on the dev and test set.
ARI is sensitive to the absolute number of outliers – we found NMI to be a better
metric to compare the results on the train set.

Taking a closer look at the clustered Unspeech embeddings, we observed that
different speakers in the same talk tend to get clustered into distinct clusters (making
the clustered output very often more accurate than the train speaker IDs provided in
TED-LIUM), while the same speaker across different talks and also the same speaker
in one talk with significantly different background noises tends to be clustered into
distinct clusters. This implies that Unspeech embeds more than just speaker traits.

5.4.3 Acoustic Models With Unspeech Cluster IDs

TABLE 5.4: Comparing the effect of two speaker division baselines
(One speaker per talk, one speaker per utterance) and clustering with
Unspeech on WER with GMM-HMM and TDNN-HMM chain acous-

tic models trained on TED-LIUM.

Acoustic model Spk. div. Dev WER Test WER

plain resc. plain resc.

GMM-HMM per talk 19.2 18.2 17.6 16.7
TDNN-HMM 8.6 7.8 8.8 8.2

GMM-HMM per utt. 19.6 18.7 20.1 19.2
TDNN-HMM 8.5 7.9 9.3 9.0

GMM-HMM Unspeech 18.4 17.4 17.5 16.5
TDNN-HMM 64 8.6 7.8 8.5 8.1

GMM-HMM Unspeech 18.4 17.5 17.2 16.4
TDNN-HMM 64-sp 8.3 7.5 8.6 8.2

We can also train acoustic models with the cluster IDs provided and use them
in lieu of speaker IDs for HMM-GMM speaker adaptation and online i-vector train-
ing for the TDNN-HMM model. We use the TED-LIUM TDNN-HMM chain recipe

5We use 5/3 for all experiments shown in Table 5.3, but other parameters in the range 3-10 will give
similar results.

88 Chapter 5. Unsupervised Representation Learning for Speech Contexts

(s5_r2) in Kaldi (Povey et al., 2016) and show WER before (plain) and after rescor-
ing with the standard 4-gram Cantab TED-LIUM LM (resc.). Table 5.4 shows WER
on different speaker separation strategies on the train set, with one speaker per talk
being the default in the s5_r2 recipe. All models pre-trained online i-vectors based
on the given speaker IDs and use those as additional input features. The standard
recipe computes a fixed affine transform on the combined input features (40 dim hi-
res MFCC + 100 dim i-vector), c.f. Appendix C.6 of (Povey et al., 2014). GMM-HMM
bootstrap models will perform about 15% worse and TDNN-HMM trained on them
will perform about 10% worse if no speaker information is available. Using the clus-
ter IDs from clustering Unspeech embeddings of all utterances, the baseline WER
can not only be recovered, but even slightly improved upon. For all TDNN-HMM
models, we set the width of a layer to 1024.

TABLE 5.5: WER for TDNN-HMM chain models trained with Un-
speech embeddings on TED-LIUM.

Context vector Dev WER Test WER

plain resc. plain resc.

(1) none 9.1 8.5 9.5 9.1
(2) i-vector-sp-ted 8.3 7.5 8.6 8.2
(3) unspeech-64-sp-ted 9.1 8.3 9.6 9.0
(4) unspeech-64-sp-cv 9.1 8.3 9.5 9.1
(5) unspeech-64-sp-cv + (2) 8.4 7.6 8.5 8.1
(6) unspeech-64-tedx 9.0 8.2 9.4 8.7
(7) unspeech-128-tedx 8.9 8.2 9.4 8.9

We employed the proposed Unspeech adapation on GerTV1000h (Stadtschnitzer
et al., 2014) as well. It is a large German speech dataset with 1005h of transcribed
broadcast data. No speaker information is available for this corpus. Thus, we com-
pare our clustering to a baseline utterance to speaker mapping, where every utter-
ance ID is mapped to a new speaker. Table 5.6 shows our test results. We test the
different approaches on DiSCo (Baum et al., n.d.), a test set for the German broad-
cast domain with finely annotated speech categories. We test WER separately on
four different conditions in DiSCo: clean spontaneous speech, noisy spontaneous
speech, clean planned speech and noisy planned speech.

We observe that the improvements resulting from our speaker adaptation (un-
speech cluster IDs) are more effective for both noisy speech subsets. The GMM-
HMM bootstrap models benefit the most from better speaker adaptation. TDNN-
HMMs also benefit from a better assignment of utterances to (pseudo) speakers.
Here, speaker information is incorporated into the speech feature layer with ap-
pended I-vectors to the input representation. A better GMM-HMM bootstrap model
also potentially results in a better alignment. Language model rescoring via a neu-
ral Gated Convolutional Network (GCNN) improves these results by another 10%
relative WER reduction.

5.4. Evaluation 89

TABLE 5.6: WER comparison on the DiSCo test corpus, with
acoustic models trained with 1005h of German broadcast speech

(GerTV1000h).

DiSCo planned DiSCo spontaneous

Model dev set clean noisy clean noisy

(1) GMM-HMM 22.55 16.14 25.92 20.93 41.86
(2) GMM-HMM unspeech 21.39 14.99 22.26 20.25 38.24
(3) TDNN chain 14.31 8.92 11.98 10.84 20.98
(4) TDNN chain unspeech 14.19 8.67 11.10 10.72 19.97

(3b) 3 + GCNN LM resc. 13.47 8.04 10.72 9.65 18.66
(4b) 4 + GCNN LM resc. 13.25 7.79 9.98 9.70 17.86

TABLE 5.7: Decoding Common Voice V1 utterances. Mozilla’s open
source dataset provides a challenging test set, which is out-of-domain

for an acoustic model trained on TED-LIUM.

Context vector Dev WER Test WER

plain resc. plain resc.

(1) none 31.2 29.6 29.9 28.5
(2) i-vector-sp-ted 30.3 29.0 29.9 28.2
(3) unspeech-64-sp-cv 29.5 27.9 28.3 26.9
(4) unspeech-64-sp-cv + (2) 29.6 28.2 28.9 27.4
(5) unspeech-64-tedx 30.2 28.8 29.2 27.5
(6) unspeech-128-tedx 30.1 28.7 29.5 28.0

5.4.4 Unspeech Context Vectors in TDNN-HMM Models

We can also replace the i-vector representation used in training the TDNN-HMM
with the Unspeech context vector. In Table 5.5, we selected the strongest baseline
from Table 5.4 according to the dev set (Unspeech 64-sp clusters) and show WERs
on the TED-LIUM dev and test for different Unspeech context embeddings. We
trained Unspeech models with different window sizes (64,128) on TED-LIUM (ted)
and Common Voice V1 (cv) and computed them for every 10 frames, like the online i-
vector baseline. While Unspeech embeddings can slightly improve a baseline model
trained without any context vectors, with best results obtained when training on
the 9,500 hours of TEDx data (6,7), using i-vectors (2) yields better WERs compared
to Unspeech embeddings. Combining Unspeech embeddings trained on Common
Voice and i-vectors in the input representation can yield slightly lower WERs than
i-vectors alone (5).

In Table 5.7, we show WER on decoding utterances from the Common Voice V1
dev and test sets with TDNN-HMM acoustic models trained on TED-LIUM. Utter-
ances from Common Voice are much harder to recognize, since a lot more noise
and variability is present in the recordings and the recordings have a perceivably
lower signal-to-noise ratio. Since they also contain over 2700 speakers each, using

90 Chapter 5. Unsupervised Representation Learning for Speech Contexts

an egregious range of microphones, they provide an excellent dev/test to test how
robust the TDNN-HMM models are on out-of-domain data. Unsurprisingly, WERs
are fairly high compared to the TED-LIUM test set with mostly clean and well pro-
nounced speech. For Common Voice we observed that acoustic models trained with
Unspeech embeddings consistently resulted in better WERs compared to the base-
lines, helping the model to adapt. Particularly pre-training Unspeech models on the
Common Voice training data help a TDNN-HMM model trained on TED-LIUM to
adapt to the style of Common Voice recordings. Embeddings from Unspeech models
trained on TEDx will also perform better than the no context and i-vector baseline
models. In contrast to the results in Table 5.5, in this decoding task, i-vectors in
the acoustic model do not provide much of an improvement over the TDNN-HMM
baseline model without context vectors.

5.5 Negative Sampling Methods

In plain random negative sampling, a pair of speech windows is uniformly sampled
from a speech corpus. For example, we uniformly sample a random utterance u and
then uniformly a random position in u for the sampled window. This is the original
sampling method used in Section 5.3. If there are many different speakers recorded
in different environments in the corpus, it will with high probability generate posi-
tive and negative samples from different speakers/environments. The effect is that
the trained embeddings will cover speaker, channel and environment characteristics
as context features, as those help to discriminate negative pairs from positive context
pairs.

We propose a second form of negative sampling: same context negative sampling.
With this sampling technique, the negative samples are coming from utterances in-
side clusters of contexts as the negative context pairs. Speaker, channel and environ-
ment characteristics can no longer be used by the classifier to differentiate positive
from negative pairs. If we used a priori known speaker IDs, changes in the channel
or environment (e.g. background noise changes) would still be easily discriminable
and would then be contained in the resulting Unspeech embeddings. Using actual
cluster IDs has the advantage that any obvious speaker, environment and channel
context variance has already been picked up by the model. Of course, another obvi-
ous advantage is that it can be applied to speech data where no speaker information
is available.

We first obtain standard Unspeech embeddings, then we cluster per utterance
(average of all embeddings in the sequence). We use HDBSCAN (McInnes et al.,
2017) to cluster the utterances, see also Section 2.2.3. In the remainder of the pa-
per, we call embeddings from Unspeech models trained with same context negative
sampling local-context Unspeech embeddings (lc-unspeech).

5.5. Negative Sampling Methods 91

5.5.1 Word-Level Phonetic Information

With a window size of 32 frames, which is about 320ms of speech, we actually cover
more than individual phonemes. Since the average length of a phoneme in TED-
LIUM is about 10 frames, we expect to see at least 3-4 phonemes in such a window.
Thus, if local-context Unspeech embeddings contain phonetic context information,
we would expect to see similar phoneme sequences to have similar embeddings.
Likewise, if global Unspeech embeddings only embed characteristics about speakers
and channels, they are invariant to the phonetic content.

Calculated from over 4000 utterances from the TED-LIUM train set (292,125 phon-
es), the ten most frequent phoneme 5-grams from the force-alignment are listed in
Table 5.8.

TABLE 5.8: Most common 5-grams in a subset of TED-LIUM train
utterances.

Arpabet sequence As in Count

(0) P IY P AH L people 367
(1) SIL AE N D DH and 211
(2) DH IH S IH Z this is 199
(3) B IH K AH Z because 189
(4) SIL AE N D SIL and 183
(5) EY SH AH N SIL ∼ation 141
(6) Z SIL AE N D and 136
(7) S AH M TH IH somethi(ng) 133
(8) AH M TH IH NG uhm thing 133
(9) S T AA R T start 110

For the purposes of visualization, this provides more than enough examples for
commonly occurring phoneme 5-grams. We also expect that if 5 consecutive pho-
nemes are slightly longer than 32 frames, their prefixes fit into the window. We
further subsample these to 1000 random 5-grams. In Figure 5.6, we show a t-SNE
(Maaten and Hinton, 2008) plot of these 5-grams with local-context Unspeech em-
beddings and in Figure 5.7 with global Unspeech embeddings.

5.5.2 Unspeech Embeddings in Acoustic Models for Out-Of-Domain Test
Data

In the s5_s2 Kaldi training recipe for TED-LIUM, (online) i-vectors are calculated to
capture speaker information. The default setting is to provide them as additional
context input to the TDNN, to help the neural network with speaker adaptation, c.f.
(Saon et al., 2013; Miao et al., 2015).

To see how well the acoustic models deal with domain adaptation, we also mea-
sured word error rates on Mozilla’s new Common Voice dataset (Ardila et al., 2020).
Table 5.9 shows our decoding results. We can verify that adding i-vectors is benefi-
cial to WERs on TED-LIUMs test and dev set (1) vs. (2). However, on the Common

92 Chapter 5. Unsupervised Representation Learning for Speech Contexts

40 20 0 20 40

40

20

0

20

40

0 1 2 3 4 5 6 7 8 9

➜
['SIL', 'AE', 'N', 'D', 'DH']
['SIL', 'AE', 'N', 'D', 'SIL']
['Z', 'SIL', 'AE', 'N', 'D']

['S', 'AH', 'M', 'TH', 'IH']

➜['AH', 'M', 'TH', 'IH', 'NG']

➜ (something)

(uhm thing)

(and)

FIGURE 5.6: TSNE plot of local-context Unspeech-32 embeddings over
common phoneme 5-grams, see also Table 5.8. These embeddings
have higher affinity towards phonetic content of the target window

(32 frames = 320ms).

TABLE 5.9: WER for TDNN-HMM chain models trained with Un-
speech embeddings on decoding TED-LIUM and Common Voice dev
and test utterances. Unspeech models to provide context vectors
were trained on different datasets, while the acoustic models are only
trained on TED-LIUM speech data (+ context vector). Resc. means
rescoring with a 5-gram Kneser-Ney (Kneser and Ney, 1995) language
model, plain means only Kaldi’s FST is used in decoding, but no fur-

ther language model rescoring.

TED-LIUM Common Voice

Context vector Trained on Dev WER Test WER Dev WER Test WER

plain resc. plain resc. plain resc. plain resc.

(1) none - 9.1 8.5 9.5 9.1 31.2 29.6 29.9 28.5
(2) i-vector TED-LIUM 8.3 7.5 8.6 8.2 30.3 29.0 29.9 28.2
(3) unspeech-32 TED-LIUM 8.9 8.1 9.3 8.9 31.2 29.7 30.0 28.2
(4) lc-unspeech-32 TED-LIUM + cl. (3) 9.4 8.5 9.4 8.9 29.9 28.4 28.5 26.9
(5) lc-unspeech-16 TED-LIUM + cl. (3) 9.1 8.4 9.4 8.9 29.3 27.8 28.2 26.7
(6) unspeech-32 Common Voice 9.1 8.5 9.4 8.9 29.3 28.0 28.3 26.6
(7) unspeech-64 Common Voice 9.1 8.3 9.5 9.1 29.5 27.9 28.3 26.9

Voice dev and test set, this benefit is much smaller. Utterances from Common Voice
are much harder to recognize, since a lot more noise and variability is present in
the recordings. There are also much more speakers in the dev and test sets and
the recordings were made with a large range of different microphones. Thus, the
Common Voice corpus provides an excellent dev and test to test how robust the
TDNN-HMM models are on out-of-domain data. Unsurprisingly, WERs are fairly

5.5. Negative Sampling Methods 93

40 30 20 10 0 10 20 30 40

40

20

0

20

40

0 1 2 3 4 5 6 7 8 9

FIGURE 5.7: TSNE plot of global Unspeech-32 embeddings over com-
mon phoneme 5-grams, see also Table 5.8. There is a strong affinity to
preserve speaker and channel characteristics, while ignoring the pho-
netic content. The clusters largely correspond to the TED talks where

the 5-grams have been taken from.

high in general compared to the TED-LIUM test set with mostly clean and well pro-
nounced speech, as some of the utterances could also be very difficult to understand
for humans.

We can replace the i-vector representation used in training the TDNN-HMM
with Unspeech context embeddings. We trained Unspeech on different training data
(TED-LIUM train or Common Voice train). For ic-unspeech (5) we additionally com-
puted clusters from (3) with HDBSCAN6 and used them in same context negative
sampling.

While Unspeech embeddings can slightly improve upon a baseline model trained
without any context vectors, using i-vectors (2) yields better WERs compared to Un-
speech embeddings on the TED-LIUM dev and test set. With Common Voice, we
observed that acoustic models trained with Unspeech embeddings resulted almost
always in better WERs compared to the baselines, helping the model to adapt and to
be more robust. In contrast to the results on TED-LIUM dev and test, in this decod-
ing task, i-vectors do not provide much of an improvement over the TDNN-HMM
baseline model without context vectors.

Using embneg1i = embt in the NEG loss function was slightly better on the Com-
mon Voice data than the standard Unspeech loss function, see (4) vs (3), but did not
have much of an effect on the TED-LIUM test set data. Particularly local-context
Unspeech embeddings (5, 6) also yielded very good WER results on Common Voice,

6setting the min_samples parameter of HDBSCAN to 3.

94 Chapter 5. Unsupervised Representation Learning for Speech Contexts

much better than the baseline Unspeech models and without seeing any of the out-
of-domain Common Voice training data while training Unspeech. For local-context
Unspeech embeddings, a smaller target window size of 16 worked better than 32.
Pre-training Unspeech models on the Common Voice training data helped a TDNN-
HMM model trained on TED-LIUM to adapt to the style of Common Voice record-
ings (7, 8).

5.5.3 Unspeech Embeddings in Down-Stream Classification Tasks

TABLE 5.10: Unspeech classification results (accuracy) for down
stream speech classification tasks. MFCC, openSMILE, YAMNet, VG-

Gish and TRILL results are taken from (Shor et al., 2020).

Embedding SAVEE SAVEE Speech Commands
(spk. dep.)

Number of classes 7 7 12

MFCC 55.6 77.2 47.7
OpenSmile 62.6 67.8 36.5
Random TRILL network 48.6 73.9 42.0
YAMNet top 45.4 64.4 40.7
YAMNet layer 10 62.3 79.2 73.1
VGGish top 49.8 68.7 28.3
VGGish FCN 1 57.7 77.9 52.7
TRILL top 53.7 83.9 60.4
TRILL layer 19 67.8 84.7 74.0
TRILL layer 19, MobileNet 2048d 60.0 (N/A) 74.9
TRILL finetuned 68.6 (N/A) 91.2

Unspeech top 30.8 65.2 61.7
Unspeech-lc top 55.5 70.6 66.6
Unspeech-lc pre-fc 56.7 71.3 75.6
Unspeech-lc pre-fc + 2 layer DNN 53.4 76.8 79.7

In Table 5.10, we evaluate pretrained Unspeech embeddings on the SAVEE (Haq
et al., 2009) and Speech commands datasets (Warden, 2018). The SAVEE dataset is
relatively small dataset with 480 utterances and 4 male speakers, the task is to iden-
tify one of 7 emotional categories. Originally, as proposed in (Haq et al., 2009), the
SAVEE task was tested in a speaker-depended manner (randomized train/test splits
with overlapping speakers). However, (Shor et al., 2020) also proposes a canonical
split where speaker ”JK” and ”KL” are being used for training, ”JE” as a develop-
ment set and results are reported on speaker ”DC”. We have tested both the speaker-
dependent and the speaker-independent scenario on SAVEE with Unspeech embed-
dings and a simple linear regression classifier on top of the embeddings for classifi-
cation.

The speech command dataset (Warden, 2018) is composed of crowd sourced
recordings of short isolated commands, such as ”left”, ”right”, ”yes”, ”no”. This

5.6. Conclusion 95

dataset is much larger than SAVEE, with 105,829 utterances from 2,618 speakers in
total. The task is proposed as a speaker-independent task, i.e. with no overlapping
speakers in train and test. We compare Unspeech embeddings against several other
embeddings and pretrained models: handcrafted openSMILE features (Eyben et al.,
2010), YAMNet (Plakal and Ellis, 2020), VGGish (Hershey et al., 2017) with super-
vised training on Audio-Set (Gemmeke et al., 2017), TRILL and a MFCC baseline as
reported in (Shor et al., 2020).

All reported Unspeech results in Table 5.10 are averaged over individual 10 runs.
For the speaker-independent tasks, the same train/dev/test split as in (Shor et al.,
2020) were used. Early stopping is applied and the training stops after there is no
improvement on the dev set anymore. For the speaker-dependent tasks, the split is
randomized on each training run with 80% train / 20% test, with no early stopping.

As somewhat expected, using regular Unspeech embeddings does not yield good
results on speaker-independent tasks – as these embeddings mainly capture speaker
related properties. However, we do observe a large gain in accuracy with Unspeech-
lc compared to regular Unspeech on both downstream tasks. As noted in Shor et al.
(2020), using intermediate layers of the model to extract embeddings yields stronger
results on downstream tasks. We tested this hypothesis on Unspeech embeddigs as
well and also observe an accuracy increase when we use the networks’ activations
right after the convolutional layers (denoted as pre-fc in Table 5.10).

On the commands dataset, using Unspeech-lc embeddings (pre-fc) yields strong
results and is slightly better than TRILL (without fine tuning) and much better than
all other baselines. On SAVEE (speaker-independent) the best unspeech results is
similar to VGGish FCN 1, only slightly better than the openSMILE and MFCC base-
lines. Note that due to its small size, SAVEE is very sensitive to regularization of
the linear network that is trained and we did not do a hyperparameter search. As
expected, we observe higher accuracy when we test with the speaker-dependent
SAVEE dataset as opposed to the speaker-independent one.

5.6 Conclusion

In this chapter, we proposed Unspeech speech embeddings and models to train
these embeddings on unannoated speech data. These embeddings are trained in
a self-supervised way and the models embed speech context information such as
the speaker of an utterance, background noise and channel characteristics. The prin-
ciple used for training these networks is that speech sounds that occur close in time
share similar contexts.

The evaluation in this chapter showed that Unspeech context embeddings con-
tain and embed speaker characteristics, but supervised speaker embeddings like
i-vectors would be better suited for tasks like speaker recognition or authentica-
tion. However, clustering utterances according to Unspeech contexts and using the
cluster IDs for speaker adaptation in HMM-GMM/TDNN-HMM models is a viable

96 Chapter 5. Unsupervised Representation Learning for Speech Contexts

alternative if no speaker information is available. While using Unspeech context
embeddings as additional input features did not yield significant WER improve-
ments compared to an i-vector baseline on TED-LIUM dev and test, we observed
consistent WER reductions with out-of-domain data from the Common Voice cor-
pus when we add Unspeech embeddings. This is a compelling use case of Unspeech
context embedding for the adaptation of TDNN-HMM models. Better scores on the
same/different speaker similarity task was not indicative of WER reduction – our
TEDx Unspeech models scored higher EERs, but were at the same time better con-
text vectors in the acoustic models. Training the model scales very well to large
training sizes, as demonstrated by the scaling experiment.

We also proposed an embedding variant for local contexts, with a two stage train-
ing and clustering of Unspeech embeddings. The local context Unspeech embed-
dings can be used for speech tasks that require speaker-independence. We demon-
strated that it can be used for speech classification tasks such as emotion recogni-
tion and short speech command recognition. Good results can already be obtained
with a simple linear regression classifier on top of the trained embeddings. Transfer
learning by fine-tuning Unspeech embeddings could also improve these results. We
released our source code and offer pre-trained models.7

7See https://unspeech.net and https://gitlab.com/milde/unspeech (last accessed:
April 2022), license: Apache 2.0

https://unspeech.net
https://gitlab.com/milde/unspeech

97

Chapter 6

Self-Supervised Discrete
Representation Learning from
Speech

98 Chapter 6. Self-Supervised Discrete Representation Learning from Speech

6.1 Unsupervised Acoustic Unit Discovery

Unsupervised or zero resource speech processing is a relatively new and growing
field that deals with speech processing setups where usually no transcriptions or
labels are known. In many tasks, only raw audio data is available. One of the first
successful applications is voice search by example, where a large collection of audio
data can be queried by a voice query (Zhang and Glass, 2009).

Transcribed and labeled speech data is needed to train supervised speech recog-
nition systems, but is usually costly to obtain. Unlabeled speech data on the other
hand is much easier to obtain in larger quantities, even for languages for which
much less resources are available as compared to e.g. English. We consider the
problem of inducing an acoustic unit inventory (Siu et al., 2011; Badino et al., 2015)
and perform self-labeling of untranscribed speech data. Such a system can be a
building block for systems that learn lexical inventories (Kamper et al., 2014) from
speech data alone, or could possibly aid in augmenting or replacing linguistically
motivated phonemes in supervised automatic speech recognition (ASR). It is also
one of the building blocks in current unsupervised ASR systems, such as Baevski
et al. (2021).

In this chapter, we propose a novel neural architecture based on a sequence au-
toencoder and sequence masking of its internal representation. We force the encoder
and decoder to develop a symbolic-like representation, with the goal of reconstruct-
ing the input speech representation with limited information. We aim to solve the
problem of speech variability and speaker independence that the automatic units
should be able to capture by using an utterance-level context embedding. The de-
coder can use this embedding to infer the "style" of the utterance in addition to its
(sparse) input representation generated by the encoder. After the model is trained,
speech can be represented as a sequence of units (or posteriograms) together with a
context vector. See Figure 6.1 for an illustration of this decomposition.

context vector

+ 16 23 24 3 15 42 1

self-supervision through sequence masking

... ...

FIGURE 6.1: In Sparsespeech, we train a model that can represent
an utterance as a sequence of discrete units together with a context
embedding. The sequence is masked randomly and the missing ele-

ments must be inferred from context.

6.1. Unsupervised Acoustic Unit Discovery 99

6.1.1 Related Work

Several approaches to unsupervised acoustic modeling and acoustic unit discovery
have been proposed:

Segmental approaches: These approaches separate segmentation and clustering
of acoustic units. Garcia and Gish (2006) developed one of the first of such systems.
Segments are found based on spectral discontinuities in the signal and the clustering
algorithm uses the polynomial trajectory of the cepstral features to compare speech
units of varying length.

Autoencoder approaches: Badino et al. (2014) proposed k-means on framewise
binarized autoencoder representations, where temporal smoothing of the frame level
representations can be achieved with Hidden Markov Models (HMMs). Several au-
toencoder architectures are compared in (Renshaw et al., 2015), standard bottleneck
autoencoders do not seem to produce representation with better minimal pair dis-
criminability than MFCC features. Vector quantized variational autoencoders (Oord,
Vinyals, et al., 2017) can also be used to learn discrete representations of speech,
as demonstrated by the end-to-end system involving attention-based ASR and TTS
(Tjandra et al., 2019) to encode and decode. Wang et al. (2020) proposed input mask-
ing in recurrent auto-encoders.

Bayesian non-parametric models: Lee and Glass (Lee and Glass, 2012) proposed
a Dirichlet process mixture model, where each mixture is a HMM representing an
acoustic unit. Chen et al. (2015) proposed Dirichlet process Gaussian mixture model
(DPGMM) clustering for acoustic frame-level unit modeling in their winning entry
for unsupervised acoustic unit modeling of the ZeroSpeech 2015 challenge on acous-
tic sub-word modeling (Versteegh et al., 2015). Heck et al. (2017) proposed DPGMM
clustering on PLP features followed by obtaining unsupervised feature transforma-
tions by retraining with a speaker-independent GMM-HMM on the obtained labels.
This was also the winning entry for automatic unit discovery of the ZeroSpeech
challenge 2017 (Dunbar et al., 2017). Noteworthy is that while the re-training us-
ing a GMM-HMM with speaker adaptations improves on the DPGMM results, the
DPGMM clustering on its own on PLP features on a frame-level basis already pro-
vides strong results.

The 2015, 2017 and 2019 ZeroSpeech challenges also targeted acoustic unit dis-
covery (Versteegh et al., 2015; Dunbar et al., 2017; Dunbar et al., 2019) as part of the
evaluation and have established the use of the ABX discriminability (Schatz et al.,
2013; Schatz, 2016) to intrinsically compare how well semantically relevant sounds
are mapped by a discovered representation.

Lightly supervised: Lightly supervised systems consider some other form of
available information besides raw speech data. The systems in (Kamper et al., 2015)
and (Kamper et al., 2016) use weak top-down constraints in the form of same-type
annotations.

Self-supervised: Contrastive Predictive Coding (CPC) (Oord et al., 2018) is a re-
presentation learning model trained by predicting future hidden states, which can be

100 Chapter 6. Self-Supervised Discrete Representation Learning from Speech

applied to raw speech in the time domain. This model has also become increasingly
popular in acoustic unit discovery. There are various extensions such as VQ-CPC
to combine CPC with Vector Quantisation (VQ) (Niekerk et al., 2020) and Aligned
Contrastive Predictive Coding (A-CPC) (Chorowski et al., 2021), to relax exact time
constraints for the predictions of future states. In Kamper and Niekerk (2021), such
self-supervised voice-quantized neural networks are constrained to produce low-
bitrate phone-like sequences.

Schneider et al. (2019) showed with wav2vec that pre-training a model on raw
speech with a similar binary contrastive loss as word2vec (Mikolov et al., 2013) can
be effective to improve supervised end-to-end acoustic models. The discrete vari-
ant vq-wav2vec (Baevski et al., 2020a; Baevski and Mohamed, 2020) of this model
with vector quantization into several thousand units has also been successfully used
to pretrain BERT (Devlin et al., 2019) on a sequence masking task, followed by us-
ing BERT representations in a wav2letter (Collobert et al., 2016) acoustic model for
speech recognition.

Kahn et al. (2020) created a benchmark for ASR with no or limited supervision,
based on English audiobooks and Librispeech data, also providing results for using
CPC. We use the Libri-light corpus for training and evaluating our models, as it
provides a good benchmark for unsupervised acoustic models that can scale well to
large amounts of (untranscribed) speech data.

6.1.2 Proposed Sparsespeech Model

The proposed network in this chapter jointly infers a segmentation and a classifi-
cation on an utterance level with an unsupervised training objective. Although the
network outputs a label for each frame individually, in contrast to frame-level (or
window-level) autoencoders, the network has access to the temporal structure of a
full utterance. Figure 6.2 illustrates the proposed network. Encoder and decoder
are bidirectional long short-term memories (LSTMs) (Hochreiter and Schmidhuber,
1997; Schuster and Paliwal, 1997). Between encoder and decoder, we apply dropout
at the sequence level, i.e. we randomly omit vectors in the sequence between them
while training the network. Metaphorically speaking, this causes the encoder to
never be sure that its outputs get passed on to the decoder, thereby forcing it to trans-
mit the most salient information about the current and surrounding frames. The de-
coder must also learn to predict missing frames and corrects accordingly when new
information is available from the encoder. Note that without this, the decoder could
simply rely only on the inputs from the encoder at each time step and ignore its
state, ultimately ignoring the temporal structure entirely and the network structure
would be more similar to a regular autoencoder. We use mean squared error (MSE)
for the reconstruction loss.

6.1. Unsupervised Acoustic Unit Discovery 101

decoder

encoder

...

...

memory component

sequence
context
vector

+++

dropout(p)dropout(p)dropout(p)dropout(p)dropout(p)

++

reconstruction loss

input features, e.g. FBANK, MFCC or PLP

FIGURE 6.2: Sequence encoder / decoder with a memory component
as sparsity bottleneck (Milde and Biemann, 2019).

Memory Component

Figure 6.3 illustrates the memory component. It is similar to the one used in (Sukh-
baatar et al., 2015). For an input x we use softmax(Wx+ b), a standard single-layer
network without an activation function for the key addressing. We set the dimen-
sions of W such that the output of Wx has as many elements as there are value
embeddings. After the softmax operation, we multiply each of the outputs with a
corresponding value memory embedding and add up all vectors. This is the out-
put vector of the memory module and it is a weighted sum over the value memory
embeddings.

Note that the memory component that we used can also be understood as a form
of key-value separated attention (Daniluk et al., 2017; Bahdanau et al., 2015; Luong
et al., 2015), where we compare a query by attending to a key memory (instead of
attending to RNN states) and output separate vectors from a value memory. The
key memory, in our case, is the matrix W . The memory module is smooth and can
be used and trained with back-propagation. As part of a bigger neural network, it
can be placed between any layers and the input query dimension can be the same as
the output vector dimension.

102 Chapter 6. Self-Supervised Discrete Representation Learning from Speech

query

key adressing network value memory

softm
ax

• ∑ outputf (query)k

sparsity loss

FIGURE 6.3: Memory module consisting of an input query key
adressing network and a value memory bank containing fixed-sized

embeddings.

