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Abstract. In this work, we present a self-supervised dual constraint
contrastive method for efficiently fine-tuning the vision-language
pre-trained (VLP) models that have achieved great success on var-
ious cross-modal tasks, since full fine-tune these pre-trained mod-
els is computationally expensive and tend to result in catastrophic
forgetting restricted by the size and quality of labeled datasets. Our
approach freezes the pre-trained VLP models as the fundamental,
generalized, and transferable multimodal representation and incor-
porates lightweight parameters to learn domain and task-specific fea-
tures without labeled data. We demonstrated that our self-supervised
dual contrastive model performs better than previous fine-tuning
methods on MS COCO and Flickr 30K datasets on the cross-modal
retrieval task, with an even more pronounced improvement in zero-
shot performance. Furthermore, experiments on the MOTIF dataset
prove that our self-supervised approach remains effective when
trained on a small, out-of-domain dataset without overfitting. As a
plug-and-play method, our proposed method is agnostic to the under-
lying models and can be easily integrated with different VLP mod-
els, allowing for the potential incorporation of future advancements
in VLP models.

1 Introduction

With the rapid growth of computational power and extensive large-
scale data, increasingly advanced foundation models have been pro-
posed in both the language domain [6, 22, 31] and the vision domain
[8, 5]. By leveraging these breakthroughs as the backbone, vision-
language pre-trained (VLP) models have made significant strides in
a range of cross-modal tasks [19, 35, 2, 32], demonstrating that mul-
timodal representations derived from pre-trained models possess ex-
ceptional generalization and transfer capabilities.

In line with the successes of VLP models, recent works [34, 30, 7]
have adopted the “pre-training and fine-tuning” paradigm for down-
stream cross-modal tasks and out-of-domain scenarios. As shown in
Figure 1, there are two prevalent fine-tuning strategies. The first, full
fine-tuning, involves fine-tuning all parameters, but it carries two no-
table drawbacks: computational efficiency and catastrophic forget-
ting [18]. Given the substantial number of parameters in VLP mod-
els, considerable memory is required to store these parameters, not
to mention train the entire model. For example, the CLIP model [27]
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Figure 1. Pre-training and fine-tuning paradigm: full fine-tuning and
frozen and fine-tuning.

utilized 592 V100 GPUs over a span of 18 days. Furthermore, in
the absence of high-quality labeled datasets, fully fine-tuning VLP
models often results in catastrophic forgetting [18], where the pre-
viously learned generalized and transferable multimodal represen-
tations from VLP models degrade. The second method, frozen and
fine-tuning, offers greater flexibility by freezing VLP model param-
eters while adding blocks on top to learn out-of-domain and task-
specific representations. To achieve state-of-the-art performance on
benchmark datasets, these extra blocks tend to be sophisticated and
task-specific tricks have been proposed. For instance, in the cross-
modal retrieval task, state-of-the-art approaches heavily rely on re-
gion feature extraction [10], cross-modal fusion [23], and hard neg-
ative sampling [9] during fine-tuning. [28] reveals that while these
techniques are crucial for improving performance on benchmark
datasets, they come at the cost of increased training time, reduced
efficiency, and diminished transferability and utility when applied to
different domains.

To address the challenges mentioned earlier, following frozen and
fine-tuning, Parameter-Efficient Fine-Tuning (PEFT) [12] has re-
cently gained popularity and attracted significant interest. The core
idea of PEFT is to utilize a smaller set of parameters for fine-tuning
while retaining the capabilities of pre-trained foundational models
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to improve transferability and adaptability. Among these PEFT ap-
proaches, adapters [12] add and update new parameters at the model
level, while prompt tuning methods [36] incorporate and train pa-
rameters at the input level. Although these techniques have proven
effective, they remain inadequate when VLP models are not available
for adapter injection, and considerable effort is needed to identify the
best prompt templates. In most cases, paired multimodal datasets are
not readily accessible. We propose that an optimal solution would
involve adding additional parameters at the output level and training
the extra layers in a self-supervised manner, without relying on any
tailored techniques.

In this paper, we introduce a self-supervised dual constraint
contrastive learning for cross-modal retrieval task (SUCCESSOR),
inheriting the ability of VLP models. In various cross-modal tasks,
dual attributes exist [26]. For example, if the primary task in cross-
modal retrieval is text retrieval, the dual task would be image re-
trieval. We construct a dual constraint contrast in the primary modal-
ity by back-retrieving negative samples from the dual modality and
vice versa, aiming to enhance the alignment of multimodal represen-
tations within both intra- and inter-modalities. Specifically, begin-
ning with the primary modality (e.g., vision), we perform forward
retrieval (text retrieval) to obtain negative samples from the dual
modality (language). We then use these retrieved negative samples
to conduct back-retrieval (image retrieval), acquiring candidates in
the primary modality. This process allows us to compare the seman-
tic distances between the candidate and original query in the prime
modality and vice versa, thereby increasing the alignment and coher-
ence of the multimodal representations.

In terms of our model, we freeze the VLP models to serve as
the foundational generalized multimodal representations and add
two linear probe layers on top to learn out-of-domain and task-
specific representations involving super lightweight parameters for
fine-tuning. A skip shortcut is introduced to connect the in-domain
representations with the final output of the linear probes, facilitating
rapid tuning and model convergence. Our experiments demonstrate
that the self-supervised SUCCESSOR model, without relying on re-
gion feature extraction or any hard negative sampling techniques,
can compete with fine-tuning methods on benchmark datasets such
as MS COCO [21] and Flickr 30K [25]. Surprisingly, we discov-
ered that random in-batch negative sampling offers a diverse choice
of negative samples, enabling the model to learn fine-grained mul-
timodal semantics, rectify errors from VLP models, and ultimately
enhance cross-modal retrieval performance.

