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Abstract

Homophone' normalization-where characters
that have the same sound in a writing script are
mapped to one character—is a pre-processing
step applied in Amharic Natural Language Pro-
cessing (NLP) literature. While this may im-
prove performance reported by automatic met-
rics, it also results in models that are unable
to effectively process different forms of writ-
ing in a single language. Further, there might
be impacts in transfer learning, where models
trained on normalized data do not generalize
well to other languages. In this paper, we ex-
periment with monolingual training and cross-
lingual transfer to understand the impacts of
normalization on languages that use the Ge’ez
script. We then propose a post-inference in-
tervention in which normalization is applied
to model predictions instead of training data.
With our simple scheme of post-inference nor-
malization, we show that we can achieve an
increase in BLEU score of up to 1.03 while
preserving language features in training. Our
work contributes to the broader discussion
on technology-facilitated language change and
calls for more language-aware interventions.

1 Introduction

The majority of the world’s languages are under-
represented in natural language processing (NLP)
research (Joshi et al., 2020). Collectively, these
languages have been referred to as ‘low-resource,’
owing to the various resources that are not avail-
able for them (Nigatu et al., 2024). One of
the many resources that are lacking for low-
resourced languages is pre-processing tools (Niy-
ongabo et al., 2020). From tokenization methods
to basic data cleaning tools, many of the widely
used pre-processing schemes do not include, or are
not effective for, low-resourced languages (Ahia
et al., 2023; Emezue et al., 2023).

'We use the Merriam-Webster definition of the term ho-

mophone: “a character or group of characters pronounced the
same as another character or group.”

Pre-processing steps, ranging from removing
punctuation marks to tokenizing text, are essential
steps in determining the efficacy of downstream
models. For instance, languages that use differ-
ent writing scripts have been transliterated to a sin-
gle script to facilitate cross-lingual transfer (Khare
et al., 2021). Prior work has explored morpheme-
based tokenization for morphologically rich lan-
guages as an alternative to word-level tokenization
to enhance performance (Tachbelie et al., 2014).
Within phonetic languages like Ambharic, a com-
mon pre-processing intervention has been homo-
phone normalization—i.e, mapping characters with
similar sounds to one character (Biadgligne and
Smaili, 2021; Abate et al., 2018).

Homophone normalization has mainly been ap-
plied to improve automatic metric scores. Cur-
rent NLP evaluation schemes, particularly auto-
matic metrics like BLEU (Papineni et al., 2002),
which require an exact match between n-grams,
do not handle homophone characters. As an ex-
ample, let us take the homophones <%> and <h>
which both represent the sound /?4/ in Amharic. If
the Amharic word for “eye” is written as ‘4&7%” in
the reference but model prediction outputs ‘A&7,
evaluation with BLEU score would not count it as
a match. However, for an Amharic speaker, those
two words have the same pronunciation and mean-
ing. Homophone normalization averts this prob-
lem by mapping all homophone characters into a
single character and thereby boosting automatic
metric scores (Belay et al., 2022). Homophone
normalization also reduces the vocabulary size of
a dataset, which may be desirable for some appli-
cations (Abate et al., 2020). While this indicates
a potential benefit in improving performance when
using automatic metrics for evaluation, it may lead
to downstream issues for language speakers.

In this paper, we argue that the seemingly
innocuous act of homophone normalization for
Amharic NLP sets and perpetuates an implicit
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standard for Ge’ez script languages. Currently, ho-
mophone normalization is actively being applied
to Ambharic, one of the many languages that use
the Ge’ez script. However, the characters that are
normalized in Amharic have distinct sounds in lan-
guages such as Tigrinya and Ge’ez. Hence, the
implicit standard set by this pre-processing step
may have a downstream impact on cross-lingual
transfer for the other languages that use the Ge’ez
script. Additionally, models trained on normalized
datasets will be unable to process alternative word
spellings. However, language is not monolithic;
normalization may limit how speakers of different
dialects and variants of a single language can in-
teract with language technologies. Using Machine
Translation (MT) as an NLP task and Ambharic,
Tigrinya, and Ge’ez as languages of focus, we
pose the following research questions:

* RQ1: How do existing MT models han-
dle words with homophone characters in lan-
guages that use the Ge’ez script?

* RQ2: What is the impact of applying differ-
ent normalization schemes to training data on
the performance of MT systems?

* RQ3: What is the impact of homophone nor-
malization on transfer learning in MT for re-
lated languages?

* RQ4: How does applying normalization
post-translation compare to applying normal-
ization to the training data?

Multilingual NLP research is often driven by
a goal of generalization, proposing ways to
make a single model work well for multiple lan-
guages (e.g NLLB et al., 2022). While there are
demonstrated benefits to this approach, we use our
work as a case study to question what we lose
through implicit standards in language process-
ing. We find that homophone normalization neg-
atively affects cross-lingual transfer and that ap-
plying normalization post-translation boosts auto-
matic scores without compromising language char-
acteristics (Sec. 4). Our work highlights the impor-
tance of investigating downstream impacts of pre-
processing steps, particularly for low-resourced
languages.

2 Background and Related Work

In this section, we provide background on the lan-
guages of study and the writing script. We also

give background on normalization schemes used
in prior work to handle characters with the same
sound.

2.1 Languages of Study

The Ge’ez Script is an Abugida writing system—
each character in the script represents a consonant
and a vowel?. Vowels are indicated by modifying
the base character. There are 7 vowels in the Ge’ez
writing script; hence, each base character has at
least 7 variations. For instance, the base character
<A> /1/ is used to represent the sound /lo/ and is
modified to ‘A’ /lu/, ‘A’ /1i/, and so on. Addition-
ally, there are characters used to represent labiove-
lars such as ‘A’/kwa/. The Ge’ez script is used
to write Afro-Semitic languages of Ethiopia and
Eritrea, including our languages of focus in this
paper: Amharic, Tigrinya, and Ge’ez.

Ambharic is an Afro-Semitic language spoken
by an estimated 57.5 million people world-
wide (Basha et al., 2023). It is primarily spoken
in Ethiopia and is one of the federal working lan-
guages of the country. The Amharic alphabet has
33 base characters (Adugna).

Tigrinya is an Afro-Semitic language spoken by
an estimated 10 million people worldwide (Haile
et al., 2023). Tigrinya is one of the federal work-
ing languages of Ethiopia and is one of the gov-
ernmental and national languages of Eritrea. The
Tigrinya alphabet has 32 base characters (Negash,
2017).

