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Abstract

In this work, we analyse the role of output
vocabulary for text-to-text (T2T) models on
the task of SPARQL semantic parsing. We
perform experiments within the the context of
knowledge graph question answering (KGQA),
where the task is to convert questions in natu-
ral language to the SPARQL query language.
We observe that the query vocabulary is dis-
tinct from human vocabulary. Language Mod-
els (LMs) are pre-dominantly trained for hu-
man language tasks, and hence, if the query
vocabulary is replaced with a vocabulary more
attuned to the LM tokenizer, the performance
of models may improve. We carry out carefully
selected vocabulary substitutions on the queries
and find absolute gains in the range of 17% on
the GrailQA dataset.

1 Introduction

Knowledge Graph Question Answering (KGQA)
is the task of finding answers to questions posed in
natural language, using triples present in a KG. Typ-
ically the following steps are followed in KGQA:
1) Objects of interest in the natural language ques-
tion are detected and linked to the KG in a step
called entity linking. 2) The relation between the
objects is discovered and linked to the KG in a step
called relation linking. 3) A formal query, usually
SPARQL1, is formed with the linked entities and
relations. The query is executed on the KG to fetch
the answer.

Our focus in this work is the query building
phase, henceforth referred to as KGQA semantic
parsing. The motivation of our work stems from
Banerjee et al. (2022), where minor vocabulary sub-
stitutions to handle non-printable special characters
for T5 (Raffel et al., 2020) produced better results
on the task of SPARQL semantic parsing. In this

†The authors contributed equally to this work
1https://www.w3.org/TR/

rdf-sparql-query/

work, we extend the idea and replace the entire
SPARQL vocabulary with alternate vocabularies.

As in Banerjee et al. (2022), we replace certain
special characters in the SPARQL vocabulary, such
as { , } with textual identifiers, as T5 is known to
have problems dealing with these special characters
(Banerjee et al., 2022). We call this a masked query,
and in this work, we test the ability of the models
to generate this masked query, given the natural
language question as input.

A sample question, the original SPARQL query,
and the corresponding masked query are as shown
below (for the Wikidata KG (Vrandečić and
Krötzsch, 2014)) :

Is it true that an Olympic-size swimming pool’s
operating temperature is equal to 22.4 ?

ASK WHERE
{

wd:Q2084454 wdt:P5066 ?obj
filter(?obj = 22.4)

}

ASK WHERE
OB

ent0 rel0 ?obj
filter ( ?obj = 22.4 )

CB

In the era of pre-trained Language Models (LMs)
(Devlin et al., 2019; Raffel et al., 2020) it is com-
mon practice to fine-tune models on custom down-
stream datasets. This requires supervised training
which results in modification of weights of the mod-
els using some training algorithm. More recently,
the technique of prompting of language models
(Brown et al., 2020; Shin et al., 2020) has been
developed, which elicits the desired response from
a LM through a task description and a few input-
output examples. Brown et al. (2020) shows that
such a strategy works better for larger models. It
has however been observed that prompt design is
brittle in behaviour and displays sensitivity to the
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exact phrase (Shin et al., 2020).
A more recent innovation is that of prompt tun-
ing (Lester et al., 2021), where the task-specific
prompt is learnt on a smaller external neural net-
work. The gradients are computed and flow through
the LM, but leave the weights of the LM itself un-
changed. Instead, the weights of the prompt tuning
network change and produce a custom and continu-
ous prompt which produces the desirable response
from the LM.

A similar method is prefix tuning (Li and Liang,
2021), which is known to perform better for gen-
eration tasks (Ma et al., 2022). In this method, the
original inputs and outputs are kept the same, but
the input is pre-pended with a continuous prefix
learnt in the external network. This prefix allows
the model to understand the exact task to be per-
formed by it.

As primary contribution, in this work, we per-
form an analysis of how the complexity of out-
put vocabularies affects the performance on the
KGQA semantic parsing task for prefix and fine-
tuned language models. Code and data can be
found at https://github.com/debayan/
sparql-vocab-substitution.

