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Abstract

Vision-Language Models (VLMs) have demon-
strated remarkable capabilities in interpreting
visual layouts and text. However, a signifi-
cant challenge remains in their ability to in-
terpret and reason robustly over multi-tabular
data presented as images, a common occur-
rence in real-world scenarios such as web pages
and digital documents. Existing benchmarks
typically address single tables or non-visual
data (text/structured). This leaves a critical
gap: they do not assess the ability to parse di-
verse table images, correlate information across
them, and perform multi-hop reasoning on the
combined visual data. We introduce MTab-
VQA, a novel benchmark specifically designed
for multi-tabular visual question answering to
bridge this gap. MTabVQA comprises 3,745
complex question-answer pairs that necessi-
tate multi-hop reasoning across several visually
rendered table images. We provide extensive
benchmark results for state-of-the-art VLMs
on MTabVQA, revealing significant perfor-
mance limitations. We further investigate post-
training techniques to enhance the multitabular
reasoning abilities of vision-language models
and release MTabVQA-Instruct, a large-scale
instruction-tuning dataset. Our experiments
show that fine-tuning VLMs with MTabVQA-
Instruct substantially improves their perfor-
mance on visual multi-tabular reasoning. Code
and dataset are available online'.

1 Introduction

In recent years, vision language models (VLMs)
and multimodal systems have demonstrated re-
markable capabilities in interpreting complex vi-
sual layouts and text (Luo et al., 2024), en-
abling tasks ranging from document understanding
(Zhang et al., 2025), visual information extraction
(Cao et al., 2023), and structured data QA (An-
tol et al., 2015) to interactive processes like au-
tonomous web navigation (He et al., 2024).
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Figure 1: MTabVQA Benchmark, illustrative example show-
ing three tables (Customers, Reviews, Services), a question
requiring multi-table reasoning, the reasoning steps involved,
and the final answer derived by a vision-language model.

Yet, as these models become increasingly ca-
pable of acting as visual agents that can browse
screen data and execute complex instructions, a
new challenge has emerged: the interpretation and
reasoning over multi-tabular data presented as im-
ages (Deng et al., 2024; Zheng et al., 2024). This
challenge is particularly relevant in real-world sce-
narios, where tables often appear as images on web
pages or digital documents. For instance, with ap-
proximately 24% of PDF documents being image-
only formats (Johnson, 2018), their tabular data is
inaccessible to traditional text-based models. Ex-
tracting actionable insights from such sources may
require a model to reference multiple table images
simultaneously.

Traditional benchmarks (Yu et al., 2018; Chen
et al., 2020; Zhong et al., 2017) in table under-
standing and question answering have primarily
focused on single-table scenarios, often relying on
textual or HTML representations (Zhu et al., 2021;
Sui et al., 2024). However, such benchmarks are
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unable to evaluate model performance on visually
complex, multi-tabular data, which requires inter-
preting layout and structure beyond simple text
or HTML. In many practical applications, such as
financial analysis, e-commerce, and scientific re-
search (Lautert et al., 2013), key information is
distributed across several tables, each with distinct
layouts and visual structures. Current benchmarks
(Wu et al., 2025b; Pal et al., 2023; Wu et al., 2025a;
Li et al., 2025b), rooted in single-table, non-visual
formats (like text/HTML or relational databases),
fail to assess critical capabilities: (1) understanding
diverse visual table layouts presented as images,
(2) parsing and correlating information across mul-
tiple, physically separate tables, and (3) executing
multi-hop reasoning grounded in visual data.

To bridge this gap, we propose Multi-Tabular
Visual Question Answering (MTabVQA), a novel
benchmark specifically designed for assessing the
visual reasoning capabilities of models on multi-
tabular data represented as images. Distinct from
prior benchmarks that primarily focus on single ta-
bles (Pasupat and Liang, 2015; Zhong et al., 2017,
Zheng et al., 2024) or utilize non-visual (textual,
structured) formats for multi-table reasoning (Wu
et al., 2025a; Yu et al., 2018; Li et al., 2023a),
MTabVQA uniquely evaluates the integration of
information across multiple tables. Our bench-
mark, comprising 3,745 question-answer pairs,
challenges models with complex queries across 14
distinct reasoning categories. These pairs are de-
signed to necessitate multi-hop reasoning (e.g., in-
volving aggregation, comparison, or fact-checking)
by integrating information from two to five table
images. MTabVQA enables a targeted evaluation
of how well current models handle the process of
extracting information from multiple table images
and performing the multi-hop reasoning necessary
to synthesize answers. Our main contributions are:

¢ We introduce MTabVQA, a novel benchmark
designed to evaluate multi-hop reasoning over
multiple tables presented as images, address-
ing a gap in existing table QA benchmarks.

e We release MTabVQA-Instruct, an
instruction-focused training dataset for
multi-table QA.

¢ We trained TableVision, a VLM fine-tuned
on MTabVQA-Instruct, which shows signif-
icant improvements on visual multi-tabular
reasoning.

* We provide extensive benchmark results for
SOTA open-source, proprietary VLMs and
TableVision on MTabVQA, revealing signifi-
cant challenges posed by this task.

2 Related Work

Research in table understanding (Wu et al., 2025b)
and multimodal reasoning (Zheng et al., 2024) has
made significant advancements. Initial efforts often
centered on converting tables into text-based repre-
sentations, such as Markdown or HTML (Li et al.,
2024; Zhang et al., 2024a), enabling text-only lan-
guage models to process them. While effective in
controlled environments, this approach encounters
limitations in real-world settings where tables fre-
quently appear only as images within documents
or web interfaces. Processing visually rendered ta-
bles through multi-stage text-conversion pipelines
(Nassar et al., 2022) presents inherent limitations.

The pipelines are often complex and susceptible
to OCR errors; they also tend to discard essential
visual layout cues (e.g., merged cells, alignment),
and risk compounding inaccuracies across stages.
This highlights a critical need for models capable
of interpreting and reasoning over tables directly
from pixel data. Moreover, most systems rely on
OCR combined with LLMs, which makes them
more prone to errors than developing a single uni-
fied model. Our work focuses entirely on the chal-
lenge of extracting information directly from visual
table data and drawing conclusions from it, address-
ing the complexities inherent in image-based table
structures.

2.1 Table Understanding and Extraction

Effective reasoning over visual tables fundamen-
tally relies on accurate underlying table understand-
ing, including tasks like detection, segmentation,
and structure interpretation (Bonfitto et al., 2021).
Such foundational challenges were often addressed
by specialized methods leveraging object detec-
tion and OCR, exemplified by systems like Table-
Former (Nassar et al., 2022), which improved the
extraction of cell structures from images. Despite
the advances, such methods frequently encounter
difficulties with complex visual layouts and the se-
mantic alignment crucial for interpreting elements
like multirow headers or merged cells.

Although recent large-scale datasets like
MMTab (Zheng et al., 2024) have significantly
advanced benchmarking for table extraction and



Benchmark Question Format # Tables/Databases | # QA Pairs Task Modality
WTQ (Pasupat and Liang, 2015) NL Questions 2,108 22,033 Single-table QA Text
SQA (Iyyer et al., 2017) NL Questions N/A 17,553 Single-Table QA Text
WikiSQL (Zhong et al., 2017) SQL Query 24,241 80k Single-table QA Text
Spider (Yu et al., 2018) NL Questions & SQL Query 200 10,181 Text-to-SQL Text
HybridQA (Chen et al., 2020) NL Questions 13,000 70k Table-text QA Text
FeTaQA (Nan et al., 2022) NL Questions 10,330 10k Single tables Text
BIRD (Li et al., 2023a) NL Questions & SQL Query 95 12,751 Text-to-SQL Text
TableBench (Wu et al., 2025b) NL Questions 3,681 886 Single Table Text
SPINACH (Liu et al., 2024) NL Questions & SQL Query N/A 320 Text-to-SQL Text
MMOQA (Wu et al., 2025a) NL Questions & SQL Query 3,312 3,312 Text-to-SQL, Multi-table QA Text
MMTab (Zheng et al., 2024) NL Questions 23K 49K Single-Table QA Images
MTabVQA (ours) NL Questions 8499 3,745 Multi-Table QA Images

Table 1: Differences between our MTabVQA and previous table QA benchmarks. We here abbreviate NL = Natural

Language and SQL = Structured Query Language.

understanding from table images, they primarily
focus on single-table scenarios. The challenge of
integrating information and reasoning across mul-
tiple visually presented tables, which MTabVQA
addresses, remains less explored.

2.2 Multimodal Question Answering

Early benchmarks in table QA, such as WikiTable-
Questions (Pasupat and Liang, 2015) and WikiSQL
(Zhong et al., 2017) established the task but focused
on single-table scenarios with text-based represen-
tations. More recent work like MMQA (Wu et al.,
2025a) extends to multi-table and multi-hop rea-
soning but still relies on text, not raw images.

In parallel, multimodal QA has made signifi-
cant progress with general-purpose models like
LLaVA (Li et al., 2025a), BLIP-2 (Li et al., 2023b),
and GPT-4.1 (OpenAl et al., 2024) demonstrating
strong capabilities on image-based tasks. While
current models excel in general visual understand-
ing, their capacity for reasoning across multiple
tables presented as images remains largely unex-
plored by existing benchmarks.

