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ABSTRACT
For Ontology Alignment (OA), the task is to align semantically
equivalent concepts and relations from different ontologies. This
task plays a crucial role in many downstream tasks and applications
in academia and industry. Since manually aligning ontologies is
inefficient and costly, numerous approaches exist to do this automat-
ically. However, most approaches are tailored to specific domains,
are rule-based systems or based on feature engineering, and require
external knowledge. The most recent advances in the field of OA
rely on the widely proven effectiveness of pre-trained language
models to represent the human-generated language that describes
the entities in an ontology. However, these approaches addition-
ally require sophisticated algorithms or Graph Neural Networks
to exploit an ontology’s graphical structure to achieve state-of-
the-art performance. In this work, we present NLFOA, or Natural
Language Focused Ontology Alignment, which purely focuses on
the natural language contained in ontologies to process the on-
tology’s semantics as well as graphical structure. An evaluation
of our approach on common OA datasets shows superior results
when finetuning with only a small number of training samples.
Additionally, it demonstrates strong results in a zero-shot setting
which could be employed in an active learning setup to reduce
human labor when manually aligning ontologies significantly.
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1 INTRODUCTION
An ontology is an efficient, reusable, and machine-readable way
to represent knowledge as nodes representing real-world concepts
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and relations between these nodes in a graph structure. Since the
rise of the semantic web, ontologies have been widely utilized in
academia and industry for various applications. However, there
are often multiple ontologies representing knowledge of the same
domain created by different people or organizations. This poses a
problem because the ontologies are likely to be different, i.e., the
entities in the ontology may have different names and descriptions
or are connected via different relationships, or the ontologies may
be of different granularity and size. Ontology Alignment (OA) is
the task of identifying semantically equivalent concepts or rela-
tions from different ontologies. This task is crucial in facilitating

Figure 1: An illustration of the general flow of an Ontology
Alignment System.

semantic interoperability between systems by creating a homoge-
neous data model, which increases the performance of methods
in numerous research areas or applications, such as natural lan-
guage processing, information retrieval, business intelligence, and
analytics, bio-informatics, or cybersecurity [3, 6, 8, 21].

Since manually aligning ontologies is costly and inefficient, on-
tology alignment is an active research area with a long history
and many different approaches ranging from rule-based systems
and machine learning systems that employ manually engineered
features [25] to systems based on modern deep learning techniques.
The most recent advances in the field of OA rely on the widely
proven effectiveness of pre-trained language models [1] to repre-
sent the human-generated language that describes the entities in
an ontology [10, 14, 27]. However, most of these approaches are
tailored to specific domains, utilize external knowledge, and require
significant pretraining or finetuning. Further, they additionally re-
quire sophisticated algorithms or Graph Neural Networks to exploit
an ontology’s graphical structure to achieve state-of-the-art per-
formance. The general flow of an Ontology Alignment system is
illustrated in Figure 1.

Our proposed method, Natural Language Focused Ontology
Alignment (NLFOA), presented in this paper, purely focuses on the
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natural language contained in ontologies to process the ontology’s
semantics as well as graphical structure. We do so by linearizing
a node with its local neighborhood in a pseudo-sentence using
a reusable and highly flexible algorithm and computing a repre-
sentation thereof using a sentence encoder model. In the pseudo-
sentence, we use keywords or hints for the encoder model to distin-
guish between comprised structural and semantical information by
extending the tokenizer and embedding layer with special tokens.
An evaluation of our approach on common OA datasets from the
Ontology Alignment Evaluation Initiative1 outperforms the current
state-of-the-art in a finetuned setting with only a small number of
training samples and epochs. Additionally, NLFOA demonstrates
strong and competitive results in a zero-shot setting which could
be employed in an active learning setup to reduce human labor
when manually aligning ontologies significantly.

Moreover, this paper provides an overview of the current state
of the art in ontology alignment, presents details on our purely
human language-based ontology alignment system, and discusses
its limitations.

The main contributions of this paper are:

• We introduce a highly flexible and reusable algorithm to
represent semantic and graphical information of nodes and
relations in pseudo-sentences.

• We introduce NLFOA, a general ontology alignment system
that purely utilizes natural language processing techniques
to compute meaningful representations of concepts and re-
lations and can be finetuned with only a small number of
training examples.

