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Abstract

This paper gives an overview of the Germ-
Eval 2023 Shared task on Speaker Attribution
in Newswire and Parliamentary Debates (Spk-
Att2023) and describes the data, annotation
guidelines and results of the evaluation cam-
paign. The task targets the identification of
speech events in text and their attribution of
the respective speakers, including the detec-
tion of other roles that might be expressed,
such as the addressee or the topic of the speech
event. The shared task includes two subtasks,
(i) the identification of speech, thought and
writing in parliamentary debates and (ii) in
newswire text. Being able to identify who says
what to whom is crucial for in-depth analyses
and enables researchers to extract more mean-
ingful information from unstructured text.

1 Introduction

Identifying who says what to whom is an essential
prerequisite for analysing human communication.
The complexity of the task, however, is often un-
derestimated by assuming that the words produced
by the speaker only reflect his or her own point of
view. Figure 1 shows an excerpt from a parliamen-
tary debate of the German Bundestag, illustrating
how speakers frequently switch perspectives, at
times presenting their own views and sometimes
reporting and citing the views of others. Thus, it
is crucial to identify the correct source for each
speech event when analysing text. Furthermore,
studying how speakers construct their own argu-
ments relative to the views of other speakers, either
to back up their own claim or to attack the others’
perspective, is an intruiging research question in
itself.

In order to investigate these questions, we need
annotated resources that allow us to train models
that learn to predict speech events in unstructured
text, together with their respective speakers, mes-
sages and addressees. This overview paper presents

Figure 1: Example for speaker attribution in parliamen-
tary debates (Task 1).

Figure 2: Example for speaker attribution in news arti-
cles (Task 2).

two new resources for speaker attribution in Ger-
man text, based on parliamentary debates from
the German Bundestag and on newswire text. We
first review previous work on quote detection and
speaker attribution before we describe our data and
the annotation process. Then we provide a descrip-
tion of the shared task settings and report baseline
results for each of the two new resources. Finally,
we present the results of the shared task, with an
evaluation of the system output for the participating
systems.



Cue/Role name description example
CUE the cue that triggers the STW event Merkel spoke to the people.
SOURCE Source of the STW event Merkel spoke to the people.
MEDIUM Medium of the STW event The Basic Law reads ...
MESSAGE Message / content of the STW event She said that she would resign.
TOPIC Topic of the STW event Merkel addressed the theme of taxation.
EVIDENCE Evidence for the message The survey shows that ...
ADDRESSEE Addressee of the STW event Merkel spoke to the people.
PARTICLE Separated verb prefix or Merkel schlug vor (proposed) ...
(PTC) obligatory particle Merkel CUE sich vor (imagines herself) ...

Table 1: Overview over our classification scheme for annotating events of Speech, Thought and Writing (STW).

2 Related Work

2.1 Work on speaker attribution

Much recent work has been devoted to quote detec-
tion, mostly with the goal of extracting information
from newswire text (Pouliquen et al., 2007; Kres-
tel et al., 2008; Pareti et al., 2013; Pareti, 2015;
Scheible et al., 2016). Other related work comes
from the field of opinion mining and has targeted
the identification of opinion holders (speakers) and
the targets of the opinions (Choi et al., 2005; Wie-
gand and Klakow, 2012; Johansson and Moschitti,
2013).

Many studies have addressed speaker attribution
in novels and other literary works, in the context
of computational literary studies. Elson and McK-
eown (2010) were among the first to propose a
supervised machine learning model for quote attri-
bution in literary text. He et al. (2013) extended
their supervised approach by including contextual
knowledge from unsupervised actor-topic models.
Almeida et al. (2014) and Fertmann (2016) com-
bined the task of speaker identification with coref-
erence resolution. Grishina and Stede (2017) test
the projection of coreference annotations, a task
related to speaker attribution, using multiple source
languages. Muzny et al. (2017) improved on previ-
ous work on quote and speaker attribution by pro-
viding a cleaned-up dataset, the QuoteLi3 corpus,
which includes more annotations than the previ-
ous datasets. They also present a two-step deter-
ministic sieve model for speaker attribution on the
entity level and report a high precision for their
approach.1 Papay and Padó (2020) annotate direct
and indirect quotations in 19th century English lit-
erature while Kim and Klinger (2018) extend the
speaker attribution task to capture emotion trigger
phrases and the experiencers, targets and causes of
the emotion.

1When optimised for precision, the system obtains a score
>95% on the development set from Pride and Prejudice.

While many studies have addressed the task of
quote detection or speaker attribution in English
text from the literary domain or in news articles,
less work has been done for other languages and
genres. Brunner (2015), Krug et al. (2018), Brun-
ner et al. (2019) and Brunner et al. (2020) have
focused on German literary text and created several
resources. The DROC corpus (Krug et al., 2018)
includes around 2,000 manually annotated quotes
and annotations for speakers and their mentions
in 90 fragments from German literary prose and
the RedeWiedergabe corpus substantially extends
this work by presenting a German-language his-
torical corpus with detailed annotations for speech,
thought and writing (Brunner et al., 2020). Dönicke
et al. (2022) address a task related to speaker at-
tribution, i.e., identifying whether a certain text
passage is written from the perspective of the narra-
tor of the novel or from the author’s point of view,
or whether it reflects the view of a character in
the novel. Interestingly, they show that including
annotator bias in the model can improve results.

Less work has been done for other domains. A
noteworthy exception is Ruppenhofer et al. (2010)
who present preliminary work on speaker attribu-
tion in text from the political domain, using Ger-
man cabinet protocols. As the focus of SpkAtt2023
Task 1 is also on analysing the language of politi-
cal debates, we extended the work of Ruppenhofer
et al. (2010) and created a new, manually anno-
tated resource for speaker attribution with around
13,000 clauses and more than 200,000 tokens. Our
second research focus is on analysing who says
what to whom according to German news media
(SpkAtt2023 Task 2). For this, we created a new,
manually annotated dataset for speaker attribution
in German news articles with almost 250,000 to-
kens.

Brunner et al. (2020) was an important basis for
our annotation in both tasks in that we take into
account not only speech events, but also thought



Cue/Role freq. avg. len

CUE 7,706 1.1
SOURCE 4,663 1.7
MESSAGE 4,578 9.7
TOPIC 1,188 5.4
ADDRESSEE 717 3.2
PARTICLE 561 1.0
MEDIUM 321 3.2
EVIDENCE 151 4.3

Table 2: Statistics for the Task 1 dataset (GePaDe).

and writing. While the annotation scheme used in
Task 2 can be seen as a direct adaptation, the anno-
tation scheme for Task 1 shares several ideas with
Brunner’s work but has a somewhat different label
inventory inspired by work in Automatic Semantic
Role Labeling in the FrameNet mode (Baker et al.,
1998). We describe the creation of these resources
in the next section.

3 Data and Annotation

3.1 Task 1: Speaker attribution in German
parliamentary debates

We present a new dataset for speaker attribution
in data from the political domain, specifically, par-
liamentary debates from the German Bundestag.
Our dataset includes manually annotated cues that
trigger events of speech, writing and thought.2 In
addition, we annotate the arguments of the trigger,
including the SOURCE, ADDRESSEE, MESSAGE,
MEDIUM, TOPIC and EVIDENCE for the speech
event. Table 1 shows examples for the different
categories in our schema.3 We now describe our
data, annotation setup and annotation procedure.

Data The data for Task 1 includes debates from
the German Bundestag, retrieved from Deutscher
Bundestag – Open Data.4 The data set includes 265
speeches from the German Bundestag, mostly from
the 19th legislative term (2017-2021), given by 195
different speakers from 6 parties (CDU/CSU: 76,
SPD: 57, AfD: 39, FDP: 33, Linke: 29, Grüne:
26, non-attached: 4). The total size of the data
is >200,000 tokens. For more detailed informa-

2In the reminder of the paper, we use the term “speech
event” to refer to events of speech, thought or writing.

3The annotation guidelines are available at https://
github.com/umanlp/SpkAtt-2023.

4https://www.bundestag.de/services/opendata.

tion on the data, sampling and annotation process,
please refer to the datasheet.5

Annotation process The data was annotated by
four student assistants from different fields in the
humanities. The annotators received extensive
training. During the annotation phase, weekly
meetings were held where we discussed open ques-
tions and problematic cases.

To ease the detection of speech events, we started
with a list of cue words extracted from the Re-
deWiedergabe Corpus (Brunner et al., 2020). We
marked all lemma forms from the list in our data
and instructed the annotators a) to verify whether
this instance is a Speech, Thought and Writing
(henceforth: STW) event and, b) if true, to identify
all of its arguments realised in the utterance. To
increase recall, we asked the annotators to add new
cue words to the list that were then included in the
annotation. Table 2 shows the number of annotated
cues and their roles in our corpus. Overall, we an-
notated more than 7,700 events of speech, thought
or writing in the data.

Inter-annotator agreement We split the data
into four samples that reflect the order of anno-
tation. Table 3 shows the average percentage agree-
ment of two coders for cue words and roles as the
proportional token overlap between the annotated
cues or roles. To augment this view, we also re-
port a more lenient binary score which considers
an annotation as correct if at least one token in
the annotations overlaps and has been assigned the
same label.6 We can clearly see that inter-annotator
agreement constantly improves with more training
even after the third round of annotation.

Disagreements between the annotators Most
questions during annotation concerned the class
of Thought events. Our guidelines follow Brunner
et al. (2020) and define Thought as “silent or in-
ner speech which can be reproduced in the same
way as verbalized speech”. Brunner et al. (2020)
conceptualise Thought as “a conscious, analyti-
cal, cognitive process” and exclude descriptions of
emotional and mood states or passages that are told
from a strongly personal perspective. This defini-
tion, however, is hard to operationalise and there

5The datasheet is available from our github reposi-
tory: https://github.com/umanlp/SpkAtt-2023/blob/
master/doc/SpkAtt-Debates-Datasheet.pdf.

6For more details on the scoring method, see (Marasovic
and Frank, 2018).



overlap binary
Sample Cue Roles Roles

Sample 1 69.07 64.53 67.88
Sample 2 81.19 67.04 72.60
Sample 3 81.95 72.11 76.90
Sample 4 82.84 73.81 77.63

Table 3: Pair-wise percentage agreement between the
annotators on the four samples from GePaDe (Task 1)
(overlap: proportional token overlap between A1 and
A2; binary: at least one token in the cue/role span has
been identified and assigned the same label).

were many borderline cases that required discus-
sion. We used our weekly meetings to decide which
new cue words we would like to include. For more
details, please refer to the annotation guidelines.

