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Abstract

Language models built from various sources
are the foundation of today’s NLP progress.
However, for many low-resource languages,
the diversity of domains is often limited, more
biased to a religious domain, which impacts
their performance when evaluated on distant
and rapidly evolving domains such as social me-
dia. Domain adaptive pre-training (DAPT) and
task-adaptive pre-training (TAPT) are popular
techniques to reduce this bias through continual
pre-training for BERT-based models, but they
have not been explored for African multilin-
gual encoders. In this paper, we explore DAPT
and TAPT continual pre-training approaches
for African languages social media domain. We
introduce AfriSocial, a large-scale social me-
dia and news domain corpus for continual pre-
training on several African languages. Lever-
aging AfriSocial, we show that DAPT consis-
tently improves performance (from 1% to 30%
F1 score) on three subjective tasks: sentiment
analysis, multi-label emotion, and hate speech
classification, covering 19 languages. Similarly,
leveraging TAPT on the data from one task
enhances performance on other related tasks.
For example, training with unlabeled sentiment
data (source) for a fine-grained emotion clas-
sification task (target) improves the baseline
results by an F1 score ranging from 0.55% to
15.11%. Combining these two methods (i.e.
DAPT + TAPT) further improves the overall
performance. The data and model resources are
available at HuggingFace1.

1 Introduction

Pre-trained language models (PLMs) are initially
trained on vast and diverse corpora, including ency-
clopedias and web content (Conneau et al., 2020;
Chiang et al., 2022). Subsequently, these pre-
trained models are used in supervised training for
a specific Natural Language Processing (NLP) task

1https://huggingface.co/tadesse/
AfroXLMR-Social

General pre-training
(AfroXLMR)

Tasks

Cross-task TAPT

AfroXLMR-Social
(AfroXLMR + DAPT)

Domain adaptation
       (DAPT)

Figure 1: Continual pre-training illustration. A
general-purpose pretrained model, such as AfroX-
LMR, is first adapted to a social domain, resulting in
AfroXLMR-Social. This model then undergoes Cross-
task TAPT using sentiment analysis, emotion, and hate
speech data without the labels for further fine-tuning.

by further finetuning. Fine-tuned PLMs achieve
strong performance across many tasks and datasets
from various sources (Shi et al., 2025). However,
this raises a question: Do PLMs function univer-
sally across domains, or does continual training of
PLMs with domain-specific data offer better per-
formance?

While some studies have shown the benefit of
continual pre-training on a domain-specific unla-
beled data (Lee et al., 2019; Gururangan et al.,
2020), one domain may not be generalizable to
other domains and languages. Moreover, it is un-
known how the benefit of continual pre-training
may vary with factors like the amount of unla-
beled corpus, the source domain itself, the eval-
uation task, the resource richness of the target
languages, and the trained target model (Guru-
rangan et al., 2020). This raises the question of
whether pre-training on a corpus more directly
tied to the task can further improve performance.
This work addresses these questions by contin-
ual domain adaptive pre-training (DAPT) and task
adaptive pre-training (TAPT) on the downstream

https://huggingface.co/tadesse/AfroXLMR-Social
https://huggingface.co/tadesse/AfroXLMR-Social


subjective NLP tasks in a low-resource language
setup. We consider the social media domain (X)
and News for a continual pre-training from a high-
performing multilingual baseline model, AfroX-
LMR (Alabi et al., 2022). AfroXLMR is a continu-
ally pre-trained model for African languages based
on XLM-RoBERTa (Conneau et al., 2020). We
explore subjective NLP task results from baseline
(the base model result), DAPT, TAPT, and DAPT +
TAPT, on a smaller but directly domain- and task-
relevant unlabeled corpus. The results show that
DAPT and TAPT highly benefit from similar source
NLP tasks. Figure 1 illustrates the general high-
level continual pre-training strategies. In summary,
our contributions are:

• We present AfriSocial, a new quality domain-
specific corpus for 14 African languages, col-
lected from the social domain (X) and news.

• We perform a through analysis of domain and
task adaptive continual pre-training across
subjective NLP tasks for low-resource lan-
guages.

• We achieve state-of-the-art results in the
evaluated NLP tasks and publicly mak-
ing AfriSocial social-domain corpus and
AfroXLMR-Social pretrained models for de-
veloping low-resource languages.

2 Related Work

Domain in NLP Language models (LMs) pre-
trained on text from various sources are the foun-
dation of today’s NLP. Domain adaptation in NLP
refers to enhancing the performance of a model us-
ing similar domain data (target domain) by leverag-
ing knowledge from an existing domain (source do-
main) (Ramponi and Plank, 2020). Domain refers
to different implicit clusters of text representations
in pretrained LMs, such as news articles, social me-
dia posts, medical texts, or legal documents (Aha-
roni and Goldberg, 2020; Shi et al., 2025). Each
domain has its unique characteristics, vocabulary,
and writing style, which can affect the performance
of NLP models when applied to new or unseen
domains. Therefore, a similar domain means the
text source from which the pre-trained model was
made, similar to the target NLP task data source.

Continual Pre-training of LMs There are several
techniques for the downstream NLP task improve-
ments, such as general-purpose pre-training (Wang

et al., 2023), language-adaptive continual pre-
training (Alabi et al., 2022), domain-adaptive pre-
training (Gururangan et al., 2020), task-adaptive
pre-training (Alabi et al., 2022), and data augmen-
tation (Zhang et al., 2024). Prior works have shown
the benefit of continual pre-training using a domain-
specific corpus (Gururangan et al., 2020) and train-
ing LMs in a specific domain from scratch (Huang
et al., 2020). However, continual pre-training is
arguably more cost-effective than training from
scratch, since it is a continuous pre-training from
the existing base language model.

Domain Adaptive Pre-training (DAPT) Domain
Adaptive pre-training (DAPT) is straightforward,
continuing pre-training a model on a corpus of
unlabeled domain-specific text (Aharoni and Gold-
berg, 2020). DAPT techniques handle discrepan-
cies between the source (pre-training) and target
(fine-tuning) domains. Traditional fine-tuning often
yields suboptimal results when pre-trained models
encounter data that diverges significantly from their
training data. In this regard, DAPT techniques re-
duce this mismatch by aligning data distributions,
ensuring the model can generalize better in a better
setup. Lee et al. (2019) considers a single domain
at a time and uses a language model pretrained on
a smaller and less diverse corpus than the most
varied and multilingual language models.

Task Adaptive Pre-training (TAPT) Task-
adaptive pre-training (TAPT) refers to pre-training
on the unlabeled training set for a similar task-
specific data (Gu et al., 2024). Compared to DAPT,
TAPT solely leverages the training data of the simi-
lar downstream task for continuous pre-training. It
uses a far smaller pre-training corpus that is much
more task-relevant (assuming that the training set
represents aspects of the task well). This makes
TAPT much less expensive to run than DAPT.
There are also a combination of various techniques,
such as DAPT followed by TAPT, which is bene-
ficial for end-task performance (Gururangan et al.,
2020).