• We evaluate NLFOA against current state-of-the-art on com-
mon datasets and prove the effectiveness of our approach in
finetune and zero-shot settings.

• We released the code, all configurations, and pre-trained
models for NLFOA on GitHub upon acceptance.

1.1 Problem Statement
Formally, the problem of ontology alignment is defined as follows.
There exist two ontologies O𝑆 and O𝑇 , referred to as source and
target ontology, each containing a set of concepts and relations
E𝑆 = {∀𝑒𝑆 ∈ O𝑆 } and E𝑇 = {∀𝑒𝑇 ∈ O𝑇 }, respectively. An ontology
alignment function 𝑓 : E𝑆 × E𝑇 ↦→ A outputs an injective mapping
or alignment A = {(𝑒𝑆 , 𝑒𝑇 ) ∈ E𝑆 × E𝑇 | 𝑒𝑆 ≡ 𝑒𝑇 } which is the set
of pairs of semantically equivalent concepts or relations from the
two input ontologies. Note that A is an injective alignment, i.e., it
only contains 1:1 mapping between O𝑆 and O𝑇 .

2 RELATEDWORK
The following overview of existing ontology alignment systems
(OAS) divides the systems into traditional systems that follow a
feature engineering or rule-based approach and modern approaches
that rely on deep learning techniques that rely on static or con-
textual word embeddings. Traditional OAS such as LogMap [15]
or AML [4] but also recent systems like ATBox [12] or Matcha [5]
implement sophisticated multi-stage iterative algorithms based on
features from logical reasoning about the ontology structure and

1http://oaei.ontologymatching.org/

lexical string-matching methods for the ontology semantics. Ad-
ditionally, these systems incorporate background knowledge to
increase performance. Auxiliary data structures such as inverted
indices, lexica, or optimized graphs are used to improve computa-
tional efficiency.

More recent OAS, such as DeepAlignment [19], OntoEmma [30],
or Rafcom [22], utilize deep learning methods and replace lexical
string-matching with semantic similarity metrics using static word
embeddings for the labels and descriptions of nodes contained
in the ontologies. Since ontologies often lack descriptive labels
or descriptions, all named systems utilize external knowledge to
improve performance. Further, they train classifiers on top of the
word embeddings or finetune the word embeddings to fit the task
better. Finally, the systems rely on graph algorithms incorporating
the ontology structure to ensure high-quality and logically possible
alignments.

Static word embeddings were broadly replaced by contextualized
word embeddings computed by transformer language models [28]
due to their significant improvements in various natural language
processing tasks. Hence, the most recent ontology alignment sys-
tems are based on BERT embeddings [1] to increase performance
further [2, 7, 10, 10, 14, 18, 27, 32]. However, these system either
require background knowledge, domain-specific language models,
or still employ sophisticated multi-stage or iterative algorithms to
preprocess or postprocess to find the optimal set of alignments for a
specific pair of ontologies. Further, they often rely on graph neural
networks to compute knowledge graph embeddings which have to
be trained and sometime specially configured to fit the ontology
alignment task. Another limitation of these systems is that they do
not make full use of the rich semantic and graphical information
contained in ontologies described in natural language although
they are utilizing BERT-based language models.

Other BERT-based approaches utilize Sentence Transformers [24]
to effectively pool multiple word embeddings to compute a single
semantically rich vector representation for a node in an ontol-
ogy [13, 17, 20, 29, 31]. We follow a similar approach in this work.
However, as opposed to these system in our NLFOA system, we
not only make use of a node’s labels, comments, or descriptions
but also include its graphical structure, i.e., the local neighborhood
as well as properties in a recursive manner. Further, to enrich the
nodes’ representations, we add and learn semantic indicator tokens
to indicate the type of information a particular word embedding
holds, e.g., we have keywords to indicate that specific tokens are
related to the parent node. Moreover, we do not rely on sophisti-
cated pre- or post-processing methods or subsystems to preselect
candidates or repair output mappings.