At the beginning of the annotation process, some
annotators were eager to identify new cue words
for thought events while others had a more conser-
vative approach, considering only cues from our
list. This is reflected in the high disagreement for
sample 1. Sometimes new cues were included after
one coder had already completed a document, ig-
noring those cues, while the second coder included
the new cues in the annotations. The confusion
matrix (Appendix, Table 11) shows that this is in
fact the major source of disagreements: instances
that were annotated by one annotator but not by the
second coder (label NONE).

Other disagreements concern the distinction be-
tween MESSAGE and TOPIC (Example 3.1) and
between MEDIUM and EVIDENCE (Example 3.2).

When distinguishing between TOPIC and MES-
SAGE, the annotators sometimes struggled to de-
cide whether the speaker simply mentioned a cer-
tain topic or whether she also tried to convey
a message. For instance, Example 3.1 may ei-
ther be taken to mean that the addressee (“Sie” ,
2Sg.formal) spoke about a democratic imposition
(TOPIC) or that they said that something consti-
tuted a democratic imposition (MESSAGE).7 Sim-
ilarly, the distinction between MEDIUM and EVI-
DENCE was another case that was difficult for the
annotators. Consider Example 3.2 where it is not
clear whether the bold-faced text should be consid-
ered as the medium that transported the message
or whether it should be interpretated as Evidence.

7Based on the quotation signs used we think the latter
interpretation is more likely to be correct but it’s a subtle
judgment.

freq. avg. len

sentence 13,186 18.84

MESSAGE 4,182 16.69
CUE 2,929 1.57
ADDRESSEE 337 2.72
FRAME 3,038 8.95
SOURCE 3,908 3.53

Table 4: Statistics for the Task 2 dataset (news).

More details on the distinction between those labels
can be found in the annotation guidelines.

Ex. 3.1 (Topic vs. Message)

Sie haben von einer „demokratischen Zumutung“
gesprochen.
You have spoken of a "democratic imposition".

Ex. 3.2 (Medium vs. Evidence)

[...] die weltweite Stimmung mahnt uns,
Erkämpftes zu erhalten [...]
[...] the global mood urges us to preserve what we
have fought for [...]

3.2 Task 2: Speaker Attribution in German
news articles

We present a new creative-commons-licensed
dataset for speaker attribution in German news ar-
ticles. The dataset consists of manually annotated
articles from the German WIKINEWS website.8

In total, these annotated articles contain almost
250,000 tokens. We manually annotated and cu-
rated MESSAGES in different forms of speech such
as DIRECT, INDIRECT, FREE INDIRECT, INDI-
RECT/FREE INDIRECT, REPORTED together with
the corresponding FRAME, SOURCE, CUE and AD-
DRESSEE. Table 4 reports the number and the av-
erage length of MESSAGE and the four roles used
in Task 2. Examples for these roles can be found
in Table 1. Table 5 shows the number and aver-
age length of the SPEECH/THOUGHT/WRITING

representation (STWR) and the form of speech
for our MESSAGE annotations. In the following
subsections, we describe the raw source data, its
pre-processing, the annotation process, the inter-
annotator agreement and the handling of disagree-
ments between annotators.

8URL: https://de.wikinews.org



freq. avg. len

DIRECT 873 17.54
INDIRECT 2250 14.71
FREE INDIRECT 171 20.43
INDIRECT/FREE INDIRECT 434 22.33
REPORTED 454 18.01

SPEECH 1906 16.75
WRITING 572 19.13
THOUGHT 2 10.5
SPEECH/THOUGHT (ST) 322 14.95
SPEECH/WRITING (SW) 1362 16.0
WRITING/THOUGHT (WT) 0 -

Table 5: MESSAGE statistics for the Task 2 dataset.

3.2.1 Source data
The data originates from news articles published
on the German WIKINEWS website. We used
the XML dump9 available through the Wikimedia
foundation. Our dataset is based on the dump from
April 2022 that consists of 13,001 published arti-
cles. From these published articles, we sampled
1000 articles to annotate. These articles range from
December 2004 to March 2022.

3.2.2 Data pre-processing
Since the articles are stored in MediaWiki markup
with custom macros for the German WIKINEWS,
we wrote a program to automatically convert this
markup into plain text. The conversion is a re-
cursive procedure in order to support the nested
macros present in the markup. Using this approach,
we stripped all markup like formatting (e.g. bold,
italic), semantic information (e.g. links to entities
on Wikipedia) and non-textual content (e.g. pic-
tures, tables) from the documents. Further, we re-
moved any text not belonging to the main text body
such as publication metadata, comments, links to
related articles or sources. The resulting plain text
was tokenized and split into sentences using spaCy
(Honnibal et al., 2020). Finally, the tokenized text
was exported in a format compatible with our an-
notation software.

3.2.3 Annotation process
The annotation was carried out by three annotators
with a background in German studies or Linguis-
tics and an additional supervisor. The annotators
were selected after performing a trial annotation on

9URL: https://dumps.wikimedia.org/dewikinews/

Sample Form STWR Roles

Sample 1 0.56 0.37 0.61
Sample 2 0.76 0.51 0.75
Sample 3 0.77 0.40 0.76
Sample 4 0.77 0.68 0.76
Sample 5 0.86 0.51 0.83
Sample 6 0.78 0.61 0.78

Table 6: Krippendorff’s Alpha agreement between the
annotators on the six samples from Task 2

a handful of articles. The annotation team received
training during a preliminary annotation before the
actual annotation begun. Further, we held weekly
meetings during the main annotation to discuss
open questions and uncertain cases, thereby provid-
ing ongoing training to all annotators.

As outlined in Section 2, the annotation scheme
is based on the Redewiedergabe project (Brunner
et al., 2020). In an initial preliminary annotation,
we tested the suitability of the annotation scheme
in the news domain. We iteratively tested which
attributes of the schema are necessary and which
additional options we needed. Finally, we settled
on the medium (referred to as STWR in the dataset)
and type attribute for a MESSAGE and FRAME,
CUE, SOURCE and ADDRESSEE as the other anno-
tation parts (roles). STWR can either be SPEECH,
THOUGHT, WRITING or one of the combinations
SPEECH/THOUGHT, SPEECH/WRITING, WRIT-
ING/THOUGHT for cases where it is not possible
to confidently decide on a single value from the
text. The types of speech are taken from the Re-
dewiedergabe project: DIRECT, INDIRECT, FREE

INDIRECT, REPORTED and INDIRECT/FREE IN-
DIRECT. For more details refer to the annotation
guidelines (see supplementary materials).

For the annotation, we used the annotation soft-
ware INCEpTION (Klie et al., 2018). The different
parts are modeled as span annotations with rela-
tions between them to indicate e.g. which SOURCE

belongs to which MESSAGE.

3.2.4 Inter-annotator agreement
We used Krippendorff’s Alpha to compute the
agreement between two annotators per sample. The
measure includes both the quality of the span anno-
tation offsets (overlap) as well as their labels, but
does not include the relations between the span
annotations. However, the relations were typi-
cally made identically given the same annotation



spans and labels. Moreover, for different annota-
tion spans, there is no sensible way to compute an
inter-annotator agreement on the relations.

Table 6 shows the inter-annotator agreement val-
ues for the six samples into which we divided the
1000 annotated documents. The inter-annotator
agreement values increased strongly after the first
sample, slightly increasing with additional experi-
ence and training over the course of the remaining
samples. As such, the first sample required signifi-
cant curation effort and discussion that ultimately
led to improved skills of our annotators.

3.2.5 Disagreements between annotators
During the annotation phase we held weekly meet-
ings to discuss general questions concerning how
we would best annotate specific phenomena within
our annotation scheme. After two annotators had
finished annotating the documents, we employed
curation by a third person to resolve differences
between the annotations. In situations where the
curator was not certain who (or if any) of the two
annotators had annotated the sentences in question
correctly, we discussed the issue in detail to resolve
the disagreement, thereby potentially defining our
annotation guidelines more precisely.

One of the most frequent reasons of disagree-
ment during the early phases of the annotation was
the difficulty of choosing the correct STWR, usu-
ally the choice being between writing or speech.
After many discussions, we concluded that it is
sometimes impossible to decide from the text alone
whether an utterance was produced in spoken or
written form. As such, we modified our annotation
scheme by adding three new labels to STWR (see
Section 3.2.3).

4 Task Description

The SpkAtt2023 shared task included two tasks: (i)
speaker attribution for parliamentary debates from
the German Bundestag and (ii) speaker attribution
in German newswire. The teams could participate
either in both or just in one of the two tasks.

The terms of the shared task required that any
data or models used outside of those that are pro-
vided should be publicly accessible or be made
public by April 1, 2023 (release of the training
data). Each team could submit multiple submis-
sions, however, the last submission uploaded by
the team was considered to be the official entry to
the competition.

4.1 Task 1: Parliamentary debates
The goal of Task 1 was the identification of speak-
ers in political debates and newswire, and the attri-
bution of speech events to their respective speakers.

For this task, participants were asked to build a
system that can identify all cue words that trigger a
speech event and, for each speech event, all roles
associated with this event (i.e., Source, Addressee,
Message, Topic, Medium, Evidence). The task
setup is thus similar to Semantic Role Labelling.

For Task 1, the participants could take part in the
following subtasks:

• Subtask 1 (full task): Participants were
asked to predict the cue words that trigger
a speech event, together with the associated
roles and their respective labels.

• Subtask 2 (role labelling): For this subtask,
the gold cue words were given and the task
consisted in identifying the spans for all as-
sociated roles expressed in the text, together
with their respective labels.

A detailed description of the data format
and the annotations can be found in the Task
1 GitHub repository: https://github.com/
umanlp/SpkAtt-2023 (see README and anno-
tation guidelines). The trial and training data were
made available from the same GitHub page.

4.2 Task 2: News articles
For this task, participants had to develop a sys-
tem that identifies statements (MESSAGE), i.e. in-
stances of speech (DIRECT, INDIRECT, FREE IN-
DIRECT, INDIRECT/FREE INDIRECT, REPORTED)
and the corresponding roles with it (FRAME,
SOURCE, ADDRESSEE, CUE). Further, the sys-
tem should identify the speech form and relevant
medium (SPEECH, THOUGHT, WRITING) accord-
ingly.

The participants could take part in the following
task settings:

• Subtask 1 (full task): Predict all parts of a
statement, associate them, and label the form
of speech and medium

• Subtask 2 (simplified): Predict only the
SOURCE (i.e. speaker) and MESSAGE (quota-
tion) of top-level (i.e. not nested) annotations,
then link both together. The annotation data
contains a boolean flag to select only relevant
annotations ("IsNested": false)



The technical data format description and
some additional details are provided in the Task
2 GitHub repository at https://github.com/
uhh-lt/news-speaker-attribution-2023 (see
the README file). This website is the place where
the trial, training, development and blind test data
were published.