Owing to the simplicity of our proposed method, fine-tuning can
be completed within hours on an A6000 GPU (48 GB) and can func-
tion as a plug-and-play approach, easily integrating with various VLP
models without the need for labeled paired data. This adaptability al-
lows for the potential incorporation of future advancements in VLP
models. To summarize, our contributions are as follows:

• We introduce a new PEFT approach—a self-supervised dual con-
straint contrastive method—by adding lightweight, learnable pa-
rameters at the output layers. Our method is cost-effective, requir-
ing only a single GPU and a few hours for fine-tuning without the
need for labeled datasets, functioning as a plug-and-play solution.

• Our self-supervised method achieves comparable or superior per-
formance to previously fine-tuned state-of-the-art methods on
standard benchmark datasets, such as MS COCO and Flickr
30K, without relying on region feature extraction, complex cross-
attention fusion, or hard negative sampling strategies.

• By freezing the parameters of VLP models and introducing a skip

shortcut, our method yields fast convergence while preserving the
generalization and transferability of VLP models. Zero-shot ex-
periments demonstrate that SUCCESSOR further improves cross-
modal performance accuracy compared to the VLP backbone,
showcasing that SUCCESSOR inherits VLP capabilities.

• A domain adaptation experiment on the education-oriented, small
dataset MOTIF [33] reveals that SUCCESSOR performs effec-
tively in domain adaptation without overfitting.

2 Related Work

Vision-language pre-training: We are witnessing an era in which
advanced foundational models rapidly evolve in visual and language
modalities [8, 5, 6, 22, 3, 31]. In line with the advancements in uni-
modal foundational models, VLP models have garnered significant
research interest. Early models such as ViLBERT [23] employed a
dual encoder and cross-attention to learn multimodal representations,
while UNITER [4] and OSCAR [20] utilized a fusion encoder with
self-attention to learn multimodal alignment. ViLT [16] argued that
visual patches from vision transformers are more efficient and en-
able end-to-end model training. More recently, CLIP [27] adopted
large-scale multimodal data from the internet and employed a con-
trastive method for training, resulting in more powerful multimodal
representations and impressive zero-shot performance. Meanwhile,
ALBEF [19] demonstrates that image-text contrastive, masked lan-
guage modeling, and image-text-matching tasks are more efficient
than other pre-training tasks. To enhance multimodal generation ca-
pabilities, models like BLIP [18], Flamingo [1], and CoCa [35] have
been proposed, enabling VLP models to handle both multimodal un-
derstanding and generation tasks. Most recently, the VLMo model
[2] introduced multiway transformers, unifying the dual encoder and
fusion encoder approaches. Building on VLMo, the BEiT-3 model
[32] has achieved new state-of-the-art results on cross-modal learn-
ing benchmark tasks and even single-modality tasks. We opted for
the CLIP model as our VLP model due to its demonstrated effi-
ciency in generalized multimodal feature extraction, moderate pa-
rameter size, and the fact that it does not necessitate a pre-trained
Fast-RCNN model [10]. Given that our proposed method is a plug-
and-play solution, we believe it can be easily applied to other VLP
models and even future advancements in the field of VLP.

Parameter-efficient fine-tuning: There are two widely-used fine-
tuning approaches: full fine-tuning and frozen fine-tuning. Full fine-
tuning presents two drawbacks: computational efficiency and catas-
trophic forgetting [18]. Given the large number of parameters in VLP
models, training the entire model becomes less feasible. Moreover,
without high-quality labeled datasets, fully fine-tuning VLP models
can lead to catastrophic forgetting [18], where the previously learned
generalized and transferable multimodal representations from VLP
models deteriorate. In contrast, frozen fine-tuning offers more flex-
ibility and strikes a balance between accuracy and the number of
trained task-specific parameters. Recently, parameter-efficient fine-
tuning (PEFT) [12] has gained popularity following the frozen fine-
tuning fashion. Among PEFT approaches, adapters [12] introduce
and update new parameters at the model level, while prompt tuning
methods [36, 14] incorporate and train parameters at the input level.
Although these techniques have proven effective, they remain inad-
equate when VLP model training codes are unavailable for adapter
injection, and significant effort is required to identify the best prompt
templates. We believe that an optimal method involves adding addi-
tional parameters at the output level, using VLP models as the funda-
mental multimodal representation and fine-tuning the extra parame-
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ters to learn out-of-domain and task-specific representations.
Cross-modal retrieval: Cross-modal retrieval, such as image-text

retrieval [28, 7] requires accurate alignment and understanding of in-
formation from different modalities, making it an ideal task to eval-
uate the performance of our self-supervised dual constraint contrast
method. Past research has focused on various ways to improve results
on benchmark datasets like MS COCO and Flickr 30K. Although
multiple state-of-the-art methods have been proposed to achieve
SOTA results on these datasets, they can be categorized into three
main directions. First, for instance, region features [10] are crucial
for improving accuracy in the visual modality [28], while BERT [6]
features outperform RNN features. However, obtaining region fea-
tures is less efficient and requires pre-training object detection mod-
ules [10]. Visual patch projection [8] is more efficient as it allows
for end-to-end model training. Second, fusion encoder [4] use self-
attention to learn the interaction between modalities, while dual en-
coders [23] employ cross-attention to interact with different modali-
ties. Lastly, techniques like in-batch hard negative mining [9] have
proven effective in increasing the relevance score between paired
data while decreasing the score for non-paired data. [28] reveals
that region feature extraction and hard negative mining are essen-
tial for achieving the results reported in their paper but also raise
reproducibility concerns. Our paper avoids using region features for
simplicity, as they rely on an extra module, and we found that hard
negative mining is less efficient in terms of training time. Random
in-batch negative contrast works quite well for our proposed dual
constraint contrast. Importantly, all the works mentioned above are
trained in a supervised manner. In many real-world scenarios involv-
ing out-of-domain and downstream tasks, labeled paired data may
not be available. To the best of our knowledge, we are the first to
propose a self-supervised fine-tuning method that does not require
labeled data and achieves new state-of-the-art results compared to
supervised baselines.