Ge’ez is an Afro-Semitic language that is cur-
rently spoken only as a second language®. It
is primarily used as a liturgical language within
Ethiopian and Eritrean religious institutions. The
Ge’ez alphabet has 26 base characters (Demilew,
2019).

2.2 Homophones in the Ge’ez Script

As languages evolve, phonological change oc-
curs where some phonemes might split, merge, or
emerge (Boldsen and Paggio, 2022). Since written
language evolves at a much slower pace than spo-
ken language, the phonetic changes are usually not
reflected in the written forms of language (Obasi,
2018). Due to merged phonemes that are repre-
sented by different characters that, in prior years,

“https://www.omniglot.com/writing/ethiopic.htm
3https://www.ethnologue.com/language/gez/



might have had distinct sounds, the Amharic al-
phabet has multiple characters that have the same
sound (Aklilu, 2010). For instance, all of the fol-
lowing characters in the Ge’ez script <hA>, <h>,
<0> or <%> are read as /?4/ in Amharic.

Writing scripts are also shared by several lan-
guages that may not have evolved in the same way.
For the Ge’ez script in particular, some of the char-
acters that have the same sound in Ambharic have
distinct sounds in Tigrinya. For example, all four
characters in the above example that represent /?4/
in Ambharic have distinct sounds in Tigrinya: < k>
[?al, <n> /?4/, <0> /To/ and <9> /T4/. There are
some characters from the Ge’ez script that have
the same sound in Tigrinya, for example ‘W’ and
‘\’ both represent /so/. Due to the differences in
how each language uses the characters, altering
homophones in the Ge’ez script will have different
effects across languages. For example, if you write
the word for ‘eye’, which is written as ‘9£7 ’ in
Tigrinya as ‘A&7, the word would have no mean-
ing, while in Amharic, both words would mean
‘eye’. In the Ge’ez language, changing the char-
acters will result in a change in meaning. For in-
stance, the word ‘¢ means ‘to hold a wedding’
while the word ‘W)’ means ‘to get inside’.

2.3 Handling Homophone Characters in NLP

Homophone normalization helps improve au-
tomatic metric scores by mapping different
grapheme variations of a homophone character
into a single representation (Sec.1). It has mainly
been applied in Amharic NLP literature for Ma-
chine Translation (e.g. Abate et al., 2018; Chekole
et al., 2024) and semantic modeling tasks (e.g. Be-
lay et al., 2021). However, within papers that re-
port normalizing homophone characters, there is
no standard normalization scheme. For instance,
some publicly available tools normalize charac-
ters with the same sound only (e.g. Kidanemariam,
2019), others normalize characters with the same
sound and labialized characters (Mekuriaw and
Cohan, 2024; Eshetu, 2022), and some normalize
characters with the same sound, labialized charac-
ters, and some characters with the same base con-
sonant (Yimam et al., 2021). Further, some prior
works report mapping homophone characters to
“the most frequently used characters” (Biadgligne
and Smaili, 2022; Abate et al., 2018).

While most prior works report using normaliza-
tion as a standard pre-processing step, Belay et al.

(2022) compared MT models trained with and
without normalization and reported score improve-
ment for models trained with normalized data. Be-
lay et al. (2021) applied normalization to seman-
tic modeling tasks and found that normalization
helped for Information Retrieval but hurt perfor-
mance for PoS tagging and sentiment analysis.
However, these investigations are (1) limited to the
Ambharic language and (2) do not compare the im-
pact of the different normalization schemes in the
literature.

Cases for and against homophone normaliza-
tion in Amharic: From linguistics literature,
there have been three viewpoints on how to handle
characters that have the same sound in Amharic:
(1) standardize spellings, (2) remove homophone
characters from the alphabet—i.e, normalize, or (3)
perform no interventions (Aklilu, 2010).

Thus far, the Amharic NLP literature has
adopted an (implicit) standardization step with ho-
mophone normalization. In this paper, we offer a
post-inference intervention that provides a middle
ground to the three viewpoints described above.
Instead of training on normalized data, we pro-
pose performing normalization when calculating a
particular metric. We first investigate the impacts
of normalization and homophones in MT in zero-
shot, monolingual, and cross-lingual settings and
show that our post-inference intervention can im-
prove metric scores.

3 Methods

To test the impact of homophone normalization,
we prepared an evaluation dataset with a focus on
words that have homophone characters in the three
languages using publicly available MT datasets
(Sec. 3.1). We then adopted two normalization
schemes for our experiments, which we describe
in Sec. 3.2.

3.1 Dataset

We prepared an evaluation dataset in the three lan-
guages of study by focusing on sentences that have
high counts of characters with the same sound. In
Table 1, we give the details of our dataset*. We
selected sentences from the following datasets for
each language:

*Models, code and data can be found at https: //github.
com/hhnigatu/geez_script_normalization


https://github.com/hhnigatu/geez_script_normalization
https://github.com/hhnigatu/geez_script_normalization

Target Source Training | Eval | Test
Language | Dataset
Ambaric Abate et al. 199.2k 22.1k | 2.4k
(2018)
Ge’ez AGE 15.7k 1.9k | 1.9k
Tigrinya Abate et al. 75.4k 30.1k | 2.4k
(2013);
Lakew et al.
(2020)

Table 1: Benchmark dataset description along with
source datasets.

Ambharic-English-Machine-Translation-
Corpus The Ambharic-English Machine
Translation Corpus (Abate et al., 2018) contains
Ambharic-English parallel sentences collected
from Bible, History, News, and Legal sources.
The dataset has a total of 276k parallel sentences.
From the test split of the (Abate et al., 2018)
dataset, we selected sentences that had at least 9
homophone characters. With this filtering step,
we had a test set of 2.4k sentence pairs.

Tigrinya-English MT For Tigrinya, we used
data from Lakew et al. (2020) and Abate et al.
(2018). The dataset had a total of 150.8k paral-
lel sentences. Similar to Ambharic, we selected
sentences that had at least 17 homophone charac-
ters, which resulted in a test set with 2.4k English-
Tigrinya parallel sentences.

AGE We used the AGE dataset (Ademtew and
Birbo, 2024) which has 17.5k Amharic-Ge’ez and
18.6k Ge’ez-English parallel sentences. For our
experiments, we used the English-Ge’ez data and
split it into training, evaluation, and test sets at an
8:1:1 ratio. With this, we had 1.9k Ge’ez-English
parallel sentences as our test set. Since the Ge’ez
dataset is small, we did not apply additional filter-
ing to the test set.