23

Reasoning across multiple tables demands corre-
lating information from potentially disparate struc-
tures via multi-hop operations, a known challenge
for current models (Pal et al., 2023). While prior
work explored multi-table QA (Pal et al., 2023),
summarization (Zhang et al., 2024b), and text-to-
SQL (Wu et al., 2025a), these efforts predominantly
relied on textual or structured data representations.
They often bypassed the complexities of interpret-
ing combined visual table layouts, a critical re-
quirement for agents interacting with screen data.

Multi-Tabular Reasoning

MTabVQA directly addresses this research gap by
focusing on multi-tabular visual reasoning. As
in Table 1, prominent prior benchmarks like WTQ
(Pasupat and Liang, 2015), WikiSQL (Zhong et al.,
2017), and even multi-table focused ones such as
Spider (Yu et al., 2018) and MMQA (Wu et al.,
2025a), primarily operate on textual or structured
representations of tables. While MMTab (Zheng
et al., 2024) introduced image-based tables, its fo-
cus remained on single-table scenarios.

In contrast, MTabVQA specifically requires
models to answer complex, multi-hop questions
by integrating information presented across multi-
ple table images. This necessitates visual parsing
of diverse table layouts from images, a capability
not comprehensively evaluated by existing bench-
marks that are either non-visual or single-table cen-
tric. Thus, MTabVQA’s unique combination of
multi-table reasoning and image-based input di-
rectly targets this underexplored area.

3 MTabVQA Dataset

We introduce Multi-Tabular Visual Question
Answering (MTabVQA), a new dataset designed
to evaluate and improve multi-hop reasoning
over visually rendered tables. This dataset com-
prises two distinct and complementary components:
MTabVQA, a benchmark with 3,745 QA pairs for
evaluating model performance, and MTabVQA-
Instruct, a large-scale instruction-tuning dataset
with 15,853 examples. The MTabVQA benchmark
is further divided into four sub-datasets based on
the primary source of the underlying table data.
The detailed composition of both the sub-datasets
and their sources is shown in Table 2.



Dataset Split Source Sub-dataset #QA Pairs #Tables Proportion (%)
QFMTS (Zhang et al., 2024b) MTabVQA-Query 2456 5541 65.7%
Spider (Yu et al., 2018) MTabVQA-Spider 1048 2363 27.9%
MTabVQA  Atis (Dahl et al., 1994) MTabVQA-Atis 112 429 3.0%
MiMoTable (Li et al., 2025b) MTabVQA-Mimo 129 166 3.4%
Total Eval Set 3745 8499 100.0%
MultiTabQA (Pal et al., 2023) - 10,990 21,976 69.3%
Spider (Yu et al., 2018) - 2395 5845 15.2%
MTabVQA- BIRD (Liet al., 2023a) - 1572 3144 9.9%
Instruct Atis (Dahl et al., 1994) - 384 1780 2.4%
MiMoTable (Li et al., 2025b) — 512 719 3.2%
Full Instruct Set 15,853 33,464 100.0%

Table 2: Detailed composition of the MTabVQA and MTabVQA-Instruct datasets. The table shows the original data
sources and provides statistics for each sub-dataset, including the number of QA pairs and unique tables.

To ensure a strict and fair separation between
training and evaluation, these components are con-
structed from entirely disjoint data sources. The
MTabVQA benchmark is built primarily from the
development and test splits of its source datasets,
while MTabVQA-Instruct is sourced exclusively
from training splits. This prevents data leakage and
guarantees that models are evaluated on unseen
data structures and instances. The remainder of
this section details the multi-stage pipeline (illus-
trated in Figure 2) used to construct both datasets,
which includes data sourcing, relational sampling,
image rendering, QA pair generation, and rigorous
verification.

3.1 Tabular Data Collection

MTabVQA utilizes tabular data from BIRD (Li
et al., 2023a), Spider (Yu et al., 2018), MiMoTable
(Li et al., 2025b), QFMTS (Zhang et al., 2024b),
and ATIS (Dahl et al., 1994). We prioritized text-
to-SQL datasets as their associated complex SQL
queries often involve multi-table joins, naturally
lending themselves to multi-table reasoning tasks.

To ensure our benchmark targets multi-table rea-
soning, we first identified relevant database subsets
(Figure 2, Step 1). We parsed SQL queries from
the source datasets, specifically selecting those re-
quiring multi-table join operations. This analysis
confirmed rich inter-table dependencies suitable for
our task. Based on this query analysis, we extracted
data instances for the MTabVQA split: 1,048 multi-
join queries from Spider (Yu et al., 2018) form-
ing MTabVQA-Spider, 2,578 multi-table instances
from QFMTS (Zhang et al., 2024b), and 112 and

129 multi-table pairs from ATIS (Dahl et al., 1994)
and MiMoTable (Li et al., 2025b), respectively.
The large and complex BIRD (Li et al., 2023a)
dataset, over 7,200 join queries across 69 databases,
was primarily used to generate MTabVQA-Instruct.
This query-driven selection ensures that the un-
derlying data inherently necessitates multi-table
reasoning.

3.2 Data Extraction and Preprocessing

Following the identification of relevant database
subsets (Section 3.1), we employed a pipeline to
process the data. For each subset, the pipeline
extracted the database schemata, including table
definitions, column types, primary keys, and for-
eign key relationships defining inter-table links,
and converted the relational data from its native
storage (e.g., SQLite) into JSON format. As full ta-
bles can be too large for visualization and efficient
processing, we adopted a controlled sampling strat-
egy. Tables with more than N4, = 50 rows were
sampled, reducing size while maintaining a bal-
ance between visual clarity and representativeness
across datasets.

To preserve crucial relational information be-
tween multiple tables during sampling, we utilized
a graph-based approach detailed in Algorithm 1
(Appendix A). This method ensures referential
integrity by preferentially sampling rows linked
across related tables via foreign keys, focusing on
connections relevant to the multi-table queries iden-
tified earlier. The final output for each instance con-
sists of the sampled table data and corresponding
schemata, serialized into JSON.
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Figure 2: MTabVQA Construction Framework Overview. (1) Data Sourcing & Sampling: Identify multi-table relational
data via SQL joins, extract tables, apply relational sampling. (2) Visual QA Generation: Generate multi-hop QA pairs via
SQL-to-question conversion or LLM-guided generation from sampled tables/taxonomy; render tables as images. (3) Verification
& Finalization: Apply automated (LLM) and human verification for quality and multi-table necessity.

3.3 Visual Table Rendering

To ensure MTabVQA evaluates visual reasoning
over image-based inputs, the sampled tabular data
for each QA pair was rendered into images. This
step forces models to interpret visual layouts over
structured text. We utilized a rendering pipeline
employing dataframe_image” (with selenium or
matplotlib backends) and custom Pillow scripts.
This process introduced significant visual diversity
by systematically varying structural aspects (e.g.,
column/row dimensions, relative table positioning)
and appearance features (e.g., color schemes, ty-
pography, grid styles) across 10 distinct, randomly
applied styling themes. This approach simulates
the varied appearances of tables in real-world doc-
uments and web pages. Further details on the spe-
cific themes are provided in Appendix D.

3.4 Multi-Hop QA Pair Generation

The QA pairs of the MTabVQA benchmark are de-
signed for multi-hop reasoning across table images,
generated via two strategies (Figure 2, Steps 2-3):
1. SQL-to-Question (Step 2): We converted com-
plex, multi-table SQL queries (from Section 3.1)

2dexplo/dataframe_image

into natural language questions. For each SQL
query, we executed it on sampled table subsets
(S 4, Sp) for a ground-truth answer. We used Gem-
ini Flash 2.0 (Hassabis et al., 2024) to paraphrase
the SQL (given schemes and instructions; Figure 2,
bottom-left prompt) into a question, creating QA
pairs grounded in verifiable SQL logic.

2. Taxonomy-Guided Generation (Step 3):
To diversify reasoning types, an LLM generated
novel QA pairs from sampled table subsets and
a predefined question taxonomy. This taxonomy,
adapted from (Wu et al., 2025b) to cover common
multi-table reasoning patterns (e.g., multi-hop fact-
checking, aggregation), guided the LLM (with few-
shot examples; Figure 2, upper-right prompt) to cre-
ate questions requiring data from >2 tables, plus
answers and reasoning steps in structured JSON.
Figure 3 shows the distribution of the question cat-
egories, showing that most of the questions are
fact-checking, analysis, aggregation, or ranking.

3.5 Verification and Filtering

To ensure QA quality and multi-table focus, our ver-
ification process (Figure 2, Step 3) was done by au-
tomated assessment from three LLM agents (Hass-
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Figure 3: Distribution of verified question categories in
the MTabVQA benchmark. "Other" includes categories
like Anomaly Detection, Arithmetic Calculation, and
Multi-hop Numerical Reasoning (/N = 3,745 QA pairs).
See Appendix F for detailed descriptions and examples
of the primary categories.

abis et al., 2024), guided by a verification prompt
(Appendix C). These agents evaluated question va-
lidity, multi-hop needs, answer accuracy, reasoning
soundness, and multi-table necessity (>2 tables).
LLM outputs (JSON with scores/flags) were aggre-
gated by majority vote.

Pairs meeting criteria (majority valid, confirmed
multi-table use, average score >7.0) advanced to
human verification using a Streamlit app (Appendix
E) for final checks on correctness, especially for
complex cases. Human Validation was conducted
by one annotator. Only pairs passing both au-
tomated and human checks were integrated into
MTabVQA. This LL.M-assisted human oversight
yielded a high-quality benchmark by filtering in-
valid tables or incorrect QA pairs.