Language Adaptive Pre-training (LAPT) LAPT
is also called language-adaptive fine-tuning (LAFT)
(Alabi et al., 2022). It focuses on adapting a pre-
trained language model to a specific language(s)
using any language-specific corpus. This is done
by collecting any corpus for fine-tuning language
models without considering the domain (Yu and



Dataset name Task name # lang. Data Sources # Classes

AfriSenti Sentiment analysis 14 News, social media 3
AfriEmo Emotion analysis 17 News, social media 6
AfriHate Hate speech detection 15 News, social media 3
AfriSocial (new domain specific corpus) Unlabeled 14 X and news -

Table 1: List of subjective NLP task evaluation datasets. Social media sources include posts/comments from
YouTube and X. The AfriSenti dataset class labels are positive, negative, and neutral. The AfriEmo dataset labels
are six basic emotions (anger, disgust, fear, joy, sadness, and surprise) in a multi-label annotation (an instance may
have none, one, two, some, or all targeted emotion labels). AfriHate labels are abuse, hate, and neutral.

Joty, 2021; Alabi et al., 2022). LAPT is a vital step
to improve language understanding and representa-
tion, especially for low-resource languages (Wang
et al., 2023). However, in the primary studies that
investigated LAPT with various language-specific
corpora, the impacts of the text sources on specific
NLP tasks are unexplored.

Although XLMR (Conneau et al., 2020) pre-
training corpus is derived from multiple sources
and languages, it has not yet been explored whether
these sources are diverse enough to generalize in
a specific domain and task. This leads to asking
whether subjective tasks related to social media
text can be understood with this generic model. To-
wards this end, we explore further a continual train-
ing of DAPT and TAPT from AfroXLMR-{76L}
(Adelani et al., 2024) 2 and evaluate the impacts
on highly subjective NLP tasks such as sentiment
analysis, multi-label emotion, and hate speech clas-
sification.

3 AfriSocial: Domain Adaptation Corpus

Social Domain in our Work In computational
linguistics, domain boundaries can be defined
through various dimensions, including content,
style, and purpose (Plank, 2016). In this work, we
define the social domain based on two key factors:
1) Convergent textual characteristics, X and news
sources provide a public discourse, comments, reac-
tions, and conversational linguistic patterns that fa-
cilitate social interactions, and cultural expressions
and 2) Functional similarity in downstream tasks,
the selected evaluation task datasets are sourced
from the two sources, shown in Table 1. This group-
ing demonstrates comparable performance patterns
when evaluating entity recognition models across
X and news data, suggesting underlying linguistic

2While the original AfroXLMR (Alabi et al., 2022) cover
20 languages, we make use of the version with 76 lan-
guages (Adelani et al., 2024) with similar adaptation. Through-
out this paper, AfroXLMR-76L is referred to as AfroXLMR.

commonalities despite surface differences and pri-
oritizing functional and distributional similarities
over source platform distinctions (Derczynski et al.,
2016; Ruder and Plank, 2018).

We create AfriSocial, a social domain-specific
corpus comprising X and news for 14 African lan-
guages, shown in Table 2. We select X and news
because they are the most common text sources for
low-resource languages to annotate a dataset for
supervised NLP tasks. The motivations behind cre-
ating this domain-specific corpus are the following.

Limited coverage for African languages The
available well-known compiled corpora are lim-
ited to include African languages; most of them
are only English-centric, such as fineweb (Penedo
et al., 2024) and C4 (Raffel et al., 2020). The rea-
sons include the extra effort required to collect data
for such low-resource languages, the limited avail-
ability of text, and the challenges in detecting the
language and filtering sources.

Text quality issues The quality of the available
corpus is under consideration, especially for low-
resource languages. For example, in the OPUS
corpora (Lison and Tiedemann, 2016), there are
Tigrinya (tir) texts under the Amharic (amh) file as
both languages use the same script. Some of the
available corpora are translated, such as OPUS-100
(Zhang et al., 2020), with the problem that the qual-
ity of the translator tool is still not mature enough
for low-resource languages.

Non availability of social domain corpus To be
specific, a domain-specific corpus is vital for adapt-
ing pre-trained language models into a specific do-
main, such as a health-specific domain. Likewise,
the social media corpus is limited even to high-
resource languages.



Lang. X News Total Sent.

amh 588,154 45,480 633,634
ary 9,219 156,494 165,712
hau 640,737 30,935 671,672
ibo 15,436 38,231 53,667
kin 16,928 72,583 89,511
orm 33,587 59,429 93,016
pcm 106,577 7,781 116,358
som 144,862 24,473 169,335
swa 46,588 — 46,834
tir 167,139 45,033 212,172
twi 8,681 — 8,681
yor 26,560 49,591 76,151
xho — 354,959 354,959
zul 12,102 854,587 866,689
Total 1.82M 1.74M 3.56M

Table 2: AfriSocial corpus statistics at language and
source level, where Total Sent. is the number of sen-
tences. The full names of the languages are presented
in Appendix A.

3.1 Data Sources Selection

Based on our assessment, most of the NLP datasets
of African languages are sourced and annotated
from X and news domain, as sufficient text can be
found in these two sources. As shown in Table 1,
subjective NLP tasks for African languages, such
as sentiment analysis, multi-label emotion, and hate
speech classification datasets, are sourced from X
and news. The AfriSocial corpus is sourced from
similar domains to further enhance these subjective
tasks. There is an X domain corpus and model for
high-resource languages such as XLM-T (Barbieri
et al., 2022) to evaluate and improve task datasets
sourced from X. However, no available corpora
specialize in the social domain for low-resource
African languages. More details about the data
collections are presented in Appendix I.

3.2 Pre-processing and Quality Control

We apply the following quality measures on the
AfriSocial corpus.

Language Identification (LID) We apply LID
tools for each language. For example, for the lan-
guage mixing problem of the existing corpus men-
tioned in Sec §3, we used language-specific LID
tools, GeezSwitch3 to handle Ethiopic script lan-

3https://pypi.org/project/geezswitch/

guages (Amharic and Tigrinya) and pycld34 for the
supported Latin and other script languages at the
sentence level.

Sentence Segmentation The same approach as
language identification, we used tools for each lan-
guage to segment into sentences. For the Ethiopic
script language, we used amseg tool (Yimam et al.,
2021), and for other Latin script languages, we
used NLTK (Bird and Loper, 2004).

Other Preprocessing We exclude sentences that
contain hate/offensive words, very short sentences,
only URL lines, and anonymize personally iden-
tifiable information (PII) such as usernames start-
ing with the @ symbol, and email addresses. We
pay special attention to ensuring that the available
evaluation task data (sentiment, emotion, and hate
speech) do not appear in the AfriSocial corpus be-
fore and after processing. De-duplication is applied
if a near-similar instance is present, excluding it
from AfriSocial, not from the annotated dataset.
Table 2 shows the AfriSocial corpus statistics with
their sources and number of sentences. We did not
perform further processing on the code-switching
text as we trained one single multilingual model
(AfroXLMR-Social), and we need code-switching
or dialectal diversity to be captured in the model.