5 Evaluation

We now present the experimental setup and report
baseline results for both tasks.

5.1 Baseline system (Task 1 – GePaDe)
In order to automatically predict cue words for
speech events and their roles, we split our data into
training, dev and test sets with 9,298/927/3,067
sentences.10 This amounts to 178/18/72 different
speeches in each set, with 5,536 (train), 515 (dev)
and 3,646 (test) annotated STW events.

For our baseline, we use two heuristic ap-
proaches. To predict the cue words, we extract
all wordforms for cues from the training data. To
reduce noise, we do not consider multiword trig-
gers and also remove prepositions from the set of
cue words. Then we search the test data for word-
forms that match a cue word from our list and, if
we find one, we insert a speech event for this cue.

To predict the roles, we use a dependency-based
syntactic heuristic and assign all subjects of verbal
cue words the label SOURCE and all direct objects
of verbal cue words the label MESSAGE. For nom-
inal cue words, we assign the label SOURCE to
possessive pronouns (Ihren eigenen Antrag; engl.:
her own proposal) and genitive NPs that bear the
dependency label AG.

5.2 Evaluation metrics
The evaluation of system performance uses the fa-
miliar Precision, Recall and F1-metrics. Both cue
and role labels can cover more than one token and
therefore are represented as sets of (possibly discon-
tinuous) tokens. The annotation scheme assumes
that a given set of tokens can bear at most one cue
annotation, that is, it can evoke at most one instance
of speech, throught or writing. For roles this is not
true: a set of tokens could bear multiple role labels,
usually in relation to different cues.

According to our definition of the task, roles
are dependent on cues and so system roles can

10We use spaCy for sentence segmentation which results in
segments on the clause level, with an average size of around
16 tokens/clause.

match gold roles only if they are related to the
same cue. In line with this, the evaluation first
checks how system cues and gold cues align. In
doing so the scorer matches at most one system
cue to a at most one gold cue and the same in the
other direction. System cues that cannot be aligned
to gold cues produce false positives, including for
their associated roles. In symmetric fashion, gold
cues that cannot be aligned to a system cue result
in false negatives.

For both cues and roles, alignment requires non-
zero overlap with the tokens covered by a label of
the same type on the other side. Each component
token of aligned labels is counted as a true or false
positive, or as a false negative. This means that
longer spans contribute more to the overall score
than shorter labels. In situations where a multi-
token cue on one side overlaps with two or more
separate cues on the other side, the scorer scores
all possible alignments and chooses the one that
maximizes the joint F1-score for cues and roles.

5.3 Baseline system (Task 2)
We developed Quotes in Text (QUiTE) – a rule-
based system to extract direct and indirect quota-
tions with the speaker from text. The system fol-
lows ideas of an older system presented by Bögel
and Gertz (2015). QUiTE uses rules and word
lists on top of neural components for dependency
parsing and named-entity recognition. DIRECT

speech is identified by regular expressions looking
for quotation marks. The SOURCE of the quota-
tion (i.e. the speaker) is searched in the proximity,
preferring candidates in the same sentence but out-
side of the quotation span. INDIRECT speech is
identified through the grammatical structure of a
sentence (using dependency parsing) and the main
or auxiliary verb being a cue word that is looked
up in a word list. The word list contains utterance
verbs (verba dicendi) that can be used to indicate
(in)direct speech. In addition, the system finds
sentences in subjunctive mood that occur directly
before or after a sentence containing quotation and
source. These sentences are typically marked as IN-
DIRECT/FREE INDIRECT in the dataset. Lastly, the
system combines DIRECT and INDIRECT speech,
enriching the information of identical quotations.

5.4 Evaluation metrics (Task 2)
Task 2 is evaluated similarly to Task 1 using the
the usual Precision, Recall and F1-metrics on to-
ken overlap of possibly discontinuous spans (sets



Cues Roles Joint
Team Prec Rec F1 Prec Rec F1 Prec Rec F1

baseline 57.34 82.96 67.81 67.02 32.00 43.32 64.33 37.73 47.56

aehrm2 89.70 88.87 89.28 77.64 87.06 82.08 78.85 87.26 82.84
nesasio 88.92 88.92 88.92 78.69 82.15 80.38 79.80 82.91 81.33
moiddes 67.48 66.08 66.77 56.67 84.30 67.78 57.51 82.25 67.69

Table 7: Evaluation results for Task1, subtask 1 (cues & roles).

Team Prec Rec F1
baseline 89.08 33.66 48.86

aehrm2 91.12 90.23 90.67
nesasio 90.96 87.32 89.10
moiddes 53.49 85.35 65.76

Table 8: Evaluation results for Task1, subtask 2 (roles
only).

of tokens). However, the roles are optional but
always depend on a MESSAGE. Thus, predicted
roles can only match gold roles if they belong to
a matched MESSAGE. A span representing a role
can be related to multiple MESSAGE spans, i.e.
the same SOURCE can utter multiple MESSAGES.
Roles or MESSAGE spans can be nested within an-
other MESSAGE or FRAME in the full task. To
perform an evaluation, MESSAGES from system
and gold are assigned via linear sum assignment of
the MESSAGE span’s token overlap using form and
STWR as tie-breakers. Each MESSAGE can only
be matched to at most one other MESSAGE. The tie-
breakers are needed to correctly assign MESSAGES

in rare cases as they can have the same offsets, yet
use a different form or STWR. If a system predicts
a MESSAGE that has no matching MESSAGE in the
gold annotations, this increases the false positives
for MESSAGE and each role system predicted as be-
longing to the unmatched MESSAGE. Vice versa, if
a MESSAGE from the gold annotation has no match
in the system prediction, the false negatives are
increased. A correctly matched MESSAGE yields
true positives for all correct roles according to the
fraction of overlap and false negatives resp. false
positives for tokens that were not identified resp.
wrongly predicted by the system.

5.5 Baseline results

5.5.1 Task 1 – Parliamentary debates
Table 8 shows results for the baseline system (Task
1). The simple string match for the prediction of
cues has a recall over 80% but precision is rather
low with 57%. The heuristics-based role predic-
tion thus suffers from error propagation (precision:
67%) and even more from the low coverage of our
heuristic rules (recall: 32%). When applying the
role prediction baseline to gold cues, we can see
a substantial improvement for precision (89%) but
not for recall.

A qualitative error analysis showed that, in ad-
dition to the low recall, many errors are due to
incorrect syntactic parses. The dependency parser
struggles with the long sentences and many par-
enthetical remarks included in the debates and, in
addition, often fails to return the correct analysis
for copula constructions.

5.5.2 Task 2 – News articles
Table 9 resp. Table 10 shows the results for the
baseline system (Task 2) on the development resp.
test set. The rule-based system is not tuned on
the development set (and in fact not even trained
on the training set). Consequently, there is almost
no difference between the scores on the test and
development set.

The results show that the system achieves de-
cent precision while clearly suffering from low
recall. The low recall mainly results from two
causes. First, the system is not capable of predict-
ing certain types of speech (REPORTED and FREE

INDIRECT) or roles (ADDRESSEE) that are present
in the dataset. Second, the system was designed
to prefer quality over quantity when automatically
extracting quotations from large amounts of raw
text. As such, the system has a preference for pre-
cision over recall even for types of speech that it
can predict.

When comparing the results of the full task with



Prec Rec F1

Subtask 1 (full task)
Message 75.12 36.13 48.79
Roles 55.03 25.53 34.87
Joint 60.65 28.65 38.91
Form 57.78 29.56 39.11
STWR 56.59 28.94 38.30

Subtask 2 (simplified task)
Message 71.29 36.46 48.25
Source 57.76 24.93 34.83
Joint 64.65 30.90 41.82

Table 9: Task 2 baseline results on the development set

the simplified task, it can be seen that the system
has worse MESSAGE precision but slightly bet-
ter MESSAGE recall. This phenomenon can be
attributed to the fact that the system produces the
same output for both subtasks – it does not differen-
tiate between the tasks. Since it predicts some cases
of nested MESSAGES (e.g. DIRECT speech within
INDIRECT speech) the MESSAGE precision on the
simplified task (that does not include nesting) is
lower. As a side effect recall is slightly increased
because in the reference data some instances of
unsupported types of speech are excluded due to
nesting. According to the joint score, the system
performs better on the simplified task than the full
task – while performing worse on MESSAGES. The
reason for this is the averaging over all correct resp.
predicted spans: In the simplified task, there is only
a single role (SOURCE) and thus fewer role spans
than in the full task. As the system is significantly
better at predicting the MESSAGES than the roles,
the joint performance increases on the simplified
task.

5.6 Results of the SpkAtt2023 shared task

5.6.1 Task 1
The shared task had three participating teams that
submitted their system results. Only two of the
participating teams submitted a system description.
Below we summarize the main features of each
system. For details, see the system descriptions
(Ehrmanntraut et al., 2023; Bornheim et al., 2023).

Speaker attribution with BERT The win-
ning system is based on a large BERT model
(deepset/gbert-large, Chan et al. (2020)) and di-
vides the task into three subtasks. In the first step,
the system tries to identify the cue words. Next,

Prec Rec F1

Subtask 1 (full task)
Message 70.75 36.22 47.91
Roles 55.60 26.05 35.48
Joint 59.86 28.99 39.06
Form 63.48 33.59 43.93
STWR 52.46 27.76 36.31

Subtask 2 (simplified task)
Message 68.74 37.01 48.12
Source 53.98 22.47 31.73
Joint 61.56 30.02 40.36

Table 10: Task 2 baseline results on the test set

individual cue words are grouped into cue spans
(i.e., multi-word cues) that trigger the same speech
event. In the last step, given a group of cue words,
the system predicts the associated roles for this
cue as a multi-label classification task on the token
level. To increase efficiency, the system does not
fine-tune the full model parameters but inserts Low
Rank Adapters (LoRA) (Hu et al., 2021) into the
model that are then fine-tuned on the data, either
in a token classification setup (cue word detection;
role detection) or in a sequence classification task
(detection of multi-word cues).

The participants also experimented with domain
adaptation via continual pre-training on in-domain
data but could not further improve their results.

Speaker attribution with Llama 2 The second-
ranked system decided on a very different design
for the speaker attribution task, using a prompt-
based approach. The system is based on two fine-
tuned Llama 2 models (Llama 2 70B) (Touvron
et al., 2023), one for identifying the cues and one
for role prediction. To reduce memory usage and
make the system more efficient, QLoRA (Quan-
tized Low-Rank Adaptation) (Dettmers et al., 2023)
has been applied to quantize the model weights to
four bits. Additionally, LoRA adapters are added
to all linear transformer blocks of the model.