The goal of the memory network, within the context of the sparse sequence au-
toencoder, is to sparsify the outputs of encoder network. However, without ad-
ditional constraints, the output of the softmax layer will not necessarily be sparse
and performs a soft-clustering over the output. We use the following constraint de-
scribed in the next section on the softmax layer of the addressing network to achieve
varying degrees of sparseness of this clustering, up to a quasi-hard clustering.

Enforcing Sparsity

We propose the following sparsity-inducing constraint for the softmax layer, based
on L∞ regularization. Let σ1, ..., σn be the outputs of the softmax layer in the mem-
ory component, then:

Softmax-L∞ = 1− sup
n

σi (6.1)

This regularization loss is zero, iff one of the softmax outputs is one and all other
outputs are zero (perfect sparsity, one-hot encoding), because the softmax layer en-
forces the linear constraint that the sum of all outputs is one and all elements are
positive. The regularization term is multiplied by a sparsity weight and is added to
the loss of the full network.

Context Vector

We concatenate a context vector at each time step to the outputs of the encoder and
memory component and use this combined vector as input to the decoder. We com-
pare separately trained Unspeech context embeddings (Milde and Biemann, 2018) as

6.1. Unsupervised Acoustic Unit Discovery 103

static additional input to the network and propose a simple integrated alternative
inspired by sequence summary networks (Veselỳ et al., 2016) that does not require
extra training: we calculate the mean vector over all encoder states.

Enforcing Diversity

A degenerate solution to minimize the sparsity constraint is to cluster all inputs
into a single memory component. To discourage this, we also propose a diversity
constraint calculated over m time steps of an utterance with n softmax outputs per
timestep using Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) and
U(x) = 1

n :

Diversity-L =
1

m

m∑
j=1

DKL(σj ||U) (6.2)

Training Procedure

encoder

decoder

memory componentcluster

predict cluster IDs
Train full system

Train sequence
encoder / decoder

1. 2. 3. 4.

FIGURE 6.4: Sparsespeech training procedure illustrated as bricks
that are separately trained until the full system is trained in the fi-

nal training.

With a random initialization, we found it difficult to train the complete network
together with the memory component directly from scratch, even with the diversity
constraint. Most of the time, the training will be stuck in a degenerate solution of
using either one memory component for all queries or two alternating memory value
components for speech and silence.

We propose the following iterative training procedure, based on pre-training a
network without the sparsity-inducing memory component first (also illustrated in
Figure 6.4):

1. Train the network without the sparsity layer until the reconstruction loss con-
verges.

2. Run a cluster algorithm, e.g. k-means++ (Arthur and Vassilvitskii, 2007) on a
subset of the randomly selected bottleneck features obtained by running the
encoder of the network on a couple of input sequences. Set k to the number of
memory banks.

104 Chapter 6. Self-Supervised Discrete Representation Learning from Speech

3. Initialize the value memory bank weights of the memory component to the
cluster centers of Step (2). Then train the key addressing subnetwork on the
cluster labels.

4. Connect the memory sub-module to the network by placing it between the
encoder and decoder of the network trained in (1) and continue training the
full network with added sparsity loss term to the loss function.

The proposed training procedure above fixes n (the number of units) for simplic-
ity to a manually set value. By swapping the k-means initialization with a different
cluster algorithm, e.g. a density-based one, n could also be inferred from the data.

6.1.3 Implementation

We implemented the model in TensorFlow (Abadi et al., 2016) and made the code
publicly available1. Encoder and decoder are either 2-layer respectively 4-layer
stacked LSTMs with a hidden size of 256. The bottleneck layer has a size of 32. We
use ADAM (Kingma and Ba, 2014) for training the network with a learning rate of
0.001. For initializing the memory subnetwork we use scikit-learn’s (Pedregosa et al.,
2012) implementations for k-means++ (Arthur and Vassilvitskii, 2007) and DPGMM.
The memory values are either initialized with the cluster centers from k-means, or
the mean vectors of the DPGMM components. They are initialized from a subset of
all training data, we randomly sample 1000 utterances and subsample them further
to obtain 2 million vectors for the initial clustering. We use Unspeech vectors (see
Chapter 5) trained on the same data with a size of 256 dimensions. Feature vec-
tors (MFCC and PLP) are created with Kaldi (Povey et al., 2011). We also created our
own phone and word alignments on Librispeech’s 360 hour clean subset (Panayotov
et al., 2015) using force-alignment with a strong speaker-independent GMM-HMM
trained with Kaldi (7% WER on clean read speech).

6.1.4 Evaluation

Visualization of different sparsity values: Figure 6.5 shows an example input and
reconstruction, along with pseudo-posteriors of training runs with different sparsity
weights in the sparsity term of the loss function. The pseudo-posteriors are gen-
erated by running a forward pass on the encoder and memory component of the
network and taking the output after the internal softmax. It also shows that the re-
construction is similar to the input, even though we zero out the connection between
decoder and encoder with a probability of 66.6% (sequence dropout). The decoder
seems to be able to guess missing feature vectors fairly well. Higher values for the
sparsity weight yield sparser representations; at a sparsity weight of 10.0, the repre-
sentations are mostly one-hot encoded.

1See https://gitlab.com/milde/sparsespeech (last accessed: April 2022)

https://gitlab.com/milde/sparsespeech

6.1. Unsupervised Acoustic Unit Discovery 105

0

5

10

0

5

10

0.5

2.5

10.0

input

reconstruction

sparsity

sparsity

sparsity

0

5

10

15

0

5

10

15

0

5

10

15

[t]

FIGURE 6.5: Training runs with varying sparsity weights (n=16).

TABLE 6.1: Baseline ABX values on English (Librispeech).

ABX within ABX across
word triphone word triphone

MFCC 18.2 30.3 28.1 41.4
PLP 17.8 29.6 27.6 39.7
PLP-DPGMM 7.5 19.0 11.0 26.9

TABLE 6.2: Word and triphone minimal pair ABX error rates of the
proposed model on 360 hours of English read speech (Librispeech).

context stacked training ABX within speakers ABX across speakers
vector layers memory init sparsity diversity n epochs word triphn-MP word triphn-MP

Encoder mean 2 k-means++ 10.0 0 10 10 7.8 18.4 9.2 22.4
Encoder mean 2 k-means++ 10.0 0 16 10 6.9 17.2 8.5 22.0
Encoder mean 2 k-means++ 10.0 0 20 10 6.7 16.8 9.2 22.5
Encoder mean 2 k-means++ 10.0 0 20 1 8.0 18.4 11.1 25.2
Encoder mean 2 k-means++ 10.0 0 42 10 7.8 17.9 12.6 26.5
Encoder mean 2 k-means++ 10.0 0 80 10 9.4 19.3 15.2 29.0

Unspeech 2 k-means++ 10.0 0 20 10 7.3 17.5 9.9 23.8
Unspeech 2 k-means++ 10.0 0 42 10 8.5 18.8 13.4 27.7

Encoder mean 2 k-means++ 0 0 16 10 8.8 18.0 16.2 29.5
Encoder mean 2 k-means++ 0.5 0 16 10 9.2 18.5 17.1 30.6
Encoder mean 2 k-means++ 5.0 0 16 10 6.7 16.4 8.2 20.1

Encoder mean 2 DPGMM 8.0 0 (max 80) 10 8.7 18.3 13.6 26.8
Encoder mean 2 DPGMM 10.0 0 (max 80) 10 8.5 18.1 13.4 26.6

Encoder mean 2 k-means++ 10.0 10.0 16 10 6.9 16.9 8.6 21.5
Encoder mean 2 k-means++ 2.0 10.0 16 10 5.5 14.5 6.7 18.2
Encoder mean 4 k-means++ 2.0 10.0 16 10 5.5 14.1 6.4 17.5
Encoder mean 4 k-means++ 2.0 100.0 16 10 5.3 14.1 6.4 17.1

ABX evaluation: In an ABX task, we test if stimulus A or B is closer to X. The
minimal pair ABX discriminability (Schatz et al., 2013; Schatz, 2016) is an error mea-
sure that applies this scheme to speech sounds. We use two different forms of ABX
tasks in our evaluation. In a word ABX task, A and B are different words, e.g. A=dog

106 Chapter 6. Self-Supervised Discrete Representation Learning from Speech

TABLE 6.3: Triphone minimal pair ABX error rates on the ZeroSpeech
2017 test set (English), lower is better.

MP-ABX within MP-ABX across
Features 1s 10s 120s 1s 10s 120s

(A) MFCC (Dunbar et al., 2017) 12.0 12.1 12.1 23.4 23.4 23.4
(B) Heck et al. (2017) 6.9 6.2 6.0 10.1 8.7 8.5
(C) Pellegrini et al. (2017) 9.8 8.1 8.2 17.6 16.2 16.3

(1) Bottleneck (dense) 9.7 9.7 9.7 23.4 23.4 23.4
(2) Bottleneck 360h (dense) 9.6 9.7 9.7 22.2 22.2 22.2
(3) n=20, KL 13.4 13.3 13.3 22.2 22.3 22.3

(4) n=20, 360h, KL 11.1 10.7 10.6 17.1 16.8 16.7
(5) n=42, 360h, KL 12.2 12.0 12.0 21.7 21.5 21.4

(6) n=16,+div, 360h, KL 9.4 8.9 9.0 14.1 13.3 13.2
(7) + 4-layer LSTM, KL 9.5 9.0 8.9 14.0 12.8 12.4

(B) + VQ argmax 22.6 11.5 11.8 30.1 16.2 16.7
(7) + VQ argmax 11.1 10.5 10.3 15.9 14.7 14.2

B=cat1 X=cat2 where B is closer to X. In a triphone minimal pair (MP) task, e.g.
A=beg B=bag1 X=bag2, A and B are differentiated only by a center phone. The task
includes all triphone phoneme sequences that appear in the data, not only the ones
that form words. The ABX error measure discriminates between within-speaker
and across-speaker tasks, in the former B and X are from the same speaker and in
the latter they are uttered by different speakers. The distance metric is representa-
tion agnostic and uses Dynamic Time Warping (DTW) (Vintsyuk, 1968) to compare
if A or B is closer (smaller distance) to X. For all posteriogram-like outputs, we use
the Kullback-Leibler (KL) divergence as local comparison function, cosine distance
otherwise.

The ZeroSpeech challenges in 2015 and 2017 used comparatively little speech
data, 5 hours respectively 45 hours of English speech. We assume that neural models
need more unlabeled data to learn effective representations and base our evaluation
on training on the 360 hour subset of the Librispeech corpus (Panayotov et al., 2015)
for English read speech. While our model can work with any feature representation,
we follow the winning systems of the ZeroSpeech 2017 challenge (Dunbar et al.,
2017) and train on perceptual linear predictive (PLP) features (Hermansky, 1990).

We use a randomized and unweighted version of the ABX measure (the random
seed is fixed between all comparisons) to evaluate word and minimal-pair ABX. We
sample 400 pairs of speakers from the corpus and select either all common words
or triphone sequences for ABX tasks. We show baseline scores for common feature
representations and a PLP-DPGMM in Table 6.1. Note that our ABX seems to be
more difficult than the English subset in Task 1 of the ZeroSpeech 2017 challenge, as
the baseline scores are higher on the triphone minimal-pair task. We computed the
PLP-DPGMM with 1/10 of the training data and restricted the maximum number of

6.1. Unsupervised Acoustic Unit Discovery 107

components to 80, as we found it difficult to scale the DPGMM training to 360 hours.
In Table 6.2, we compare (sampled) word and triphone-MP ABX error rates on

different sparsity and cluster settings on the 360 hour Librispeech set. DPGMM-
based memory value initialization (effectively running DPGMM clustering on the
encoder states) does not seem to be more effective than the much faster and simpler
k-means-based initialization. Using the encoder-sum vector as context vector for the
sequence is slightly better than using a fixed and pretrained Unspeech context em-
bedding. With k-means, the best ABX scores across speakers are obtained with k=16,
while k=20 yields slightly better within-speaker ABX scores. Training longer than 1
epoch after the initial cluster initialization improves ABX errors by a large margin.
Disabling the sparsity constraint by setting it to zero yielded very high ABX error
rates, reflecting its important role in our setup. The best ABX scores are obtained
by additionally using the diversity constraint. Using 4-layer LSTM encoders and
decoders is slightly more effective than 2 layers.

In Table 6.3 we use the evaluation scripts and English test data of the ZeroSpeech
2017 challenge. (1) and (3) are trained using the 45 hours train set of the challenge.
The bottleneck features are dense and from the pretrained network without the
memory component; they seem to provide improvements to within-speaker ABX
scores over the baseline (A). Pre-training on more data does not seem to improve
this significantly (2). System (3), trained with a sparsity weight of 10.0, outputs a
quasi-symbolic representation. While this representation results in higher within-
ABX error rates than MFCCs (A), it performs better across speakers. Systems (4)
and (5), trained on an order of magnitude more data with 360 hours but the same
parameters otherwise, drastically reduce within and across ABX error rates over Sys-
tem (3). Reference system (B) provides lower ABX error rates than our system (7),
but the generated posteriors are 1144-dimensional and they are not as sparse as the
ones generated by our system; for 10s the mean max. value is 0.386 vs. 0.986. In the
last two rows, we compare (7) and (B) under the constraint that the representation
must be completely sparse (symbolic) at each time step, i.e. we take the argmax and
use indices in the comparison. In this case, our system provides significantly better
ABX scores than the reference system (B).

6.1.5 Conclusion

We presented a novel neural approach to unsupervised acoustic unit discovery, based
on a sequence autoencoder with a sparsity inducing memory component. The pro-
posed sparsity constraint restricts the model to develop a quasi-symbolic represen-
tation. We propose an iterative training procedure, where the network is pre-trained
without the sparsity memory component first. The architecture can be trained with
standard back-propagation. This makes it easily possible to scale the training to
larger training sizes. We were able to train the model on up to 360 hours of speech
in two days on a single GPU. Extending this to much larger training sizes should

108 Chapter 6. Self-Supervised Discrete Representation Learning from Speech

be easily possible. Our generated representations are very compact with few sub-
word units and are mostly one-hot encoded symbolic-like representations, with bet-
ter ABX discriminability than MFCC.

We can also confirm that a PLP-DPGMM model is a strong baseline for the ABX
task, even though the training objective operates on the frame level. It often pro-
duces many hundreds of sub-word units when not restricted, which may be im-
practical in certain tasks, see (Wu et al., 2018). Also, we found it difficult to scale
DPGMM to larger training sizes. Scaling our model to 360 hours of data provides
representations with better ABX discriminability than PLP-DPGMM with speaker-
independent transformations (Heck et al., 2017) under the constraint that the output
representation needs to be completely sparse and symbolic.

6.2 Categorical Reparameterization

Discrete variables are difficult to train directly in a neural network, as the back-
propagation algorithm (see also Section 2.10) cannot by applied to a non-differentable
layer. In Section 6.1.2, we applied a sparsity loss to favor representations that ap-
proximate a one-hot encoding. One drawback of this original sparsity constraint is
that it cannot be changed when doing inference, as it is a hyper-parameter at training
time.

In the following sections, we use and evaluate categorical reparameterization
(Jang et al., 2017) by Gumbel-Softmax (Gumbel, 1948) to implement approximate
discrete inference within the Sparsespeech network. This allows us to model a dis-
crete unit within Sparsespeech, while still allowing the network to be trained with
standard back-propagation training. We introduce an additional parameter that can
be used to control the sparseness of the pseudo-posteriorgram representations that
our model generates after training. The approach is based on using Gumbel-softmax
to address the memory component in Sparsespeech.

Also using what unsupervised acoustic models learn and transferring that knowl-
edge in semi-supervised and transfer learning settings is of considerable practical
interest. These learning settings hold the promise to boost performance of super-
vised systems, especially in low-resource settings. In this work, we extend and eval-
uate an unsupervised acoustic model originally proposed for acoustic unit discov-
ery also in a semi-supervised setting. A large amount of untranscribed speech data
(600h-6000h) and only a small amount (10h) of transcribed speech training data is
available in this learning setting.

Using the masking technique for unsupervised modelling and then fine-tuning
is reminiscent of masked language models such as BERT (Devlin et al., 2019), which
are currently very popular on text data. As speech is continuous, using the idea
of masking becomes a bit more difficult to transfer directly. In contrast to masked
language models, we use the masking technique on the internal representation, i.e.

6.2. Categorical Reparameterization 109

distribution t=0.05 t=0.1 t=0.2 t=0.5 t=1.0 t=2.0 t=5.0

samples:

FIGURE 6.6: Drawing samples with different temperatures with the
Gumbel-Softmax from a discrete distribution.

the pseudo-posteriograms used for reconstruction at each time step and not on the
input representation.

We use the softmax function as a differentiable approximation to argmax as fol-
lows: We sample a noise vector g = g1 . . . gk from a Gumbel distribution (Gumbel,
1948) with a uniform random sampler U :

g = −log(−log(U(0, 1))) (6.3)

where k is the number of elements in the softmax. We then compute the Gumbel-
Softmax as:

softmax(
logits+ ω · g

τ
) (6.4)

where ω is a noise weight parameter. We set ω = 1 while training the network
and ω = 0 after the training is completed to disable the Gumbel noise for inference.
The temperature parameter τ controls the amount of sparsity of the sample drawn
from the distribution provided by the (unscaled) input logits. We illustrate this in
Figure 6.6 with example samples drawn from the same distribution with varying τ .
Lower temperatures (0.05, 0.1, 0.2) tend to make the drawn samples sparse, approx-
imating a one-hot vector, while higher temperatures (2.0, 5.0) increase density and
approximate a uniform distribution.

While training the network we use annealing, starting with a higher temperature
and slowly decreasing it to a cutoff value below 0.5, for example τ = 2 → 0.2. In
the Sparsespeech model, the Gumbel-Softmax replaces the regular softmax with the
sparsity constraint. Figure 6.7 illustrates the complete Sparsespeech model with the
added Gumbel-Softmax.

6.2.1 Setup

For evaluation we use the supplied auxiliary scripts of the Libri-light corpus2 with
minor enhancements such as the possibility to use Kullback-Leibler (KL) (Kullback

2https://github.com/facebookresearch/libri-light (last accessed: December 2021)

https://github.com/facebookresearch/libri-light

110 Chapter 6. Self-Supervised Discrete Representation Learning from Speech

decoder

encoder

...

...

memory component
 (q=sample)

sequence
context
vector

+++

dropout(p)dropout(p)dropout(p)dropout(p)dropout(p)

++

input features, e.g. PLP

sequence
masking

sample with
gumbel softmax

∑

reconstruction loss (MSE or Huber)

FIGURE 6.7: The Sparsespeech unsupervised acoustic model with
Gumbel-Softmax (Milde and Biemann, 2020).

and Leibler, 1951) as a distance function in the ABX evaluation3. KL is a better metric
to compare pseudo-spectograms such as the ones our model generates, while the de-
fault cosine distance function of the Libri-light scripts is better suited for comparing
embedding representations.

We use 4-layer stacked BiLSTM decoder/encoders in our Sparsespeech models,
with a width of 256 neurons for all experiments. Perceptual linear predictive (PLP)
(Hermansky, 1990) input features are computed with Kaldi (Povey et al., 2011), us-
ing the standard settings of 13 dimensions and 100 frames per second on (downsam-
pled if necessary) 16kHz audio. The sparsity constraint of Sparsespeech is disabled
(sparsity weight set to 0) for all experiments with the new model, while the diversity
constraint of the original model is kept and the diversity weight set to 100. We keep
the multi-stage training approach of the original model (see Section 6.1.2) where
the model is pre-trained without the memory component. For the second training
stage, we use temperature annealing while training the network: the τ parameter
for Gumbel-Softmax is set to 2.0 and then slowly decreases by multiplying with an
annealing factor (0.9999) every x batches. A cut-off parameter, 0.1 or 0.2 in most
experiments, is set after which the annealing scheme stops.

For the reconstruction loss we use MSE, as proposed in Section 6.1.2 and also

3This change has been merged into the Libri-light repository.

6.3. Evaluation 111

evaluate with Huber loss (Huber, 1964), as it gives less weight to outliers. See also
Section 2.9 for a visual depiction of the Huber loss function.

6.3 Evaluation

We evaluate on two proposed evaluation tasks in Libri-light (Kahn et al., 2020): com-
pletely unsupervised and semi-supervised with limited supervision on English au-
diobook read speech. We currently focus on the 600h (small) and 6000h (medium)
subsets of untranscribed speech to train our models. In the unsupervised evalua-
tion, we measure ABX error rates (Schatz et al., 2013; Schatz, 2016), as also used in
Section 6.1.4. This provides an error rate that measures how well the trained unsu-
pervised representation can differentiate between same/different tri-phones within
and across speakers, for example "bit" vs. "bat". We use the dev sets to calibrate
parameters and test the best performing models on the test set. The ABX error mea-
sure uses DTW to compare two segments of different length and we use symmetric
KL divergence as the local comparison function. This is the recommended distance
function for posteriorgram-like representations (Dunbar et al., 2017; Dunbar et al.,
2019). In the semi-supervised setting, we first train a Sparsespeech model on the
unannotated data from Libri-light. We then follow (Kahn et al., 2020) and evaluate
with a simple phoneme classifier with Connectionist Temporal Classification (CTC)
loss (Graves et al., 2006) that is trained on the representation with 10h of limited-
resource phone labels.

TABLE 6.4: ABX error rates on features/posteriograms generated by
our model for the Libri-light dev set, with varying temperature τ .

Model or features Temp. within speaker across speaker

τ clean other clean other

PLP Features - 11.12 15.08 25.87 33.74
S6000h-n42-τ2 → 0.1 0.2 12.66 15.52 18.86 24.84
” 0.8 11.04 13.65 17.02 23.01
” 1.0 10.66 13.25 16.34 22.55
” 2.0 9.57 12.15 14.73 20.68
” 3.0 9.51 12.15 14.41 20.25
” 5.0 10.48 12.94 15.28 20.87

In Table 6.4, we generate pseudo-posteriorgrams with different temperatures τ

from the same model. This model has been trained on 6000h, with 42 components
in the memory bank and output representation (n42) and a temperature annealing
training scheme of τ2 → 0.1. The sparseness of the output can also be controlled
with τ after training. The ABX error measure is sensitive to too sparse representa-
tions, as a different scaling with a higher τ significantly reduces the error measure.
Temperatures 2.0 and 3.0 produced the lowest ABX error rates.

112 Chapter 6. Self-Supervised Discrete Representation Learning from Speech

0

25t=0.2

0

25t=0.8

0

25t=1.0

0

25t=2.0

0

25t=3.0

0 25 50 75 100 125 150 175

0

25t=5.0

FIGURE 6.8: Example feature representations generated by the
Sparsespeech model ”S6000h-n42-τ2 → 0.1” with varying tempera-

ture.

In Table 6.5, we mainly evaluate different n in the memory component of Sparse-
speech, trained on the Libri-light small subset of 600h. Using n = 100 or n = 128

components produced good within-speakers results, n = 42 performed better on
the across-speakers ABX error. All models have been trained for 3 epochs, with a
training time ranging from 23.8h to 30.4h for the second stage of training (with the
memory component) on a single Nvidia Titan XP GPU. We have experimented with
different annealing schemes, but settled on τ = 2.0 → 0.2 for most experiments.
Most models have been trained using MSE as reconstruction loss. For n = 20 and
n = 42, we also trained models with Huber loss, which further improved ABX er-
ror rates. Additionally, we trained Sparsespeech models ranging from n = 20 to
n = 128, using the original sparsity loss training method without Gumbel-Softmax.

6.3. Evaluation 113

TABLE 6.5: ABX error on features/posteriograms generated by our
model for the Libri-light dev set with different n (components in the

memory bank). Best results of each section in bold.

Model or features Temp. within speaker across speaker

τ clean other clean other

PLP Features (n=13) - 11.12 15.08 25.87 33.74
S600h-n20-sparsityloss-2.0 - 14.65 17.37 27.09 32.43
S600h-n20-sparsityloss-10.0 - 13.96 17.04 21.48 26.09
S600h-n42-sparsityloss-10.0 - 14.23 16.16 22.38 27.24
S600h-n100-sparsityloss-2.0 - 14.03 16.63 24.80 29.67
S600h-n128-sparsityloss-2.0 - 15.55 17.94 26.82 31.56

S600h-n20-τ2 → 0.5 2.0 11.56 13.75 21.18 26.66
S600h-n20-τ2 → 0.2 2.0 11.57 13.76 21.12 26.65
S600h-n42-τ2 → 0.2 3.0 11.38 13.49 17.64 22.46
S600h-n100-τ2 → 0.2 3.0 10.43 13.00 18.86 24.08
S600h-n128-τ2 → 0.2 3.0 10.00 12.46 17.97 23.16
S600h-n256-τ2 → 0.2 3.0 11.41 14.02 22.73 27.55

S600h-n20-τ2 → 0.2-huber 2.0 11.11 13.45 16.37 21.34
S600h-n42-τ2 → 0.2-huber 3.0 10.30 12.82 16.34 21.68

For n = 20, the sparsity loss constraint weight needed to be increased, as the recom-
mended default (2.0) produced a degenerate solution. The original models did not
show good ABX error rates on the Libri-light dev set. In fact, only accross-speaker
ABX error improved over the PLP features baseline. The new models trained with
Gumbel-Softmax show significant relative error rate improvements over the original
Sparsespeech model, with nearly all tested representations better than PLP features
in all settings.

In Table 6.6, we compare ABX error rates with some selected models on the Libri-
light test set. We compare against baseline PLP features, a baseline Sparsespeech
model trained with the original sparsity loss method without Gumbel-Softmax and
representations from Contrastive Predictive Coding (CPC) (Oord et al., 2018) as re-
ported in (Kahn et al., 2020). While the Sparsespeech models are trained on PLP
features (n=13) as input, the CPC are trained on raw 16kHz speech in the time do-
main. Like on the dev set, there is a large reduction in error rates when training
with Gumbel-Softmax. On the larger medium subset, a second training run using
the Huber loss also further improved ABX error rates. However, the dense embed-
ding representations trained with the CPC model show lower error rates than the
best Sparsespeech model that we trained on the 6000h medium subset.

In Table 6.7, we compare the representations of our models in terms of how well
a simple phoneme recognizer can classify phonemes with it as input. The phoneme
recognizers are trained on 10h of representations with phone labels. They are trained
without explicit alignments using the CTC loss. Using only a linear 1D-convolution

114 Chapter 6. Self-Supervised Discrete Representation Learning from Speech

TABLE 6.6: ABX error on features/posteriograms generated by our
model for the Libri-light test set. CPC results are from (Kahn et al.,

2020).

Model or features Temp. within speaker across speaker

τ clean other clean other

PLP Features (n=13) - 10.46 14.69 23.78 34.15
S600h-n20-sparsityloss-10.0 - 13.66 16.83 19.78 26.56
S600h-n100-sparsityloss-2.0 - 14.12 16.97 22.86 30.53

S600h-n20-τ2 → 0.5 2.0 10.92 14.06 18.86 27.16
S600h-n42-τ2 → 0.2 3.0 10.59 13.78 15.68 23.16
S600h-n128-τ2 → 0.2 3.0 9.39 12.42 16.01 23.49
S6000h-n42-τ2 → 0.1 3.0 9.33 12.05 13.53 20.60

S600h-n20-τ2 → 0.2-huber 2.0 10.4 13.82 15.32 22.43
S600h-n42-τ2 → 0.2-huber 3.0 9.69 12.79 14.68 22.05
S6000h-n42-τ2 → 0.2-huber 3.0 8.79 11.62 12.55 19.84
↪→ +argmax 12.43 16.58 18.11 25.93

CPC-600h (n=256) - 6.90 9.59 9.00 15.10
CPC-6000h (n=256) - 6.22 8.55 8.05 13.81
CPC-60000h (n=256) - 5.83 8.14 7.56 13.42

on posteriorgram-like representations as in (Kahn et al., 2020) proved to be chal-
lenging, as the most frequent emission symbol per timestep with the CTC loss is the
blank label. Adding a simple 1-layer LSTM ensures that the network can learn when
to emit a label other than the blank label and also keep track of context. The 1D con-
volution has a kernel size of 8 (default in the Libri-light evaluation script) and the
number of output channels of the convolution is set to match the number of phones
in the transcription plus the blank label (45). The 1-layer LSTM has a fixed hidden
size of 100.

A simple decoder with beam search generates the hypothesized phone sequence.
Phoneme error rate (PER) is then computed by comparing the sequence to the Libri-
light transcriptions on the dev and test set (these sets are the same as the ones in
Librispeech (Panayotov et al., 2015)). With the original Sparsespeech model we do
not significantly surpass the PER results of the PLP baseline, but with the improved
Sparsespeech model the phoneme recognizer can improve PER by 14.1% relative to
the PLP baseline on test-clean and by 8.1% relative to test-other.

6.4 End-to-end Sparsespeech model

In the previous sections, the Sparsespeech model still relies on engineered features
of the raw audio data in the time domain. In the following, we replace the engi-
neered features with a neural network component that can be directly applied to
raw audio in the time domain using 1D convolutions. For the encoder, we follow
the construction in the CPC model, with multiple stacked 1D convolutions applied

6.4. End-to-end Sparsespeech model 115

TABLE 6.7: PER error for training a very simple phoneme recognizer
with 10h of data on: PLP features, CPC model features or Sparse-

speech model features.

Model or features Temp. dev PER test PER

τ clean other clean other

PLP Features (n=13) - 52.44 62.36 50.96 63.13
S600h-n100-sparsityloss-2.0 - 52.48 61.65 50.48 63.23
S600h-n20-sparsityloss-10.0 - 57.22 64.84 55.40 65.95

CPC-600h (n=256) - 40.21 51.80 38.18 53.85
CPC-6000h (n=256) - 34.40 47.60 34.44 49.40
CPC-60000h (n=256) - 31.16 46.67 32.67 48.93

S600h-n100-τ2 → 0.2 3.0 50.39 59.82 48.29 61.75
S600h-n128-τ2 → 0.2 3.0 50.56 60.20 48.05 61.69
S600h-n42-τ2 → 0.2-huber 3.0 49.80 59.09 47.16 60.36
S6000h-n42-τ2 → 0.1 3.0 47.77 57.77 46.61 59.61
S6000h-n42-τ2 → 0.2-huber 3.0 45.18 56.31 43.77 58.02

to the signal. Since the CPC model is not generative, it does not need a decoder
generating the 1D signal in the time domain. On the other hand sparsespeech is a
generative model and we construct a matching decoder using 1D-deconvolutions to
reverse the 1D-convolutions and generate audio.

kernel 10, stride 5, padding 3Conv1d 1➝512

Conv1d 512➝512

Conv1d 512➝512

kernel 8, stride 4, padding 2

kernel 4, stride 2, padding 1

raw audio in time domain➝

kernel 4, stride 2, padding 1

kernel 4, stride 2, padding 1

Conv1d 512➝512

Conv1d 512➝512

gelu activation

gelu activation

gelu activation

gelu activation

➝
➝tanh

FIGURE 6.9: Raw encoder for the Sparsespeech model. Follows the
implementation in (Oord et al., 2018) and (Kahn et al., 2020).

Figure 6.9 and Figure 6.10 illustrate the encoder and decoder. The raw encoder
takes raw audio in the time domain (16kHz) as input, and outputs a sequence of
2D embeddings with similar shape as engineered speech features (FBANK, MFCC,

116 Chapter 6. Self-Supervised Discrete Representation Learning from Speech

kernel 10, stride 5, padding 3, output padding 1

ConvTranspost1d 512➝512

kernel 8, stride 4, padding 2

kernel 4, stride 2, padding 1

sequence of embeddings➝

kernel 4, stride 2, padding 1

kernel 4, stride 2, padding 1

gelu activation

gelu activation

gelu activation

gelu activation

➝
➝tanh

audio in the time domain

ConvTranspost1d 512➝512

ConvTranspost1d 512➝512

ConvTranspost1d 512➝512

ConvTranspost1d 512➝1

...