4 Experiments

This section details the experiments conducted to
evaluate VLM capabilities on visual multi-tabular
reasoning using our MTabVQA benchmark. Our
experiments encompass three key areas:

1. Benchmarking Current VLMs: We first es-
tablish baseline performance by evaluating leading
open-source and proprietary VLMs on the MTab-
VQA split and compare it with our fine-tuned
model (Section 4.1).

2. Evaluating Post-Training Strategies: We in-
vestigate and compare the effectiveness of three
distinct post-training techniques to improve VLM
performance: Chain-of-Thought (CoT) prompting,

Group Relative Policy Optimization (GRPO), and
Supervised Fine-Tuning (SFT) (Shao et al., 2024)
(Section 4.2).

3. Analyzing Cross-Dataset Generalization: We
investigate how the composition (i.e., source and
scale) of the instruction-tuning data affects model
performance. To do this, we fine-tune models on
distinct subsets of MTabVQA-Instruct and evaluate
their ability to generalize across the full, unseen
MTabVQA benchmark (Section 4.3).

4.1 Benchmarking

We conducted a comprehensive benchmarking
study on MTabVQA to establish baselines for
multi-table visual reasoning. We evaluated lead-
ing proprietary VLMs (GPT-4.1 (OpenAl et al.,
2024), Gemini Flash 2.0 (Hassabis et al., 2024))
and prominent open-source alternatives (Qwen2.5
(Team et al., 2025b), Gemma-3 (Team et al.,
2025a), LLaVA-One-Vision (Li et al., 2025a),
InternVL3 (Zhu et al., 2025), Phi-3.5 (Abdin
et al., 2024)), alongside our fine-tuned TableVi-
sion model. We assessed models in a zero-shot
setting across all four MTabVQA sub-datasets (Spi-
der, Query, ATIS, and MiMo), instructing them to
generate structured JSON (Appendix H.1). Gener-
ation parameters were set to a temperature of 1.0
and top-P of 1.0.

Evaluation Metrics. We primarily use EM for
its strict correctness assessment, especially suitable
for factual answers from tables. To capture seman-
tic similarity and partial correctness, we also report
F1 score, precision (P), and recall (R), providing a
more nuanced view of answer quality.

The results (Table 3) highlight that visual multi-
tabular reasoning is a challenging task for cur-
rent VLMs. Open-source VLMs like LLaVA-One-
Vision (2.2% EM, 16.7% F1 overall) and Phi-3.5-
Vision struggled significantly in zero-shot, with
Gemma-3 being the strongest open-source base-
line (11.8% EM, 40.1% F1 overall). Even propri-
etary models like GPT-4.1 (37.0% EM, 61.7% F1
overall) did not achieve perfect scores and showed
performance dips on certain splits. For example,
GPT-4.1’s score on ATIS (6.3% EM) is particularly
revealing. It’s very high recall (86.3%) but low pre-
cision indicates that the model often identifies the
correct information but includes it within verbose
text, thus failing the strict EM criterion.

TableVision. To demonstrate the value of tar-
geted instruction fine-tuning, we introduce Table-
Vision. We used Qwen2.5-VL-7B (Team et al.,



Model MTabVQA-Spider MTabVQA-Query MTabVQA-ATIS MTabVQA-MiMo Overall
EM F1 P R EM Fl P R ‘ EM F1 P R EM Fl1 P R EM F1
Open-Source VLMs (Zero-Shot)
LLaVA-OV-Qwen2-7B 22 20.0 195 293 | 23 157 159 236| 00 92 59 338| 07 55 43 19.1| 2.1 184
Phi-3.5-Vision-Instruct 2.9 26.1 259 396 | 24 220 223 347 | 1.8 150 153 248 | 08 32 36 33 | 25 223
InternVL3-8B-Instruct 6.1 324 330 39.1 | 52 248 269 296 | 36 203 195 319| 7.0 19.1 223 213 | 54 266
Qwen2.5-VL-7B 80 398 404 440 | 7.8 339 348 380 | 63 326 290 486 | 93 222 259 228 | 7.8 351
Gemma-3-12B-IT 156 48.0 482 534|103 381 394 426 |11.6 351 342 408 | 9.3 18.6 220 18.8 |11.8 40.1
Proprietary VLMs (Zero-Shot)

Gemini-2.0-Flash 429 685 692 712|314 573 582 605|223 360 372 375|240 423 492 412|341 593
GPT-4.1 49.0 743 747 76.6 | 342 585 592 608 | 63 399 300 863|202 39.6 449 388 |37.0 617
Fine-tuned Model (Ours)

TableVision (Ours) 324 643 66.6 66.1 ‘ 49.8 726 740 735 ‘ 33.0 459 484 4738 ‘ 20.1 362 40.8 364 ‘ 434 68.2

Table 3: Performance Comparison of VLMs on MTabVQA Sub-datasets (%), and Overall EM/F1 (%). Models
categorized and sorted by overall F1 score within categories. Overall scores are weighted averages. Best overall and
best open-source zero-shot overall scores are bolded. EM denotes Exact Match, P Precision, and R Recall.

2025b) as the base model and fine-tuned it on
our MTabVQA-Instruct dataset using a parameter-
efficient training approach with Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022) at a rank of 128. As
shown in Table 3, TableVision achieved the high-
est overall performance (43.4% EM, 68.2% F1),
surpassing all other models, including GPT-4.1, on
the MTabVQA-Query (49.8% EM, 72.6% F1) and
MTabVQA-ATIS sub-datasets. This result shows
that targeted fine-tuning can enable smaller open-
source models to outperform larger proprietary sys-
tems on complex visual multi-tabular reasoning, un-
derscoring the effectiveness of MTabVQA-Instruct.

4.2 Post-training VLMs for Multi-Table
Visual Reasoning

To identify the most effective methods for enhanc-
ing VLM performance on visual multi-tabular rea-
soning, we conducted a controlled comparison of
several post-training techniques. This section de-
tails the experimental setup and the corresponding
results.

Experimental Setup. Our investigation com-
pares three distinct post-training strategies. For
these intensive experiments, we selected the
Qwen2.5-VL-3B model (Team et al., 2025b) as
our base VLM, primarily due to its manageable
size, which is crucial for the significant compu-
tational requirements of advanced methods like
GRPO (Shao et al., 2024). The training was con-
ducted on a specific small subset of our MTabVQA-
Instruct dataset: the 2,395 QA pairs derived from
the Spider data source as described in Table 2. This
subset was chosen for two key reasons: its data
quality and complex join operations provide a chal-

lenging and high-quality reasoning task, and its
effectiveness for fine-tuning is demonstrated in our
analysis (Section 4.3). To ensure a direct and fair
comparison, all evaluations were performed on the
corresponding MTabVQA-Spider sub-dataset from
our MTabVQA benchmark.

Results and Analysis. First, we established a
baseline by evaluating the zero-shot performance
of the 3B model. Consistent with observations for
larger models (Section 4.1), the base 3B model ex-
hibited poor initial performance on this complex
multi-hop reasoning task, achieving an EM of 2.8%
and an F1 score of 22.9% (Figure 4). We then eval-
uated the efficacy of using step-by-step reasoning
through CoT prompting (see Appendix H.2). While
this approach encouraged structured responses, it
resulted in only marginal improvements, with EM
increasing slightly to 3.0% and F1 to 24.5%.

Next, recognizing the reasoning-intensive na-
ture of multi-tabular VQA, we investigated GRPO
(Shao et al., 2024), a reinforcement learning-based
post-training technique (training details in Ap-
pendix G). As shown in Figure 4, GRPO improved
performance over the CoT baseline, achieving an
EM of 13.1% and an F1 score of 46.5%.

Subsequently, we performed SFT. For this, we
employed LoRA (Hu et al., 2022) with a rank of
128 for parameter-efficient training. SFT yielded
substantial performance gains over both CoT and
GRPO, boosting EM to 28.0% and F1 to 55.9%
(Figure 4). This demonstrates the strong effec-
tiveness of targeted instruction tuning with SFT
for this task in our experiments. While GRPO
showed improvement, its gains did not surpass
SFT with LoRA. We hypothesize that the effec-



@ Exact Match @ FL
60

50
40

30

2.8 30

, i -

Zero-Shot coTt

GRPO SFT

Figure 4: Performance comparison of Qwen2.5-VL-3B
on the MTabVQA with different post-training strategies.

tiveness of GRPO in this context might be limited
by the challenge of defining a more sophisticated
reward function than a simple exact match/F1 score,
which could better capture nuanced aspects of vi-
sual multi-tabular reasoning.

4.3 Cross-Dataset Generalization and the
Impact of Fine-Tuning Data

In this section, we investigate a central question for
instruction tuning: which data source provides the
most effective training signal for achieving robust,
generalizable performance? To answer this, we
analyze how the source and scale of fine-tuning
data influence a model’s ability to generalize across
the different sub-datasets present in our benchmark.

Experimental Setup. We used Qwen2.5-VL-7B
as our base VLM for all experiments. We created
several fine-tuned model variants by training on
different subsets of our MTabVQA-Instruct dataset.
These subsets were chosen to isolate the effects of
data scale and source diversity (see Table 2 for their
origins):

¢ MiMo+ATIS Subset: A small, diverse set
(896 examples).

» Spider Subset: A medium-sized, high-quality
set (2,395 examples).

