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Abstract

Transformer models, or their inherent attention mechanism in particular, have signi�-
cantly advanced the �elds of natural language processing (NLP) and computer vision
(CV). Combining transformers for text processing and transformers for image processing
led tomultimodal transformers, enablingmore natural and e�ective interactions between
humans and Arti�cial Intelligence (AI), thus having great potential for real-world
applications. Further, there are multimodal transformer models that can process even
more modalities, such as audio, time series, graphs, or various kinds of digital sensor
data. However, this thesis focuses on multimodal transformers for vision-language
tasks (VLTs), i.e., models that jointly process textual and visual data from images or
videos. These models can be grouped into two archetypes: Firstly introduced were
Vision-Language Models (VLMs), which are based on two aligned transformer encoders,
one for text and one for images, trained to compute semantically rich representation
in the same multimodal embedding space. These VLMs can not generate text but are
often used for discriminative tasks like image classi�cation or cross-modal retrieval.
Thanks to signi�cant hardware improvements and the increased availability of immense
computational resources, generative Large Vision-Language Models (LVLMs) were
introduced after classical VLMs. LVLMs typically combine a transformer encoder for
visual data processing with a transformer decoder, i.e., a pretrained Large Language
Model (LLM) capturing extensive world knowledge and reasoning capabilities to enable
coherent text generation conditioned on interleaved text-image inputs. These models
demonstrated remarkable capabilities in various VLTs, such as visual question answering,
image captioning, object detection, or optical character recognition, making them
powerful tools for a wide range of real-world applications.

Despite their strengths, multimodal transformers exhibit notable limitations when faced
with data signi�cantly di�erent from their training distribution, commonly referred
to as “out-of-distribution” data. Performance degradation is particularly evident in
scenarios involving diverse domains, low-resource languages, and non-Western cultural
contexts. These limitations are especially problematic, considering the increasing global
availability and reliance on AI systems, which require robust and equitable performance
across diverse user groups and scenarios.

This dissertation investigates the strengths and limitations of multimodal transformer
encoder and decoder models, i.e., VLMs and LVLMs. Through systematic experi-
mentation, it demonstrates the practical applicability of such models in developing
e�cient and user-friendly cross-modal information retrieval systems for the interactive
exploration of complex datasets. Conversely, analyses based on specially curated datasets
designed explicitly to test robustness highlight signi�cant performance drops when
models encounter complex data, multilingual inputs, or culturally diverse content.
Further, experiments evaluating LVLMs through extensive multilingual benchmarks



that span numerous low-resource languages highlight signi�cant limitations in non-
English languages across a wide range of tasks. Similarly, large-scale experiments
assessing the cultural knowledge reveal pronounced biases toward Western cultures
across LVLMs of all kinds and sizes.

Moreover, the thesis proposes e�ective strategies for addressing multilingual limitations,
particularly through improved training regimens and carefully curated, massively
multilingual datasets. By systematically analyzing various training con�gurations,
including the optimal distribution and scale of multilingual training data, the dissertation
successfully demonstrates strategies for creating massively multilingual LVLMs capable
of maintaining high performance across various multilingual VLTs.

Overall, this thesis provides comprehensive insights into leveraging the strengths of
multimodal transformer models, systematically investigates their inherent limitations,
and proposes mitigation strategies to overcome restrictions in massively multilingual
settings. The work presented aims to contribute towards developing more universally
applicable, equitable, and robust multimodal AI systems for people from all over the
world, irrespective of their language or cultural background.



Zusammenfassung

Transformer-Modelle, insbesondere deren “Attention” Mechanismus, haben die Bereiche
der natürlichen Sprachverarbeitung (NLP) und des maschinellen Sehens (Computer
Vision, CV) erheblich vorangebracht. Die Kombination von Transformern für die Text-
verarbeitung und für die Bildverarbeitung führte zu multimodalen Transformern, die
natürlichere und e�ektivere Interaktionen zwischen Mensch und KI ermöglichen und
somit großes Potenzial für reale Anwendungen bieten. Zudem existieren multimodale
Transformer-Modelle, die noch weitere Modalitäten wie Audio, Zeitreihen, Graphen
oder verschiedene Arten digitaler Sensordaten verarbeiten können. Diese Dissertation
konzentriert sich jedoch auf multimodale Transformer für Vision-Language-Tasks
(VLTs), d.h. Modelle, die textuelle und visuelle Daten aus Bildern oder Videos gemeinsam
verarbeiten. Diese Modelle lassen sich in zwei Haupttypen einteilen: Zunächst wurden
Vision-Language-Modelle (VLMs) erfunden, die auf zwei ausgerichteten Transformer-
Encodern basieren: einer für Text und einer für Bilder. Diese Modelle sind darauf trai-
niert, semantisch reichhaltige Repräsentationen in einem gemeinsamen multimodalen
Vektorraum zu erzeugen. VLMs können zwar keinen Text generieren, werden jedoch
häu�g für diskriminative Aufgaben wie Bildklassi�kation oder kreuz-modale, also Text-
Bild oder Bild-Text, Suche eingesetzt. Dank erheblichem Fortschritt der Hardware und
der damit gesteigerten Verfügbarkeit enormer Rechenressourcen wurden nach den
klassischen VLMs generative Large Vision-Language-Modelle (LVLMs) erfunden. LVLMs
kombinieren typischerweise einen Transformer-Encoder zur Verarbeitung visueller
Daten mit einem Transformer-Decoder, also einem großen vortrainiertem Sprachmodell,
auch bekannt als Large Language Model (LLM), welches umfangreiches Wissen und
logische Fähigkeiten kombiniert, um kohärente Textgenerierung auf Grundlage von Text-
und Bildinputs zu ermöglichen. Diese Modelle zeigten bemerkenswerte Fähigkeiten
bei verschiedenen VLTs wie der Beantwortung von Fragen auf Basis von Bildinhalten,
Bildunterschriften, Objekterkennung oder optischer Zeichenerkennung und stellen
somit leistungsstarke Werkzeuge für viele reale Anwendungen dar.