2 Related Work

A study of low-resource semantic parsing using
prompt tuning was performed by Schucher et al.
(2022) on the Top v2 (Chen et al., 2020) and
Overnight (Wang et al., 2015) datasets. Prompt tun-
ing, while not the same as prefix tuning, still keeps
the LM weights frozen while the prompts are learnt
on an external network. In their experiments, they
perform a single kind of vocabulary substitution
but find no noticeable performance improvements.
No specific study is made of the change in perfor-
mance with vocabularies of varying complexities,
which is a task we undertake. Another difference is
that we perform experiments in the high-resource
use case as opposed to low-resource.

Another work which is similar to ours is Sun
et al. (2022), where the authors experiment with
prefix tuning on the task of semantic parsing, and
find problems with non-standard vocabularies of
logical forms. In their case, they work with the
TOP v2 (Chen et al., 2020) and PIZZA (Arkoudas
et al., 2022) datasets. The keywords in those
datasets consist of words joined by underscores
(eg: IN:GET_REMINDER_DATA_TIME ), which
poses a problem for the sub-word tokenizer of the

transformer based models. They find that fine tun-
ing a model on these datasets outperforms prefix-
tuning by a large margin. However, when they add
the non-standard keywords to the tokenizer vocabu-
lary and re-train the tokenizer to generate new em-
beddings for these keywords, fine tuning and prefix
tuning perform at par. Our work is different in a few
respects: firstly, due to the specific research focus
of our group, we experiment with a semantic pars-
ing dataset for KGQA, namely GrailQA (Gu et al.,
2021). Secondly, instead of retraining the tokenizer,
we perform a simpler procedure of pre-processing
the dataset by replacing the current vocabulary with
a new vocabulary. We then train the models on this
modified dataset, and as a post-processing step,
substitute back the original vocabulary in place of
the new vocabulary.

3 Prefix Tuning

Prefix tuning prepends a set of tunable weights to
every key-value pair in the transformer attention.
The transformer attention is represented as follows:

attn(Q,K, V ) = softmax(
Q ·K⊤
√
d

)V (1)

where the query Q, key K and value V are ob-
tained through affine transformations on the input.
d represents the model dimension. Prefix tuning
modifies the transformer attention by adding tun-
able prefixes to K and V , thereby modifying K
as K ′ = [hK ;K] and V as V ′ = [hV ;V ]. Here
hK and hV represent the key prefix and the value
prefix respectively.

Following Li and Liang (2021) we model these
prefixes using a two layer MLP as follows:

hK = WK,2f(WK,1E + bK,1) + bK,2

hV = WV,2f(WV,1E + bV,1) + bV,2
(2)

where W ∈ Rd×d and b ∈ Rd are trainable weights
and biases respectively. E ∈ RC×d is a trainable
embedding matrix with C as the prefix length.

4 Models and Experimental Setup

We carry out prefix-tuning and fine-tuning experi-
ments with two versions of the T5 model: namely
T5-Small (60 million parameters) and T5-Base
(220 million parameters). Questions are fed as in-
put during training while masked SPARQL queries,
as described in Section 1, are provided as labels for
supervision.

https://github.com/debayan/sparql-vocab-substitution
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GrailQA
T5-Small T5-Base

PT FT PT FT TSVS ALFL
char8 74.03 86.57 82.65 86.72 306 263
char4 76.43 87.09 84.92 87.10 159 141
char2 83.29 91.49 89.83 92.30 90 87
char1 84.89 92.13 91.24 92.61 57 57

dictionary 82.57 91.95 90.93 92.48 49 44
original 67.10 74.08 73.06 74.45 124 125

Table 1: Exact match percentages for generated masked SPARQL queries. Best performance is always found in
substituted vocabularies. For char settings, accuracy drops as vocabulary and query lengths increase. TSVS =
Tokenizer specific vocabulary size, ALFL = Average logical form length, PT = Prefix Tuning, FT = Fine Tuning

For evaluation, we use the exact-match metric. A
generated query is matched token by token, while
ignoring white-spaces, to the gold query. The per-
centage of queries matched is reported.

