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ABSTRACT
In this work, we present the Golden Retriever, a system leverag-
ing state-of-the-art visio-linguistic models (VLMs) for real-time
text-image retrieval. The unique feature of our system is that it can
focus on words contained in the textual query, i.e., locate and high-
light them within retrieved images. An efficient two-stage process
implements real-time capability and the ability to focus. Therefore,
we first drastically reduce the number of images processed by a
VLM. Then, in the second stage, we rank the images and highlight
the focussed word using the outputs of a VLM. Further, we intro-
duce a new and efficient algorithm based on the idea of TF-IDF
to retrieve images for short textual queries. One of multiple use
cases where we employ the Golden Retriever is a language learner
scenario, where visual cues for “difficult” words within sentences
are provided to improve a user’s reading comprehension. However,
since the backend is completely decoupled from the frontend, the
system can be integrated into any other application where images
must be retrieved fast. We demonstrate the Golden Retriever with
screenshots of a minimalistic user interface.
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1 INTRODUCTION
The famous adage “A picture is worth a thousand words.” can be
interpreted in various ways. One way is to see this as a motivation
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and problem statement for multi-modal text-image retrieval sys-
tems that enable searching images with words, i.e., textual queries.
While current solutions, e.g., from popular search engines, work
astonishingly well, they lack the ability to focus single words of the
query and locate them within the retrieved images. That is, they
rank images according only to the whole textual query.

With the Golden Retriever presented in this paper, we propose a
solution to put particular focus on a word within the query when
retrieving images. Further, we locate and highlight the denoted
image for the focused word within the retrieved images.

This feature enables multiple use cases, for example, a multi-
modal language learner scenario, where visual cues for difficult
words can support a user’s reading comprehension. To implement
the ability to retrieve and rank images not only for the whole textual
query but additionally incorporate focused words within the query,
we leverage state-of-the-art multi-modal models. However, these
models are computationally heavy, challenging real-time critical
applications when searching through a large pool of images. With
our system, we propose a solution for this by implementing an
efficient preprocessing stage that drastically reduces the number of
images processed by the multi-modal retrieval model. As a part of
this preprocessing stage, we further introduce a fast new algorithm
based on TF-IDF [11] to retrieve images for textual queries.

2 RELATEDWORK
There were significant breakthroughs in various computer vision
and natural language processing tasks during the last few years [3,
7, 8, 21]. This progress of uni-modal models also led to a great leap
forward in multi-modal visio-linguistic models (VLMs), leveraging
the power of transformers to work with text and images simultane-
ously [5, 12, 14, 16]. For content-based text-image retrieval [6, 22],
these VLMs learn a metric function Φ(𝑄, 𝐼 ) : R |𝑄 |× |𝐼 | → [0, 1]
that measures the similarity of a textual query 𝑄 and image 𝐼 . The
objective is to find the best matching image 𝐼𝑘 = argmax

𝑖∈𝑃
Φ(𝑄, 𝐼𝑖 )

for the query text 𝑄 from a pool of images 𝑃 .
There are two major differences in the architecture of current

VLMs, affecting how the text-image similarity is computed. In so-
called early-fusion VLMs, a single transformer stack is employed
that simultaneously processes textual and visual token embeddings
and computes the text-image similarity from the outputs of the
self-attention heads of the last layer. In VLMs referred to as late-
fusion models, there are two transformer stacks, one for the textual
input and one for the visual input. Late-fusion VLMs calculate the
cosine-similarity from the textual and visual CLS tokens or from
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an aggregation of the other token embeddings of the last layer
to compute the text-image similarity. Because the complexity of
self-attention is quadratic in the number of input tokens, early-
fusion models require less computational power or execution time
than late-fusion models for inference. However, even with late-
fusion models, “real-time” critical applications become challenging
to implement when retrieving the best matching images according
to a textual query from a large pool of images.

3 MOTIVATION AND CHALLENGES
There are two primary challenges the Golden Retriever system
solves, briefly outlined in the following subsections.

3.1 VLMs in “real-time” critical Retrieval
Systems

State-of-the-art visio-linguistic models (VLMs) require much com-
putational power to retrieve the best matching images for a textual
query from a large pool of images. Hence, it becomes challenging
to leverage those VLMs for real-time critical retrieval systems. To
solve this issue, the Golden Retriever system implements a sophis-
ticated pre-selection stage that drastically reduces the number of
candidate images processed by the VLMs.