Trotz ihrer Stärken weisen multimodale Transformer erhebliche Einschränkungen auf,
wenn sie mit Daten konfrontiert werden, die deutlich von ihrer Trainingsverteilung
abweichen, also sogenannte „Out-of-Distribution“-Daten. Leistungseinbußen zeigen sich
insbesondere deutlich bei Szenarien aus verschiedenen Domänen, Sprachenmit geringen
Ressourcen sowie in nicht-westlichen kulturellen Kontexten. Diese Beschränkungen
sind besonders problematisch angesichts der zunehmenden globalen Verfügbarkeit und
Abhängigkeit von Systemen basierend auf Künstlicher Intelligenz, die eine robuste und
gerechte Leistung über verschiedene Nutzergruppen und Szenarien hinweg erfordern.

Diese Dissertation untersucht Stärken und Schwächen multimodaler Transformer-
Encoder- und Decoder-Modelle, also VLMs und LVLMs. Durch systematische und
umfangreiche Experimente wird die praktische Anwendbarkeit solcher Modelle zur
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Entwicklung e�zienter und benutzerfreundlicher Systeme zur kreuz-modalen Suche
und interaktiven Exploration komplexer Datensätze demonstriert. Umgekehrt zeigen
ausgedehnte Analysen anhand speziell kuratierter Datensätze, die explizit zur Über-
prüfung der Robustheit entwickelt wurden, deutliche Leistungseinbrüche, wenn die
Modelle mit komplexen Daten, mehrsprachigen Eingaben oder kulturell vielfältigen
Inhalten konfrontiert werden. Weiterhin verdeutlichen Experimente, welche LVLMs mit
umfangreichen multilingualen Benchmarks evaluieren, erhebliche Einschränkungen bei
nicht-englischen Sprachen in einer Vielzahl von Aufgaben. Ebenso zeigen großangelegte
Experimente zur Bewertung des kulturellen Wissens ausgeprägte Vorurteile gegenüber
westlichen Kulturen über LVLMs aller Arten und Größen hinweg.

Darüber hinaus schlägt die Dissertation e�ektive Strategien zur Überwindung multi-
lingualer Einschränkungen vor, insbesondere durch verbesserte Trainingsverfahren
und sorgfältig kuratierte, mehrsprachige Datensätze. Durch die systematische Analyse
verschiedener Trainingskon�gurationen, einschließlich der optimalen Verteilung und
des Umfangs multilingualer Trainingsdaten, demonstriert die Dissertation erfolgreich
Strategien zur Entwicklung multilingualer LVLMs.

Insgesamt bietet diese Arbeit umfassende Erkenntnisse darüber, wie sich die Stärken
multimodaler Transformer-Modelle nutzen lassen, untersucht systematisch ihre inhä-
renten Grenzen dieser Modelle und schlägt Strategien vor, um Einschränkungen in
multilingualen Kontexten zu überwinden. Die vorgestellte Arbeit soll dazu beitragen,
universell einsetzbare, gerechte und robuste multimodale Künstliche Intelligenz-Systeme
für Menschen aus aller Welt zu entwickeln, unabhängig von ihrer Sprache oder ihrem
kulturellen Hintergrund.
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1. Introduction 2

1.1 Historical Background and Motivation

The idea of computer programs communicating with humans through natural lan-
guage dates at least back to the mid-1960s when Joseph Weizenbaum introduced
ELIZA (Weizenbaum, 1966). This pioneering chatbot simulated conversational inter-
action by utilizing pattern-matching algorithms and scripted responses. Today, about
half a century later, recent advances in machine learning (ML), especially in natural
language processing (NLP) and computer vision (CV), have drastically improved these
systems and revolutionized how we use and interact with technology in our daily lives.

At the heart of this revolution are language models (LMs): Statistical models of natural
languages that approximate a probability distribution to sample the next word in a
sequence, given its preceding words. While �rst approaches were often pure statistical
models that relied solely on word frequencies (Witten et al., 1991; Kneser et al., 1995;
Gale et al., 1995; Katz, 2003), modern language models are neural networks (NNs) trained
on massive amounts of textual data that “store” the information contained as abstract
numerical representations within their parameters. Early neural LMs were based on
simple feed-forward architectures (Bengio et al., 2003; Collobert et al., 2008) and later
evolved to incorporate recurrent neural networks (RNNs) (Rumelhart et al., 1985) like
Long Short-TermMemory networks (LSTMs) (Hochreiter et al., 1997) or Gated-Recurrent
Units (GRUs) (Cho et al., 2014). These models slowly started to outperform count-based
non-neural approaches but had severe limitations in terms of the amount of data they
could process e�ciently due to their sequential nature. The introduction of the “attention
mechanism” for LSTMs by Bahdanau et al. (2015) allowed the models to focus on speci�c
parts of an input sequence, enabling them to better capture long-range dependencies
in the data and improving their performance on various NLP tasks. However, the
architecture of recurrent LMs still forced models to process words sequentially and
continued to hinder scalability, making it challenging to train on large-scale datasets
required to solve complex tasks and acquire extensive knowledge.

Inspired by the “attention mechanism” for LSTMs, the pivotal moment happened in 2017
when researchers at Google introduced the Transformer architecture in their seminal
paper “Attention is All You Need” (Vaswani et al., 2017). This new architecture replaced
the sequential processing of RNNs with a mechanism based entirely on attention,
allowing for parallel processing of all words in a sentence at once, thereby not only
addressing the limitations of RNNs with long sequences but also enabling e�cient
large-scale training on modern hardware. Since then, the Transformer architecture has
proven to be one of the most in�uential advancements in NLP. It profoundly reshaped
the �eld and subsequently impacted other research areas, including computer vision
(CV), speech signal processing, robotics, and ML in general.

Following the introduction of the transformers, signi�cant milestones were achieved.
In 2018, Google introduced BERT (Devlin et al., 2019), an encoder-only Transformer
model based on self-attention, which rapidly became the state-of-the-art for a wide
range of NLP tasks. However, encoder-only models, such as BERT, are not designed
for text generation, and OpenAI introduced the Generative Pre-trained Transformer
(GPT) (Radford et al., 2018), a decoder-only transformer based on causal self-attention,
that enabled next word prediction in the classical sense of language modelling.
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Due to the general success of transformers, the architecture was also applied to modali-
ties beyond text. Notably, the Vision Transformer (ViT) model (Dosovitskiy et al., 2021),
introduced in 2021, successfully adapted transformer encoders to images by dividing
an image into smaller patches treated as a sequence similar to words in a sentence.
Furthermore, multimodal transformer encoders were developed to process data from
multiple modalities, mainly text and images, simultaneously (Chen et al., 2020; Li et al.,
2020). These vision-language models (VLMs) have proven highly e�ective for tasks like
visual question answering (VQA), image captioning, object detection, or cross-modal
retrieval. A particularly in�uential model in this space is CLIP (Radford et al., 2021),
which was trained on large-scale text-image pairs to compute aligned vector embeddings
of texts and images. Due to its broad applicability and strong performance in numerous
vision-language tasks (VLTs), such as zero-shot image classi�cation or cross-modal
retrieval, CLIP has become a foundational model for multimodal scenarios.