3 Method

In this section, we will first discuss the visual and text embeddings
used in our model. Next, to better understand the dual idea, we will
explain the prime task, dual task, and cross-modal translation. We
will then introduce the architecture of our model and also discuss
the skip connection. Lastly, we will discuss the self-supervised dual
constraint contrast.

3.1 Multimodal embedding and dual task

Visual and text embedding: We opted for a dual encoder [27] to
achieve fast retrieval performance, which encodes images and text
separately. The choice of architecture is flexible, allowing for the use
of other fusion encoders [4] or multi-way transformer architectures
[2] if needed. For visual features, we choose grid features extracted
from ResNet [11] and patch projections from vision transformers [8]
as two different visual backbones. Although using region features
has been proven to achieve better results in the cross-modal retrieval
task, we do not use them as they require additional pre-trained object
detection modules like Fast-RCNN [10] using the Visual Genome
dataset [17], which is less efficient. For text features, like most recent
works, we utilize BERT embeddings [6]. Formally:

{vn}Nn=1 = Encodervisual(v)

{tm}Mm=1 = Encodertext(t)
(1)

where v and t are the input image and text respectively. Suppose the
visual encoder can extract N visual vectors, which can be either grid
features or patch projections, in d1 dimensions. Similarly, the text
encoder can extract M token vectors in d2 dimensions.

After extracting the visual and textual features, we input them
into the VLP model to obtain fused representations, which are gen-
eralized multimodal representations. Following transformations in
V LPvision(·) and V LPtext(·), the fused vision features and text
features are in the same dimension space, represented as Rd (i.e. in
CLIP d = 768).

v = V LPvision

(
{vn}Nn=1

)
t = V LPtext

(
{tm}Mm=1

) (2)

Prime and dual task: Text retrieval (image → text) and image
retrieval (text → image) are mutually dual tasks. For simplicity and
better explanation, we denote the prime modality as the visual modal-
ity, and the prime task as text retrieval. In parallel, the dual modality
is the text modality, and the dual task is image retrieval. Cross-modal
retrieval relies on accurate multimodal alignment and serves as an
ideal task to evaluate the performance of multimodal representation
learning in terms of inter-modality effectiveness.

Prime task - text retrieval: Given a query from the prime modal-
ity (vision), we perform text retrieval by measuring the similarity
between the query image and candidate texts (dual modality) in the
mini-batch as shown in the equation below:

t̂ = argmax
(ti,v)∼B

(sim (ti, v)) (3)

where v is the visual feature of the query image, ti is the text feature
of the candidate texts in the mini-batch B. t̂ is the text that is most
similar to the query image in the semantic space. The sim(·) function
can be cosine similarity or cross-entropy.

Dual task – image retrieval: Likewise, given a query text in the
dual modality, we conduct image retrieval by measuring the similar-
ity between query text and candidate images in the prime modality
within the mini-batch as the equation below:

v̂ = argmax
(vi,t)∼B

(sim (vi, t)) (4)

where t represents the text feature of the query text, while vi denotes
the visual feature of candidate images within the mini-batch B. v̂ cor-
responds to the image that bears the greatest similarity to the query
text within the semantic space.

Cross-modal translation: We introduce a cross-modal translation
task, to evaluate intra-modality alignment performance. Our prelim-
inary experiments revealed that semantically close instances within
unimodal domains, such as visual and language, tend to be separated
in the multimodal representation space. This separation can lead to
errors like counting mistakes and misclassification of fine-grained
features (discussed further in section 5.4). We argue that fused visual
and text features should remain close to instances that share similar
semantics. To address this, we introduce the cross-modal translation
task, which involves using a forward retrieval instance as a candi-
date to perform a back-retrieval task and then comparing whether the
original query in the same modality can still be identified.

More specifically, let’s assume the forward-retrieval task as text
retrieval. Using Eq. (5), we first identify the text instance in the mini-
batch that has the maximum similarity score with the query image.
Next, we use this retrieved text candidate to perform a back-retrieval
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Figure 2. Illustration of (left) our framework (Sec. 3.2) and dual constraint
contrast (right) (Sec. 3.3).

task, image retrieval, finding the image in the same mini-batch with
the highest similarity score to the candidate text. Finally, we use a
sim(·) function to measure the similarity between the back-retrieved
image and the original query image.

sim(v, v̂) = sim(v, argmax
(vi,t̂)∼B

(
sim

(
vi, t̂

))
) (5)

where v represents the visual feature of the query image, while v̂ de-
notes the image obtained from the back-retrieval task. t̂ refers to the
forward retrieved text candidate, as shown in Eq. (3), and vi repre-
sents the image feature in the same mini-batch B.

Similarly, we can initiate the process with the language modal-
ity, where the forward-retrieval task is image retrieval and the back-
retrieval task is text retrieval, as shown in Eq. (6).

sim(t, t̂) = sim(t, argmax
(ti,v̂)∼B

(sim (ti, v̂))) (6)

where t denotes the text feature of the query text, while t̂ represents
the text obtained from the back-retrieval task. v̂ refers to the forward
retrieved image candidate, as shown in Eq. (4), and ti signifies the
text feature in the same mini-batch B.

It is important to note that, since we utilize multimodal represen-
tations from VLP models as the backbone, the forward-retrieved in-
stances are likely to be similar to the original query. This likelihood is
due to the consideration of relevant pairs in the data construction us-
ing VLP. Given that VLP multimodal representations are generalized
and transferable, and the candidate from the forward retrieval serves
as a bridge, we hypothesize that we can leverage this dual process to
form a dual constraint contrast loss. This approach would allow the
model to be trainable without labeled paired dataset by only adding
extra parameters at the output level to learn out-of-domain and task-
specific representations. To realize this hypothesis, we introduce a
skip connection and self-supervised dual constraint contrast, which
will be discussed in the next section.