The prediction of cues and roles is done sepa-
rately by means of two prompting mechanisms and
postprocessing, in order to convert the system out-
put into structured predictions for evaluation. More
details on the implementation can be found in the
system description (Bornheim et al., 2023).

Results A summary of the results can be seen in
Table 8. All three systems beat the joint baseline for



both, subtask 1 and 2. While the two best-ranked
systems yield very similar results for cue prediction,
the BERT-based system clearly outperforms the
QLoRA-adapted Llama 2 model for role prediction
with regard to recall (82% vs. 87%).

Interestingly, for role prediction on automati-
cally predicted cues the QLoRA-adapted LLM
seems to outperform the BERT-based system.11

When predicting roles on gold cues, however, this
advantage disappears and the BERT-based system
beats the other systems in both, precision and re-
call.

5.6.2 Task 2
Since no team submitted an official run for Task 2,
the only results on this task are the baseline results
presented in Section 5.5.2. Thus, we are looking
forward to task and dataset being used in future
experiments and evaluations.

6 Conclusions

We presented an overview of the GermEval 2023
Shared Task on Speaker Attribution in Newswire
and Parliamentary Debates. The shared task pro-
vided two new datasets, one including parliamen-
tary debates from the German Bundestag (Task 1)
and one from the news domain (Task 2). Each task
consisted of two subtasks. All data is made avail-
able, either via a GitHub repository (train and dev
sets) or in codalab (test sets for evaluation).

The outcome of the shared task showed results
close to 90% F1 for the detection of cue words and
well above 80% F1 for role prediction on automati-
cally predicted cues (Task 1). When also providing
the gold cues, we see a further increase in results
for role prediction up to 90% F1. The high accu-
racy of the results should enable new applications
in the computational social sciences and the release
of the new datasets will provide the basis for further
improvements for speaker attribution in German
text.
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Appendix

A1 ADDRESSEE EVIDENCE MEDIUM MESSAGE PARTICLE SOURCE TOPIC NONE

ADDRESSEE 679 0 0 26 7 7 14 279
EVIDENCE 0 90 11 0 0 0 0 23
MEDIUM 0 64 109 17 0 5 18 245
MESSAGE 42 25 27 11,734 7 52 662 3,570
PARTICLE 0 0 0 8 101 0 1 46
SOURCE 22 15 8 106 1 2,244 22 623
TOPIC 4 3 0 214 0 0 574 194
NONE 310 116 48 3,530 91 407 335 0

Table 11: Confusion matrix (token level) for role annotations for the last two annotation samples (Task 1).
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*bialonski@fh-aachen.de

Abstract

The growing body of political texts opens up
new opportunities for rich insights into politi-
cal dynamics and ideologies but also increases
the workload for manual analysis. Auto-
mated speaker attribution, which detects who
said what to whom in a speech event and is
closely related to semantic role labeling, is an
important processing step for computational
text analysis. We study the potential of the
large language model family Llama 2 to au-
tomate speaker attribution in German parlia-
mentary debates from 2017–2021. We fine-
tune Llama 2 with QLoRA, an efficient train-
ing strategy, and observe our approach to
achieve competitive performance in the Germ-
Eval 2023 Shared Task On Speaker Attribution
in German News Articles and Parliamentary
Debates. Our results shed light on the capa-
bilities of large language models in automat-
ing speaker attribution, revealing a promising
avenue for computational analysis of politi-
cal discourse and the development of semantic
role labeling systems.

1 Introduction

Language is central to the study of politics, as
it forms the basis for political speech and de-
bates (Grimmer and Stewart, 2013). These textual
sources offer rich insights into political dynamics
and ideologies, yet the analysis of even moderately
sized collections has been impeded by prohibitive
costs. Recent innovations from natural language
processing (NLP) have the potential to significantly
reduce the financial burden of scrutinizing exten-
sive text corpora (Glavaš et al., 2019; Abercrom-
bie and Batista-Navarro, 2020). This development
coincides with the availability of a growing body

of political texts, including German Parliamentary
data (Barbaresi, 2018; Blätte and Blessing, 2018;
Walter et al., 2021; Rauh and Schwalbach, 2020;
Abrami et al., 2022; Rehbein et al., 2023), thus
opening new avenues for political research.

Political texts are usually unstructured, present-
ing challenges for automated analyses. An ap-
proach towards this challenge is automated speaker
attribution (Rehbein et al., 2023), which detects
who said what to whom in a speech event. This
process involves detecting cue words that initiate a
speech event and discerning the different roles (e.g.,
source, message, and addressee) associated with
each event. This task is closely related to seman-
tic role labeling (SRL) that delineates the specific
semantic relationships among a predicate and its
corresponding arguments, such as “who” did “what”
to “whom,” “where,” “when,” and “why” (Gildea
and Jurafsky, 2002; Màrquez et al., 2008). Seman-
tic role labeling is considered a key component
for natural language understanding and has been
demonstrated to enhance systems for various ap-
plications including question answering, machine
translation, and video understanding (Navigli et al.,
2022).

Early approaches to SRL relied on syntactic fea-
tures (Navigli et al., 2022; Larionov et al., 2019).
More recently, the field has seen a significant tran-
sition from such engineered features to features
learned in an end-to-end fashion by models that
operate on raw-level input or tokens (Collobert
et al., 2011). However, such end-to-end models
necessitate large annotated training sets, available
for English but scarce for low-resource languages.
This problem can be mitigated by pretraining on
unannotated data. Indeed, the emergence of pre-



trained large language models (LLMs) inspired by
the transformer architecture (Vaswani et al., 2017)
led to new state-of-the-art results across various
NLP tasks. Among these, encoder-only models
like BERT were demonstrated to improve existing
SRL benchmarks (Shi and Lin, 2019). More re-
cently, the advent of decoder-only models, such as
GPT (Radford and Narasimhan, 2018) and larger
models like GPT-4 (OpenAI, 2023), Claude 2 (Bai
et al., 2022), and Llama 2 (Touvron et al., 2023b),
has further propelled the field. These models, with
their ability to comprehend and execute instruc-
tions in natural language for a wide array of tasks,
hold potential for SRL and automated speaker attri-
bution that is, to the best of our knowledge, largely
unexplored.

In this contribution, we study the potential of
Llama 2 70B, a model from a recently introduced
family of large language models, to automati-
cally detect speech events and attribute speakers
in German parliamentary debates. We instruct and
fine-tune Llama 2 to extract cues and roles using
QLoRA (Dettmers et al., 2023), a parameter- and
computationally efficient training strategy. Our ap-
proach achieves competitive performance (quanti-
fied by F1 scores for cues and roles) on the SpkAtt-
2023 dataset of the GermEval 2023 Shared Task on
Speaker Attribution in German News Articles and
Parliamentary Debates (Rehbein et al., 2023). The
implementation details of our experiments (Team
“CPAa”) are available online1.

2 Data and tasks

The dataset of the GermEval 2023 Shared Task on
Speaker Attribution in German News Articles and
Parliamentary Debates consisted of 267 speeches
from the German Bundestag (Rehbein et al., 2023).
This dataset included speeches from all seven par-
liamentary groups (including independent mem-
bers of parliament as a separate group) of the 19th
legislative period of the German Bundestag (see
Table 1 for details). To facilitate analysis, each
speech was automatically separated into sentence-
like structures using spaCy, hereafter referred to as
samples (units of analysis). Each sample was then
further split into elements, i.e., words and punctua-
tion marks.

Human annotators followed annotation guide-
lines (Rehbein et al., 2023) to assign none, one, or

1https://github.com/dslaborg/
germeval2023

Parliamentary group Speeches Samples

CDU/CSU 77 4305
SPD 57 2887
AfD 39 1827
FDP 34 1435
DIE LINKE 29 1356
B’90 / DIE GRÜNEN 27 1152
independent 4 125

Total 267 13087

Table 1: Number of speeches and samples per parlia-
mentary group in the combined Train, Dev, and Eval
datasets.

Split Speeches Samples Annotations

Dev 18 927 515
Train 177 9093 5399
Eval 72 3067 1792

Total 267 13087 7706

Table 2: Number of speeches, samples (units of analy-
sis), and annotations for each dataset. The Trial dataset
is completely contained within the Train dataset and is
therefore not shown. The Eval dataset here refers to
the test sets of both Subtask 1 and Subtask 2, since they
only differ in the provided annotations.

multiple annotations to each sample. These anno-
tations consisted of cue words that invoke speech
events and roles (Addr, Evidence, Medium, Mes-
sage, Source, Topic, PTC) associated with that
event. While the cue is mandatory for each an-
notation, roles are context-dependent and may be
absent. Figure 1 shows example annotations.

The Shared Task consisted of two subtasks: Full
Annotation (Subtask 1) and Role Detection (Sub-
task 2) (Rehbein et al., 2023). In the Full Annota-
tion subtask, the goal was to predict all cues and
roles for each sample. In the Role Detection sub-
task, the gold cues were given, and the goal was to
predict only the roles for each sample.

The dataset was provided as five sets, namely
Trial, Train, Dev, and two Eval sets, one for each
subtask, see Table 2. We omitted the Trial dataset
in our experiments, since it was included in the
Train dataset. For training and tuning the final
models, we used the Train and Dev datasets. The
two Eval datasets were only used to compute the
final scores of the shared task.



Annotation 1
Von der AfD wollen wir hier lieber nicht reden; ‡
denn wir(Source) wissen(Cue): Neben ihren rassistischen
Positionen ‡ haben die Rechtsradikalen nicht nur
Klimawandelleugnung im Angebot, sie haben auch die
rechtspopulistischen Positionen eines Donald Trump
gepachtet(Message).

Annotation 2
Von der AfD wollen wir hier lieber nicht reden; ‡
denn wir wissen: Neben ihren rassistischen Posi-
tionen(Cue) ‡ haben die Rechtsradikalen nicht nur
Klimawandelleugnung im Angebot, sie haben auch die
rechtspopulistischen Positionen eines Donald Trump
gepachtet.

Annotation 3
Von der AfD wollen wir hier lieber nicht reden; ‡
denn wir(Source) wissen: Neben ihren rassistischen Po-
sitionen ‡ haben die Rechtsradikalen nicht nur Kli-
mawandelleugnung im Angebot, sie haben auch die
rechtspopulistischen Positionen(Cue) eines Donald Trump
gepachtet(Message).

Figure 1: Sentence from the Train dataset with three
annotations. The sentence was split into three samples
by spaCy (splitting points are indicated by ‡). As seen
in Annotation 2, there can be annotations consisting of
only cue word(s). Annotation 1 and Annotation 3 show
that annotated roles can span multiple samples.