The landscape of language models shifted again around 2022 with the emergence
of instruction-tuned large language models (LLMs). Following the development of
increasingly large models such as GPT-3 (Brown et al., 2020) trained on vast amounts
of data, thereby having greater knowledge capacity, OpenAI’s InstructGPT (Ouyang
et al., 2022) paper introduced the concept of instruction following LLMs. By using
reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Stiennon
et al., 2020), LLMs were trained to follow human instructions and align to human
preferences, e�ectively becoming more general-purpose, task-agnostic models. Built
upon these advancements, the public release of OpenAI’s ChatGPT further popularized
LLMs, leading to widespread interest and adoption by the general public.

In parallel, generative large vision-language models (LVLMs), which combine ViTs
and LLMs, began to emerge (Alayrac et al., 2022; Chen et al., 2023b; Liu et al., 2023).
These models are capable of jointly processing mixed multimodal content in the form
of (interleaved) texts and images within a uni�ed architecture, enabling comprehensive
vision-language understanding and reasoning. This is achieved by resembling an
architecture similar to the human visual system: The ViT acts analogously to the eye
by capturing visual information, which the LLM, akin to the brain, contextualizes and
integrates with existing knowledge. This close alignment with human perception makes
LVLMs suitable for a broad range of VLTs and pushes the boundaries of multimodal
AI applications.

However, despite the remarkable progress and performance of multimodal transformers,
these neural networks are not without limitations. One key challenge is their per-
formance and robustness on data di�erent from the data they were trained on, often
referred to as “out-of-distribution” (OOD) data. Such data can be characterized by
di�erent domains, e.g., medical images or legal documents, languages, e.g., English vs.
German, or cultures, e.g., Western vs. African data. Models trained on data containing
only a small set of domains, languages, or cultures re�ect these inherent biases in their
parameters and thus produce biased results. As of today, the majority of datasets used to
train the models behind modern, powerful AI systems are primarily in English and focus
on Western cultures, which can lead to signi�cant performance drops or even complete
failures when the models are applied to data from other languages, cultures, or domains.
This is particularly problematic in real-world scenarios involving a diverse group of
users who come from di�erent cultural backgrounds and speak di�erent languages.
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Moreover, most users are unaware of the limitations and biases and expect the models
to perform well when prompted in their languages to solve all kinds of tasks from
various domains. Hence, it is crucial to identify and mitigate these shortcomings to
ensure robust and reliable models required for globally equitable AI and thus guarantee
that the bene�ts of this powerful technology are accessible to all people, regardless
of their language or cultural background.

This dissertation explores the strengths and limitations of multimodal Transformer
models—both encoder-only Vision-Language Models (VLMs) and generative encoder-
decoder Large Vision-LanguageModels (LVLMs)—across a diverse set of vision-language
tasks. Speci�cally, it investigates their performance degradation on out-of-distribution
(OOD) data, evaluates the robustness across massively multilingual and global cultural
contexts, and proposes e�ective strategies to mitigate multilingual limitations, thereby
paving the way for more universally applicable multimodal AI systems for people
all over the world.
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1.2 De�nitions

To investigate the strengths and limitations of transformer encoder and decoder models
for vision-language tasks, or more speci�cally, vision-language models (VLMs) and
large vision-language models (LVLMs), we �rst need to de�ne how these terms are
used in the scope of this thesis. More details on the architecture and training of VLMs
and LVLMs can be found in Chapter 2.

De�nition 1: Vision-Language Tasks (VLTs)

Vision-�anguage tasks are prob�ems that require the integration and
joint understanding of visua� and textua� information. They eva�uate
a mode�’s abi�ity to �earn cross-moda� representations and effective�y
�everage them to compute so�utions. Common tasks inc�ude visua� question
answering (VQA), visua��y grounded reasoning (VGR), open-vocabu�ary
object detection (OVD), image captioning, or cross-moda� retrieva�.

De�nition 2: Vision-Language Models (VLMs)

Vision-Language Mode�s (VLMs) are neura� networks based on transformer
encoders that are trained on datasets containing a�igned text-image pairs
to compute joint cross-moda� representations in a shared embedding space.
Specifica��y, we focus on VLMs that consist of a vision encoder for
processing visua� data and a text encoder for processing textua� data.
The two encoders are trained joint�y and compute a�igned dense vector
embeddings for both moda�ities usab�e for a wide range of vision-�anguage
tasks, especia��y for cross-moda� retrieva�.

De�nition 3: Large Vision-Language Models (LVLMs)

Large Vision-Language Mode�s (LVLMs) are generative neura� networks that
combine a transformer encoder for processing visua� data and a transformer
decoder, i.e., an LLM, for generating textua� responses from visua�,
textua�, or mixed mu�timoda� input. Specifica��y, we focus on LVLMs
that are trained on �arge-sca�e text-image datasets in mu�tip�e stages
to understand mu�timoda� data and fo��ow human instructions. This makes
LVLMs capab�e of performing a wide range of vision-�anguage tasks that
require textua� so�utions.
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1.3 Research Questions

In recent years, rapid advances in NLP and CV research combined with ever-increasing
computational resources have led to a growing interest in multimodal transformer-based
models such as VLMs and LVLMs. Due to their ability to process not only text but also
visual information, more closely resembling human perception, their potential �eld of use
is manifold. However, deploying such models in real-world scenarios involving a diverse
group of users from di�erent cultural backgrounds, speaking di�erent languages, and
expecting robust performance for various inputs and tasks, it is crucial to understand
the model’s strengths and limitations in detail.