3.2 Framework and skip connection

Given the remarkable generalization and transfer capabilities of VLP
models, we use VLP as the backbone and freeze the VLP param-
eters for parameter-efficient fine-tuning to obtain the fundamental
in-domain multimodal representations. For simplicity, we add two
linear probe layers at the output level of the VLP backbone to learn
out-of-domain and task-specific multimodal representations, as illus-
trated in Figure 2. For visual and text modalities, following Eq. (1)

and (2), the fused visual and text representations can be expressed as
follows:

v = FCv

(
V LPvision

(
{vn}Nn=1

))
t = FCt

(
V LPtext

(
{tm}Mm=1

)) (7)

where V LPvision

(
{vn}Nn=1

)
denotes the fused visual feature from

VLP models, and V LPtext

(
{tm}Mm=1

)
denotes the fused text fea-

ture from VLP models. FC represents linear probe layers. v and t
indicate the fused visual and text features after the linear probe lay-
ers.

However, since our method is based on self-supervised dual con-
trast, the model needs to have a basic ability to retrieve candidates
as shown in Eq. (5) and Eq. (6); otherwise, the model will collapse.
Therefore, we introduce a skip connection [11], linking the represen-
tation from VLP to the final output prediction of our model as Eq. (8).
In practice, the skip connection is crucial for robust fine-tuning and
fast convergence. This is because, in the beginning, the VLP model
will contribute more to retrieving the candidate and allow the method
to compare the query and candidate in the same modality.

v = α1 · V LPvision

(
{vn}Nn=1

)
+ α2 · FCv

(
V LPvision

(
{vn}Nn=1

))
t = γ1 · V LPtext

(
{tm}Mm=1

)
+ γ1 · FCt

(
V LPtext

(
{tm}Mm=1

))
(8)

where α1, α2, γ1, and γ2 are hyperparameters to balance the im-
portance of the fused multimodal representations from VLP and the
representations after linear probe layers. In experiments, we find that
these hyperparameters are not sensitive and are set to 1.0.

Note that our model adds extra parameters at the output level. This
approach is more flexible compared to Adapter and Prompt tuning
methods. Adapter methods [12] inject extra parameters at the model
level, which require the training code of VLP models, while prompt
tuning methods [36] incorporate and train parameters at the input
level, necessitating considerable effort to find the best template. Our
model consists of two linear probe layers and a skip connection short-
cut. We do not use any complex fusion layers or cross-attention-
based methods. As seen in Table 2, our methods surpass fine-tuning-
based methods and outperform fine-tuned VLP backbones by a large
margin. In the following section, we will introduce how to leverage
our model to form a dual constraint contrast loss.

3.3 Self-supervised dual constraint contrast

As discussed in section 3.1, our dual constraint contrast is formed by
the forward retrieval and back retrieval as a loop. More specifically,
we first obtain fused image and text features for each mini-batch us-
ing Eq. (8). Assuming the forward-retrieval task is text retrieval, we
take each image instance v as the query to find the most similar neg-
ative text sample t− in the batch by computing the similarity scores
as per Eq. (3). In our experiments, we employ the cosine similarity
function for measuring the similarity. We refer to the retrieved text
as the negative sample since we do not know if it is the anchor in a
self-supervised method. We use the forward-retrieved text t− to con-
duct the back-retrieval task-image retrieval. Similarly, we compute
the similarity scores between the text t− and all the images in the
mini-batch to obtain a similarity vector. We then normalize the sim-
ilarity vector using the Softmax function. Finally, we form the loss
as the cross-entropy loss using the normalized similarity vector with
the pseudo-label vector where the original query image is one, and
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Table 1. Comparison of our proposed method with five state-of-the-art VLP methods and one plug-and-play method on the image-text retrieval task. For grid
features ∗, PixelBERT used ResNet-50 features and CLIP as well as our models used two variants, ResNet-50 and ViT-L patches.

Method Params Architecture Fine-tuning Visual Tokens
Pre-trained

Datasets
BS Self-supervised Loss

ViLBERT 221M fusion encoder full fine-tune Region CC 64 � cross-entropy
PixelBERT 124M fusion encoder full fine-tune Grid* VG, MSCOCO 512 � cross-entropy

UNITER 110M fusion encoder full fine-tune Region
CC, SBU, VG,
MSCOCO

64 � cross-entropy

ViLT 111M fusion encoder full fine-tune Region
CC, SBU, VG,
MSCOCO

256 � cross-entropy

CLIP 2.3M dual encoder frozen fine-tune Grid* WIT 128 � contrastive loss
BCAR 2.2M fusion encoder frozen fine-tune Region VG 128 � ranking loss

Successor 2.3M dual encoder frozen fine-tune Grid* � 128 � cross-entropy

the other images are zero. Likewise, we can begin with the forward
retrieval task as the image retrieval task and the back retrieval task as
the text retrieval task. We train our model using cross-entropy loss:

L
(
θV , θL

)
=− 1

|B|

(
M∑
i=1

yV
i log

(
fV →L→V

(θV ,θL)
(
v, t−, v̂

)
i

)
+

M∑
i=1

yL
i log

(
fL→V →L

(θV ,θL)
(
t, v−, t̂

)
i

))

(9)
where (θV , θL) are the trainable parameters in the two layers of
the linear probe, |B| is the batch size, and M is the number of in-
stances in the batch. yV and yL represent the pseudo-labels where
the query image or text is one and other images and text are set to
zero. fV →L→V represents the loop from text retrieval to image re-
trieval, and fL→V →L is the reverse dual loop, going from image
retrieval to text retrieval.