3 Methods

3.1 Models

We used the Llama 2 model family (Touvron et al.,
2023b), a set of large language models pretrained
on a corpus of two trillion tokens with a context
length of 4096 tokens. The Llama 2 model family
includes both pretrained models and fine-tuned ver-
sions optimized for conversational tasks. Since our
approach did not require the conversational capabil-
ities of the fine-tuned models, we chose to use the
base pretrained versions of Llama 2 in our experi-
ments. These base models were trained without a
specific prompt format and are therefore not biased
toward any particular prompt strategy, allowing us
to freely choose our own prompt format.

While the Llama 2 model family contains mod-
els of various sizes, we chose to fine-tune the
largest available model with 70 billion parame-
ters (Llama 2 70B). The weights of this model
can be obtained upon request using the official
GitHub repository2. Once downloaded, we fol-

2https://github.com/facebookresearch/
llama

lowed the provided instructions3 to convert the
model to the HuggingFace Transformers format
(Wolf et al., 2020). This conversion allowed us to
load the model using the HuggingFace Transform-
ers library, which facilitated the fine-tuning and
inference steps.

3.2 Preprocessing

For effective training (see section 3.3) and infer-
ence (see section 3.4) we preprocessed each sample.
We parsed each annotation into its respective lists
of elements. Next, we joined all elements of a sam-
ple with space characters in between to get each
sample’s text. Since roles can be contained in sam-
ples different from the one containing the cue, we
concatenated the sample with the next two samples
of the same speech, if possible.

During our experiments, we noticed that our
models ignored their instructions and generated
random text if the text of a given sample ended
with a colon. To counteract this behavior, we re-
placed this trailing colon with a period.

We designed prompts for cue prompting (see
Figure 2) and role prompting (see Figure 3). We
wrote the instructions in our prompt templates in
English, because it was observed that the perfor-
mance of multilingual models such as Llama 2 is
improved when English prompts are used (Fu et al.,
2022; Huang et al., 2023). Also, since a sample
may not contain a cue, or a role may be missing,
we used “#UNK#” to mark such cases.

3.3 Training

For our final submission, we fine-tuned two
Llama 2 70B models to identify cues and roles,
respectively, using QLoRA (Quantized Low-Rank
Adaptation) (Dettmers et al., 2023). QLoRA is a
highly efficient fine-tuning technique for large lan-
guage models that achieves similar performance to
full fine-tuning while using only a fraction of the
memory. This memory reduction is achieved by
quantizing the model weights of an LLM to four
bits and adding Low Rank Adapters (LoRA layers)
to all linear transformer blocks of the model. Dur-
ing fine-tuning, only these LoRA layers are trained
and the rest of the pretrained model weights remain
unaltered. By employing this strategy, QLoRA
achieves a significant reduction in memory usage
during fine-tuning, while still allowing the model

3https://github.com/facebookresearch/
llama-recipes



Input:
User: A cue is the lexical items in a sentence that indicate that speech, writing, or thought is being reproduced.
I want you to extract all cues in the text below.
If you find multiple words for one cue, you output them separated by commas.
If no cue can be found in the given text, you output the string #UNK# as cue.
Now extract all cues from the following sentence.
Use the prefix “Cues: ”.
Sentence: denn wir wissen: Neben ihren rassistischen Positionen
Assistant:

Output:
Cues: [wissen], [Positionen]</s>

Figure 2: Example cue prompt and desired model response for the sample “denn wir wissen: Neben ihren rassistis-
chen Positionen” with the cues “wissen” and “Positionen”. Shaded in gray are the parts of the prompt and response
that are sample dependent. The prompt is used as the Input sequence for training and inference, while the Output
sequence contains the desired response with the cues. The end-of-sentence token “</s>” is used to indicate the
end of the Output sequence.

to adapt to downstream tasks through the trainable
LoRA layers.

As described in Section 3.2, we parsed the train-
ing samples into cue prompts (see Figure 2) that
served as input to the cue model and role prompts
(see Figure 3) that served as input to the role model.
The models were not fine-tuned on these input
sequences, but rather on the desired assistant re-
sponses (defined as Output in Figures 2 and 3).
This approach is consistent with previous research
that has shown improved performance when fine-
tuning only on the target response of an instruction
set, rather than both the instructions and the desired
response (Dettmers et al., 2023). By treating the
input and output separately, we can process the
two sequences with different maximum sequence
lengths. Specifically, for the model used to identify
cues, we set the maximum length of the input to
256 tokens (with seven samples of the training data
truncated) and the maximum length of the output
to 64 tokens (no samples truncated). For the model
used to identify roles, we truncated the input to
640 tokens (with six samples of the training data
truncated) and the output to 256 tokens (with one
sample truncated).

Except for the maximum number of tokens in
the input and output sequences, we largely fol-
lowed the training strategy proposed by Dettmers
et al. (Dettmers et al., 2023). Although their
specific experiments did not involve a Llama 2
70B model, they successfully fine-tuned a simi-
larly sized LLaMA model (predecessor to Llama 2)
with 65 billion parameters (Touvron et al., 2023a).
We adopted most parameters from this 65B model
fine-tuning, such as a constant learning rate of

η = 0.0001 with linear warmup over the first 3% of
training steps and a dropout of 0.05 for the LoRA
layers. The main hyperparameter we adjusted was
the number of training steps to prevent overfitting.
For the cues model, we trained for 2000 steps with
a batch size of 16 and no gradient accumulation.
For the roles model, we used 2500 steps with a
batch size of eight and gradient accumulation over
two steps, i.e., an effective batch size of 16.

Fine-tuning was carried out on a DGX A100
server, with a total training time of about seven
hours for the cues model and 17 hours for the roles
model. To optimize memory usage, we experi-
mented with reducing the batch size to one while
increasing the gradient accumulation steps to 16
(i.e., maintaining the same effective batch size).
With these parameters, both models were able to
operate within a GPU memory limit of less than 60
GB.

3.4 Inference

Prompting our fine-tuned models was a two-step
process. In the first step, we prompted our cue
model for all cues in a sample using our prompt
template for cues (see Figure 2). We postprocessed
the output of the model (see section 3.5) into a
list of cues. In the second step, for each cue, we
prompted for the roles with our role model. To do
this, we prepended the complete cue prompt and its
output to the role prompt template before querying
the model (see Figure 3).

To ensure reproducibility of results, we config-
ured our models to generate output deterministi-
cally. For a given input sequence, large language
models obtain a probability distribution over all



Input:
User: Now I give you again the sentence only in addition with the two following sentences, because the roles can be
partially contained in the following sentences.
Text: denn wir wissen : Neben ihren rassistischen Positionen ‡ haben die Rechtsradikalen nicht nur Klimawandelleugnung
im Angebot , sie haben auch die rechtspopulistischen Positionen eines Donald Trump gepachtet . ‡ Als Linke übernehmen
wir Verantwortung .
Now find all roles in the sentence associated with the cue ‘wissen’ you found in the beginning sentence.
Assistant:

Output:
cue: wissen
ptc: #UNK#
evidence: #UNK#
medium: #UNK#
topic: #UNK#
addr: #UNK#
message: Neben, ihren, rassistischen, Positionen, haben, die, Rechtsradikalen, nicht, nur, Klimawandelleugnung, im,
Angebot, ,, sie, haben, auch, die, rechtspopulistischen, Positionen, eines, Donald, Trump, gepachtet
source: wir</s>

Figure 3: Example role prompt and desired model response for the sample “denn wir wissen: Neben ihren rassistis-
chen Positionen” with the cue “wissen”. Since roles can be contained in samples different from the one containing
the cue, we concatenated the sample with the next two samples of the same speech (transitions between samples
are indicated by ‡). Shaded in gray are the parts of the prompt and response that are sample dependent. Similar to
the cue prompt, the role prompt is used as the Input sequence for training and inference, while the Output sequence
contains the desired response. We append the end-of-sentence token “</s>” to the Output.

possible tokens. We chose to always select the to-
ken with the highest assigned probability as the
next output token, thereby fixing the output for a
given input sequence.

3.5 Postprocessing and evaluation metrics

Several postprocessing steps were necessary to
evaluate the models’ output in a structured way.

Enforcing the output format. If the models’
output did not follow our strict output format (see
Figures 2 and 3), we mapped the output to the
marker #UNK# (unknown).

Preventing overlapping cues. If our cue model
detected multiple but overlapping cues, we com-
bined them into a single cue.

Ignoring made-up words. If the output of the
model contained words for cues or roles that were
not in the given sample, and no other word with a
Levenshtein distance of 1 was found in the sample,
we ignored those words. Then, if the output was
empty, we mapped the output to the marker #UNK#
(unknown).

Resolving ambiguities. A word may occur more
than once in a sample. When a model outputs such
a word as a cue or a role, it is unclear to which
occurrence of the word in the sample it should

be attributed. To resolve this ambiguity, for each
occurrence of the word, we counted how many
elements around that word (in the range of two
elements to the left and right) were part of the cue
or role, and chose the occurrence with the highest
count.

Including surrounded punctuation. Roles of-
ten contained punctuation marks such as colons
or commas. We observed that our models ignored
these punctuation marks most of the time. If a punc-
tuation mark was surrounded by words that were
selected for this role, we added that punctuation
mark to the role as well.

Evaluating metrics. To evaluate the perfor-
mance of our models, we used the proportional F1
score as proposed for opinion role labeling (Johans-
son and Moschitti, 2010). This score is defined
as the harmonic mean of the proportional preci-
sion and recall. Proportional precision quantifies
the proportion of overlap between a predicted cue
(role) and an overlapping true cue (role). Propor-
tional recall quantifies the proportion of overlap
between a true cue (role) and an overlapping pre-
dicted cue (role; see (Rehbein et al., 2023) for fur-
ther details on how the proportional F1 score is
calculated).



Precision Recall F1

Subtask 1
Cues 0.889 0.889 0.889
Roles 0.787 0.822 0.804
Cues & Roles 0.798 0.829 0.813

Subtask 2
Roles 0.910 0.873 0.891

Table 3: Proportional precision, recall, and F1 scores
obtained for predicting cues and roles on the Eval
dataset. The joint scores for predicting both cues and
roles (Subtask 1 of GermEval 2023 Shared Task 1) are
shown in the third row. The last row shows the results
obtained for predicting roles on the Eval dataset when
the true cues were given (Subtask 2).

4 Results

We used the same fine-tuned Llama 2 70B models
for both Subtask 1 and Subtask 2 of GermEval
2023 Shared Task 1 – a cues model to identify cues
in a given sentence and a roles model to predict
the roles associated with the identified cues. While
the cues model was used exclusively in Subtask 1,
as the cues were provided in Subtask 2, the roles
model was used in both subtasks. It leveraged
either the predicted cues from Subtask 1 or the gold
cues from Subtask 2 to predict the roles associated
with each cue, as described in section 3.4. By using
the same fine-tuned roles model for both subtasks,
we were able to analyze the impact of using gold
cues versus predicted cues on role identification
performance.

