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Abstract. Pre-trained languagemodels contain a vast amount of linguis-
tic information as well as knowledge about the structure of the world. Both
of these attributes are extremely beneficial for automatic enrichment of
semantic graphs, such as knowledge bases and lexical-semantic databases.
In this article, we employ generative language models to predict descen-
dants of existing nodes in lexical data structures based on IS-A relations,
such as WordNet. To accomplish this, we conduct experiments utilizing
diverse formats of artificial text input containing information from lexical
taxonomy for the English and Russian languages. Our findings demon-
strate that the incorporation of data from the knowledge graph into a text
input significantly affects the quality of hyponym prediction.

Keywords: taxonomy enrichment · IS-A relations · generative
transformers · hyponym prediction

1 Introduction

Large pre-trained language models such as LLama-2 [24], Flan-T5 [4], Instruct-
GPT [21] show impressive results in solving a wide range of tasks. However, the
results of even such advanced models strongly depend on the input data [2,28].
In this paper, we assume that the prompting approach can be also extrapolated
to lexical semantic tasks, such as IS-A relationship prediction. There are several
studies exploring the ability of transformers to predict IS-A relationships through
the use of natural language prompts [10,12]. However, they do not exploit suffi-
cient information about taxonomy structure and the particular meaning of the
lexeme which leads to the word sense disambiguation problem.

On the other hand, lexical taxonomies like WordNet [11] store a lot of impor-
tant linguistic data. First of all, nodes (synsets) in such taxonomy graphs may
accumulate several surface forms that represent the same meaning. Furthermore,
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they contain not only information about IS-A relations, but also words’s syn-
onyms, definitions and sense numbers specifying meaning of the particular word.

Taxonomy is a specific type of a knowledge graph that represents the relation-
ships between the real-world entities and linguistic features. Taxonomies play a
key role in a wide range of Natural Language Pricessing (NLP) tasks [9,15,27]
and numerous studies are focused now on automatic enrichment of such struc-
tures [1,6]. Thus, this study aims to find out what information from the taxon-
omy can be useful for the accurate prediction of hyponyms using prompting. We
focus on the hyponym prediction task, which aims at predicting new descendants
for an existing node of the taxonomic graph. The formulation of the task is as
follows: given taxonomy G = (V,E); Gglobal = (Vglobal, Eglobal), G ∈ Gglobal. For
given v ∈ V find all w "∈ V : (v, w) ∈ Eglobal and (v, w) "∈ E.

The main contributions of the paper are as follows: (i) we introduce new
datasets for hyponym prediction for the Russian language; (ii) we explore the
transformer-based generative architectures, specifically decoder and encoder-
decoder models for hyponym prediction; (ii) we conduct experiments with vari-
ous formats of artificial input data.

2 Related Work

Pre-trained language models demonstrate exceptional ability in encoding and
understanding semantic information. For instance, Wiedemann et al. [26] demon-
strate that homonyms can be differentiated using the k-NN search algorithm
based on BERT embeddings [8]. Furthermore, BERT embeddings outperforms
static embeddings in predicting lexical relationships [25].

In [10,12] authors exploring BERT’s hypernymy knowledge. While BERT
shows a decent level of acquisition of IS-A relations, there remain some limita-
tions to prompting in natural language. Specifically, Ettinger notes in [10] that
model predictions highly depend on the particular input, while in [12] is noted
that universal prompts marking IS-A relations do not provide enough informa-
tion for the model to distinguish homonyms.

These limitations can be addressed through the use of manually created
prompts, although this process can be labor-intensive. Lexical taxonomies
already provide structured information about lexemes and their relationships.
Nevertheless, it is possible that incorporating information from graphs into lan-
guage models can lead to more accurate hyponymy and hypernymy predictions.

Recent investigations have explored the incorporation of graph embeddings
into language models [3,13,20]. In [3], for instance, vector representations of
graphs were concatenated with text embeddings to provide model with knowl-
edge of medical domain. In [20], the authors projected graph embeddings into the
BERT space to enrich lexical taxonomies. Drawing inspiration from the signifi-
cant achievements of language models in understanding and solving NLP tasks
from bare text input, as exemplified by Brown et al. [2], we propose providing
models with information about graph structure in textual format to improve
their ability in comprehending IS-A relations.
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3 Datasets