4 Evaluation Tasks and Datasets

We select subjective NLP tasks for our evaluation
based on the following reasons. 1) Subjective tasks
face more disagreement during annotations, lead-
ing to less performance in the evaluation, especially
for low-resource languages (Fleisig et al., 2023; Be-
lay et al., 2025a). As we can see from the SemEval-
2025 Task 11 (Muhammad et al., 2025c), an emo-
tion detection shared task covering 32 languages,
low-resource languages are not well explored, and
the lowest results are from African languages. 2)
Subjective NLP tasks of African languages are
sourced from X and news, as shown in Table 1.
These sources align with the same domain as the
AfriSocial corpus. The three subjective tasks for
our evaluation are sentiment analysis, multi-label
emotion detection, and hate speech classification.
We keep the original train-test split of all evalua-
tion datasets throughout our experiment for proper
comparison with the benchmark results.

4https://pypi.org/project/pycld3/

https://pypi.org/project/geezswitch/
https://pypi.org/project/pycld3/


AfriSenti AfriEmo AfriHate

Language AfroXLMR +DAPT Language AfroXLMR +DAPT Language AfroXLMR +DAPT

amh 50.09 57.22 afr 43.66 44.57 amh 73.54 78.57
arq 52.22 64.62 amh 68.97 71.67 arq 43.41 45.96
ary 52.86 62.34 ary 47.62 52.63 ary 75.13 75.6
hau 79.34 81.66 hau 64.30 70.74 hau 81.55 80.78
ibo 76.92 79.8 ibo 26.27 54.54 ibo 82.78 88.05
kin 70.95 72.73 kin 52.39 56.73 kin 75.28 78.75
pcm 50.47 52.09 orm 52.28 61.38 orm 67.23 74.11
por 60.93 64.81 pcm 55.39 59.93 pcm 64.85 67.61
swa 28.26 61.42 ptMZ 22.09 36.80 som 55.66 55.64
tso 35.37 38.81 som 48.78 54.86 swa 91.51 91.2
twi 47.2 56.00 swa 30.74 34.35 tir 50.2 55.9
yor 72.27 74.63 tir 57.22 60.71 twi 46.89 48.42
orm 20.09 24.28 vmw 21.18 22.08 xho 50.91 59.17
tir 22.45 24.53 yor 28.65 39.26 yor 53.44 77.9

Avg. 51.39 58.21 Avg. 44.25 51.45 Avg. 65.17 69.83

Table 3: Result of baseline (AfroXLMR) and DAPT (AfroXLMR-Social) across the three datasets (AfriSenti,
AfriEmo, and AfriHate). During TAPT, the text for the task-adaptive data is without the labels, and the evaluation is
cross-tasked among the three target datasets. Reported results are macro-F1.

4.1 AfriSenti: Sentiment Analysis Dataset

AfriSenti (Muhammad et al., 2023) is a sentiment
analysis dataset across 14 African languages. It
aggragates some existing datasets such as Nai-
jaSenti (Muhammad et al., 2022), Amharic Twitter
sentiment (Yimam et al., 2020), and manually cu-
rated data. The data is sourced from X (formerly
Twitter) and annotated in one of the three sentiment
classes: positive, negative, and neutral. From 14
languages, the two languages, Oromo (orm) and
Tigrinya (tir) have only test sets.

4.2 AfriEmo: Multi-label Emotion Dataset

SemEval-2025-Task 11 (Muhammad et al., 2025c)
is an emotion dataset that covers 32 languages,
from diverse domains such as social media plat-
forms (X, Reddit, YouTube, and others) and news.
The AfriSocial domain-specific corpus targets low-
resource African languages; we target the African
languages emotion dataset from the SemEval-2025
Task 11, specifically from BRIGHTER (Muham-
mad et al., 2025b) and EthioEmo (Belay et al.,
2025c), which we call AfriEmo. It covers 17
African languages from the 32 languages. This
dataset is annotated in a multi-label approach - a
text might have any combination (none, one, some,
or all) of emotion labels from a given set of emo-
tions (anger, disgust, fear, joy, sadness, and sur-
prise).

4.3 AfriHate: Hate Speech Dataset

AfriHate (Muhammad et al., 2025a) is a multilin-
gual hate and abusive speech dataset in 15 African
languages sourced from X. Each text is categorized
into one of the abusive, hate, or neutral labels. The
languages covered in the corresponding evaluation
datasets, such as language name, ISO code, coun-
tries/regions spoken, language family, and writing
script. See the details in Appendices A and B.

5 Language Models

5.1 Encoder-only Language Models

Multilingual encoder-only pretrained language
models (PLMs) such as XLM-R (Conneau et al.,
2020) and mBERT (Devlin et al., 2019) have
shown impressive capability on many languages
for a variety of downstream tasks. They are also
often used to initialize checkpoints to adapt to
other languages, such as AfroXLMR-76L (Ade-
lani et al., 2024), which is initialized from XLM-
R to specialize in African languages. We evalu-
ate popular multilingual and African-centric PLMs
such as AfroLM (Dossou et al., 2022) and AfriB-
ERTa (Ogueji et al., 2021) and found that AfroX-
LMR is better for the targeted evaluation datasets
as it covers more African languages. We make
AfroXLMR our benchmarks and further train on
the AfriSocial domain and the selected evaluation
tasks. The AfroXLMR followed by DAPT with
the AfriSocial domain-specific corpus gives us



AfriSenti TAPT AfriEmo TAPT AfriHate TAPT

Lang. Base AfriEmo AfriHate DATP
+ TAPT Base AfriSenti AfriHate DATP

+ TAPT Base AfriSenti AfriEmo DATP
+ TAPT

amh 50.09 54.91 54.48 55.80 68.97 69.56 67.21 71.04 73.54 73.13 73.26 78.06
arq 52.22 62.42 59.41 63.38 44.93 51.25 48.95 48.72 43.41 46.19 43.84 44.21
ary 52.86 64.13 52.80 63.05 47.62 50.21 48.81 51.63 75.13 75.13 71.70 77.51
hau 79.34 80.65 80.08 82.71 64.30 66.93 61.16 69.77 81.55 77.76 81.94 82.09
ibo 76.92 80.01 78.29 80.42 26.27 53.13 51.26 54.26 82.78 87.69 86.52 87.68
kin 70.95 71.47 69.72 69.53 52.39 53.27 53.49 54.47 75.28 77.48 76.30 78.36
orm 20.09 23.53 42.99 28.93 52.28 56.43 52.22 58.75 77.08 69.03 67.67 71.07
pcm 50.47 50.97 50.29 52.04 55.39 56.71 56.60 58.89 64.85 67.73 66.94 69.91
ptMZ 60.93 64.05 62.80 63.75 22.09 37.20 30.99 37.76 — — — —
som — — — — 48.78 50.33 49.63 52.65 55.66 57.29 54.97 56.75
swa 28.26 59.33 57.26 54.94 30.74 33.02 31.85 32.74 91.51 91.91 91.27 91.16
tir 22.45 10.81 16.22 28.90 57.22 55.72 55.84 57.12 50.20 54.21 56.98 32.70
twi 47.20 47.68 50.23 54.47 — — — — 46.89 49.30 48.94 49.01
yor 72.27 72.22 70.90 73.65 28.65 34.34 32.87 35.89 53.44 53.69 54.51 54.76

Avg. 52.62 57.09 57.34 59.35 45.74 51.39 49.22 52.87 66.72 67.46 67.14 67.77

Table 4: Cross-TAPT results across the three datasets. Base column is baseline results from AfroXLMR, DATPT +
TAPT column results for AfriSenti and AfriHate are TAPT from the AfriEmo dataset. DATPT + TAPT for AfriEmo
results is TAPT from the AfriSenti dataset. Reported results are the Macro F1 score. Blank values (—) indicate that
the specific dataset does not cover the language.