3.2 Normalization Settings

As discussed in Sec. 2, there are multiple normal-
ization schemes adopted by prior work, particu-
larly when dealing with Ambharic datasets. In this
study, we employ three normalization settings:

e No-Norm: We take the dataset as is, with-
out applying any normalization or other alter-
ations. We use this setting as a baseline.

e H-only: We normalize all characters that
have the same sound in a given language.
We apply this approach for Amharic and

Language | No Norm | H-Only | HSL

Ambharic v’ v’ v’
Tigrinya v’ v’ -
Ge'ez v’ - -

Table 2: Application of normalization schemes to the
three languages of study.

Tigrinya, with separate scripts for each lan-
guage as the characters with the same sound
in each language differ (Sec. 2). We map
homophone characters to the most frequent
character in the dataset.

e HSL: In this setting, we use the script from
(Yimam et al., 2021) and normalize homo-
phone characters, similar sounds, and labial-
ized characters. Since this approach has only
been used for Amharic, and there is no stan-
dard way to determine “similar” sounds, we
only apply it to the Amharic dataset’.

In Table 2, we give details on how we applied
the normalization schemes to our datasets. Note
that, for Ge’ez we did not apply any normalization
as all characters are distinct—i.e, swapping charac-
ters, even if they have the same sound, will result
in meaning change (Sec. 2).

4 Experimental Study

In this section, we first give our experimental
setup, describing the models we used for our ex-
periments in Sec. 4.1. We conduct experiments
on the zero-shot performance of MT systems on
sentences with homophone characters (Sec. 4.2).
We then investigate the impact of normalizing ho-
mophone characters in training data for monolin-
gual model training and cross-lingual transfer (Sec.
4.3). Then, we investigate the efficacy of pots-
inference normalization in Sec. 4.4.

4.1 Experimental Setup

4.1.1 Models

Pre-trained MT Models For our zero-shot ex-
periments, we used Google Translate®, M2M-
100-418M (Fan et al., 2021), and NLLB (NLLB
et al., 2022) models. All three models support

5In (Yimam et al., 2021), characters with ‘similar’ sounds
are some characters that have the same consonant but differ-
ent vowels; for instance, <'&> /ts i/ and <> /ts i/ are mapped
to <¥>. However, there is no standard for determining the
similarity of the sounds.

®https://translate.google.com/



Ambharic, while Google Translate and NLLB sup-
port Tigrinya. However, Ge’ez is not included in
any of the three models; hence, we did not per-
form any zero-shot experiment for English-Ge’ez
translation.

Models for Training To understand the effects
of normalization during training, we (1) fine-
tuned the NLLB-600M (NLLB et al., 2022) model
and (2) trained an encoder-decoder Transformer
model (Vaswani et al., 2017) from scratch. Since
the NLLB model includes Amharic and Tigrinya
data, we trained the Transformer MT model from
scratch to avoid the impact of pre-training in our
experimental results.

Training Details We trained an encoder-
decoder Transformer model with 8 heads and 6
layers. We used an Adam Optimizer (Kingma and
Ba, 2017) with a learning rate of 1e-4 and 51 =0.9
and $2=0.98. We used a learning rate scheduler
that decreased the learning rate by a factor of 0.5
if there were no improvements in 2 consecutive
epochs. We used Cross Entropy Loss as our loss
function and trained the model for 30 epochs. The
best model checkpoint based on evaluation set
performance was chosen for the final evaluation.
To fine-tune the NLLB-600M (NLLB et al., 2022)
model, we used the Trainer module from the
HuggingFace transformer library (Wolf et al,
2020). We fine-tuned the model for 5 epochs with
a learning rate of 5e-5 using the default training
arguments and a batch size of 32. We used the
model’s default tokenizer without any additional
prefixing. We used the same training scheme for
all languages and all experiments.

4.1.2 Evaluation

We used both automatic metrics and human evalua-
tion. We performed our evaluation on a single run
for each model. For automatic metrics, we used
BLEU (Papineni et al., 2002) and ChrF (Popovic,
2015). BLEU score focuses on overlap in word-
level n-grams, whereas ChrF focuses on character-
level n-grams. We used the SACREBLEU (Post,
2018) implementation for both BLEU and ChrF,
with their default settings. When calculating the
scores, we removed punctuation marks from both
reference and prediction sentences. For all test
cases, we apply the same normalization scheme
to the reference and prediction. This makes it dif-
ficult to make comparisons across the references;
for instance, we cannot directly compare the refer-

Ambharic Tigrinya
Model BLEU | ChrF | BLEU | ChrF
NLLB - 3B 1047 | 34.05 | 11.26 | 31.22
NLLB - 600M 698 | 29.16 | 11.55 | 31.30
Google Translate | 9.89 33.67 | 16.02 | 38.75
M2M - 418M 13.51 | 34.78 - -

Table 3: Zero-Shot translation performance.

ence without normalization to the reference with
H-only normalization. However, as described in
Sec. 2, the motivation for applying normalization
is to increase scores of automatic metrics by “stan-
dardizing” the spelling of words in a given lan-
guage with a normalization scheme. Further, de-
pending on the language it is applied to, normal-
ization affects the spelling of a word and not the
meaning. Hence, references with different normal-
ization settings applied carry the same semantic
meaning, although they may differ in the spelling
of some words.

For human evaluation, native speakers of
Tigrinya and Amharic and second language speak-
ers of Ge’ez qualitatively looked at 50 random
sample predictions, comparing the outputs of the
different models. We focused on the following
axes when evaluating: (1) rating which transla-
tion was better from the given models, (2) identify-
ing words that were mistranslated (e.g, words that
were in Amharic for Tigrinya translations and vice
versa), and (3) identifying changes in homophones
in the translations.

4.2 Zero-Shot Experiments

This experiment aims to answer RQ1-that is, to
understand if there is an existing impact on pre-
trained MT models in handling characters with the
same sound in the three languages of study.

