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Abstract

Despite regulations imposed by nations and
social media platforms, e.g. (Government of
India, 2021; European Parliament and Council
of the European Union, 2022), inter alia, hate-
ful content persists as a significant challenge.
Existing approaches primarily rely on reactive
measures such as blocking or suspending of-
fensive messages, with emerging strategies fo-
cusing on proactive measurements like detoxi-
fication and counterspeech. In our work, which
we call HATEPRISM, we conduct a compre-
hensive examination of hate speech regulations
and strategies from three perspectives: country
regulations, social platform policies, and NLP
research datasets. Our findings reveal signifi-
cant inconsistencies in hate speech definitions
and moderation practices across jurisdictions
and platforms, alongside a lack of alignment
with research efforts. Based on these insights,
we suggest ideas and research direction for fur-
ther exploration of a unified framework for au-
tomated hate speech moderation incorporating
diverse strategies.

1 Introduction

AI continues to advance rapidly across various do-
mains, offering diverse applications. Among these,
leveraging AI for societal positive impact (Shi et al.,
2020) is becoming an important direction to ex-
plore. Specifically, in the field of NLP (Jin et al.,
2021), one of the important societal applications
lies in mitigating digital violence (Kaye, 2019).

Digital violence persists as a pressing issue in
online social environments, posing tangible risks
to users (Barbieri et al., 2019; Kara et al., 2022).
It involves using information and communication
technologies to hurt, humiliate, disturb, frighten,
exclude, and victimize individuals. This often re-
sults in increased anxiety, sadness, tension, and a
loss of motivation at work (Torp Løkkeberg et al.,
2023). It includes harmful online activities such
as abusive behavior, hate speech, toxic speech and
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Figure 1: HATEPRISM: Proactive content moderation
with the integration of spectrum involving government
and social media platform policies with research.

offensive language, significantly affecting an indi-
vidual’s professional and social effectiveness and
efficiency (Özsungur, 2022).
Traditional automated moderation methods typi-
cally involve measures such as blocking or sus-
pending accounts that disseminate hateful mes-
sages (MacAvaney et al., 2019; Cobbe, 2021). Ma-
jor technology companies, including Meta and X,
have implemented these strategies to manage hate
speech. However, such measures have proved insuf-
ficient in curbing hateful sentiments over the long
term (Parker and Ruths, 2023). Alternatives such
as counterspeech have gained traction as promis-
ing strategies to mitigate hate speech by engaging
in dialogue aimed at challenging harmful narra-
tives (Alsagheer et al., 2022; Kulenović, 2023).
Furthermore, text detoxification represents an ap-
proach intended to reduce the toxicity of com-
munications while maintaining the original mes-
sage (Nogueira dos Santos et al., 2018; Logacheva
et al., 2022). Despite their potential, these ap-
proaches have yet to be widely adopted as part
of social media platforms’ moderation strategies.

Key contributions In this work, HATEPRISM,
we conduct a comprehensive examination of the
measures currently employed to mitigate digital
violence, focusing on insights drawn from govern-
ment regulations, social media platform policies,
and NLP research datasets (see Figure 1). While
our primary objective is to investigate and docu-
ment these existing frameworks, we also recognize
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Figure 2: Key contributions of this position paper.
HATEPRISM is the first of its kind that explores hate
speech across country-wise regulations, social media
platform policies and dataset research papers.

the critical need for empirical evaluation of their
practical effectiveness. Our study highlights the
current approaches to handle hate speech, empha-
sizing the disparities and gaps that persist among
them. These insights reveal areas ripe for improve-
ment and suggest the need for further empirical
research to assess the real-world impact of these
measures. Based on our analysis, we propose ex-
ploring the potential development of a more unified
and cohesive framework in the future to effectively
address these gaps. Figure 2 presents a brief sum-
mary and the survey questionnaire is made avail-
able1. The key contributions of HATEPRISM are
as follows:
(i) We provide a comprehensive survey of hate
speech definitions and mitigation strategies from
three main perspectives: (a) government regula-
tions across nations; (b) policies of social media
platforms; (c) NLP research datasets.
(ii) We conduct an extensive comparative analysis
of documents from these domains to identify in-
consistencies and opportunities for improvement
in current moderation practices.
(iii) Based on our analysis, we suggest exploring a
framework for more formalized methods to combat
hate speech in the future.

Key observations Below we present some of the
key brewed insights from our comprehensive study:
(i) Only 43% of the considered countries have reg-
ulations of online hate speech and the USA is the
only country tolerating hate speech; their regula-
tions don’t even identify hate speech.
(ii) Only 29% of the countries have social or com-
munity service as punishment and only 21% of the
nations encourage proactive content moderation
like counterspeech and text detoxification. This

1https://github.com/hate-alert/platforms_
policies_research

limits hate speech moderation to banning of the
users on social media platforms and typically pro-
hibits severe punishments like monetary compen-
sation and/or prison.
(iii) Nearly 64% of social media platforms encour-
age counterspeech and text detoxification.
(iv) Only 16% of considered research dataset pa-
pers are aligned with countries’ regulation and just
8% align with data sources’ regulations. These
observations showcase a wide research gap in the
current study of hate speech pointing towards mis-
alignment of dataset papers with countries’ and
social media platforms’ regulations.