AfroXLMR-Social. The detailed hyperparameters
of the continual training are shown in Appendix D.

5.2 Large Language Models

We compare our DAPT and TAPT approach re-
sults from AfroXLMR with state-of-the-art open
source LLMs such as Llama 3 (Dubey et al., 2024),
Gemma 2 (Riviere et al., 2024), Mistral (Jiang et al.,
2024), and proprietary LLMs such as Gemini 1.5
(Reid et al., 2024) and GPT-4o (Hurst et al., 2024).
For AfriSenti and AfriHate task results, we use
the LLMs benchmark results from the AfroBench
(Ojo et al., 2025) leaderboard. For the AfriEmo
task, we use LLM results from the SemEval-2025
Task 11 datasets papers (Muhammad et al., 2025b;
Belay et al., 2025b). The detailed versions of the
LLMs are presented in the Appendix E.

6 Experiment Results

6.1 Domain Adaptive Pre-training (DAPT)

The domain-adaptive pre-training (DAPT) ap-
proach is straightforward; we continue pre-training
from the strong baseline language model (AfroX-
LMR) using the domain-specific AfriSocial cor-
pus in a multilingual setup. Baseline results from
(AfroXLMR) and after applying DAPT are pre-
sented in Table 3.

Baseline: As a baseline, we evaluate various
encoder-only models and found that AfroXLMR,
which covers 76 African languages (Alabi et al.,

2022), performs better than other BERT-based
encoder-only models across targeted datasets since
it includes more African languages during pre-
training. The evaluation results of othe encoder-
only multilingual and African-centric models are
shown in Appendix C.

Results: The results before and after DAPT are
shown in Table 3, AfroXLMR and DAPT columns,
respectively. We observe that DAPT improves over
the baseline in almost all languages and datasets,
demonstrating the benefit of DAPT when the tar-
get domain is relevant. It consistently improves
over the baseline models for each language. It sug-
gests that continual pre-training on a small, quality,
domain-relevant dataset is important for subjective
tasks from the same domain.

6.2 Task Adaptive Pre-training (TAPT)
Similar to DAPT, TAPT consists of a second phase
of continual pre-training. TAPT is a cross-task
transfer across datasets, which refers to finetuning
on the unlabeled data of the non-targeted task dur-
ing evaluation. We explore the TAPT approach
by directly applying it to the base model followed
by DAPT. For example, if we make TAPT for the
AfriSenti task, we further fine-tune the base model
and DAPT model using the unlabeled data of the
AfriEmo and AfriHate datasets separately. Com-
pared to DAPT, the task-adaptive approach strikes a
different trade-off: it uses a far smaller pre-training
corpus, assuming the training set represents aspects
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LLMs are taken from the AfroBench (Ojo et al., 2025) leaderboard.
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of the target task. This makes TAPT much less ex-
pensive to run than DAPT. When we apply TAPT
across tasks, for example, TAPT with AfriSenti
for AfriHate evaluation, we ensure that we exclude
any duplication from the training data (in this case,
AfriSenti) to prevent data leakage.

Results Table 4 shows the TAPT results across
datasets and languages. As a result, all TAPT per-
forms better than the base model and equal or com-
petitive results with the DAPT. This indicates we

can achieve better results for our targeted evalua-
tion task using very small, quality, and task-related
data. In our case, using AfriSenti data without
the labels as a TAPT is very helpful for the fine-
grained multi-label emotion classification task. For
the AfriSenti sentiment evaluation task, TAPT with
AfriHate data achieves a better average results than
TAPT with AfriEmo. For the AfriHate evaluation,
TAPT in AfriSenti data has better average results
than TAPT with AfriEmo. In addition to the task
similarity, this improvement might be affected by



the number of total instances in each dataset (the
total instances of AfriSenti is 107,694, AfriEmo
70,859, and AfriHate 90,455) and the vocabulary
similarity across the datasets.

6.3 Combining DAPT and TAPT

We explore the effect of both adaptation techniques
by combining DAPT and TAPT. In this approach,
we apply DAPT to the base model and then the
TAPT training. These phases of pre-training add
up to make this approach the more computationally
expensive setting.

Results The results are shown in Table 4, DAPT
+ TAPT column. The results show that the subjec-
tive NLP tasks benefit from the combined DAPT
and TAPT approaches. DAPT followed by TAPT
achieves the best performance. However, first
adapting the model to the domain (DAPT), then
applying TAPT would be susceptible to catas-
trophic forgetting of the domain-relevant corpus
(Yogatama et al., 2019); alternate methods of com-
bining the procedures may result in better down-
stream performance. This is shown from the sum-
marized result in Table 5 that sometimes the DAPT
+ TAPT result performs less than the DAPT-only
results, while it is better than the baseline results.

6.4 AfroXLMR-Social Vs. LLMs

This section compares our AfroXLMR-Social re-
sults with state-of-the-art open-source and pro-
prietary Large Language Models (LLMs). Table
6 shows the summarized average results across
tasks. AfroXLMR-Social leads the performance
over LLMs across the three targeted tasks. Fig-
ures 2, 3, and 4 present the comparison results for
the base model (AfroXLMR), AfroXLMR-Social,
and both open-source and proprietary LLMs across
the AfriSenti, AfriEmo, and AfriHate datasets, re-
spectively. The result indicates that the domain-
specialized encoder-only model has better or com-
parable results with LLMs. Generally, it means
that we still need encoder-only models for low-
resourced African languages and suggests that fu-
ture LLMs are expected to include more training
data for underrepresented languages.

7 Conclusion

This work explored the effects of domain-adaptive
pre-training (DAPT) and task-adaptive pre-training
(TAPT) across three subjective tasks involving

Dataset Models Avg.