In this section, we present the datasets for both English and Russian languages.
For each language, we perform our experiments on two different types of dataset:
randomly and manually curated. We assume that the results in [20] for the
English dataset collected automatically might be too low because the dataset
comprises very uncommon and specific words from different domains (e.g. bio-
logical “protoctist family”), which significantly affects the results. Therefore, we
also test on a smaller version of English dataset, where manually selected nodes
are located at least 5 hops away from the root node and have 1–4 hop to descen-
dants. We try to select similar words in both languages when creating similar
datasets for Russian and present them within their features in AppendixA. We
also collect two training datasets consisting of nonterminal nodes that are not
included in any of the test datasets. Training datasets contain 15,000 and 10,000
synsets for English and Russian, respectively. The contents of the manually col-
lected datasets as well as data on statistical parameters of the datasets can be
found in AppendixA in Tables 6.

3.1 English Datasets

We utilize the CHSP dataset [20], consisting of 1000 preterminal nodes randomly
selected from English WordNet [11], as an automatically generated dataset for
English. One of the advantages of the CHSP dataset is that it closely resembles
real data for the taxonomy enrichment task. However, the dataset contains highly
specific and uncommon concepts, making it challenging to evaluate how well the
models assimilate hyponymic relations. Based on the literature review on the
acquisition of hyponymy with transformer-based models, we find out that past
studies often use semantically simple datasets, as typified by the Battig dataset
employed by Hanna and Mareček [12]. To provide an approximate understanding
of the efficacy of proposed approach, we posit that a less intricate dataset is
required. Therefore, to more accurately assess the models’ hyponymy acquisition,
we also test on a smaller dataset featuring 22 frequently used concepts from a
common domain. While collecting the smaller dataset the formal criterion of a
distance of at least five hops from the root while allowing nonterminal nodes is
maintained. For the synset meanings, simple generic concepts that have at least
4 hyponyms including indirect ones are selected.

3.2 Russian Dataset

We generate same-sized random dataset for the Russian language based on for-
mal criteria that match the CHSP dataset. When creating a manual dataset of
common knowledge concepts, we try to find corresponding nodes in the Russian
WordNet (RuWordNet)1 for English ones. However, due to the different struc-
tures of the English and Russian taxonomies, some of the corresponding synsets
1 https://ruwordnet.ru/en.

https://ruwordnet.ru/en


52 P. Chernomorchenko et al.

do not meet the formal criteria. For instance, the synsets with the meanings
“room”, “furniture”, “monetary unit” and “board game” do not satisfy the condi-
tion for the distance from the root. Additionally, some synsets are replaced due
to semantic inconsistency of concepts and specific hyponyms as a consequence.
For example, the Russian synset with the meaning “color” has such hyponyms as
mimicry of organisms and animal’s color on the same taxonomy level as usual
color names like red or green.

Fig. 1. Transformation of a graph data structure into a linear text representation.

4 Methodology

The current section presents a methodology for hyponymy prediction task. We
compare artificial input formats to find out what information from the taxonomy
the model needs for correct predictions and then use best input format to fine-
tune models for both languages.

4.1 Artificial Prompt Selection for Fine-Tuning

There exist at least two studies exploring transformer-based models’ IS-A rela-
tions acquisition through prompting [10,12]. While this approach offers a way
to get knowledge from transformers with minimal computational costs, it also
has some drawbacks. One major issue is the need to disambiguate polysemous
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words when enriching taxonomies. Universal prompts in natural language, with-
out additional context, do not allow for this kind of disambiguation. For example,
it is possible to end sentence Bat is ... with both an animal and a wooden club.
Another challenge is that certain text patterns may only work for a small subset
of concepts. For example, the hyponymy-related text pattern “My favorite X is a
Y” cannot be applied to negative concepts, as using the word “favorite” would be
inappropriate (e.g. “My favorite retinopathy is diabetic retinopathy” would not
make sense). In addition, many languages specify particular names for subtypes
of different entities. Thus, a subclass of a dog is a breed, and a subclass of a
plant is a variety and none of these words can be replaced by a type or kind.
To overcome this obstacle, we narrow the attention to artificial text patterns
providing model with information from taxonomy structure.

The basic format of the artificial text pattern for English includes information
about hypernym and hyperhypernym of the target node and looks as following:

Example 1. hyperhypernyms: h1−n | hypernyms: h1−m | synset: s | hyponyms: l1−k.

Here s denotes the target vertex, l1−k is the list of correct hyponyms con-
tained in the taxonomy, h1−m and h1−n are the parent and grandparent nodes
relative to the target. Figure 1 shows the alignment between lexical taxonomy
subgraph containing the target synset and proposed artificial input format.