4.1 Hyper-parameters and Implementation
Details

Throughout our experiments, the prefix length is
fixed to 50. For prefix tuning experiments we
use the Adafactor (Shazeer and Stern, 2018) op-
timizer with a constant learning rate of 0.001. Fine-
tuning experiments are optimized through AdamW
(Loshchilov and Hutter, 2019) with a square root
decay schedule, a maximum learning rate of 0.0015
and a linear warm-up of 5000 steps. Our code
is implemented with HuggingFace Transformers2

(Wolf et al., 2020) and OpenPrompt3 (Ding et al.,
2022). T5-Small experiments were run on 12GB
Nvidia GTX-1080 and RTX-2080 GPUs, and T5-
Base experiments were run on 48GB Nvidia RTX-
A6000. For fine-tuning, we run each training thrice
with three separate seeds for 120 epochs each. For
prompt tuning we do the same for 400 epochs. We
report the inference results of these trained models
on the test sets of the respective datasets.

5 Vocabulary

The original vocabulary of the GrailQA dataset
consists of 48 words. The T5 tokenizer splits these
words into 124 sub-words. This tokenizer specific
vocabulary size (TSVS) is seen in the last column
of Table 1. In the next column, the original average
logical form (SPARQL query) length can be seen
as 125 tokenized sub-words.

2https://github.com/huggingface/
transformers

3https://github.com/thunlp/OpenPrompt

We wish to see how a new output vocabulary
affects performance, and as a result, we construct
a set of special vocabularies and substitute them
in-place of the original SPARQL vocabulary. With
reference to the settings in Table 1, each vocabulary
is as described below:

original The masked SPARQL queries remain as
they are. No replacement of the original SPARQL
keywords is made with an alternate vocabulary.

dictionary The SPARQL keywords are replaced
with a vocabulary of English words. For example,
SELECT may be replaced with DOG, [ may be
replaced with CAT etc. During the pre-training
phase a LM is likely to have seen such words far
more frequently than the SPARQL keywords. This
mode tests how the model behaves when the output
vocabulary is comprised of well known English
words.

char1 The SPARQL keywords are replaced with
a single character of the English alphabet, for ex-
ample, SELECT is replaced with A, WHERE is re-
placed with B. Additionally, numerical digits from
1-9 are used, and if the size of vocabulary demands
more, we add single length special characters, such
as * and $.

char2, char4 and char8 settings apply vocabu-
lary substitution of 2, 4 and 8 character lengths cho-
sen randomly, constituted from the characters A-Z
and digits 0-9. For example, a typical char8 substi-
tution would be SELECT replaced by ATYZGFSD.
This setting is designed to test the behaviour of
the models when asked to produce more number
of tokens per original-vocabulary word. A sample
of a question, the SPARQL and the corresponding
substitutions is provided in the Appendix in Table
2.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/thunlp/OpenPrompt


6 Datasets

For our experiments, we require a dataset which
contains a mapping of natural language questions
to their corresponding logical forms and is large in
size, since we test the high resource use-case.

GrailQA 4 is based on the Freebase knowl-
edge graph (Bollacker et al., 2008) and consists
of 64,331 questions designed to test three levels
of generalisation, ie, i.i.d, compositional and zero-
shot. For our purposes, we split the train set itself
to three parts, since we are not interested in test-
ing compositional generalisation aspects of the test
set of this dataset. We are left with the following
configuration: test: 8868, dev: 4434, train: 31035.