Results As can be seen in Table 3, all models ex-
cept the NLLB-200-Distilled-600M have compa-
rable ChrF scores, with M2M-100 having the high-
est ChrF for Amharic. For Tigrinya, Google Trans-
late had the highest BLEU and ChrF scores. Addi-
tionally, M2M-100 has the highest BLEU score for
Amharic, while NLLB-200-Distilled-600M had
the lowest BLEU score. Further, the open-sourced
NLLB-200-Distilled-600M and M2M-100 models
performed better than the commercially available
Google Translate model for Ambharic.
Qualitatively, we observe that the outputs of
the NLLB models for English-Ambharic transla-
tion usually stick with the Amharic “Standard”



Language Stage Model No Norm H-only HSL
BLEU ChrF BLEU ChrF BLEU ChrF
Tierinva Trainin Transformer 10.87 25.51 10.21 26.61 - -
grny € NLLB 2271 4311 2141  41.78 - -
Trainin Transformer 12.32 29.50 9.31 26.90 6.22 26.88
€ NLLB 19.09 4198 19.71 4259 17.13 40.50
Ambharic
Transformer 12.32 29.50 12.56  29.77 12.56  29.79
Inference NLLB 19.09 4198 19.78 42.60 19.78 42.61
Belay et al. (2022)  13.51 3478 1454 3594 14.54 3595

Table 4: Performance of models where normalization is applied during Training and Inference. Best perfor-

mance for each row is indicated in bold.

homophone usage (Sec. 2). This behavior is
not observed in Google Translate. For instance,
when translating the word “God,” all NLLB and
M2M models consistently translate it as “A1HA-
Nw(C”, which is consistent with the Ge’ez spelling
of the word. However, Google Translate some-
times tends to translate it as “AVHANYC”, switch-
ing the <rv> character with <%> which does not
conform to the standard homophone usage of the
word (Aklilu, 2010). This difference between the
open-source models and Google Translate may be
due to the fact that open models are trained on pub-
licly available data, which is heavily dominated by
religious data for low-resourced languages.

4.3 Effects of Training Models with
Homophone Normalization

To answer RQ2 and RQ3, we trained an encoder-
decoder Transformer model from scratch and fine-
tuned an NLLB-600M model as described in Sec.
4.1. We experimented with monolingual and cross-
lingual training, which we describe below.

4.3.1 Monolingual Effects of Normalization

For RQ2, we experimented by training a Trans-
former model from scratch and finetuning NLLB-
600M for each of the three language pairs: Eng-
Ambh, Eng-Tir, and Eng-Ge’ez. The goal for this
experiment was to understand the impact of nor-
malizing homophone characters in the target lan-
guage during training on the MT performance. As
described in Sec. 3, we use the No-Norm setting as
a baseline for all languages, apply H-Only normal-
ization to Amharic and Tigrinya data, apply HSL
normalization to Amharic data only. For Ge’ez,
we train without any normalization (Sec. 2).

Results As can be seen in Table 4, for both
Ambharic and Tigrinya, when normalization is ap-
plied during training, the model with No-Norm

has better BLEU score as compared to the mod-
els trained on normalized data for the Transformer
models. For Tigrinya, we observe that the Trans-
former model has comparable performance with
and without normalization. For NLLB-600M,
H-Only has a marginal improvement over the
No-Norm setting for Amharic (+0.62 BLEU and
+0.61 ChrF). The HSL setting has the least perfor-
mance with NLLB for Ambharic. For Tigrinya, we
observe that No-Norm has better performance than
the H-Only setting for the fine-tuned NLLB model
(+1.3 BLEU and +1.33 ChrF).

Qualitatively, we observed that models trained
with HSL normalization mostly replace some
words with their synonyms and simplify the trans-
lation when compared to H-Only and No-Norm set-
tings. Regarding the quality of the translation,
NLLB fine-tuned with No-Norm setting provides
better translation, preserving the homophone char-
acters in the prediction; this also aligns with the au-
tomatic result presented in Table 4. In the H-Only
setting, we noticed that in addition to replacing
words with normalized characters, most of the
translations were incomplete even though we set
the same maximum sequence length for all mod-
els.

4.3.2 Cross-Lingual Transfer Effects of
Normalization

For RQ3, we experimented by taking the models
we trained for Amharic as described in Sec 4.3.1
and further training with Eng-Tir and Eng-Ge’ez
data. In our cross-lingual experiment, the Tigrinya
and Ge’ez datasets are taken as is, without any nor-
malization.

Results As Table 5 shows, for Tigrinya, we
find that the Amharic model that is trained with-
out normalizing the homophone characters—i.e.
the No-Norm setting—is a better transfer model



Tigrinya

No-Transfer |

No-Norm |

H-only | HSL |

Model ~ BLEU | ChrF | BLEU | ChrF | BLEU | ChrF | BLEU | ChiF |
Transformer 10.87 | 25.51 12.16 | 27.61 10.67 | 26.24 11.23 | 26.44
NLLB-600M  22.71 | 43.11 | 21.55 | 42.03 | 21.63 | 42.13 | 21.68 | 42.14

Ge’ez
No-Transfer | No-Norm | H-only | HSL |

Model ~ BLEU | ChrF | BLEU | ChrF | BLEU | ChrF | BLEU | ChiF |
Transformer 2.46 18.72 3.67 20.80 3.56 20.80 1.46 12.48
NLLB-600M 3.36 23.48 5.22 26.54 6.33 28.38 6.31 28.52

Table 5: Performance of MT models in cross-lingual transfer experiments, where No-Norm, H-Only, and HSL
refer to models that were initialized with English-Amharic models trained in each of the three settings. The best

performance in a row is indicated in bold font.

as compared to the H-Only and HSL settings for
the Transformer models. With finetuning NLLB-
200-Distilled-600M, we find that the model di-
rectly finetuned from NLLB-200-Distilled-600M
performed better than the ones first finetuned on
Ambharic then finetuned on Tigrinya. With the
transfer models for NLLB, we observe compara-
ble performance regardless of the normalization
setting with which the Amharic model was fine-
tuned. For Ge’ez, we see that using the Amharic
models trained in the No-Norm and H-Only setting
provides better BLUE and ChrF scores as com-
pared to using the model trained with HSL set-
ting. Further, we observe that using a Transformer
model that was trained with the HSL setting for
Ambharic has the worst performance when used as
a transfer model for Ge’ez. Qualitatively, we ob-
serve that in both Ge’ez and Tigrinya translations,
the output includes code-switching with Amharic
words, changes pronouns, changes gender, and
wrongly negates words.