3.2 Extending queries by Focus Words
The second motivation of the Golden Retriever is to extend the
textual query used in standard text-image retrieval, which com-
prises a sequence of words by a focus word contained within the
sequence. In the following, we refer to the sequence of words in
the query as the context and the focus word as the focus. Then, we
retrieve the best matching images according to the context and pay
particular attention to the focus word in a re-ranking stage. Further,
we locate and highlight the image region where the focus word is
best represented in the retrieved images.

4 VISUALLY WEIGHTED TF-IDF
This section introduces an efficient method to retrieve images for
textual queries consisting of short noun phrases. Our algorithm is
based on TF-IDF [11], but is applied to images instead of textual
documents. Hence, we refer to it as Visually-Weighted TF-IDF or
VW-TF-IDF. In Section 5.3.2, we describe howwe utilize this method
to retrieve images relevant to the focus.

For the VW-TF-IDF, we interpret images as visual documents
with “terms” that are classified Region-Of-Interests (ROIs) in the
image predicted by an object detection and classification network,
e.g., Faster-R-CNN [18]. In the current Golden Retriever version,
we use a pre-trained network [1, 24] with about 1400 unique objects
and attributes labels. The set of labels is what we refer to as “visual
vocabulary” and each element is called a term in the following.

To compute the VW-TF-IDF score, the classical formula of TF-
IDF is extended by a weighting scheme based on visual properties.
The motivation is that the score should be higher if the region with
the respective label is prominent in the image and the classifier is
confident. Hence, the confidence scores and the ROI areas are incor-
porated in addition to the counts of the terms from the traditional
TF-IDF formula.

Formally, we define the VW-TF-IDF of a term 𝑡 and an image
document 𝑑 as

vw_tf_idf(𝑡, 𝑑) = vw_tf(𝑡, 𝑑) · log
(
numdocs
df(𝑡) + 1

)
(1)

where the logarithmic term is standard inverse document frequency
(IDF) with simple additive Laplace-Smoothing for numerical sta-
bility. The visually weighted term frequency (VW-TF) is defined
as

vw_tf(𝑡, 𝑑) = cnt(𝑡, 𝑑) · weight(t, d)
num_terms(𝑑) (2)

where cnt(𝑡, 𝑑) is the number of times term 𝑡 appears in document
𝑑 and num_terms(𝑑) is the total number of terms in the document.
The weight of the term 𝑡 in 𝑑 is defined as

weight(t, d) = 𝛼 conf(𝑡, 𝑑) + (1 − 𝛼) area(𝑡, 𝑑) (3)

conf(𝑡, 𝑑) = 1
cnt(𝑡, 𝑑)

∑︁
𝑡 (𝑖 ) ∈𝑡

𝑡
(𝑖)
𝑐𝑜𝑛𝑓

(4)

area(𝑡, 𝑑) = 1
𝑑𝑎𝑟𝑒𝑎

∑︁
𝑡 (𝑖 ) ∈𝑡

𝑡
(𝑖)
𝑎𝑟𝑒𝑎 (5)

where 𝑡 (𝑖)
𝑐𝑜𝑛𝑓

is the accumulated confidence score, 𝑡 (𝑖)𝑎𝑟𝑒𝑎 is the accu-
mulated area of the ROIs of term 𝑡 (𝑖) ∈ 𝑑 , and 𝑑𝑎𝑟𝑒𝑎 is the total area
of the image document 𝑑 . The parameter 𝛼 is used to control the
importance of the confidence or area of a term in the final weight
of 𝑡 .

To efficiently retrieve the most relevant images for a query, we
first compute a VW-TF-IDF index for every term in the visual vo-
cabulary and every image in the set of images to be searched in an
offline setting. Then, in the online setting, the most relevant images
have the highest VW-TF-IDF for the query and can be retrieved via
simple dictionary lookups in the pre-computed index.

One major drawback of our method – and in general TF-IDF –
is that the query can only contain terms from the limited visual vo-
cabulary, i.e., the method lacks proper out-of-vocabulary handling.
We overcome this issue with a pre-processing step that transforms
arbitrary queries to queries that only contain terms contained in
the vocabulary. More on this pre-processing step is detailed in
Section 5.3.2.