This gives rise to the following research questions that are core to this dissertation:

Research Question 1

What are the strengths and practica� app�ications of VLMs and LVLMs, and
how can they be emp�oyed in rea�-wor�d scenarios?

Research Question 2

What are the inherent �imitations of VLMs and LVLMs, and how do they
affect their performance and robustness?

Research Question 3

How and to what degree can identified �imitations in VLMs and LVLMs be
mitigated?
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1.4 Publications

In the following, accepted papers that address the research questions stated in this thesis
are listed chronologically. The �rst list includes papers that form the foundation of
this thesis, whereas the second list holds related to but rather peripheral work for this
thesis. On all foundational papers, I am the �rst author or one of the joint �rst authors
who equally contributed1 to the respective work. Details on the degree of authorship
of foundational papers are provided in §1.4.3.

1.4.1 List of Foundational Papers

Florian Schneider and Chris Biemann. 2022. Golden Retriever: A Real-Time Multi-
Modal Text-Image Retrieval System with the Ability to Focus. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval, 3245–3250. SIGIR ’22. Madrid, Spain: Association for
Computing Machinery

Florian Schneider and Chris Biemann. 2024a. WISMIR3: A Multi-Modal Dataset to
Challenge Text-Image Retrieval Approaches. In Proceedings of the 3rd Workshop
on Advances in Language and Vision Research (ALVR), 1–6. Bangkok, Thailand:
Association for Computational Linguistics

Florian Schneider and Sunayana Sitaram. 2024b. M5 – A Diverse Benchmark to Assess
the Performance of LargeMultimodal Models Across Multilingual andMulticultural
Vision-Language Tasks. In Findings of the Association for Computational Linguistics:
EMNLP 2024, 4309–4345. Miami, Florida, USA: Association for Computational
Linguistics

Gregor Geigle*, Florian Schneider*, Carolin Holtermann, Chris Biemann, Radu Timofte,
Anne Lauscher, and Goran Glavaš. 2025. Centurio: On Drivers of Multilingual
Ability of Large Vision-Language Model. In Proceedings of the Association for
Computational Linguistics: ACL 2025, in press. Vienna, Austria: Association for
Computational Linguistics

Florian Schneider, Carolin Holtermann, Chris Biemann, and Anne Lauscher. 2025b.
GIMMICK – Globally Inclusive Multimodal Multitask Cultural Knowledge Bench-
marking. In Findings of the Association for Computational Linguistics: ACL 2025, in
press. Vienna, Austria: Association for Computational Linguistics

Florian Schneider, Narges Baba Ahmadi, Niloufar Baba Ahmadi, Iris Vogel, Martin
Semmann, and Chris Biemann. 2025a. CollEX – A Multimodal Agentic RAG
System Enabling Interactive Exploration of Scienti�c Collections. In Proceedings of
the 1st Workshop on Multimodal Augmented Generation via MultimodAl Retrieval
(MAGMaR), in press. Vienna, Austria: Association for Computational Linguistics

1. An equal contribution is indicated by an asterisk after the surname (*).
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1.4.2 List of Related Papers

Florian Schneider, Özge Alaçam, Xintong Wang, and Chris Biemann. 2021. Towards
Multi-Modal Text-Image Retrieval to Improve Human Reading. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Student Research Workshop. Online: Association for Computational
Linguistics

Xintong Wang*, Florian Schneider*, Özge Alacam, Prateek Chaudhury, and Chris
Biemann. 2022. MOTIF: Contextualized Images for Complex Words to Improve
Human Reading. In Proceedings of the Thirteenth Language Resources and Evalua-
tion Conference, 2468–2477. Marseille, France: Association for Computational
Linguistics

Anton Wiehe, Florian Schneider, Sebastian Blank, Xintong Wang, Hans-Peter Zorn,
and Christian Biemann. 2022a. Language over Labels: Contrastive Language
Supervision Exceeds Purely Label-Supervised Classi�cation Performance on Chest
X-Rays. In Proceedings of the 2nd Conference of the Asia-Paci�c Chapter of the
Association for Computational Linguistics and the 12th International Joint Confer-
ence on Natural Language Processing: Student Research Workshop, 76–83. Online:
Association for Computational Linguistics

Florian Schneider*, Tim Fischer*, Fynn Petersen-Frey, Isabel Eiser, Gertraud Koch, and
Chris Biemann. 2023. The D-WISE Tool Suite: Multi-Modal Machine-Learning-
Powered Tools Supporting and Enhancing Digital Discourse Analysis. In Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 3: System Demonstrations), 328–335. Toronto, Canada: Association for
Computational Linguistics

Florian Schneider and Chris Biemann. 2023. LT at SemEval-2023 Task 1: E�ective Zero-
Shot Visual Word Sense Disambiguation Approaches using External Knowledge
Sources. In Proceedings of the 17th International Workshop on Semantic Evalua-
tion (SemEval-2023), 462–468. Toronto, Canada: Association for Computational
Linguistics

Musashi Hinck, Carolin Holtermann*, Matthew Lyle Olson*, Florian Schneider*, Sung-
duk Yu, Anahita Bhiwandiwalla, Anne Lauscher, Shao-Yen Tseng, and Vasudev Lal.
2024b. Why do LLaVA Vision-Language Models Reply to Images in English? In
Findings of the Association for Computational Linguistics: EMNLP 2024, 13402–13421.
Miami, Florida, USA: Association for Computational Linguistics

Fabian David Schmidt*, Florian Schneider*, Chris Biemann, and Goran Glavaš. 2025.
MVL-SIB: A Massively Multilingual Vision-Language Benchmark for Cross-Modal
Topical Matching. In Findings of the Association for Computational Linguistics: ACL
2025, in press. Vienna, Austria: Association for Computational Linguistics
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1.4.3 Degree of Authorship of Foundational Papers

In the paper Golden Retriever: A Real-Time Multi-Modal Text-Image Retrieval System with
the Ability to Focus (Schneider et al., 2022), I conceptualized, implemented, and conducted
all experiments, including the introduced “Visually Weighted TF-IDF” algorithm, imple-
mented the proof-of-concept application, andwrote the paper. Chris Biemann supervised
the work on an abstract level and provided recommendations for improving the paper.