2 Related Work

Digital violence Violence is an umbrella term
that refers to words or actions that cause harm to
an individual or a community. Digital violence is
a special form that anchors digital technologies,
with harm typically spread through electronic de-
vices such as computers, smartphones, and IoT
sensors. This form of violence can occur publicly
on social media platforms or privately on personal
devices and in alternative digital environments like
the metaverse. Our study focuses on digital vi-
olence, more specifically, expressed in a textual
form. Banko et al. (2020) classified harmful con-
tent as either abusive or online harm and offered
a corresponding typology. The typology includes
four categories: hate and harassment, self-inflicted
harm, ideological harm, and exploitation. The
study by Lewandowska-Tomaszczyk et al. (2023)
categorizes harmful content as offensive speeches,
including 17 sub-categories like taboo, insulting,
hate speech, harassment, and toxic.

Automatic hate speech detection Moderation is
a fundamental element of social media platforms,
involving various measures to limit the visibility
of hateful content. These measures range from
deleting and hiding posts to issuing warnings or
blocking users who fail to adhere to regulations
(Trujillo et al., 2023). In line with these modera-
tion efforts, researchers have also focused on im-
proving automatic detection systems. Significant
research efforts have been directed toward gather-
ing datasets that enable the development of auto-
matic hate speech classification models (Fortuna
et al., 2020; Mathew et al., 2021). These datasets
support the creation of models capable of detect-
ing hate speech across various contexts, including
those in low-resource languages such as Amharic

https://github.com/hate-alert/platforms_policies_research
https://github.com/hate-alert/platforms_policies_research


(Ayele et al., 2024), Arabic (Magnossão de Paula
et al., 2022; Alzubi et al., 2022), code-mixed Hindi
(Bohra et al., 2018; Ousidhoum et al., 2019), etc.

Social media platform content policy: Compar-
ison of various different content moderation strate-
gies can be a time-consuming task because of the
diverse formulations and approaches (refer to a
recent blog2 from Meta). Most often, only sin-
gle platforms are analyzed by researchers (Chan-
drasekharan et al., 2018; Fiesler et al., 2018). The
platforms under study in these works are not cho-
sen in a strategic manner, thus undermining the
diverse medium of spread of hate speech. The
work by Schaffner et al. (2024) proposed an ap-
proach for automated collection and the creation of
a unified schema to compare platforms. This iden-
tified significant structural differences between the
platforms in how they deal with these requirements.

Proactive content moderation While access re-
strictions remain a common strategy supported by
platforms and government policies to combat harm-
ful content, countering hate speech through engage-
ment is gaining recognition (Mathew et al., 2019;
Kulenović, 2023; Mun et al., 2024a,b; Chung et al.,
2024; Saha et al., 2024). This approach, often en-
capsulated by the phrase countering rather than
censoring, is seen as preferable to outright cen-
sorship, as it tends to respect the principle of free
speech (Yu et al., 2023; Bonaldi et al., 2024). Be-
yond reducing hate, counterspeech efforts are uti-
lized to foster positive transformations within on-
line communities by promoting discussions and cul-
tivating a community sense (Buerger, 2022, 2021).
Another promising avenue in combating toxicity
involves text detoxification, which targets elimi-
nating offensive content in messages while preserv-
ing the intended meaning (Logacheva et al., 2022;
Dementieva et al., 2021; Tran et al., 2020; Demen-
tieva et al., 2025; Nogueira dos Santos et al., 2018).
Detoxification should be viewed as a suggestive
tool that recommends less toxic wording, leaving
it to the individual user or moderation framework
to adopt these changes and enhances the quality
of online interactions by facilitating more respect-
ful and less toxic communications (Tran et al.,
2020). Various models applied to detoxification3

aim to generate acceptable and diverse non-toxic
outputs (Dementieva et al., 2024). Contrary to

2https://about.fb.com/news/2025/01/
meta-more-speech-fewer-mistakes/

3https://huggingface.co/textdetox

concerns about infringing on freedom of speech,
both counterspeech and detoxification contribute to
more civil discourse by offering voluntary and non-
coercive means of improving online interactions.
Both approaches serve as valuable alternatives to
traditional moderation methods by promoting posi-
tive interaction and personal agency in the modera-
tion process.

Mitigation strategies in deployment Chung
et al. (2021) developed a tool for Twitter (now
X) designed to continuously monitor and respond
to hateful content related to Islamophobia. The
tool was used by non-governmental organization
(NGO) operators, and the counter-narrative feature
has been highly praised for its potential to signifi-
cantly impact the fight against online Islamophobia.
Further, Arora et al. (2024) in their study exam-
ined research on hate speech and related platform
moderation policies. The findings reveal a notable
discrepancy between the focus of research and the
needs of platform policies. This mismatch under-
scores a gap between the types of content platforms
that need to be moderated and the solutions offered
by current research on harmful content detection.