AfriSenti

AfroXLMR 51.39
+ DAPT (AfroXLMR-Social) 56.85
+ TAPT (AfriEmo) 55.72
+ TAPT (AfriHate) 55.83
+ DAPT + TAPT (AfriHate) 56.91
+ DAPT + TAPT (AfriEmo) 57.73

AfriEmo

AfroXLMR 44.30
+ DAPT (AfroXLMR-Social) 51.48
+ TAPT (AfriSenti) 49.14
+ TAPT (AfriHate) 47.12
+ DAPT + TAPT (AfriSenti) 49.84
+ DAPT + TAPT (AfriHate) 48.93

AfriHate

AfroXLMR 67.03
+ DAPT (AfroXLMR-Social) 70.56
+ TAPT (AfriSenti) 67.30
+ TAPT (AfriEmo) 67.73
+ DAPT + TAPT (AfriSenti) 66.55
+ DAPT + TAPT(AfriEmo) 67.18

Table 5: Summary results of Table 4, the average of
the Macro F1 score across languages. Boldface values
are the overall best scores for the specific dataset, and
results with underlines are the best cross-TAPT dataset.

Model AfriSenti AfriHate Model AfriEmo

Gemma-1.1-7B 39.7 24.3 LaBSE 35.7
Llama-2-7B 38.9 21.9 RemBERT 26.8
Llama-3-8B 41.8 27.9 XLM-R 23.4
LLaMAX3-8B 49.8 28.6 mBERT 23.0
Llama-3.1-8B 41.8 23.6 mDeBERTa 26.7
gemma-2-9B 55.5 29.9 Qwen2.5-72B 35.3
Aya-101-13B 57.1 30 Dolly-v2-12B 21.1
gemma-2-27B 58.6 45.5 Mixtral-8x7B 31.4
Llama-3.1-70B 46.9 49 Llama-3.3-70B 38.3
Gemini-1.5 pro 62.6 62.1 DeepSeek-70B 36.6
GPT-4o 62.6 63.5 AfroXLMR 44.3

AfroXLMR-Social 57.7 68.8 AfroXLMR-Social 51.5

Table 6: Summary results on fine-tuned models and
LLMs. The results show the average Macro F1 score
across all languages in the corresponding datasets:
AfriSenti - average of 14 languages, AfriHate - aver-
age of 15 languages, and AfriEmo is the average of 17
languages.

African languages. We created the AfriSocial
corpus, a social domain-specific corpus sourced
from X and news. Using AfriSocial, we fur-
ther developed the AfroXLMR-Social language
model, which specialized in the social domain.
We improved the performance of evaluated tasks,
sentiment analysis (AfriSenti), emotion analysis
(AfriEmo), and hate speech classification (Afri-
Hate) using DAPT and TAPT techniques. We
showed that pre-training the model towards a small
domain-specific corpus and related task-relevant
data can provide significant improvements. While



the combination of the two methods, DAPT +
TAPT, also achieved better results than the base-
line models, TAPT followed by DAPT would be
susceptible to catastrophic forgetting of the task-
relevant corpus. We achieved better state-of-the-
art results using a small domain-related corpus
from the encoder-only model than state-of-the-art
large-language models (LLMs). AfriSocial and
AfroXLMR-Social will support the development of
African languages in the NLP and improve similar-
sourced tasks. It opened further domain explo-
rations as the AfriSocial X and news domains are
also available separately.

Limitations

Our work is not without limitations. We identify
the following limitations with its future sugges-
tions.

Domain Coverage. This work focuses on social
media data from X and news sources for down-
stream tasks that are inherently subjective, such as
sentiment analysis, emotion recognition, and hate
speech classification. Extending the evaluation to
out-of-domain data (e.g., health forums, long-form
blogs) and the impacts of topic variations (e.g.,
politics, sports, business, health) presents another
promising avenue for understanding cross-domain
generalization in social media–based tasks. For the
domain-adaptive pre-training (DAPT) exploration,
we utilized a corpus of 3.5M sentences, which ex-
hibits substantial variation in data statistics across
different languages.

Evaluation Tasks. In this work, we restrict our
evaluation to three subjective tasks—sentiment
analysis, emotion recognition, and hate speech
classification—in order to highlight the effects of
DAPT and TAPT approaches within the social do-
main. Future work could extend these approaches
to a broader range of downstream NLP tasks, in-
cluding more knowledge-intensive and objective
benchmarks such as question answering and ma-
chine translation, thereby offering a more compre-
hensive understanding of their generalizability and
impact.

Evaluation of LLMs Assessing the impact of
DAPT and TAPT approaches on the latest LLM
families—such as Llama, Gemini, GPT, Mistral,
and others remains an open direction for future re-
search. In-context learning evaluations, particularly
in few-shot settings, provide a promising lens for

understanding model behavior, while prompting
strategies such as Chain-of-Thought (CoT) reason-
ing and in-domain prompting have demonstrated
notable improvements in LLM performance across
various tasks. Systematic evaluation of these tech-
niques in combination with DAPT and TAPT may
therefore yield more profound insights and poten-
tially lead to different conclusions regarding the
effectiveness and generalizability of such adapta-
tion methods.

Imbalanced Data Across Languages. As illus-
trated in the AfriSocial corpus (Table 2), there
exists substantial variability in the availability of
domain-specific data across languages (e.g., 8.6K
sentences for Twi versus 866K for Zulu). In-
vestigating the impact of such imbalances on the
effectiveness of DAPT and TAPT continual pre-
training approaches could yield valuable insights
into both the robustness of adaptation techniques
and language-specific behaviors. Incorporating
more balanced data across languages in future work
may further enhance the evaluation and provide
a clear understanding of the dynamics of cross-
lingual adaptation.
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Appendix

A Languages Covered in Evaluation

Table 7 shows the 19 language details we evaluated in this work across different tasks.

Language ISO Subregion Spoken in Lang. family Script # Speakers

Afrikaans afr South Africa South Africa, Namibia, Botswana Indo-European Latin 7M
Amharic amh East Africa Ethiopia, Eritrea Afro-Asiatic Ethiopic 57M
Algerian Arabic arq North Africa Algeria Afro-Asiatic Arabic 36M
Moroccan Arabic ary North Africa Morocco Afro-Asiatic Arabic/Latin 29M
Hausa hau West Africa Northern Nigeria, Ghana, Cameroon Afro-Asiatic Latin 77M
Igbo ibo West Africa Southeastern Nigeria Niger-Congo Latin 31M
Kinyarwanda kin East Africa Rwanda Niger-Congo Latin 10M
Oromo orm East Africa Ethiopia Afro-Asiatic Latin 37M
Nigerian Pidgin pcm West Africa Nigeria, Ghana, Cameroon English-Creole Latin 121M
Mozambican Portug. ptMZ Southeastern Africa Mozambique Indo-European Latin 13M
Somali som East Africa Ethiopia, Kenya, Somalia Afro-Asiatic Latin 22M
Swahili swa East Africa Tanzania, Kenya, Mozambique Niger-Congo Latin >71M
Tigrinya tir East Africa Ethiopia, Eritrea Afro-Asiatic Ethiopic 9M
Twi twi West Africa Ghana Niger-Congo Latin 9M
Makhuwa vmw East African Mozambique, Tanzania Niger–Congo Latin 7M
Xitsonga tso Southern Africa South Africa, Zimbabwe, Mozambique Niger-Congo Latin 7M
Xhosa xho Southern Africa South Africa, Zimbabwe, Lesotho Niger-Congo Latin 19M
Yoruba yor West Africa Southwestern, Central Nigeria, Togo Niger-Congo Latin 46M
Zulu zul Southern Africa South Africa Niger-Congo Latin 29M

Table 7: Additional information on the African languages evaluated in this work: ISO-3 digit language code, region
spoken, the family of the language, its script, and number of L1 and L2 speakers.