In the paper WISMIR3: A Multi-Modal Dataset to Challenge Text-Image Retrieval Ap-
proaches (Schneider et al., 2024a), I conceptualized, implemented, and conducted all
experiments and wrote the paper. Further, I incorporated Chris Biemann’s suggestions
to improve the paper.

In the paper M5 – A Diverse Benchmark to Assess the Performance of Large Multimodal
Models Across Multilingual and Multicultural Vision-Language Tasks (Schneider et al.,
2024b), I conceptualized, implemented, and conducted all experiments as well as the
collection of the two introduced datasets and wrote the paper. Sunayana Sitaram
inspired the project with her previous work on multilingual benchmarking and provided
meaningful feedback during the dataset collection process.

In the paper Centurio: On Drivers of Multilingual Ability of Large Vision-Language
Model (Geigle et al., 2025), Gregor Geigle and I primarily conceptualized the research
questions and high-level experimental setup of the project. Gregor conceptualized, imple-
mented, and executed the training experiments, and I did the same for the evaluation of
our trained models and the baseline models. Carolin Holtermann also played an essential
role in the general discussions of experiments and the project’s progress and was
responsible for translating the training data. Gregor wrote the paper draft, which was
then improved by Goran Glavaš, Anne Lauscher, Carolin, him, and me. Goran and Anne
also supervised the project and provided meaningful ideas and suggestions during the
project. Chris Biemann and Radu Timofte provided suggestions for improving the paper.

In the paper GIMMICK – Globally Inclusive Multimodal Multitask Cultural Knowledge
Benchmarking (Schneider et al., 2025b), I conceptualized, implemented, and conducted all
experiments and collected all introduced datasets, and I primarily wrote the paper. Anne
Lauscher supervised the project by providing essential ideas and fostering meaningful
discussions. Carolin Holtermann participated actively in all discussions and annotated
samples for the pilot projects. Further, Carolin and Anne assisted in improving the paper.
Chris Biemann proof-read the paper and suggested minor grammatical improvements.

In the paper CollEX – A Multimodal Agentic RAG System Enabling Interactive Exploration
of Scienti�c Collections (Schneider et al., 2025a), I conceptualized the architecture,
implemented the proof-of-concept application, and I wrote the paper. Narges and
Niloufar Baba Ahmadi implemented some features in an earlier version of the application.
The raw “FUNDus!” scienti�c collection data were managed and collected by Iris Vogel.
Martin Semmann and Chris Biemann provided suggestions for improving the paper.



1. Introduction 10

1.5 Contributions

In the following, the core contributions of this thesis and how they relate to the research
questions outlined in §1.3 are brie�y summarized. Table 1.1 provides a concise overview
how the foundational papers contribute to answering the research questions core to
this thesis, while Table 1.2 summarizes the contributions of the related papers.

Paper RQ1
Strengths

RQ2
Limitations

RQ3
Mitigations

Golden Retriever (Schneider et al., 2022) 3
CollEX (Schneider et al., 2025a) 3
WISMIR3 (Schneider et al., 2024a) (3) 3
M5B (Schneider et al., 2024b) (3) 3
GIMMICK (Schneider et al., 2025b) (3) 3
Centurio (Geigle et al., 2025) (3) (3) 3

Table 1.1: Contributions of the foundational papers to answer the research questions core to
this thesis. 3 denotes a strong contribution, (3) denotes a moderate contribution.

Paper RQ1
Strengths

RQ2
Limitations

RQ3
Mitigations

MOTIF (Wang et al., 2022) 3
LoL (Wiehe et al., 2022b) 3
DWTS (Schneider et al., 2023b) 3
ZS VWSD (Schneider et al., 2023a) 3
MM-T2I (Schneider et al., 2021) (3) 3
MVL-SIB (Schmidt et al., 2025) (3) 3
Why Llava? (Hinck et al., 2024a) (3) 3 3

Table 1.2: Contributions of the related papers to answer the research questions core to this
thesis. 3 denotes a strong contribution, (3) denotes a moderate contribution.

1.5.1 Research Question 1: Strengths

What are the strengths and practical applications of VLMs and LVLMs, and how can
they be employed in real-world scenarios?

We address this question in the following four papers from di�erent perspectives:

In our Golden Retriever (Schneider et al., 2022) paper, we show that VLMs can be
e�ectively used for zero-shot cross-modal text-image retrieval tasks as well as for
open-vocabulary object detection. This is achieved by leveraging and pooling �ne-
grained word-region alignment matrices computed by specialized dual-stack transformer
encoder network (Messina et al., 2021), with cells representing the similarity between a
word and a region in an image. We also introduce a novel algorithm that extends the
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well-known TF-IDF (Spärck Jones, 1972) algorithm to the multimodal domain, named
“Visually-Weighted TF-IDF” (VW-TF-IDF), which allows for e�cient cross-modal text-to-
image retrieval taking into account the presence of query-relevant objects in the image.
Moreover, we demonstrate the practical applicability of our approach by implementing
a real-time cross-modal retrieval system as a proof-of-concept application in the form
of a browser extension and web application.

In our CollEX (Schneider et al., 2025a) paper, we demonstrate how VLMs for cross-
modal retrieval combined with LVLMs employed as function-calling agents can be
leveraged in a multimodal RAG system to create a user-friendly chatbot application that
can answer complex queries about scienti�c collections of textual and visual artifacts.
Further, we show how to e�ectively utilize LVLMs to perform classical vision-language
tasks (VLTs) like VQA, image captioning, object detection, and OCR. The practical
applicability of our approach is demonstrated by proof-of-concept web applications
with an intuitive, simple user interface.

1.5.2 Research Question 2: Limitations

What are the inherent limitations of VLMs and LVLMs, and how do they a�ect their
performance and robustness?

This question is addressed concerning di�erent aspects in the following three papers:

In our WISMIR3 (Schneider et al., 2024a) paper, we analyze the robustness of VLMs
for cross-modal retrieval in the context of out-of-distribution (OOD) data. Therefore,
we introduce a novel dataset based on lengthy image captions from Wikipedia articles,
resembling signi�cantly di�erent data distributions than typical training data for the
respective models. We �nd that the models’ performance degrades drastically when
evaluated on OOD data both in zero-shot and �ne-tuning settings. This highlights severe
limitations in pretrained models’ ability to generalize across di�erent domains as well
as their failure to learn cross-modal understanding from complex data distributions.