5 SYSTEM ARCHITECTURE
This section describes the Golden Retriever system to solve the
main challenges introduced in the previous section. Auxiliary com-
ponents like, e.g., a static file server for images or components to
generate images with highlighted focus are not described here.

5.1 User Interface
The minimalistic user interface presented in Section 7 communi-
cates with the Golden Retriever backend via HTTP calls to a REST
API. It is implemented as a simple browser plugin to mimic a search
engine-like environment using HTML, CSS, and plain JavaScript.
However, since the frontend is decoupled from the backend, the
Golden Retriever can be easily integrated within other applications.



5.2 Backend Summary
The Golden Retriever backend implements the two-stage retrieval
process schematically sketched in Figure 1. The first pre-selection

Figure 1: Schematic overview of the Golden Retriever back-
end system.

stage (c.f. Section 5.4) reduces the image pool 𝑃 to a significantly
smaller candidate image set that the VLM processes. Note that
the image pool comprises images along with their corresponding
textual captions, i.e., it contains multi-modal text-image data. The
second fine-selection stage (c.f. Section 5.3) leverages a VLM to
retrieve the best matching images from the candidate image set
according to the extended query and locate the image region that
best matches the focus word.

In the current version of the Golden Retriever, we use three
different multi-modal datasets as image pools: MS COCO [13],
Flickr30k [23], and a Wikipedia-based dataset collected by us for
other work [20]. Further, we currently employ only TERAN [14]
models trained on different datasets in the presented proof-of-
concept application. However, we successfully experimented with
UNITER [5] models but did not yet implement them in the demon-
strated system. Furthermore, in general, every VLM that can com-
pute text-image similarities can be integrated into the Golden Re-
triever system.

In an extensive experiment described in Section 6 to measure
the Golden Retriever backend execution time per request, we found
that the average system response is around 2.10 seconds, agnostic
to the size of the image pool and the length of the query.

5.3 Pre-Selection Stage
In this stage of the Golden Retriever backend, the image pool is
drastically reduced to the candidate image set. Therefore, two effi-
cient sub-procedures are implemented: One selects images relevant
to the context, and the other selects images relevant to the focus.
After that, the two resulting sets are merged to obtain the final
candidate image set. We first apply the intersection of the context-
relevant and focus-relevant images as the merging operation. If the
size of the resulting set is too small, we merge the two sets via
union. This size parameter is defaulted to 5000 but can be set by
the system administrator. In the following, we briefly describe the
two sub-procedures.

5.3.1 Context-based Pre-Selection. To select the context-relevant
images, we first computed sentence embeddings for every caption
of the images in the image pool with an SBert [17] model for seman-
tic textual similarity [4]. Secondly, we clustered the embeddings for

efficient searching using FAISS [10] with a quantized Approximate
Nearest Neighbor index. Both of these steps are done in an offline
setting. Then, in the online setting, we compute the context embed-
ding and retrieve the most similar captions in the cluster via cosine
similarity. The associated images to the captions are considered
context-relevant.

5.3.2 Focus-based Pre-Selection. We apply the VW-TF-IDF algo-
rithm introduced in Section 4 to select focus-relevant images from
the image pool. Since the focus part of the query can contain ar-
bitrary words, we need to transform it so that it only consists of
terms in the vocabulary of the VW-TF-IDF index. Therefore, we
first use a spaCy [9] model for tokenizing the focus and obtaining
the lemmata of the surface form of the focus. Note that the focus can
comprise more than one token, e.g., for compound nouns or nouns
described by adjectives. Next, we retrieve the top-𝑘 similar terms
from the vocabulary for every focus token not contained in the
vocabulary. To do this efficiently, we utilize Magnitude [15] with
FastText [2] embeddings. The default value for 𝑘 is set to 10, but can
be adjusted per request by the user. In the final step to select the
set of focus-relevant images, we retrieve the best matching images
to the transformed query, i.e., the top-𝑘 similar terms, from the
pre-computed VW-TF-IDF index.