4 Experiment Setup

Datasets. We evaluate our method on two widely used benchmark
datasets for cross-modal retrieval, MS COCO and Flickr 30K, and
one distinct dataset called MOTIF, with more complex text. In more
detail, MS COCO contains 123,287 images, each with five sentences
describing the image’s content. Flickr 30K has 31,783 images; like
MS COCO, it is also paired with five corresponding sentences. Fol-
lowing the typical approach to split datasets in most of the literature,
we use the Karpathy split [15] method for MS COCO and Flickr 30K
datasets. We use MOTIF, a language-oriented multimodal dataset, to
test the domain transfer effect. MOTIF has 1,125 sentences with at
least three complex words, and the structure is more complex than
the sentences in MS COCO and Flickr 30K. We randomly split the
dataset into training and test datasets as 900/225 images. In the im-
plementation within a self-supervised setting, we employ pre-trained
VLP models (without exposing any datasets) to conduct cross-modal
retrieval. The goal is to find relevant pairs, which may or may not be
correct. During training, shuffling is also performed to increase the
diversity of negative samples within the mini-batch.

Evaluation metrics. We evaluate the cross-modal retrieval perfor-
mance and cross-modal translation performance using recall@K as
the evaluation metric. In our experiments, we report R@1, R@5 and
R@10. To provide a clearer description of the tasks in our experi-
ments, we use the following abbreviations: "IR" for Image Retrieval,
"TR" for Text Retrieval, "ITI" for Image-Text-Image Translation, and
"TIT" for Text-Image-Text Translation.

Implementation details. We implement our model using the Py-
Torch framework and utilize the CLIP model as the backbone. The

dimension of the fused visual and text features from CLIP is 768.
Our model is trained on an Nvidia RTX A6000 GPU, but we only
utilize 14GB of its 48GB memory. For optimization, we employ the
Adam optimizer with a learning rate of 1e-5 and a weight decay of
1e-5. The balance hyperparameters, α1, α2, γ1, and γ2, show mini-
mal sensitivity in our experiments and are all set to 1.0.

We use two CLIP architectures as backbones in our experiments.
For the text encoder, we employ BERT as the backbone. In the visual
encoder, we implement two versions: one using ResNet-50 [11] and
the other using ViT-L/14@336px [8]. To be clear, we refer to the dual
contrastive model using ResNet-50 as Successor@RN50 and the one
using ViT-L/14@336px as Successor@ViT-L. Both linear probe lay-
ers have a dimension of 768 and employ the non-linear activation
function, ReLU. We train the Successor@RN50 model for 25 epochs
and the Successor@ViT-L model for 20 epochs.

5 Results and Analysis

To demonstrate the effectiveness of our proposed method presented
in Section 3, we compare it with six baselines. First, we compare
our method with five pre-trained state-of-the-art methods: ViLBERT
[23], PixelBERT [13], UNITER [4], ViLT [16], and CLIP [27]. Due
to reproducibility issues, we cite the results from [28] and report and
compare them in our paper. Since CLIP did not use MS COCO and
Flickr 30K for pre-training, we adopted the standard linear probing
method to fine-tune CLIP. Next, we compare our method with the
most recent work on plug-and-play method, BCAR [7], in the cross-
modal retrieval task. Detailed settings and comparisons can be found
in Table 1.

It is worth noting that all the baselines are fine-tuned in a super-
vised manner, and ViLBERT, UNITER, ViLT, and BCAR use region
features, which have been proven to improve results but increasing
training time as the involvement extra detector modules. These base-
lines also employed extra datasets like CC [29], VG [17], and SBU
[24] datasets, as well as other techniques to enhance performance.
However, our proposed self-supervised dual contrastive method aims
to create a more flexible and adaptable approach for cross-modal re-
trieval tasks that do not rely on specific tricks, region features, or a
pre-trained object detection module like Fast-RCNN.

By comparing our method with the supervised baselines, we aim
to demonstrate the effectiveness of our approach in scenarios where
labeled paired datasets are unavailable, and out-of-domain cases. In
doing so, we highlight the advantages of our method, which involves
lightweight trainable parameters, making it a more practical choice
for a wider range of real-world applications.
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Table 2. Cross-modal retrieval results on MS COCO and Flickr 30K datasets. The top half of the table displays the performance of fine-tuned VLP models
using supervised methods, while the bottom half showcases the results of our proposed approaches, including the ResNet-50 variant and the ViT variant. The

best results are highlighted in blue and red.

Model Flickr 30K 1K Test MS COCO 5K Test

IR@1 IR@5 IR@10 TR@1 TR@5 TR@10 IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Supervised VLP Performance

ViLBERT 58.2 84.9 91.5 76.8 93.7 97.6 38.6 68.2 79.0 53.5 79.7 87.9
PixelBERT 59.8 85.5 91.6 75.7 94.7 97.1 41.1 69.7 80.5 53.4 80.4 88.5
UNITER 62.9 87.2 92.7 78.3 93.3 96.5 37.8 67.3 78.0 52.8 79.7 87.8
ViLT 62.2 87.6 93.2 83.7 97.2 98.1 42.6 72.8 83.4 62.9 87.1 92.7

CLIP@RN50 68.5 91.6 95.6 84.7 97.3 99.1 43.1 70.8 80.9 59.7 83.8 90.6
CLIP@ViT-L 73.7 93.2 96.3 88.3 98.7 99.5 46.5 73.4 82.7 63.6 86.2 92.5
BCAR 62.6 85.8 91.1 82.3 96.0 98.4 44.3 73.2 83.2 61.3 86.1 92.6

Dual Contrast Performance (Ours)

Successor@RN50 71.3 ↑ 92.2↑ 96.0 ↑ 87.6 ↑ 98.5 ↑ 99.3 ↑ 43.8 71.4 81.1 60.5 85.1 91.3
Successor@ViT-L 74.9 ↑ 94.1 ↑ 96.8 ↑ 89.1 ↑ 98.7 ↑ 99.5 ↑ 46.8 ↑ 74.1 ↑ 83.2 - 64.7 ↑ 86.5 - 92.7 ↑

5.1 Comparison to state-of-the-art methods

Table 2 presents a comprehensive comparison with state-of-the-art
VLP models and one plug-and-play method on Flickr 30K and MS
COCO datasets as mentioned above. The top half of the table dis-
plays the performance of fine-tuned VLP models trained in a super-
vised manner. The bottom half showcases the results of our proposed
approaches, including the ResNet-50 variant and the ViT variant. The
best results are highlighted in blue for the top-performing results
among the baseline methods, while red represents the best results
achieved by our methods, surpassing the best baseline results.