* MultiTabQA Subset: A large but more
narrowly-focused set (10,990 examples).

* Full Instruct Set: The complete, diverse
training dataset (15,853 examples), used to
train our final TableVision model.

Each of these fine-tuned models was then evaluated
on the entire MTabVQA benchmark, testing its
performance across all four sub-datasets (Spider,
Query, ATIS, MiMo). This cross-dataset evaluation
protocol allows us to measure how well training on
one data source generalizes to others.

Results and Analysis. The results, detailed in
Table 4, reveal a complex relationship between fine-
tuning data and model performance, highlighting
that both data diversity and data alignment are more
critical than raw data scale alone.

First, we observe strong evidence of domain-
specific alignment. The model trained on the Spi-
der subset, for instance, demonstrated the best per-
formance on the corresponding MTabVQA-Spider
evaluation sub-dataset (64.3% F1). Similarly,
the model fine-tuned on the MiMo+ATIS subset
achieved the highest scores on the ATIS (46.5%)
and MiMo (39.7%) evaluation sub-datasets. This
shows that targeted training on a specific data
source is effective at improving performance on
in-domain tasks.

However, the source of the fine-tuning data is
critically important, as scale alone does not guar-
antee success. The most striking result is the poor
performance of the model trained on the large Mul-
tiTabQA subset. Despite being the largest single-
source training set (10,990 examples), it yielded
the lowest overall F1 score (30.2%) besides the
zero-shot baseline. While the MultiTabQA data
is extensive, its characteristics do not align well
with our visually-rich, multi-domain benchmark,
likely resulting in a domain shift that harms gen-
eralization. This demonstrates that a large volume
of narrowly-focused or misaligned data can be less
effective than smaller, but more diverse or better-
aligned datasets.

Ultimately, the experiments show that combin-
ing scale with diversity is the most effective strat-
egy for generalization. The model trained on
the full MTabV QA -Instruct dataset, TableVision,
achieved the highest overall F1 score (68.2%). By
combining multiple data sources, this dataset ex-
poses the model to a wider variety of table struc-
tures, question types, and reasoning patterns. This
diversity is crucial for building a model that can
generalize effectively across the varied scenarios
presented in the MTabVQA benchmark.



Fine-tuning Subset (Source) # Samples ‘ MTabVQA-Spider MTabVQA-Query MTabVQA-ATIS MTabVQA-MiMo Overall

| EM F1 | EM F1 | EM FI | EM F1 | EM  Fl
Qwen2.5-VL-7B (Zero-Shot) 0| 80 398 | 78 339 | 63 326 |93 222 | 78 351
MiMo+ATIS Subset 896 | 13.7 457 115 375 357 465 17.1 39.7 13.0 400
Spider Subset 2,395 | 269 59.2 49.8 71.2 134 225 17.1 31.9 415 652
MultiTabQA Subset 10,990 | 10.1 33.2 8.7 28.6 161 419 11.6 255 94 302
MTabVQA-Instruct (Full) 15,853 | 32.4 64.3 49.8 726 330 459 202 362 434 682

Table 4: Performance of fine-tuned models on dataset splits of MTabVQA-Instruct, measuring the influence of the
dataset on the overall performance on MTabVQA. Performance is measured in EM and F1. Bold indicates the best
overall performance. Underline indicates best performance for each MTabVQA sub-datasets.

5 Conclusion

In this work, we introduce MTabVQA, a novel
and challenging benchmark specifically designed
to evaluate the multi-tabular reasoning capabilities
of vision-language models over tables presented as
images. MTabVQA, comprising 3,745 QA pairs,
focuses on a critical yet underexplored area of inte-
grating and reasoning about information distributed
across several table images. This benchmark sig-
nificantly contributes to bridging the gap between
existing table QA benchmarks, which often rely on
single or non-visual tables. We evaluated a range
of SOTA open-source and proprietary VLMs on
MTabVQA, revealing substantial challenges these
models face with visual multi-tabular reasoning. To
address this, we also release MTabVQA-Instruct,
a large-scale instruction-tuning dataset. Our ex-
periments demonstrate that our fine-tuned model,
TableVision on the MTabVQA-Instruct dataset,
leads to considerable performance improvements
on this task. Despite these advancements, the per-
formance of VLMs on MTabVQA indicates sig-
nificant room for growth, underscoring the com-
plexities of robust visual multi-tabular reasoning
and highlighting key areas for future research in
developing more capable VLMs.

In future work, we plan to explore more program-
matically generated or real-world sourced table im-
ages exhibiting even greater visual diversity and
degradation to more rigorously test VLM visual
parsing and grounding capabilities.

Limitations

While MTabVQA represents a significant step to-
wards evaluating visual multi-tabular reasoning, we
acknowledge several limitations.

English-Only. The current iteration of MTab-
VQA is primarily English-centric. Its underly-
ing tabular data, generated questions, and answers

are predominantly in English, which limits the
benchmark’s applicability for evaluating VLMs on
multi-tabular reasoning in other languages. Extend-
ing MTabVQA to include multilingual tables and
queries would be a valuable contribution, allowing
for a more comprehensive assessment of VLM ca-
pabilities across diverse linguistic contexts and pro-
moting research in multilingual visual document
understanding.

Synthetic Table Layout. While MTabVQA tasks
require multi-hop reasoning across table images
and incorporate varied visual renderings, the scope
of this visual complexity could be further expanded.
Real-world documents often contain tables with
highly unconventional layouts, extensive cell merg-
ing/spanning, embedded charts or icons within
cells, and varying image quality (e.g., scanned doc-
uments with noise), which makes the task even
more challenging for LLMs.

Limited Annotation. To verify that the QA pairs
were correct, we used only one annotator to verify
the judgments of the LLM agents. Although the
annotation was carried out carefully, there may
have been minor errors in the data annotation, as it
was not double-checked by two people.

Ethical Considerations

Our work is built upon publicly available academic
datasets, and we did not collect any new private
or personally identifiable information (PII). The
MTabVQA benchmark is designed as a research
tool to facilitate the community’s evaluation and
improvement of multitabular reasoning in vision-
language models in a transparent and reproducible
manner. We acknowledge that the source datasets,
while standard in the field, may contain inherent
societal biases that our benchmark could reflect.
We encourage users of our dataset to be mindful of
these potential issues.



The human verification stage, crucial for en-
suring data quality as described in Section 3.5,
was conducted by one of the paper’s authors and
did not involve external crowdworkers. To mini-
mize computational cost and environmental impact,
our experiments prioritized parameter-efficient fine-
tuning methods (LoRA) and utilized smaller model
variants where appropriate.

Acknowledgement

This work is supported by the Genial4dKMU project,
Universitdt Hamburg, funded by BMBF (grant no.
011S24044B).

References

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed
Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav
Chaudhary, Dong Chen, Dongdong Chen, and 110
others. 2024. Phi-3 Technical Report: A Highly
Capable Language Model Locally on Your Phone.
Preprint, arXiv:2404.14219.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual Question An-
swering. In Proceedings of the 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), ICCV
’15, page 2425-2433, USA. IEEE Computer Society.

Sara Bonfitto, Elena Casiraghi, and Marco Mesiti.
2021. Table Understanding Approaches for Extract-
ing Knowledge from Heterogeneous Tables. WIREs
Data Mining Knowl. Discov., 11(4).

Panfeng Cao, Ye Wang, Qiang Zhang, and Zaigiao
Meng. 2023. GenKIE: Robust Generative Multi-
modal Document Key Information Extraction. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 14702—-14713, Singa-
pore. Association for Computational Linguistics.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020. Hy-
bridQA: A Dataset of Multi-Hop Question Answer-
ing over Tabular and Textual Data. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 1026-1036, Online. Association
for Computational Linguistics.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the Scope of the ATIS
Task: The ATIS-3 Corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, pages 43—-48, New Jersey.

Naihao Deng, Zhenjie Sun, Ruiqi He, Aman Sikka,
Yulong Chen, Lin Ma, Yue Zhang, and Rada Mihal-
cea. 2024. Tables as Texts or Images: Evaluating
the Table Reasoning Ability of LLMs and MLLMs.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 407-426, Bangkok,
Thailand. Association for Computational Linguistics.

Demis Hassabis, Koray Kavukcuoglu, and Google Deep-
Mind. 2024. Introducing Gemini 2.0: Our New Al
Model for the Agentic Era. Blog post, Google Deep-
Mind.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,
Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. 2024. WebVoyager: Building an End-
to-End Web Agent with Large Multimodal Models.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 6864—6890, Bangkok, Thailand.
Association for Computational Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-Rank Adaptation
of Large Language Models. In The Tenth Inter-
national Conference on Learning Representations,
2022, Virtual Event. ICLR 2022.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based Neural Structured Learning for Sequen-
tial Question Answering. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1821—
1831, Vancouver, Canada. Association for Computa-
tional Linguistics.

Duff Johnson. 2018. PDF Statistics — the Universe of
Electronic Documents. PDF Association presenta-
tion.