We find that the homophone characters that
were normalized in the Ambharic transfer model
were correctly used in the respective target lan-
guages (Tigrinya and Ge’ez). However, looking
at the predictions of the models fine-tuned on the
transfer models trained using the Amharic nor-
malized data, they tended to repeat characters or
words until they reached the maximum sequence
length, instead of translating the source sentence.
This is demonstrated in Figure 1, where the trans-
lations with the models trained on Amharic trans-
fer models with the HSL setting have fewer unique
words in both Ge’ez and Tigrinya, especially for
the Transformer model. In Table 6, we provide
qualitative examples.

Looking at the character count of the transla-
tions in the different transfer settings, we find that
all models did not contain a comparable number of
characters that were found in the reference dataset;
for instance, for Ge’ez the model trained with-
out transfer learning did not contain 33 characters
that were in the reference dateset while the model
trained with the HSL normalized Ambharic transfer
model did not contain 34 characters form the ref-
erence. However, training with the Ambharic trans-
fer models added new characters in the predictions,
where the characters do not exist in the language.
For instance, <fi>, <N>, <T> were added in the
Ge’ez predictions although all three characters do
not exist in the alphabet for the language.

4.4 Post-Inference Normalization

As discussed in Sec. 2, normalization of homo-
phones has provided automatic score increases in
prior work. However, normalizing the characters
before training a model results in models that can-
not process different forms of spelling. Further-
more, as we have seen in Sec. 4.3.2, normalizing
homophone characters has an impact on transfer
learning for languages that use the same writing
script. To answer our RQ4, we took the models
we trained in the No-Norm setting and applied nor-
malization to the reference and predictions after
inference.

Results For the Transformer model we trained,
post-normalization improves BLEU and ChrF
scores by a small margin (0.24 and 0.29 increase,
respectively). For the NLLB finetuned model,
we find that applying HSL normalization post-
inference boosts the BLEU score by 0.69 and the
ChrF by 0.63. In the three normalization settings,
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Figure 1: Comparison of Unique word count with different transfer settings for English-Tigrinya and English-

Ge’ez translation.

we find that the NLLB model outperforms the
Transformer model on our evaluation dataset.

We compare how effective post-inference nor-
malization is by including the model from Belay
et al. (2022); we take the model trained without
normalization and apply homophone normaliza-
tion after inference’. Belay et al. (2022) found
a 3.09 BLEU score increase by finetuning an
M2M (Fan et al., 2021) model with HSL normal-
ized data as compared to a model trained with
No-Norm data. We cannot directly compare our
results with the reported BLEU scores as the test
sets are different. However, on our evaluation
dataset, we find that the model trained by Belay
et al. (2022) without applying normalization can
have a 1.03 BLEU score increase (Table 4) with
our post-inference scheme.

5 Discussion

Our work investigates the impact of homophone
normalization for languages that use the Ge’ez
script on Machine Translation performance. We
provide background on the characteristics of the
languages that use the Ge’ez script and detail how
prior work used homophone normalization (Sec.
2). Through a series of experiments (Sec. 4), we
demonstrate that homophone normalization does
not provide a significant performance gain across
all languages, and hurts performance in transfer
learning (Sec. 4.3). As we have discussed in
Sec. 2, homophone normalization has been used
as a pre-processing step in the NLP literature for

"We could not compare with the models trained with nor-
malization from Belay et al. (2022) as they are not publicly
available.

Ambharic, setting an implicit standard on what
trained models can handle. In this section, we
connect this argument to the broader literature on
technology-facilitated language change.

Evolutions in language that are the result of
technological constraints make their way to daily
lives (van Dijk et al., 2016). This is partic-
ularly concerning as MT models are used in
data creation and augmentation for low-resourced
languages (e.g Singh et al.,, 2025). Machine-
translated datasets are also used to train other NLP
models (e.g Joshi et al., 2025), perpetuating the
normalization effect to tasks beyond translation.

As we have seen in Sec. 4, while normaliza-
tion has resulted in score improvements in prior
work, it affects the performance of models in trans-
fer learning. Further, the score improvements are
not consistent across models, languages, and nor-
malization settings. As a result, we need to pause
and reflect on using such schemes in NLP litera-
ture for languages that use the Ge’ez script. Mul-
tiple languages use the same writing script; hence,
it is important to consider how the standards we
set for one language affect other languages. There
might also be dialect differences in how words
are spelled, which will not be accounted for when
we normalize homophone characters without such
considerations.

As the number of low-resourced languages rep-
resented in NLP research increases, it is impera-
tive to consider how pre-processing steps applied
to these languages alter the overall landscape of
language use. Design decisions could lead to con-
straints on how and if people can use their lan-
guage (Wenzel and Kaufman, 2024). In the con-



text of our study, training models on normalized
data results in models that cannot handle alterna-
tive spellings. For instance, (Belay et al., 2021)
found that normalization helped improve perfor-
mance in information retrieval. However, the per-
formance improvement would require users to con-
form to the normalized form of spelling. This im-
pact is not limited to homophone normalization;
Adebara and Abdul-Mageed (2022) argue that nor-
malizing tone diacritics, which are essential for
lexical disambiguity, affects the usability of re-
trieval systems for African language speakers.

Further, relying solely on automatic score im-
provements obfuscates the impact of our design
decisions beyond its intended effect. Instead, our
solutions should (1) focus on changing the meth-
ods (e.g. the metrics used for evaluation), (2)
be explicit under what context the improvements
are achieved, and (3) explore alternatives that do
not impact the model’s ability to handle different
versions of a language. As we propose in Sec.
4.4, we can use post-inference interventions to in-
crease automatic scores without altering the train-
ing data. Since there are no standard ways of
spelling agreed upon and people spell words dif-
ferently, with the post-inference normalization, re-
searchers can see to what degree the performance
they are getting is a result of spelling differences
due to homophones vs actual issues with the trans-
lation model, without limiting the inputs and out-
puts of their models. While the performance im-
provement is not as significant as training on nor-
malized data, it is a tradeoff for having a model
that can account for different spellings, dialects,
and transfer capabilities.

6 Conclusion

We investigated the impact of homophone normal-
ization on languages that use the Ge’ez script. We
find that normalization of homophones in train-
ing data leads to poor transfer learning perfor-
mance for related languages. Furthermore, we
find that normalization does not always lead to
performance improvement across all languages.
We argue against implicit standardization via pre-
processing tools and offer an alternative approach
that preserves features of the languages during
training. We use our work as a case study to
call for a more thorough examination of pre-
processing steps, particularly for low-resource lan-
guages.