Our self-supervised ViT variant outperforms all the baseline re-
sults on both Flickr 30K and MS COCO datasets. Additionally,
both the ResNet-50 variant and ViT variant surpass all baselines on
the Flickr 30K dataset. This demonstrates the effectiveness of our
dual constraint contrast methods. In particular, Successor@RN50
achieves a 1.5% (536.8 → 544.9) relative gain, and Successor@ViT-
L achieves a 0.62% (549.7 → 553.1) relative gain on the Flickr
30K dataset compared with the best baselines, CLIP@RN50 and
CLIP@ViT-L, in supervised VLP performance. Successor@ViT-L
also obtains a 1.5% (441.5 → 448) relative gain on MS COCO com-
pared with the best results of the ViLT model. These results highlight
the effectiveness of our dual constraint contrast methods and their
stability, as our model is simple and omits any tricks for simplicity.

Regarding parameter-efficient fine-tuning performance, we ob-
serve that the frozen and fine-tuning paradigm works better than fully
fine-tuning the model. From the perspective of trainable parameters,
CLIP, BCAR, and our Successor model have 98% fewer parame-
ters than PixelBERT, UNITER, and ViLT, and 99% fewer parame-
ters than ViLBERT. Nevertheless, CLIP and BCAR achieve the best
results among baseline methods on the Flickr 30K dataset and the im-
age retrieval task on the MS COCO dataset, which demonstrates that
Parameter-Efficient Fine-Tuning (PEFT) methods are more efficient
for fine-tuning while maintaining high accuracy. ViLT attains the best
results in MS COCO as the dataset is much larger, and learning from
supervised labels helps improve accuracy. Importantly, our methods
outperform all the PEFT baselines and achieve better or comparable
results to all the baselines and even the ViLT model on MS COCO.

Lastly, compared with fine-tuned CLIP, our Successor shares the
same architecture but achieves similar or even better results on both

datasets in a self-supervised manner. This supports our hypothesis
that the VLP model possesses exceptional generalization and capa-
bilities. We can fine-tune the model by adding extra layers at the
output level to inherit the abilities of VLP and learn out-of-domain
and task-specific representations without labeled data.

The improved performance of our method demonstrates that
the learned out-of-domain and task-specific multimodal represen-
tations possess strong inter-modality effectiveness. As discussed in
Section 3.1, cross-modal translation tasks can evaluate the intra-
modality alignment of multimodal representations. In Table 3, we
conduct cross-modal translation and compare Successor@RN50 and
Successor@ViT-L with the baseline CLIP@RN50 and CLIP@ViT-
L on Flickr 30K and MS COCO datasets. Both variants consistently
achieve better results than the baseline, illustrating the effectiveness
of our method. As we opted for CLIP as the VLP backbone, the im-
proved results indicate that closely related semantic instances within
a unimodal representation maintain their proximity in the multimodal
representation space compared with VLP models. This highlights the
successful intra-modality alignment achieved by our dual constraint
contrast methods.

5.2 Zero-shot performance

The multimodal representations obtained from VLP models have
demonstrated remarkable generalization capabilities. Our proposed
method involves freezing the VLP as the foundation and adding lin-
ear probe layers at the output level. Thus, training the model with
extra data should act as the incremental of the foundation knowl-
edge of VLP. We hypothesize that this approach should yield better
zero-shot performance compared to the original VLP. To test this hy-
pothesis, we first train our proposed model described in Section 3
using the dual constraint contrast method on the Flickr 30K dataset
and evaluate the model on the MS COCO 5K test set. Similarly, we
train our proposed model on the MS COCO dataset and test it on
the Flickr 30K dataset. As demonstrated in Table 4 and Table 5, our
fine-tuned model with the dual contrast method achieves better or
comparable zero-shot performance compared to the fine-tuned CLIP
model with the same backbone on both datasets. We attribute these
improvements to the frozen and fine-tuning paradigm. In comparison
to the full fine-tuning approach, full fine-tuned models run the risk
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Table 3. Cross-modal translation results on MS COCO and Flickr 30K datasets. The bold number represents the best results achieved by models.

Model Flickr 30K 1K Test MS COCO 5K Test

ITI@1 ITI@5 ITI@10 TIT@1 TIT@5 TIT@10 ITI@1 ITI@5 ITI@10 TIT@1 TIT@5 TIT@10

CLIP@RN50 87.9 99.7 100.0 65.0 82.9 93.6 71.2 98.0 99.6 40.0 67.3 82.2
CLIP@ViT-L 91.0 99.9 100.0 70.9 86.4 94.8 73.1 97.8 99.7 43.2 68.1 81.9
Successor@RN50 91.2 100.0 100.0 68.5 84.4 92.7 72.6 97.8 99.7 40.3 67.6 82.2
Successor@ViT-L 92.0 99.8 100.0 71.8 86.2 95.1 74.3 98.3 99.8 43.8 68.8 83.1

Table 4. Zero-shot performance results on the Flickr 30K dataset. The
bold number represents the best results achieved by models.

Model Flickr30K-IR Flickr30K-TR

R@1 R@5 R@10 R@1 R@5 R@10

CLIP@RN50 61.5 84.7 90.0 81.8 95.9 98.1
CLIP@ViT-L 64.0 86.6 91.6 84.8 97.9 99.1

Successor@RN50 66.9 89.2 93.2 82.7 97.0 98.6
Successor@ViT-L 70.6 91.7 95.1 86.5 97.4 98.9

Table 5. Zero-shot performance results on the MS COCO dataset. The
bold number represents the best results achieved by models.