Lack of consensus When it comes to defining
hate speech, there is no consensus among legisla-
tors, platform operators, and researchers (Brown,
2015). One of the most comprehensive definitions
widely followed in the computer science literature,
as proposed by the United Nations,4 describes hate
speech as any kind of communication in speech,
writing, or behavior that attacks or uses pejorative
or discriminatory language with reference to a per-
son or a group based on who they are. To address
textual digital violence, traditional automated mod-
eration practice often involves content moderation
measures. Content moderation, both human and
algorithmic, involves overseeing user-generated
content to align with legal standards, community
norms, and platform policies (Banko et al., 2020;
Hietanen and Eddebo, 2023). Algorithmic mod-
eration, primarily aimed at removing or banning
non-compliant content, boosts online safety, curbs
abuse, and swiftly detects serious infractions, thus
reducing the limitations of depending entirely on
human moderators.

Our work In HATEPRISM, we identify the
gaps between regulatory policies from countries,

4https://www.un.org/en/hate-speech/
understanding-hate-speech/what-is-hate-speech
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policies from social media platforms, and ap-
proaches used in NLP research. We provide mul-
tiple insights and suggest the potential for a more
proactive moderation approach to address these
challenges.

3 Methodology

In HATEPRISM, our approach incorporates a
strategic analysis of hate speech regulation & miti-
gation through three primary perspectives: country-
specific regulations, social media platforms’ poli-
cies and NLP research approaches.
For each of the three perspectives, we developed
specific Selection Criteria to obtain representa-
tive samples and crafted a series of Questions to
analyze and gain deeper insights into each area.
This dual strategy ensures a comprehensive exam-
ination of the regulatory landscape and the effec-
tiveness of various moderation techniques. Fur-
thermore, our analysis also aims to examine three
common approaches of content moderation: block-
ing/suspending hateful content, detoxification of
toxic language, and counter of hate speech to en-
gage users constructively. Hence, these moderation
techniques were also considered during curation.

Questions For each of the three dimensions, we
first tunneled down categories and then brewed
relevant questions for each category (refer Fig-
ures 3, 4, 5). These two steps were specifically
performed to audit different perspectives in a rele-
vant and robust manner. Note that the surveys used
in this study were carefully designed and answered
by a group of qualified researchers, including PhD
students and postdoctoral fellows, who have exper-
tise in social media policies and online hate speech
regulation. Information regarding social media plat-
form policies were gathered through a thorough
examination of policy documents and guidelines
available on the platforms’ official websites.

Validity assurance To ensure the validity and
comprehensiveness of our surveys on social me-
dia policies and country regulations, we collabo-
rated with LegalTech expert who an experienced
researcher with a Ph.D. and serves as the execu-
tive director in Legal Technology at Bucerius Law
School, with proficiency in IP law, copyright Law,
IT law, intellectual property Law, and startup law.
This collaboration helped us refine our survey ques-
tions and ensure that our research methodologies
align with the latest legal and regulatory standards;

hate speech definition

1. Is "Hate Speech" a
legal term in the law of
the country?
2. Is the definition of
"Hate Speech" provided
in the regulation?

generic hate speech
queries

1. Is "Hate Speech"
defined as an independent
criminal offence?
2. Is "Hate Speech"
protected by freedom of
speech?

online hate speech
queries

1. Is online "Hate Speech"
defined in the regulation?
2. Is online hate speech
covered by the hate
speech regulation?

online hate speech
specific punishment

1. Is there a special
punishments for online
hate speech?
2. Do all punishments of
"Hate Speech" apply for
online "Hate Speech" as
well?

preventive measures and
encouragements to
mitigate online hate

speech

1. Do the regulations also
define other type of
speech  than "Hate
Speech" (Eg:  Offensive
Speech)?
2. Do the regulations
perform banning/shadow
banning of  users/posts?
3. Do the regulations
encourage counter hate
speech?
4. Do the regulations
encourage message
rewriting/detoxification?

moderation of social
media platforms

1. Are there social media
platform specific
regulations?
2. Do they have social
media specific regulation
on "Hate  Speech"?
3. Is a time frame specified
in the regulation in which
a "Hate Speech" post has
to be  dealt with?
4. Was the regulation
updated  in the last 2
years?
5. Do they have regulation
of  "Hate Speech" for
broadcasted (Eg: TV)
media?

basic regulation
queries

1. Are there any regulation
of "Hate Speech" in the
country?
2. If yes, when was it
last updated? If no, is the
regulation coming soon?

hate speech punishment

1.Does the regulation set
any kind of punishment?
2. Is there any social
or community service as
punishment?
3. Is there a monetary
punishment?
4. Is there an imprisonment
as punishment?
5. Does the law explicitly
provide specified higher
penalties for repeated
offenders?

[24 questions asked]
14 considered countries

Figure 3: Country-specific regulations. Selected coun-
tries and full list of questionnaire encapsulated within
categories.

hence re-assuring that our survey is up to date with
the latest regulations of the countries and platforms
with their hate speech regulations.