FIGURE 6.10: Raw decoder for the Sparsespeech model.

PLP...). The design of the encoder follows the implementation in (Oord et al., 2018)
and (Kahn et al., 2020). A series of 1D conv is applied to the signal, denoted with
the number of input and output channels in Figure 6.9, using GELU as activation
function. Tanh is applied to the output to squish all output values to (-1,1). The
raw decoder applies ConvTransposed1D, effectively reversing each 1D convolution
with a matching deconvolution. The last ConvTransposed1D has only one output
channel, so that it outputs a sequence of values in the time domain. Tanh is also
applied to the all output values, so that the signal is squish to values in (-1,1).

An appropriate loss function is also needed to compare a generated audio se-
quence with the input audio sequence. Directly applying an error function in the
time domain is too fine-grained and will not yield any useful learning, as SGD will
get immediately stuck (we have verified this by testing it with an implementation).
However, we can apply a Short-time Fourier transform (STFT), as it is a differentiable
function as well. We can then compare the values in the frequency domain with Hu-
ber loss. We are basically comparing spectograms in the loss function. Additionally,
we can also apply triangular filter function to further lower the dimensionality in the
frequency domain and make the loss function a little more "forgiving" if frequencies
are close, but do not match exactly. Like in MFCC features, we can also apply the
Mel scale.

6.4. End-to-end Sparsespeech model 117

6.4.1 Implementation details

We have reimplemented4 the Sparsespeech model in PyTorch (Paszke et al., 2019)
and tested the end-to-end model with PyTorch version 1.10 and Python 3.8. For
strides greater than 1 the output shapes for ConvTransposed1D can be ambiguous in
PyTorch, the ambiguity can be resolved with the setting "output padding" parameter.
This was necessary for the final ConvTransposed1D layer and is also denoted in
Figure 6.10.

For the KL-based diversity loss we hit stability problems with PyTorch. For nu-
merical stability, we used Equation 6.5 instead:

kl_diversity(P, n) = −(max(P (x), 0)− P (x)2n+ log(1 + e−|P (x)|)) (6.5)

where P (x) = 1
len(X)

∑
x∈X x, the mean vector of all pseudo-posteriogram rep-

resentations x in a sequence X and n is its dimension. Recall that cross entropy
H(P,Q) and KL(P ||Q) are closely related (see also Section 2.9). KL can thus also be
expressed in terms of H(P,Q):

DKL(P ||Q) = −H(P,
P

Q
) (6.6)

In Section 5.3.3, we show a numerically stable version of a sigmoid cross entropy
that TensorFlow uses:

h(x,C) = max(x, 0)− x · C + log(1 + e−abs(x)) (6.7)

With x = P (x), C = P (x)/ 1
n = P (x)n, we get kl_diversity(P ,n) above.

6.4.2 ABX evaluation

TABLE 6.8: ABX error on features/posteriograms generated for the
Libri-light dev set with the end-to-end Sparsespeech model.

Loss function with KL within speaker across speaker
clean other clean other

STFT (magnitude) × 35.92 35.54 39.56 40.09
STFT (magnitude) X 34.74 34.94 37.68 38.60
Mel spectrum, n=40 X 30.90 35.93 35.93 37.22
Mel spectrum, n=13 X 27.81 34.76 34.76 35.52

PLP baseline N/A 11.11 15.08 25.86 33.65

4https://gitlab.com/milde/sparsespeech2 (last accessed: April 2022)

https://gitlab.com/milde/sparsespeech2

118 Chapter 6. Self-Supervised Discrete Representation Learning from Speech

In Table 6.8, we list ABX scores for the end-to-end Sparsespeech model. Gener-
ally, ABX error are much higher than for the feature based model. The PLP baseline
is better than all obtained ABX results with end-to-end model. The gap to the PLP
features baseline is smallest for the across speaker ABX results. A significant influ-
ence on the results is the reconstruction loss function used in the end-to-end model.
Processing steps in the loss function that mimic traditional speech features are more
successful than directly comparing the magnitudes of the STFT coefficients.

6.5 Conclusion

Using Gumbel-Softmax and Huber loss in the Sparsespeech model is an effective im-
provement. On representations with n = 20, this yields a relative reduction of 22.5%
in ABX error rates on the test set (with clean speech) across speakers compared to
the original model (Milde and Biemann, 2019) (see also Section 6.1.2). The dimen-
sionality of the learned representations of the new Sparsespeech model can now also
be scaled up to representations with larger n. This also further improved ABX error
rates. So far, n = 100 and n = 128 yielded the best results for within-speaker ABX
when trained on 600h of untranscribed speech. Representations with bigger n also
show a relative improvement of up to 31.3% on ABX error rates within speakers on
the clean test set compared to the best original model. Our first results for training
on the 6000h medium subset of the Libri-light corpus further improved error rates
and show that the model is scalable. Currently, tuning the temperature parameter
after a Sparsespeech model has been trained seems to be important to reduce ABX
error rates, but higher temperatures when generating Sparsespeech features such as
2.0 and 3.0 seem to work well across models with different hyperparameters.

PER error rates also show an 14.1% improvement over a PLP baseline with the
new model when a simple phoneme recognizer is trained on the representations.
The generated representations from the new model are still relatively compact and
sparse (see also Figure 6.8) with better phoneme discriminability as measured by
ABX and PER than PLP features. However, when we compare ABX and PER error
to unsupervised dense embedding representations such as the ones generated by
CPC (n=256), there is still a relatively large gap in error rates on the Libri-light test
set. One difference is the type of input features; CPC uses raw waveforms in the
time domain while we have mainly used PLP features. Training Sparsespeech on
raw waveforms does not seem to perform well, also feature engineering of speech
features is still necessary in the reconstruction loss. CPC representations could how-
ever potentially also be used as input features to the Sparsespeech model.

Another major difference is structural in the type of the generated representa-
tions. There might be a trade-off in ABX error rates between low-bitrate sparse rep-
resentations and higher bitrate dense representations. The results from last year’s
Zero Resource Challenge (Dunbar et al., 2019) support this hypothesis, with sys-
tems with higher ABX errors having lower bit rate representations. The organizers

6.5. Conclusion 119

concluded that ”this suggests that discretizing learned speech embeddings well is
hard”. The pseudo-posteriorgrams that our Sparsespeech model can generate have
the advantage over embeddings that they can directly be interpreted as a (soft) clus-
tering of phoneme-like units. They can also be easily discretized and translated to
symbolic pseudo transcriptions, where the ABX discriminability is still largely pre-
served.

121

Chapter 7

Multitask Grapheme-to-Phoneme
Conversion

Another crucial component of most automatic speech recognition (ASR) systems is
the phoneme lexicon, mapping words to their phonetic representation (e.g. Thurs-
day → TH ER Z D EY). It is also being used as a resource in unsupervised ASR (see
also Section 3.13), to generate large quantities of phoneme sequences out of texts
(Baevski et al., 2021). Creating and maintaining phoneme lexicons manually is a te-
dious task and needs expert phoneticians. Typically, a seed lexicon is used to train a
model that can automatically produce phonetic entries, to either aid expert phoneti-
cians or (accepting a certain error rate) to generate new entries fully automatically.

Neural sequence-to-sequence models (Seq2Seq) have emerged as a generic ap-
proach to learn to translate between sequences of varying lengths (Sutskever et
al., 2014). Initially applied to machine translation, Seq2Seq has been successfully
applied to a wide range of various other tasks, including conversation modelling
(Vinyals and Le, 2015), sentence-level grammatical error identification (Schmaltz et
al., 2016), automatic regex generation (Locascio et al., 2016) and also recently gra-
pheme-to-phoneme (G2P) conversion (Yao and Zweig, 2015). Seq2Seq models are
generative language models, conditioned on an input sequence. After encoding the
input sequence token by token, the output sequence is generated token by token.
No explicit alignments between input and output sequences are necessary, as the
system is trained in an end-to-end fashion.

We mainly target the use of the G2P model in automatic speech recognition.
Training and using a G2P model is often directly integrated into the ASR training
procedure, as phonetic out-of-vacabulary (OOV) words in the training set hamper
the alignment of training data to its transcriptions. Common words as determined
by the language model that do not have a pronunciation entry can also be candidates
for G2P conversion and can be used to extend the vocabulary of a large vocabulary
speech recognition system. Other uses for G2P conversion include generating OOV
entries on the fly for text to speech systems and assisting humans in the generation
of phoneme lexicons.

The next section covers related work on grapheme-to-phoneme conversion and

122 Chapter 7. Multitask Grapheme-to-Phoneme Conversion

sequence-to-sequence models. We give an overview over neural grapheme-to-pho-
neme sequence-to-sequence models in Section 7.2, describe our evaluation in Sec-
tion 7.3, compare Seq2Seq models with and without multitask learning in Section 7.4
and present the conclusion in Section 7.5.

7.1 Related Work

Joint-sequence n-gram models are both well performing and popular traditional
models for grapheme-to-phoneme conversion (Galescu and Allen, 2001; Bisani and
Ney, 2008). These models need to find a joint vocabulary of graphemes and pho-
nemes (often called graphones) by aligning characters and phonemes. The output
sequence is modelled as a sequence of graphones. Particularly Sequitur G2P (Bisani
and Ney, 2008) is a well established G2P conversion tool using joint sequence mod-
elling and is also commonly used in state-of-the-art speech recognition model recipes,
e.g. (Panayotov et al., 2015). Joint n-gram models can also be efficiently represented
as weighted finite state transducers (Novak et al., 2013; Novak, 2012).

Yao and Zweig described the first application of Seq2Seq to English G2P in (Yao
and Zweig, 2015). The decoder/encoder network yielded 17% higher WERs than Se-
quitur G2P. However, they achieved state of the art results on three G2P datasets by
using a fixed length recurrent architecture together with the HMM many-to-many
alignment procedure from Jiampojamarn et al. (2007). Rao et al. (2015) proposes to
use the connectist temporal classification (CTC) instead of Seq2Seq to jointly align
and translate graphemes to phonemes in a single neural model. The proposed model
on its own yields 5% higher word error rates than the Sequitur G2P baseline. How-
ever, when both models are combined with a finite state transducer (FST) n-gram
model, they significantly outperform the baseline. Schnober et al. (2016) also re-
ported a negative result for sequence-to-sequence models with an attention mech-
anism on a G2P task with 20k lexicon entries (among other monotone string trans-
lation tasks), compared to standard methods. Pritzen et al. (2021) approved upon
the results of this chapter, by classifying anglicisms at inference time and using this
classification as input to the Seq2Seq model.

Tsvetkov et al. (2016) trained phonetic language models in a multitask training
setting. Perplexities of the joint model over all languages are lower than individ-
ual phonetic language models. State of the art models for translation use neural
sequence-to-sequence models and incorporate an attention mechanism and resid-
ual learning (He et al., 2016; Wu et al., 2016a). This model can also be trained on
multiple language pairs at once: an additional unique language identifier token at
the beginning of the input sentence is added to specify the required target language
to translate to Johnson et al. (2017). We follow this multitask learning (Caruana,
1997) approach to train multi-language and multi-alphabet grapheme-to-phoneme
conversion models.

7.2. Neural Grapheme-to-Phoneme Models 123

7.2 Neural Grapheme-to-Phoneme Models

 y a d s r u h t _EN

char
emb
(n=10)

lstm lstm lstm lstm lstm lstm lstm lstm

lstm lstm lstm lstm lstm lstm lstm lstm

→

←

lstm

lstm

+++++++++ lstm lstm lstm

_GO TH ER Z D EY

TH ER Z D EY

lstm lstm lstm

_EOS

attn attn attn

phoneme
emb
(n=10)

attn attn attn

FIGURE 7.1: Seq2Seq model for G2P conversion with attention and
character/phoneme embeddings, inputs are reversed. For multitask
learning, we extend the source vocabulary with additional markers

for the subtask that are placed at the beginning of each word.

Neural sequence-to-sequence models can learn a conditional distribution over
a variable length sequence conditioned on another sequence p(y1, ..., yT |x1, ..., xT ′),
where T ′ can be different from T (Cho et al., 2014b). See also Section 2.24 for more
details. When doing phoneme-to-grapheme conversion, we condition the output
phoneme sequence y1, ..., yT on the character sequence x1, ..., xT ′ . Figure 7.1 depicts
a Seq2Seq architecture for G2P with a bidirectional LSTM encoder using a decoder
with global attention. For multitask learning, we extend the source vocabulary with
additional markers for the subtask that are placed at the beginning of each word.
Since inputs are reversed, the marker will be placed at the end of the input sequence.

7.3 Evaluation

We base our evaluation on German and English G2P conversion, by comparing the
model predictions on unseen data to manual entries by expert phoneticians. For
German, we use Phonolex1 core (66.8k entries) and the full Phonolex lexicon (1.4
million entries), that uses the SAMPA phonemes set. All entries in the core set are
manually verified entries, while the source of the other entries is sometimes unclear,
with most pronunciations entries of the full set likely to be already coming from
rule based conversion systems (Schiel, 1997), automatic G2P conversions and data-
driven alignments, e.g. BAS Maus (Beringer and Schiel, 2000). For English, we use
CMUDICT 0.7b with about 138k manual pronunciation entries using the ARPAbet
phoneme set. For all training scenarios, we preprocess the lexicon to remove stress
markers, which are usually omitted in ASR acoustic modelling.

We evaluate phoneme error rate (PER) and phoneme word error rate (WER) by
splitting the available data into training, development and test splits. For Phonolex
(core/full), we only use manually verified entries as development and test data, i.e.
we use 1,312 entries (2%) for each set of Phonolex core. For CMUDICT, we use

1http://www.phonetik.uni-muenchen.de/Bas/BasPHONOLEXdeu.html (last accessed:
December 2021)

http://www.phonetik.uni-muenchen.de/Bas/BasPHONOLEXdeu.html

124 Chapter 7. Multitask Grapheme-to-Phoneme Conversion

TABLE 7.1: Comparing Sequitur G2P and seq2seq-attn on the German
Phonolex lexicon test data, with stress markers removed.

(Best scores for single models and system combinations in bold.)

Model Phonolex set PER WER train time

(1) Sequitur G2P (model order 10) core set 1.98% 11.54% 12h43
(2) Sequitur G2P (model order 6) core set 1.98% 11.30% 3h40
(3) Sequitur G2P (model order 6) full set 5.41% 29.86% 7.45 days

(4) seq2seq-attn (biLSTM 256x3, d=0.5) full set 6.09% 32.69% 13h57
(5) seq2seq-attn (biLSTM 256x3, d=0.5) core set 2.49% 13.64% 3h59
(6) seq2seq-attn (biLSTM residual 256x3, d=0.5) core set 2.37% 12.75% 3h53

(7) seq2seq-attn (biLSTM residual 256x3, d=0.5) + multitask learning (de/en) core set 2.57% 14.12% 5h51
(8) seq2seq-attn (biLSTM 512x3, d=0.5) + multitask learning (de/en) core set 2.41% 13.32% 8h27
(9) seq2seq-attn (biLSTM res. 512x3, d=0.5) + multitask learning (Sampa/IPA) core set 2.06% 11.30% 24h49

(10) System combination (2)+(6) core set 1.88% 10.33% (7h39)
(11) System combination (2)+(9) core set 1.70% 9.52% (28h29)

TABLE 7.2: WER and PER performance for different classes of words
in the German Phonolex task. While regular German words can be
phonetized with relatively small errors, loan words and named enti-

ties are particularly problematic in this G2P task.

Abbreviation English pronoun. French pronoun. Name / NE Hyphen Regular

Count and
% of all entries 23 (1.75%) 34 (2.59%) 8 (0.61%) 149 (11.36%) 29 (2.21%) 996 (75.91%)

Model PER WER PER WER PER WER PER WER PER WER PER WER

Sequitur G2P
(model order 6) 2.92% 8.70% 10.20% 38.24% 35.00% 62.50% 5.00% 23.49% 2.43% 31.03% 1.13% 7.63%

seq2seq-attn
(biLSTM 256x3) 10.59% 26.09% 16.93% 52.94% 32.81% 75.00% 5.80% 25.50% 1.22% 13.79% 1.18% 8.63%

+ multitask
(de/en) 8.40% 26.09% 17.20% 61.76% 25.05% 62.50% 5.41% 26.10% 1.22% 17.24% 1.39% 9.24%

+ multitask
(SAMPA/IPA) 6.72% 21.74% 12.60% 47.06% 22.22% 62.50% 5.58% 24.16% 2.22% 17.24% 1.07% 7.33%

the same train/dev/test splitting as proposed in the sequence-to-sequence example
of the CNTK toolkit2, i.e. 108,952 train entries, 5,447 dev entries and 12,855 test
entries. While Phonolex core does not contain pronunciation variants, CMUDict
does include them, and we also use them in the training process. Following Bisani
and Ney (2008), the variant that minimizes the error is chosen for computing PER
and WER.

To enable multi-alphabet training, we also generated our own German and En-
glish dictionaries using the International Phonetic Alphabet (IPA)3. We used recent
dumps of the German and English Wiktionary project4, containing IPA phoneme
entries of voluntary contributers (not all lexicon entries have a phoneme entry). For
German, we pick the top pronunciation entry. For English we include all variants,
but not British ones (to favor American English, which CMUDICT also models).
Otherwise, no attempt at normalizing notation styles is made. The English Wik-
tionary contains 4 million entries, but the largest fraction are non-English words,

2https://github.com/Microsoft/CNTK/tree/master/Examples/
SequenceToSequence/CMUDict/Data (last accessed: December 2021)

3Scripts to reproduce the IPA dictionary generation are available at https://github.com/
bmilde/wiktionary_ipa_phoneme_lexicons (last accessed: December 2021)

4dewiktionary-20170120 and enwiktionary-20170301

https://github.com/Microsoft/CNTK/tree/master/Examples/SequenceToSequence/CMUDict/Data
https://github.com/Microsoft/CNTK/tree/master/Examples/SequenceToSequence/CMUDict/Data
https://github.com/bmilde/wiktionary_ipa_phoneme_lexicons
https://github.com/bmilde/wiktionary_ipa_phoneme_lexicons

7.3. Evaluation 125

mostly with the exact pronunciation of the original language. Accordingly, by only
using IPA entries that are clearly marked as German or English entries, we obtain an
IPA lexicon of 330,473 words for German and a significantly smaller IPA lexicon of
34,943 words for English.

For Sequitur G2P, we tune the model order (n-gram) on the development set. It
is also used in the training procedure to adjust the discount parameters of the joint
grapheme/phoneme language model. While 6 is the recommended parameter of
the training software, we found higher order models to give slightly better results
on the development set.

For our sequence-to-sequence experiments we use seq2seq-attn5, an open source
neural translation system. It can be fitted to G2P conversion by preprocessing the
dataset, so that single characters or phonemes are entire words. We also tune Seq2Seq
models on the development set: we choose the width of the networks’ LSTM layers
from the set {64, 128, 256, 512}, number of layers from {2, 3, 4, 5} and dropout from
{0.0, 0.2, 0.3, 0.5} and train with and without residual learning. We run all 128 con-
figurations on a cluster with Nvidia Titan X GPUs and select promising candidate
configurations on the development set. We omit hyperparameter optimization en-
tirely for the full Phonolex set and leave out the 64 and 128 width configurations for
multi-task training. We exclusively use Adam (Kingma and Ba, 2014) as optimiza-
tion method for network training, with an initial learning rate of 0.001. For the first
3 epochs we use curriculum learning (sorting the sequences by length in an epoch),
for all other epochs the order is randomized.

TABLE 7.3: Comparing Sequitur G2P and seq2seq-attn on a CMU-
DICT test set, with stress markers removed. Results shown here are

for a recent version of the lexicon (v0.7b).

Model PER WER train time

(1) Sequitur G2P (model order 8) 6.12% 25.71% 34h49

(2) seq2seq-attn (biLSTM 256x4, d=0.3) 6.81% 29.51% 9h38
(3) seq2seq-attn (biLSTM 256x4 residual, d=0.3) 6.67% 28.72% 9h40

(4) seq2seq-attn (biLSTM 512x3) + multitask learning (en/de) 6.68% 29.28% 8h27
(5) seq2seq-attn (biLSTM 512x3) + multitask learning (ARPAbet/IPA) 6.50% 28.23% 6h30

(6) System combination (1) + (3) 5.91% 25.15% (44h29)
(7) System combination (1) + (5) 5.76% 24.88% (41h19)

In order to enable system combinations, we also let Sequitur G2P and seq2seq-
attn generate n-best lists (n=10). We simply combine the n-best lists by adding nor-
malized scores between 0.0 and 1.0 for entries that both models generated and ap-
pend all other entries. After resorting, the output of the system combination is the
highest scoring entry from the combined n-best list.

5https://github.com/harvardnlp/seq2seq-attn (last accessed: December 2021)

https://github.com/harvardnlp/seq2seq-attn

126 Chapter 7. Multitask Grapheme-to-Phoneme Conversion

7.4 Results

In Table 7.1, we compare different G2P models on the Phonolex lexicon test set. Us-
ing the full lexicon as opposed to Phonolex core to train the models (the test set is
the same in both cases) significantly reduces performances (3, 4). We attribute this
to the problem that many entries of the full Phonolex set are already automatically
generated in some way. We were able to spot several problematic non-core entries,
mostly in entries marked as coming from automatic (and probably old) rule-based
conversions. We thus focused on training with the core set after a few experiments.
Seq2Seq models (5) and (6) do perform worse as a single model than the Sequitur
G2P baselines (1) and (2). Training a multitask model on Phonolex and CMUDICT
training data (7, 8) did not improve upon the residual network baseline (6), but is
slightly better than a Seq2Seq model without residual learning (5). However, if we
train a multitask model on our generated German IPA lexicon and Phonolex core
(9), we can considerably lower error rates, as compared to all other Seq2Seq mod-
els. With this model, we can also match the WER score of the Sequitur G2P baseline
model.

We observed that the multitask models generally need wider networks to ac-
count for the increased need of model capacity to model two G2P tasks. Residual
learning can give a small performance improvement as in (5) vs. (6), and was also
useful for (7) and (9), as tested on the dev set. Finally, if we combine the Sequitur
G2P model (2) with our Seq2Seq models using n-best lists, we achieve the lowest
error rates (10, 11).

To better understand the scores of the single models on the German Phonolex
data, we annotated the Phonolex test set into the following irregular pronunciation
cases: abbreviations (e.g. "GPA", "FFH", "MIDI-Dateien"), loan words and names
with predominantly English pronunciation (e.g. "Toaster", "mousepad"), the same
for French (e.g. "arrangierter", "Taille"), other names and named entities (e.g. "Diet-
mar", "Chemnitz") as well as hyphenated words (e.g. "Acht-Uhr-fünf-Flug"). The
irregular pronunciation cases make up 24.09% of the data. We also discarded 73
(5.56%) of the test entries6 from Phonolex, containing spelling errors of words, un-
known words (e.g. "Beteginsdis") and transliterations of Bavarian dialects (e.g. "obg-
nomma", "ausaschauen" for standard German "abgenommen", "hinausschauen").

Table 7.2 shows PER and WER results separately for our word classes. As ex-
pected, there is a large increase in error rates for irregularly pronounced German
words and other special forms across all models. Interestingly, Sequitur G2P strug-
gles less than the Seq2Seq models with abbreviations, English and French loanwords
and names7. Hyphenated words are considerably more problematic for Sequitur
G2P than for Seq2Seq models. The multitask model trained on Sampa/IPA data
mainly improves regular words compared to Sequitur G2P. Although still showing

6Discarded words are also discarded from the analysis in Table 7.1.
7The results for French loan words have to be taken with grain of salt though, as the sample size is

very small (n=8).

7.5. Conclusion 127

slightly higher error rates on irregular cases than Sequitur G2P, it shows lower error
rates for most classes of irregular words compared to the other Seq2Seq models.

In Table 7.3, we also compare similar models on English G2P conversion, as
a control experiment. Similarly, Sequitur G2P (1) outperforms individual Seq2Seq
models. Residual learning gives a small improvement (3) vs. (2) and the multi-task
model trained on German and English data (4) degrades error rates very slightly,
similarly to the German test scores in Table 7.1. The multitask model for English
ARPAbet and IPA does slightly improvess the Seq2Seq scores (5), but fails to match
the Sequitur G2P error rate on the CMUDICT test set (1). This can be attributed to
the much smaller size of the auxiliary IPA lexicon, as it is 10 times smaller than in
the German experiment and also smaller than CMUDICT itself. Again, if we use a
simple combination of the model’s n-best lists (6, 7), we observe lower error rates
than from any individual model.

7.5 Conclusion

Our results still largely favor traditional joint sequence n-gram modelling (with Se-
quitur G2P) if individual models are compared, similarly to related work. Com-
bining Seq2Seq G2P and n-gram modelling into an ensemble model improves upon
the Sequitur G2P n-gram modelling baseline. Any further advances in either RNN
architectures or the Seq2Seq architecture will likely also benefit Seq2Seq G2P. Simul-
taneous training on the German and English G2P task did no yield any benefits, but
our multitask Sampa/IPA Seq2Seq model for German G2P performs on par with
the Sequitur G2P baseline and shows significantly lower error rates than the other
Seq2Seq models.

Our error analysis according to word classes shows that there is diversity in how
the models learn to deal with regularly and irregularly pronounced German words,
which are difficult to predict. Ultimately, this diversity allows us to combine dif-
ferent systems: combining the Sequitur G2P and Seq2Seq models without multitask
learning (8.6% lower WER relative) and with multitask learning (15.8% lower WER
relative) yields significant WER improvements for German G2P.

The results are similar for English G2P on CMUDICT, but since the auxiliary IPA
lexicon is 10 times smaller than the German one, we can only observe a modest de-
crease in WER for multitask Seq2Seq models. We still think that multitask learning
is a simple way to combine non-heterogeneous lexicons in Seq2Seq G2P models,
without the need for an explicit translation between different phoneme sets and an-
notation styles.

129

Chapter 8

Automatic subtitling

Subtitles primarily display spoken content in videos and help to make the content
accessible to people with hearing related problems, hearing aids and people who
learn foreign languages. They can also help in situations where video content is
consumed in a noisy environment. Translated subtitles can make videos accessible
to people who do not speak the language used in the video.

However, video subtitling is a tedious manual task. Even trained transcribers
need on average 13-18x more time relative to the speech time to subtitle videos with-
out any automatic assistance (Roy and Roy, 2009). ASR can be used to transcribe
speech automatically or to aid human transcribers. In fully automatic subtitling,
further processing steps have to be considered as well, beyond simply running ASR
decoding on the audio extracted from a video file. The output needs to be segmented
into appropriate segments and interpunctuation must be added for better readabil-
ity. Non-speech segments, such as silence, music and environmental sounds might
also be present in the audio.

In this chapter and the following one, we propose practical systems for ASR
applications. We introduce an automatic subtitling system for German with punc-
tuation reconstruction and an appropriate segmentation strategy and demonstrate
its capabilities on real world data. While our intended use case is the automatic
subtitling of all video lectures published on the Lecture2Go e-learning platform1 of
Universität Hamburg, we expect that our open source subtitling solution will be a
good starting point for general purpose subtitling as well.

8.1 German ASR

ASR models trained with open source software and freely available resources allow
personal, academic and commercial use cases without licensing issues, lowering the
barrier of entry. Having access to a locally running speech recognition software (or a
private server instance) solves privacy issues of speech APIs from cloud providers.
English speech recognition models for Kaldi are available as pretrained packages or
freely available training recipes and these models are used in the wild for down-
stream NLP applications, e.g. (Oualil et al., 2017; Milde et al., 2016). We would

1https://lecture2go.uni-hamburg.de/ (last accessed: April 2022)

https://lecture2go.uni-hamburg.de/

130 Chapter 8. Automatic subtitling

like to establish the models presented in the following sections as go-to models for
open source German speech recognition with Kaldi – with freely available training
recipes, making it easily extensible, as well as offering pre-trained models. In the
following, we discuss the freely available data resources for German and our recog-
nition results.

8.1.1 Data Resources

Tuda-De. In (Radeck-Arneth et al., 2015), an open source corpus of German utter-
ances was described and publicly released, with a focus on distant speech recog-
nition. Sentences were sourced from different text genres: Wikipedia, parliament
speeches and simple command and control prompts. Volunteers, mostly students,
read the sentences into four different microphones, placed at a distance of one meter
from the speaker. One of these microphones was a Microsoft Kinect. The corpus
contains data from the beamformed signal of the Kinect, as well as mixed down sin-
gle channel raw data from the microphone array (due to driver restrictions the raw
multi channel data could not be recorded). Yamaha PSG-01S, a simple USB table mi-
crophone and a Samson C01U, a studio microphone, were also used to record audio
simultaneously. A further simultaneous recording was made with a built-in laptop
microphone (Realtek), at a different position in the room and next to a very noisy
fan. For nearly every utterance the corpus contains five sound files, apart from a
few where driver hiccups resulted in fewer recordings. Four of these streams are
fairly clean and comprehensible, while the recordings from the Realtek microphone
next to a noisy fan are very difficult to understand, even for humans. Female speak-
ers make up about 30% of the data and most speakers are between 18 and 30 years
old. We used version 2 of the corpus and also make use of its test and dev set in our
evaluation. For the latest experiments in 2022, we used version 4.

SWC. Another resource for German ASR is automatically aligned found speech
data from the German sub Spoken Wikipedia project (SWC) (Baumann et al., 2019).
This corpus was created by aligning Wikipedia articles with publicly available record-
ings of them being read out. This is a very interesting resource, as new read speech
data is consistently added to the project by volunteers and the training process can
be extended form time to time with new data. The data is diverse and covers a lot of
vocabulary due to the encyclopedic nature of the texts.

SWC does not have fixed utterance mapping, instead we use the SWC snippet ex-
tractor to generate training utterances along Voice Activity Detection (VAD) bound-
aries. In conservative pruning, we discard the following utterances: shorter than 0.6
seconds, more than 20% of unaligned data, more than two consecutive unaligned
words, and an unaligned word at the beginning or end or pauses longer than 1.5
seconds.

In a second setting that we call minimal pruning, we extract utterances defined
by VAD boundaries for which at least 65% of the words are aligned, with no other
restrictions. The German Spoken Wikipedia corpus used in our experiments has 363

8.1. German ASR 131

speakers who committed 349h of audio, of which 249h are aligned. Conservative
pruning yields 141h of audio for ASR training and minimal pruning yields 285h of
audio recordings.

M-AILABS. This dataset contains 233.70 hours of aligned read speech from Ger-
man audiobooks of the Librivox project2, with freely available texts from Project
Gutenberg3. The dataset is distributed under a modified 2-clause BSD license for
data. In this corpus, there are 117,856 unique German sentences and 118,521 utter-
ances.

Common Voice. Ardila et al. (2020) created a web-based user platform to easily
donate speech recordings in many languages to the Common Voice project. With the
web app, users can read out sentences that are then made publicly available (CC-0
license). Most languages have sentences from Wikipedia as well as user-submitted
sentences available. We used version 3 of the German Common Voice dataset, down-
loaded in October 2019 with 322.4 hours in total. In this version there are 19,489
unique German sentences and 281,184 utterances. In a series of new experiments,
we updated Common Voice to version 8. In this version there are 451,731 unique
German sentences and 746,482 utterances and total of 1050 hours of training data.