Limitations

While our experiments show an increase in the
BLEU score with post-inference homophone nor-
malization, we did not conduct a full-scale human
evaluation of translation quality; instead, we man-
ually inspected 50 outputs across all normalization
settings. Future work should include large-scale
human evaluations. Our conclusion is mainly
based on BLEU and ChrF scores, while they re-
main standard evaluation tools for MT, they might
not show the changes in prediction when we use
different normalization settings.

Acknowledgments

We thank the reviewers for their valuable feedback.
We also extend our gratitude to Nina Markl for pro-
viding feedback on our manuscript.

References

Solomon Teferra Abate, Michael Melese, Martha Yi-
firu Tachbelie, Million Meshesha, Solomon Atinafu,
Wondwossen Mulugeta, Yaregal Assibie, Hafte
Abera, Binyam Ephrem, Tewodros Abebe, Wondim-
agegnhue Tsegaye, Amanuel Lemma, Tsegaye An-
dargie, and Seifedin Shifaw. 2018. Parallel Corpora
for bi-lingual English-Ethiopian Languages Statisti-
cal Machine Translation.

Solomon Teferra Abate, Martha Yifiru Tachbelie, and
Tanja Schultz. 2020. Multilingual Acoustic and Lan-
guage Modeling for Ethio-Semitic Languages. In
Interspeech 2020, pages 1047-1051. ISCA.

Ife Adebara and Muhammad Abdul-Mageed. 2022.
Towards afrocentric NLP for African languages:
Where we are and where we can go. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 3814-3841, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Henok Ademtew and Mikiyas Birbo. 2024. AGE:
Amharic, Geez and English Parallel Dataset. In
Proceedings of the Seventh Workshop on Technolo-
gies for Machine Translation of Low-Resource Lan-
guages (LoResMT 2024), pages 139-145, Bangkok,
Thailand. Association for Computational Linguis-
tics.

Gabe Adugna.
Ambharic: Home.

Research: Language Learning -

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo
Kasai, David Mortensen, Noah Smith, and Yulia
Tsvetkov. 2023. Do All Languages Cost the Same?
Tokenization in the Era of Commercial Language
Models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,


https://doi.org/10.21437/Interspeech.2020-2856
https://doi.org/10.21437/Interspeech.2020-2856
https://doi.org/10.18653/v1/2022.acl-long.265
https://doi.org/10.18653/v1/2022.acl-long.265
https://doi.org/10.18653/v1/2024.loresmt-1.14
https://doi.org/10.18653/v1/2024.loresmt-1.14
https://library.bu.edu/amharic/Home
https://library.bu.edu/amharic/Home
https://doi.org/10.18653/v1/2023.emnlp-main.614
https://doi.org/10.18653/v1/2023.emnlp-main.614
https://doi.org/10.18653/v1/2023.emnlp-main.614

pages 9904-9923, Singapore. Association for Com-
putational Linguistics.

Amsalu Aklilu. 2010. Problems of Writing Homo-
phones without care and its Solution [Title trans-
lated from Amhairc].

Shaik  Johny  Basha, Duggineni  Veeraiah,
Boddu Venkat Charan, Wiltrud Sahithi Joyce Yeddu,
and Devalla Ganesh Babu. 2023. Detection and
Comparative Analysis of Handwritten Words of
Ambharic Language to English using CNN-Based
Frameworks. In 2023 International Conference on
Inventive Computation Technologies (ICICT), pages
422-427. ISSN: 2767-7788.

Tadesse Destaw Belay, Abinew Ali Ayele, Getie
Gelaye, Seid Muhie Yimam, and Chris Biemann.
2021. Impacts of Homophone Normalization on
Semantic Models for Amharic. In 2021 Inter-
national Conference on Information and Commu-
nication Technology for Development for Africa

(ICT4DA), pages 101-106.

Tadesse Destaw Belay, Atnafu Lambebo Tonja, Olga
Kolesnikova, Seid Muhie Yimam, Abinew Ali Ayele,
Silesh Bogale Haile, Grigori Sidorov, and Alexander
Gelbukh. 2022. The Effect of Normalization for Bi-
directional Amharic-English Neural Machine Trans-
lation. arXiv preprint. ArXiv:2210.15224 [cs].

Yohanens Biadgligne and Kamel Smaili. 2021. Par-
allel Corpora Preparation for English-Amharic Ma-
chine Translation. In Advances in Computational
Intelligence, pages 443—455. Springer, Cham. ISSN:
1611-3349.

Yohannes Biadgligne and Kamel Smaili. 2022. Of-
fline Corpus Augmentation for English-Amharic
Machine Translation. In 2022 5th International Con-
ference on Information and Computer Technologies
(ICICT), pages 128-135.

Sidsel Boldsen and Patrizia Paggio. 2022. Letters from
the past: Modeling historical sound change through
diachronic character embeddings. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6713-6722, Dublin, Ireland. Association for
Computational Linguistics.

Adane Kasie Chekole, Tesfa Tegegne Asfaw, Tes-
fahun Nurrie Mengestie, Belayneh Teshome Ke-
bie, Mengistu Kinfe Negia, and Yohannes Abinet
Worku. 2024. Effect of Parallel Data Processing
Model on Bi-Directional English-Khimtagne Ma-
chine Translation Using Deep Learning. In 2024
International Conference on Information and Com-
munication Technology for Development for Africa
(ICT4DA), pages 189-193.

Fitehalew Ashagrie Demilew. 2019. ANCIENT GEEZ
SCRIPT RECOGNITION USING DEEP CONVO-
LUTIONAL NEURAL NETWORK. Software En-
gineering.

Chris Emezue, Hellina Nigatu, Cynthia Thinwa,
Helper Zhou, Shamsuddeen Muhammad, Ler-
ato Louis, Idris Abdulmumin, Samuel Oyerinde,
Benjamin Ajibade, Olanrewaju Samuel, Oviawe
Joshua, Emeka Onwuegbuzia, Handel Emezue, Ife-
oluwatayo A. Ige, Atnafu Lambebo Tonja, Chia-
maka Chukwuneke, Bonaventure F. P. Dossou,
Naome A. Etori, Mbonu Chinedu Emmanuel, Oreen
Yousuf, Kaosarat Aina, and Davis David. 2023.
The African Stopwords project: curating stop-
words for African languages.  arXiv preprint.
ArXiv:2304.12155 [cs].