Table 3 shows the final results of our submissions
on the Eval dataset, as reported by the organizers
of the GermEval 2023 Shared Task. For Subtask 1,
the fine-tuned cues model achieved an F1 score
of 0.889 for predicting cues. Using the predicted
cues from this model, the fine-tuned roles model
achieved an F1 score of 0.804 for predicting roles.
Combining both predictions, our models achieved
an overall F1 score of 0.813 for predicting cues
and roles in Subtask 1. In Subtask 2, where gold
cues were provided, the same roles model used in
Subtask 1 achieved a higher F1 score of 0.891 for
predicting roles. Interestingly, the improvement of
the roles model using gold cues was greater in pre-
cision, which increased from 0.787 to 0.910, than
in recall, which increased from 0.822 to 0.873. This
increase in precision suggests that the cues model
in Subtask 1 overpredicted sentences as containing

cues when they actually had no cues, resulting in
too many false positive role predictions.

In summary, our results demonstrate that our
fine-tuned models are effective at reliably predict-
ing cues and roles. Additionally, the results high-
light the importance of accurate cue prediction, as
errors of the cues model propagate to the roles
model, reducing its performance.

5 Conclusion

We demonstrated that fine-tuned Llama 2 language
models can successfully predict cues and roles in
German parliamentary debates, achieving compet-
itive performance on the GermEval2023 Shared
Task without relying on traditional linguistic fea-
tures. These results highlight the feasibility of auto-
mated speaker attribution by fine-tuning models on
prompt templates that task them with identifying
cues and roles. The similarity between automated
speaker attribution and semantic role labeling sug-
gests that this strategy may pave the way for new
state-of-the-art results in various semantic role la-
beling tasks.

Limitations

We did not study risks that may or may not arise
when our fine-tuned large language models are used
for other application scenarios than ours. In our
approach, users can neither manipulate the prompts
nor read the generated texts produced by our mod-
els. Instead, the generated outputs are processed
and mapped back to the words from the parliamen-
tary speeches used as input. Therefore, we consider
the risks associated with our approach to be lim-
ited. We recommend security testing if our trained
models are to be used in other scenarios.
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Andreas Blätte and André Blessing. 2018. The Germa-
Parl corpus of parliamentary protocols. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation, LREC 2018,
Miyazaki, Japan, May 7-12, 2018. European Lan-
guage Resources Association (ELRA).

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

This paper documents and analyzes a submis-
sion to the Shared Task on Speaker Attribu-
tion hosted at KONVENS 2023 (Rehbein et al.,
2023). One task was the automatic identifica-
tion of speech events in German parliamen-
tary debates, i.e., where speech, thought or
writing is referenced by speakers of parlia-
ment. The system approaches this with a token
and sequence classification setup and offers a
BERT-based solution to this task. According
to the results, the proposed system performs
surprisingly well despite its simple architec-
ture. Further experiments indicate that even
with a smaller variant of BERT, the system per-
forms nearly equally well, whereas a domain
adaptation of BERT on parliamentary speeches
offered close to zero improvement.

1 Introduction

This paper presents a participating system at the
KONVENS 2023 Shared Task on Speaker Attribu-
tion (SpkAtt-2023), particularly participating in the
task 1 on German parliamentary debates. The goal
of the shared task is the automatic identification
of speech events in political debates (whereas, for
task 2, in news articles) and attributing them to
their respective speakers, essentially identifying
who says what to whom in the parliamentary de-
bates (Rehbein et al., 2023). This is motivated by
the fact that the automatic identification of such
information is a prerequisite for an extensive se-
mantic analysis of unstructured texts. For instance,
the information automatically inferred from parlia-
mentary speeches could be used for political dis-
course studies of parliamentary debates, or political
communication.1

A speech event refers to a reference to speech,
writing or thought by a member of parliament

1See also the GePaDe datasheet:
https://github.com/umanlp/SpkAtt-2023/blob/
master/doc/SpkAtt-Debates-Datasheet.pdf.

during one of their plenary speeches. Each such
speech event consists of several word spans: first,
a nonempty span of cue words that trigger this
speech event (usually a verb), and second, several
role spans associated with this speech event, i.e.,
Source, Addressee, Message, Topic, Medium, Evi-
dence, or Particles, any of which can be empty, and
all may pairwise overlap.2 See Figure 1 for some
examples. In this sense, a speech event does not
have to be attributed to the actual person deliver-
ing the speech in parliament: the person may, for
example, also state the thoughts of another entity,
such as depicted in Figure 1(b).

The system presented in this paper approaches
automatic speaker attribution through multiple fine-
tuned BERT Transformer models (Devlin et al.,
2019), designed to handle cue detection, cue link-
age, and role detections. The system is specifically
designed to be a minimal BERT-based baseline; all
involved NLP tasks are essentially simple token
classifications resp. sequence classifications. The
model is similar to a semantic role labeling model
by Shi and Lin (2019); in both models, entire sen-
tences were encoded to leverage the contextual
information from all tokens in the sequence at the
same time.

The system was trained on the GePaDe dataset3

for speaker attribution in German parliamentary
debates, which has been specifically created for
the SpkAtt-2023 task. It consists of 265 speeches,
mostly from the 19th legislative term of the German
Bundestag. For the shared task evaluations, the
task organizers tested the submitted systems on
(blind) test data. According to the official scorer,
the presented system achieved a SpkAtt-F1 score of
0.83 on full inference (subtask 1a), and a SpkAtt-F1
score of 0.92 on a simplified task where gold cue

2See also the precise annotation guidelines:
https://github.com/umanlp/SpkAtt-2023/blob/
master/doc/Guidelines_SpeakerAttribution_in_
Parliamentary_Debates-SpkAtt-2023_Task1.pdf.

3https://github.com/umanlp/SpkAtt-2023



Source

(e)

SourceCue

Im Koalitionsvertrag halten wir unsere Vorstellungen zur Außenpolitik fest .
Medium Cue Source Message Topic Particle

(a)

(b) Frau Merkel , laut Medien nahm die Bundesregierung das aber nicht zur Kenntnis .
Cue CueSourceAddressee Evidence

(c)

MessageCueSource
(d)

Cue

1Ich fasse zusammen : 2Ihr Gesetz ist lückenhaft , und das wissen Sie .
Particle

1Ich fasse zusammen : 2Ihr Gesetz ist lückenhaft , und das wissen Sie .

1Ich fasse zusammen : 2Ihr Gesetz ist lückenhaft , und das wissen Sie .
Message

Source

(f)

Topic

Interfraktionell wird Überweisung der Vorlagen [...] an die [...] Ausschüsse vorgeschlagen .
CueMessage Addressee

Figure 1: Example instances for the speaker attribution task. Note how the cue span can cover multiple tokens in a
non-contiguous way (b). Note how, in the same speech event, words can be assigned to multiple role spans (c; from
the GePaDe training set ID197411900). Also note how two annotations may overlap, how annotations may span
multiple sentences (d and e), and how multiple annotations can be present even in the same sentence (e and f).

words are already given (subtask 1b). The entire
system is made available.4

2 Related Work

Speaker attribution has many parallels to semantic
role labeling. Similar to speaker attribution, seman-
tic role labeling refers to the task of identifying
the predicate of a clause, establishing “what” took
place (typically a verb) and the associated argu-
ments that specify the “who,” the “what,” “where,”
etc. Like the speaker attribution system presented
here, semantic role labeling is usually divided into
four steps: predicate identification and disambigua-
tion, and argument identification and classification
(Conia and Navigli, 2022). Current state-of-the-art
semantic role labeling models build upon large pre-
trained language models such as BERT. In partic-
ular, the current best-performing model operating
on German appears to be the multilingual one de-
veloped by Conia et al. (2021; see also Conia and
Navigli, 2020).

Nevertheless, we have indications that much sim-
pler models for semantic role labeling perform
quite close to the state of the art. For instance,
Conia and Navigli (2020) report that the monolin-
gual BERT baseline model provided by Shi and
Lin (2019) performs nearly equally as good as their
more complex (multilingual) model on English.
Essentially, the model by Shi and Lin performs
argument identification by taking BERT’s output
representation and feeding it through a BiLSTM
layer to predict BIO-encoded predicate labels.

However, they only fine-tune the BiLSTM
layer; the attention weights of BERT remain fixed.
Current research on Named Entity Recognition

4https://github.com/aehrm/spkatt_gepade

(Schweter and Akbik, 2021) and—closer to the
speaker attribution task—recognition of speech,
thought, and writing representation (Ehrmanntraut
et al., 2023) suggests that rather than adding a Bi-
LSTM layer, fine-tuning the Transformer’s atten-
tion weights allows to predict the respective labels
from the token encoding in the final Transformer
layer alone. This Transformer-Linear variant cor-
responds to the now usual “BERT for token classi-
fication” setup and appears to be competitive, and
often even outperforming model variants with Bi-
LSTM decoders. My system directly follows this
approach.

3 Base Model and Domain Adaptation

My system is based on the BERT Transformer
model GBERTLarge (i.e., deepset/gbert-large,
Chan et al., 2020). Following Gururangan et al.
(2020) and Konle and Jannidis (2020), I performed
a domain adaptation of the model by continu-
ing pre-training on a second, separate corpus of
speeches. The corpus extends the SpkAtt train-
ing speeches with additional speeches held in the
German Bundestag during the 9th–20th legisla-
tive period, from 1980 until April 2023 (757 MB).
This results in the BERT model GePaBERT. The
speeches were automatically prepared from the
publicly available plenary protocols5, using the
extraction pipeline Open Discourse6 (cf. Richter
et al., 2023). Speeches that are present in the de-
velopment or test split of the SpkAtt task were
excluded, so that the predictive accuracy measured
on the held-out development/test split actually re-

5https://www.bundestag.de/services/opendata
6https://opendiscourse.de;

https://github.com/open-discourse/open-discourse
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Figure 2: Overview of the system architecture. (a) The first component performs a token classification to detect cue
words. (b) The second component performs a sequence classification to predict potential cue links on all pairs of
cue words through contextualized cue-aware input sequences. (Not all such sequences are shown.) On the graph
induced by the cue words resp. positive (green) links, the system picks the connected components (circled purple)
as cue spans. (c) The third component performs a multi-label token classification to detect role words corresponding
to the respective highlighted cue span.

flects the accuracy on data the system has never
seen at all, e.g., speeches held after April 2023.