5.4 Fine-Selection Stage
In this stage of the Golden Retriever backend, we forward the im-
ages in the candidate set through a VLM to rank them according to
the twofold query. Further, we locate the region that best matches
the focus part of the query and highlight it with a bounding box. In
the current version of the Golden Retriever, we use TERAN, a late-
fusion VLM designed for efficient text-image retrieval. The textual
input to TERAN are token embeddings computed by a pre-trained
BERT [7] tokenizer model. The visual inputs are ROI features ex-
tracted with a pre-trained Faster R-CNN [1, 18, 24]. Following the
authors, we limit the number of visual tokens per image to 36. Since
the query consists of two parts, i.e., the context and the focus, we
compute a score for both parts and apply a weighted average in
a re-ranking stage to retrieve the best matching images from the
candidate set.

TERAN calculates the global similarity between an image and a
textual query by computing a fine-grained word-region-alignment
(WRA) matrix A. The cells of A, are the cosine-similarities of the
visual regions of the image 𝐼 and textual tokens of the context 𝐶
are defined as

A𝑖, 𝑗 =
v𝑇
𝑖
t𝑗

|v𝑖 | |t𝑗 |
(6)

where v𝑖 ∈ 𝐼 and t𝑗 ∈ 𝐶 .
The global similarity, i.e., the context-score 𝑠 (𝐶)

𝐼
, of an image 𝐼

and a context 𝐶 is defined as

𝑠
(𝐶)
𝐼

=
∑︁
𝑗 ∈ |𝐶 |

max
𝑖∈ |𝐼 |

A𝑖 𝑗 (7)

To specially attend to the focus 𝐹 , we compute a focus-score 𝑠 (𝐹 )
𝐼

based on the WRA matrix 𝐴.

𝑠
(𝐹 )
𝐼

=
1

𝑁 ∗ (𝑓𝑒 − 𝑓𝑠 + 1)

𝑁∑︁
𝑖=0

𝑓𝑒∑︁
𝑗=𝑓𝑠

A𝑖 𝑗 (8)



where 𝑁 is the number of regions per image; 𝑓𝑠 and 𝑓𝑒 are the
starting and ending indices of 𝐹 ∈ 𝐶 , respectively.

After that, we first normalize and then combine the global simi-
larity (the context-score) with the focus-score by a weighted average
to obtain the final score for the image 𝑠𝐼 .

𝑠𝐼 = 𝛼 · 𝑠 ′ (𝐶)
𝐼

+ (1 − 𝛼) · 𝑠 ′ (𝐹 )
𝐼

(9)

where 𝛼 ∈ [0, 1] controls the weighted average and 𝑠 ′ (𝐶)
𝐼

and 𝑠 ′ (𝐹 )
𝐼

are the normalized context-score and focus-score, respectively. The
default for 𝛼 is set to 0.5 but can be adjusted by the user per request.

Finally, we sort the images according to their score to rank the
candidate image set with respect to the context as well as the focus
part of the query. To locate the region where the focus is represented
best, we select the ROI with the maximum focus-score.

6 “REAL-TIME” CAPABILITY EXPERIMENT
In the following, timings of the Golden Retriever backend system
and its sub-components are reported to assess the system’s “real-
time” capability. Note that “real-time” in the context of our system
is always in parentheses because it must not be confused with
“true” real-time systems as defined in the context of robotics or real-
time operating systems like RTOS1. However, there exists a loose
definition of “near-real-time” systems, according to which there
must not be “significant delays”2. As stated in the corresponding
Wikipedia article, this “delay in near real-time is typically in a range
of 1-10 seconds”3.

Multiple factors have varying influence on the system’s response
time. To find how much these factors weigh, the “real-time” assess-
ment test reported in this section was conducted as follows: The
system was used with different parameter, query, and dataset com-
binations. Each of the three queries 𝑄1, 𝑄2, 𝑄3, with 827, 124,
67 characters in context length, respectively, was combined with
four different modes with the COCO [13], Flickr30k [23], and WIS-
MIR [19] datasets. This results in a set of 3 ∗ 4 ∗ 3 = 36 different
parameter combinations, for which the average system response
time over 10 consecutive runs was measured. As it can be observed
from the results presented in Figure 2, the length of the context
part of the query affects the system’s response time the most. This
is an expected result since the similarity of an image is based on
pooling the word-region-alignment (WRA) matrix, representing
the fine-grained similarity of each textual and visual token. Hence,
the longer the context, the larger the WRA matrix and the more
time the retrieval model needs to generate and pool the matrix.