In our M5B (Schneider et al., 2024b) paper, we assess the robustness of various LVLMs
of di�erent families and sizes on a large-scale multilingual benchmark covering a wide
range of VLTs in over 40 languages. In addition to the six existing datasets, we introduce
two new datasets covering 12 languages, focusing on low-resource African and Asian
languages. One dataset is a Visually Grounded Reasoning (VGR) dataset, which requires
the models to reason about an image’s content and decide whether a given textual
hypothesis is true or false. The second dataset introduces a novel VLT called “Visio-
Linguistic Outlier Detection” (VLOD), which requires the models to identify an outlier
among a set of �ve images given a textual statement. While LVLMs can perform well on
VLTs when prompted in English, we �nd that their performance degrades signi�cantly
when prompted in other languages. This e�ect is particularly pronounced for low-
resource languages, where LVLMs often fail to perform the task or even generate
responses in the respective language. Further, we discover that the majority of tested
LVLMs are unable to perform the VLOD task in any language, thereby demonstrating
signi�cant limitations in multi-image reasoning.



1. Introduction 12

With ourGIMMICK (Schneider et al., 2025b) paper, we measure cultural biases of LVLMs
and LLMs through various aspects of cultural knowledge, introducing a large-scale
multimodal benchmark. Speci�cally, GIMMICK comprises six tasks based on three novel
datasets covering 728 distinct cultural events or facets from 144 countries, organized
into six global macro-regions. Our datasets build on the UNESCO Intangible Cultural
Heritage (ICH2) list and are designed to assess the models’ knowledge about cultural
events, artifacts, and practices through text-only, image-only, text-image, and notably
also text-video tasks. Our extensive analyses demonstrate pronounced cultural biases
towards Western cultures across all models and tasks, while the performance on Arab,
Asian, and African cultures is signi�cantly lower.

1.5.3 Research Question 3: Mitigations

How and to what degree can identi�ed limitations in VLMs and LVLMs be mitigated?

In ourCenturio (Geigle et al., 2025) paper, we identify severe limitations in the robustness
of LVLMs in massively multilingual settings and propose an e�ective training strategy
to mitigate these limitations. Speci�cally, we evaluate the performance of LVLMs on
a massively multilingual benchmark covering over 50 languages and a diverse set of
VLTs, revealing that the models’ performance degrades signi�cantly when prompted in
non-English languages. Moreover, we analyze the models’ multilingual OCR capabilities
and �nd that they perform poorly in extracting non-English text from images. To
mitigate these issues, we comprehensively analyze how to compose the best training
data mixture concerning the number of languages, the amount of training data per
language, and the mixture of tasks. In our �nal experiments, we scale up the training
data and train Centurio Qwen & Centurio Aya, two strong, massively multilingual
LVLMs supporting 100 languages, proving state-of-the-art performance over 14 tasks
against other open-weight models.

1.6 Thesis Outline

This cumulative dissertation is structured as follows: Chapters 1, 2, and 3 are the wrapper
of this thesis and hold its synoptic view consisting of an introduction and motivation
to my research, a summary of the prerequisite theoretical background knowledge, and
the �nal discussions and conclusions of the thesis, respectively. The research papers
that form the foundation of this dissertation (cf. §1.4.1) are annexed in their original
layout in the second part of this document in the form of an appendix.

2. https://ich.unesco.org

https://ich.unesco.org
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Mathematical Notation

Throughout this chapter we follow these typographic conventions formathematical nota-
tion.

• Scalars are italic: �, � , � � R or Greek letters �, �, � .

• Vectors are bold lower-case: � � R� .

• Matrices/Tensors are bold upper-case: � � R�ñ� , � � R�ñ�ñ� .

• Sets & Spaces are calligraphic: D (dataset), V (vocabulary).

• Upright roman is used for functions, operators, or neural network modules, e.g.,
softmax(�), FNN(�).

Symbol Description

�� �-th word in a sentence
� = [�0, … ,�� ] ordered sequence of �+1 words
P(�� � �<�) conditional word probability
� input feature vector
(�1, … , �� ) ordered sequence of � vectors
� weight vector
�(�) weight matrix of layer �
�(�) non-linear activation
�� hidden state at step �
�� cell state at step �
�,�,� query, key, value matrices
� model parameters
L loss function
� learning rate
��L gradient of L
� � �2 Euclidean norm

Table 2.1: Frequently used symbols. Only the most common ones are listed here; chapter-speci�c
notation is introduced locally as needed.

Additional remarks. Unless otherwise noted, indices start at 0 and all vectors are
column-vectors. Task-speci�c symbols introduced later are summarised at the beginning
of their respective chapters.
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2.1 Introduction

In this chapter, we provide an introduction to the theoretical background of our research
presented in this thesis. Speci�cally, we start from traditional neural network (NN)
architectures which were widely used in natural language processing (NLP), move on
to transformer architectures which have revolutionized the �eld and are fundamental to
modern NLP, and �nally introduce the key concepts of multimodal transformer models
for vision-language tasks (VLTs), i.e., encoder-based VLMs and decoder-based LVLMs,
which are the main focus of this thesis.

2.2 Traditional Neural Networks for Natural Language
Processing

Historically, statistical methods such as n-gram-based language models (Kneser et al.,
1995) and rule-based systems dominated the �eld of natural language processing (NLP)
but su�ered from issues with data sparsity and limited contextual scope. However, in
recent decades, neural network-based methods have signi�cantly transformed NLP
by replacing traditional approaches due to their enhanced capabilities of modeling
complex linguistic phenomena and capturing distant dependencies across long contexts.
The �rst kind of neural approaches that were used in favor of traditional methods
were simple Feed-Forward Networks (FFNs), followed by more sophisticated recurrent
architectures like Recurrent Neural Networks (Rumelhart et al., 1985) (RNNs) or Long
Short-Term Memory (Hochreiter et al., 1997) models (LSTMs), and eventually modern
Transformer (Vaswani et al., 2017) architectures based on attention mechanisms. This
section �rst familiarizes one of the core task of NLP, i.e., classical language modeling, and
how the task was approached with traditional methods, followed by a brief introduction
to neural network architectures primarily used in the pre-transformer era.