Abebawu Eshetu. 2022.
Preprocessing-Usin-Python.
08-05T09:30:04Z.

Ambaric-Simple-Text-
Original-date: 2019-

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2021. Beyond
english-centric multilingual machine translation. J.
Mach. Learn. Res., 22(1):107:4839-107:4886.

Negasi Haile, Nuredin Ali, and Asmelash Teka Hadgu.
2023. ERROR ANALYSIS OF TIGRINYA EN-
GLISH MACHINE TRANSLATION SYSTEMS.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The State and
Fate of Linguistic Diversity and Inclusion in the
NLP World. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 6282-6293, Online. Association for
Computational Linguistics.

Raviraj Joshi, Kanishk Singla, Anusha Kamath, Rau-
nak Kalani, Rakesh Paul, Utkarsh Vaidya, San-
jay Singh Chauhan, Niranjan Wartikar, and Eileen
Long. 2025.  Adapting Multilingual LLMs to
Low-Resource Languages using Continued Pre-
training and Synthetic Corpus. arXiv preprint.
ArXiv:2410.14815 [cs].

Shreya Khare, Ashish Mittal, Anuj Diwan, Sunita
Sarawagi, Preethi Jyothi, and Samarth Bharadwaj.
2021. Low Resource ASR: The Surprising Effec-
tiveness of High Resource Transliteration. In Inter-
speech 2021, pages 1529-1533. ISCA.

Bushra Kidanemariam. 2019. Amharic-NLP-Tools-in-
JAVA.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
Method for Stochastic Optimization. arXiv preprint.
ArXiv:1412.6980 [cs].

Surafel M. Lakew, Matteo Negri, and Marco Turchi.
2020. Low Resource Neural Machine Translation:
A Benchmark for Five African Languages. arXiv
preprint. ArXiv:2003.14402 [cs].


https://doi.org/10.1109/ICICT57646.2023.10134103
https://doi.org/10.1109/ICICT57646.2023.10134103
https://doi.org/10.1109/ICICT57646.2023.10134103
https://doi.org/10.1109/ICICT57646.2023.10134103
https://doi.org/10.1109/ICT4DA53266.2021.9672229
https://doi.org/10.1109/ICT4DA53266.2021.9672229
https://doi.org/10.48550/arXiv.2210.15224
https://doi.org/10.48550/arXiv.2210.15224
https://doi.org/10.48550/arXiv.2210.15224
https://doi.org/10.1007/978-3-030-85030-2_37
https://doi.org/10.1007/978-3-030-85030-2_37
https://doi.org/10.1007/978-3-030-85030-2_37
https://doi.org/10.1109/ICICT55905.2022.00030
https://doi.org/10.1109/ICICT55905.2022.00030
https://doi.org/10.1109/ICICT55905.2022.00030
https://doi.org/10.18653/v1/2022.acl-long.463
https://doi.org/10.18653/v1/2022.acl-long.463
https://doi.org/10.18653/v1/2022.acl-long.463
https://doi.org/10.1109/ICT4DA62874.2024.10777148
https://doi.org/10.1109/ICT4DA62874.2024.10777148
https://doi.org/10.1109/ICT4DA62874.2024.10777148
https://doi.org/10.48550/arXiv.2304.12155
https://doi.org/10.48550/arXiv.2304.12155
https://github.com/Abe2G/Amharic-Simple-Text-Preprocessing-Usin-Python
https://github.com/Abe2G/Amharic-Simple-Text-Preprocessing-Usin-Python
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.48550/arXiv.2410.14815
https://doi.org/10.48550/arXiv.2410.14815
https://doi.org/10.48550/arXiv.2410.14815
https://doi.org/10.21437/Interspeech.2021-2062
https://doi.org/10.21437/Interspeech.2021-2062
https://github.com/Bushra-KB/Amharic-NLP-Tools-in-JAVA/tree/main
https://github.com/Bushra-KB/Amharic-NLP-Tools-in-JAVA/tree/main
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.2003.14402
https://doi.org/10.48550/arXiv.2003.14402

Daniel Mekuriaw and Arman Cohan. 2024.
BENCHMARK DATASET AND PARAMETER-
EFFICIENT CROSS-LINGUAL TRANSFER
LEARNING FOR AMHARIC TEXT SUMMA-
RIZATION. Technical report.

Merriam-Webster. Definition of HOMOPHONE.

Abraham Negash. 2017. The Origin and Development
of Tigrinya Language Publications (1886 ...

Hellina Hailu Nigatu, Atnafu Lambebo Tonja, Ben-
jamin Rosman, Thamar Solorio, and Monojit Choud-
hury. 2024. The Zenos Paradox of Low-Resource
Languages. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 17753—-17774, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Rubungo Andre Niyongabo, Qu Hong, Julia Kreutzer,
and Li Huang. 2020. KINNEWS and KIRNEWS:
Benchmarking cross-lingual text classification for
Kinyarwanda and Kirundi. In Proceedings of
the 28th International Conference on Computa-
tional Linguistics, pages 5507-5521, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Team NLLB, Marta R. Costa-jussa, James Cross,
Onur Celebi, Maha FElbayad, Kenneth Heafield,
Kevin Heffernan, Elahe Kalbassi, Janice Lam,
Daniel Licht, Jean Maillard, Anna Sun, Skyler
Wang, Guillaume Wenzek, Al Youngblood, Bapi
Akula, Loic Barrault, Gabriel Mejia Gonzalez,
Prangthip Hansanti, John Hoffman, Semarley Jar-
rett, Kaushik Ram Sadagopan, Dirk Rowe, Shan-
non Spruit, Chau Tran, Pierre Andrews, Necip Fazil
Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan,
Cynthia Gao, Vedanuj Goswami, Francisco Guzman,
Philipp Koehn, Alexandre Mourachko, Christophe
Ropers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No Language Left Behind: Scal-
ing Human-Centered Machine Translation. arXiv
preprint. ArXiv:2207.04672 [cs].