8.1.2 Lexicon

MARY-TTS (Schröder and Trouvain, 2003) is an open source Text-To-Speech (TTS)
system. It also contains a manually created phoneme dictionary resource for Ger-
man, containing 26,231 words and their phoneme transcriptions in a dialect of ex-
tended SAM-PA BAS (Bavarian Archive for Speech Signals, n.d.). We use Sequitur
(Bisani and Ney, 2008) to train a grapheme-to-phoneme (G2P) model, to be able to
add automatically generated entries for out-of-vocabulary (OOV) words to the lexi-
con as needed.

For the Tuda-De corpus the final lexicon size is 28,131 words; this includes all
words from the MARY lexicon and automatically generated entries for all OOV
words in the train set. When we combine the Tuda-De transcriptions with the SWC
transcriptions, more OOV lexicon entries need to be automatically generated and the
final lexicon size grows to 126,794 words using the conservatively pruned SWC data,
or 182,784 words respectively with minimally pruned SWC data. To measure the ef-
fects of an even larger vocabulary size, we also computed the 300,000 most frequent
words in the German Wikipedia (April 2018) and generated additional phonetic en-
tries. We merged the vocabulary with the previous lexicon and obtained a larger
lexicon containing 350,029 words. In later experiments, we expanded the vocabu-
lary to 683,044 and 721,625 words in the same way.

Subsequently, in a later version of the LM and lexicon resources, we expanded
the lexicon manually by 14,268 entries. We wrote the Software speech-lex-edit4 to

2https://librivox.org/ (last accessed: December 2021)
3http://www.gutenberg.org/ (last accessed: December 2021)
4https://github.com/uhh-lt/speech-lex-edit (last accessed: December 2021)

https://librivox.org/
http://www.gutenberg.org/
https://github.com/uhh-lt/speech-lex-edit

132 Chapter 8. Automatic subtitling

facilitate an active learning approach, where Sequitur G2P is used to propose can-
didate pronunciation entries. The Sequitur G2P model was periodically retrained.
Figure 8.1 shows a screenshot of the software. In the default setting, five pronunci-
ation candidates with their confidence values are displayed to the user and can be
listened to through a synthesized sound file produced by MARY TTS.

As candidates for the manual lexicon expansion, we choose words from the lan-
guage model training texts that were both frequent and had low G2P likelihood /
confidence scores and sorted the candidate vocabulary by log(freq)·G2Pconf . Some
candidates were also specified manually and some were hand picked from a list of
anglicisms, as these are typically difficult for a German G2P to predict automatically,
see also Chapter 7, Table 7.2 and (Milde et al., 2017).

FIGURE 8.1: Screenshot of the lexicon editor using a G2P model for
pronunciation suggestions.

8.1.3 Language Model Resources

We used the same text sources as in (Radeck-Arneth et al., 2015) and trained similar
baseline language models. In particular, we trained 3-gram and 4-gram language
models with Kneser-Ney smoothing (Kneser and Ney, 1995) and different vocabu-
lary sizes on approximately 8 million German sentences. The sentences are selected
from similar sources as the spoken data (Wikipedia, Parliament and some crawled
sentences). Also, they are already filtered, so that sentences from the development

8.1. German ASR 133

and test sets of the Tuda-De corpus are not included in LM training texts. All sen-
tences were normalized using the frontend of the MARY TTS software (Schröder and
Trouvain, 2003), similarly to the normalization process of the SWC corpus. We also
use the newly released Kaldi-RNNLM (Xu et al., 2018b) to train a recurrent neural
network based LM on the same text sources. We use the same parameters as in the
Switchboard LSTM 1e example: two stacked LSTM layers with a cell width of 1024.
We also tested four stacked LSTM layers.

In a second iteration of the LM and lexicon resources, we expanded the LM
texts to 102.5 million sentences. We updated the German Wikipedia texts (May 2020
dump) and added crawled Tagesschau news5 and subtitles crawled from Germany’s
public broadcasters online portals (Mediathek). This also adds new and recent vo-
cabulary. All scripts to replicate the data gathering have been published as open
source6. Instead of relying on MARY TTS text normalization, we developed our own
regex based text normalization system that can handle text expansion of numbers,
abbreviations, years, dates and time. All 102.5 million sentences were normalized.

8.1.4 Experiments and Evaluation

TABLE 8.1: WER results on the Tuda-De dev and test sets. The scores
are for decoding combined data from Kinect (Beam and RAW), Sam-

son and Yamaha microphones.

Model Dataset Vocabulary LM WER
dev test

GMM-HMM Tuda-De 28,131 3-gram KN 45.31 45.55
Tuda-De 126,794 ” 37.47 38.34

Tuda-De + SWC (cons. pruned) ” ” 29.97 31.06
Tuda-De + SWC (min. pruned) ” ” 29.79 30.99
Tuda-De + SWC (min. pruned) 182,784 ” 26.92 28.25
Tuda-De + SWC (min. pruned) 350,029 4-gram KN 24.91 25.77

+ M-AILABS + Common Voice V3 683,044 4-gram KN 23.06 24.38
+ M-AILABS + Common Voice V8 721,625 4-gram KN 22.89 24.46

TDNN-HMM Tuda-De 28,131 3-gram KN 35.53 36.32
Tuda-De 126,794 ” 28.08 28.96

Tuda-De + SWC (cons. pruned) ” ” 20.91 22.22
Tuda-De + SWC (min. pruned) ” ” 20.30 21.43
Tuda-De + SWC (min. pruned) 182,784 ” 18.39 19.60
Tuda-De + SWC (min. pruned) 350,029 4-gram KN 15.32 16.49
Tuda-De + SWC (min. pruned) ” + 2-layer LSTM LM 13.14 14.38

+ M-AILABS + Common Voice V3 683,044 4-gram KN (102.5M sent.) 12.26 13.79
+ M-AILABS + Common Voice V3 ” + const ARPA rescoring 10.47 11.85
+ M-AILABS + Common Voice V3 ” + reformat numbers 8.61 9.85

+ M-AILABS + Common Voice V8 721,625 4-gram KN (102.5M sent.) 10.94 12.09
+ M-AILABS + Common Voice V8 ” + const ARPA rescoring 9.25 10.17
+ M-AILABS + Common Voice V8 ” + reformat numbers 7.51 8.53
+ M-AILABS + Common Voice V8 ” + 2-layer LSTM LM 6.51 7.43
+ M-AILABS + Common Voice V8 ” or 4-layer LSTM LM 6.46 7.37

5A German television and online news service from ARD, one of Germany’s public TV broadcasters.
6https://github.com/bmilde/german-asr-lm-tools (last accessed: December 2021)

https://github.com/bmilde/german-asr-lm-tools

134 Chapter 8. Automatic subtitling

For our experiments, we use the kaldi-tuda-de7 training scripts that we released
as open source. We use Gaussian Mixture Model (GMM) - Hidden Markov Models
(HMM) and Time-Delayed Neural Networks (TDNNs) (Waibel et al., 1990; Peddinti
et al., 2015) as acoustic models following the chain-recipe (s5_r2) of the TED-LIUM
corpus (Rousseau et al., 2014) example in Kaldi. The TDNNs have a width of 1024
neurons for training sizes of up to 412h and a width of 2048 neurons for all mod-
els trained with the additional Common Voice data. For GMM-HMM models, we
adapted the Kaldi egs8 for the Switchboard corpus (swbd s5c, model tri4). As in-
put to the TDNN we also use online i-vectors (helping with speaker adaptation, c.f.
(Saon et al., 2013; Senior and Lopez-Moreno, 2014; Miao et al., 2015)).

As the TDNN-HMM chain models are sequence-discriminatively trained on the
utterances, they are more prone to overfitting and do not cope well with incorrect
transcriptions (Povey et al., 2016). Since the SWC transcriptions are aligned from
found data, we expect that some of the transcriptions could be problematic, particu-
larly when we apply only minimal pruning to SWC. We follow the recipe used in the
Kaldi TED-LIUM TDNN example and clean the training data by decoding it with an
intermediate model using a reference-biased LM. Then we remove utterances which
do not match their supposed transcriptions or resegment the utterance boundaries
where applicable. While analyzing the cleaned utterances, we also noted that some
of the Tuda-De training utterances are wrongly annotated, mostly because of hic-
cups in the recording software (Schnelle-Walka et al., 2014) resulting in (completely)
wrongly assigned utterance transcriptions. The cleanup removes about 1.6% of the
Tuda-De data and 6.9% of the combined Tuda-De and conservatively pruned SWC
data (268.5h → 250h). With minimally pruned SWC data, 8.8% of the combined
training data is removed.

We use the dev and test set from the Tuda-De corpus to measure word error rates
(WER). The experiments in (Radeck-Arneth et al., 2015) defined a closed vocabulary
task with no OOV words, as OOV words in test and dev were also added to the
lexicon. This makes WER rates somewhat lower in comparison, but a bit unrealistic.
In Table 8.1 we show results for a more realistic open domain setting, where the dev
and test vocabulary is not known a priori. Using only a 28,131 word vocabulary
yields very high WER for GMM-HMM and TDNN-HMM models alike, because of
a high OOV rate. Extending the vocabulary to 126,794 words reduces both GMM-
HMM and TDNN-HMM WER by about 20% relative. Adding SWC data to the Tuda-
De utterances improves these TDNN-HMM results significantly, even when we use
the same vocabulary size. Using a minimal pruning strategy with the SWC data and
subsequently relying more on Kaldi’s cleaning scripts gives slightly better results:
26% relative reduction vs. 23.3% relative reduction. However, we achieve our best
WERs when we use a significantly larger vocabulary and a better LM. Our test score
with an open domain vocabulary of 350,029 words is 16.49% WER and can be further

7https://github.com/uhh-lt/kaldi-tuda-de (last accessed: April 2022)
8”egs” is the name of a folder in Kaldi’s repository containing examples of training recipes for many

popular speech corpora.

https://github.com/uhh-lt/kaldi-tuda-de

8.1. German ASR 135

improved by using lattice rescoring with an LSTM LM to 14.38% WER. Adding 322.4
hours from Common Voice V3 and expanding the vocabulary further to 683,044 as
well as using the larger 102.5 million sentences LM with ARPA rescoring yields a
test WER of 11.85%. The sentences we normalized for the LM split number literals
into several tokens, to avoid vocabulary explosion (e.g. ”drei und sechzig”). The
correct orthographic spelling for numbers in German is single words. If we normal-
ize numbers and years of the ASR output (”neunzehn hundert neun und neuzig”
→ ”neunzehnhundertneunundneuzig”), test WER drops to 9.85%, since the dev and
test sets use the correct orthographic spelling for numbers. Adding 700 additional
hours of training data by updating the Common Voice dataset from version 3 to ver-
sion 8 yields a WER of 8.5%. Additional rescoring with a LSTM LM further improves
this to a WER of 7.43% with a 2-layer LSTM and 7.37% with a 4-layer LSTM. We use
the pruned lattice rescoring described in (Xu et al., 2018a). This is a significant im-
provement over the 20.5 WER% (without OOVs, restricted vocabulary) reported in
(Radeck-Arneth et al., 2015), even though we evaluate in an open vocabulary set-
ting. It is also a large improvement over the previously published result of 14.38%
WER in (Milde and Köhn, 2018).

Comparison to other systems

TABLE 8.2: WER comparison to other systems on the Tuda-De test
set. All systems use additional training data, with varying amounts.

System Model Data Year test WER

Based on Deep Speech
(Agarwal and Zesch, 2019)

E2E/CTC 302h 2019 15.1

IMS-Speech
(Denisov and Vu, 2019)

E2E/Encoder-decoder 3797h 2019 12.0

CTC-Segmentation
(Kürzinger et al., 2020)

E2E/CTC+Attention 1700h 2020 12.8

Scribosermo
(Bermuth et al., 2021)

E2E/QuartzNet15x5DE
1000h (en)
836h (de)

2021 10.2

Conformer
(Wirth and Peinl, 2022)

E2E/Conformer CTC 4520h 2022 7.8

Conformer
(Wirth and Peinl, 2022)

E2E/Conformer T 4520h 2022 5.8

uhh-lt/kaldi-tuda-de
(Milde and Köhn, 2018)

TDNN-HMM hybrid, FST 412h 2018 14.4

uhh-lt/kaldi-tuda-de
(this chapter)

TDNN-HMM hybrid, FST 1720h 2022 7.4

The test set created in (Radeck-Arneth et al., 2015) has been adopted by the com-
munity for testing German ASR performance9. In Table 8.2 we compare how the
WER results on the Tuda-De dataset compared to other systems with published re-
sults. Only the ASR system of this chapter uses a TDNN-HMM. All other systems

9An uptodate leaderboard can also be found at: https://paperswithcode.com/sota/
speech-recognition-on-tuda (last accessed: December 2021)

https://paperswithcode.com/sota/speech-recognition-on-tuda
https://paperswithcode.com/sota/speech-recognition-on-tuda

136 Chapter 8. Automatic subtitling

use various forms of end-to-end (E2E) ASR, i.e. ASR systems that fully neural and
do not use HMMs. However, the best test WER result of this chapter is better than
five other end-to-end systems. A recent result from Bermuth et al. (2021) shows
that pre-trained weights from an English E2E ASR model can be quite effectively
used with transfer learning to train a German E2E ASR system. Until very recently,
this was the best published E2E WER result on the Tuda-De test. The TDNN-HMM
system presented in this chapter is about 27% better relative. Concurrently to the
submission of this thesis, Wirth and Peinl (2022) presented a large-scale study on
recent E2E modelling techniques for German ASR, using a lot more training data
(4520h). Systems based on the conformer architecture (Gulati et al., 2020) gave the
best results. The TDNN-HMM system in this chapter is still better than a Conformer
model trained with CTC, although the Conformer model uses much more training
data. However, a Conformer Transducer trained on 2.6x as much training data gives
better results than the TDNN-HMM system (5.8% WER vs. 7.4% WER).

Conversational Speech

TABLE 8.3: WER results on the Verbmobil (VM1) dev and test data.

Model Vocabulary Training dataset WER
dev test

GMM-HMM General purp. (~350k) Tuda-De + SWC 46.42 50.56
TDNN-HMM General purp. (~350k) Tuda-De + SWC 33.69 38.23
TDNN-HMM General purp. (~683k) ↪→ + M-AI + CV3 24.95 27.79
TDNN-HMM General purp. (~722k) ↪→ + M-AI + CV8 +resc. 19.35 22.34

GMM-HMM Domain specific (~7k) Tuda-De + SWC 27.18 29.12
TDNN-HMM Domain specific (~7k) Tuda-De + SWC 18.17 20.04

In the Verbmobil project (1993-2000), the goal was to establish whether transla-
tion of spontaneous speech into other languages is possible (Wahlster, 2000). Con-
versational speech data was recorded in German, English and Japanese, in the lim-
ited domain of scheduling appointments. We used the dev and test data of the first
revision of the German subset of the Verbmobil corpus (VM1). Since our acoustic
models are trained exclusively on read speech, it provides a good test set showing
how well our models cope with a more challenging conversational and spontaneous
speaking style.

In Table 8.3, we show results for decoding VM1 utterances with our acoustic
models. We decode with two different vocabularies and FSTs, a general purpose
vocabulary (as also used for the results in Table 8.1) and a domain-specific vocab-
ulary, using the lexicon words of the VM1 corpus (6851 words). For the latter we
recomputed our LM with the reduced vocabulary. We do not use the manual lexi-
con entries of the VM1 corpus and instead use the same lexicon we use in the general

8.2. Subtitling Pipeline 137

purpose case, reducing it and generating automatic OOV phoneme lexicon entries
as needed.

The domain specific WER score with limited vocabulary is usually found in
the literature for the Verbmobil corpus. A newer reference score for a DNN-HMM
trained with Kaldi is 12.5% WER in (Gaida et al., 2014). Our score of 20.04% WER
is probably due to not using the optimized and manually generated lexicon as well
as due to a mismatch in the training data for the acoustic model (read speech vs.
conversational speech). The model in (Gaida et al., 2014) is exclusively trained on
in-domain audio data, while we excluded any proprietary VM1 speech training data
and only used our freely available open source speech recordings. The WER gap to
the domain specific result can be narrowed by training the acoustic model on ad-
ditional data (M-AI + Common Voice V8), normalizing numbers in the output and
rescoring with a better general purpose LM. Our best open vocabulary result for the
VM1 test set is a WER of 22.34%.

8.2 Subtitling Pipeline

pykaldiFFmpeg

MFCC
+ i-vector
features

TDNN-HMM
lattice
decoding

punctuation

extract
audio

biLSTM model
Adds . , ! ?
based on
transcription

segmentation

compute segmentation costs
punctuation + dependency
tree

SRT/VTT subtitle

FIGURE 8.2: Subtitling pipeline and processing steps.

Figure 8.2 shows our subtitling pipeline. We first run FFmpeg/pyFFmpeg to ex-
tract 16 kHz pcm mono audio from any supported FFmpeg media file (all popular
video formats are supported). We then use feature derivation and decoding with
PyKaldi (Can et al., 2018), also mapping each word to the alignment information
from the decoder. We then apply an LSTM-model that adds punctuation. Finally,
we use a segment scoring function and apply beam search to search through differ-
ent segmentation alternatives. Finally, based on the alignment information and the
segment information, we write the complete subtitle file in either a SRT or WebVTT
format (Pfeiffer, 2019).

8.2.1 Punctuation

Subtitles frequently feature text with punctuation, while ASR transcriptions are typ-
ically without any punctuation. We trained punctuation reconstruction models to
reconstruct the punctuation on a textual basis from the ASR output. After transcrip-
tions have been decoded, punctuation can then be reconstructed in a post processing
step.

138 Chapter 8. Automatic subtitling

The punctuation models are trained on language model texts where the punctu-
ation is removed from the training texts and used as labels in a sequence labeling
task. The same language modelling resources as in Section 8.1.3 are used, where
numbers, abbreviations etc. are normalized to better match ASR output.

For punctuation model training we used punctuator2 (Tilk and Alumäe, 2016),
based on gated recurrent units (GRUs) (Cho et al., 2014b). In (Milde et al., 2021b), we
trained a model to predict four different kinds of punctuations (.,?!), with a per to-
ken error rate of 2%. F1 score for periods was 90.7%, for commas 89.4%, for question
marks 74.2% and for exclamation marks 33.1%. The latter can be subjective, espe-
cially when predicted entirely from text, so recognition results are unsurprisingly
low for exclamation marks. Commas, periods and question marks on the other
hand where predicted quite reliably. This forms a basis for subtitle segmentation
discussed in the next section, where punctuation is an important clue.

8.2.2 Subtitle Segmentation

We aim to segment the punctuated transcript to improve readability. The segmenta-
tion is based on a beam search with manually tuned weights. We want to balance a
target average segment length with splitting at sentence punctuation (,.?!); all other
potential splitting positions in a sentence are evaluated based on the shortest con-
necting path in a parse tree of that sentence. The intent is that we want to avoid
splitting at words that are linguistically closely connected words/tokens, i.e. they
should not be separated across two separate screens (or lines) if possible, so that the
reading flow is not interrupted. Our beam search maximizes a performance func-
tion that sums up all individual segmentation decisions. In particular, we defined
the performance fs for sentence s that outputs a reward for segmenting at the posi-
tion between the tokens t1 and ti+1 as :

fs(ti, ti+1) = rl +


0.9 · len(s) if ti ∈ {‘.’, ‘?’, ‘!’}

0.7 · len(s) if ti = ‘,’

scp(parsetree(s), ti,ti + 1) otherwise

where scp is the shortest connecting path in the syntax tree (as parsed with spacy)
and rl the length reward for being as close as possible to the target token length for
a particular segment.

rl = 2.3 ∗ (ttl − |ttl − j|)

where ttl is the target token length and j the resulting length of the segment, if a split
were to be placed between ti and ti+1. In our experiments we set ttl = 10. We then
maximize

∑
fs(ti, ti+1) over all chosen segmentation paths, expanding the beam up

to a maximum number of lookahead tokens, evaluating each forward position from
the current position i up to i+ 40.

8.2. Subtitling Pipeline 139

0 2 4 6 8 10 12
Speaker

15

20

25

30

35

40

45

50

W
ER

 in
 %

FIGURE 8.3: WER for 17 German lectures, with topics ranging from
education science to computer science. The 14 anonymised speakers

are sorted according to their average WER.

Other constraints could easily be integrated; e.g. a performance function that
depends on the length in characters rather than tokens, or adding hard constrains on
the maximum character length for a subtitle segment. Another improvement could
be to include pausing information into the performance measure, or to differentiate
between line and screen breaks.

8.2.3 Evaluation

Figure 8.3 shows WERs evaluated on 17 Universität Hamburg (UHH) lectures from
2009 to 2014 that were manually transcribed, totalling 12h of video recordings with
subtitles. The average WER over all speakers and lectures on this test set is 26.3%.
Many of the recorded lectures have challenging acoustics, as they were recorded
in addition to students attending the lecture hall. We also tested Subtitle2Go on
one newer video, a public speech by Dr. Frank-Walter Steinmeier from 2019, which
yields a similar WER of 25.9%.

8.2.4 Decoding Speed

Decoding speed depends on many factors and for some there is a trade-off between
speed and accuracy. In the following, we report results for tuning the beam size of
the ASR decoder with the default model size of kaldi-tuda-de (3.5GB), while using
the default options of Subtitle2Go otherwise. In Figure 8.4, we plot the complete
computation time needed for a particular video length, including startup and load-
ing times. The run times were measured on an Intel Xeon E5-2620 v4 CPU (2.10GHz)

140 Chapter 8. Automatic subtitling

0 5 10 15 20 25 30 35
Video length (min)

0

2

4

6

8

10

12

14

16

Co
m

pu
te

 ti
m

e
(m

in
)

Beamsize 1
Beamsize 2
Beamsize 5
Beamsize 10
Beamsize 13
Beamsize 15
Beamsize 18
Beamsize 20

FIGURE 8.4: Computation time needed for all processing steps for
different video and beam sizes. Timings were measured on one core

of an Intel server CPU (Xeon E5-2620 v4).

5 10 15 20
beamsize

26.5

27.0

27.5

28.0

W
ER

FIGURE 8.5: WER on the Lecture2Go test set, depending on the beam-
size.

using one core, with Kaldi linked against Intel MKL. As can be seen in the figure,
computation time grows linearly with video duration. In Figure 8.5, we show WER
on the Lecture2Go test set with the same beam sizes. Since there is little WER im-
provement for beam sizes larger than 13, but computation time increases consider-
ably, we settle on 13 as the default. Using this setting, a 35 minute video took 7m16s
of computation time for all processing steps. This yields a real-time factor of 0.2 and
a full 90-minute lecture could be subtitled in 20 minutes (i.e., before the next lecture

8.2. Subtitling Pipeline 141

period starts). While there is no parallelization beyond the vectorization of the In-
tel MKL BLAS operations, multiple videos can be decoded at the same time with
multiple cores.

8.2.5 Online Decoding

We used the German model for online decoding as well, enabling live transcriptions.
We created kaldi-model-server10 as an easy to use on-the-fly decoding server that
support direct microphone access as well as speech input from byte streams over
network. Kaldi-model-server uses PyKaldi (Can et al., 2018) with a custom nnet3
online decoder and can also be used with several microphones. When used with
multi channel audio input, it decodes the most active audio channel.

FIGURE 8.6: Architecture of MoM bot. The backend consists of a
model server and various microservices, while the frontend is a VUE

browser app.

In (Milde et al., 2021a), we presented meeting bot, a web based software that
uses kaldi-model-server. Figure 8.6 shows a diagram of the architecture, organized
as mircoservices. In our hardware setup, each speaker is given a (wireless) clip-
on microphone, which also identifies the speaker. Multi channel data is directly
recorded by kaldi-model-server and the most active audio channel is decoded. For
German, we use the model presented in this chapter. For English, we trained a
similar TDNN-HMM model on TED-LIUM 3 as in Chapter 5.

Using the online end pointing module in Kaldi, utterances are segmented on the
fly with a rule-based system that takes speech pauses into account. At a hypothe-
sized end point, we compute word confidences using Minimum Bayes Risk (MBR)
decoding (Xu et al., 2011) given the decoding lattice of the current utterance. Kaldi
model server then broadcasts partial and complete utterances with speaker informa-
tion to the event server using redis11. The event server directly communicates with
our VUE browser app and the current hypothesis is constantly updated through
server side events that are sent to the browser app that displays the current hypoth-
esis. The browser app uses a keyword microservice to extract relevant keywords on
the fly. Once the meeting is finished, users can generate a PDF with a short sum-
mary and full transcription of the meeting, where the browser app interacts with the
summarization server. For text summarization, we use TextRank. The resulting PDF
is generated directly in the browser with javascript.

10https://github.com/uhh-lt/kaldi-model-server (last accessed: December 2021)
11Redis can be used as a message broker, with clients subscribing to channels and listing for events.

See https://redis.io (last accessed: December 2021)

https://github.com/uhh-lt/kaldi-model-server
https://redis.io

142 Chapter 8. Automatic subtitling

FIGURE 8.7: Example screenshot of the meeting bot system. Taken
from (Milde et al., 2021a).

Figure 8.7 shows an example screenshot of our system. A timeline with separated
boxes displays the transcribed text and conversation history in real time (1). We are
showing the current hypothesis of the online model here as well. New boxes appear
for each speaker change. Keywords are highlighted after each completed utterance.
The text shown in the timeline can be shown in full, or in a reduced form (2), then
only displaying keywords and some words of context around them. The system
can be paused, resumed or stopped at any time (3). In (4), we show a word cloud
generated from discovered keywords. Similar words are clustered and displayed
in the same color. Newer keywords are weighted higher than old ones, so that the
word cloud can gradually visualize changes in topics. The transcript can then also be
edited in an editor that shows word and sentence level confidences of the recorded
utterances, before the user can download it as a PDF. The final PDF contains the
transcript of the meeting as well as a summarization.

FIGURE 8.8: Example screenshot of video conferencing software Big-
BlueButton with live subtitling. Taken from Geislinger et al. (2021).

8.2. Subtitling Pipeline 143

In (Geislinger et al., 2021), kaldi-model-server and the same German and En-
glish ASR models were used for creating a live subtitling plugin12 for the popular
open source video conferencing software BigBlueButton13. The screenshot in Figure
8.8 shows what BBB and the automatic subtitling looks like to the user. This is in
contrast to Meetingbot, where all participants sit in the same room and speech is
generally recorded separately. Thus this plugin decodes each speakers audio stream
separately and in parallel, so that there is need for speaker diarization. Overlapping
talk can also be handled seamlessly.

8.2.6 Conclusions and Outlook

We have introduced a freely available ASR model for German which improves the
previously best one by a large margin, both due to improvements in algorithms and
a significant increase of freely available data. Our models can be run locally and
user-recorded speech data for ASR application does not have to be transferred to a
3rd party cloud provider for speech decoding, where privacy concerns will arise.

Our evaluation shows that the model performs well on new speakers and dif-
ferent microphones with around 7.4% WER for rescored TDNN-HMM models on
the Tuda-De test set. This WER result is currently significantly better than other
published results from various end-to-end systems on the same test set. The size
of the general purpose vocabulary has a large effect on WERs - a large part of the
remaining recognition errors are due to vocabulary problems and the underlying
language model. We expect a subword unit or decompounding approach to work
better than a fixed word approach for German read speech (Smit et al., 2017). A re-
maining challenge is conversational speech, as the training data is by and large read
speech. As more and more articles are spoken and recorded by volunteers for the
Spoken Wikipedia project, we also expect benefits for our acoustic models through
the use of the additional data. Our final model can deal with different microphone
and unknown speakers in an open vocabulary setting. The model can be used to
decode very long audio files as well and we make use of this in automatic subtitling.
Punctuation reconstruction is possible with reasonable accuracy on text data alone.

We proposed a segmentation algorithm for splitting the subtitle texts into reason-
able chunks for display purposes, with a beam search to find a good global solution
maximizing splitting rewards. The rewards are calculated based on the restored
punctuation and shortest connecting paths of adjacent words in parse trees to avoid
splitting at very closely connected adjacent words. The proposed solution is flexible
and other constraints, such as a maximum character length of a displayed subtitle
chunk, can easily be integrated into the segmentation search.

The model can also be used in online decoding to generate live subtitles and we
demonstrated this capability in two applications: Meetingbot, a software for live

12Available at https://github.com/uhh-lt/bbb-live-subtitles (last accessed: April
2022)

13https://bigbluebutton.org/ (last accessed: April 2022)

https://github.com/uhh-lt/bbb-live-subtitles
https://bigbluebutton.org/

144 Chapter 8. Automatic subtitling

transcriptions as well as summarization of meetings and a plugin for the video con-
ferencing software Big Blue Button.

A set of older and already transcribed lectures from 2009 to 2014 was also used
for evaluation, yielding an average WER of 26.3%. Some of the recordings are also of
sub-optimal quality and newer uploads tend to have better recording quality. Gen-
erally, there is a domain mismatch for lecture recordings, as the acoustic model is
trained on read speech data.

As of October 2021, Lecture2Go14, the university-wide media platform for lec-
tures and presentations at Universität Hamburg included the open source German
subtitling solution15 presented in this chapter into their production system. Any lec-
turer uploading lecture videos to this platform can make use of the automatic subti-
tling feature and ASR model (currently only for German, but an English model will
soon be available as well). The subtitles can then be further annotated and manually
corrected on the Lecture2Go upload platform. Over time, these corrected transcrip-
tions could also be used to retrain the acoustic and language models to reduce WER
for lecture videos.

14https://lecture2go.uni-hamburg.de/ (last accessed: April 2022)
15Available at https://github.com/uhh-lt/subtitle2go (last accessed: April 2022)

https://lecture2go.uni-hamburg.de/
https://github.com/uhh-lt/subtitle2go

145

Chapter 9

A Document Retrieval System for
Speech Streams

Recent advancements in Automated Speech Recognition (ASR) and Natural Lan-
guage Understanding (NLU) have proliferated the use of personal assistants like
Siri1 or Google Now2, with which people interact naturally with their voice. How-
ever, the activation of such systems has to be specifically triggered and they are
targeted to an (ever–growing) set of anticipated question types and commands.

When taking part in a conversation or listening to a lecture, people may want
to look up helpful information or check facts. Manually checking this information
or interacting with a personal assistant would hamper the flow of the discussion,
respectively distract from the lecture. In the following, we present Ambient Search,
a system that ambiently researches relevant information in the form of proposing
relevant documents to users in conversations or users who passively listen to spo-
ken language. In contrast to other personal assistants, our system is not specifically
triggered. Instead, it unobtrusively listens to speech streams in the background and
implicitly queries an index of documents. We see the following utility in our ap-
proach: The assistant stays in the background and does not disturb the user. Access
to the displayed snippets is on demand and the user can access the information in
context without the need to formulate a specific query.

Of course, these advantages are fundamentally based on how well the system is
able to retrieve relevant documents, as the system’s utility diminishes when propos-
ing a lot of irrelevant documents. In this chapter, we also evaluate how well the
system is able to retrieve relevant Wikipedia articles in spite of average speech recog-
nition word error rates (WER) of 15.6% on TED talks and show that it finds more rel-
evant articles compared to another implicit information retrieval system on speech
streams.

1http://www.apple.com/ios/siri/ (last accessed: December 2021)
2https://www.google.com/landing/now/ (last accessed: December 2021)

http://www.apple.com/ios/siri/
https://www.google.com/landing/now/

146 Chapter 9. A Document Retrieval System for Speech Streams

9.1 Related Work

The Remembrance Agent (Rhodes and Starner, 1996) is an early prototype of a con-
tinuously running automated information retrieval system, which was implemented
as a plugin for the text editor Emacs3. Given a collection of the user’s accumulated
email, Usenet news articles, papers, saved HTML files and other text notes, it at-
tempts to find those documents that are most relevant to the user’s current con-
text. Rhodes and Maes (2000) defined the term just-in-time information retrieval agents
as “a class of software agents that proactively present information based on a per-
son’s context in an easily accessible and non-instrusive manner”. A person’s context
can be a very broad term in this regard. E.g. Jimminy (Rhodes, 1997) represents a
multimodal extension of the Remembrance Agent. Dumais et al. (2004) introduced
an implicit query (IQ) system, which serves as a background system when writing
emails. It also uses Term Frequency – Inverse Document Frequency (TF-IDF) scores
for keyword extraction, like the Remembrance Agent.