2.2.1 Language Modeling

Language modeling is a fundamental task in NLP and involves estimating a probability
distribution to sample the next word in a sequence of words, like a sentence, given
its predecessors. The statistical models to solve this task are referred to as language
models (LMs). Formally, the probability distribution of a word �� given the previous
words in a sequence is de�ned as:

�(�� |���1, … ,�0) (2.1)

where �� is the word at position � in a sequence � = [�0,�1, … ,��, … ,�� ] of � total
words, often referred to as the word’s context. Language models are trained to assign
high probabilities to sequences of words that are likely to occur in natural language,
i.e., in the training corpus, and low probabilities to unlikely sequences.



2. Theoretical Background 16

� -gram Models

One successful family of traditional LMs based on statistical methods relies on word
counts and is called �-gram models. Instead of considering the entire context, these
models estimate the probability of the next word based on the frequency or occurrence of
its preceding ��1words in a large text corpus. Note that the term �-gram is ambigouous
and can refer to both the model itself and an ordered sequence of � words.

Markov Assumption �-gram models rely on the (stationary) Markov Assumption,
which consists of two parts: i) Limited Context, i.e., the probability of the next word
in a sequence depends only on the previous � � 1 words, and ii) Time Invariance,
i.e., the probability distribution of a word does not change over time but is the same
throughout the entire corpus. Based on these assumptions, formally the probability of
a word �� given its preceding � � 1 words ����1, … ,���(��1)� using �-gram models
is approximated as:

P(�� |���1, … ,�0) � ����
�
����(��1), … ,���1� (2.2)

Maximum Likelihood Estimation A simple way to estimate the probability of a
word �� in an �-gram model is to use maximum likelihood estimation (MLE). This
approach relies on counting the occurrences of words or �-grams, also referred to asword
frequencies, in a large training corpus. In the case of �-grammodels, theMLE is computed
as the relative frequency of the word �� given its preceding � � 1 words in the corpus:

P���
�
����(��1), … ,���1� �

freq ����(��1), … ,���
freq ����(��1), … ,���1�

(2.3)

where freq(�) denotes the frequency of an �-gram in the training corpus, i.e., the
number of times the �-gram occurs in the corpus.

Example For example, suppose wewant to estimate the probability of the word “dream”
given the context “I have a ” with a 3-gram (trigram) model using simple MLE:

P(dream|have a) =
freq(have a dream)

freq(have a)
(2.4)

To estimate the probability that the word “dream” follows after the sequence “have a”,
we need to count how often the sequences “have a” and “have a dream” occur in our
large training corpus and divide the two frequencies. Note that the trigram model does
not consider the word “I” due to its limited context window of only 2 words.

Limitations From the de�nition of �-gram models, we can observe that these models
su�er from multiple limitations, with the most crucial ones being discussed in the
following. One issue is data sparsity, i.e., if a word or a sequence of words does
not occur in the training corpus the frequency is zero, which leads to zero-division
errors. While numerous methods have been proposed to mitigate these issues, such
as smoothing techniques (Witten et al., 1991; Kneser et al., 1995; Gale et al., 1995) or
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back-o� models (Katz, 2003), �-gram models are still limited by the �xed size of the
context window. Another issue is the inability to capture long-range dependencies, i.e.,
the models are unable to take into account words that are outside of this window and,
therefore, lack important contextual information. Lastly, another crucial limitation of
�-gram models is that they are based solely on the frequency of the surface forms of
words or their derived forms, e.g., lemmas or stems. This means they do not consider
the semantics or meaning of the words nor their complex interactions and relationships.
With the rise in computational resources, researchers explored how neural networks
can be employed as language models to overcome these limitations.

2.2.2 Neural Networks Fundamentals

Before we dive into the details of how neural networks can be used as LMs, we �rst
brie�y cover the basic principles of their architecture and components.1

Arti�cial Neurons

As the name suggests, this family of machine learning (ML) models is inspired by the
inner workings of the human brain, i.e., it resembles a network of arti�cial neurons,
interconnected through arti�cial “synapses” modeled as “weights” to process some input
information. The output � of a single arti�cial neuron can be described as a weighted
sum of its � inputs � � R� = {�0, … , ���1}

� =
��1

�
�=0

���� = � � � (2.5)

where � � R� = {�0, … ,���1} are the corresponding weights. To increase the
expressiveness, a bias term � is often added to the weighted sum, and the result
is passed through a nonlinear activation function � to produce the �nal output or
“activation” � of the neuron:

� = �(�) = �(� � � + �) (2.6)

Feed-Forward Neural Networks

When multiple neurons are combined and interconnected, they form a neural network
layer. Connecting multiple layers together so that the output of the �th layer is the
input of the (� + 1)th layer creates a feed-forward neural network (FFN), the most basic
type of neural network. Often FFNs are also referred to as “multi-layer perceptrons”
(MLPs) or “fully connected networks” (FCNs), which we use interchangeably throughout
this thesis. FFNs have at least one layer but typically consist of an input layer, one
or more hidden layers, and an output layer, each of which can have a di�erent shape
or size depending on the speci�c architecture.

1. For an in-depth introduction to neural networks and deep learning, we recommend Goodfellow
et al. (2016) or Bishop et al. (2024)
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Figure 2.1: Schematic overview of a 3-layer Feed-Forward neural network architecture with
bias terms and non-linearity omitted for better readability.

For better understanding, a simple FFN with three linear layers (without bias terms)
is illustrated in Figure 2.1 and described in the following: The input vector � � R5 is
passed through the �rst (“input”) layer with 7 neurons and a weight matrix �(0) � R5ñ7,
which is multiplied with the input vector � to produce the hidden vector �(0) � R7.
Next, �(0) gets multiplied by the weights �(1) � R7ñ4 of the second (“hidden”) layer to
compute the hidden vector �(1) � R4. Finally, the output vector � � R2 is computed
by multiplying the weights of the third (“output”) layer �(2) � R4ñ2 with the hidden
vector �(1). Note that the weights of a neural network layer �� are also referred to as the
layer’s parameters �� and are often omitted for brevity. This whole process is called
a forward pass through the FNN and can be formally described by

� = �2��1(�0(�;�0); �1); �2�

= ��2 � �1 � �0�(�)

= FNN(�)

(2.7)