(a)

Figure 1: Prefix tuning accuracy drops as vocabulary
and query lengths increase for char settings. TSVS =
Tokenizer specific vocabulary size, ALFL = Average
logical form length

(a)

Figure 2: Fine-tuning accuracy drop is more gradual
when compared to prefix tuning, and the performance of
T5-Small and T5-Base are similar. TSVS = Tokenizer
specific vocabulary size, ALFL = Average logical form
length

4https://dki-lab.github.io/GrailQA/

7 Analysis

As seen in Table 1, the best performance for pre-
fix and fine tuning is achieved for substituted vo-
cabularies. The original vocabulary lags behind
in general, which points to the finding, that the
choice of an appropriate vocabulary improves per-
formance for semantic parsing. Further, among
the substituted vocabularies, the setting char8 per-
forms the worst, which signifies the adverse role of
the extra decoding load of this vocabulary on the
performance of the model.

This finding is different from that of Schucher
et al. (2022), who find their in-vocab setting
performing no better overall. They attribute it to
the substitutions possibly masking the meanings of
the intents, for their given dataset. On the contrary,
we find significant gains for GrailQA. It must be
noted however, that we perform high-resource pre-
fix tuning while they perform low-resource prompt
tuning, and hence results may differ.

As seen in Figure 1, for the char settings, as the
size of vocabulary increases, the prefix tuning accu-
racy drops. In the said figure, we define vocabulary
compression ratio as the size of the new vocabu-
lary divided by the size of the original vocabulary.
Apart from vocabulary size, the query length also
matters. We dual-define vocabulary compression
ratio as the size of query length after substitution
of new vocabulary divided by size of original query
length, and plot on the same graph.

When compared to the fine-tuning plot (Figure
2), prefix tuning has a steeper drop in accuracy, and
the performance for T5-Small and T5-Base vary
more significantly. It leads to the finding that fine-
tuning is less sensitive to vocabulary changes, and
the difference in model sizes between T5-Small
and T5-Base also seems to matter less.

In Figures 1 and 2, it can be seen that the origi-
nal setting for the masked SPARQL vocabularies
produce accuracies which are below the char fam-
ily vocabulary curves. It suggests that vocabulary
compression ratio alone is not a deciding factor in
accuracy. If the vocabulary family changes from
SPARQL to characters, there is an initial shift in
accuracy, and after that the complexity of the char-
acter vocabulary further affects the accuracy.

In Table 1, the dictionary setting performs
slightly worse than the char1 setting, although it
has lower TSVS and ALFL. This suggests that the
vocabulary size and query length are not the only
factors that affect the eventual accuracy. Perhaps

https://dki-lab.github.io/GrailQA/


the frequency of the tokens seen by the model dur-
ing the pre-training task plays a role. It is likely
that the model has encountered, during pre-training,
single characters a far larger number of times than
the words used in dictionary vocabulary.

8 Error Analysis

We performed an error analysis on a sample of 100
randomly selected questions which produced an in-
correct output. In the original setting, roughly 50%
errors were due to the presence of non-printable
characters in the query (eg: ^). We found that in the
initial masked query, while we had replaced some
non-printable characters in the pre-processing stage
(eg: {, } ), we had not managed to replace the full
set of non-printable characters. The original T5
paper mentions curly braces as one of the class of
tokens that are not present in the pre-training cor-
pus, however, a comprehensive list of the tokens
that do not work with T5, or work with limited effi-
ciency, is not available. In this scenario, it seems
that a better approach is to replace the entire vo-
cabulary with one that is entirely known to T5, for
example, English words. When comparing errors
made by original, that were fixed by dictionary
and char1, we observed that roughly 30% of the
cases were of variable placement, where the vari-
able placeholders like ent0, rel0 were found to
be in the wrong order in the output query in the
original setting. Rest of the corrections belonged
to the category of syntax errors. This points to the
finding that alternate vocabularies improve the abil-
ity of T5 to correctly produce logical forms from a
semantic perspective.