Model MSCOCO5K-IR MSCOCO5K-TR

R@1 R@5 R@10 R@1 R@5 R@10

CLIP@RN50 35.1 59.7 69.9 54.8 78.8 86.4
CLIP@ViT-L 36.8 61.4 71.3 57.5 81.1 87.7
Successor@RN50 38.2 64.0 74.0 55.6 78.9 86.5
Successor@ViT-L 42.7 68.1 77.6 60.2 82.0 89.4

of causing catastrophic forgetting [18], where the previously learned
generalized and transferable multimodal representations from VLP
models degrade. By using the frozen and fine-tuned paradigm, we
can avoid this issue and maintain the quality of multimodal represen-
tations, leading to improved zero-shot performance.

5.3 Domain adaptation performance

To better investigate the domain adaptation performance of our pro-
posed model, we train and compare our method with the base-
line CLIP model on the MOTIF dataset. The MOTIF dataset is an
education-oriented multimodal dataset, where the sentence structure
and vocabulary are more complex than those in the Flickr 30K or MS
COCO datasets. Table 6 demonstrates that our proposed method per-
forms well in acquiring out-of-domain multimodal representations
compared to the supervised method on CLIP. In addition to its self-
supervised attributes, our proposed model can effectively train and
transfer knowledge on a small dataset without overfitting. This char-
acteristic makes it particularly useful for domain adaptation tasks,
where it is essential to leverage and adapt existing knowledge to new,
complex domains with limited labeled data available.

5.4 Error analysis and ablation study

In addition to quantitative analysis, we also examine the quality of
retrieved results through a qualitative investigation. We observe that
VLP models sometimes exhibit fine-grained errors, primarily related

Table 6. Domain adaptation performance results on the MOTIF dataset.
The bold number represents the best results achieved by models.

Model MOTIF-IR MOTIF-TR

R@1 R@5 R@10 R@1 R@5 R@10

CLIP@RN50 48.0 96.8 100.0 48.0 81.6 90.4
Successor@RN50 50.4 97.6 99.2 48.0 82.4 92.8

to counting mistakes, nuanced color and pattern understanding, and
complex noun and verb comprehension. For instance, the term "run-
ners" is the plural form of "runner"; however, the CLIP model over-
looks this vital information while retrieving images. Our proposed
model is capable of capturing fine-grained multimodal representa-
tions. Meanwhile, we conduct ablation studies using two variants on
the Flickr 30K dataset. For each model, we remove either the dual
constraint loss from V → L → V or L → V → L. The results in
Table 7 show that when the loss from V → L → V is removed, the
image retrieval performance degrades, while removing the loss from
L → V → L causes the text retrieval performance to degrade.

Table 7. Ablation study results on Flickr 30K dataset. The underlined
number represents a degradation in performance.

Model IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Successor@RN50 71.3 92.2 96.0 87.6 98.5 99.3

- V → L → V 63.5 87.3 92.6 85.5 97.6 99.1
- L → V → L 70.1 91.3 95.5 79.5 94.7 97.9
Successor@ViT-L 74.9 94.1 96.8 89.1 98.7 99.5

- V → L → V 65.0 87.4 93.1 88.0 98.2 99.5
- L → V → L 74.1 93.4 96.4 84.6 97.0 99.1

6 Conclusion

In this work, we present a self-supervised dual constraint contrast
method designed to efficiently fine-tune VLP models using a "frozen
and fine-tuning" paradigm. By incorporating additional linear probe
layers at the output level and incorporating a skip shortcut, we
achieve fast convergence. As our approach only updates lightweight
parameters (2.3M), the training cost is significantly lower compared
to other full fine-tuning methods. Consequently, we can train our
model using a single GPU, achieving convergence within hours while
maintaining comparable or superior performance to existing fine-
tuned VLP and PEFT methods on two benchmark datasets. Further-
more, our method demonstrates strong domain transfer capabilities.
With its simplicity and feasibility, our approach is agnostic to the un-
derling models and has the potential to harness the power of more
advanced VLP models in the future.

X. Wang et al. / Using Self-Supervised Dual Constraint Contrastive Learning for Cross-Modal Retrieval2558



Acknowledgements

This research was funded by the German Research Foundation DFG
Transregio SFB 169: Crossmodal Learning: Adaptivity, Prediction,
and Interaction.

References

[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain
Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican,
Malcolm Reynolds, et al., ‘Flamingo: a visual language model for few-
shot learning’, Advances in Neural Information Processing Systems, 35,
23716–23736, (2022).

[2] Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu, Owais Khan Mo-
hammed, Kriti Aggarwal, Subhojit Som, Songhao Piao, and Furu Wei,
‘Vlmo: Unified vision-language pre-training with mixture-of-modality-
experts’, Advances in Neural Information Processing Systems, 35,
32897–32912, (2022).

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, , and
Amanda Askell, ‘Language models are few-shot learners’, Advances in
neural information processing systems, 1877–1901, (2020).

[4] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal
Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu, ‘Uniter: Univer-
sal image-text representation learning’, in 16th European Conference
Computer Vision, pp. 104–120, (2020).

[5] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski,
Jonathan Heek, Justin Gilmer, Andreas Steiner, Mathilde Caron, Robert
Geirhos, Ibrahim Alabdulmohsin, et al., ‘Scaling vision transformers to
22 billion parameters’, arXiv preprint arXiv:2302.05442, (2023).

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova,
‘BERT: Pre-training of deep bidirectional transformers for language
understanding’, in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics,
pp. 4171–4186, (2019).