In the English WordNet database [11], synsets contain not only the names of
surface forms but also additional information that may be useful for predicting
hyponyms. We take into account the following parameters: sense number, defini-
tions and lemmas2. Based on these parameters, we create 8 artificial prefixes, the
shortest of which contains only target synset and its hypernym, and the longest
- all possible additional information. A description and examples of all types of
artificial prefixes can be found in the AppendixA.

We fine-tune GPT-2 base [22] and T5-base [23] using constructed artificial
patterns as input data. GPT-2 is fine-tuned for the language modeling task, while
T5 is fine-tuned for seq2seq generation. Each experimental model is trained for
three epochs with a batch size of 8 and evaluated with manually curated test
data.

The structure of stored lexical information is the same in both the Russian
and English WordNet, except for the absence of sense numbers in the former.
Based on this fact we assume that outcomes of the experiments for English
WordNet can be also extrapolated to the Russian data. Therefore, we restrict
our comparison of artificial prefixes solely to the English WordNet.

4.2 Fine-Tuning Generative Transformers for Hyponymy Prediction
Task

Based on the comparison of artificial prefixes, we select the best performing
prompt for the decoder model. Then we conduct fine-tuning for three models
2 In WordNet lemma represents a specific sense of a particular word. Each synset can
contain multiple lemmas. (e.g., color and colour are two different lemmas, but have
the same meaning).
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in both languages: the decoder, the encoder-decoder and a third model which
is instruction-based decoder of larger size. Thus, we use GPT2-large [22], T5-
large [23] and Dolly-v1-6b [5] for English, and RuGPT2-large3, RuT5-large4 and
Saiga-7b-LoRa5 for Russian.

The justification for fine-tuning the third model is two-fold. Firstly, we
assume that higher capacity of large language models to store information about
the world and language will allow them to predict a wider variety of candidates
from the texts it had seen during pre-training. Secondly, given the observed suc-
cess of the instruction-scaled models [4], we expect that the model that has seen
numerous instructions would finetune better and faster for yet another linguistic
task of hyponym prediction.

For the first two models, we perform the full fine-tuning procedure and for
the third - parameter efficient one using LoRa [14] and 8-bit version [7] of the
model. For Saiga-7b fine-tuning we merge trained LoRa on Russian data adapter
with the base LlaMA model [16] and than train new LoRa adapter via our data.

Models for English are trained during 3 epochs with batch size equal to 16.
RuGPT2 and RuT5 are trained during two epochs with the same batch size,
while Saiga is trained for one epoch with batch size equal to 4. All computations
are performed on hardware of type NVIDIA RTX A6000-48GB.

5 Evaluation Setup

To compute evaluation metrics, we generate 50 sequences up to 15 tokens long
(excluding prefix) for each input sample in the test dataset using top-k sampling
(k = 20). We believe that this experimental formulation provides a more accurate
evaluation of the models’ hyponymy acquisition than using greedy search.

Next, we split the output by comma (since the models learn the expected
output format correctly) and sort the final list of n-grams by frequency of occur-
rence.

5.1 Evaluation Metrics

Predicted n-grams are compared with the actual hyponyms in the taxonomy
using a set of metrics. We use the Precision@k (P@k) metric to evaluate preci-
sion, which calculates the proportion of correct results achieved at a predeter-
mined rank k. This helps to determine the number of accurate answers among
the top-k results. Additionally, we use the Mean Reciprocal Rank (MRR) metric,
which evaluates the multiplicative inverse of the rank of the first correct answer.
To assess the sum of correct answers and their rank in the candidate list, we
also use the Mean Average Precision (MAP). We also use Recall to consider the
coverage.

3 https://huggingface.co/ai-forever/rugpt3large_based_on_gpt2.
4 https://huggingface.co/ai-forever/ruT5-large.
5 https://huggingface.co/IlyaGusev/saiga_7b_lora.

https://huggingface.co/ai-forever/rugpt3large_based_on_gpt2
https://huggingface.co/ai-forever/ruT5-large
https://huggingface.co/IlyaGusev/saiga_7b_lora
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Table 1. Results of fine-tuning with different formats of artificial prefix