To analyse the effect of increasing complexity
of vocabulary, we compare 100 randomly selected
errors made by char8 with char2. In both these
settings, no character is non-printable, and the only
errors are either syntax errors, variable placement
errors, structural errors or intent errors. Out of
the 100 questions, 90 were found to be correct in
char2 setting. In the remaining 90 in the char8
setting, the highest proportion of errors belonged to
syntax (where the query is malformed). The next
most prominent class of errors belonged to variable
placement, followed by structural errors (eg: two
triples instead of three). The major takeaway from
this analysis is that for char2 there were no syn-
tax errors, while in char8 there are a significant
number of such errors.

9 Conclusion

In this work we carried out experiments with new
output vocabularies, where we carefully substi-
tuted the original members of the vocabulary with
the new ones. We found that when the original
SPARQL vocabulary is replaced with words from
an alternate vocabulary closer to the T5 tokenizer
vocabulary, the model consistently perform better.

As a contribution, we believe that our findings
will enable researchers in the field of semantic pars-
ing to deploy smaller models with a modified vo-
cabulary and still find satisfactory performance.
This would, in the longer term, lead to energy sav-
ings.

As future work, we would like to explore the
behaviour of the same models in more depth using
attention maps. Moreover, the significant shift in
initial performance on changing vocabulary from
original to char and dictionary demands further
investigation. Similarly, the relatively lower perfor-
mance of the dictionary setting when compared to
char1 setting, in spite of having lower tokenized
vocabulary size (TSVS) needs to be investigated
further. Perhaps sub-words which are seen more
frequently during pre-training task of the LM per-
form better when substituted into the semantic pars-
ing output vocabulary.

10 Limitations

We found that prefix tuning takes much longer to
converge when compared to fine tuning, and for
T5-Base, it takes around 10 days on a 48 GB GPU
to complete tuning for a single setting in Table
1. Due to limitation of resources and with an aim
to save energy, we did not conduct experiments
with larger models such as T5-Large, T5-XL etc.
We also did not perform experiments with smaller
splits of the same datasets, which could have given
further insights on how model performance varies
when training data size is less.
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GrailQA
Question Military airfield is the type for what airport ?
SPARQL

SELECT DISTINCT ?x0 WHERE {
?x0 :type.object.type :aviation.airport .
VALUES ?x1 { :m.0199qf }
?x0 :aviation.airport.airport_type ?x1 .
FILTER ( ?x0 != ?x1 )

}

Masked Query
(original
setting)

SELECT DISTINCT ?x0 WHERE OB
?x0 :type.object.type rel0 .
VALUES ?x1 OB ent0 CB
?x0 rel1 ?x1 .
FILTER ( ?x0 != ?x1 )

CB

dictionary
banana compound boy nation rain
boy catastrophe elementary flower
teeth today rain jacket case
boy fog today flower
duck folk boy chart today concede

case

char1
- 1 A Y $
A : O %
L J $ G S
A | J %
0 M A + J X

S

char2
UY SJ 0X 6L VZ
0X 5G JO SE
5Z QB VZ QJ 8O
0X FT QB SE
RU 2K 0X WY QB I5

8O

char4
53IY 3UQZ JKMQ CEK2 5DZV
JKMQ KRDN 1G8E ZC5C
5ILL 3JBD 5DZV X5XB YMG5
JKMQ ZVGC 3JBD ZC5C
87O2 DE3Z JKMQ TU76 3JBD 049K

YMG5

char8
WDEUTG57 L741BHJP ORWDXYPH 6L05N8AS ZLZXSARH
ORWDXYPH K4GR9TPQ 797G3PGO V13Y1EFE
PQMAIPQ4 MLN1V72G ZLZXSARH KPHC8I2N WG0XRTYG
ORWDXYPH ZF82YUH8 MLN1V72G V13Y1EFE
41O2LA2M F1SANW03 ORWDXYPH 4R26K1BW MLN1V72G TD9BSKSN

WG0XRTYG

Table 2: An example of a question from GrailQA, with the corresponding SPARQL query, and how they look once
new vocabularies are substituted.