B Evaluation Data statistics

Table 8 shows the train-test split of the evaluation datasets AfriSenti, AfriEmo, and AfriHate.

Lang. AfriSenti AfriEmo AfriHate

Train Dev Test Total Train Dev Test Total Train Dev Test Total

afr - - - - 2107 98 1065 3270 - - - -
amh 5985 1498 2000 9483 3549 592 1774 5915 3467 744 747 4958
arq 1952 415 959 3062 901 100 902 1903 716 211 323 1250
ary 5584 1216 2962 9762 1608 267 812 2687 3240 695 699 4634
hau 14173 2678 5304 22155 2145 356 1080 3581 4566 1029 1049 6644
ibo 10193 1842 3683 15718 2880 479 1444 4803 3419 774 821 5014
kin 3303 828 1027 5158 2451 407 1231 4089 3302 706 714 4722
orm — 397 2097 2494 3442 575 1721 5738 3517 763 759 5039
pcm 5122 1282 4155 10559 3728 620 1870 6218 7416 1590 1593 10599
ptMZ 3064 768 3663 7495 1546 257 776 2579 — — — —
som — — — — 3392 566 1696 5654 3174 741 745 4660
swa 1811 454 749 3014 3307 551 1656 5514 14760 3164 3168 21092
tir — 399 2001 2400 3681 614 1840 6135 3547 760 765 5072
twi — — — — — — — — 2564 639 698 3901
vmw — — — — — 1551 258 777 2586 — — — —
xho 805 204 255 1264 — 682 1594 2276 2502 559 622 3683
yor 8523 2091 4516 15130 2992 497 1500 4989 3336 724 819 4879
zul — — — — — 875 2047 2922 2940 640 728 4308

Table 8: Dataset distribution across different languages - AfriEmotion (train, dev, test, and total) and AfriSenti
dataset. We adopt the same train-test-dev split from the data source papers: AfriEmo (Muhammad et al., 2025c),
AfriSenti (Muhammad et al., 2023), and AfriHate (Muhammad et al., 2025a).



C Baseline results from encoder-only LMs

We evaluate various encoder-only language models with the more difficult multi-label emotion classifica-
tion task to select the best encoder-only model for continual learning. We found that AfroXLMR is better
for the low-resourced African languages, and we continue our DAPT and TAPT training settings from this
model. Table 9 shows baseline results for the AfriEmo dataset from different multilingual encoder-only
models.

Model afr amh ary hau ibo kin orm pcm ptMZ som swa tir vmw yor xho zul

Baselines from general Multilingual models
LaBSE 37.76 63.72 45.81 58.49 45.90 50.64 43.30 51.30 36.95 41.82 27.53 47.23 21.13 32.55 31.39 18.16
RemBERT 37.14 63.83 47.16 59.55 47.90 46.29 12.63 55.50 45.91 45.93 22.65 46.28 12.14 9.22 12.73 15.26
mBERT 26.87 26.69 36.87 47.33 37.23 35.61 39.84 48.42 14.81 31.13 22.99 25.16 10.28 21.03 17.08 13.04
mDeBERTa 16.66 44.22 38.00 48.59 31.92 38.00 28.48 46.21 21.89 34.91 22.84 30.35 11.13 17.88 22.86 13.87
Baselines from African language-centric models
AfroLM 21.60 54.78 30.35 57.31 42.46 38.97 41.84 47.12 17.81 32.43 20.08 38.22 15.98 24.31 13.67 10.72
AfriBERTa 22.90 60.05 30.85 61.09 49.05 46.35 53.69 50.29 23.15 44.92 24.36 49.00 20.29 34.52 13.86 8.50
AfroXLMR 43.66 68.97 47.62 64.30 26.27 52.39 52.28 55.39 22.09 48.78 30.74 57.22 21.18 28.65 13.52 6.90
Continual pretraining from XLM-RoBERa-Large
XLMR-L 38.69 54.99 38.31 52.99 38.72 35.06 26.67 53.77 9.29 39.95 6.62 18.58 13.53 2.79 7.90 9.27
+ DAPT 25.94 60.08 44.41 59.81 42.91 44.61 43.61 53.74 30.57 41.69 27.83 49.55 8.44 18.05 4.75 9.27
+ TAPT 39.65 62.23 47.61 63.20 47.56 39.09 45.25 57.78 36.68 38.68 30.28 44.74 14.89 26.32 10.03 12.96
+ DAPT +TAPT 23.00 60.81 42.91 60.44 43.44 41.53 45.26 53.90 29.83 40.05 24.02 48.28 9.32 18.53 6.19 4.63
Continual Fine-tuning from AfroXLMR-large
AfroXLMR 43.66 68.97 47.62 64.30 26.27 52.39 52.28 55.39 22.09 48.78 30.74 57.22 21.18 28.65 13.52 6.90
+ DAPT 44.57 71.67 52.63 70.74 54.54 56.73 61.38 59.93 36.80 54.86 34.35 60.71 22.08 39.26 8.54 6.72
+ TAPT 49.61 69.56 50.21 66.93 53.13 53.27 56.43 56.71 37.20 50.33 33.02 55.72 21.73 34.34 4.58 13.15
+ DAPT + TAPT 44.17 71.04 51.63 69.77 54.26 54.47 58.75 58.89 37.76 52.65 32.74 57.12 19.80 35.89 21.30 13.81

Table 9: AfriEmo detail results using AfriSocial as DAPT and AfriSenti as TAPT. xho and zul languages have no
training set, and the results are in zero-shot. The results are from the average scores of five runs.

D Training Details of DAFT and TAPT

Hyper-parameters for adapters We trained the task adapter using the following hyper-parameters: batch
size of 32, 10 epochs, and learning rate of 5e-5. For TAPT, the parameters are similar to those of DAPT,
except that the batch size is 8. We used their tokenizer, for XLMR - XLMR tokenizer, and AfroXLMR
- AfroXLMR tokenizer. PyTorch was used for fine-tuning, and pre-trained models were sourced from
Hugging Face. The domain-adaptive fine-tuning training is trained on three distributed GPUs for 3 days,
whereas TAPT finishes in less than one hour. Following standard practice, we pass the final layer [CLS]
token representation to a task-specific feedforward layer for prediction with three epochs. The reported
results from fine-tuned pre-trained language models are the average results of five runs.

E Large Language Model Details

Multilingual Encoder-only, open-source, and proprietary model names and their sources are mentioned
below. The results from LLMs are used from the work (Ojo et al., 2025; Muhammad et al., 2025b). All
open-source LLMs are instruction-tuned versions. The various evaluation prompts are presented in the
original works mentioned above.