Training was done on 5 epochs, with a batch
size of 8, and a learning rate of 2 × 10−5, linearly
decreasing to zero. (Training took approximately
140 GPU hours on two GTX 1080 TI GPUs, each
with a device batch size of 2, and 2 gradient ac-
cumulation steps.) The final model GePaBERT is
made available on the Huggingface hub.7

4 System Overview

My system splits the task into three components:
(a) Detection of cue word, i.e. word that are cov-
ered by cue spans. (b) Joining individual cue word
through the detection of cue links, in order to form
cue spans. (c) For each cue span, given that specific
cue span, infer the associated role spans. Figure 2
gives a sketch of the system. All three components
are implemented by fine-tuning the above domain-
adapted BERT model GePaBERT, respectively, em-
ployed in a token classification or sequence classi-
fication setup.

Instead of fully fine-tuning BERT models, the
system builds upon LoRA adapters (Hu et al.,
2021): rather than training all Transformer weights,

7https://huggingface.co/aehrm/gepabert

the pre-trained weights are frozen, but trainable
rank decomposition matrices are injected into each
attention layer of the Transformer architecture.
This reduces the number of trainable parameters
and accelerates fine-tuning. To this end, the system
is implemented through the PEFT library provided
by the Huggingface API8 (Mangrulkar et al., 2022;
Wolf et al., 2020).

4.1 Cue Detection

The detection of cue words is achieved using a
token classification by the first BERT model, fine-
tuned for this task. Following standard practice,
the model performs a token-level binary logistic re-
gression, using BERT’s output representation of the
respective first wordpiece token of that particular
word. Thus, the models differentiates between non-
cue words and cue words. In this component and
all the following, for each the regression weights
and the respective Transformer’s attention weights
(through LoRA) are trained to minimize the binary
cross entropy loss of the token classification against
gold labels. Training was done over 30 epochs with
a batch size of 4 and a learning rate of 5 × 10−5. (In
total, fine-tuning all three components took approx-

8https://github.com/huggingface/peft



imately 6 GPU hours on a single GTX 1080 TI
GPU.)

The model performs this token classification
for each sentence, but adds additional context by
prepending the five preceding sentences, and ap-
pending the five following sentences to the se-
quence, both during training and inference. After
inference, we obtain a set of predicted individual
cue words.

4.2 Cue Linking

The second component joins individual cue words
into cue spans. This is necessary since, even within
the same sentence, there may be multiple differ-
ent cue spans, each with their own associated role
spans. (See, e.g., Figure 1(e) vs. (f).) To this end,
the component predicts whether two cue words
belong to the same span. Given two cue words,
we first derive a cue-aware input sequence that
highlights the two cue words. Then, we let the
second BERT model perform a sequence classifica-
tion on the input sequence, predicting whether the
two highlighted cue words belong to the same span
or to different spans. During inference, these link
predictions are used to calculate a partition of cue
words into spans.

In order to encode the two focused cue words
into a cue-aware manner, a new special token
[LABEL] was introduced, and the input sequence is
designed as “[CLS] left context [LABEL] cue no. 1
[SEP] center context [LABEL] cue no. 2 [SEP]
right context [SEP]”. As usual, the sequence pre-
diction is calculated using a binary logistic regres-
sion on BERT’s output representation of the initial
[CLS] token.

This classification is performed on all pairs of
cue words that appear in the same sentence. (In
fact, no cue span appears to span over multiple
sentences.) The model is trained on all gold cue
words, predicting whether two focused cue words
are indeed contained in the same (gold) cue span.
Again, the five preceding/following sentences were
added to the left/right context.

During inference, the model takes the cue words
predicted by the previous component. To now de-
rive the actual partition into cue spans, set up a
graph structure with every (predicted) cue word
as vertex, and adding edges between two vertices
if the classifier predicted a link between the two
respective cue words. Finally, the model enumer-
ates the connected components of that graph as

prediction for the cue spans. While an enumera-
tion of maximal cliques would also be an option—
especially since under gold predictions, the con-
nected components are always cliques—the compo-
nent relaxes this condition and focuses only on con-
nected components. In fact, no noticeable differ-
ence in performance between these two approaches
could be observed.

4.3 Role Detection

The last component predicts the role spans, given
a specific cue span, in the context surrounding the
cue span. Like the first component, this component
fine-tunes the third BERT model to perform a multi-
label token classification, which, for each token,
predicts to which role span(s) the respective token
belongs. Note that a multi-label classification is
needed since, even in the same speech event, a
word may belong to multiple different role spans,
even when associated with the same cue span. (Cf.
Figure 1(c), which appears verbatim in the official
GePaDe training dataset.)

This multi-label classification is modelled as
seven independent binary classifiers (one for each
role label Source, Message, Topic, . . . , i.e., binary
relevance method). Again following standard prac-
tice, similar to the cue detection, each one of the
classifiers is implemented as independent token-
level binary logistic regression on (the same) output
representation from BERT.

As input sequence, the model takes the sentence
that contains the cue span, plus the five preceding
and following sentences: for one, since role spans
could also cover tokens from preceding/following
sentences (cf. Figure 1(d)); for another, to give
BERT more context to, e.g., disambiguate what the
demonstrative pronoun das in Figure 1(b) actually
refers to. The model encodes the sequence in a
cue-aware manner similar to the previous compo-
nent: again, the special token [LABEL] highlight
contiguous tokens from the cue span. For instance,
the speech event depicted in Figure 1(b) would
be encoded as [CLS] Frau Merkel , laut Me-
dien [LABEL] nahm [SEP] die Bundesregierung
das aber nicht [LABEL] zur Kenntnis [SEP] .
[SEP].

This component has been trained on the gold
annotation objects (i.e., given gold cue span, pre-
dict the gold role spans). During inference, the
component takes the cue spans predicted by the
previous component, and for each cue span, pre-



dicts the associated role spans, and finally returns
complete annotation objects by combining the cue
spans with the respective predicted role spans.

5 Results and Error Analysis

5.1 Metric
Since no code for the official SpkAtt scorer is avail-
able, we will, in the further course of the paper,
instead resort to the following matching-based pre-
cision/recall as a guiding metric, which should be
approximately in line with the informal descrip-
tions given by the task organizers.

Consider one gold annotation A and one pre-
dicted annotation Â. For each of the eight shared
task classes (Cue, Source, Message, etc.), calculate
the recall between the gold span and the predicted
span, each time on the token level.9 Then, form
the micro-averaged recall over all classes to get
the annotation recall R(A, Â) between gold and
predicted annotation.

Now, to calculate recall between sets of gold
annotations and predictions, set up a complete bi-
partite graph between gold annotations and pre-
dictions. Weight each edge between gold A and
predicted Â according to R(A, Â). Then, deter-
mine a maximum-weight matching in that bipartite
graph. The matching-based recall is the average
of R(Ai, Âi′), taken over all gold annotations Ai,
where Âi′ is the matched mate of Ai. (If Ai has no
mate, then it contributes recall 0 to the average.)

Precision is computed in a symmetric fash-
ion. Calculate micro-averaged annotation precision
P (A, Â), and then calculate the maximum-weight
matching with respect to a bipartite graph weighted
by P (A, Â). The matching-based precision is the
average over P (Ai′ , Âi) taken over all predicted
annotations Âi, where Ai′ is the matched mate of
Âi. (Again, if Âi has not mate, it contributes preci-
sion 0 to the average.)

Now the matching-based F1 score Match-F1 is
the harmonic mean between matching-based pre-
cision and recall. Note that the maximum-weight
matchings calculated for precision resp. recall may
not be identical.

5.2 Quantitative Results
The organizers designed the task with two sub-
settings: In the full task (1a), predict cue spans

9I.e., when s is the gold span and s′ is the predicted span of
a particular class, then |s ∩ s′| is the number of true positives,
|s \ s′| is the number of false negatives, and |s′ \ s| is the
number of false positives.

Full Task (1a) Gold cues given (1b)
Match-Prec. Rec. F1 Prec. Rec. F1

Dev Set 84.3 85.2 84.8 92.7 92.1 92.4
only cues 90.8 92.2 91.5 — — —
only roles 81.0 83.1 82.0 87.9 89.3 88.6

SpkAtt-Prec. Rec. F1 Prec. Rec. F1

Test Set 78.9 87.3 82.8 92.1 91.3 91.7
only cues 89.7 88.9 89.3 — — —
only roles 77.7 87.1 82.1 91.1 90.2 90.7

Table 1: Results of the system on the development set
(evaluated using Match-Precision/Recall/F1) and on the
test set (evaluated by the task organizers, using their
SpkAtt-Precision/Recall/F1). “Only cues” resp. “only
roles” refers to the metric variant where only cue spans
resp. role spans are considered in the calculation. All
scores are given in percentage points.

together with corresponding roles. In the role label-
ing task (1b), the gold cue spans are given, and the
task consists in predicting only the corresponding
roles.

The proposed system was evaluated on two
datasets: one, the provided development split of
the GePaDe dataset. Second, on a blind test split,
for which the gold annotations were only available
to the shared task organizers. On both datasets,
the system was evaluated with respect to both sub-
tasks 1a and 1b. However, the metrics employed
differ between the datasets: for the test set, the
gold annotations are not publicly available, thus
only the metrics returned by the task organizers are
reported, denoted by SpkAtt-Precision/Recall/F1,
who ran their closed-source official scorer on the
submitted predictions.10 In the development split,
I used only the matching-based precision/recall as
outlined above in Sec. 5.1, denoted with Match-
Precision/Recall/F1.

Table 1 presents the results on the two datasets
and the two task settings. Broadly, the results sug-
gest that, even in this relatively simple setup, this
BERT-based baseline already gives surprisingly
steady performance. As we expect, this even in-
creases in the second subtask (1b), where the gold
cues triggering the speech events are given.

10The two respective predictions were submitted to Co-
daLab on July 30, 23:00 (No. 16) for task 1a and on August 2,
12:08 (No. 19) for task 1b. For task 1a, I thus report the perfor-
mance of the second-last submission, not the last submission
for task 1a (No. 17) which the task organizers intended to
treat as the final official submission for task 1a. This final
submission for task 1a differs to the one reported here only
in the cue linking algorithm; the respective performances are
nearly identical. (82.73 vs. 82.84 SpkAtt-F1 points for the
system reported here.)



Prediction with gold cues given (1b)
Role Class Match-Prec. Rec. F1 # train instances

Source 93.3 96.4 94.8 3337
Message 88.6 91.3 89.9 3242
Topic 70.8 83.1 76.4 871
Addressee 75.9 91.3 82.9 495
Particle 88.4 90.5 89.4 359
Medium 65.7 78.3 71.5 228
Evidence 77.8 69.9 73.6 80

Table 2: Breakdown on the system’s performance on
the development set in the role labeling task, when gold
cues are given (1b), where metrics are calculated for
each individual role class. The last column refers to the
number of role spans per class present in the training
split. All scores are given in percentage points.