3 NLFOA
As the name of this work’s approach to ontology alignment, Natural
Language Focused Ontology Alignment (NLFOA), suggests, we
concentrate on human-generated language contained in ontologies
and process them using state-of-the-art natural language processing
techniques. While the structure or the graph of an ontology is
defined in OWL, the semantics, i.e., names and descriptions of
concepts, relations, and properties, are typically described using
natural language. Hence, current ontology alignment approaches
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have implemented the idea of using pretrained language models
in various ways. However, to incorporate the ontology structure,
most of these systems rely on traditional graph algorithms, logical
reasoning, or graph neural networks.

The main difference in NLFOA is that we process both ontology
semantics and graph structure using pre-trained language models
to compute dense vector representations of concepts and relations.
We do so by linearizing the properties and the local neighborhood
of a concept or relation in a pseudo sentence which is forwarded
through a Sentence Transformer to compute a dense vector repre-
sentation. To compute the semantic similarity of two concepts or
relations in two different ontologies, we calculate the cosine simi-
larity of their vector representations. An overview of the NLFOA
is shown in Figure 2. In the following, the three main steps are
explained in more detail.

Figure 2: An overview of the Natural Language Focused On-
tology Alignment (NLFOA) system introduced in this work.

3.1 Pseudo Sentence Generation
The first step to generate a pseudo sentence 𝑆 (𝑒) for a concept or
relation 𝑒 in an ontology O is to parse the ontology defined in an
OWL file. Therefore we use the Python libraries owlready22 and
rdflib3.

In the second step, from the information extracted during pars-
ing, we build an internal data model of the ontology to better access
and transform the information needed in subsequent steps. A con-
cept (owl:Class) or relation (owl:ObjectProperty,
owl:FunctionalProperty, owl:DatatypeProperty) in our data
model is represented by a Python class with its identifier (IRI),
names (rdfs:label), and descriptions (rdfs:comment) as mem-
bers. Further, the hierarchy of the concept or relation, i.e., the
parents and children (rdfs:subClassOf), are stored. For relations,
we also store the range (rdfs:range), the domain (rdfs:domain),
and the inverse relation (owl:inverseOf). For concepts, we store
2https://owlready2.readthedocs.io/
3https://rdflib.readthedocs.io/

all incoming and outgoing properties and relations, i.e., relations
where the target concept is either in the range or domain. An exam-

Figure 3: An illustration of an node in an ontology represent-
ing the concept of a paper within the domain of scientific
conferences, including its properties and relations to neigh-
boring concepts.

ple of an ontology node representing the concept of a paper within
the domain of scientific conferences, including its properties and
relations to neighboring concepts is illustrated in Figure 3.

In the third step, we generate the pseudo sentence with a highly
flexible and configurable algorithm, the Pseudo Sentence Generator
(PSG). A pseudo sentence, in our case, is a semi-structured list of
keys and values described by words to represent a concept or a
relation in an ontology. E.g., the pseudo sentence ”Concept: Name:
Paper . Parents: Document .” represents a concept with the name
”Paper” that has a parent called ”Document”. In the example, the
monospaced text indicates the keys and delimiters, whereas the
italic text represents the values. A more complex example of a
pseudo sentence that represents a concept is shown in Figure 4.

The input to the PSG is a target concept or relation 𝑒 from our
internal ontology data model, along with a configuration that spec-
ifies what and how information is contained in the output pseudo
sentence 𝑆 (𝑒). Since the detailed explanation of all configurable
options is out of the scope of this paper, we briefly describe the
most important ones. It is possible to configure:

• which keys to include (e.g., Name, Parents, Children, ...)
• the number of hops of parents and children taken into ac-
count

• what information to include recursively for Parents, Children,
or the Domain and Range of properties

• the structure of the pseudo sentence, i.e., the ordering of
the keys (e.g., Name, Parents, Children vs Parents, Name,
Children)

• the name of the keys and the delimiter symbols

3.2 Embedding Computation
We interpret the pseudo sentence embedding ℜ(𝑒) computed by a
Sentence Transformer model as the representation of the respective
concept or relation 𝑒 in the Ontology O. Because we do not want
to restrict NLFOA from only working with ontologies from specific
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Figure 4: An example of a pseudo sentence generated from a
concept in the ontology. The keywords and characters high-
lighted in blue are treated as special tokens. Note that the
sentence is formatted for better readability.