Further, the effect of the Preselection Stage (PSS) can be noticed:
The larger the dataset is, from which the system retrieves the top-𝑘
images, the longer the PSS takes, whereas the average response
time of the Fineselection Stage (FSS) remains almost across different
datasets. Flickr30k has about 31K, COCO about 123K, and WISMIR
v2 about 395K images, and the corresponding average PSS response
times are 0.09s, 0.27s, and 0.52s, respectively. This increase of time
of the PSS is almost linearly proportional to the number of unique
images in datasets. These results also highlight the effectiveness of
the two-stage retrieval approach of the system.

1https://www.freertos.org
2https://www.its.bldrdoc.gov/fs-1037/dir-024/_3492.htm
3https://en.wikipedia.org/wiki/Real-time_computing#Near_real-time

Figure 2: Averaged timing measurements of the system re-
sponse time for multiple queries 𝑄1, 𝑄2, and 𝑄3 on differ-
ent datasets. Each bar represents the total system response
time, which comprises the response times of different sub-
components. Best viewed digitally with zoom and color.

As depicted in Figure 2, the overall average system response time
across all datasets, queries, and modes evaluated in this “real-time”
suitability test of the Golden Retriever is 2.10s. Hence, in conclusion,
it is considered as an acceptable result.

7 SYSTEM DEMONSTRATION
In this section, the Golden Retriever is demonstrated with screen-
shots of various retrieval examples with different queries using
different views of the minimalist user interface.

There are four views for different text-image retrieval types
supported by the Golden Retriever user interface, shown in Fig-
ure 3. The available options and parameters are described in de-
tail on our GitHub page4. When the plugin is opened, it shows

(a) Simple UI (b) Advanced UI

(c) Advanced UI to trigger a con-
text only retrieval

(d) Advanced UI to trigger a focus
only retrieval

Figure 3: Different views of the minimalistic Golden Re-
triever user interface. Best viewed digitally with zoom and
color.

a straightforward interface presented in Figure 3a to retrieve the
most similar images for a query consisting of the context and focus
for non-technical users. For research purposes or advanced users,
the plugin also offers an interface shown in Figure 3b with more
4https://github.com/floschne/MMIRS
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options that can be toggled by a button. To retrieve images solely
for the context (c.f. Section 5.3.1), the UI as shown in Figure 3c is
provided. Similarly, if a user wants to retrieve images only for the
focus (c.f. Section 5.3.2), the UI as shown in Figure 3d is used. Once
the top-𝑘 images are retrieved, they are presented by an interactive
slideshow to the user. The image in full resolution is opened in a
new tab by clicking on an image. Figure 4 shows different Golden
Retriever results for queries comprising a context and a focus. In

(a) focus = children; 𝛼 = 0.1 (b) focus = children; 𝛼 = 0.9

(c) focus = phone; 𝛼 = 0.1 (d) focus = phone; 𝛼 = 0.9

Figure 4: Example Golden Retriever results with highlighted
focus regions for queries with context = “Today’s children
are playing a lot with their phone.” but different focus and 𝛼

values.

Figure 5 different Golden Retriever results for context-only queries
(c.f. Section 5.3.1) are shown. In Figure 6 different Golden Retriever
results for context-only queries (c.f. Section 5.3.2) are shown.

8 CONCLUSION
This paper presented the Golden Retriever, a system leveraging
state-of-the-art visio-linguistic models for real-time text-image re-
trieval. The unique feature of our system is that it can focus on
words contained in the textual query. To enable real-time capability
and the ability to focus, we sketched a two-stage process imple-
mented in the Golden Retriever. Further, we introduced an efficient
algorithm based on TF-IDF to find images for short textual queries.
To test the “real-time” capability of the system, we conducted an
extensive experiment, where we found that the average system re-
sponse time is in an acceptable range. Finally, we demonstrated the
Golden Retriever with screenshots of a minimalistic user interface.

(a) (b)

Figure 5: Example Golden Retriever results for queries with
context = “Today’s children are playing a lot with their phone.”
and no focus

(a) focus = “children” (b) focus = “children”

(c) focus = “phone” (d) focus = “phone”

Figure 6: Example Golden Retriever results for queries with
different focus words but no context.
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