Other systems cover a user’s explicit information needs, e.g. Ada and Grace are
virtual museum guides (Traum et al., 2012) that can suggest exhibitions and answer
questions. The Mindmeld4 commercial assistant can listen to conversations between
people to improve the retrieval results by fusing the user’s location information with
from keywords extracted from transcripts. The FAME interactive space (Metze et al.,
2005) is a multi-modal system that interacts with humans in multiple communica-
tion modes in order to suggest additional information to them. Although FAME
supports speech recognition and voice commands, it only listens to conversations
for a longer period of time when it guesses a conversation’s topic and can suggest
documents with explicit commands. Another class of systems try to record the con-
tent of a conversation or speech stream and visualize it using a network of terms: For
example, SemanticTalk (Biemann et al., 2004) iteratively builds a structure similar to
a mindmap and can also visualize conversation trails with respect to background
documents.

The most similar approach to Ambient Search was presented by Habibi and Po-
pescu-Belis (2015), extending earlier work of an Automatic Content Linking Device
(ACLD) (Popescu-Belis et al., 2000). It uses an LDA topic model for the extraction of
keywords and the formulation of topically separated search queries. The extracted
set of keywords as well as the ultimately returned set of document recommendations
fulfill a trade-off between topical coverage and topical diversity.

Since this system can be considered a state-of-the-art system of implicit informa-
tion retrieval in speech streams, we compare our approach to this one in the evalua-
tion in Section 9.3, alongside a TF-IDF-based baseline. A major difference to Habibi
and Popescu-Belis, 2015, which operates on complete speech transcriptions only, is

3https://www.gnu.org/software/emacs/ (last accessed: December 2021)
4http://www.mindmeld.com (last accessed: December 2021)

https://www.gnu.org/software/emacs/
http://www.mindmeld.com

9.2. Our Approach to Ambient Search 147

that our implementation is also able to retrieve relevant documents in real time, i.e.
by processing live speech input.

9.2 Our Approach to Ambient Search

...over our lifetimes we've all
contributed to climate change ...

(1) (2)
(I) climate change
(II) lifetimes
(III) ...

(3)

“climate change”^3.5 OR lifetimes^2.3 OR ...

Index

(4)

Retrieved
documents

(5a) (5b)
Intergovernmental
Panel on Climate
Changeglobal

warming
C°

20

10

time

very
bad!

now futurepast

global
warming

C°

20

10

time

very
bad!

now futurepast

Merge with previously
retrieved documents

Present final
top n documents

FIGURE 9.1: Processing steps of Ambient search

Our approach is based on five major processing steps, as depicted in Figure 9.1.
These steps are carried out in real-time and in a streaming fashion, i.e. we make use
of a new transcription hypothesis as soon as it is available.

At first, the speech signal is streamed into an ASR system (1). It emits the par-
tial sentence hypothesis and also predicts sentence boundaries. Once a full sentence
has been hypothesized, new keywords and keyphrases are extracted in the current
sentence, if available (2). These terms are then ranked (3) and merged with the ones
from previous sentences. A query is then composed, which is submitted to a pre-
computed index of documents (4).

Eventually, the returned documents are also aggregated (5a), i.e. previously
found documents decay their score over time and newer documents are sorted into a
list of n best documents. This list is then sorted by topical relevance of the documents
and by time, with newer documents having precedence. Finally, the n best relevant
documents are presented to the user (5b) and updated as soon as changes become
available. Alongside the n best documents, a time line of previously suggested arti-
cles is also maintained and displayed. The next subsections provide further details
on the individual major processing steps.

9.2.1 Speech Decoding

We use the popular Kaldi (Povey et al., 2011) open-source speech recognition frame-
work and acoustic models based on the TED-LIUM corpus (Rousseau et al., 2014).
We make use of online speech recognition, i.e. models that transcribe speech in real-
time and emit a partial transcription hypothesis, as opposed to offline decoding that

148 Chapter 9. A Document Retrieval System for Speech Streams

operates on already recorded and complete utterances. The models were built us-
ing the standard recipe for online acoustic models based on a DNN-HMM acoustic
model and i-vectors. We also make use of the TED-LIUM 4-gram language model
(LM) from Cantab Research (Williams et al., 2015). The vocabulary of the speech
recognizer is determined by its phoneme dictionary5 and is confined to about 150k
words. The online speech recognizer achieved an average WER of 15.6% on TED
talks that we selected for the evaluation in Section 9.3.

We make use of kaldi-gstreamer-server6, which wraps a Kaldi online model
into a streaming server that can be accessed with websockets. This provides a bi-
directional communication channel, where audio is streamed to the server applica-
tion and partial and full sentence hypotheses and boundaries are simultaneously
returned as JSON objects.

9.2.2 Keyphrase Extraction

A keyphrase, as opposed to a single keyword, can consist of one or more keywords
that refer to one concept. We first precompute a DRUID (Riedl and Biemann, 2015)
dictionary on a recent Wikipedia dump with scores for single adjectives or nouns
and noun phrases. The restriction to only use adjectives and nouns is a common
one in keyword detection, c.f. (Liu et al., 2010). DRUID is an unsupervised mea-
sure for multiword expressions using distributional semantics. Intuitively, DRUID
finds multiword expressions by combining a uniqueness measure for phrases with
a measure for their incompleteness. Uniqueness in this context is based on the as-
sumption that multiword expressions (MWEs) can often be substituted by a single
word without considerably changing the meaning of a sentence.

The uniqueness measure uq(t) is computed with a distributional thesaurus, as
the ratio of all similar unigrams of a term t divided by the number of n-grams simi-
lar to t. The incompleteness (ic) measure serves to punish incomplete terms, in that
it counts the number of times that the same words appear next to a term. The fi-
nal DRUID measure for any term t is the subtraction of the incompleteness measure
from the uniqueness measure: DRUID(t) = uq(t)− ic(t). This helps to rank incom-
plete multiwords lower than their complete counterparts, e.g. ’red blood’ is ranked
lower than ’red blood cell’.

DRUID is implemented as a JoBimText (Biemann and Riedl, 2013) component,
which can be downloaded from the JoBimText project website7 alongside precom-
puted dictionaries for English.

5The Kaldi TED-LIUM recipe uses CMUdict (https://github.com/cmusphinx/cmudict (last
accessed: December 2021)) plus a few automatically generated entries

6https://github.com/alumae/kaldi-gstreamer-server (last accessed: December 2021)
7http://ltmaggie.informatik.uni-hamburg.de/jobimtext/components/druid/

(last accessed: December 2021)

https://github.com/cmusphinx/cmudict
https://github.com/alumae/kaldi-gstreamer-server
http://ltmaggie.informatik.uni-hamburg.de/jobimtext/components/druid/

9.2. Our Approach to Ambient Search 149

9.2.3 Term Ranking

We first precompute IDF and Word2Vec (Mikolov et al., 2013) lookup tables for all
unique words in the Simple English Wikipedia and for all multiword terms in our
DRUID dictionary. Word2Vec (CBOW) is our source for semantic similarity. We train
it on stemmed text and treat multiwords as found with DRUID as opaque units. The
final word embedding lookup table maps (in our case stemmed) word and phrase
IDs into a 100 dimensional continuous vector space. The model exploits the dis-
tributional properties of raw text for semantic similarity and the distance between
embeddings can be used as a word and phrase similarity measure.

Using the lookup tables, we build a term ranking measure as follows. We extract
all keyphrases from the last 10 sentences with a DRUID score of ≥ c and filter all
stop words and any word that is not an adjective or noun, as determined by an off-
the-shelf part of speech (POS)-tagger8. The cutoff constant c can be used to tune
the amount of generated multiword candidates, with useful values ranging from 0.3
to 0.7 (see also Section 9.3). All multiwords and any single word remaining after
filtering is proposed as a candidate. We then compute the average Word2Vec vector
over all candidate terms. Finally, we score each candidate term according to the
cosine distance of each term word vector to the average term word vector of the last
10 sentences and multiply this with the TF-IDF score of the given term:

tr(termk, trans) = dcos

w2v(termk),
1

|terms|

|terms|∑
i=1

w2v(termi)

 · TFIDF (termk, trans)

(9.1)

where tr is the term ranking function that ranks a termk out of the set of all
candidate terms to a given transcript trans. w2v yields the embedding of the given
term, TFIDF yields the TFIDF score of the given term and transcript (IDF computed
on the background Wikipedia corpus) and dcos is the standard cosine similarity.

This ranking measure tr can be interpreted as a combination of the distance to the
core topic (Word2Vec) and the general importance of the term for the text window
(TF-IDF). We use the measure to extract up to 10 highest ranked candidate keywords
and keyphrases in the text window. For instance, for the first third of Alice Bows
Larkin’s TED talk on climate change9, the system would rank the terms as: ”climate
change”, future, emissions, ”negative impacts”, potential, profound, workplaces,
behaviors, gas.

150 Chapter 9. A Document Retrieval System for Speech Streams

FIGURE 9.2: Screenshot of the system after listening to the first min-
utes of the TED talk “We’re too late to prevent climate change - here

is how we adapt” by Alice Bows Larkin

9.2.4 Index Queries

We use Elastic Search10 and stream2es11 to build an index of the Simple English
Wikipedia12. We index all articles, including special pages and disambiguation pages
and use a query filter to obtain only regular articles when querying the index. We
build an OR query where at least 25% of the query terms should match (by setting
the ”minimum_should_match” parameter), also assigning the scores obtained in the
last section to the individual terms in the query.

With the example ranking from the previous section, the query would be:

"climate change"^23.111 future^13.537 emissions^9.431 "negative

impacts"^3.120 potential^2.985 profound^2.679 workplaces^2.562

behaviors^2.368 gas^1.925

It would return the following Wikipedia articles (ranked by Elastic Search in that
order):

8The POS tagger we use is from the spacy library (http://spacy.io) (last accessed: December
2021)

9 https://www.ted.com/talks/alice_bows_larkin_we_re_too_late_to_prevent_
climate_change_here_s_how_we_adapt (last accessed: December 2021)

10https://www.elastic.co/ (last accessed: December 2021)
11https://github.com/elastic/stream2es (last accessed: December 2021)
12https://simple.wikipedia.org (last accessed: December 2021)

http://spacy.io
https://www.ted.com/talks/alice_bows_larkin_we_re_too_late_to_prevent_climate_change_here_s_how_we_adapt
https://www.ted.com/talks/alice_bows_larkin_we_re_too_late_to_prevent_climate_change_here_s_how_we_adapt
https://www.elastic.co/
https://github.com/elastic/stream2es
https://simple.wikipedia.org

9.2. Our Approach to Ambient Search 151

"Intergovernmental Panel on Climate Change", "Global warming", "

Climate change", "Global dimming", "The Weather Makers", "

Greenhouse effect", "United Kingdom Climate Change Programme", "

Ocean acidification", ...

This process is repeated for every new sentence and the scores of older retrieved
documents decay (are multiplied with d = 0.9), to allow newer documents to rank
higher.

9.2.5 Visual Presentation

Figure 9.2 gives a visual impression of our system, after it has listened for a few
minutes to Alice Bows Larkin’s TED talk on climate change. We show excerpts of
up to four relevant Wikipedia documents to the user. Clicking on such a document
opens up a modal view to read the Wikipedia article. Articles are either retrieved
online or using an offline version of the Simple English Wikipedia using XOWA13.
Articles can be starred to quickly retrieve them later and also removed, to signal
the system that the article was irrelevant. When newer and more relevant articles
are retrieved, older articles move into a timeline, which is constructed above the
currently retrieved articles. The newest articles are at the bottom of the page and
the page keeps automatically scrolling to the end, like a terminal, if the user does
not scroll up. In the timeline, the relevance of a document is also visually displayed
with different coloring of an element’s circular anchor. The user can also regulate
the threshold for minimum document relevance.

9.2.6 Implementation Details

We encapsulate the processing steps outlined in Section 9.2 into the following Python
programs:

(1) A Kaldi client program that either uses the system’s microphone or an audio
file, streaming it in real time to obtain partial and full transcription hypothesis. (2) A
relevant event generator program that searches for new keywords and keyphrases and
queries the elastic search index to obtain relevant documents. (3) The Ambient Search
server, which sends out appropriate events to the browser view to display the current
top n relevant documents and to move older documents into a timeline.

We make use of message passing to communicate inputs and results of the in-
dividual programs using a redis-server14. Word2Vec and TF-IDF vectors are com-
puted with the Gensim (Řehůřek and Sojka, 2010) package, while DRUID is precom-
puted as a list with JoBimText15. The Ambient Search web page is using HTML5/JS
and Bootstrap16 and connects to an ambient server instance running on the Python

13https://gnosygnu.github.io/xowa/ (last accessed: December 2021)
14http://redis.io/ (last accessed: December 2021)
15http://ltmaggie.informatik.uni-hamburg.de/jobimtext/components/druid/

(last accessed: December 2021)
16http://getbootstrap.com/ (last accessed: December 2021)

https://gnosygnu.github.io/xowa/
http://redis.io/
http://ltmaggie.informatik.uni-hamburg.de/jobimtext/components/druid/
http://getbootstrap.com/

152 Chapter 9. A Document Retrieval System for Speech Streams

micro-framework Flask17. The web page is updated using Server Sent Events (SSE)
or Long Polling as a browser fallback. This enables a reversed information chan-
nel, where the server pushes descriptions of new relevant documents to the browser
client as it becomes available.

9.3 Evaluation

We base our evaluation on 30 fragments of 10 recent TED talks, which we down-
loaded as mp3 files from the TED.com website. These talks are not part of the TED-
LIUM training dataset. In the following, we evaluate the proposed keywords and
keyphrases, as well as the proposed documents from the audio file transcribed in
real-time.

9.3.1 Keyphrase and Document Retrieval

We had two annotators manually pick terms (keywords and keyphrases) that are
central to the topic of the talk and those that would cover a user’s potential addi-
tional information needs. What should be included as a term can be very subjective,
the inter-annotator agreement is κ = 0.45, with one annotator choosing 292 terms in
total and the other 580. The overlapping set we use in our evaluation consists of 206
terms and 460 other terms were chosen by only one of the annotators.

Finally, we also measure directly how relevant the retrieved documents are: We
focus on an evaluation of the top-ranked documents returned by our ambient IR sys-
tem for a particular TED talk fragment, since only top documents are suggested to
the user of Ambient Search. The Normalized Discounted Cumulative Gain (NDCG)
measure (Järvelin and Kekäläinen, 2002) is a popular choice to evaluate search en-
gines and also takes into account the ranking of the proposed documents.

We evaluate on the top-5 returned documents of the complete system. We had
two annotators that used the standard relevance scale from 0-3, where 0 means ir-
relevant and 3 very relevant. NDCG directly measures how relevant the returned
documents are. While the effort is considerably higher, since different system out-
puts have to be judged, NDCG measures the end-to-end performance of the system.
For computing NDCG, we pool all judgments across systems, obtaining an aver-
age of 27.7 relevance judgments per fragment, following standard practices for IR
evaluations (Clarke et al., 2012). We use the standard NDCG measure with k = 5:

NDCGk =
DCGk

IDCGk
(9.2)

17http://flask.pocoo.org/ (last accessed: December 2021)

http://flask.pocoo.org/

9.3. Evaluation 153

DCGk = (rel1 +

k∑
i=2

reli
log2i

) (9.3)

where reli is a document’s average relevance score in respect to the speech in-
put. The Ideal Discounted Cumulative Gain (IDCG) assumes the best ranking of
all possible relevant documents found in the set of all pooled judgments of a given
transcript. The DCG on this optimal ranking, with respect to the set of documents
retrieved by all systems for a particular transcript, is then used to compute IDCG.

9.3.2 Results

TABLE 9.1: Comparison of TF-IDF baseline keyword and keyphrase
extraction methods, the proposed LDA based keyword extraction
method by Habibi and Popescu-Belis, 2015 and our proposed method
based on DRUID, Word2vec and TF-IDF. The comparison is based on
the same Kaldi transcriptions and the same training resources (Sim-

ple English Wikipedia from May 2016).

Keyword/keyphrase
extraction method

Mean Recall
(Std. Dev. in %)

Mean Precision
(Std. Dev. in %)

Mean NDCG
(Std. Dev. in %)

(1) TF-IDF baseline
no MWEs, no filtering 26.97% (16.74%) 24.33% (15.42%) 0.188 (20.0%)

(2) TF-IDF baseline
no MWEs, stopword filtering 39.24% (15.36%) 34.33% (10.86%) 0.387 (27.8%)

(3) TF-IDF baseline
no MWEs, full filtering 40.91% (13.55%) 36.42% (10.99%) 0.426 (27.8%)

(4) TF-IDF baseline
with MWEs (c=0.3), full filtering 43.22% (18.22%) 37.09% (16.61%) 0.392 (27.4%)

(5)
Habibi and PB

original implementation 36.68% (15.37%) 32.00% % (11.66%) 0.427 (28.0%)

(6) Habibi and PB
our prep., without MWEs 43.76% (16.78%) 39.24% % (12.75%) 0.465 (24.1%)

(7) Our proposed method
with MWEs (c=0.3) 48.52% (21.55%) 41.89 % (15.82%) 0.453 (25.7%)

(8) Our proposed method
with MWEs (c=0.5) 48.08% (17.63%) 42.42 % (13.20%) 0.469 (26.9%)

(9) Our proposed method
with MWEs (c=0.7) 48.48% (19.15%) 42.42 % (13.45%) 0.471 (26.1%)

(10) Our proposed method
without MWEs 44.87% (17.24%) 40.08% (14.03%) 0.481 (26.8%)

In Table 9.1, we show a comparison of different methods for automatic keyword
extraction on TED talk transcriptions (as produced by kaldi-gstreamer-server / the
Kaldi online model). All methods use the same resources, i.e. they are all pretrained
on the same Simple English Wikipedia dump from May 2016. However, our pro-
posed method and the TF-IDF baseline can also produce terms that are DRUID mul-
tiwords, while the original implementation of Habibi and Popescu-Belis (2015) can

154 Chapter 9. A Document Retrieval System for Speech Streams

TABLE 9.2: Comparison of the proposed LDA based keyword extrac-
tion method by (Habibi and Popescu-Belis, 2015) and our proposed
method based on DRUID, Word2vec and TF-IDF on manual TED talk

transcripts.

Keyword/keyphrase
extraction method

Mean Recall
(Std. Dev. in %)

Mean Precision
(Std. Dev. in %)

Mean NDCG
(Std. Dev. in %)

(11) Habibi and PB
our prep., without MWEs 43.99% (15.26%) 39.33 % (12.63%) 0.476 (21.7%)

(12) Our proposed method
with MWEs (c=0.3) 51.75% (20.43%) 45.67 % (16.47%) 0.518 (24.8%)

(13) Our proposed method
with MWEs (c=0.5) 52.19% (19.09%) 46.19 % (15.27%) 0.574 (22.1%)

(14) Our proposed method
with MWEs (c=0.7) 52.68% (17.20%) 46.85 % (14.76%) 0.602 (22.1%)

(15) Our proposed method
without MWEs 47.81% (17.28%) 43.52 % (16.09%) 0.578 (25.2%)

only produce single keywords. All methods where allowed to produce maximally 10
words in the keyword evaluation. Partially covered keyphrases where also counted
as a hit for the direct keyword evaluation and a multiword term was counted as
multiple words. In the NDCG evaluation, we allow each system to produce an equal
number of 10 terms.

For the TF-IDF baselines (1-4), preprocessing is the most important performance
factor, with the best results being obtained by filtering stop words and any words
that are not adjectives and nouns. However, while DRUID multiwords help to gain
much better keyword recognition scores, it did not achieve a better NDCG score on
speech transcripts. We also saw good results using the method proposed by Habibi
and Popescu-Belis (2015), with the diversity constraint (λ) set to the default value
of 0.75, which was the optimal value in the domain of meeting transcripts. How-
ever, we noticed that the publicly available Matlab implementation of this method18

only removed stopwords as part of its preprocessing (5). When we use our prepro-
cessing as input (6), we can improve both keyword and NDCG evaluation scores
significantly.

Our proposed methods (7-9) with enabled multiword keyphrases seem to better
represent the content of fragments, as shown by the keyword judgements. Again,
DRUID further improved keyword recognition scores, but it did not achieve a better
NDCG score on speech transcripts. The best NDCG score using speech transcripts
was obtained with our proposed method without using multiwords (10). We experi-
mented with different values of c: 0.3, 0.5 and 0.7, which all lowered NDCG scores.
On average, this translates to 2.16, 1.56 and 0.53 multiword terms per query, respec-
tively. The numbers are slightly lower if we use manual transcripts (1.9, 1.4 , 0.5).

We also evaluated our methods on manual transcriptions (11-15), see Table 9.2.

18https://github.com/idiap/DocRec (last accessed: December 2021)

https://github.com/idiap/DocRec

9.3. Evaluation 155

Here the picture is different, as using DRUID can improve NDCG scores. How-
ever, only the highest cutoff factor of 0.7 (producing the smallest number of mul-
tiword candidates) yielded the best performance, suggesting that the number of
added multiword candidates is an important parameter in the query generation.
The scores on manual transcriptions can also be understood as the theoretically best
possible scores for each method, assuming a perfect speech transcription system. If
we compare them, we find that imperfect transcriptions have a high impact on sys-
tem performance for all methods, as NDCGs are considerably higher with manual
transcripts. If we correlate WER with our method in (10), we only observe a weak
negative correlation of -0.193. If we use multiword terms, the negative correlation is
higher with a coefficient of -0.293. The comparison system from Habibi and Popes-
cu-Belis in (6) has the lowest negative correlation of -0.118 and it does not seem to
gain as much in the NDCG evaluation on perfect transcriptions as our system.

9.3.3 Error Analysis

If we look at fragments individually and compare our method (10) to Habibi and
Popescu-Belis (2015), we find that in 15 transcription fragments their system has a
higher NDCG score and in 14 our system scores higher, with one equal score. On
average, in cases where our system scored higher, WER was 14.8%, and where it
scored lower WER was 16.8%. For example, for all 3 fragments of the talk “Kids
Science” by Cesar Harada19, where the accent of the speaker deteriorates WER to
33.4%, our system returns much more irrelevant documents. Our average NDCG for
the talk is 0.180, while Habibi and Popescu-Belis’ system scores 0.454. Among the
articles found by our system are “National School Lunch Program”, “Arctic Ocean”,
“Fresh water”, “Water”, “Coal preparation plant”, “Coal mining” and “Plant”, with
most of the articles being irrelevant to the talk.

Word errors and resulting erroneous search terms are responsible for most ir-
relevant documents. For example, the phrase “in coal power plant” appears in
the transcript instead of “nuclear power plant”. In this example, Habibi and Po-
pescu-Belis’ system finds better matching articles, like “Microscope”, “Light Mi-
croscope”, “Mangrove” , “Fresh water”, “River delta”, “Fishing” which can be at-
tributed to finding the keyword “microscope” and otherwise picking simpler key-
words like “ocean”, “sea”, “fishing” and “river”, which our system entirely misses.
This changes when we run the systems on the manually transcribed texts, as our
system with enabled multiword terms (9) then finds “nuclear power plant”, which
helps to retrieve very relevant documents (“Nuclear reaction”, “Nuclear chemistry”,
“Nuclear power plants”).

Moreover, if we enable the use of multiword terms in our method with c=0.7, we
observe that NDCG was improved by the keyphrase enabled method in 9 cases, but
also decreased in 11, with the other 10 transcripts remaining unchanged. If WER

19http://www.ted.com/talks/cesar_harada_how_i_teach_kids_to_love_science
(last accessed: December 2021)

http://www.ted.com/talks/cesar_harada_how_i_teach_kids_to_love_science

156 Chapter 9. A Document Retrieval System for Speech Streams

is poor, the keyphrase enabled methods do not seem to contribute to improving
NDCG performance and tend to lower it. For example, in the 5 transcripts with the
highest WER (19.8-40.9%, average: 26.4%), 3 scores are lowered and 2 unchanged.
If we group all cases where the NDCG performance drops, we observe an average
WER of 16.9% vs. 12.3% for the cases where they help to improve the NDCG score
(average of all transcripts is 15.6%). This further suggests that a query generation
with multiword terms helps more in cases where word error rates are low.

Interestingly, in 5 out of 30 transcripts, no multiword terms are found with c=0.7
but NDCG values were still slightly lower in all cases compared to our single word
method. While the set of terms in all queries were nearly unchanged, their ranking
was affected. This might be attributed to how we build IDF and Word2Vec models:
multiwords are opaque units in the models. This can change the dense vectors and
IDF values for the constituents of multiwords compared to training on single words
and thus affect ranking scores. However, in some of the automatic transcriptions,
only constituents of the correct multiwords can be found because of transcription
errors, so that our method has to rank the constituent instead of the full multiword.

9.4 Conclusion

We presented Ambient Search, an approach that can show and retrieve relevant doc-
uments for speech streams. Our current prototype uses Wikipedia pages, as this
provides a large document collection for testing purposes with a universal coverage
of different topics.

Our method compares favorably over previous methods of topic discovery and
keyword extraction in speech transcriptions. We explored the use of multiword
terms as keyphrases, alongside single word terms. Our proposed extraction method
using Word2Vec (CBOW) embeddings and TF-IDF is fairly simple to implement and
can also be adapted quickly to other languages as it does not need any labelled train-
ing data. The only barrier of entry can be the availability of a speech recognition
system in the target language.

We also plan to evaluate a more dynamic approach to query generation, where
the number of terms is dynamically chosen and not simply capped at a maximum
number of term candidates after ranking. As the proposed use of multiword terms
seems to be somewhat dependent on the quality of the transcription, it might also
make sense to include likelihood information of the speech recognition system. Our
evaluation on manual transcriptions also suggests that there is quite a large head-
room for our system to benefit from any future reductions in WER of the online
speech recognition component.

In actual live deployment and usage in discussions, lectures or business meet-
ings, confidential information can be present in the speech streams. A privacy aspect
has already been addressed by Ambient Search: the speech recognition is not carried
out “in the cloud” and can be deployed on one’s own infrastructure. Similarly, an

9.4. Conclusion 157

offline version of the Simple English Wikipedia and a corresponding search index
is used to retrieve and find articles. The transmission of personal data through the
internet can be entirely omitted – a vital aspect for the acceptance of such an appli-
cation.

We have published the source code of Ambient Search under a permissive license
on Github20, along with all pretrained models, a demonstration video, evaluation
files and scripts that are necessary to repeat and reproduce the results presented in
this chapter.

20https://github.com/bmilde/ambientsearch (last accessed: April 2022)

https://github.com/bmilde/ambientsearch

159

Chapter 10

Conclusion

In this thesis, we demonstrated that effective speech representations can be learned
from the speech data itself, mostly without any further annotations. To that end,
deep neural networks trained with stochastic gradient decent are a powerful tool
to train models that learn representations of speech through context. Several dif-
ferent training paradigms ranging from transfer learning, unsupervised learning,
self-supervised learning, multitask learning to supervised learning were applied to
speech processing tasks.

Transfer learning can be useful when neural networks are trained on speech pro-
cessing tasks with little training data. A model that is pretrained on an auxiliary
task may generalize better to a target task. We used it effectively together with neu-
ral network based representation learning in a paralinguistic classification task with
raw spectogram features, beating the classification results of models based on hand-
crafted features by a large margin.

The Unspeech model proposed in this thesis can explicitly embed speech con-
texts into fixed-sized dense vectors. The model is trained on unannotated speech
using unsupervised contrastive self-supervision. Due to a wide range of variability
because of channel, speaker and environment factors, context is important in speech
processing tasks. We showed that depending on the negative sampling method,
such context embeddings can have speaker properties, or be used to embed speaker-
independent speech information. The embeddings can be used to cluster speech
segments. Using the labels yields gains in ASR application, when no speaker labels
are available in the training data. The embeddings can also directly be appended to
speech representations commonly used as input to acoustic models such as TDNN-
HMMs to improve speech recognition tasks. Results on further downstream task
applications such as speaker recognition, short command recognition and emotion
recognition show a wide range of other possible applications. Unspeech embed-
dings can thus also be used in tasks that require speaker independence. They can
be used to rapidly tackle speech tasks with simple linear classifiers, leveraging pre-
trained Unspeech models to generate the embeddings.

In automatic unit discovery, we aim to find units that behave similarly to lin-
guistically motivated phones, in the sense that the learned representations are able
to encode differences in minimal pairs of a language. Until recently, this task was

160 Chapter 10. Conclusion

a niche subject in speech processing, but has received continued research interest
over the past years. Recent works of (Liu et al., 2018) and (Baevski et al., 2021) show
that acoustic unit discovery is currently key to solving unsupervised ASR (see also
Chapter 3.13). In most cases, the task of acoustic unit discovery is using untran-
scribed speech as input data. The representations can then be used as input to train
unsupervised ASR systems that only need collections of text and audio data with-
out any alignments to iteratively train a full ASR system. ABX error rate as a direct
proxy can be used to assess the quality of either and can directly measure if the
learned representations can distinguish minimal pairs of a language as well as dis-
tinguish between speaker properties of the signal. However, clustering discretized
units of speech well seems to be difficult. Nonetheless, the discretized units scored
lower ABX error rates than standard speech features such as PLP and MFCC.

While ABX is representation agnostic, i.e. it can be used to compare discretized
units as well sequences of embeddings (as well as standard speech features such as
MFCC and PLP), it seems to be difficult to fairly compare ABX errors on discretized
units vs. dense embeddings. However, when dense embeddings from other systems
are discretized for a fairer comparison, Sparsespeech units compare favorably. Gum-
bel softmax is a powerful tool to integrate discrete inference into neural networks.
The approximation is also an elegant solution to the otherwise non-differentiability
of discretization in neural networks. It allows discrete inference to be used in models
that can then still be trained with standard back-propagation. The resulting output
can be interpreted as an unsupervised posteriogram over an inventory of units.

Automatic G2P conversion is also needed for unsupervised speech recognition
and is used to extend the lexicon in many supervised ASR models as well. Outliers
and loan words are difficult corner cases for automatic G2P, even when multi-task
learning is applied and G2P models are trained on multiple languages. Manual
annotation for these difficult cases is unfortunately still necessary, but confidence
values can be used to select frequent candidates where G2P is likely to fail.

In the more practical-oriented part of this thesis, a recipe to train German ASR
models was developed to leverage freely available audio sources and insights gained
on lexicon extension with automatic G2P conversion for German. A TDNN-HMM
model trained on 1,700 hours of freely available audio data yields strong WER re-
sults on the Tuda-De test set and beats other published WER results on this dataset
by a large margin, including various end-to-end models. Only a very recent re-
sult, concurrent to the submission of this thesis, shows that a Conformer Transducer
trained on much more training data (4,520 hours) is able to exceed this result.

The ASR model was also successfully applied to automatic subtitling for lectures,
yielding a practical system that is used by the lecture media platform of Universität
Hamburg (Lecture2Go). Any lecturer uploading videos to Lecture2Go can now use
this automatic subtitling service. Furthermore, at the intersection of NLP and speech
applications, several speech applications have been proposed, such as a live meeting
transcription system with automatic summarization and simultaneous visualization

Chapter 10. Conclusion 161

and an ambient search application that retrieves relevant Wikipedia articles on the
subject of a discussion. Privacy is important in such applications, thus processing
speech locally is a necessity.