3.1 Country-specific Regulations

We examine the regulations concerning hate speech
that have been established by individual countries.
Hate speech can manifest itself in various forms
and requires different regulatory approaches de-
pending on cultural, legal, and societal contexts
and we maximally incorporate these as discussed
below.



Selection criteria To ensure a diverse and rep-
resentative sample of countries, we selected them
based on extensive familiarity and expertise of the
research team to ensure a detailed and contextu-
ally rich analysis. Then we also selected diverse
geographic representation by selecting at least one
country from each continent based on population
to capture a wide range of regulatory approaches.
Finally, countries with significant online presence
& engagement and where incidents of hate speech
are prevalent were also considered to strengthen
our focus on hate speech regulation.

Questions First we narrowed down the cate-
gories to have a solid overview of the regulations.
For this purpose, we aimed at following rationales
for extracting key insights from each country’s ap-
proach to hate speech regulation. First, we consid-
ered freedom of speech and hate speech definition
as they are very crucial for gaining insights into
country’s tolerance of expression and for reflecting
upon their conceptualization and legal stance on
hate. Then we considered different punishments
like monetary fine or imprisonment which is of
immense importance; since it is related to the con-
sequences of violation of hate speech regulations.
We also employed preventive measures to empha-
size censorship or content moderation like coun-
terspeech regulatory support and message detox-
ification. Finally, we also consider social media
regulations as it is vital for deep diving into reg-
ulations related to online hate. After finalizing
categories on these key insights, we then added
relevant questions into each of them.

Statistics In total, we selected 14 countries from
around the world,5 to provide a comprehensive rep-
resentation of how hate speech and related issues
are regulated at the national level. This selection
ensures at least one country from each continent
is included to capture a diverse set of regulatory
approaches and perspectives. Please refer to Fig-
ure 3 for a holistic view. The insights derived from
the analysis of these regulations are discussed in
Section 4.1.

3.2 Platform Policies
We analyze the policies developed by social media
platforms to regulate hate speech to understand how
the platforms define, detect, and respond to such

5Countries: Ethiopia, India, Sri Lanka, Russia, Ukraine,
South Africa, United States, United Arab Emirates, United
Kingdom, Germany, China, Brazil, Colombia and Australia.

general information

1. What is company's head-
quarter country?
2. What are number of active
users (per month) (MAU)?

platform access and
verification

1. Is there an age limit for
account creation?
2. Is the content adjusted to
kids (parental control)?
3. Is the user's age verified?
4. Is there phone or ID
verification?
5. Does the platform allow to
create a pseudonymous
account? (e.g. username + e-
mail verification)
6. Do they allow creating an
anonymous account? (no mail
verification, no identification
at all)
7. Is it possible to create a
group without administrator
approval?
8. Are there verification of
public persons/organizations/
media companies?
9. Are there extra rules for
verified organizations/media
companies?

basic regulations queries

1. Are the regulations
accessible from the front
page?
2. Is the regulations language
automatically adjusted to the
users location?

hate speech definition and
queries

1. Is there a definition of
"Hate speech"?
2. How is freedom of speech
differentiated from "Hate
Speech"?

content moderation

1. Are there unmoderated,
private groups, channels, or
chats?
2. Is the platform moderated
by users or groups? (self-
moderation)
3. Is the platform moderated
by platform employees?
4. Do they have auto
moderation? (pro-active
moderation)
5. Does the platform have
community guidelines? (in
addition to terms of service?)

preventive measures and
encouragements to mitigate

online hate speech

1. Is there a reporting
functionality?
2. Do the regulations also
define other type of speech
than "Hate Speech"?
(Eg: Offensive Speech)
3. If other type of speech
are also defined, what are
they? (Eg: Offensive Speech,
etc..)
4. Do they label content as
offensive/sensitive?
5. Do the regulations
perform banning/shadow
banning of users/posts?
6. Do the regulations
encourage counter
hate speech?
7. Do the regulations
encourage message
rewriting/detoxification?
8. Are there some other
encouragements as well?
What are they?

transparency

1. Can government request
data from the platform for
Hate Speech case
investigation? (usually called
"Law Enforcement")
2. Is Data API access
provided for Research?

[30 questions asked]
14 considered

platforms

Figure 4: Platform policies. Selected platforms and
full list of questionnaire encapsulated within categories.

content. Our analysis provides insights into the
accessibility and transparency of platform policies,
the use of automated and human moderation, and
the preventive measures in place to protect users.

Selection criteria Our selection criteria were de-
signed to ensure a thorough examination of poli-
cies across globally popular social media platforms
while also accounting for regional variations. Glob-
ally popular platforms were selected based on their
monthly active user count, prioritizing the most
widely used platforms worldwide to ensure broad
coverage and relevance. For regionally relevant



platforms, importance was given to the popular-
ity of platforms within the countries mentioned in
Section 3.1.