Table 2 shows the performance for the role la-
beling task (1b) on the development set, broken
down for each of the seven role classes. We can
observe a clear trend that classes occurring less
frequently in the training set are recognized less
accurate. Additionally, a more detailed quantitative
analysis (not shown here) indicates that the system
slightly struggles to differentiate between Topic vs.
Message, and Medium vs. Message.

To further assess the impact of domain adap-
tation of the chosen base BERT model and the
variability introduced by the random fine-tuning, I
repeated the fine-tuning five times on GePaBERT,
but also on GBERTLarge (i.e., GePaBERT before do-
main adaptation), and GBERTBase (i.e., the smaller
variant deepset/gbert-base with fewer layers).
Note that this was only conducted after the shared
task’s system submission deadline. Table 3 reports
the measured accuracies, given in empirical mean
and standard deviation.

As we expect, we clearly observe a jump in per-
formance between the “base-size” and “large-size”
variant of BERT. However, the domain adaptation
of GBERTLarge to GePaBERT, as outlined in Sec-
tion 3, appears to have only minimal or no effect
at all. I do not have a good explanation for this
behavior. For one, maybe more data is necessary
for an effective domain adaptation; for another, per-
haps further hyperparameter studies for the domain
adaptation are necessary to find the optimal pre-
training procedure. Along this, pre-training itself
should also be extended beyond the current five
epochs, something for which there was insufficient
time during the development of the system. Or,
arguing in the other direction, the observed perfor-
mances by both the GePaBERT and GBERTLarge

might suggest that both models already hit the same
performance ceiling, which might be much harder
to break through.

While these results contradict the findings of
Konle and Jannidis (2020)—who were able to
achieve substantial improvements using domain
adaptation—it should be noted that they also in-
cluded the test set of the corresponding downstream
task during the pre-training of the base language
model (though not during the fine-tuning). As ex-
plained in Section 3, this was not done for the sys-
tem at hand, in order to measure accuracy against
future data that the model has never seen. Yet, as
Konle and Jannidis hypothesize, precisely this pre-
training on the (unlabeled) test data may allow the
language model to build a better representation of
the test data, helping in solving the downstream
task. Nevertheless, such an increase in accuracy
comes with the disadvantage that, when the sys-
tem is applied on new unlabeled data, the entire
base language model may possibly need to be pre-
trained again on this new data to maintain the same
performance. In total, further research towards
domain adaptation (especially in Computational
Humanities resp. Computational Social Sciences)
is needed.

5.3 Qualitative Error Analysis

Next to the quantitative analysis of the system’s
performance, I also performed a manual error anal-
ysis of the system’s predictions on the development
set. Concerning the cues, it appears that the system
is particularly struggling with recognizing nom-
inal triggers, e.g., “Als nächster Redner hat das
Wort [...],” “Wo waren Sie bei den Koalitionsver-
handlungen?,” “Die richtige Antwort bei Betrug,
[...]” have not been predicted as cues, whereas
the system erroneously predicts, e.g, “Die Ziele
des Gesetzentwurfs sind nicht einmal falsch, [...],”
“An dieser Einsicht hat sich [...] nichts verändert,”
etc. Furthermore, in many of the false-positive
cases, the presence of speech, thought, or writ-
ing representation, is ambiguous, e.g., in “Die
Mehrzahl der Handwerksbetriebe beurteilt [...] die
wirtschaftliche Lage als sehr gut” the verb is pre-
dicted as cue, but not annotated as such.

Concerning the role prediction, I am focusing on
the results for the task setting where gold cues are
given (1b). The manual analysis confirms the ob-
servation already outlined above, that the system is
struggling to differentiate between Medium, Topic,



Full Task (1a) Gold cues given (1b)
Model Match-F1 (on cues only) (on roles only) Match-F1 (on roles only)

GBERTBase 80.09 ± 1.12 90.06 ± 0.54 75.23 ± 2.60 88.66 ± 1.44 82.60 ± 3.09
GBERTLarge 84.16 ± 0.98 90.84 ± 0.78 81.76 ± 1.02 92.07 ± 0.60 88.07 ± 0.90
GePaBERT 84.12 ± 0.74 91.36 ± 0.44 81.24 ± 1.07 91.55 ± 0.75 87.18 ± 1.13

Table 3: F1-Scores on five fine-tuning runs, evaluated on the development set, presented as empirical mean and
standard deviation. All scores are percentage points. Highest score for each column is highlighted bold.

and Evidence. In fact, the annotation guidelines
intensively elaborate on a differentiation between
these classes, which could hint at an inherent com-
plexity of this task.

The second major source of errors seems to be
that certain phrases are not recognized as roles
at all by the system. In particular, there appears
to be a disagreement between the system and the
gold annotation as to which phrases belong to the
Message and which do not. For instance, in the gold
annotation “Ich sage Ihnen eines, Herr Mützenich
– das sage ich auch den Kollegen von Grünen und
Linkspartei –: Wir diskutieren gerne über [Vermö-
genssteuern]. Jetzt müssen wir uns nur darum küm-
mern, dass es überhaupt noch eine wirtschaftliche
Substanz gibt [...].” the second and third sentence
is part of the gold message span, but not in the
prediction. Symmetric, in the prediction “Fast alle
mit Kindern unter drei Jahren arbeiten in Teilzeit,
und – das sage ich ganz offen – es ist zu befürchten,
dass sie aufgrund geringer Gehälter jetzt beruflich
zurückstecken.” the phrase after the parenthesis is
not part of the gold role.

5.4 Testing Political Bias

As last part of my analysis, I want to provide some
explorations on potential biases of my system along
a political axis. The system might be used in more
downstream tasks inferring information from Ger-
man Bundestag debates, e.g., in a quantitative anal-
ysis comparing the speeches of the different par-
liamentary groups. Thus, to allow neutral infer-
ences on such textual datasets, it is imperative to
investigate potential imbalances in system perfor-
mance, in particular between parliamentary groups,
in order to avoid any unintended biases towards or
against certain parliamentary groups.

For this, I am focusing on the system’s accuracy,
comparing the accuracies on the development set
along the different parliamentary groups. In the fol-
lowing, I am referring with parliamentary groups
to the groups (Fraktionen) that were represented in
the 19th and 20th Bundestag. The development set

speeches were pooled according to the parliamen-
tary group the respective speaker is member of, as
indicated by the GePaDe dataset.

To now infer differences in F1 score between
the parliamentary groups, I performed parameter
estimations through two separate regressions on the
Match-Precision resp. Match-Recall on the devel-
opment set. Here, the observations are the micro-
averaged precisions resp. recalls on the speech
events, that are used to compute Match-Precision
resp. Match-recall. Since the distribution of the
individual observations is highly bimodal (e.g., for
each predicted speech event, micro-precision is
either around 100 % or around 0 %) I chose to per-
form a Bayesian hierarchical beta-binomial regres-
sion. For instance, in the Match-Precision regres-
sion, for each observation the predicted-positive
count is the number of trials, and the true-positive
count is the number of successes. Now, instead of
assuming a fixed success probability, the success
probability is rather sampled, individually for each
observation, from a high-level beta distribution cor-
responding to the respective parliamentary group.
We are interested in inferring the shape parameters
of these beta distributions. I particularly allowed
in the prior for U-shaped beta distributions. Infer-
ence was conducted with PyMC11 and the provided
MCMC sampler.

The Bayesian models allow us to sample the
mean parameter from the precision resp. recall
beta distribution, and by taking the harmonic mean,
we can visualize the posterior distributions of the
Match-F1 score, for each parliamentary group re-
spectively, as in Figure 3(a). Visually, we see how
the estimates for F1 scores vary for each of the
respective parliamentary group. The effect is most
prominent between the SPD and LINKE group,
where the model estimates the mean of F1 score for
the particular group at 80.9 vs. 86.7 percent points.
(Pr = 0.88 for a difference of > 5 percent points be-
tween the two groups.) However, it needs to be
further examined whether this difference actually

11https://www.pymc.io
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(a) Estimated posterior distributions for F1 scores; pooled model
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(b) Estimated posterior distribution for F1 score; unpooled model

Figure 3: Estimated posterior distributions for the Match-F1 score on the development set. Each line corresponds to
one of the four chains of the MCMC posterior draw. (a) Pooled model, where each parliamentary group has their
own parameters and F1 posterior. The numbers in the legend indicate the number of observations per parliamentary
group. (b) As a comparison, posterior predicted from the unpooled model, where every parliamentary group shares
the same parameters, and thus F1 score is distributed identically over all groups.

reflects a certain bias of the system towards certain
textual phenomena or speech content, or whether
this may be an effect of the random development
split, where, e.g., the speeches of the LINKE group
only randomly happen to be ‘easy’ ones.

Even from a statistical point of view, we should
not overestimate this result. Especially in light of
the low number of observations in the development
split, we might possibly see the result of the model
over-fitting the data, thus erroneously moving the
F1 distributions apart. In fact, we can compare
the previous pooled model with a unpooled model,
where the distributions of the political groups are
the same (Figure 3(b)). An estimation of their re-
spective expected log pointwise predictive density
shows that these are largely equal (−1097.0 ± 41.7
for the pooled model vs. −1084.0 ± 41.6 for the
unpooled one, where higher is better), ranking no
model clearly above the other (cf. Vehtari et al.,
2017).

In total, we see some indication of a differ-
ence in system performance between the parlia-
mentary groups, at least in the development dataset.
Nonetheless, further investigations are required to
verify if these imbalances remain stable even when
moving to larger test sets. For this particular case at
least, a model comparison indicates no significant
statistical evidence of a performance imbalance
along different parliamentary groups.

6 Conclusion

The present paper summarizes my submission for
the Shared Task on Speaker Attribution SpkAtt-
2023, specifically task 1 for attribution in parlia-
mentary speeches. The system handles this task as
a collection of token classification resp. sequence
classification tasks, using BERT as base language
model. Thus, the present system offers a simple
BERT-based baseline model, which, despite its
minimal architecture, provides a steady baseline.
Even the variant based on the smaller GBERTBase
model appears to have minimal performance losses,
making it applicable to settings with less compute
resources. In contrast, a domain adaptation through
continued fine-tuning on a corpus of speeches from
the German Bundestag led to no significant im-
provement. The error analysis indicates that the
system is mostly struggling primarily with ambigu-
ous ‘edge cases,’ where it appears to be not even
entirely clear what the correct annotation would be.
A quantitative comparison of the system’s perfor-
mance across the different parliamentary groups
shows no strong evidence towards a potential im-
balance. Overall, these results indicate the applica-
bility of the system in further downstream analyses,
e.g., in quantitative discourse studies of parliamen-
tary debates.
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