Representation learning is key to solving the problem of high variance and com-
plexity of spoken language in speech signals. Alternative machine learning para-
digms, other than purely supervised, are going to be central in improving speech
recognition and speech processing tasks further. In turn, they allow more flexible
data scenarios, in which for example speech data is only partially labeled, or where
a G2P model is trained on multiple related languages or lexicon sources with differ-
ent phoneme sets. Pre-trained speech models with self-supervision allow to rapidly
build a system for speech classification tasks.

While this thesis focuses on German and English ASR, there is undoubtedly un-
tapped potential in languages that do not enjoy such a high amount of available
resources as English and German, when alternative machine learning paradigms
are applied to them. Going forward, particularly models that can learn from unla-
beled speech data, such as the ones proposed in this thesis, will be of high interest.
Applying them effectively to under-resourced languages with unsupervised speech
recognition will undoubtedly make it easier to unlock practical speech systems for
many other languages.

163

Bibliography

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. (2016).
“TensorFlow: A system for large-scale machine learning”. In: Proc. USENIX Sym-
posium on Operating Systems Design and Implementation. Savannah, GA, USA, pp. 265–
283 (cit. on pp. 83, 104).

Acero, Alejandro and Richard Stern (1990). “Environmental robustness in automatic
speech recognition”. In: Proc. Acoustics, Speech and Signal Processing (ICASSP).
Albuquerque, NM, USA, pp. 849–852 (cit. on p. 5).

Agarwal, Aashish and Torsten Zesch (2019). “German End-to-end Speech Recogni-
tion based on DeepSpeech”. In: Proc. KONVENS. Erlangen, Germany, pp. 111–
119 (cit. on p. 135).

Ahmed, Nasir, T Raj Natarajan, and Kamisetty Rao (1974). “Discrete cosine trans-
form”. In: IEEE transactions on Computers 100.1, pp. 90–93 (cit. on p. 47).

Allen, Jonathan (1977). “Short term spectral analysis, synthesis, and modification by
discrete Fourier transform”. In: IEEE Transactions on Acoustics, Speech, and Signal
Processing 25.3, pp. 235–238 (cit. on p. 46).

Ardila, Rosana, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler,
Josh Meyer, Reuben Morais, Lindsay Saunders, Francis Tyers, and Gregor We-
ber (2020). “Common Voice: A Massively-Multilingual Speech Corpus”. In: Proc.
LREC. Virtual, pp. 4211–4215 (cit. on pp. 85, 91, 131).

Arthur, David and Sergei Vassilvitskii (2007). “k-means++: The advantages of care-
ful seeding”. In: Proc. ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics. New Orleans, LA, USA, pp. 1027–1035 (cit.
on pp. 14, 15, 103, 104).

Azizpour, Hossein, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and Ste-
fan Carlsson (2015). “From generic to specific deep representations for visual
recognition”. In: Proc. IEEE conference on computer vision and pattern recognition
workshops. Boston, MA, USA, pp. 36–45 (cit. on pp. 69, 70, 75).

Badino, Leonardo, Claudia Canevari, Luciano Fadiga, and Giorgio Metta (2014). “An
auto-encoder based approach to unsupervised learning of subword units”. In:
Proc. Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy, pp. 7634–
7638 (cit. on p. 99).

Badino, Leonardo, Alessio Mereta, and Lorenzo Rosasco (2015). “Discovering dis-
crete subword units with binarized autoencoders and hidden-markov-model en-
coders”. In: Proc. Interspeech. Dresden, Germany, pp. 3174–3178 (cit. on p. 98).

164 Bibliography

Baevski, Alexei, Wei-Ning Hsu, Alexis Conneau, and Michael Auli (2021). “Unsu-
pervised Speech Recognition”. In: arXiv preprint arXiv:2105.11084 (cit. on pp. 58,
59, 98, 121, 160).

Baevski, Alexei and Abdelrahman Mohamed (2020). “Effectiveness of Self-Supervised
Pre-Training for ASR”. In: Proc. Acoustics, Speech and Signal Processing (ICASSP).
Barcelona, Spain, pp. 7694–7698 (cit. on p. 100).

Baevski, Alexei, Steffen Schneider, and Michael Auli (2020a). “vq-wav2vec: Self-
Supervised Learning of Discrete Speech Representations”. In: Proc. International
Conference on Learning Representations (ICLR). Virtual Addis Ababa, Ethopia (cit.
on p. 100).

Baevski, Alexei, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli (2020b).
“wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representa-
tions”. In: Proc. Advances in Neural Information Processing Systems 33, pp. 12449–
12460 (cit. on p. 58).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: Proc. International
Conference on Learning Representations (ICLR). San Diego, CA, USA (cit. on pp. 40,
101).

Bahl, Lalit, Peter de Souza, Ponani Gopalakrishnan, David Nahamoo, and Michael
Picheny (1991). “Context dependent modeling of phones in continuous speech
using decision trees”. In: Speech and Natural Language: Proceedings of a Workshop
Held at Pacific Grove, California, February 19-22, 1991, pp. 264–270 (cit. on p. 51).

Baldi, Pierre and Kurt Hornik (1989). “Neural networks and principal component
analysis: Learning from examples without local minima”. In: Neural networks 2.1,
pp. 53–58 (cit. on p. 35).

Baum, Doris, Daniel Schneider, Jochen Schwenninger, Barbara Samlowski, Thomas
Winkler, and Joachim Köhler (n.d.). “DiSCo-A german evaluation corpus for
challenging problems in the broadcast domain”. In: Proc. LREC, pp. 1695–1699
(cit. on p. 88).

Baum, Leonard E., Ted Petrie, George Soules, and Norman Weiss (1970). “A maxi-
mization technique occurring in the statistical analysis of probabilistic functions
of Markov chains”. In: The annals of mathematical statistics 41.1, pp. 164–171 (cit.
on p. 50).

Baumann, Timo, Arne Köhn, and Felix Hennig (2019). “The Spoken Wikipedia Cor-
pus collection: Harvesting, alignment and an application to hyperlistening”. In:
Language Resources and Evaluation 53.2, pp. 303–329 (cit. on p. 130).

Bavarian Archive for Speech Signals (n.d.). Extended SAM-PA. http://www.bas.
uni-muenchen.de/forschung/Bas/BasSAMPA (cit. on p. 131).

Bayes, Thomas, Richard Price, and John Canton (1763). “An essay towards solving
a problem in the doctrine of chances”. In: Philosophical Transactions of the Royal
Society of London 53, pp. 370–418 (cit. on p. 44).

http://www.bas.uni-muenchen.de/forschung/Bas/BasSAMPA
http://www.bas.uni-muenchen.de/forschung/Bas/BasSAMPA

Bibliography 165

Beckmann, Norbert, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger (1990).
“The R*-tree: an efficient and robust access method for points and rectangles”. In:
Proc. ACM SIGMOID. Vol. 19. 2. Atlantic City, NJ, USA, pp. 322–331 (cit. on p. 16).

Bengio, Samy and Georg Heigold (2014). “Word embeddings for speech recogni-
tion”. In: Proc. Interspeech. Singapore, pp. 1053–1057 (cit. on p. 79).

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Jauvin (2003). “A
neural probabilistic language model”. In: Journal of machine learning research 3,
pp. 1137–1155 (cit. on p. 54).

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning long-term de-
pendencies with gradient descent is difficult”. In: IEEE transactions on neural net-
works 5.2, pp. 157–166 (cit. on p. 25).

Bentley, Jon Louis (1975). “Multidimensional binary search trees used for associative
searching”. In: Communications of the ACM 18.9, pp. 509–517 (cit. on p. 16).

Benzeghiba, Mohamed, Renato De Mori, Olivier Deroo, Stephane Dupont, Teodora
Erbes, Denis Jouvet, Luciano Fissore, Pietro Laface, Alfred Mertins, Christophe
Ris, et al. (2007). “Automatic speech recognition and speech variability: A re-
view”. In: Speech communication 49.10-11, pp. 763–786 (cit. on p. 5).

Bergstra, James, Olivier Breuleux, Frederic Bastien, Pascal Lamblin, Razvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio
(2010). “Theano: a CPU and GPU math compiler in Python”. In: 9th Python in
Science Conference (SCIPY). Austin, TX, USA, pp. 18–24 (cit. on p. 71).

Beringer, Nicole and Florian Schiel (2000). “The Quality of Multilingual Automatic
Segmentation using German MAUS”. In: Proc. Interspeech. Beijing, China, pp. 728–
731 (cit. on p. 123).

Bermuth, Daniel, Alexander Poeppel, and Wolfgang Reif (2021). “Scribosermo: Fast
Speech-to-Text models for German and other Languages”. In: arXiv preprint arXiv
:2110.07982 (cit. on pp. 135, 136).

Beyer, Kevin, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft (1999). “When
is "nearest neighbor" meaningful?” In: Proceedings international conference on database
theory. Jerusalem, Israel, pp. 217–235 (cit. on pp. 15, 16).

Biemann, Chris, Karsten Böhm, Gerhard Heyer, and Ronny Melz (2004). “Seman-
ticTalk: Software for Visualizing Brainstorming Sessions and Thematic Concept
Trails on Document Collections”. In: Proc. ECML/PKDD. Pisa, Italy, pp. 534–536
(cit. on p. 146).

Biemann, Chris and Martin Riedl (2013). “Text: Now in 2D! A Framework for Lexi-
cal Expansion with Contextual Similarity”. In: Journal of Language Modelling 1.1,
pp. 55–95 (cit. on p. 148).

Bisani, Maximilian and Hermann Ney (2008). “Joint-sequence models for grapheme-
to-phoneme conversion”. In: Speech communication 50.5, pp. 434–451 (cit. on pp. 122,
124, 131).

Bone, Daniel, Matthew Black, Ming Li, Angeliki Metallinou, Sungbok Lee, and Shri-
kanth S Narayanan (2011). “Intoxicated Speech Detection by Fusion of Speaker

166 Bibliography

Normalized Hierarchical Features and GMM Supervectors.” In: Proc. Interspeech.
Florence, Italy, pp. 3217–3220 (cit. on p. 66).

Bottou, Léon (2010). “Large-scale machine learning with stochastic gradient descent”.
In: Proc. COMPSTAT. Paris, France, pp. 177–186 (cit. on p. 24).

Bouselmi, Ghazi, Dominique Fohr, and Irina Illina (2008). “Multi-accent and accent-
independent non-native speech recognition”. In: Proc. Interspeech. Brisbane, Aus-
tralia, pp. 2703–2706 (cit. on p. 5).

Bredin, Hervé (2017). “pyannote.metrics: a toolkit for reproducible evaluation, di-
agnostic, and error analysis of speaker diarization systems”. In: Proc. Interspeech.
Stockholm, Sweden, pp. 3587–3591 (cit. on p. 85).

Bridle, John (1990). “Probabilistic interpretation of feedforward classification net-
work outputs, with relationships to statistical pattern recognition”. In: Neuro-
computing 68, pp. 227–236 (cit. on p. 23).

Bromley, Jane, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah
(1994). “Signature verification using a "Siamese" time delay neural network”.
In: Proc. Advances in Neural Information Processing Systems. Denver, CO, USA,
pp. 737–744 (cit. on p. 79).

Bullock, Theodore Holmes and Edward Frank Evans (1977). “Recognition of com-
plex acoustic signals”. In: Dahlem Workshop on Recognition of Complex Acoustic
Signals (cit. on p. 47).

Can, Dogan, Victor Martinez, Pavlos Papadopoulos, and Shrikanth Narayanan (2018).
“PyKaldi: A Python Wrapper for Kaldi”. In: Proc. Acoustics, Speech and Signal Pro-
cessing (ICASSP). Calgary, Canada, pp. 5889–5893 (cit. on pp. 137, 141).

Caruana, Rich (1997). “Multitask Learning”. In: Machine Learning 28, pp. 41–75 (cit.
on pp. 17, 66, 122).

Chen, Hongjie, Cheung-Chi Leung, Lei Xie, Bin Ma, and Haizhou Li (2015). “Par-
allel inference of Dirichlet process Gaussian mixture models for unsupervised
acoustic modeling: A feasibility study”. In: Proc. Interspeech. Dresden, Germany,
pp. 3189–3193 (cit. on p. 99).

Chen, Stanley and Ronald Rosenfeld (2000). “A survey of smoothing techniques for
ME models”. In: IEEE transactions on Speech and Audio Processing 8.1, pp. 37–50
(cit. on p. 53).

Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio
(2014a). “On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches”. In: Proc. Eighth Workshop on Syntax, Semantics and Structure in Sta-
tistical Translation (SSST-8). Doha, Qatar, pp. 103–111 (cit. on p. 40).

Cho, Kyunghyun, Bart van Merriënboer, Çalar Gülçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio (2014b). “Learning Phrase Rep-
resentations using RNN Encoder–Decoder for Statistical Machine Translation”.
In: Proc. EMNLP. Doha, Qatar, pp. 1724–1734 (cit. on pp. 39, 40, 123, 138).

Choi, Jiyoun, Anne Cutler, and Mirjam Broersma (2017). “Early development of
abstract language knowledge: evidence from perception–production transfer of

Bibliography 167

birth-language memory”. In: Royal Society open science 4.1. Article ID 160660 (cit.
on p. 1).

Chorowski, Jan, Grzegorz Ciesielski, Jarosław Dzikowski, Adrian Łacucki, Ricard
Marxer, Mateusz Opala, Piotr Pusz, Paweł Rychlikowski, and Michał Stypułkowski
(2021). “Aligned Contrastive Predictive Coding”. In: Proc. Interspeech. Brno, Czech
Republic, pp. 976–980 (cit. on p. 100).

Chung, Yu-An, Chao-Chung Wu, Chia-Hao Shen, Hung-Yi Lee, and Lin-Shan Lee
(2016). “Audio word2vec: Unsupervised learning of audio segment representa-
tions using sequence-to-sequence autoencoder”. In: Proc. Interspeech. San Fran-
cisco, CA, USA, pp. 765–769 (cit. on p. 79).

Cieri, Christopher, David Miller, and Kevin Walker (2004). “The Fisher Corpus: a
Resource for the Next Generations of Speech-to-Text.” In: Proc. LREC. Lisbon,
Portugal, pp. 69–71 (cit. on p. 6).

Clarke, Charles, Nick Craswell, and Ellen Voorhees (2012). “Overview of the TREC
2012 Web Track”. In: Proc. TREC. Gaithersburg, MD, USA (cit. on p. 152).

Collobert, Ronan, Christian Puhrsch, and Gabriel Synnaeve (2016). “Wav2letter: an
end-to-end convnet-based speech recognition system”. In: arXiv preprint arXiv:
1609.03193 (cit. on p. 100).

Cooley, James W and John W Tukey (1965). “An algorithm for the machine calcula-
tion of complex Fourier series”. In: Mathematics of computation 19.90, pp. 297–301
(cit. on p. 1).

Dahl, George, Dong Yu, Li Deng, and Alex Acero (2012). “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition”. In: IEEE
Transactions on Audio, Speech, and Language Processing 20.1, pp. 30–42 (cit. on pp. 26,
55).

Daniluk, Michal, Tim Rocktäschel, Johannes Welbl, and Sebastian Riedel (2017). “Frus-
tratingly Short Attention Spans in Neural Language Modeling”. In: Proc. Interna-
tional Conference on Learning Representations (ICLR). Toulon, France (cit. on p. 101).

Davis, Steven and Paul Mermelstein (1980). “Comparison of parametric representa-
tions for monosyllabic word recognition in continuously spoken sentences”. In:
IEEE transactions on Acoustics, Speech, and Signal Processing 28.4, pp. 357–366 (cit.
on pp. 46, 47).

Dehak, Najim, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet
(2011). “Front-end factor analysis for speaker verification”. In: IEEE Transactions
on Audio, Speech, and Language Processing 19.4, pp. 788–798 (cit. on p. 79).

Dempster, Arthur, Nan Laird, and Donald Rubin (1977). “Maximum likelihood from
incomplete data via the EM algorithm”. In: Journal of the Royal Statistical Society:
Series B (Methodological) 39.1, pp. 1–22 (cit. on p. 50).

Denisov, Pavel and Ngoc Thang Vu (2019). “IMS-speech: A speech to text tool”. In:
Elektronische Sprachsignalverarbeitung 2019. Dresden, Germany, pp. 170–177 (cit.
on p. 135).

168 Bibliography

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019). “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding”.
In: Proc. 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, MN, USA, pp. 4171–4186 (cit. on pp. 100, 108).

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient methods
for online learning and stochastic optimization”. In: Journal of Machine Learning
Research 12.Jul, pp. 2121–2159 (cit. on p. 29).

Dumais, Susan, Edward Cutrell, Raman Sarin, and Eric Horvitz (2004). “Implicit
Queries (IQ) for Contextualized Search”. In: Proc. SIGIR. Sheffield, UK, p. 594
(cit. on p. 146).

Dunbar, Ewan, Robin Algayres, Julien Karadayi, Mathieu Bernard, Juan Benjumea,
Xuan-Nga Cao, Lucie Miskic, Charlotte Dugrain, Lucas Ondel, Alan W Black,
et al. (2019). “The zero resource speech challenge 2019: TTS without T”. In: Proc.
Interspeech. Graz, Austria, pp. 1088–1092 (cit. on pp. 99, 111, 118).

Dunbar, Ewan, Xuan Nga Cao, Juan Benjumea, Julien Karadayi, Mathieu Bernard,
Laurent Besacier, Xavier Anguera, and Emmanuel Dupoux (2017). “The Zero Re-
source Speech Challenge 2017”. In: Proc. Automatic Speech Recognition and Under-
standing Workshop (ASRU), pp. 323–330 (cit. on pp. 99, 106, 111).

Erhan, Dumitru, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal
Vincent, and Samy Bengio (2010). “Why does unsupervised pre-training help
deep learning?” In: Journal of Machine Learning Research 11.Feb, pp. 625–660 (cit.
on p. 27).

Ester, Martin, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. (1996). “A density-
based algorithm for discovering clusters in large spatial databases with noise.”
In: Proceedings KDD. Vol. 96. 34, pp. 226–231 (cit. on pp. 15, 16).

Eyben, Florian, Felix Weninger, Florian Gross, and Björn Schuller (2013). “Recent
developments in openSMILE, the munich open-source multimedia feature ex-
tractor”. In: Proc. ACM International conference on Multimedia. Barcelona, Spain,
pp. 835–838 (cit. on p. 66).

Eyben, Florian, Martin Wöllmer, and Björn Schuller (2010). “openSMILE: The Mu-
nich versatile and fast open-source audio feature extractor”. In: Proc. ACM in-
ternational conference on Multimedia. Firenze, Italy, pp. 1459–1462 (cit. on pp. 66,
95).

Farabet, Clement, Camille Couprie, Laurent Najman, and Yann LeCun (2013). “Learn-
ing hierarchical features for scene labeling”. In: IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 35.8, pp. 1915–1929 (cit. on pp. 21, 26).

Fiesler, Emile and Russell Beale (1996). Handbook of neural computation. ISBN: 978-
0128113189 (cit. on p. 21).

Fletcher, Harvey (1940). “Auditory patterns”. In: Reviews of modern physics 12.1, p. 47
(cit. on p. 47).

Bibliography 169

Fukushima, Kunihiko and Sei Miyake (1982). “Neocognitron: A self-organizing neu-
ral network model for a mechanism of visual pattern recognition”. In: Proceedings
Competition and cooperation in neural nets. Kyoto, Japan, pp. 267–285 (cit. on pp. 26,
30).

Gaida, Christian, Patrick Lange, Rico Petrick, Patrick Proba, Ahmed Malatawy, and
David Suendermann-Oeft (2014). “Comparing open-source speech recognition
toolkits”. In: Tech. Rep., DHBW Stuttgart (cit. on p. 137).

Gales, Mark, Steve Young, et al. (2008). “The application of hidden Markov models
in speech recognition”. In: Foundations and Trends in Signal Processing 1.3, pp. 195–
304 (cit. on pp. 45, 47, 51, 52).

Galescu, Lucian and James Allen (2001). “Bi-directional Conversion Between Gra-
phemes and Phonemes using a Joint N-gram Model”. In: Proc. 4th ISCA Tutorial
and Research Workshop (ITRW) on Speech Synthesis. Paper 131. Perthshire, Scotland
(cit. on p. 122).

Garcia, Alvin and Herbert Gish (2006). “Keyword spotting of arbitrary words us-
ing minimal speech resources”. In: Proc. Acoustics, Speech and Signal Processing
(ICASSP). Toulouse, France, pp. 949–952 (cit. on p. 99).

Garofolo, John, Lori Lamel, William Fisher, Jonathan Fiscus, and David Pallett (1993).
“DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST speech
disc 1-1.1”. In: STIN 93. 27403 (cit. on p. 3).

Geislinger, Robert, Benjamin Milde, Timo Baumann, and Chris Biemann (2021). “Live
Subtitling for BigBlueButton with Open-Source Software”. In: Proc. Interspeech.
Brno, Czech Republic, pp. 3319–3320 (cit. on pp. 142, 143).

Gemmeke, Jort, Daniel Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, Chan-
ning Moore, Manoj Plakal, and Marvin Ritter (2017). “Audio Set: An ontology
and human-labeled dataset for audio events”. In: Proc. Acoustics, Speech and Sig-
nal Processing (ICASSP). New Orleans, LA, USA, pp. 776–780 (cit. on p. 95).

Gers, Felix, Jürgen Schmidhuber, and Fred Cummins (1999). “Learning to forget:
Continual prediction with LSTM”. In: Neural Computation 12.10, pp. 2451–2471
(cit. on p. 38).

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training
deep feedforward neural networks”. In: Proc. AISTATS. Sardinia, Italy, pp. 249–
256 (cit. on p. 27).

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (2011). “Deep sparse rectifier
neural networks”. In: Proc. AISTATS. Ft. Lauderdale, FL, USA, pp. 315–323 (cit.
on p. 27).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press. ISBN: 0262035618 (cit. on pp. 12,
13, 24, 25, 31, 35, 36, 38).

http://www.deeplearningbook.org
http://www.deeplearningbook.org

170 Bibliography

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). “Generative Adver-
sarial Nets”. In: Proc. Advances in Neural Information Processing Systems. Vol. 27.
Montréal, Canada, pp. 2672–2680 (cit. on p. 58).

Gopalakrishnan, Ponani, Dimitri Kanevsky, Arthur Nadas, and David Nahamoo
(1989). “A generalization of the Baum algorithm to rational objective functions”.
In: Proc. Acoustics, Speech, and Signal Processing (ICASSP). Glasgow, Scottland,
pp. 631–634 (cit. on p. 50).

Graves, Alex, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber (2006).
“Connectionist temporal classification: labelling unsegmented sequence data with
recurrent neural networks”. In: Proc. ICML. Pittsburgh, PA, pp. 369–376 (cit. on
pp. 57, 111).

Griewank, Andreas (2012). “Who Invented the Reverse Mode of Differentiation?”
In: Documenta Mathematica, Extra Volume ISMP, pp. 389–400 (cit. on p. 24).

Griffin, Daniel and Jae Lim (1984). “Signal estimation from modified short-time Fou-
rier transform”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing
32.2, pp. 236–243 (cit. on p. 46).

Gulati, Anmol, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu,
Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang
(2020). “Conformer: Convolution-augmented Transformer for Speech Recogni-
tion”. In: Proc. Interspeech. Virtual Shanghai, China, pp. 5036–5040 (cit. on p. 136).

Gumbel, Emil Julius (1948). Statistical theory of extreme values and some practical appli-
cations: a series of lectures. Vol. 33. US Government Printing Office (cit. on pp. 108,
109).

Gupta, Abhinav, Yajie Miao, Leonardo Neves, and Florian Metze (2017). “Visual fea-
tures for context-aware speech recognition”. In: Proc. Acoustics, Speech and Signal
Processing (ICASSP). New Orleans, LA, USA, pp. 5020–5024 (cit. on p. 80).

Gutmann, Michael and Aapo Hyvärinen (2010). “Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models”. In: Proc. Interna-
tional Conference on Artificial Intelligence and Statistics. Sardinia, Italy, pp. 297–304
(cit. on pp. 79, 82).

Habibi, Maryam and Andrei Popescu-Belis (2015). “Keyword Extraction and Clus-
tering for Document Recommendation in Conversations”. In: IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing 23.4, pp. 746–759 (cit. on pp. 146,
153–155).

Hachtel, Gary, R Brayton, and Fred Gustavson (1971). “The sparse tableau approach
to network analysis and design”. In: IEEE Transactions on circuit theory 18.1, pp. 101–
113 (cit. on p. 24).

Hantke, Simone, Felix Weninger, Richard Kurle, Fabien Ringeval, Anton Batliner,
Amr El-Desoky Mousa, and Björn Schuller (2015). “I hear you eat and speak: au-
tomatic recognition of eating condition and food type”. In: PloS one 11.5. e0154486
(cit. on p. 66).

Bibliography 171

Haq, Sanaul, Philip JB Jackson, and J Edge (2009). “Speaker-dependent audio-visual
emotion recognition.” In: Auditory-Visual Speech Processing (AVSP). University of
East Anglia, Norwich, UK, pp. 53–58 (cit. on p. 94).

Harris, Fredric (1978). “On the use of windows for harmonic analysis with the dis-
crete Fourier transform”. In: Proceedings of the IEEE 66.1, pp. 51–83 (cit. on p. 46).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classifica-
tion”. In: Proc. IEEE International Conference on Computer Vision (ICCV). Santiago,
Chile (cit. on pp. 28, 29, 33, 67–69).

— (2016). “Deep Residual Learning for Image Recognition”. In: Proc. CVPR. Las
Vegas, NV, USA, pp. 770–778 (cit. on pp. 32–34, 40, 122).

Heck, Michael, Sakriani Sakti, and Satoshi Nakamura (2017). “Feature optimized
DPGMM clustering for unsupervised subword modeling: A contribution to Ze-
roSpeech 2017”. In: Proc. Automatic Speech Recognition and Understanding Workshop
(ASRU). Okinawa, Japan, pp. 740–746 (cit. on pp. 99, 106, 108).

Hermansky, Hynek (1990). “Perceptual linear predictive (PLP) analysis of speech”.
In: the Journal of the Acoustical Society of America 87.4, pp. 1738–1752 (cit. on pp. 48,
49, 106, 110).

Hershey, Shawn, Sourish Chaudhuri, Daniel Ellis, Jort Gemmeke, Aren Jansen, Chan-
ning Moore, Manoj Plakal, Devin Platt, Rif Saurous, Bryan Seybold, Malcolm
Slaney, Ron Weiss, and Kevin Wilson (2017). “CNN architectures for large-scale
audio classification”. In: Proc. Acoustics, Speech and Signal Processing (ICASSP).
New Orleans, LA, USA, pp. 131–135 (cit. on p. 95).

Hinton, Geoffrey (2002). “Training products of experts by minimizing contrastive
divergence”. In: Neural computation 14.8, pp. 1771–1800 (cit. on p. 26).

— (2007). “To recognize shapes, first learn to generate images”. In: Progress in Brain
Research 165, pp. 535–547 (cit. on p. 66).

— (2013). “Lecture 10-Recurrent Neural Networks, Coursera: Neural networks for
machine learning”. In: University of Toronto, Technical Report (cit. on p. 37).

Hinton, Geoffrey, Peter Dayan, Brendan Frey, and Radford Neal (1995). “The "wake-
sleep" algorithm for unsupervised neural networks”. In: Science 268.5214, pp. 1158–
1161 (cit. on p. 23).

Hinton, Geoffrey, Simon Osindero, and Yee-Whye Teh (2006). “A fast learning al-
gorithm for deep belief nets”. In: Neural computation 18.7, pp. 1527–1554 (cit. on
p. 27).

Hinton, Geoffrey and Ruslan Salakhutdinov (2006). “Reducing the dimensionality
of data with neural networks”. In: Science 313.5786, pp. 504–507 (cit. on p. 26).

Hochreiter, Sepp (1991). “Untersuchungen zu dynamischen neuronalen Netzen”.
In: Master’s thesis, Institut für Informatik, Technische Universitat, München (cit. on
pp. 25, 37, 40).

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-term Memory”. In:
Neural computation 9.8, pp. 1735–1780 (cit. on pp. 26, 38, 40, 100).

172 Bibliography

Hoerl, Arthur and Robert Kennard (1970). “Ridge regression: Biased estimation for
nonorthogonal problems”. In: Technometrics 12.1, pp. 55–67 (cit. on p. 68).

Hönig, Florian, Georg Stemmer, Christian Hacker, and Fabio Brugnara (2005). “Re-
vising perceptual linear prediction (PLP)”. In: Proc. Interspeech. Lisbon, Portugal,
pp. 2997–3000 (cit. on p. 48).

Hopfield, John J (1982). “Neural networks and physical systems with emergent col-
lective computational abilities”. In: Proceedings of the national academy of sciences
79.8, pp. 2554–2558 (cit. on p. 37).

Huang, Chao, Tao Chen, and Eric Chang (2004). “Accent issues in large vocabulary
continuous speech recognition”. In: International Journal of Speech Technology 7.2-3,
pp. 141–153 (cit. on p. 5).

Huang, Chao, Tao Chen, Stan Li, Eric Chang, and Jianlai Zhou (2001). “Analysis of
speaker variability”. In: Proc. Eurospeech. Aalborg, Denmark, pp. 1377–1380 (cit.
on p. 5).

Huang, Guang-Bin and Chee-Kheong Siew (2004). “Extreme learning machine: RBF
network case”. In: Proc. ICARCV 2004 8th Control, Automation, Robotics and Vision
Conference. Vol. 2. Kunming, China, pp. 1029–1036 (cit. on p. 74).

Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew (2006). “Extreme learning
machine: theory and applications”. In: Neurocomputing 70.1-3, pp. 489–501 (cit.
on p. 74).

Huber, Peter (1964). “Robust estimation of a location parameter”. In: Breakthroughs
in statistics 53.1, pp. 73–101 (cit. on pp. 22, 111).

Hubert, Lawrence and Phipps Arabie (1985). “Comparing partitions”. In: Journal of
classification 2.1, pp. 193–218 (cit. on pp. 19, 87).

Jain, Anil (2010). “Data clustering: 50 years beyond K-means”. In: Pattern recognition
letters 31.8, pp. 651–666 (cit. on p. 13).

Jang, Eric, Shixiang Gu, and Ben Poole (2017). “Categorical reparameterization with
gumbel-softmax”. In: Proc. International Conference on Learning Representations (ICLR).
Toulon, France (cit. on p. 108).

Jansen, Aren, Manoj Plakal, Ratheet Pandya, Daniel PW Ellis, Shawn Hershey, Ji-
ayang Liu, R Channing Moore, and Rif A Saurous (2018). “Unsupervised Learn-
ing of Semantic Audio Representations”. In: Proc. Acoustics, Speech and Signal Pro-
cessing (ICASSP). Calgary, AB, Canada, pp. 126–130 (cit. on p. 79).

Jansen, Aren, Samuel Thomas, and Hynek Hermansky (2013). “Weak top-down con-
straints for unsupervised acoustic model training.” In: Proc. Acoustics, Speech and
Signal Processing (ICASSP). Vancouver, Canada, pp. 8091–8095 (cit. on p. 4).

Järvelin, Kalervo and Janaa Kekäläinen (2002). “Cumulated Gain-based Evaluation
of IR Techniques”. In: ACM Transactions on Information Systems 20.4, pp. 422–446
(cit. on p. 152).

Jati, Arindam and Panayiotis Georgiou (2017). “Speaker2Vec: Unsupervised Learn-
ing and Adaptation of a Speaker Manifold using Deep Neural Networks with an

Bibliography 173

Evaluation on Speaker Segmentation”. In: Proc. Interspeech, pp. 3567–3571 (cit. on
p. 79).