Larissa R. Lautert, Marcelo M. Scheidt, and Carina F.
Dorneles. 2013. Web Table Taxonomy and Formal-
ization. SIGMOD Rec., 42(3):28-33.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng
Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yan-
wei Li, Ziwei Liu, and Chunyuan Li. 2025a. LLaVA-
OneVision: Easy Visual Task Transfer. Transactions
on Machine Learning Research.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, Xuanhe Zhou, Ma Chenhao, Guoliang
Li, Kevin Chang, Fei Huang, Reynold Cheng, and
Yongbin Li. 2023a. Can LLM Already Serve as a
Database Interface? A Big Bench for Large-Scale
Database Grounded Text-to-SQLs. In Advances in
Neural Information Processing Systems, volume 36,
pages 42330-42357. Curran Associates, Inc.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023b. BLIP-2: Bootstrapping Language-Image Pre-
training with Frozen Image Encoders and Large Lan-
guage Models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202


https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.1002/WIDM.1407
https://doi.org/10.1002/WIDM.1407
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.979
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.979
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://aclanthology.org/H94-1010/
https://aclanthology.org/H94-1010/
https://doi.org/10.18653/v1/2024.findings-acl.23
https://doi.org/10.18653/v1/2024.findings-acl.23
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-long.371
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/P17-1167
https://pdfa.org/wp-content/uploads/2018/06/1330_Johnson.pdf
https://pdfa.org/wp-content/uploads/2018/06/1330_Johnson.pdf
https://doi.org/10.1145/2536669.2536674
https://doi.org/10.1145/2536669.2536674
https://openreview.net/forum?id=zKv8qULV6n
https://openreview.net/forum?id=zKv8qULV6n
https://proceedings.neurips.cc/paper_files/paper/2023/file/83fc8fab1710363050bbd1d4b8cc0021-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/83fc8fab1710363050bbd1d4b8cc0021-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/83fc8fab1710363050bbd1d4b8cc0021-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html

of Proceedings of Machine Learning Research, pages
19730-19742. PMLR.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge,
Haidong Zhang, Danielle Rifinski Fainman, Dong-
mei Zhang, and Surajit Chaudhuri. 2024. Table-GPT:
Table Fine-tuned GPT for Diverse Table Tasks. Proc.
ACM Manag. Data, 2(3):176.

Zheng Li, Yang Du, Mao Zheng, and Mingyang Song.
2025b. MiMoTable: A Multi-scale Spreadsheet
Benchmark with Meta Operations for Table Reason-
ing. In Proceedings of the 31st International Con-
ference on Computational Linguistics, pages 2548—
2560, Abu Dhabi, UAE. Association for Computa-
tional Linguistics.

Shicheng Liu, Sina Semnani, Harold Triedman, Jialiang
Xu, Isaac Dan Zhao, and Monica Lam. 2024.
SPINACH: SPARQL-Based Information Navigation
for Challenging Real-World Questions. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, pages 15977-16001, Miami, Florida,
USA. Association for Computational Linguistics.

Chuwei Luo, Yufan Shen, Zhaoqing Zhu, Qi Zheng,
Zhi Yu, and Cong Yao. 2024. LayoutLLM: Layout
Instruction Tuning with Large Language Models for
Document Understanding. In 2024 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 15630-15640, Seattle WA, USA.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victo-
ria Lin, Neha Verma, Rui Zhang, Wojciech Kryscin-
ski, Hailey Schoelkopf, Riley Kong, Xiangru Tang,
Mutethia Mutuma, Ben Rosand, Isabel Trindade,
Renusree Bandaru, Jacob Cunningham, Caiming
Xiong, and Dragomir R. Radev. 2022. FeTaQA:
Free-form Table Question Answering. Trans. Assoc.
Comput. Linguistics, 10:35-49.

Ahmed Nassar, Nikolaos Livathinos, Maksym Lysak,
and Peter Staar. 2022. TableFormer: Table Struc-
ture Understanding with Transformers . In 2022
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4604-4613, Los
Alamitos, CA, USA. IEEE Computer Society.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024. GPT-4 Technical Report. arXiv
preprint. ArXiv:2303.08774.

Vaishali Pal, Andrew Yates, Evangelos Kanoulas, and
Maarten de Rijke. 2023. MultiTabQA: Generating
Tabular Answers for Multi-Table Question Answer-
ing. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6322—6334, Toronto, Canada.
Association for Computational Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional Semantic Parsing on Semi-Structured Tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing, pages 1470-1480, Beijing, China.
Association for Computational Linguistics.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
DeepSeekMath: Pushing the Limits of Mathemat-
ical Reasoning in Open Language Models. Preprint,
arXiv:2402.03300.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table Meets LLM: Can
Large Language Models Understand Structured Ta-
ble Data? A Benchmark and Empirical Study. In
Proceedings of the 17th ACM International Confer-
ence on Web Search and Data Mining, WSDM ’°24,
page 645-654, New York, NY, USA. Association for
Computing Machinery.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane
Riviere, Louis Rouillard, Thomas Mesnard, Geoffrey
Cideron, Jean bastien Grill, Sabela Ramos, Edouard
Yvinec, Michelle Casbon, Etienne Pot, Ivo Pencheyv,
and 197 others. 2025a. Gemma 3 Technical Report.
Preprint, arXiv:2503.19786.

Qwen Team, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, and 24 oth-
ers. 2025b. Qwen2.5 Technical Report. Preprint,
arXiv:2412.15115.

Jian Wu, Linyi Yang, Dongyuan Li, Yuliang Ji, Manabu
Okumura, and Yue Zhang. 2025a. MMQA: Evalu-
ating LLMs with Multi-Table Multi-Hop Complex
Questions. In International Conference on Represen-
tation Learning, volume 2025, pages 48626-48643,
Singapore.

Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Ji-
aheng Liu, Xeron Du, Di Liang, Daixin Shu, Xi-
anfu Cheng, Tianzhen Sun, Tongliang Li, Zhou-
jun Li, and Guanglin Niu. 2025b. TableBench: A
Comprehensive and Complex Benchmark for Table
Question Answering. In Proceedings of the Thirty-
Ninth AAAI Conference on Artificial Intelligence and
Thirty-Seventh Conference on Innovative Applica-
tions of Artificial Intelligence and Fifteenth Sympo-
sium on Educational Advances in Artificial Intelli-
gence, AAAT'25/TAAT’25/EAAT’2S5, pages 25497—
25506. AAAI Press.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A Large-Scale Human-Labeled


https://doi.org/10.1145/3654979
https://doi.org/10.1145/3654979
https://aclanthology.org/2025.coling-main.173/
https://aclanthology.org/2025.coling-main.173/
https://aclanthology.org/2025.coling-main.173/
https://doi.org/10.18653/v1/2024.findings-emnlp.938
https://doi.org/10.18653/v1/2024.findings-emnlp.938
https://doi.org/10.1109/CVPR52733.2024.01480
https://doi.org/10.1109/CVPR52733.2024.01480
https://doi.org/10.1109/CVPR52733.2024.01480
https://doi.org/10.1162/TACL_A_00446
https://doi.org/10.1162/TACL_A_00446
https://doi.org/10.1109/CVPR52688.2022.00457
https://doi.org/10.1109/CVPR52688.2022.00457
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.18653/v1/2023.acl-long.348
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2412.15115
https://proceedings.iclr.cc/paper_files/paper/2025/file/794a425a2e47e05d29d30f79b79a692d-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/794a425a2e47e05d29d30f79b79a692d-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/794a425a2e47e05d29d30f79b79a692d-Paper-Conference.pdf
https://doi.org/10.1609/aaai.v39i24.34739
https://doi.org/10.1609/aaai.v39i24.34739
https://doi.org/10.1609/aaai.v39i24.34739
https://doi.org/10.18653/v1/D18-1425

Dataset for Complex and Cross-Domain Semantic others. 2025. InternVL3: Exploring Advanced Train-
Parsing and Text-to-SQL Task. In Proceedings of the ing and Test-Time Recipes for Open-Source Multi-
2018 Conference on Empirical Methods in Natural modal Models. Preprint, arXiv:2504.10479.
Language Processing, pages 3911-3921, Brussels,

Belgium. Association for Computational Linguistics.

Jiaxin Zhang, Wentao Yang, Songxuan Lai, Zecheng
Xie, and Lianwen Jin. 2025. DocKylin: A Large
Multimodal Model for Visual Document Understand-
ing with Efficient Visual Slimming. In Proceedings
of the Thirty-Ninth AAAI Conference on Artificial
Intelligence and Thirty-Seventh Conference on In-
novative Applications of Artificial Intelligence and
Fifteenth Symposium on Educational Advances in
Artificial Intelligence, AAAT'25/IAAT’25/EAAT’2S,
pages 9923-9932. AAAI Press.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2024a. TableLlama: Towards Open Large General-
ist Models for Tables. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 6024-6044, Mexico City, Mexico. Association
for Computational Linguistics.

Weijia Zhang, Vaishali Pal, Jia-Hong Huang, Evangelos
Kanoulas, and Maarten de Rijke. 2024b. QFMTS:
Generating Query-Focused Summaries over Multi-
Table Inputs. In ECAI 2024 - 27th European Confer-
ence on Artificial Intelligence, Including 13th Con-
ference on Prestigious Applications of Intelligent Sys-
tems (PAIS 2024), volume 392 of Frontiers in Artifi-
cial Intelligence and Applications, pages 3875-3882,
Santiago de Compostela, Spain. IOS Press.

Mingyu Zheng, Xinwei Feng, Qingyi Si, Qiaogiao She,
Zheng Lin, Wenbin Jiang, and Weiping Wang. 2024.
Multimodal Table Understanding. In Proceedings of
the 62nd Annual Meeting of the Association for Com-
putational Linguistics, pages 9102-9124, Bangkok,
Thailand3. Association for Computational Linguis-
tics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating Structured Queries from
Natural Language using Reinforcement Learning.
Preprint, arXiv:1709.00103.