Questions We first finalized categories before
concluding the final questionnaire. Social media
platform specific rationales targeted at distinct as-
pect of platform functionalities and their strategies
for addressing hate speech were considered. Hate
speech definition is among the first major ratio-
nale we considered for identifying the platform’s
foundation on content moderation and enforcement
actions. Then we pillared on platform access &
verification, regulation accessibility and content
moderation as the most crucial rationales. These
rationales were chosen to (i) understand the mech-
anisms for user access and verification, including
age restrictions and verification processes, (ii) in-
quiry into the accessibility and language of plat-
form regulations aimed to assess the transparency,
and (iii) help us to further delve into the mecha-
nisms and actors involved in content moderation,
including user-driven moderation, automated sys-
tems, and employee-led moderation teams. In addi-
tion, examination of policy alignment with country-
specific regulations provided insights into platform
compliance and adaptability to legal frameworks.
Similar to rationales in country-specific regula-
tions, here also we include preventive measures
as they focused on the platform’s efforts to em-
power users in reporting hate speech, as well as
initiatives aimed at promoting counterspeech and
detoxification of harmful content. Additionally, we
include data access as an inquiry to assess the plat-
form’s transparency and willingness to collaborate
with researchers and law enforcement agencies in
hate speech investigations.

Statistics 14 social media platforms were se-
lected based on the established selection criteria
and analyzed through our detailed questionnaire6.
Figure 4 shows a detailed questionnaire with cate-
gories of social media platforms’ regulations. The
findings, which elucidate the platforms’ approaches
to hate speech, are presented in Section 4.2.

3.3 Research Datasets
In our third pillar, we bridge the gap with NLP re-
search by examining the current state of automatic
hate speech detection in texts. Our focus centers

6Platforms: X, Facebook, Telegram, WhatsApp, In-
stagram, Reddit, VK, Odnoklassniki, TikTok, YouTube,
LinkedIn, Snapchat, GAB, ShareChat.

hate speech definition and
 alignment

1. Is there a definition of Hate
speech mentioned?
2. What is the percentage of
hateful samples?
3. Does the paper mention
alignment with countries’
regulations of corresponding
languages?
4. Does the paper mention
alignment with corresponding
data source’s (platform) hate
speech regulations?

dataset details

1. Is the data source of the
dataset mentioned?
2. What are the Data Source?
3. What is the time period
covered in the data?
4. Are the target groups of the
dataset specified?
5. Is there a clear dataset
splitting strategy into
train/validation/test?
6. Is the dataset publicly
available?
7. What is the Dataset size
(Number of Samples)?

annotator details

1. Is the payment or reward
mentioned for the annotators?
2. Is the age of the annotators
specified?
3. Is the gender of the
annotators specified?
4. Is the religion of the
annotators specified?
5. Is the race of the
annotators specified?
6. Is the education of the
annotators specified?
7. Is the language proficiency
of the annotators specified?
8. Were the annotators
representative of the target
groups?
9. Do they cover therapy for
the annotators?

label details

1. Do they provide definitions
for the labels?
2. Are the labels binary?
3. Are the labels fine-grained?
4. List out all the labels.
5. Does the paper mention
recommendations on how the
labeled data should be used?

annotation details

1. Do they mention the
annotation tool?
2. What was the annotation
platform?
3. Is the annotation conducted
using crowd-sourcing?
4. Do they mention a pilot
annotation?
5. Is there an annotation
guideline?
6. Is the annotation guideline
published?
7. What are the number of
annotators per sample?
8. Are there atleast 3 or more
annotators?
9. Do they report annotation
agreement?

Albanian
Amharic
Arabic
Bengali
Chinese
Croatian
Danish
Dutch
English
French

German
Hindi
Hinglish
Italian
Korean
Polish
Portuguese
Roman Urdu
Russian
Spanish

20 languages covered

[34 questions asked]
38 research dataset papers considered

labels taxonomy in explored research datasets

hate
offensive
harmful
sexism
SUD
homophobia

insult
abusive
cyberbullying
fearful
disrespectful
aggressive

incomprehensible
extremism
racism
defamation
irony
lookism

stereotype
blackmail
body shame
curse
exclusion
call-for-actions

Figure 5: Research datasets. List of covered languages,
label taxonomy and full list of questionnaire encapsu-
lated within categories.

on datasets designed for fine-tuning machine learn-
ing models, allowing us to gain a comprehensive
understanding of the landscape across diverse lan-
guages. This exploration will highlight the method-



ologies used in dataset creation, their definitions
of hate speech, and their relevance in addressing
the challenges posed by hateful content in digital
environments.