Prefix format MAP MRR P@1 P@2 P@5 P@10 R@a
GPT2-base
Sense num 0.05 0.64 0.50 0.43 0.30 0.27 0.17
Default 0.05 0.63 0.46 0.50 0.40 0.31 0.17
Lemmas 0.05 0.58 0.41 0.36 0.38 0.30 0.20
Definition 0.04 0.59 0.41 0.39 0.29 0.26 0.20
Add. lemmas 0.04 0.55 0.36 0.39 0.28 0.28 0.21
Hyperdefinition 0.04 0.59 0.46 0.36 0.31 0.26 0.21
Hypernym only 0.04 0.55 0.36 0.39 0.30 0.31 0.15
All additions 0.03 0.44 0.32 0.25 0.18 0.17 0.21
T5-base
Default 0.07 0.67 0.50 0.57 0.46 0.32 0.13
Lemmas 0.07 0.65 0.55 0.53 0.41 0.32 0.12
Sense num 0.07 0.61 0.50 0.46 0.38 0.33 0.14
Hyperdefinition 0.07 0.59 0.46 0.48 0.41 0.36 0.14
Hypernym only 0.07 0.50 0.36 0.43 0.38 0.31 0.14
Add. lemmas 0.06 0.63 0.55 0.43 0.39 0.32 0.13
Definition 0.06 0.60 0.50 0.46 0.37 0.31 0.13
All additions 0.05 0.50 0.32 0.39 0.37 0.30 0.14

6 Results

In this section we discuss the results of comparing artificial inputs as well as the
results of fine tuning.

6.1 Artificial Prefixes Comparing

The results, presented in Table 1, demonstrate that both GPT2 and T5 models
achieve the best results by using prefixes with either no or very few number
of additions, such as “default”, “sense numbers”, and “lemmas”. This suggests
that we can specify the meaning of the target synset by pointing to higher
levels of the taxonomic structure. Surprisingly, the most informative input data
format in both cases result in the lowest scores. “All additions” prefix variation
contains sense numbers and also provides additional lemmas and definitions for
each synset specified in the input. On the other hand, a minimalist input data
format, which only indicates the parent vertex of the target synset, produced
higher scores. We assume that such results may be related to the fact that
long definitions combined with lemmas violate the formal data structure and
make it harder for the model to understand the information. Additionally, prefix
lengthening causes reduction of training examples due to input size constraints,



56 P. Chernomorchenko et al.

Table 2. Fine-tuning results for hyponymy prediction on automatically generated
datasets for English and Russian

Method MAP MRR P@1 P@2 P@5 P@10 R@a
English
GPT-2 0.039 0.172 0.110 0.104 0.091 0.074 0.243
T5 0.048 0.189 0.123 0.115 0.096 0.076 0.127
Dolly-6b 8-bit LoRa 0.111 0.324 0.226 0.202 0.164 0.122 0.318
Russian
RuGPT-large 0.082 0.244 0.142 0.142 0.117 0.092 0.275
RuT5-large 0.072 0.240 0.162 0.142 0.104 0.079 0.197
Saiga-7b 0.069 0.224 0.157 0.140 0.104 0.076 0.202

Table 3. Fine-tuning results for hyponymy prediction on manually collected datasets
for English and Russian

Method MAP MRR P@1 P@2 P@5 P@10 R@a
English
GPT2-large 0.13 0.65 0.50 0.50 0.47 0.45 0.34
T5-large 0.15 0.85 0.77 0.66 0.64 0.54 0.24
Dolly-6b 8bit LoRa 0.18 0.93 0.86 0.84 0.70 0.57 0.29
Russian
RuGPT-large 0.177 0.734 0.591 0.591 0.600 0.523 0.317
RuT5-large 0.156 0.664 0.500 0.523 0.500 0.486 0.256
Saiga-7b 8bit LoRa 0.129 0.851 0.818 0.682 0.555 0.450 0.269

while a minimalistic data format, on the contrary, allows more hyponyms in the
input sequence (however, it’s worth noting that this is only true for decoders,
since in the seq2seq task formulation input and output are separated). Despite
this fact, the prefix format under consideration exhibits the highest Recall scores
for both models. This valuable characteristic makes the format particularly useful
in the context of the final task of taxonomy enrichment. It can also be observed
that GPT2 yields a greater extent of correct hyponym coverage in comparison
to T5, as it generates a more diverse list of candidates. Higher MAP scores of
T5 can therefore be attributed to this fact.

6.2 Hyponym Prediction for English and Russian

To fine-tune final models, we opt for the prefix containing sense numbers for
English, as it demonstrated superior performance on the decoder model (since 2
out of 3 models for each language are decoders). On the other hand, for Russian,
the default prefix is employed due to the absence of sense numbers in the Russian
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WordNet that would indicate the ordinal number of given token’s value in the
current synset.