domains but all kinds of different domains, we prefer a general-
purpose pretrained language model over a domain-specific used by
other BERT-based ontology alignment approaches [10, 32]. Further,
since the objective is to compare how semantically similar two con-
cepts or relations are, we employ an S-BERT [24] model pretrained
on semantic textual similarity (STS). The sentence-transformers/all-
mpnet-base-v24 fits these requirements and is the best-performing
sentence transformer for STS as of the date of writing this, which is
why the model was selected as starting point for experiments. The
model outputs a 768-dimensional dense vector representation of
the pseudo sentence, resulting from a mean pooling operation of all
token embeddings produced by the MPNet [26] backbone model.

3.3 Alignment Predictions
To measure the semantic similarity between two concepts or rela-
tions 𝑒𝑆 and 𝑒𝑡 in the Source Ontology O𝑆 and the Target Ontology
O𝑇 , we first compute the embeddings of their respective pseudo-
sentences ℜ(𝑒𝑆 ) and ℜ(𝑒𝑇 ) using the model described above. We
then compute the cosine similarity of the two embeddings to obtain
a similarity score.

𝑆 (𝑒𝑆 , 𝑒𝑇 ) =
ℜ(𝑒𝑆 ) · ℜ(𝑒𝑇 )

∥ℜ(𝑒𝑆 )∥ ∥ℜ(𝑒𝑇 )∥
To obtain a candidate set of alignments between O𝑆 and O𝑇 , we
first compute the similarity of all elements in the Cartesian product
of the elements in the two ontologies.

𝑂𝑆 ×𝑂𝑇 = {(𝑒𝑆 , 𝑒𝑇 ) | ∀𝑒𝑆 ∈ 𝑂𝑆 ,∀𝑒𝑇 ∈ 𝑂𝑇 }
4https://huggingface.co/sentence-transformers/all-mpnet-base-v2

We then apply a threshold filter to get the final set of alignments.

4 EXPERIMENTS
In this section the experiments conducted to evaluate our proposed
ontology alignment approach.

4.1 Involved Datasets
We evaluate and compare the performance of our system on two
commonly known datasets from the Ontology Alignment Evalu-
ation Initiative 2022 (OAEI). The OAEI Conference dataset5 is a
dataset containing multiple ontologies representing knowledge
from the domain of scientific conferences [33]. Further, it pro-
vides reference alignment between pairs of seven contained on-
tologies. The OAEI Anatomy dataset6 contains two ontologies, one
describing the adult human anatomy and one describing the mouse
anatomy [9], and reference alignments between the two ontologies.
Since there are no predefined train, test, and validation splits and
explicit negative samples for the OAEI Conference and Anatomy
datasets, we describe our data splitting and generation process in
the respective experiment sections. Table 1 provides an overview
of the dataset statistics and some example alignments.

4.1.1 Experiment Data Generation. Since both datasets do not pro-
vide predefined train, test, and validation splits, nor do they provide
explicit negative samples, we first describe the data generation pro-
cess in the following. For the OAEI Conference dataset, we merged
the 21 provided reference alignments, which we refer to as positive
samples or positives. The total number of positives is 610, which can
be thought of as a table with 610 rows and two columns containing
the IRIs of the entities of the two aligned ontologies, respectively.
The negatives are sampled by shifting the right column by one, i.e.,
each element is in the 𝑖 + 1-th row. Thus, we have the same number
of negatives as positives in the resulting dataset referred to as𝐶𝑜𝑛𝑓
In our experiments, we also use datasets containing twice as many
negatives than positives by shifting the right column once more,
referred to as 𝐶𝑜𝑛𝑓2𝑁 . The train, test, and validation splits are 65%,
20%, and 15% of the shuffled datasets, respectively.

The data generation process for the OAEI Anatomy dataset is
the same. However, there is only one pair of reference alignments
between the two contained ontologies. The resulting datasets are
referred to as 𝐴𝑛𝑎 and 𝐴𝑛𝑎2𝑁 . The proportion of samples of the

Figure 5: Proportion of negative and positive samples con-
tained in the datasets used in the experiments.