E.1 Encoder-only Langauge Models

• LaBSE (Feng et al., 2022) - sentence-transformers/LaBSE

• RemBERT (Chung et al., 2021) - google/rembert

• XLM-RoBERTa (Conneau et al., 2020) - FacebookAI/xlm-roberta-base (large)

• mDeBERTa (He et al., 2021) - microsoft/mdeberta-v3-base

• mBERT (Libovický et al., 2019)- google-bert_bert-base-multilingual-cased



• AfriBERTa (Ogueji et al., 2021) - castorini/afriberta_large

• AfroXLMR (Adelani et al., 2024) - Davlan/afro-xlmr-large-61L (76L)

• AfroLM (Dossou et al., 2022)- bonadossou/afrolm_active_learning

E.2 Open-source LLMs
• Aya-101 13B (Üstün et al., 2024) - CohereLabs/aya-101

• Llama 2 7B Chat (Touvron et al., 2023) - meta-llama/Llama-2-7b-chat-hf

• Llama 3 8B (Dubey et al., 2024) - meta-llama/Meta-Llama-3-8B-Instruct

• Llama 3.1 (8B, 70B) (Dubey et al., 2024) - meta-llama/Llama-3.1-8B-Instruct and meta-llama/Llama-
3.1-70B-Instruct, respectively.

• Gemma 1.1 7B (Mesnard et al., 2024) - google/gemma-1.1-7b-it

• Gemma 2 (9B, 27B) (Riviere et al., 2024) - google/gemma-2-2b-it and google/gemma-2-27b-it

• DeepSeek-R1-70 (DeepSeek-AI et al., 2025) - deepseek-ai/DeepSeek-R1-Distill-Llama-70B

• Mistral-8x7B (Jiang et al., 2024) - mistralai/Mixtral-8x7B-Instruct-v0.1

• Qwen2.5-72B (Yang et al., 2024) - Qwen/Qwen2.5-72B-Instruct

• Dolly-v2-12B (Conover et al., 2023) - databricks/dolly-v2-12b

E.3 Propritary LLMs
• Gemini 1.5 Pro (Reid et al., 2024) - Gemini 1.5 Pro 002 accessed via Google API

• GPT-4o (Aug) (Hurst et al., 2024) - the August 2024 version of the model is accessed through the
OpenAI API



F AfriSenti detail results

Table 10 shows all sentiment analysis results (AfriSenti dataset).

Models Languages Avg.
amh arq ary hau ibo kin orm pcm por swa tir tso twi yor

Fine-tuned encoder-only models from the AfroXLMR baseline
AfroXLMR 50.1 52.2 52.9 79.3 76.9 71.0 20.1 50.5 60.9 28.3 22.5 35.4 47.2 72.3 51.4
AfroXLMR-Social 57.2 64.6 62.3 62.7 79.8 72.7 24.3 52.1 64.8 61.4 24.5 38.8 56.0 74.6 56.9
TAPT-Emo 54.9 62.4 64.1 80.7 80.0 71.5 23.5 51.0 64.1 59.3 10.8 37.9 47.7 72.2 55.7
TAPT-Hate 54.5 59.4 52.8 80.1 78.3 69.7 43.0 50.3 62.8 57.3 16.2 36.2 50.2 70.9 55.8
DAPT+TAPT-Emo 55.8 63.4 63.1 82.7 80.4 69.5 28.9 52.0 63.8 54.9 28.9 36.7 54.5 73.7 57.7
DAPT+TAPT-Hate 56.3 59.7 62.1 82.0 80.2 70.1 23.6 51.2 62.1 58.5 21.9 40.0 55.8 73.4 56.9
Prompt-based proprietary models
LLaMAX3-8B 55.2 55.5 51.0 61.7 54.6 53.2 33.6 56.0 41.3 54.1 43.5 48.0 39.0 50.4 49.8
Llama-2-7B 25.5 44.9 44.0 38.2 33.6 35.4 24.7 60.8 31.2 33.8 33.5 46.1 48.9 43.7 38.9
Llama-3.1-70B 40.0 47.5 53.5 52.6 52.2 48.5 41.4 52.6 35.9 61.5 28.2 43.3 45.8 54.3 47.0
Llama-3.1-8B 66.4 57.1 51.9 55.4 50.1 48.7 35.9 64.2 33.6 54.3 49.8 48.8 42.3 50.9 50.7
Llama-3-8B 46.3 51.0 46.1 38.5 36.1 38.4 28.2 60.2 27.9 37.8 38.0 43.3 47.7 45.1 41.8
Aya-101 76.8 67.8 58.1 61.2 47.5 61.1 37.4 70.1 48.8 47.5 71.2 50.8 44.7 57.0 57.1
Gemma-1.1-7B 24.4 43.1 42.0 37.9 34.7 32.0 25.9 66.5 37.4 37.0 32.4 50.0 48.7 43.8 39.7
Gemma-2-27B 70.7 65.8 59.0 64.8 60.4 59.1 37.3 76.0 42.8 55.6 58.9 50.0 54.3 65.5 58.6
Gemma-2-9B 70.1 62.0 56.4 61.4 58.2 56.1 37.9 66.8 46.6 58.7 55.4 43.7 48.1 55.4 55.5
Prompt-based proprietary models
Gemini-1.5 77.5 70.9 63.7 70.1 56.9 68.3 42.8 74.5 46.4 55.2 70.2 55.9 49.3 74.3 62.6
GPT-4o 75.6 72.3 61.2 68.6 67.8 71.6 43.1 67.1 62.1 57.9 61.5 46.5 51.3 70.2 62.6

Table 10: AfriSenti Model Performance Across Various Languages

G AfriHate results

Table 11 shows all hate speech classification results (AfriHate dataset).

Models Languages Avg.
amh arq ary hau ibo kin orm pcm som swa tir twi xho yor zul