Below are examples of the prefixes selected for English and Russian for the
synset coat :

Example 2. hyperhypernyms: garment.n.01 | hypernyms: overgarment.n.01 | synset:
coat.n.01 | hyponyms:

We present the results for manual and automatic datasets in Tables 3 and 2,
respectively. The results indicate that, in general, small datasets tend to yield sig-
nificantly higher scores, suggesting that generative models are adept at assimilat-
ing hyponymic relations of frequently used words. However, automatic datasets,
as previously mentioned, often comprise of rare and narrow concepts that lead
to lower performance.

We can also observe the already mentioned trend that the Recall scores for
GPT2 are significantly higher than those of T5 for both languages.

Regarding the architecture of the models, it is challenging to determine
whether decoders or encoder-decoders perform better since the results are incon-
sistent between English and Russian. Among the smaller English models, the
best scores in terms of MAP are achieved by T5, while for Russian, GPT2 fares
better. Comparison of the results for Russian and English is not straightforward
due to the usage of different prefixes and a varying number of training vertices
- 15,000 for English and 10,000 for Russian.

Upon comparing the language-specific data, it becomes evident that the per-
formance of smaller models is slightly better for Russian than to English accord-
ing to the MAP scores. We connect this finding to the presence of a larger number
of noun synsets for English, signifying a higher degree of fine-grained concepts
in the taxonomy.

Regarding the large-scale instructional models, Dolly exhibits a significant
lead over smaller models in relation to its performance on English-language
data. This finding highlights the superior ability of larger models to assimi-
late hyponymic relations of both frequent and rare concepts. However, the same
substantial increase in performance is not readily apparent for Saiga-7b. This
outcome can be elucidated by the fact that the LlaMA model upon which Saiga-
7b is based was primarily trained on English-language data. Moreover, the addi-
tional LoRa fine-tuning was confined to a relatively modest corpus of artificially
generated Russian dialogue data, resulting in fewer instances of Russian lexical
diversity being encountered during the training of the model.
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7 Conclusion

In the presented study, we introduce a novel approach for constructing input
data by incorporating information on the structure of the lexical taxonomy into
large pre-trained language models. Our method shows that generative models
provided with information about the graph in a well-perceived textual form can
significantly improve the quality of hyponymy prediction. In this paper, we also
provide a manually assembled dataset of general concepts for English, as well
as the first datasets for evaluating the quality of predicting hyponyms in the
context of enriching taxonomies for the Russian language.

Despite the fact that the prediction of hypernyms has a wider practical appli-
cation than the prediction of hyponyms, the findings of the presented study are
valuable for creating comprehensive common domain lexical taxonomies from
scratch, benefiting low-resource languages.

In our research, we fine-tune relatively small-sized models, which demonstrate
decent performance on both English and Russian data. However, the results
from Dolly-v1-5b demonstrate that larger models can yield substantial improve-
ments. As observed by Logan IV et al. [19] when comparing his findings to
other studies [17,18], full fine-tuning is more effective for smaller models than
prompt-tuning. Authors assumes that as model size increases, prompt-tuning
yields better results. Thus, we can observe a promising path for future work to
prompt-tune sizable generative models. We also anticipate that our approach
can be extended both for other languages and other taxonomy enrichment tasks
such as inserting the new node in the middle of the graph.

Acknowledgements. This work was supported by the DFG through the project
“ACQuA: Answering Comparative Questions with Arguments” (grants BI 1544/7- 1
and HA 5851/2- 1) as part of the priority program “RATIO: Robust Argumentation
Machines” (SPP 1999).

A Appendix

Formats of Artificial Prefixes:
Default: part of speech (POS) tags and sense number are excluded from

synset names.

Example 4. hyperhypernyms: undertaking | hypernyms: assignment | synset: school
assignment | hyponyms: classroom project, classwork, homework, prep, preparation,
lesson

Sense number: the full name of the synset is used, including POS tag and
sense number.
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Example 5. hyperhypernyms: undertaking.n.01 | hypernyms: assignment.n.05 |
synset: school assignment.n.01 | hyponyms: classroom project, classwork, homework,
prep, preparation, lesson

Lemmas: a list of lemmas is used instead of the name of the synset.

Example 6. hyperhypernyms: undertaking, project, task, labor | hypernyms: assign-
ment | synset: school assignment, schoolwork | hyponyms: classroom project, class-
work, homework, prep, preparation, lesson

Additional lemmas: the lemmas included in the synset are listed after its
full name.