Selection criteria Our selection criteria were
crafted to ensure the inclusion of diverse perspec-
tives while maintaining a high standard of rele-
vance and credibility. These criteria included the
following points – Language inclusivity was cho-
sen as one of the most crucial criterion as it en-
compasses a wide array of languages prevalent
in the countries considered in Section 3.1. Cita-
tions and publication venue are one of the most
important parameters of success of a research work.
We therefore prioritized dataset papers that have
significantly influenced the academic community,
as indicated by their citation metrics. For low-
resource languages, we included the majority or
all of the available datasets to ensure comprehen-
sive representation in our analysis. Further, we
prioritized ACL Anthology, which includes various
high-ranked ACL conferences like ACL, NAACL,
EACL and EMNLP, as well as relevant workshops
or venues for shared tasks; specifically the WOAH
(Workshop on Online Abuse and Hate) –constantly
co-located with A/A* ACL conferences and in-
dexed in the ACL Anthology– and other like Se-
mEval shared tasks. We also examined the over-
all proceedings of other relevant conferences like
AAAI; by paying strict attention to the relevance of
papers and their citation metrics.
Finally, we cross-verified the credibility of our se-
lection and choices with established repositories7

and refined our paper selection using the highly
regarded survey (Vidgen and Derczynski, 2020)
on hate speech; thus validating the inclusion of
well-established datasets.

Questions For the formulation of categories we
designed to extract key insights for a comprehen-
sive understanding of hate speech datasets. Hate
speech definition is the crucial here as well as it
provides with the complex nature of hate speech,
and helps in exploring how researchers conceptu-
alize and define it. Next, we anchor on annota-
tion process and diverse set of labels as they help
in investigating that how the annotation process
sheds light on the methodologies employed, includ-
ing the existence of guidelines, pilot annotations,
and quality control measures, which are crucial for

7https://www.hatespeechdatasets.com

evaluating the quality and reliability of the dataset.
The labels used for annotation and their descrip-
tions provide insights into the granularity and depth
of the dataset’s understanding of hate speech nu-
ances. Annotator demographics are also very cru-
cial as they help in exploring the demographics of
annotators, encompassing factors such as age, gen-
der, religion, and race, facilitated an assessment of
dataset inclusivity and annotator suitability. Finally,
dataset material which queries aspects such as data
source, modality, size, and availability is vital for
understanding the dataset’s scope and applicability
in hate speech research.

Statistics We selected 38 dataset papers spanning
20 languages based on our criteria and analyzed
them using our comprehensive questionnaire. The
complete questionnaire is available in Figure 5,
cited datasets are present in Appendix in Table 1
and the results from this analysis are presented in
Section 4.3.

4 Results and Analysis

In this section, we will discuss the outcomes of our
investigation across three key areas aimed at miti-
gating hate speech: country regulations, platform
policies and research datasets. We have summa-
rized our analysis quantitatively in Figures 6, 7
and 8 and have also uploaded the full list of ques-
tionnaire; as mentioned previously.

4.1 Regulation Results
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Figure 6: Quantitative results on country regulations.

As stated earlier, we selected 14 countries from
all over the world in order to have a comprehensive
picture of how hate speech and related issues are
regulated on a governmental level. The quantitative
results of our investigation are summarized in Fig-
ure 6 and below we perform qualitative analysis.

Key observations First of all, we note that all
countries considered in the study regulate hate

https://www.hatespeechdatasets.com


speech except the USA and the majority of the regu-
lations have been updated no earlier than four years
ago, keeping the nations up-to-date with the cur-
rent hate speech challenges. The definition of hate
speech, inspite of the widespread recognition of the
need to address hate speech at the governmental
level, lacks single universally accepted definition
of what constitutes hate speech. Different coun-
tries have developed their own definitions, reflect-
ing their unique cultural, legal, and social contexts.
Understanding these context-specific definitions is
crucial for developing targeted interventions that
respect local norms while safeguarding individuals
from harmful speech.

Online hate speech Although most countries
have laws regulating hate speech, only 43% have
specific definitions related to online hate speech.
Countries such as the USA, Russia, and Ukraine do
not independently address online hate speech at the
legislative level, whereas hate speech is protected
under freedom of speech in the USA.

Punishments Most countries adopt various ap-
proaches to punish hate speech offenders, with
penalties ranging from fines and community ser-
vice to imprisonment. While imprisonment is a
potential consequence, the duration of sentences
is typically relatively short, and varies from one
country to the other.

Proactive content moderation Proactive mitiga-
tion of hate speech is being used in a limited man-
ner. At both national and regional levels, specific
laws addressing counterspeech and detoxification
are lacking. However, many countries have empha-
sized the creation of a safe environment through
proactive methods, which appears to be a positive
initial step in this direction.

4.2 Platform Results
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Figure 7: Quantitative results on platform policies.

In this subsection we analyze the outcome of

our survey on social media platform’s policies to
robustly corroborate the community guidelines pro-
vided by the respective platforms in terms of hate-
ful content and their mitigation strategies. The
overall quantitative results from our investigation
are summarized in Figure 7; below, we perform
qualitative analysis.

Key observations The majority of platforms
have an age limit for account creation and some sort
of parental control. Only three out of 14 platforms
we studied—Facebook, Instagram, and YouTube—
apply age verification methods. Phone number or
any other sort of ID verification is present in only
57% of the platforms that we studied. None of
the platforms allow for the creation of completely
anonymous accounts, but nine platforms allow for
the creation of pseudonymous accounts, i.e., an ac-
count that uses a fictitious name or alias to protect
the user’s digital identity.