— (2019). “Neural predictive coding using convolutional neural networks toward
unsupervised learning of speaker characteristics”. In: IEEE/ACM Transactions on
Audio, Speech, and Language Processing 27.10, pp. 1577–1589 (cit. on p. 80).

Jegou, Herve, Matthijs Douze, and Cordelia Schmid (2010). “Product quantization
for nearest neighbor search”. In: IEEE transactions on pattern analysis and machine
intelligence 33.1, pp. 117–128 (cit. on p. 16).

Jelinek, Frederick and Robert L Mercer (1980). “Interpolated estimation of Markov
source parameters from sparse data”. In: Proc. Workshop on Pattern Recognition in
Practice, 1980, pp. 381–397 (cit. on p. 54).

Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell (2014). “Caffe: Convolutional
architecture for fast feature embedding”. In: Proc. 22nd ACM international confer-
ence on Multimedia. ACM, pp. 675–678 (cit. on p. 29).

Jiampojamarn, Sittichai, Grzegorz Kondrak, and Tarek Sherif (2007). “Applying Many-
to-Many Alignments and Hidden Markov Models to Letter-to-Phoneme Conver-
sion”. In: Proc. NAACL-HLT. Rochester, New York, pp. 372–379 (cit. on p. 122).

Jin, Hubert, Francis Kubala, and Rich Schwartz (1997). “Automatic speaker cluster-
ing”. In: Proc. the DARPA speech recognition workshop, pp. 108–111 (cit. on p. 80).

Jing, Longlong and Yingli Tian (2020). “Self-supervised visual feature learning with
deep neural networks: A survey”. In: IEEE transactions on pattern analysis and
machine intelligence 43.11, pp. 4037–4058 (cit. on p. 16).

Johnson, Jeff, Matthijs Douze, and Hervé Jégou (2019). “Billion-scale similarity search
with gpus”. In: IEEE Transactions on Big Data 7.3, pp. 535–547 (cit. on p. 16).

Johnson, Melvin, Mike Schuster, Quoc Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al.
(2017). “Googles multilingual neural machine translation system: Enabling zero-
shot translation”. In: Transactions of the Association for Computational Linguistics 5,
pp. 339–351 (cit. on p. 122).

Joos, Martin (1948). “Acoustic phonetics”. In: Language 24.2, pp. 5–136 (cit. on p. 4).
Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever (2015). “An empirical ex-

ploration of recurrent network architectures”. In: International Conference on Ma-
chine Learning. Lille, France, pp. 2342–2350 (cit. on p. 39).

Juang, Biing-Hwang and Lawrence Rabiner (2005). “Automatic speech recognition–
a brief history of the technology development”. In: Georgia Institute of Technology
1, p. 67 (cit. on p. 43).

Jurafsky, Dan and James H Martin (2008). Speech and language processing. 2nd ed.
ISBN: 0131873210 (cit. on pp. 12, 44–47, 50, 53).

— (2018). Speech and language processing. 3rd ed. draft (cit. on p. 21).

174 Bibliography

Kahn, Jacob, Morgane Rivière, Weiyi Zheng, Evgeny Kharitonov, Qiantong Xu, Pierre-
Emmanuel Mazaré, Julien Karadayi, Vitaliy Liptchinsky, Ronan Collobert, Chris-
tian Fuegen, Tatiana Likhomanenko, Gabriel Synnaeve, Armand Joulin, Abdel-
rahman Mohamed, and Emmanuel Dupoux (2020). “Libri-Light: A Benchmark
for ASR with Limited or No Supervision”. In: Proc. Acoustics, Speech and Signal
Processing (ICASSP). Virtual Barcelona, Spain, pp. 7669–7673 (cit. on pp. 100, 111,
113–116).

Kamper, Herman, Micha Elsner, Aren Jansen, and Sharon Goldwater (2015). “Un-
supervised neural network based feature extraction using weak top-down con-
straints”. In: Proc. Acoustics, Speech and Signal Processing (ICASSP). IEEE. South
Brisbane, QL, Australia, pp. 5818–5822 (cit. on pp. 79, 99).

Kamper, Herman, Aren Jansen, Simon King, and Sharon Goldwater (2014). “Unsu-
pervised lexical clustering of speech segments using fixed-dimensional acoustic
embeddings”. In: Proc. Spoken Language Technology Workshop (SLT). South Lake
Tahoe, NV, USA, pp. 100–105 (cit. on p. 98).

Kamper, Herman and Benjamin van Niekerk (2021). “Towards Unsupervised Phone
and Word Segmentation Using Self-Supervised Vector-Quantized Neural Net-
works”. In: Proc. Interspeech. Brno, Czech Republic, pp. 1539–1543 (cit. on p. 100).

Kamper, Herman, Weiran Wang, and Karen Livescu (2016). “Deep convolutional
acoustic word embeddings using word-pair side information”. In: Proc. Acous-
tics, Speech and Signal Processing (ICASSP). Shanghai, China, pp. 4950–4954 (cit.
on p. 99).

Katagiri, Shigeru, Chin-hui Lee, and Biing-Hwang Juang (1991). “New discrimina-
tive training algorithms based on the generalized probabilistic descent method”.
In: Proc. 1991 IEEE Workshop Neural Networks for Signal Processing. Princeton, NJ,
USA, pp. 299–308 (cit. on p. 50).

Katz, Slava (1987). “Estimation of probabilities from sparse data for the language
model component of a speech recognizer”. In: IEEE transactions on acoustics, speech,
and signal processing 35.3, pp. 400–401 (cit. on p. 54).

Kaya, Heysem, Alexey Karpov, and Albert Ali Salah (2015). “Fisher vectors with cas-
caded normalization for paralinguistic analysis”. In: Proc. Interspeech. Dresden,
Germany, pp. 909–913 (cit. on pp. 73, 74).

Kim, Jaeyoung, Mostafa El-Khamy, and Jungwon Lee (2017). “Residual LSTM: De-
sign of a Deep Recurrent Architecture for Distant Speech Recognition”. In: Proc.
Interspeech. Stockholm, Sweden, pp. 1591–1595 (cit. on p. 41).

Kim, Jangwon, Md Nasir, Rahul Gupta, Maarten Van Segbroeck, Daniel Bone, Mat-
thew Black, Zisis Iason Skordilis, Zhaojun Yang, Panayiotis Georgiou, and Shri-
kanth Narayanan (2015). “Automatic estimation of Parkinson’s disease severity
from diverse speech tasks”. In: Proc. Interspeech. Dresden, Germany, pp. 889–893
(cit. on p. 74).

Kingma, Diederik and Jimmy Ba (2014). “Adam: A Method for Stochastic Optimiza-
tion”. In: CoRR abs/1412.6 (cit. on pp. 30, 83, 84, 104, 125).

Bibliography 175

Kneser, Reinhard and Hermann Ney (1995). “Improved backing-off for m-gram lan-
guage modeling”. In: Proc. Acoustics, Speech and Signal Processing (ICASSP). De-
troit, MI, USA, pp. 181–184 (cit. on pp. 92, 132).

Ko, Tom, Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur (2015). “Au-
dio augmentation for speech recognition”. In: Proc. Interspeech. Dresden, Ger-
many, pp. 3586–3589 (cit. on p. 86).

Krause, Ben, Iain Murray, Steve Renals, and Liang Lu (2017). “Multiplicative LSTM
for sequence modelling”. In: Proc. ICLR Workshop track (cit. on p. 39).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey Hinton (2012). “ImageNet classifica-
tion with deep convolutional neural networks”. In: Proc. Advances in Neural In-
formation Processing Systems. Lake Tahoe, CA, USA, pp. 1097–1105 (cit. on pp. 32,
67, 68).

Kuhl, Patricia (2004). “Early language acquisition: cracking the speech code”. In:
Nature reviews neuroscience 5.11, pp. 831–843 (cit. on p. 6).

Kullback, Solomon and Richard A Leibler (1951). “On information and sufficiency”.
In: The annals of mathematical statistics 22.1, pp. 79–86 (cit. on pp. 23, 103, 109).

Kürzinger, Ludwig, Dominik Winkelbauer, Lujun Li, Tobias Watzel, and Gerhard
Rigoll (2020). “CTC-Segmentation of Large Corpora for German End-to-End Speech
Recognition”. In: Proc. Speech and Computer: 22nd International Conference (SPECOM
2020). St. Petersburg, Russia, pp. 267–278 (cit. on p. 135).

Kvålseth, Tarald (2017). “On normalized mutual information: measure derivations
and properties”. In: Entropy 19.11, p. 631 (cit. on p. 19).

LeCun, Yann and Yoshua Bengio (1995). “Convolutional networks for images, speech,
and time series”. In: The handbook of brain theory and neural networks 3361, pp. 255–
258 (cit. on pp. 26, 67).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: Na-
ture 521.7553, pp. 436–444 (cit. on p. 26).

LeCun, Yann, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard,
Wayne Hubbard, and Lawrence Jackel (1989). “Backpropagation applied to hand-
written zip code recognition”. In: Neural computation 1.4, pp. 541–551 (cit. on
p. 30).

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner (1998). “Gradient-
based learning applied to document recognition”. In: Proceedings of the IEEE 86.11,
pp. 2278–2323 (cit. on pp. 32, 67, 68).

LeCun, Yann, Léon Bottou, Genevieve Orr, and Klaus-Robert Müller (2012). “Effi-
cient backprop”. In: Neural networks: Tricks of the trade, pp. 9–48. ISBN: 978-3-642-
35289-8 (cit. on p. 27).

Lee, Chia-Ying and James Glass (2012). “A nonparametric Bayesian approach to
acoustic model discovery”. In: Proc. ACL. Jeju Island, South Korea, pp. 40–49
(cit. on p. 99).

176 Bibliography

Lee, Honglak, Chaitanya Ekanadham, and Andrew Ng (2008). “Sparse deep belief
net model for visual area V2”. In: Proc. Advances in Neural Information Processing
Systems. Vancouver, BC, Canada, pp. 873–880 (cit. on p. 36).

Lee, Honglak, Yan Largman, Peter Pham, and Andrew Ng (2009). “Unsupervised
feature learning for audio classification using convolutional deep belief networks”.
In: Proc. Advances in Neural Information Processing Systems. Vancouver, BC, Canada,
pp. 1096–1104 (cit. on p. 67).

Lenneberg, Eric (1967). “The biological foundations of language”. In: Hospital Prac-
tice 2.12, pp. 59–67 (cit. on p. 1).

Li, Lantian, Yixiang Chen, Ying Shi, Zhiyuan Tang, and Dong Wang (2017). “Deep
speaker feature learning for text-independent speaker verification”. In: Proc. In-
terspeech. Stockholm, Sweden, pp. 1542–1545 (cit. on p. 79).

Lidstone, George James (1920). “Note on the general case of the Bayes-Laplace for-
mula for inductive or a posteriori probabilities”. In: Transactions of the Faculty of
Actuaries 8.182-192, p. 13 (cit. on p. 53).

Lipton, Zachary, John Berkowitz, and Charles Elkan (2015). “A critical review of re-
current neural networks for sequence learning”. In: arXiv preprint arXiv:1506.00019
(cit. on p. 21).

Liu, Da-Rong, Kuan-Yu Chen, Hung yi Lee, and Lin shan Lee (2018). “Completely
Unsupervised Phoneme Recognition by Adversarially Learning Mapping Re-
lationships from Audio Embeddings”. In: Proc. Interspeech. Hyderabad, India,
pp. 3748–3752 (cit. on pp. 58, 160).

Liu, Fu-Hua, Richard M Stern, Xuedong Huang, and Alejandro Acero (1993). “Effi-
cient cepstral normalization for robust speech recognition”. In: Proc. Workshop on
Human Language Technology. Princeton, NJ, USA, pp. 69–74 (cit. on p. 48).

Liu, Liyuan, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng
Gao, and Jiawei Han (2020). “On the variance of the adaptive learning rate and
beyond”. In: Proc. International Conference on Learning Representations (ICLR). Vir-
tual, Paper 164 (cit. on p. 30).

Liu, Xiao, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and
Jie Tang (2021). “Self-supervised learning: Generative or contrastive”. In: IEEE
Transactions on Knowledge and Data Engineering (Early access) (cit. on p. 16).

Liu, Zhiyuan, Wenyi Huang, Yabin Zheng, and Maosong Sun (2010). “Automatic
Keyphrase Extraction via Topic Decomposition”. In: Proc. EMNLP. Cambridge,
MA, USA, pp. 366–376 (cit. on p. 148).

Lloyd, Stuart (1982). “Least squares quantization in PCM”. In: IEEE transactions on
information theory 28.2, pp. 129–137 (cit. on p. 14).

Locascio, Nicholas, Karthik Narasimhan, Eduardo DeLeon, Nate Kushman, and Re-
gina Barzilay (2016). “Neural Generation of Regular Expressions from Natural
Language with Minimal Domain Knowledge”. In: Proc. EMNLP. Austin, Texas,
pp. 1918–1923 (cit. on p. 121).

Bibliography 177

Lopez-Moreno, Ignacio, Javier Gonzalez-Dominguez, Oldrich Plchot, David Mar-
tinez, Joaquin Gonzalez-Rodriguez, and Pedro Moreno (2014). “Automatic lan-
guage identification using deep neural networks”. In: Proc. Acoustics, Speech and
Signal Processing (ICASSP). IEEE. Florence, Italy, pp. 5337–5341 (cit. on p. 67).

Luong, Minh-Thang, Hieu Pham, and Christopher Manning (2015). “Effective ap-
proaches to attention-based neural machine translation”. In: Proc. Empirical Meth-
ods in Natural Language Processing (EMNLP). Lisbon, Portugal, pp. 1412–1421 (cit.
on pp. 40, 101).

Maas, Andrew, Awni Hannun, and Andrew Ng (2013). “Rectifier nonlinearities im-
prove neural network acoustic models”. In: ICML Workshop on Deep Learning for
Audio, Speech and Language. Vol. 30. Atlanta, GA, USA (cit. on p. 83).

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing data using t-
SNE”. In: Journal of machine learning research 9.11, pp. 2579–2605 (cit. on p. 91).

Makhoul, John (1975). “Spectral linear prediction: Properties and applications”. In:
IEEE Transactions on Acoustics, Speech, and Signal Processing 23.3, pp. 283–296 (cit.
on p. 49).

Mattys, Sven, Matthew Davis, Ann Bradlow, and Sophie Scott (2012). “Speech recog-
nition in adverse conditions: A review”. In: Language and Cognitive Processes 27.7-
8, pp. 953–978 (cit. on p. 5).

McInnes, Leland, John Healy, and Steve Astels (2017). “hdbscan: Hierarchical den-
sity based clustering”. In: The Journal of Open Source Software 2.11, p. 205 (cit. on
pp. 16, 86, 90).

Mermelstein, Paul (1976). “Distance measures for speech recognition, psychological
and instrumental”. In: Pattern recognition and artificial intelligence 116, pp. 374–388
(cit. on p. 47).

Metze, Florian, Petra Gieselmann, Hartwig Holzapfel, Thomas Kluge, Ivica Rogina,
Alex Waibel, Matthias Wölfel, James Crowley, Patrick Reignier, Dominique Vaufrey-
daz, François Bérard, Bérangère Cohen, Joelle Coutaz, Sylvie Rouillard, Victoria
Arranz, Manuel Bertrán, and Horacio Rodríguez (2005). “The FAME Interactive
Space”. In: Proc. International Workshop on Machine Learning for Multimodal Inter-
action. Edinburgh, United Kingdom, pp. 126–137 (cit. on p. 146).

Miao, Yajie, Hao Zhang, and Florian Metze (2015). “Speaker adaptive training of
deep neural network acoustic models using i-vectors”. In: IEEE/ACM Transac-
tions on Audio, Speech and Language Processing (TASLP) 23.11, pp. 1938–1949 (cit.
on pp. 80, 91, 134).

Miikkulainen, Risto and Michael Dyer (1991). “Natural language processing with
modular PDP networks and distributed lexicon”. In: Cognitive Science 15.3, pp. 343–
399 (cit. on p. 54).

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean (2013).
“Distributed Representations of Words and Phrases and their Compositionality”.
In: Proc. Advances in Neural Information Processing Systems. Lake Tahoe, NV, USA,
pp. 3111–3119 (cit. on pp. 78, 100, 149).

178 Bibliography

Milde, Benjamin (2014). “Unsupervised acquisition of acoustic models for speech-to-
text alignment”. MA thesis. Technische Universität Darmstadt, Germany (cit. on
p. 44).

Milde, Benjamin and Chris Biemann (2015). “Using Representation Learning and
Out-of-domain Data for a Paralinguistic Speech Task”. In: Proc. Interspeech. Dres-
den, Germany, pp. 904–908 (cit. on pp. 74–76).

— (2018). “Unspeech: Unsupervised Speech Context Embeddings”. In: Proc. Inter-
speech. Hyderabad, India, pp. 2693–2697 (cit. on p. 102).

— (2019). “SparseSpeech: Unsupervised Acoustic Unit Discovery with Memory-
Augmented Sequence Autoencoders”. In: Proc. Interspeech. Graz, Austria, pp. 256–
260 (cit. on pp. 101, 118).

— (2020). “Improving Unsupervised Sparsespeech Acoustic Models with Categori-
cal Reparameterization”. In: Proc. Interspeech. Virtual Shanghai, China, pp. 2747–
2751 (cit. on p. 110).

Milde, Benjamin, Tim Fischer, Steffen Remus, and Chris Biemann (2021a). “MoM:
Minutes of Meeting Bot”. In: Proc. Interspeech. Brno, Czech Republic, pp. 3311–
3312 (cit. on pp. 141, 142).

Milde, Benjamin, Robert Geislinger, Irina Lindt, and Timo Baumann (2021b). “Open
source automatic lecture subtitling”. In: Proc. 32nd Conference on Electronical Speech
Signal Processing (ESSV). Virtual Berlin, pp. 128–134 (cit. on p. 138).

Milde, Benjamin and Arne Köhn (2018). “Open Source Automatic Speech Recogni-
tion for German”. In: Proc. ITG 2018. Oldenburg, pp. 251–255 (cit. on p. 135).

Milde, Benjamin, Christoph Schmidt, and Joachim Köhler (2017). “Multitask Sequence-
to-Sequence Models for Grapheme-to-Phoneme Conversion”. In: Proc. Interspeech.
Stockholm, Sweden, pp. 2536–2540 (cit. on p. 132).

Milde, Benjamin, Jonas Wacker, Stefan Radomski, Max Mühlhäuser, and Chris Bie-
mann (2016). “Ambient Search: A Document Retrieval System for Speech Streams”.
In: Proc. COLING 2016. Osaka, Japan, pp. 2082–2091 (cit. on p. 129).

Mitchell, Tom M. (1997). Machine Learning. MIT Press and the McGraw-Hill Com-
pany. ISBN: 978-0071154673 (cit. on pp. 11, 18, 21).

Mohri, Mehryar, Fernando Pereira, and Michael Riley (2002). “Weighted finite-state
transducers in speech recognition”. In: Computer Speech & Language 16.1, pp. 69–
88 (cit. on p. 52).

Mullennix, John W, David B Pisoni, and Christopher S Martin (1989). “Some effects
of talker variability on spoken word recognition”. In: The Journal of the Acoustical
Society of America 85.1, pp. 365–378 (cit. on p. 4).

Murphy, Kevin P. (2014). Machine learning, a probabilistic perspective (cit. on pp. 13, 30,
56).

Navarro, Gonzalo (2001). “A guided tour to approximate string matching”. In: ACM
computing surveys (CSUR) 33.1, pp. 31–88 (cit. on p. 52).

Bibliography 179

Nesterov, Yurii (1983). “A method of solving a convex programming problem with
convergence rate O (1/k2)”. In: Soviet Mathematics Doklady 27, pp. 372–376 (cit. on
pp. 29, 69).

Ney, Hermann, Ute Essen, and Reinhard Kneser (1994). “On structuring probabilis-
tic dependences in stochastic language modelling”. In: Computer Speech and Lan-
guage 8.1, pp. 1–38 (cit. on p. 54).

Ng, Andrew (2011). “Sparse autoencoder”. In: CS294A Lecture notes 72.2011, pp. 1–19
(cit. on p. 36).

Niekerk, Benjamin van, Leanne Nortje, and Herman Kamper (2020). “Vector-Quantized
Neural Networks for Acoustic Unit Discovery in the ZeroSpeech 2020 Challenge”.
In: Proc. Interspeech. Virtual Shanghai, China, pp. 4836–4840 (cit. on p. 100).

Novak, Josef (2012). Phonetisaurus. URL: https://github.com/AdolfVonKleist/
Phonetisaurus (cit. on p. 122).

Novak, Josef, Nobuaki Minematsu, and Keikichi Hirose (2013). “Failure Transitions
for Joint N-gram Models and G2P Conversion.” In: Proc. Interspeech. Lyon, France,
pp. 1821–1825 (cit. on p. 122).

Nygaard, Lynne and David Pisoni (1998). “Talker-specific learning in speech percep-
tion”. In: Perception & psychophysics 60.3, pp. 355–376 (cit. on p. 5).

Nyquist, Harry (1928). “Certain topics in telegraph transmission theory”. In: Transac-
tions of the American Institute of Electrical Engineers 47.2, pp. 617–644 (cit. on p. 45).

Oord, Aaron van den, Oriol Vinyals, et al. (2017). “Neural discrete representation
learning”. In: Proc. Advances in Neural Information Processing Systems. Long Beach,
CA, USA, pp. 6306–6315 (cit. on p. 99).

Oord, Aaron van den, Yazhe Li, and Oriol Vinyals (2018). “Representation learning
with contrastive predictive coding”. In: arXiv preprint arXiv:1807.03748 (cit. on
pp. 59, 99, 113, 115, 116).

Oppenheim, Alan and Ronald Schafer (1989). Discrete-time signal processing. 2nd ed.
Prentice-Hall. ISBN: 978-0-13-754920-7 (cit. on p. 46).

Oshika, Beatrice, Victor Zue, Rollin Weeks, Helene Neu, and Joseph Aurbach (1975).
“The role of phonological rules in speech understanding research”. In: IEEE Trans-
actions on Acoustics, Speech, and Signal Processing 23.1, pp. 104–112 (cit. on p. 50).

Oualil, Youssef, Dietrich Klakow, Gyorgy Szaszák, Ajay Srinivasamurthy, Hartmut
Helmke, and Petr Motlicek (2017). “A context-aware speech recognition and un-
derstanding system for air traffic control domain”. In: Proc. ASRU. Okinawa,
Japan, pp. 404–408 (cit. on p. 129).

Pan, Sinno Jialin and Qiang Yang (2009). “A survey on transfer learning”. In: IEEE
Transactions on knowledge and data engineering 22.10, pp. 1345–1359 (cit. on pp. 17,
66).

Panayotov, Vassil, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur (2015). “Lib-
rispeech: An ASR Corpus Based On Public Domain Audio Books”. In: Proc. Acous-
tics, Speech and Signal Processing (ICASSP). Brisbane, QL, Australia, pp. 5206–5210
(cit. on pp. 104, 106, 114, 122).

https://github.com/AdolfVonKleist/Phonetisaurus
https://github.com/AdolfVonKleist/Phonetisaurus

180 Bibliography

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Aly-
khan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Sou-
mith Chintala (2019). “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Proc. Advances in Neural Information Processing Systems.
Vol. 32. Vancouver, BC, Canada (cit. on p. 117).

Pathak, Deepak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A
Efros (2016). “Context encoders: Feature learning by inpainting”. In: Proc. Com-
puter Vision and Pattern Recognition (CVPR). Caesars Palace, NV, USA, pp. 2536–
2544 (cit. on p. 79).

Peddinti, Vijayaditya, Daniel Povey, and Sanjeev Khudanpur (2015). “A time delay
neural network architecture for efficient modeling of long temporal contexts”. In:
Proc. Interspeech. Dresden, Germany, pp. 3214–3218 (cit. on pp. 56, 78, 134).

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Bru-
cher, Matthieu Perrot, and Édouard Duchesnay (2012). “Scikit-learn: Machine
Learning in Python”. In: The Journal of Machine Learning Research 12, pp. 2825–
2830 (cit. on pp. 71, 104).

Pellegrini, Thomas (2015). “Comparing SVM, Softmax, and shallow neural networks
for eating condition classification”. In: Proc. Interspeech. Dresden, Germany, pp. 899–
903 (cit. on p. 74).

Pellegrini, Thomas, Céline Manenti, and Julien Pinquier (2017). Technical Report: The
IRIT-UPS system at ZeroSpeech 2017 Track1: Unsupervised Subword Modeling. IRIT,
Université de Toulouse (cit. on p. 106).

Peterson, Gordon E and Harold L Barney (1952). “Control methods used in a study
of the vowels”. In: The Journal of the acoustical society of America 24.2, pp. 175–184
(cit. on p. 4).

Pfeiffer, Silvia (Apr. 2019). WebVTT: The Web Video Text Tracks Format. Candidate Rec-
ommendation. W3C. URL: https://www.w3.org/TR/2019/CR-webvtt1-
20190404/ (cit. on p. 137).

Pierce, John (1969). “Whither speech recognition?” In: The journal of the acoustical
society of america 46.4B, pp. 1049–1051 (cit. on p. 43).

Pir, Dara and Theodore Brown (2015). “Acoustic group feature selection using wrap-
per method for automatic eating condition recognition”. In: Proc. Interspeech.
Dresden, Germany, pp. 894–898 (cit. on p. 74).

Plakal, Manoj and Dan Ellis (2020). YAMNet. https://github.com/tensorflow/
models/tree/master/research/audioset/yamnet (cit. on pp. 80, 95).

https://www.w3.org/TR/2019/CR-webvtt1-20190404/
https://www.w3.org/TR/2019/CR-webvtt1-20190404/
https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
https://github.com/tensorflow/models/tree/master/research/audioset/yamnet

Bibliography 181

Popescu-Belis, Andrei, Jonathan Kilgour, Peter Poller, Alexandre Nanchen, Erik Boert-
jes, and Joost de De Wit (2000). “Automatic Content Linking: Speech-based Just-
in-time Retrieval for Multimedia Archives”. In: Proc. SIGIR. Athens, Greece, p. 703
(cit. on p. 146).

Povey, Daniel, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Na-
gendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan
Silovsky, Georg Stemmer, and Karel Vesely (2011). “The Kaldi speech recogni-
tion toolkit”. In: Proc. ASRU. Hilton Waikoloa Village, Big Island, HI, US (cit. on
pp. 52, 83, 85, 104, 110, 147).

Povey, Daniel, Vijayaditya Peddinti, Daniel Galvez, Pegah Ghahremani, Vimal Mano-
har, Xingyu Na, Yiming Wang, and Sanjeev Khudanpur (2016). “Purely Sequence-
Trained Neural Networks for ASR Based on Lattice-Free MMI.” In: Proc. Inter-
speech. San Fransisco, CA, USA, pp. 2751–2755 (cit. on pp. 88, 134).

Povey, Daniel, Xiaohui Zhang, and Sanjeev Khudanpur (2014). “Parallel training
of DNNs with natural gradient and parameter averaging”. In: arXiv preprint
arXiv:1410.7455 (cit. on p. 88).

Prasad, Abhay and Prasanta Kumar Ghosh (2015). “Automatic classification of eat-
ing conditions from speech using acoustic feature selection and a set of hierarchi-
cal support vector machine classifiers”. In: Proc. Interspeech. Dresden, Germany,
pp. 884–888 (cit. on p. 74).

Pratt, Lorien (1992). “Discriminability-based transfer between neural networks”. In:
Proc. Advances in Neural Information Processing Systems. Denver, CO, USA, pp. 204–
211 (cit. on p. 69).

Pratt, Lorien, Jack Mostow, Candace Kamm, and Ace Kamm (1991). “Direct Transfer
of Learned Information Among Neural Networks”. In: AAAI. Vol. 91, pp. 584–
589 (cit. on p. 69).

Pritzen, Julia, Michael Gref, Dietlind Zühlke, and Christoph Schmidt (2021). “Mul-
titask Learning for Grapheme-to-Phoneme Conversion of Anglicisms in German
Speech Recognition”. In: arXiv preprint arXiv:2105.12708 (cit. on p. 122).

Rabiner, Lawrence (1989). “A tutorial on hidden Markov models and selected appli-
cations in speech recognition”. In: Proceedings of the IEEE 77.2, pp. 257–286 (cit. on
pp. 43, 49).

Radeck-Arneth, Stephan, Benjamin Milde, Arvid Lange, Evandro Gouvêa, Stefan
Radomski, Max Mühlhäuser, and Chris Biemann (2015). “Open source german
distant speech recognition: Corpus and acoustic model”. In: Proc. Text, Speech,
and Dialogue (TSD). Pilsen, Czech Republic, pp. 480–488 (cit. on pp. 130, 132, 134,
135).

Rand, William (1971). “Objective criteria for the evaluation of clustering methods”.
In: Journal of the American Statistical association 66.336, pp. 846–850 (cit. on p. 19).

182 Bibliography

Rao, Kanishka, Fuchun Peng, Hasim Sak, and Françoise Beaufays (2015). “Grapheme-
to-phoneme Conversion using Long Short-term Memory Recurrent Neural Net-
works”. In: Proc. Acoustics, Speech and Signal Processing (ICASSP). Brisbane, QL,
Australia, pp. 4225–4229 (cit. on p. 122).

Rasmus, Antti, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko
(2015). “Semi-supervised learning with ladder networks”. In: Proc. Advances in
Neural Information Processing Systems, pp. 3546–3554 (cit. on p. 17).

Řehůřek, Radim and Petr Sojka (2010). “Software Framework for Topic Modelling
with Large Corpora”. In: Proc. LREC. Valletta, Malta, pp. 45–50 (cit. on p. 151).

Remus, Steffen and Chris Biemann (2013). “Three knowledge-free methods for au-
tomatic lexical chain extraction”. In: Proc. 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies. Atlanta, GE, USA, pp. 989–999 (cit. on p. 20).

Renshaw, Daniel, Herman Kamper, Aren Jansen, and Sharon Goldwater (2015). “A
comparison of neural network methods for unsupervised representation learn-
ing on the zero resource speech challenge”. In: Proc. Interspeech. Dresden, Ger-
many, pp. 3199–3203 (cit. on p. 99).

Rhodes, Bradley (1997). “The Wearable Remembrance Agent: A System for Aug-
mented Memory”. In: Personal and Ubiquitous Computing 1.4, pp. 218–224 (cit. on
p. 146).

Rhodes, Bradley and Pattie Maes (2000). “Just-in-time Information Retrieval Agents”.
In: IBM Systems Journal 39.3, p. 686 (cit. on p. 146).

Rhodes, Bradley and Thad Starner (1996). “Remembrance Agent: A Continuously
Running Automated Information Retrieval System”. In: Proc. Practical Application
Of Intelligent Agents and Multi Agent Technology, pp. 487–495 (cit. on p. 146).

Riedl, Martin and Chris Biemann (2015). “A Single Word is not Enough: Ranking
Multiword Expressions Using Distributional Semantics”. In: Proc. EMNLP. Lis-
bon, Portugal, pp. 2430–2440 (cit. on p. 148).

Rifai, Salah, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio (2011).
“Contractive auto-encoders: Explicit invariance during feature extraction”. In:
The International Conference on Machine Learning (ICML). Bellevue, Washington,
USA, pp. 833–840 (cit. on pp. 35, 36).

Riloff, Ellen, Janyce Wiebe, and Theresa Wilson (2003). “Learning subjective nouns
using extraction pattern bootstrapping”. In: Proc. ACL. Sapporo, Japan, pp. 25–32
(cit. on p. 17).

Robinds, Herbert and Sutton Monro (1951). “A stochastic approximation method”.
In: Annals of Mathematical Statistics 22, pp. 400–407 (cit. on p. 25).