5http://oaei.ontologymatching.org/2022/conference/index.html
6http://oaei.ontologymatching.org/2022/anatomy/index.html
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Name Domain #Classes #Reference Alignments Reference Alignment Examples

Conference Scientific Conferences 491 610

• ProgrammComitteeChair – Chair_PC
• SubjectArea – Topic
• hasAuthor – writtenBy
• title – hasTitle
• Author – Author
• writesPaper – writes

Anatomy Human and Mouse
Anatomy

6048 1516

• posterior limiting lamina – Descemt s Membrane
• vaginal hymen – Hymen
• coat hair bulb – Hair Bulb
• kidney collecting duct – Collecting Tube
• patella – Patella
• cuboid – Cuboid Bone

Table 1: Statistics and example reference alignments of the OAEI 2022 datasets used in the experiments. The shown examples
are the rdfs:label of the concepts or relations.

Name Positives Negatives Total
𝐶𝑜𝑛𝑓 610 610 1220
𝐶𝑜𝑛𝑓2𝑁 610 1220 1830
𝐴𝑛𝑎 3032 3032 6064
𝐴𝑛𝑎2𝑁 3032 6064 9096

Table 2: Statistics of the generated datasets used in theNLFOA
finetuning experiments.

generated datasets are illustrated in Figure 5, statistics are listed in
Table 2.

4.2 Experiment 1: Finetuned Ontology
Alignment

In this experiment, we evaluate NLFOA on the OAEI Conference
and Anatomy datasets in a setting where we finetune the NLFOA
core model using the train splits of the generated datasets described
in Section 4.1.1. The core model was initialized with the pretrained
STS Sentence Transformer described in Section 3. We use the Sen-
tence Transformer framework7 to finetune the model because it
allows rapid development and supports all necessary functionality.
During our experiments, we tried several configurations for the
Pseudo Sentence Generator (PSG) component of NLFOA. The re-
ported results are achieved using pseudo-sentences, including the
name, label, and description of a concept or relation, parents and
children in a 2-hop neighborhood, and incoming and outgoing prop-
erties. The keywords in the pseudo-sentences are set to proper Eng-
lish terms or phrases. Further, we used a dynamic pseudo-sentence
generation strategy to randomize the generation process so that
the structure or ordering of a pseudo-sentence (PS) gets shuffled.
With this strategy, we force the model to learn the semantics of the
special tokens used in a PS to provide hints for the model on how
to interpret the contained information. Additionally, we added the
keywords contained in a pseudo-sentence as special tokens by ex-
tending the tokenizer and embedding layer of the backbone model.
During finetuning the model then learns these new embeddings.

7https://www.sbert.net/

For all experiments, the NLFOA core model was finetuned for
10 epochs on the 𝐴𝑛𝑎 and 𝐶𝑜𝑛𝑓 or 𝐴𝑛𝑎2𝑁 and 𝐶𝑜𝑛𝑓2𝑁 train sets
using an A100 GPU with 80GB. However, the required amount of
computation, memory, and time is small, so the experiments should
easily run on modern consumer hardware. Further, we found that
NLFOA finetuned on the datasets containing twice the number of
positives than negatives performed better in all experiments.

4.2.1 Results. As reported in Table 3 and Table 4, the finetuned
NLFOA achieves perfect and almost perfect scores for the 𝐴𝑛𝑎2𝑁
and𝐶𝑜𝑛𝑓2𝑁 test sets, respectively, outperforming all systems evalu-
ated in the OAEI 2022 Conference and Anatomy track. However, it
has to be pointed out that blind test sets were used to evaluate the
systems reported in Table 3 and Table 4. Thus, the results are not
directly comparable, but since the blind test sets are in the same
domain, i.e., contain concepts and relations of ontologies of the
same domain, the reported results still demonstrate the superior
performance of NLFOA.