Community guidelines All platforms except
GAB have made their regulations accessible from
their home pages. X, Telegram and GAB are the
platforms that do not adjust the language of the
regulations automatically according to the user’s
geographical location. Platforms like—Telegram,
WhatsApp, TikTok and GAB—do not even have a
strict definition of hate speech in their regulations.

Content moderation Platforms play an impor-
tant role in content moderation, where administra-
tors or moderators can moderate respective groups
or communities. It is highly subjective and de-
pendent on the social and cultural context of the
individual and their demographics. Only a small
minority of platforms—Facebook, Instagram, Tik-
Tok, ShareChat and YouTube—have moderators
with demographic diversity. A common solution
to this challenge is employing auto-moderation,
which is adopted by almost all platforms except–
Telegram, WhatsApp, and GAB.

Preventive measures All platforms have a re-
porting functionality where users can report con-
tent they find inappropriate. The users generally
flag the reported content according to the cate-
gory labels provided by the platform. Platforms
like—WhatsApp, VK, Odnoklassniki, TikTok, and
ShareChat—do not provide a label for hateful or
sensitive content when reporting.

Proactive content moderation At last, we ana-
lyze the acceptance of counterspeech and message



detoxification as a proactive moderation strategy.
Surprisingly, we found very few platforms like—
Facebook, VK and Odnoklassniki—that encourage
the promotion of these new moderation paradigms.

4.3 Results based on Research Datasets
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Figure 8: Quantitative results on research datasets.

Our analysis of various hate speech dataset pa-
pers has yielded several key findings that provide
insights into the landscape of hate speech research
and dataset construction. Quantitative results are
provided in Figure 8 and below we share qualita-
tive analysis.

Key observations Interestingly, 66% of the sur-
veyed papers present a clear definition of hate
speech within their work. We believe, especially
for annotation tasks and dataset papers, concep-
tual clarity in understanding hate speech is highly
important. Consequently, our expectation was
that almost all papers would have a definition of
hate speech, which is unfortunately not true. Fur-
ther, our analysis reveals that only 16% of the pa-
pers have cross-checked their definition with hate
speech regulations at the national level, and only
three papers referenced platform-specific regula-
tions. This lack of alignment with regulatory frame-
works highlights potential discrepancies between
academic definitions and legal or platform-specific
interpretations of hate speech. To our surprise, only
one of the 38 surveyed papers formulate recom-
mendations on leveraging their work, datasets, or
annotations. This highlights a missed opportunity
for academic research to inform practical interven-
tions and policy-making efforts in the fight against
hate speech.

Platform imbalance Finally, we observe consid-
erable imbalance in investigated data sources. X
account for over 50% of the studies, while other
platforms such as—YouTube, Instagram, Reddit
and WhatsApp—were explored in less than 10%
of the papers. Facebook, with its 3 billion users,
far exceeds X, which has only 611 million users,

indicating that the over-representation of certain
platforms does not correlate with actual usage (cf.
further insights in Appenix A).

5 Conclusion and Future Directions

The challenges identified by HATEPRISM in ad-
dressing hate speech from governmental, platform,
and research angles are as following.

Firstly, the lack of a universally accepted defini-
tion of hate speech complicated the development of
consistent regulations across countries. While most
nations have a definition of hate speech, only a third
defined it specifically for the online environment.
This underscored the need to raise awareness about
online hate and its mitigation. However, some of
the countries are proactive in hate speech modera-
tion methods development.

Secondly, social media platforms showed policy
inconsistencies, which hindered effective content
moderation. A fifth of the platforms failed to adapt
hate definitions to local languages and cultures,
and moderation typically focused on banning rather
than proactive strategies.

Thirdly, most NLP research did not align with
platform or regulatory guidelines, often reusing out-
dated definitions from previous computer science
studies. Moreover, many studies did not explore
proactive measures such as counterspeech or detox-
ification in operational settings. Such data labeling
could improve online hate mitigation.

Ultimately, collaboration between platforms,
governments, and researchers is essential to create
dynamic moderation frameworks. Aligning defini-
tions and promoting proactive strategies will lead
to more effective solutions for combating online
hate. The further exploration of proactive modera-
tion pipeline which consists of thoughtful combi-
nation of text detoxification, counter speech gen-
eration, other preventing measures, and preparing
such datasets for automatic methods development
should be a frontier for future research.
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Limitations

While we made diligent efforts to meticulously
document our research process, findings and rec-
ommendations, it is important to acknowledge that
our study has certain limitations:
1) Only text-based content: We only took into
consideration textual expression of digital violence
in NLP research. We acknowledge that hate can
also be extremely taxing in other modalities like
images, voice recordings and videos. Our study on
hate mitigation do not encompass such cases.
2) Only human-written content: Our mitiga-
tion pipeline was initially tailored to address only
human-authored messages and comments. How-
ever, as text generation systems become more
prevalent, there is a growing influx of machine-
generated content on social media platforms. It is
imperative to incorporate additional measures to de-
tect and address bots and other machine-generated
texts that may pose greater risks in inciting hatred.
3) Only digital content: Finally, we performed our
studies only in the realm of digital violence. Never-
theless, digital hater can transcend virtual platforms
and manifest in real-world scenarios through vari-
ous means. For this reason, we include an ‘authori-
ties’ intervention’ step in our demarcation pipeline.