[7] Haiwen Diao, Ying Zhang, Wei Liu, Xiang Ruan, and Huchuan Lu,
‘Plug-and-play regulators for image-text matching’, IEEE Transactions
on Image Processing, (2023).

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al., ‘An image is
worth 16x16 words: Transformers for image recognition at scale’, arXiv
preprint arXiv:2010.11929, (2020).

[9] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler,
‘Vse++: Improving visual-semantic embeddings with hard negatives’,
arXiv preprint arXiv:1707.05612, (2017).

[10] Ross Girshick, ‘Fast r-cnn’, in Proceedings of the IEEE international
conference on computer vision, pp. 1440–1448, (2015).

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, ‘Deep resid-
ual learning for image recognition’, in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 770–778, (2016).

[12] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone,
Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Syl-
vain Gelly, ‘Parameter-efficient transfer learning for nlp’, in Interna-
tional Conference on Machine Learning, pp. 2790–2799, (2019).

[13] Zhicheng Huang, Zhaoyang Zeng, Bei Liu, Dongmei Fu, and Jianlong
Fu, ‘Pixel-bert: Aligning image pixels with text by deep multi-modal
transformers’, arXiv preprint arXiv:2004.00849, (2020).

[14] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Be-
longie, Bharath Hariharan, and Ser-Nam Lim, ‘Visual prompt tuning’,
in 17th European Conference Computer Vision, pp. 709–727, (2022).

[15] Andrej Karpathy and Li Fei-Fei, ‘Deep visual-semantic alignments for
generating image descriptions’, in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 3128–3137, (2015).

[16] Wonjae Kim, Bokyung Son, and Ildoo Kim, ‘Vilt: Vision-and-language
transformer without convolution or region supervision’, in Interna-
tional Conference on Machine Learning, pp. 5583–5594, (2021).

[17] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata,
Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A
Shamma, et al., ‘Visual genome: Connecting language and vision us-
ing crowdsourced dense image annotations’, International journal of
computer vision, 123, 32–73, (2017).

[18] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi, ‘Blip: Boot-
strapping language-image pre-training for unified vision-language un-
derstanding and generation’, in International Conference on Machine
Learning, pp. 12888–12900, (2022).

[19] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty,
Caiming Xiong, and Steven Chu Hong Hoi, ‘Align before fuse: Vision
and language representation learning with momentum distillation’, Ad-
vances in neural information processing systems, 9694–9705, (2021).

[20] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei
Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, et al., ‘Os-
car: Object-semantics aligned pre-training for vision-language tasks’,
in 16th European Conference Computer Vision, pp. 121–137, (2020).

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick, ‘Microsoft
coco: Common objects in context’, in 13th European Conference Com-
puter Vision, pp. 740–755. Springer, (2014).

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov, ‘Roberta: A robustly optimized bert pretraining approach’, arXiv
preprint arXiv:1907.11692, (2019).

[23] Jiasen Lu, Dhruv Batra, and Stefan Lee, ‘Vilbert: Pretraining task-
agnostic visiolinguistic representations for vision-and-language tasks’,
Advances in neural information processing systems, (2019).

[24] Vicente Ordonez, Girish Kulkarni, and Tamara Berg, ‘Im2text: Describ-
ing images using 1 million captioned photographs’, Advances in neural
information processing systems, 24, (2011).

[25] Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo,
Julia Hockenmaier, and Svetlana Lazebnik, ‘Flickr30k entities: Col-
lecting region-to-phrase correspondences for richer image-to-sentence
models’, in Proceedings of the IEEE international conference on com-
puter vision, pp. 2641–2649, (2015).

[26] Tao Qin, Dual Learning, Springer, 2020.
[27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,

Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela
Mishkin, Jack Clark, et al., ‘Learning transferable visual models from
natural language supervision’, in International conference on machine
learning, pp. 8748–8763, (2021).

[28] Jun Rao, Fei Wang, Liang Ding, Shuhan Qi, Yibing Zhan, Weifeng Liu,
and Dacheng Tao, ‘Where does the performance improvement come
from? -a reproducibility concern about image-text retrieval’, in Pro-
ceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 2727–2737, (2022).

[29] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut,
‘Conceptual captions: A cleaned, hypernymed, image alt-text dataset
for automatic image captioning’, in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, pp. 2556–
2565, (2018).

[30] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal, ‘Vl-adapter: Parameter-
efficient transfer learning for vision-and-language tasks’, in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5227–5237, (2022).

[31] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet,
Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman
Goyal, Eric Hambro, Faisal Azhar, et al., ‘Llama: Open and efficient
foundation language models’, arXiv:2302.13971, (2023).

[32] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng,
Qiang Liu, Kriti Aggarwal, Owais Khan Mohammed, Saksham Sing-
hal, Subhojit Som, et al., ‘Image as a foreign language: Beit pre-
training for all vision and vision-language tasks’, arXiv preprint
arXiv:2208.10442, (2022).

[33] Xintong Wang, Florian Schneider, Özge Alacam, Prateek Chaud-
hury, and Chris Biemann, ‘MOTIF: Contextualized images for com-
plex words to improve human reading’, in Proceedings of the Thir-
teenth Language Resources and Evaluation Conference, pp. 2468–
2477, (2022).

[34] Taojiannan Yang, Yi Zhu, Yusheng Xie, Aston Zhang, Chen Chen, and
Mu Li, ‘Aim: Adapting image models for efficient video action recog-
nition’, arXiv preprint arXiv:2302.03024, (2023).

[35] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyed-
hosseini, and Yonghui Wu, ‘Coca: Contrastive captioners are image-
text foundation models’, arXiv preprint arXiv:2205.01917, (2022).

[36] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu,
‘Learning to prompt for vision-language models’, International Jour-
nal of Computer Vision, 130(9), 2337–2348, (2022).

X. Wang et al. / Using Self-Supervised Dual Constraint Contrastive Learning for Cross-Modal Retrieval 2559