Fengbin Zhu, Wengiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A Question Answering
Benchmark on a Hybrid of Tabular and Textual Con-
tent in Finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3277-3287, Online. Association for
Computational Linguistics.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu,
Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan,
Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xue-
hui Wang, Yue Cao, Yangzhou Liu, Xingguang Wei,
Hongjie Zhang, Haomin Wang, Weiye Xu, and 32


https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.1609/aaai.v39i9.33076
https://doi.org/10.1609/aaai.v39i9.33076
https://doi.org/10.1609/aaai.v39i9.33076
https://doi.org/10.18653/v1/2024.naacl-long.335
https://doi.org/10.18653/v1/2024.naacl-long.335
https://doi.org/10.3233/FAIA240951
https://doi.org/10.3233/FAIA240951
https://doi.org/10.3233/FAIA240951
https://doi.org/10.18653/V1/2024.ACL-LONG.493
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://arxiv.org/abs/2504.10479
https://arxiv.org/abs/2504.10479
https://arxiv.org/abs/2504.10479

A

Relational Table Sampling

Algorithm 1 details our method for creating smaller, interconnected samples from large databases. We
start by randomly selecting a limited number of rows (up to a maximum, N,,,, = 50) from one initial
table. Then, using the database’s foreign keys, we identify other tables linked to this first one. When
sampling from these linked tables, the crucial step is to find and prioritize rows that are directly related
to the rows already chosen from the previous table. This is achieved by matching values in the specific
columns that link the tables. This process of finding related data and sampling continues as the algorithm
explores outwards to other connected tables, ensuring the final set of sampled tables forms a related subset
of the original database.

Algorithm 1 Relational Table Sampling

e RN R

—_ e e e
AN S Tl

Input:
D: Input database (collection of tables)
R: Set of foreign key relationships between tables in D
Npaz: Maximum number of rows per sampled table
(V' Set of table identifiers derived from D)
(G = (V, E): Relationship graph derived from D and R)

Output:
S: Set of pairs (t, S;), where S; is the sampled row subset for table t € V'
S+ 0;P<«0 > S: Output samples, P: Processed tables set
tstart < SelectSeed(V, G) > Select a starting table (e.g., highest degree)
Starare < Sample(tsiarts Nmaz) > Sample initial rows for sz
S {(tstarts Storars) b3 P {tstart} > Update output set and processed set
Initialize @Q; Q.Enqueue(tstqrt) > (Q: Queue for Breadth-First Search (BFS)
while () is not empty do > Perform BFS traversal
teurr < Q.Dequeue() > teurr: Current table being processed
for each t¢,..; € Neighbors(teyrr, G) \ P do > t.¢;: Related, unprocessed neighbor table
Riinkea < GetLinkedRows(t,cr, teurrs Stoy,rs R) > Get rows in ¢, linked to sampled rows
St,., < SampleSubset(Rjinked, Nmaz) > Sample a subset from linked rows, max size N4z
S+ SU{(tret, St,..,)} > Add the new sample to the output
P+ PU{tra}; Q.Enqueue(t, ) > Mark ¢,..; as processed and add to queue
end for
: end while
: return S > Return the final set of sampled table subsets




B Data Sourcing: Join and Filter Details

This section provides a detailed breakdown of the process used to identify and filter data instances requiring
multi-table join operations from the source datasets, as mentioned in Section 3.1. This formed the basis
for constructing both the MTabVQA and MTabVQA-Instruct splits, ensuring a focus on multi-tabular
reasoning. The primary method involved parsing SQL queries associated with text-to-SQL datasets to
detect explicit join clauses (e.g., ‘JOIN®, ‘INNER JOIN*, ‘LEFT JOIN‘). For datasets without explicit
SQL, we relied on provided metadata or question characteristics indicative of multi-table requirements.
B.1 Spider Dataset

The Spider dataset (Yu et al., 2018) is a large-scale text-to-SQL benchmark. We analyzed its train,
development (dev), and test splits to identify questions whose corresponding SQL queries involved joins.

¢ Train Split:
— Total Questions: 7,000
— Questions with SQL Joins: 2,771
— Selected for MTabVQA-Instruct (after filtering and processing): 2,395 instances.
* Development (Dev) Split:
— Total Questions: 1,034
— Questions with SQL Joins: 408
o Test Split:
— Total Questions: 2,147
— Questions with SQL Joins: 862
e MTabVQA (from Spider Dev/Test):

— Combined Join Questions from Dev & Test: 408 (Dev) + 862 (Test) = 1,270
— Selected for MTabVQA (MTabVQA-Spider-Eval split): 1,048 instances. These were chosen

from the 1,270 join questions based on criteria ensuring clear multi-hop reasoning paths,
unambiguous answers from sampled data, and visual representability.
B.2 QFMTS Dataset
The QFMTS dataset (Zhang et al., 2024b) focuses on query-focused multi-document summarization with
tables. We identified instances requiring information synthesis across multiple tables.

* Total Questions/Instances: 4,908

* Instances Identified as Requiring Multi-Table Reasoning (e.g., via SQL joins or inherent task nature):
2,578

* Selected for MTabVQA (MTabVQA-Query-Eval split, primarily from QFMTS): 2,456 instances.
Filtering ensured complexity and suitability for our visual QA benchmark.
B.3 BIRD Dataset
BIRD (Li et al., 2023a) is another challenging text-to-SQL benchmark designed to evaluate robustness on
large databases and complex queries.

* Total Identified SQL Join Queries (approx.): 7,900

* Generated QA pairs for MTabVQA-Instruct: 1,572 instances. These were generated from a diverse
selection of the join queries, focusing on creating complex multi-hop reasoning scenarios suitable
for instruction tuning.



B.4 MultiTabQA Dataset

The MultiTabQA dataset (Pal et al., 2023) is specifically designed for question answering over multiple
tables.

* Total QA pairs involving joins/multi-table lookups utilized: 10,990

* These were directly incorporated into the MTabVQA-Instruct dataset due to their inherent multi-table
nature.

B.S5 ATIS Dataset

The Air Travel Information System (ATIS) dataset (Dahl et al., 1994) contains spoken language queries
related to flight information, often mapped to relational database queries.

* Total Questions Analyzed: 496
* Instances identified/selected for MTabVQA (MTabVQA-Atis split): 112
* Instances selected/generated for MTabVQA-Instruct: 384 (See Table 2).

B.6 MiMoTable Dataset
The MiMoTable dataset (Li et al., 2025b) focuses on multimodal table understanding.

* Total Questions/Instances: 1,636

* Questions Identified with Multi-Table Requirements (e.g., from problem descriptions or metadata
indicating cross-table information needed): 641

¢ Selected for MTabVQA-Instruct: 512 instances.
¢ Selected for MTabVQA: 129 instances.

B.7 Overall Summary

Across all source datasets, we identified approximately 26,826 potential questions or instances that
involved multi-table join operations or inherently required multi-table reasoning. Through our processing,
filtering, and generation pipeline, a total of 19,608 high-quality, multi-tabular visual question-answering
instances were curated to form the MTabVQA (3,745 pairs) and MTabVQA-Instruct (15,853 pairs, with
some overlap in underlying source tables but disjoint QA pairs) datasets. The filtering criteria included
ensuring genuine multi-hop reasoning, clarity of questions and answers, visual representability of the
involved tables, and overall quality for benchmarking and instruction tuning.



C Verification Prompt

The following prompt was provided to the verification LLM-based verification agents during the automated
assessment phase described in Section 3.5.

You are a verification agent for table-based question answering.
You need to verify if the answer and reasoning for the given
question are correct based ONLY on the provided table data.

[Tables Used]
[Sampled Table Data (JSON Format)]

[Question-Answer Pair]

Question: [Generated Question Text]

Answer: [Generated Answer (JSON Format)]
Reasoning Steps: [Generated Reasoning Steps]
Question Type: [Designated Question Type]

Your task:

1. Check if the question is well-formed and genuinely requires multi-hop reasoning across
MULTIPLE provided tables. Single-table questions are invalid.

2. Verify if the answer is accurate based only on the information present in the given tables.
If the answer is incorrect, 'is_valid' must be 'false'.

3. Check if the 'tables_used' field correctly lists relevant tables and if at least

two tables were necessary.

4. Validate if the reasoning steps are logical, coherent, and correctly lead from the table
data to the answer.

Respond with ONLY a valid JSON object (no introductory text, markdown formatting,
or code blocks outside the JSON structure) containing the following keys:

{{

"is_valid": true/false,

"verification_comments”: "Your detailed verification comments
explaining the validity/issues and
multi-table requirement.”,

"score": <an integer score from @ to 10, where 10 is

perfect adherence to all criteria>,
"uses_multiple_tables”: true/false
1}

Figure 5: LLM prompt for automated QA pair verification. Placeholders like ‘[Generated Question Text]‘ represent
the actual data provided to the model.



D Visual Table Rendering Details

As described in Section 3.3, MTabVQA table images were generated with significant visual diversity to
mimic real-world appearances. For each QA pair, the rendering process introduced controlled variations
across several dimensions using 10 distinct styling themes, randomly selected per table. These themes
systematically varied:

* Structure and Layout:

— Column widths and row heights were adapted to content to ensure readability while introducing
natural variations.

— The relative positioning of multiple table images within the final visual context presented to
the model was also varied (e.g., tables rendered side-by-side, stacked vertically, or with other
layout configurations).