Jane Chinelo Obasi. 2018. Structural Irregularities
within the English Language: Implications for
Teaching and Learning in Second Language Situa-
tions.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Maja Popovi¢. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Shivalika Singh, Angelika Romanou, Clémentine Four-
rier, David I. Adelani, Jian Gang Ngui, Daniel
Vila-Suero, Peerat Limkonchotiwat, Kelly Marchi-
sio, Wei Qi Leong, Yosephine Susanto, Raymond
Ng, Shayne Longpre, Wei-Yin Ko, Sebastian Ruder,
Madeline Smith, Antoine Bosselut, Alice Oh, An-
dre F. T. Martins, Leshem Choshen, Daphne Ip-
polito, Enzo Ferrante, Marzieh Fadaee, Beyza Er-
mis, and Sara Hooker. 2025. Global MMLU: Un-
derstanding and Addressing Cultural and Linguistic
Biases in Multilingual Evaluation. arXiv preprint.
ArXiv:2412.03304 [cs].

Martha Yifiru Tachbelie, Solomon Teferra Abate, and
Laurent Besacier. 2014. Using different acoustic,
lexical and language modeling units for ASR of an
under-resourced language Ambharic. Speech Com-
munication, 56:181-194.

Chantal N. van Dijk, Merel van Witteloostuijn, Nada
Vasi, Sergey Avrutin, and Elma Blom. 2016. The In-
fluence of Texting Language on Grammar and Exec-
utive Functions in Primary School Children. PLoS
ONE, 11(3):e0152409.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need.

Kimi Wenzel and Geoff Kaufman. 2024. Designing for
Harm Reduction: Communication Repair for Multi-
cultural Users’ Voice Interactions. In Proceedings of

the CHI Conference on Human Factors in Comput-
ing Systems, pages 1-17, Honolulu HI USA. ACM.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Seid Muhie Yimam, Abinew Ali Ayele, Gopalakrish-
nan Venkatesh, Ibrahim Gashaw, and Chris Bie-
mann. 2021. Introducing Various Semantic Mod-
els for Amharic: Experimentation and Evaluation
with Multiple Tasks and Datasets. Future Inter-
net, 13(11):275. Number: 11 Publisher: Multidis-
ciplinary Digital Publishing Institute.


https://github.com/danielmekuriaw/mT5-PEFT-Amharic-Text-Summarization
https://github.com/danielmekuriaw/mT5-PEFT-Amharic-Text-Summarization
https://github.com/danielmekuriaw/mT5-PEFT-Amharic-Text-Summarization
https://github.com/danielmekuriaw/mT5-PEFT-Amharic-Text-Summarization
https://www.merriam-webster.com/dictionary/homophone
https://www.asmarino.com/eng/93-books/4860-the-origin-and-development-of-tigrinya-language-publications-1886-1991-volume-one
https://www.asmarino.com/eng/93-books/4860-the-origin-and-development-of-tigrinya-language-publications-1886-1991-volume-one
https://doi.org/10.18653/v1/2024.emnlp-main.983
https://doi.org/10.18653/v1/2024.emnlp-main.983
https://doi.org/10.18653/v1/2020.coling-main.480
https://doi.org/10.18653/v1/2020.coling-main.480
https://doi.org/10.18653/v1/2020.coling-main.480
https://doi.org/10.48550/arXiv.2207.04672
https://doi.org/10.48550/arXiv.2207.04672
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.48550/arXiv.2412.03304
https://doi.org/10.48550/arXiv.2412.03304
https://doi.org/10.48550/arXiv.2412.03304
https://doi.org/10.1016/j.specom.2013.01.008
https://doi.org/10.1016/j.specom.2013.01.008
https://doi.org/10.1016/j.specom.2013.01.008
https://doi.org/10.1371/journal.pone.0152409
https://doi.org/10.1371/journal.pone.0152409
https://doi.org/10.1371/journal.pone.0152409
https://doi.org/10.1145/3613904.3642900
https://doi.org/10.1145/3613904.3642900
https://doi.org/10.1145/3613904.3642900
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.3390/fi13110275
https://doi.org/10.3390/fi13110275
https://doi.org/10.3390/fi13110275

Target Lang. | Source | Reference | No-Norm | H-Only HSL

Tir The discourse | NTOAT,  »t | NHENH, : YH | AH YH YH YH | wt TOY%A HAA
will also an- | HCGN  7NH9PH, | HNON A+t | €R0D KH, &R0D | HANA HANA
swer such | HNON HRODAA | (DA eUN | ARH, N9PH, H | ;¥Fr  HAA
questions as | PPt @DAA | = ACATEST | ACATEST A0 | b HANA
these : How | TN »& 0 - YH, HAON | K N9H, H | ddPr  HNA
often  should | ACATEST YH | ARFT KK ¢ | - NTHOE N | HNA HAA
Christians com- | OAT AHA TeN- | %N AOA. HAe | ACATEST hAO | HANA HAA
memorate this | 0AP  HAPP | ODAN TW@YS = | TH, YH TH H | HANA HAA
event ? NYLL N0 AR ODNHATA AP | YH, YH, YH, YH, YH, | HAA HAA

: ACATESY | &R0D AH, &’0D | HANA HANA
TH, &R0D »H. | nH. &R0D A»H. | HANA HANA
AMAHAODE NgPAN | AMTHADL A Tv | HANA[..]
NN ANTHae Af...]

Ge’ez For this reason | NX¥TH  &no | ONAYT  HYR | NRYTH  NxL | OFL YR @NE
a man and a | AAL ONAAY | €98 NAAL | A& AR | NRA. ONAA,
woman are to | Ach& ONxRYTH | AN OxP | PNA NAKR | AODN NAD NAM,
become one, | £1€°0 MU | H dAY 08- | OxLIDJD: AU (0} S
and for this rea- | OX° MLIODC | TAP ANAAE | A@&0D  OF- | ONAA AQD«
son he leaves | PAA  Nrnk | OLNOF  PA- | VNR AU ORI | ORIBU: AN
his father and | O&N@% D | KPO AL | OCTAP  AN- | NAk &I D
his mother. He | A& ») Orhe | Wk OO | »D »D M)
associates with AIPAROD T NARLO AL | D M) M)
his wife, and PI=0AN T My wy )
they  become ARTHANAC Vool Y a8 R
one flesh. VS YA F A I S N |

D AchL P

Table 6: Qualitative examples with transfer learning experiments where the transfer Amh-Eng model is trained in

No-Norm, H-Only and HSL settings

A Qualitative Examples

In Table 6, we provide qualitative examples for
Tigrinya and Ge’ez transfer learning experiments.
As the table shows, Amharic models trained with
normalization repeat words until they reach maxi-
mum sequence length or end of sentence token (3).