Fine-tuned encoder-only models from the AfroXLMR baseline
AfroXLMR 73.5 43.4 75.1 81.6 82.8 75.3 67.2 64.9 55.7 91.5 50.2 46.9 50.9 53.4 54.5 64.5
DAPT 78.6 46.0 75.6 80.8 88.1 78.8 74.1 67.6 55.6 91.2 55.9 48.4 59.2 77.9 55.4 68.9
TAPT-Emo 73.1 46.2 75.1 77.8 87.7 77.5 69.0 67.7 57.3 91.9 54.2 49.3 55.1 53.7 56.0 66.1
TAPT-Senti 73.3 43.8 71.7 81.9 86.5 76.3 67.7 66.9 55.0 91.3 57.0 48.9 51.3 54.5 55.0 65.4
DAPT + TAPT-Emo 78.1 44.2 77.5 82.1 87.7 78.4 71.6 69.9 56.8 91.2 32.7 49.0 58.7 54.8 55.5 65.9
DAPT + TAPT-Senti 77.6 43.8 76.1 81.6 79.4 77.9 72.0 67.5 53.7 91.5 41.2 48.2 54.6 54.8 55.8 65.0
Prompt-based proprietary models
Gemma-1.1-7B 23.0 27.4 24.5 26.0 16.7 29.9 27.9 30.2 27.2 27.4 17.3 14.2 23.3 25.0 22.5 24.3
Llama-2-7B 14.5 22.4 22.2 24.4 20.2 22.4 31.3 9.4 27.1 24.8 11.7 15.8 24.8 23.1 26.8 21.9
Llama-3-8B 26.5 31.8 28.5 24.5 19.7 36.5 37.1 38.8 17.8 34.3 28.4 14.4 25.0 25.9 28.4 27.9
LLaMAX3-8B 37.2 33.6 31.5 30.7 19.4 38.2 38.2 34.4 27.6 28.9 27.4 13.9 23.7 24.4 29.0 28.6
Llama-3.1-8B 23.3 30.7 22.9 25.4 13.9 31.9 35.7 24.9 26.7 21.7 21.9 9.9 22.4 19.4 23.3 23.6
gemma-2-9b 33.2 33.8 33.2 24.1 25.1 33.6 26.7 54.9 13.6 46.4 26.8 29.1 20.0 30.5 20.1 29.9
Aya-101-13B 31.3 32.1 28.9 33.3 22.1 32.8 26.8 37.8 35.8 41.3 29.6 13.8 28.7 26.8 29.8 30.0
Gemma-2-27B 48.4 49.1 53.8 34.8 42.8 52.7 39.8 60.9 39.6 70.9 35.4 38.1 30.6 54.0 35.0 45.5
Llama-3.1-70B 53.0 57.0 60.6 41.2 48.4 50.9 44.6 62.4 39.8 67.0 41.0 37.9 32.7 56.2 46.3 49.0
Prompt-based proprietary models
Gemini-1.5 pro 56.1 70.6 68.2 61.4 66.9 64.2 57.6 65.0 60.8 80.5 37.5 50.6 58.0 73.1 55.4 62.1
GPT-4o 56.0 69.7 75.5 59.2 69.7 60.1 53.5 65.2 68.5 78.0 42.4 51.2 63.7 74.5 58.7 63.5

Table 11: AfriHate Model Performance Across Various Languages



H AfriEmo detail results

Table 12 shows all fine-grained multi-label emotion classification results (AfriEmo dataset).

Models Languages Avg.
afr amh arq ary hau ibo kin orm pcm ptMZ som swa tir vmw yor xho zul

Fine-tuned encoder-only models from the AfroXLMR baseline and others
AfroXLMR 43.7 69.0 44.9 47.6 64.3 26.3 52.4 52.3 55.4 22.1 48.8 30.7 57.2 21.2 28.7 13.5 6.9 40.3
+ DAPT 44.6 71.7 51.3 52.6 70.7 54.5 56.7 61.4 59.9 36.8 54.9 34.4 60.7 22.1 39.9 8.5 6.7 46.3
+ TAPT-Senti 49.6 69.6 49.0 50.2 66.9 53.1 53.3 56.4 56.7 37.2 50.3 33.0 55.7 21.7 34.3 14.6 13.2 45.0
+ TAPT-Hate 47.2 67.2 48.4 48.8 61.2 51.3 53.5 52.2 56.6 31.0 49.6 31.9 55.8 19.3 32.9 11.0 9.9 42.8
+ DAPT + TAPT-Senti 44.2 71.0 48.7 51.6 69.8 54.3 54.5 58.8 58.9 37.8 52.7 32.7 57.1 19.8 35.9 21.3 13.8 46.1
+ DAPT + TAPT-hate 46.2 70.8 46.6 48.8 70.0 54.2 53.5 56.8 58.2 34.8 52.7 31.4 57.1 19.7 33.0 9.4 5.0 44.0
LaBSE 35.1 63.7 35.9 42.8 38.5 18.1 30.4 43.3 33.3 31.4 41.8 21.7 47.2 9.7 11.6 31.4 18.2 32.6
RemBERT 35.0 63.8 33.8 35.5 32.0 7.5 18.4 12.6 1.0 29.7 45.9 19.0 46.3 5.2 5.3 12.7 15.3 24.7
XLM-R 41.7 46.9 35.9 33.9 16.7 10.4 13.1 17.9 21.1 7.3 25.4 16.9 35.9 12.7 6.6 11.5 10.9 21.5
mBERT 17.0 26.7 31.4 24.8 15.6 9.9 20.9 39.8 22.6 13.5 31.1 18.6 25.2 12.1 9.6 17.1 13.0 20.5
mDeBERTa 33.3 44.2 35.9 36.3 32.8 9.5 17.3 28.5 25.4 24.5 34.9 14.9 30.4 11.7 10.0 22.9 13.9 25.1
Prompt-based proprietary models
Qwen2.5-72B 60.2 37.8 37.8 52.8 43.8 37.4 32.0 31.6 38.7 40.4 28.6 27.4 31.1 20.4 25.0 29.6 22.0 35.1
Dolly-v2-12B 23.6 5.1 38.6 24.3 29.4 24.3 19.7 22.9 34.4 16.7 19.8 17.6 1.5 16.0 16.0 24.1 14.7 20.5
Llama-3.3-70B 61.3 42.8 55.8 45.0 50.9 33.2 34.4 29.8 48.7 34.1 32.5 29.5 32.9 19.0 23.7 30.8 21.5 36.8
Mixtral-8x7B 53.7 29.0 45.3 35.1 40.4 31.9 26.4 24.3 45.6 36.5 25.6 26.5 27.2 19.0 19.7 22.9 20.4 31.1
DeepSeek-R1-70B 43.7 36.9 50.9 47.2 51.9 32.9 32.5 28.2 45.0 39.6 26.6 33.3 26.5 19.1 27.4 29.1 20.4 34.8

Table 12: AfriEmo Model Performance Across Various Languages

I AfriSocial Data Sources

X (Twitter) Source There is an X domain corpus and model for high-resource languages such as
XLM-T (Barbieri et al., 2022) to evaluate and improve task datasets sourced from X. However, there is a
scarcity of corpora specializing in the social domain for low-resource African languages. The tweets are
scraped over a different time until June 2023, before the change of an X policy that restricts their data for
academic research.

News Source News platforms are the most common data source for African languages. Companies
also stream their news on the X platform. While more formal, news websites also provide a platform for
public discourse, comments, and reactions, often including opinion pieces and user-generated comments.
The source news websites are British Broadcasting Corporation (BBC) news5, Akan news6, Global Voice
News7, isolezwelesixhosa8, isolezwe9, and others.

5https://www.bbc.com/
6https://akannews.com
7https://mg.globalvoices.org/
8https://www.isolezwelesixhosa.co.za/
9https://www.isolezwe.co.za/

https://www.bbc.com/
https://akannews.com
https://mg.globalvoices.org/
https://www.isolezwelesixhosa.co.za/
https://www.isolezwe.co.za/
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