» Appearance (Themes, Fonts, Styles): The 10 distinct styling themes systematically manipulated
the following:

— Color Schemes: This included variations in header background colors (e.g., using specific hex
codes like #4CAF50 (green), #1E88E5 (blue), #333 (dark grey)), cell background colors, text
colors (e.g., white text on dark headers, black text on light backgrounds), and alternating row
shading (’zebra striping’ with colors like #f2f2f2).

— Typography: Different font families (e.g., common serif and sans-serif fonts) were used. Font
weights were varied (e.g., bold headers, normal weight for cell content). Font sizes were
adjusted within themes (e.g., a base size of 12pt in one theme, with relative adjustments for
headers).

— Styling Elements: The presence, style, and color of grid lines were varied (e.g., solid lines,
dashed lines, varying thickness, or minimalist themes with no grid lines). Cell padding was
adjusted to control spacing within cells. Border styles for the overall table and individual cells
were also diversified (e.g., Tpx solid black, 2px solid #0080, or no borders).

This deliberate introduction of visual diversity is key to challenging models on robust OCR and layout
understanding across varied presentations before they engage in multi-tabular reasoning.



E Human Verification Interface

Figure 6 shows the interface of the Streamlit application used for the final human verification stage
(Section 3.5). This tool displayed the rendered table images, the generated question, the LL.M-generated
answer and reasoning, and the automated verification scores, allowing reviewers to make the final

acceptance decision.

M status
User: Not logged in

Dataset: Not selected

Follow steps in main panel.

Edits Recorded

0

M Status
User: Anshul
Dataset: MTabVQA-Spider-Eval

Progress: Item 1/100

Current Agreement

0.0%

Follow stepsin main panel.

Edits Recorded

0

Deploy

M Multi-Table VQA - Human Agreement
Evaluation

® step 1: Enter Your Name

Your Name:

Start Evaluation

(a) Initial login screen for evaluator identification.

M Multi-Table VQA - Human Agreement Evaluation

B step 3: Evaluate & Edit
Table Images:

PROGRAM

Program_ID  Start Year Title Director_ID Channel_ID

1 20020 The Angry Brigade
2006.0 Dracula
2006.0 Another Gountry

2007.0  Gaesar lll: An Empire Without End

2008.0 The Leopard

2
3
4
5 2008.0 Othello
6
7 2008.0 Gyrano de Bergerac
8

2009.0 Camnival

Question: # Predicted Answer:
»{...}

| Find the number of programs for each channel. Return the name of each channel as well.

\ Edit Question/Answer (Optional)

Enable Editing

2. Your Judgment

Based on the (potentially edited) Question/Answer and Tables, is the Answer correct?

Pagree Disagree

(b) Main evaluation screen displaying table images, question, predicted answer, and reviewer judgment options.

Figure 6: Screenshots of the Streamlit application interface used for human verification. Panel (a) shows the user
login step, and panel (b) presents the core evaluation interface with table images and QA details.



F Taxonomy of Reasoning Categories and Performance Analysis

To ensure a diverse and challenging benchmark, we employed a taxonomy-guided approach for generating
the QA pairs. This taxonomy defines distinct reasoning skills that models must demonstrate. This section
provides a detailed breakdown of the most prominent categories, complete with illustrative examples
including rendered tables, and an analysis of how leading proprietary models perform on each.

F.1 Description of Reasoning Categories with Examples

Below are descriptions and examples for the six most frequent reasoning categories in the MTabVQA
benchmark.

Descriptive Analysis. This is a broad category where the goal is to retrieve and present a set of data
based on specified criteria. Unlike fact-checking, which often seeks a single value, descriptive analysis
requires the model to gather multiple rows and columns of information, often by joining tables, and format
them into a comprehensive list. It tests the model’s core ability to parse what is being asked and retrieve a
complete set of relevant, multi-column data.

Question: What are the names of players and the corresponding clubs that they are in?
Golden Answer: [["Nick Price", "Arsenal"], ["Paul Azinger", "Blackburn Rovers"], ...]

Table: Player Table : Club
Player ID Name Club_ID Club_ID Name
1 Nick Price 1 1 Arsenal
2 Paul Azinger 2 2 Blackburn Rovers
3 Greg Norman 5 3 Chelsea
4 Jim Gallagher, Jr. 1 4 Everton
5 David Frost 5 5 Fulham

Multi-hop Fact Checking. This is a more complex form of fact-checking that requires a chain of two
or more reasoning steps (hops). For instance, a model might need to join Table A to Table B to get an
intermediate result, and then use that result to filter or join with Table C to find the final answer.

Question: Which countries’ TV channels are playing some cartoon written by Todd Casey?
Golden Answer: [["United Kingdom"], ["Italy"]]

Table: TV_Channel Table: Cartoon

id Country id Title Writer Channel
1 Italy 1 The Cow...  Michael... 2

2 Poland 2 Ben 10 Todd Casey 1

3 United Kingdom 3 TheLife... Todd Casey 3

Match-Based Fact Checking. These tasks require the model to perform straightforward lookups and
joins across multiple tables to find a specific piece of information. The primary challenge is correctly
identifying the keys to join the tables and retrieving the corresponding value without complex calculations.



Example: Match-Based Fact Checking

Question: What is the name of the director who is in the "Dracula" program?
Golden Answer: [["Hank Baskett"]]

Table : Director Table: Program
Dir_ID Name Age Prog_ID Title Dir_ID
1 DeSean Jackson 45 1 The Angry Brigade 1
2 Hank Baskett 48 2 Dracula 2
3 Greg Lewis 52 3 Another Country 3

Ranking. These tasks require the model to sort a set of results based on a specific criterion (e.g., highest
value, most frequent occurrence) and often retrieve the top-N results. This involves both extraction and
comparison logic.

Example: Ranking

Question: Find the name of the director who is in charge of the most programs.
Golden Answer: [["Greg Lewis"]]

Table: Director Table: Program

ID Name Title Director_ID
1 DeSean Jackson The Angry Brigade 1
2 Hank Baskett Dracula 2
3 Greg Lewis Another Country 3
£ Othello 3

Aggregation. Aggregation tasks require the model to perform mathematical operations over a set of
table rows, such as ‘COUNT", ‘SUM®, or ‘AVG®. This tests the model’s ability to not only extract data but
also to apply numerical reasoning to it.

Example: Aggregation

Question: What is the average age of all the club leaders?
Golden Answer: [["20.166..."]]

Table: Member Table: Club_Leader

Mem_ID Age Club_ID Mem_ID Since
1 18 1 1 2018
2 20 2 2 2017
3 21 3 3 2018

Counting. A specific and frequent type of aggregation, counting tasks require the model to enumerate
the number of items that satisfy a certain condition. This can range from simple counts to more complex
conditional counts after a join.



Example: Counting

Question: How many movies are playing in theater Odeon?
Golden Answer: [["2"]]

Table: Movies Table: MovieTheaters

MovieID Title
101 The Wizard of Oz

Theater MovielD

102 A Night at the Opera gge:r‘;al 18431
103 North by Northwest P

. Royale 106
104 Citizen Kane Odeon 101
105 The Quiet Man o

F.2 Performance by Reasoning Category

To better understand the strengths and weaknesses of current VLMs, we analyzed the performance of
GPT-4.1 and Gemini across the main reasoning categories. The overall performance of GPT-4.1 on the
MTabVQA benchmark is strong, with a weighted F1 score of 61.7%. However, as shown in Figure 7,
performance varies significantly by reasoning type.
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Figure 7: Performance (F1 Score) of GPT-4.1 and Gemini-2.0-Flash on the six most prominent reasoning categories
within the MTabVQA benchmark. Both models excel at descriptive and fact-checking tasks but show weaker
performance on numerical reasoning tasks like counting and aggregation.

The analysis reveals several key trends. Both models demonstrate the highest proficiency on Descriptive
Analysis and Fact Checking tasks, with F1 scores often exceeding 0.65. This indicates that current
models are adept at understanding natural language queries, performing table joins, and retrieving textual
data.

Conversely, performance drops noticeably on tasks requiring explicit numerical reasoning. Aggregation
and, particularly, Counting represent the most significant challenges, with F1 scores falling below 0.57
for both models. This suggests that while VLMs can successfully parse and correlate data, they are more
prone to errors when required to perform precise mathematical operations. This highlights a key area for
future research: improving the quantitative reasoning capabilities of VLMs in complex, multi-table visual
contexts.



G GRPO Training Details

This section provides additional details on the Group Relative Policy Optimization (GRPO) (Shao et al.,
2024) experiments discussed in Section 4.2 for fine-tuning the Qwen2.5-VL-3B model. We utilized the
EasyR1 framework® for these experiments, training for a total of 270 steps. The training was conducted
on a subset of MTabVQA-Instruct derived from the Spider dataset (2,395 examples).

reward/accuracy reward/f1 reward/format
qwen2_5_vl_3b_table_grpo gwen2_5_vl_3b_table_grpo qwen2_5_vl_3b_table_grpo
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Figure 8: GRPO training reward component curves for Qwen2.5-VL-3B over 270 training steps. These plots
illustrate the learning progress for content accuracy (EM, F1), structural format adherence, JSON validity, and the
combined overall reward.

Reward Function: The reward function for GRPO was designed to encourage both semantic correct-
ness and proper output formatting. It was a composite score derived from:

* Content Correctness: Assessed by the weighted sum of Exact Match (EM) and F1 score between
the generated answer and the ground truth.