System Precision Recall F-1 Score Test Set
Matcha 0.95 0.93 0.941 OAEI
SEBMatcher 0.95 0.87 0.908 OAEI
LogMapBio 0.87 0.92 0.895 OAEI
LogMap 0.92 0.85 0.881 OAEI
AMD 0.95 0.82 0.88 OAEI
ALIN 0.98 0.75 0.852 OAEI
LogMapLite 0.96 0.73 0.828 OAEI
ATMatcher 0.98 0.67 0.794 OAEI
StringEquiv 1.0 0.62 0.766 OAEI
LSMatch 0.95 0.63 0.761 OAEI
ALIOn 0.36 0.93 0.462 OAEI
KERMIT 0.97 0.70 0.81 OAEI
NLFOA (ours) 1.0 1.0 1.0 𝐴𝑛𝑎2𝑁

Table 3: NLFOA and OAEI Systems Results for the Anatomy
ontologies. For more details on the OAEI evaluation refer to
[23].
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System Precision Recall F-1 Score Test Set
LogMap 0.76 0.56 0.64 OAEI
GraphMatcher 0.75 0.55 0.63 OAEI
SEBMatcher 0.79 0.48 0.60 OAEI
ATMatcher 0.69 0.51 0.59 OAEI
ALIN 0.82 0.44 0.57 OAEI
edna 0.74 0.45 0.56 OAEI
LogMapLt 0.68 0.47 0.56 OAEI
AMD 0.82 0.41 0.55 OAEI
LSMatch 0.83 0.41 0.55 OAEI
StringEquiv 0.76 0.41 0.53 OAEI
KGMatcher+ 0.83 0.38 0.52 OAEI
ALIOn 0.66 0.19 0.30 OAEI
TOMATO 0.09 0.60 0.16 OAEI
Matcha 0.37 0.07 0.12 OAEI
NLFOA (ours) 0.96 1.0 0.98 𝐶𝑜𝑛𝑓2𝑁

Table 4: NLFOA andOAEI SystemsResults for the Conference
ontologies. For more details on the OAEI evaluation refer to
[23].

4.3 Experiment 2: Zero-Shot Ontology
Alignment

In this experiment, we test the zero-shot capabilities of our ap-
proach. Therefore we initialized the NLFOA core model with the
pretrained STS Sentence Transformer described in Section 3. To
generate the pseudo-sentences for concepts and relations, we used a
similar PSG configuration as described in the finetuned experiment
setting (see Section 4.2). However, we did not add the keywords
as special tokens but used a more verbose description in natural
language. This is because we do not finetune NLFOA for this exper-
iment and, therefore, cannot learn the embeddings of the keywords
if we had added them as special tokens. The system was then eval-
uated on the complete set of provided reference alignments in the
OAEI Conference and Anatomy datasets.

4.3.1 Results. The results of the zero-shot experiments are re-
ported in terms of classical metrics for ontology alignment in Ta-
ble 5. Since we perform a similarity search when predicting the
set of alignments, in Table 6, we also report results regarding typi-
cal information retrieval metrics. As can be observed, the NLFOA
zero-shot setting achieves competitive results compared to the per-
formance of state-of-the-art systems shown in Table 3 and Table 4.
The results further confirm the effectiveness of our approach, i.e.,
the pseudo-sentence generation and embedding strategy to en-
code both an ontologies semantics and graph structure in dense
vector representations for concepts and relations computed by a
pretrained sentence transformer. This might be especially interest-
ing for industrial applications since training an ontology alignment
system from scratch, defining domain-specific rules, or engineering
domain-specific features is costly or even infeasible for smaller
companies. However, since we evaluated the experiment only on
two different domains, further experiments involving more ontolo-
gies of widespread and different domains have to be conducted to
finally and confidently asses NLFOA’s zero-shot capabilities.

System Dataset Precision Recall F-1 Score
KERMIT Anatomy 0.31 0.93 0.46
NLFOA (ours) Anatomy 0.57 0.61 0.58
KERMIT Conference - - -
NLFOA (ours) Conference 0.48 0.48 0.48

Table 5: NLFOA zero-shot experiment results for the OAEI
Conference and OAEI Anatomy datasets.

Dataset H@1 H@5 H@10 MRR
Anatomy 0.71 0.84 0.87 0.77
Conference 0.80 0.91 0.94 0.85

Table 6: NLFOA zero-shot experiment results in terms of
information retrieval metrics for the OAEI Conference and
OAEI Anatomy datasets.