Example 7. hyperhypernyms: undertaking.n.01 (undertaking, project, task, labor) |
hypernyms: assignment.n.05 (assignment) | synset: school assignment.n.01 (school
assignment, schoolwork) | hyponyms: classroom project, classwork, homework, prep,
preparation, lesson

Definitions: definitions for target synsets are given in parentheses.

Example 8. hyperhypernyms: undertaking.n.01 | hypernyms: assignment.n.05 |
synset: school assignment.n.01 (a school task performed by a student to satisfy the
teacher) | hyponyms: classroom project, classwork, homework, prep, preparation,
lesson

Hyperdefinition: definitions for hypernyms and hyperhypernyms are given
in parentheses.

Example 9. hyperhypernyms: undertaking.n.01 (any piece of work that is under-
taken or attempted) | hypernyms: assignment.n.05 (an undertaking that you have
been assigned to do (as by an instructor)) | synset: school assignment.n.01 |
hyponyms: classroom project, classwork, homework, prep, preparation, lesson

Hypernym only: only the hypernym is given.

Example 10. hypernyms: assignment.n.05 | synset: school assignment.n.01 |
hyponyms: classroom project, classwork, homework, prep, preparation, lesson

All additions: all possible information is used: sense number, definitions
and lemmas.

Example 11. hypernyms: assignment.n.05 (assignment) (an undertaking that you
have been assigned to do (as by an instructor)) | synset: school assignment.n.01
(school assignment, schoolwork) (a school task performed by a student to satisfy
the teacher) | hyponyms: classroom project, classwork, homework, prep, preparation,
lesson (Tables 4 and 5).
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Table 4. Content and statistic of manually curated dataset for Russian. Here dl denotes
to leaf distance, dr to root distance and nh to the total number of hyponyms including
indirect ones.

Id Title dl dr nh

6892-N PAL!TO 2 7 4
108048-N KURTKA 1 7 7
108194-N XTANY, BR"KI 2 6 10
109093-N MAKARONNYE IZDELI# 3 6 6
3921-N SYR 4 8 16
1225-N M#SO 1 5 29
8367-N VINO 1 7 25
5239-N KONFETA 2 6 8
107283-N PIROG 1 6 9
549-N NAPITOK 2 5 82
107842-N #GODA 1 9 28
109620-N DETSKA# IGRUXKA 1 6 20
7992-N UDARNY$ MUZYKAL!NY$ INSTRUMENT 1 6 10
107996-N STRUNNY$ MUZYKAL!NY$ INSTRUMENT 2 6 20
1045-N VRAQ 1 5 85
354-N FRUKT 1 9 37
348-N OVOW 1 8 27
107795-N HIWNOE MLEKOPITA"WEE 1 7 56
4454-N SOBAKA 2 7 53
109170-N KOSMETIQESKOE SREDSTVO 1 6 21
4318-N KRUPA 1 6 12
965-N CVETKOVOE RASTENIE 2 5 51
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Table 5. Content and statistic of manually curated dataset for English. Here dl denotes
to leaf distance, dr to root distance and nh to the total number of hyponyms including
indirect ones.

Id Title dl dr nh

3057021 coat.n.01 2 9 53
3045337 cloak.n.02 2 9 29
4489008 trouser.n.01 2 8 26
7698915 pasta.n.02 1 5 26
7850329 cheese.n.01 3 5 37
7649854 meat.n.01 1 5 197
7891726 wine.n.01 3 7 68
7597365 candy.n.01 1 8 62
7625493 pie.n.01 1 7 25
7881800 beverage.n.01 3 5 339
7742704 berry.n.01 4 7 21
3219135 doll.n.01 1 6 8
3249569 drum.n.01 1 9 8
3467517 guitar.n.01 1 9 6
502415 board_game.n.01 1 8 18
4105893 room.n.01 1 7 195
3405725 furniture.n.01 1 7 196
13388245 coin.n.01 1 8 41
3597469 jewelry.n.01 1 7 39
3714235 makeup.n.01 1 8 11
4959672 chromatic_color.n.01 1 6 91
1699831 dinosaur.n.01 1 12 50

Table 6. Number of synsets and hyponyms in test datasets.

Dataset Synsets Hyponyms
CHSP 1000 13617
RuCHSP 1000 5673
EnManual 22 1546
RuManual 22 616
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