* Format Adherence: This included two components:

— Structural Format Score: A binary score indicating whether the model’s output correctly
included the required ‘<think>‘ and ‘<answer>‘ tags.

— JSON Format Score: A binary score indicating whether the content within the ‘<answer>* tags
was valid JSON.

The overall reward signal aimed to maximize these components, guiding the model towards generating
accurate and well-formatted responses.

Figure 8 shows the progression of various reward components during the GRPO training process. The
plots for ‘reward/accuracy‘ (EM) and ‘reward/f1°‘ show a general upward trend, indicating learning of

Shttps://github.com/hiyouga/EasyR1
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content correctness. The ‘reward/format‘ and ‘reward/json‘ plots demonstrate that the model quickly
learned to adhere to the specified output structure. The ‘reward/overall® plot reflects the combined
learning signal. The final checkpoint used for evaluation was selected based on the highest ‘reward/overall‘
achieved during training. These settings were chosen to balance training stability, computational efficiency,
and exploration during the reinforcement learning process for the multi-tabular visual question answering
task, aiming for both accurate content and correctly formatted output. Key GRPO training parameters are

summarized in Table 5.

Parameter Value

Core Algorithm
Advantage Estimator GRPO
KL Coefficient (Ax ) 0.01

Training Setup
Base Model Qwen/Qwen2.5-VL-3B-Instruct
Training Data MTabVQA-Instruct (Spider Subset) (2,395 ex.)
Max Training Steps 270
Total Epochs 15
Rollout Batch Size 128

Actor Model (Qwen2.5-VL-3B)
Learning Rate 1e-06
Optimizer AdamW (BF16)
Global Update Batch Size 32

Rollout Generation
Temperature (Training) 1.0
Top-p (Training) 0.99

Num. Generations per Prompt (n) 5

Table 5: GRPO Hyperparameters for Qwen2.5-VL-3B Fine-tuning.



H Model Evaluation and Generation Prompts

This section details the system prompts used for evaluating and generating responses from the Vision-
Language Models (VLMs) in different experimental settings.

H.1 Standard Zero-Shot Evaluation Prompt

For standard zero-shot evaluations of VLMs (Section 4.1), including proprietary models and open-source
baselines before specific post-training, the following system prompt was used. This prompt instructs the
model on how to interpret multi-tabular image data, reason about the question, and provide an answer
strictly in the specified JSON format.

System Prompt: Zero-Shot Evaluation

You are an intelligent assistant capable of understanding and reasoning about multi-tabular data
given as images, each table is one image. You will be presented with one or more tables containing
information on a specific topic.

You will then be asked a question that requires you to analyze the data in the table(s) and provide a
correct answer in strict required format.

Your task is to:

1. Carefully examine the provided table(s) Pay close attention to the column headers, the data types
within each column, and the relationships between tables if multiple tables are given.

2. Understand the question being asked. Identify the specific information being requested and
determine which table(s) and columns are relevant to answering the question.

3. Extract the necessary information from the table(s). Perform any required filtering, joining,
aggregation, or calculations on the data to arrive at the answer.

4. Formulate a clear and concise answer in natural language. The answer should be directly responsive
to the question and presented in a human-readable format. It may involve listing data, presenting
a single value, or explaining a derived insight.

5. Do not include any SQL queries in the answer. But you can use it internally, to come up with answer.
6. Be accurate and avoid hallucinations. Your answer should be completely based on the data

in the provided table(s). Do not introduce any external information or make assumptions not supported
by the data.

7. Be specific and follow the instructions in the question. If the question ask to get specific
columns, return only mentioned columns.

8. If the question is unanswerable based on the provided tables, state "The question cannot be
answered based on the provided data.

9. Please provide only the answer which has been asked, without any additional text (try to use
few tokens). However, take the time to think and reason before

giving your answer. Also, try to provide an answer even if you are unsure.

10. Provide the answer in JSON format with given response schema as given
[['ans1','ans2'],['ans3', 'ans4']]. Respond only with valid JSON format.

Take your time to understand the question. Break it down into smaller steps. Come up with

an answer and examine your reasoning. Finally, verify your answer.

you need to extract answers based on the given multi-hop question [Question] and given multiple tables
[TABLE1], and [TABLE2]. Please only output the results without any other words.

Return the answer in the following JSON format.

Return the answer in JSON schema: : {
"type"”: "json_schema”,
"json_schema": {
"name": "Response”,
"type": "object”,
"properties”: {
"data": {
"type": "array”,
"items": {"type": "array", "items": {"type"”: "string"}},
}
}7
"required”: ["data"],
"additionalProperties”: False,

}’




H.2 Chain-of-Thought (CoT) Evaluation Prompt

For the Chain-of-Thought (CoT) prompting experiments (Section 4.2), a modified system prompt was
used. This prompt explicitly instructs the model to first generate a step-by-step reasoning process (the
chain of thought) and then provide the final answer.

System Prompt: Chain-of-Thought (CoT)

You are an intelligent assistant capable of understanding and reasoning about multi-tabular data
given as images, each table potentially being one image. You will be presented with one or more tables
containing information on a specific topic. You will then be asked a question that requires you to
analyze the data in the table(s) and provide a correct answer in the strictly required format.

Your task is to:

1. Carefully examine the provided table(s): Pay close attention to the column headers, the
data types within each column, and the relationships between tables if multiple tables are given.
2. Understand the question being asked: Identify the specific information being requested and
determine which table(s) and columns are relevant to answering the question.

3. Reason step-by-step (Chain of Thought): Before generating the final answer,

formulate a clear chain of thought outlining how you identified the relevant data,

performed necessary operations (filtering, joining, aggregation, calculations),

and arrived at the result. This reasoning is crucial and MUST be included in the final output.
4. Extract the necessary information from the table(s): Perform any required filtering, joining,
aggregation, or calculations on the data based on your chain of thought to arrive at the answer.
5. Do not include any SQL queries in the final answer JSON. You can use SQL logic internally during
your reasoning (Chain of Thought), but the final output should not contain raw SQL code.

6. Be accurate and avoid hallucinations: Your answer must be completely based on the data in
the provided table(s).

. Provide the output strictly in the specified JSON format: The output must be a single JSON object
containing two keys: “chain_of_thought™ (a string detailing your reasoning steps) and “data"
(an array of arrays containing the answer).

Your entire response must be ONLY a valid JSON string conforming to the schema below.
JSON Schema:
“TTjson
{
"type": "object”,
"properties”: {
"chain_of_thought": {
"type": "string”,
"description”: "A detailed step-by-step explanation of the reasoning process
used to arrive at the answer.”
¥o
"data": {
"type": "array",
"items": {
"type": "array",
"items": {
"type": "string"
3
}?
"description”: "The result data, formatted as an array of arrays, where each
inner array represents a row."
}
T,
"required”: [
"chain_of_thought”,
"data"
]

"additionalProperties”: False

Take your time to understand the question and the data. Break the problem down using Chain of Thought.
Construct the final JSON containing both your reasoning and the extracted data. Verify
your answer and the format before outputting. Remember to output ONLY the JSON string.




H.3 GRPO Thinking Prompt

For the Group Relative Policy Optimization (GRPO) training and generation (Section 4.2 and Appendix
G), the prompt was used. This prompt is similar to the CoT prompt in that it requires an internal
reasoning process (‘<think>...</think>‘) before the final answer, but it is specifically tailored for the
GRPO framework, which often involves distinct markers for thought processes versus final outputs used
in reward calculation. The final answer is expected within ‘<answer>...</answer>" tags in a specific JSON
format.

System Prompt: GRPO Thinking Prompt

You are an intelligent assistant capable of understanding and reasoning about multi-tabular data
given as images, each table is one image. You will be presented with one or more tables containing
information on a specific topic.

You will then be asked a question that requires you to analyze the data in the table(s) and
provide a correct answer in strict required format using multi-hop reasoning.

Your task is to:

1. Carefully examine the provided table(s) Pay close attention to the column headers, the data types
within each column, and the relationships between tables if multiple tables are given.

2. Understand the question being asked. Identify the specific information being requested and
determine which table(s) and columns are relevant to answering the question.

3. Extract the necessary information from the table(s). Perform any required filtering, joining,
aggregation, or calculations on the data to arrive at the answer.

4. Formulate a clear and concise answer in natural language. The answer should be directly
responsive to the question and presented in a human-readable format.

It may involve listing data, presenting a single value, or explaining a derived insight.

5. Do not include any SQL queries in the answer. But you can use it internally, to come up with answer.
6. Be accurate and avoid hallucinations. Your answer should be completely based on the data in the
provided table(s). Do not introduce any external information or make assumptions not

supported by the data.

7. Provide the answer in JSON format with given response schema as given
[['ans1','ans2'],['ans3"', 'ans4']].Respond only with valid JSON format, as shown in the example above.

Strictly, Give answer in this format, using the example below as reference:

You FIRST think about the reasoning process as an internal monologue and then provide the final answer.
The reasoning process MUST BE enclosed within <think> </think> tags. You will be presented with one
or more tables containing information on a specific topic.You will then be asked a question that
requires you to analyze the data in the table(s) and provide a correct answer.The final answer MUST BE
put in <answer> </answer> in json format.

Example JSON format inside <answer>{"data": [[‘ans1’, ‘ans2’], [‘ans3’, ‘ans4’]]}</answer>.
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