4.4 Experiment 3: Cross Zero-Shot Ontology
Alignment

In this experiment, we test the capabilities of NLFOA when fine-
tuning it on ontologies of one domain and evaluating it on ontolo-
gies of a different domain, i.e., in a cross zero-shot setting. This
might be interesting in an industrial environment where compa-
nies could pretrain NLFOA on already possessed or open-source
ontologies and use it in a zero-shot setting for unseen ontologies
from new customers. Therefore we finetune NLFOA on the train
split of the 𝐶𝑜𝑛𝑓2𝑁 dataset and evaluate it on reference alignments
of the Anatomy dataset and vice versa using the 𝐴𝑛𝑎2𝑁 train split
and Conference reference alignments. For this experiment, we use
the same finetuning parameters and PSG configuration as in the
experiment described in Section 4.2.

4.4.1 Results. The results of the cross zero-shot experiments are
reported in terms of classical metrics for ontology alignment in
Table 7. From the results, we can observe that the cross-zero shot
setting only works in one direction. That is, it improves perfor-
mance by 0.1 absolute F1 when training on the 𝐶𝑜𝑛𝑓2𝑁 dataset
and evaluating on the Anatomy dataset but drastically reduces
performance when training on the 𝐴𝑛𝑎2𝑁 and evaluating on the
Conference dataset. This drastic performance decrease might be
because the sentence encoder model suffered from catastrophic
forgetting when finetuning on the much larger Anatomy dataset
due to its contained domain-specific medical language. See Table 1
for some example concept names contained in the dataset. This line
of reasoning also explains why performance was increased in the
other setting. That is, when finetuning on the 𝐶𝑜𝑛𝑓2𝑁 dataset con-
taining more general terms and language (see Table 1), the model
can learn to understand the semantic and structural hints provided
by the special tokens, which is beneficial when evaluating on the
Anatomy dataset.

5 LIMITATIONS
One central component of the proposed NLFOA approach is the
Pseudo Sentence Generator, which linearizes nodes in an ontol-
ogy graph into semi-structured pseudo-sentences. The length of
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Train Test Precision Recall F-1 Score
𝐶𝑜𝑛𝑓2𝑁 Anatomy 0.76 0.61 0.68
𝐴𝑛𝑎2𝑁 Conference 0.13 0.04 0.06

Table 7: NLFOA cross zero-shot experiment results for the
OAEI Conference and OAEI Anatomy datasets.

the pseudo-sentences, i.e., the number of comprised characters,
depends on the semantic information used to describe the nodes
that the ontology’s human creators express in the form of natural
language. Another parameter that influences the pseudo-sentence
length is the number of hops considered, i.e., the nodes of the local
neighborhood of the target node that are also recursively described
in the sentence. The issue that arises with the length of the pseudo-
sentence is that the number of tokens that can be forwarded through
the sentence encoder language model to compute a dense vector
representation is limited. Although most BERT-based models sup-
port 512 tokens, which correspond to approximately 400 English
words, pseudo-sentences of nodes with a large local neighborhood
or with long rdfs:comment can be problematic.

Another limitation of NLFOA is that the system computes pair-
wise similarities for the full Cartesian product of the sets of nodes of
two ontologies leading to a the computational complexity𝑂 (𝑁 ∗𝑀),
where 𝑁 and𝑀 is the number of nodes in the two ontologies, re-
spectively. For large ontologies, e.g., as contained in the Bio-ML
dataset [11], this becomes excessively costly regarding the required
computational resources andmemory consumption. Although there
exist approximate nearest neighbor approaches for billion-scale sim-
ilarity search [16], it would still be infeasible to compute for a pair
of two ontologies with each more than 32000 concepts and relations.
For this reason, we did not evaluate our system in the OAEI Bio-ML
track8, which is another limitation of this work.

6 CONCLUSION
In this paper, we introduced NLFOA, an effective and general on-
tology alignment system that does not rely on manually created or
domain-specific rules or features and does not rely on background
knowledge. Further, NLFOA does not employ complex graph al-
gorithms or graph neural networks but linearizes the semantic
information as well as the graphical structure of concepts or rela-
tions in an ontology in pseudo-sentences and purely uses natural
language processing techniques to compute meaningful represen-
tations. In our experiments, we showed that NLFOA outperforms
current state-of-the-art systems on common datasets in a finetuned
setting by a large margin and achieves competitive results in a
zero-shot setting. Finally, we discussed the main limitations of our
system in detail.
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