Rosenberg, Andrew and Julia Hirschberg (2007). “V-measure: A conditional entropy-
based external cluster evaluation measure”. In: Proc. EMNLP-CoNLL. Prague,
Czech Republic, pp. 410–420 (cit. on p. 20).

Bibliography 183

Rousseau, Anthony, Paul Deléglise, and Yannick Estève (2014). “Enhancing the TED-
LIUM Corpus with Selected Data for Language Modeling and More TED Talks”.
In: Proc. LREC. Reykjavik, Iceland, pp. 3935–3939 (cit. on pp. 61, 85, 134, 147).

Roy, Brandon Cain and Deb K Roy (2009). “Fast transcription of unstructured audio
recordings”. In: Proc. Interspeech. Brighton, UK, pp. 1647–1650 (cit. on p. 129).

Rumelhart, David, Geoffrey Hinton, and Ronald Williams (1986). “Learning repre-
sentations by back-propagating errors”. In: Nature 323.6088, p. 533 (cit. on pp. 21,
24, 35).

Rumelhart, David, James McClelland, and the PDP Research Group (1987). Parallel
distributed processing. Vol. 1. MIT Press Cambridge, MA. ISBN: 9780262181204 (cit.
on p. 26).

Sainath, Tara, Abdel Rahman Mohamed, Brian Kingsbury, and Bhuvana Ramabhad-
ran (2013). “Deep convolutional neural networks for LVCSR”. In: Proc. Acoustics,
Speech and Signal Processing (ICASSP). Vancouver, Canada, pp. 8614–8618 (cit. on
p. 67).

Saon, George, Hagen Soltau, David Nahamoo, and Michael Picheny (2013). “Speaker
adaptation of neural network acoustic models using i-vectors.” In: ASRU. Olo-
mouc, Czech Republic, pp. 55–59 (cit. on pp. 4, 78, 80, 91, 134).

Schatz, Thomas (2016). “ABX-discriminability measures and applications”. PhD the-
sis. Université Paris 6 (UPMC) (cit. on pp. 99, 105, 111).

Schatz, Thomas, Vijayaditya Peddinti, Francis Bach, Aren Jansen, Hynek Herman-
sky, and Emmanuel Dupoux (2013). “Evaluating speech features with the minimal-
pair ABX task: Analysis of the classical MFC/PLP pipeline”. In: Proc. Interspeech.
Lyon, France, pp. 1781–1785 (cit. on pp. 99, 105, 111).

Schiel, Florian (1997). “The Bavarian Archive for Speech Signals: Resources for the
Speech Community”. In: Proc. Eurospeech. Rhodes, Greece, pp. 1687–1690 (cit. on
p. 123).

— (2011). “Perception of alcoholic intoxication in speech”. In: Proc. Interspeech. Flo-
rence, Italy, pp. 3281–3284 (cit. on p. 66).

Schmaltz, Allen, Yoon Kim, Alexander M Rush, and Stuart M Shieber (2016). “Sen-
tence-level Grammatical Error Identification as Sequence-to-sequence Correc-
tion”. In: NAACL HLT. San Diego, CA, USA, pp. 242–251 (cit. on p. 121).

Schneider, Steffen, Alexei Baevski, Ronan Collobert, and Michael Auli (2019). “wav2vec:
Unsupervised Pre-Training for Speech Recognition”. In: Proc. Interspeech. Graz,
Austria, pp. 3465–3469 (cit. on pp. 58, 100).

Schnelle-Walka, Dirk, Stephan Radeck-Arneth, Chris Biemann, and Stefan Radom-
ski (2014). “An open source corpus and recording software for distant speech
recognition with the microsoft kinect”. In: Proc. ITG. Erlangen, Germany (cit. on
p. 134).

184 Bibliography

Schnober, Carsten, Steffen Eger, Erik-Lân Do Dinh, and Iryna Gurevych (2016). “Still
not there? Comparing Traditional Sequence-to-Sequence Models to Encoder-De-
coder Neural Networks on Monotone String Translation Tasks”. In: Proc. COL-
ING. Osaka, Japan, pp. 1703–1714 (cit. on p. 122).

Schröder, Marc and Jürgen Trouvain (2003). “The German text-to-speech synthesis
system MARY: A tool for research, development and teaching”. In: International
Journal of Speech Technology 6.4, pp. 365–377 (cit. on pp. 131, 133).

Schroeder, Manfred (1977). “Recognition of Complex Acoustic Signals, Life Sciences
Research Report 5”. In: Dahlem Konferenzen, pp. 323–328 (cit. on p. 48).

Schuller, Björn (2012). “The Computational Paralinguistics Challenge [Social Sci-
ences]”. In: Signal Processing Magazine, IEEE 29.4, pp. 97–101 (cit. on p. 66).

Schuller, Björn, Stefan Steidl, and Anton Batliner (2009). “The INTERSPEECH 2009
emotion challenge”. In: Proc. Interspeech. Brighton, UK, pp. 312–315 (cit. on p. 66).

Schuller, Björn, Stefan Steidl, Anton Batliner, Felix Burkhardt, Laurence Devillers,
Christian Müller, and Shrikanth Narayanan (2010). “The INTERSPEECH 2010
Paralinguistic Challenge”. In: Proc. Interspeech. Makuhari, Chiba, Japan, pp. 2794–
2797 (cit. on p. 66).

Schuller, Björn, Stefan Steidl, Anton Batliner, Simone Hantke, Florian Hönig, Juan
Rafael Orozco-Arroyave, Elmar Nöth, Yue Zhang, and Felix Weniger (2015). “The
INTERSPEECH 2015 Computional Paralinguistics Challenge: Nativeness, Parkin-
son’s and Eating Condition”. In: Proc. Interspeech. Dresden, Germany, pp. 478–482
(cit. on pp. 66, 71, 72, 74).

Schuster, Mike and Kuldip K Paliwal (1997). “Bidirectional recurrent neural net-
works”. In: IEEE Transactions on Signal Processing 45.11, pp. 2673–2681 (cit. on
pp. 39, 40, 100).

Senior, Andrew and Ignacio Lopez-Moreno (2014). “Improving DNN speaker inde-
pendence with i-vector inputs”. In: Proc. Acoustics, Speech and Signal Processing
(ICASSP). Florence, Italy, pp. 225–229 (cit. on pp. 80, 134).

Shannon, Claude Elwood (1948). “A mathematical theory of communication”. In:
Bell system technical journal 27.3, pp. 379–423 (cit. on p. 19).

Sharif Razavian, Ali, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson
(2014). “CNN features off-the-shelf: an astounding baseline for recognition”. In:
Proc. IEEE conference on computer vision and pattern recognition workshops. Colum-
bus, OH, USA, pp. 806–813 (cit. on p. 69).

Shor, Joel, Aren Jansen, Ronnie Maor, Oran Lang, Omry Tuval, Félix de Chaumont
Quitry, Marco Tagliasacchi, Ira Shavitt, Dotan Emanuel, and Yinnon Haviv (2020).
“Towards Learning a Universal Non-Semantic Representation of Speech”. In:
Proc. Interspeech. Virtual Shangai, China, pp. 140–144 (cit. on pp. 80, 94, 95).

Simard, Patrice, Dave Steinkraus, and John Platt (2003). “Best practices for convolu-
tional neural networks applied to visual document analysis”. In: Seventh Interna-
tional Conference on Document Analysis and Recognition, p. 958 (cit. on p. 68).

Bibliography 185

Simonyan, Karen and Andrew Zisserman (2015). “Very deep convolutional networks
for large-scale image recognition”. In: Proc. International Conference on Learning
Representations (ICLR). San Diego, CA, USA (cit. on pp. 32, 68, 83, 84).

Siu, Man-hung, Herbert Gish, Steve Lowe, and Arthur Chan (2011). “Unsupervised
audio patterns discovery using HMM-based self-organized units”. In: Proc. In-
terspeech. Florence, Italy, pp. 2333–2336 (cit. on p. 98).

Smit, Peter, Sami Virpioja, Mikko Kurimo, et al. (2017). “Improved Subword Model-
ing for WFST-Based Speech Recognition.” In: Proc. Interspeech. Stockholm, Swe-
den, pp. 2551–2555 (cit. on pp. 44, 143).

Snyder, David, Daniel Garcia-Romero, Daniel Povey, and Sanjeev Khudanpur (2017).
“Deep Neural Network Embeddings for Text-Independent Speaker Verification”.
In: Proc. Interspeech. Stockholm, Sweden, pp. 999–1003 (cit. on p. 79).

Snyder, David, Pegah Ghahremani, Daniel Povey, Daniel Garcia-Romero, Yishay
Carmiel, and Sanjeev Khudanpur (2016). “Deep neural network-based speaker
embeddings for end-to-end speaker verification”. In: Proc. Spoken Language Tech-
nology Workshop (SLT). San Diego, CA, USA, pp. 165–170 (cit. on p. 79).

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov (2014). “Dropout: a simple way to prevent neural networks from
overfitting”. In: The journal of machine learning research 15.1, pp. 1929–1958 (cit. on
pp. 30, 68).

Stadtschnitzer, Michael, Jochen Schwenninger, Daniel Stein, and Joachim Köhler
(2014). “Exploiting the large-scale German Broadcast Corpus to boost the Fraun-
hofer IAIS Speech Recognition System.” In: Proc. LREC. Reykjavik, Iceland, pp. 3887–
3890 (cit. on p. 88).

Stevens, Stanley Smith, John Volkmann, and Edwin Newman (1937). “A scale for
the measurement of the psychological magnitude pitch”. In: The Journal of the
Acoustical Society of America 8.3, pp. 185–190 (cit. on p. 47).

Stone, Mervyn (1974). “Cross-validatory choice and assessment of statistical pre-
dictions”. In: Journal of the Royal Statistical Society: Series B (Methodological) 36.2,
pp. 111–133 (cit. on p. 18).

Strehl, Alexander (2002). “Relationship-based clustering and cluster ensembles for
high-dimensional data mining”. PhD thesis. University Of Texas at Austin (cit.
on pp. 20, 87).

Sukhbaatar, Sainbayar, Arthur Szlam, Jason Weston, and Rob Fergus (2015). “End-
to-end memory networks”. In: Proc. Advances in Neural Information Processing Sys-
tems. Montreal, Canada, pp. 2440–2448 (cit. on p. 101).

Sutskever, Ilya, James Martens, George Dahl, and Geoffrey Hinton (2013). “On the
importance of initialization and momentum in deep learning”. In: 30th Interna-
tional Conference on Machine Learning (ICML). Atlanta, GA, USA, pp. 1139–1147
(cit. on pp. 29, 69, 70).

186 Bibliography

Sutskever, Ilya, Oriol Vinyals, and Quoc Le (2014). “Sequence to Sequence Learn-
ing with Neural Networks”. In: Proc. Advances in Neural Information Processing
Systems. Montreal, Canada, pp. 3104–3112 (cit. on pp. 40, 121).

Synnaeve, Gabriel and Emmanuel Dupoux (2014). “Weakly supervised multi-em-
beddings learning of acoustic models”. In: arXiv preprint arXiv:1412.6645 (cit. on
p. 79).

Taigman, Yaniv, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf (2014). “DeepFace:
Closing the Gap to Human-Level Performance in Face Verification”. In: Confer-
ence on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA, p. 8
(cit. on p. 67).

Tieleman, Tijmen and Geoffrey Hinton (2012). “Lecture 6.5-RMSProp, Coursera: Neu-
ral networks for machine learning”. In: University of Toronto, Technical Report (cit.
on p. 30).

Tilk, Ottokar and Tanel Alumäe (2016). “Bidirectional Recurrent Neural Network
with Attention Mechanism for Punctuation Restoration”. In: Proc. Interspeech. San
Francisco, California, USA, pp. 3047–3051 (cit. on p. 138).

Tjandra, Andros, Berrak Sisman, Mingyang Zhang, Sakriani Sakti, Haizhou Li, and
Satoshi Nakamura (2019). “VQVAE Unsupervised Unit Discovery and Multi-
Scale Code2Spec Inverter for Zerospeech Challenge 2019”. In: Proc. Interspeech.
Graz, Austria, pp. 1118–1122 (cit. on p. 99).

Trager, George (1958). “Paralanguage: A first approximation”. In: Studies in linguis-
tics 13.1-2, pp. 1–12 (cit. on p. 66).

Traum, David, Priti Aggarwal, Ron Artstein, Susan Foutz, Jillian Gerten, Athanasios
Katsamanis, Anton Leuski, Dan Noren, and William Swartout (2012). “Ada and
Grace: Direct interaction with museum visitors”. In: Proc. International conference
on intelligent virtual agents. Santa Cruz, CA, USA, pp. 245–251 (cit. on p. 146).

Trigeorgis, George, Fabien Ringeval, Raymond Brueckner, Erik Marchi, Mihalis A
Nicolaou, Björn Schuller, and Stefanos Zafeiriou (2016). “Adieu features? End-
to-end speech emotion recognition using a deep convolutional recurrent net-
work”. In: Proc. Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China,
pp. 5200–5204 (cit. on p. 75).

Tsvetkov, Yulia, Sunayana Sitaram, Manaal Faruqui, Guillaume Lample, Patrick Lit-
tell, David Mortensen, Alan W Black, Lori Levin, and Chris Dyer (2016). “Poly-
glot Neural Language Models: A Case Study in Cross-Lingual Phonetic Repre-
sentation Learning”. In: Proc. NAACL. San Diego, CA, USA, pp. 1357–1366 (cit.
on p. 122).

Turing, Alan (1950). “Computing Machinery and Intelligence”. In: Mind 59.236, p. 433
(cit. on p. 20).

Versteegh, Maarten, Roland Thiolliere, Thomas Schatz, Xuan Nga Cao, Xavier Ang-
uera, Aren Jansen, and Emmanuel Dupoux (2015). “The Zero Resource Speech
Challenge 2015”. In: Proc. Interspeech. Dresden, Germany, pp. 3169–3173 (cit. on
p. 99).

Bibliography 187

Veselỳ, Karel, Mirko Hannemann, and Lukáš Burget (2013). “Semi-supervised train-
ing of deep neural networks”. In: Proc. Workshop on Automatic Speech Recognition
and Understanding (ASRU). Olomouc, Czech Republic, pp. 267–272 (cit. on p. 17).

Veselỳ, Karel, Shinji Watanabe, Katerina Žmolíková, Martin Karafiát, Lukáš Burget,
and Jan Honza Černockỳ (2016). “Sequence summarizing neural network for
speaker adaptation”. In: Proc. Acoustics, Speech and Signal Processing (ICASSP).
Shanghai, China, pp. 5315–5319 (cit. on pp. 80, 103).

Viikki, Olli and Kari Laurila (1998). “Cepstral domain segmental feature vector nor-
malization for noise robust speech recognition”. In: Speech Communication 25.1-3,
pp. 133–147 (cit. on p. 48).

Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Man-
zagol, and Léon Bottou (2010). “Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local denoising criterion.” In: Journal
of machine learning research 11.12 (cit. on p. 36).

Vintsyuk, Taras K (1968). “Speech discrimination by dynamic programming”. In:
Cybernetics and Systems Analysis 4.1, pp. 52–57 (cit. on p. 106).

Vinyals, Oriol and Quoc Le (2015). “A Neural Conversation Model”. In: Proc. of ICML
Deep Learning Workshop. Lille, France (cit. on p. 121).

Viterbi, Andrew (1967). “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm”. In: IEEE transactions on Information Theory
13.2, pp. 260–269 (cit. on pp. 50, 51).

Wagner, Johannes, Andreas Seiderer, Florian Lingenfelser, and Elisabeth André (2015).
“Combining hierarchical classification with frequency weighting for the recogni-
tion of eating conditions”. In: Proc. Interspeech. Dresden, Germany, pp. 889–893
(cit. on pp. 73, 74).

Wagner, Robert and Michael Fischer (1974). “The string-to-string correction prob-
lem”. In: Journal of the ACM (JACM) 21.1, pp. 168–173 (cit. on p. 52).

Wahlster, Wolfgang (2000). Verbmobil: foundations of speech-to-speech translation. Springer-
Verlag Berlin/Heidelberg. ISBN: 9783642087301 (cit. on p. 136).

Waibel, Alexander, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and
Kevin Lang (1990). “Phoneme recognition using time-delay neural networks”.
In: Readings in speech recognition, pp. 393–404 (cit. on pp. 56, 78, 134).

Wang, Weiran, Qingming Tang, and Karen Livescu (2020). “Unsupervised Pre-training
of Bidirectional Speech Encoders via Masked Reconstruction”. In: Proc. Acoustics,
Speech and Signal Processing (ICASSP). Virtual Barcelona, Spain, pp. 6889–6893
(cit. on p. 99).

Warden, Pete (2018). “Speech commands: A dataset for limited-vocabulary speech
recognition”. In: arXiv preprint arXiv:1804.03209 (cit. on p. 94).

Weide, Robert (2005). The Carnegie Mellon Pronouncing Dictionary [cmudict. 0.7b] (cit.
on p. 61).

188 Bibliography

Wells, John, William Barry, Martine Grice, Adrian Fourcin, and Dafydd Gibbon (1992).
“Standard computer-compatible transcription”. In: Esprit project 2589 (SAM), Doc.
no. SAM-UCL 37 (cit. on p. 61).

Weng, John, Narendra Ahuja, and Thomas Huang (1993). “Learning recognition and
segmentation of 3-D objects from 2-D images”. In: Proc. Fourth International Con-
ference on Computer Vision. Berlin, Germany, pp. 121–128 (cit. on p. 31).

Werbos, Paul (1982). “Applications of advances in nonlinear sensitivity analysis”. In:
pp. 762–770 (cit. on p. 24).

— (1988). “Generalization of backpropagation with application to a recurrent gas
market model”. In: Neural networks 1.4, pp. 339–356 (cit. on p. 37).

Whitehurst, Grover and Ross Vasta (1975). “Is language acquired through imita-
tion?” In: Journal of Psycholinguistic Research 4.1, pp. 37–59 (cit. on p. 6).

Williams, Ronald J and David Zipser (1995). “Gradient-based learning algorithms
for recurrent networks and their computational complexity”. In: Backpropagation:
Theory, architectures, and applications 1, pp. 433–486 (cit. on p. 37).

Williams, Will, Niranjani Prasad, David Mrva, Tom Ash, and Tony Robinson (2015).
“Scaling Recurrent Neural Network Language Models”. In: Proc. Acoustics, Speech
and Signal Processing (ICASSP). Brisbane, QL, Australia, pp. 5391–5395 (cit. on
p. 148).

Wirth, Johannes and Rene Peinl (2022). “ASR in German: A Detailed Error Analysis”.
In: arXiv preprint arXiv:2204.05617 (cit. on pp. 135, 136).

Witten, Ian, Eibe Frank, Mark Hall, and Christopher Pal (2016). Data Mining: Prac-
tical machine learning tools and techniques. 3rd ed. Morgan Kaufmann. ISBN: 978-
0123748560 (cit. on p. 18).

Wölfel, Matthias and John McDonough (2009). Distant speech recognition. John Wiley
& Sons. ISBN: 978-0-470-51704-8 (cit. on p. 5).

Wu, Bin, Sakriani Sakti, Jinsong Zhang, and Satoshi Nakamura (2018). “Optimiz-
ing DPGMM Clustering in Zero-Resource Setting based on Functional Load”. In:
Proc. The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced
Languages. Gurugram, India, pp. 1–5 (cit. on p. 108).

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner,
Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nis-
hant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean (2016a).
“Google’s Neural Machine Translation System: Bridging the Gap between Hu-
man and Machine Translation”. In: arXiv preprint arXiv:1609.08144 (cit. on p. 122).

Wu, Yuhuai, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Russ R Salakhutdi-
nov (2016b). “On multiplicative integration with recurrent neural networks”. In:
Proc. Advances in Neural Information Processing Systems. Barcelona, spain, pp. 2856–
2864 (cit. on p. 39).

Bibliography 189

Xu, Haihua, Daniel Povey, Lidia Mangu, and Jie Zhu (2011). “Minimum Bayes risk
decoding and system combination based on a recursion for edit distance”. In:
Computer Speech & Language 25.4, pp. 802–828 (cit. on p. 141).

Xu, Hainan, Tongfei Chen, Dongji Gao, Yiming Wang, Ke Li, Nagendra Goel, Yishay
Carmiel, Daniel Povey, and Sanjeev Khudanpur (2018a). “A pruned rnnlm lattice-
rescoring algorithm for automatic speech recognition”. In: Proc. acoustics, speech
and signal processing (ICASSP). Calgary, AB, Canada, pp. 5929–5933 (cit. on p. 135).

Xu, Hainan, Ke Li, Yiming Wang, Jian Wang, Shiyin Kang, Xie Chen, Daniel Povey,
and Sanjeev Khudanpur (2018b). “Neural network language modeling with letter-
based features and importance sampling”. In: Proc. Acoustics, Speech and Signal
Processing (ICASSP). Calgary, Alberta, Canada (cit. on p. 133).

Yan, S (2015). “Understanding LSTM networks”. In: Online. Accessed on November
2020. URL: https://colah.github.io/posts/2015-08-Understanding-
LSTMs/ (cit. on pp. 37, 38).

Yao, Kaisheng and Geoffrey Zweig (2015). “Sequence-to-sequence Neural Net Mod-
els for Grapheme-to-phoneme Conversion”. In: arXiv preprint arXiv:1506.00196
(cit. on pp. 121, 122).

Yarowsky, David (1995). “Unsupervised word sense disambiguation rivaling super-
vised methods”. In: Proc. ACL. MIT, Cambridge, Massachusetts, pp. 189–196 (cit.
on p. 17).

Young, Steve, Julian Odell, and Phil Woodland (1994). “Tree-based state tying for
high accuracy modelling”. In: Human Language Technology: Proceedings of a Work-
shop held at Plainsboro, New Jersey, March 8-11, 1994, pp. 307–312 (cit. on p. 51).

Zeghidour, Neil, Gabriel Synnaeve, Nicolas Usunier, and Emmanuel Dupoux (2016).
“Joint Learning of Speaker and Phonetic Similarities with Siamese Networks”.
In: Proc. Interspeech. San Francisco, CA, USA, pp. 1295–1299 (cit. on p. 79).

Zeiler, Matthew (2012). “ADADELTA: An Adaptive Learning Rate Method”. In: arXiv
preprint arXiv:1212.5701 (cit. on p. 29).

Zhang, Yaodong and James R Glass (2009). “Unsupervised spoken keyword spot-
ting via segmental DTW on Gaussian posteriorgrams”. In: Proc. Automatic Speech
Recognition & Understanding (ASRU). Merano/Meran, Italy, pp. 398–403 (cit. on
pp. 78, 98).

Zhou, Bowen and John Hansen (2000). “Unsupervised audio stream segmentation
and clustering via the Bayesian information criterion”. In: International Conference
on Spoken Language Processing (ICSLP). Beijing, China, pp. 714–717 (cit. on p. 87).

Zhou, Guo-Bing, Jianxin Wu, Chen-Lin Zhang, and Zhi-Hua Zhou (2016). “Minimal
gated unit for recurrent neural networks”. In: International Journal of Automation
and Computing 13.3, pp. 226–234 (cit. on p. 39).

Zhou, Yi-Tong and Rama Chellappa (1988). “Computation of optical flow using a
neural network”. In: Proc. 6th International Conference on Spoken Language Process-
ing (ICSLP 2000), pp. 71–78 (cit. on pp. 30, 31).

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

190 Bibliography

Zhu, Xiaojin and Zoubin Ghahramani (2002). “Learning from labeled and unlabeled
data with label propagation”. In: (cit. on p. 17).

Zhu, Xiaojin Jerry (2005). Semi-supervised learning literature survey. Tech. rep. 1530.
Computer Sciences, University of Wisconsin-Madison (cit. on p. 17).

Zilly, Julian Georg, Rupesh Kumar Srivastava, Jan Koutnık, and Jürgen Schmidhu-
ber (2017). “Recurrent highway networks”. In: International Conference on Machine
Learning (ICML). Sydney, Australia, pp. 4189–4198 (cit. on p. 39).

Zipf, George Kingsley (1929). “Relative frequency as a determinant of phonetic change”.
In: Harvard studies in classical philology 40, pp. 1–95 (cit. on p. 60).

191

Appendix

Several model training scripts and speech applications where developed as part of
this thesis. They have been released as open source software, to make the experi-
ments conducted in this thesis reproducible. This appendix provides an overview
over the project repositories:

Chapter 4: Source code to replicate the results of eating condition classification
can be found at https://github.com/bmilde/deepschmatzing. This system
was submitted to the Interspeech 2015 Computational Paralinguistics challenge.

Chapter 5: Training code for Unspeech - Unsupervised Speech Context Embed-
dings can be found at https://gitlab.com/milde/unspeech. For further us-
age instructions and pre-trained models see also https://unspeech.net/.

Chapter 6: Training code for the Sparsespeech model can be found at https://
gitlab.com/milde/sparsespeech (TensorFlow reference implementation) and
https://gitlab.com/milde/sparsespeech2 (end-to-end PyTorch reimplemen-
tation). Furthermore, contributions were also made to https://github.com/

facebookresearch/libri-light, to evaluate Sparsespeech models with Kull-
back-Leibler divergence as local distance function in the ABX error measure.

Chapter 7: Scripts to reproduce the IPA dictionary generation are available at
https://github.com/bmilde/wiktionary_ipa_phoneme_lexicons.

Chapter 8: At https://github.com/uhh-lt/kaldi-tuda-dewe published
all scripts and resources to train German Kaldi ASR models on about 1,720h of
speech data as well as pre trained models.

https://github.com/bmilde/german-asr-lm-tools is a sub repository,
used to clean and normalize German texts crawled from the internet for language
model training for ASR. Kaldi-model-server can be found at https://github.
com/uhh-lt/kaldi-model-server and can be used for online decoding with
these models. Contributions were also made to the PyKaldi project at https://
github.com/pykaldi/pykaldi.

The automatic subtitling software for German discussed in this chapter is avail-
able at https://github.com/uhh-lt/subtitle2go. The prototype for auto-
matic meeting transcription and summarization can be found at https://github.

https://github.com/bmilde/deepschmatzing
https://gitlab.com/milde/unspeech
https://unspeech.net/
https://gitlab.com/milde/sparsespeech
https://gitlab.com/milde/sparsespeech
https://gitlab.com/milde/sparsespeech2
https://github.com/facebookresearch/libri-light
https://github.com/facebookresearch/libri-light
https://github.com/bmilde/wiktionary_ipa_phoneme_lexicons
https://github.com/uhh-lt/kaldi-tuda-de
https://github.com/bmilde/german-asr-lm-tools
https://github.com/uhh-lt/kaldi-model-server
https://github.com/uhh-lt/kaldi-model-server
https://github.com/pykaldi/pykaldi
https://github.com/pykaldi/pykaldi
https://github.com/uhh-lt/subtitle2go
https://github.com/uhh-lt/MeetingBot
https://github.com/uhh-lt/MeetingBot

192 Appendix

com/uhh-lt/MeetingBot with instructions on how to install and run the soft-
ware.

Bbb-live-subtitles, a plugin for automatic subtitling in BBB briefly discussed in
this Chapter as well, can be found at:

https://github.com/uhh-lt/bbb-live-subtitles.

Chapter 9: Ambient search, the open source system for displaying and retrieving
relevant documents in real time for speech input can be found at:

https://github.com/bmilde/ambientsearch.

All links have been last accessed in April 2022.

https://github.com/uhh-lt/MeetingBot
https://github.com/uhh-lt/MeetingBot
https://github.com/uhh-lt/MeetingBot
https://github.com/uhh-lt/bbb-live-subtitles
https://github.com/bmilde/ambientsearch

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Challenges in Automatic Speech Processing and Speech Recognition
	Speaker Variability
	Pronunciation Variability
	Background and Channel Variability
	Extra-Linguistic Variability
	In Summary

	Overview and research directions of this thesis
	Thesis overview
	Publications forming the basis of this thesis

	Machine Learning and Neural Networks
	Supervised Learning
	Unsupervised Learning
	Clustering
	K-Means
	DBSCAN

	Self-supervised Learning
	Semi-supervised Learning
	Transfer Learning
	Evaluation
	In Supervised Learning
	In Unsupervised Learning

	Artificial Neural Networks
	Feed Forward Networks
	Loss Function
	Back-propagation
	Gradient Descent
	Stochastic Gradient Descent
	Vanishing Gradient Problem
	Deep Neural Networks
	Unsupervised pre-training
	Other types of non-linearities
	Weight Initialization
	Advances in gradient descent methods
	Dropout

	Convolutional Neural Networks
	Convolution Layer
	Pooling Layer
	CNN Network Structures
	Autoencoders
	Undercomplete Autoencoders
	Regularized Autoencoders
	Denoising Autoencoders
	Recurrent Neural Networks
	LSTM
	Bi-directional

	Neural Sequence-to-Sequence Models

	Automatic Speech Recognition
	ASR search space
	ASR components
	Speech Features
	FBANK
	MFCC features
	Delta features
	CMVN
	PLP features

	Hidden Markov Models
	Evaluation
	Recognition
	Training

	GMM-HMMs
	Context Dependent Phones
	Decoding
	Evaluation
	Speech Recognition with WFSTs
	Language Models
	Maximum Likelihood Estimation
	Smoothing
	Neural Language Models
	Recurrent LM

	DNN-HMM Acoustic Model Hybrids
	TDNN-HMMs

	Connectionist Temporal Classification
	Unsupervised ASR
	Contrastive Predictive Coding

	Distributions in Spoken Language
	Phoneme frequencies
	Average phoneme durations
	Word frequencies

	Supervised Representation Learning for a Paralinguistic Speech Task
	Introduction
	Methods and approaches
	CNN-based audio sequence classification
	Weighted Majority Voting
	Regularization
	Data Augmentation
	Transfer Learning
	Hyperparameters

	Results
	Insights
	Challenge Results

	Conclusion
	Additional Remarks

	Unsupervised Representation Learning for Speech Contexts
	Introduction
	Related Work
	Proposed Models
	Objective Function
	Model Architecture
	Implementation Details

	Evaluation
	Same/Different Speaker Experiment
	Clustering Utterances
	Acoustic Models With Unspeech Cluster IDs
	Unspeech Context Vectors in TDNN-HMM Models

	Negative Sampling Methods
	Word-Level Phonetic Information
	Unspeech Embeddings in Acoustic Models for Out-Of-Domain Test Data
	Unspeech Embeddings in Down-Stream Classification Tasks

	Conclusion

	Self-Supervised Discrete Representation Learning from Speech
	Unsupervised Acoustic Unit Discovery
	Related Work
	Proposed Sparsespeech Model
	Memory Component
	Enforcing Sparsity
	Context Vector
	Enforcing Diversity
	Training Procedure

	Implementation
	Evaluation
	Conclusion

	Categorical Reparameterization
	Setup

	Evaluation
	End-to-end Sparsespeech model
	Implementation details
	ABX evaluation

	Conclusion

	Multitask Grapheme-to-Phoneme Conversion
	Related Work
	Neural Grapheme-to-Phoneme Models
	Evaluation
	Results
	Conclusion

	Automatic subtitling
	German ASR
	Data Resources
	Lexicon
	Language Model Resources
	Experiments and Evaluation
	Comparison to other systems
	Conversational Speech

	Subtitling Pipeline
	Punctuation
	Subtitle Segmentation
	Evaluation
	Decoding Speed
	Online Decoding
	Conclusions and Outlook

	A Document Retrieval System for Speech Streams
	Related Work
	Our Approach to Ambient Search
	Speech Decoding
	Keyphrase Extraction
	Term Ranking
	Index Queries
	Visual Presentation
	Implementation Details

	Evaluation
	Keyphrase and Document Retrieval
	Results
	Error Analysis

	Conclusion

	Conclusion
	Bibliography
	Appendix