Ethics statement

We are committed to upholding freedom of speech
and respect the autonomy of stakeholders in de-
ploying moderation technologies tailored to their
specific domain, context, and requirements. Our
aim is to offer a broader perspective on potential au-
tomatic proactive moderation strategies, providing
novel insights and recommendations.
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Ergün Kara, Gülşen Kirpik, and Attila Kaya. 2022. A
research on digital violence in social media. In Hand-
book of research on digital violence and discrimina-
tion studies, pages 270–290. IGI Global.

Md. Rezaul Karim, Sumon Kanti Dey, Tanhim Islam,
Sagor Sarker, Mehadi Hasan Menon, Kabir Hossain,
Md. Azam Hossain, and Stefan Decker. 2021. Deep-
hateexplainer: Explainable hate speech detection in
under-resourced bengali language. In 2021 IEEE
8th International Conference on Data Science and
Advanced Analytics (DSAA), pages 1–10.

David Kaye. 2019. Speech Police: The Global Struggle
to Govern the Internet. Columbia Global Reports.
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A Further insights

Deep investigation into hate speech dataset papers
revealed a nuanced understanding of hate speech as
a multi-faceted phenomenon. Through the analysis
of hate speech definitions and descriptions, several
key aspects emerged that can be considered for
the classification of hate speech. We outline these
aspects below:

(i) Target: Understanding the target of hate speech
is essential in contextualizing its impact. Inflam-
matory messages directed at individuals or groups
are often considered hate speech, while undirected
messages are not.
(ii) Discrimination: Hate speech often manifests
through discriminatory language targeting various
characteristics such as race, sex, gender, national-
ity, religion, and more.
(iii) Intent of the perpetrator: Malicious intent,
ranging from mocking and causing emotional harm
to issuing threats or inciting violence, is typical for
hate speech. However, humorous, sarcastic, or troll
messages are often not considered hate speech.
(iv) Language usage: Hate speech can manifest
in diverse linguistic forms, from threatening, dehu-
manizing, or fear-inducing speech to overtly vi-
olent or obscene language. Again, sarcastic or
humorous language is often not considered hate
speech.
(v) Emotions of the victim/target: Understand-
ing the emotional impact on hate speech victims is
crucial for assessing its harm, as it often induces
sadness, anger, fear, and out-group prejudice.
(vi) Frequency: Hate speech can manifest as iso-
lated incidents or persistent harassment, such as
mobbing or bullying. Analyzing attack frequency
helps gauge the severity of hate speech.
(vii) Time: Hate speech may reference past events,
current circumstances, or future actions. Especially,
messages that incite violent actions in the near fu-
ture are dangerous. The temporal dimension should
not be neglected.
(viii) Fact-checking: Hate speech often relies
on misinformation or distorted facts to perpetuate
harmful narratives. Identifying disinformation can
aid hate speech detection and inform the severity.
(ix) Topic and context: Hate speech targets vari-
ous topics, from political ideologies to social iden-
tities, and contextual factors must be considered in
its assessment. Our analysis underscores the com-
plexity of hate speech, highlighting the need for
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Year of publication Dataset research papers

2017 (2) (Davidson et al., 2017; Del Vigna et al., 2017)

2018 (7) (Albadi et al., 2018; Founta et al., 2018; Bohra et al., 2018; Mathur et al., 2018)
(Sanguinetti et al., 2018; Sprugnoli et al., 2018; Carmona et al., 2018)

2019 (9)
(Mulki et al., 2019; Haddad et al., 2019; Chiril et al., 2019)

(Ousidhoum et al., 2019; Mandl et al., 2019; Corazza et al., 2019)
(Ptaszynski et al., 2019; Fortuna et al., 2019; Basile et al., 2019)

2020 (5) (Mossie and Wang, 2020; Sigurbergsson and Derczynski, 2020)
(Bhardwaj et al., 2020; Rizwan et al., 2020; Zueva et al., 2020)

2021 (6) (Karim et al., 2021; Romim et al., 2021; Ljubešić et al., 2021)
(Burtenshaw and Kestemont, 2021; Mathew et al., 2021; Assenmacher et al., 2021)

2022 (8) (Nurce et al., 2022; Abebaw et al., 2022; Ayele et al., 2022; Jeong et al., 2022)
(Das et al., 2022; Jiang et al., 2022; Shekhar et al., 2022; Demus et al., 2022)

2023 (1) (Pérez et al., 2023)

Table 1: Explored Research Datasets: Arranged in ascending chronological order. Number in brackets denote the
number of explored dataset papers published in the corresponding year.

nuanced approaches to effectively identify, classify,
and mitigate its harmful effects.
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