Such kind of FNN, which is in practice much larger (more neurons), deeper (more
layers), and more complex (nonlinear activations, regularization, etc.), can, in theory,
be used to learn any kind of mapping � � R� � R� from an input vector � � R� to
an output vector � � R� . One example application are classi�cation tasks, where the
input vector � is classi�ed into one of � classes, where the output vector � is a one-hot
encoded vector with � dimensions, i.e., �� = 1 if the class is �� and 0 otherwise. The
output of the FNN can be interpreted as a probability distribution over the � classes
by applying a softmax function to the output vector �:

softmax(�) =
exp(�)

��
�=1 exp(��)

(2.8)

where exp(�) is applied element-wise to the output vector �. This softmax function
normalizes the output vector � to a “pseudo” probability distribution over the� classes,
i.e., ��

�=1 softmax(�)� = 1. In NLP, this is often used to classify a word or a sentence
into one of � classes, e.g., the next word in a sentence where the output vector �
is a one-hot encoded vector of the vocabulary size � , the sentiment of a sentence,
or the topic of a document.
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Neural Network Training

To train a neural network, we have to adjust its parameters, i.e., the weights and
biases, to minimize an error or loss function that measures the di�erence between the
predicted output and the actual target output in a training dataset. Since this is a non-
convex optimization problem, i.e., there are multiple local minima, it is typically solved
using iterative optimization techniques that adjust the randomly initialized parameters
in the direction of the steepest descent of the loss function. This involves gradient-
based algorithms such as stochastic gradient descent (SGD) or more sophisticated
and e�cient variants like Adam (Kingma et al., 2015; Ruder, 2016). Formally, the
training process can be described as minimizing a loss function L(�, ��;�) de�ned over
a dataset D = {(��, ��) | � = 1,… ,�} of � samples, where each sample consists of
input-output pairs (��, ��):

�� = argmin
�

L(�) = argmin
�

1
�

�

�
�=1

L(��, FNN(��;�)) (2.9)

where L(�, ��) measures how well the predicted output �� matches the true output �
and �� are the optimal parameters of the FNN. Standard loss functions include the
mean squared error (MSE) for simple regression tasks or the cross-entropy loss for
classi�cation tasks and next-token prediction, i.e., language modeling.

To iteratively minimize the loss function, the gradient of the loss with respect to the
parameters ��L(�) is computed using a procedure called backpropagation. Backpropa-
gation employs the chain rule from calculus to e�ciently propagate gradients backward
through the network from the output layer to the input layer, adjusting parameters
incrementally in the direction of the steepest negative gradient:

� � � � ���L(�) (2.10)

where � denotes the learning rate, a hyperparameter controlling how fast the parameters
are updated. This optimization step is typically executed after computing gradients
from a (much) smaller subset of data called a batch rather than the entire dataset.
Given batches B � D with |B| � |D|, training over dataset D involves iterating
through all batches:

�B � D � � � � � �
1
|B| �

(�,�)�B
��L(�, FNN(�;�)) (2.11)

This training procedure usually continues until the loss converges, i.e., a local minimum
in the parameter space has been reached, or a prede�ned number of iterations is reached.

Note that the description of the training process above is very general and simpli�ed.
That is, it does not cover many important aspects, such as regularization techniques
to prevent over�tting, hyperparameter tuning, or the use of validation datasets to
monitor the model’s performance during training. We recommend the reader to refer
to Goodfellow et al. (2016) or Bishop et al. (2024) for an excellent in-depth coverage
of these topics and general deep learning fundamentals.
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2.2.3 Neural Word Embeddings

Before a neural network can process textual data, the words in the text must be �rst be
converted into numerical representations that the network can understand. Traditional
NLP methods, such as n-gram models, primarily rely on one-hot encoded vectors where
a word is represented as a vector with a single dimension set to 1 corresponding to the
word’s index in a vocabulary and 0 elsewhere. This approach has signi�cant limitations,
such as the extreme sparsity of the vectors, and the high dimensionality of the vectors
that is equal to the size of the vocabulary. Furthermore, one-hot vectors do not capture
any relationships between words because they are orthogonal to each other and thus
do not re�ect any semantic or syntactic similarities.

To address these limitations and compute continuous representations for words, methods
such as Latent Semantic Analysis (LSA) (Deerwester et al., 1990) or Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) were developed. These methods rely on matrix
factorization and sampling techniques, respectively, to reduce the dimensionality of the
one-hot encoded vectors, resulting in dense representations of words. Although these
approaches were successful, their capabilities in capturing semantic relationships were
limited, and they struggled with scalability issues when dealing with large vocabularies.

Modern NLP methods employ dense representations of �xed dimensions in a continuous
vector space, using linear layers called “embedding layers” trained on a large corpus (Ben-
gio et al., 2003). These representations are called “word embeddings” (Collobert et al.,
2008) and capture semantic and syntactic relationships because the embedding layer
learned to place semantically similar or related words close together in the vector
space. To obtain the embedding �� of the �th word �� in the vocabulary V from a trained
� dimensional embedding layer �emb � R�ñ�, we extract the corresponding row
from the weight matrix:

�� = �(�)
emb � R� (2.12)

Besides their ability to capture semantic relationships, Collobert et al. (2008) also showed
that word embeddings trained on large corpora can be used as a general-purpose
representation of words that can be reused across di�erent downstream tasks.

Following the work of Bengio et al. (2003) and Collobert et al. (2008), several methods
were developed to improve the capability to capture rich semantic relationships, training
e�ciency, and reusability of neural embedding models. The most in�uential methods
are Word2Vec (Mikolov et al., 2013a; Mikolov et al., 2013b) and GloVe (Pennington et al.,
2014), which are trained on large corpora to produce high-quality word embeddings
that were widely used for various NLP tasks. Word2Vec employs a single-layer neural
network architecture to learn word embeddings by either predicting the context words
given a target word (“skip-gram”) or, vice versa, predicting the target word given its
context words (“continuous bag of words”). GloVe, on the other hand, is based on matrix
factorization techniques and learns word embeddings by capturing the global statistical
information of word co-occurrences in a corpus.

While both methods signi�cantly advanced the �eld of NLP, they are limited to learn
static word embeddings, meaning that there is one single embedding for each word in
the vocabulary, regardless of its context or usage in a sentence. This is a signi�cant
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limitation, since the meaning of a word often depends on its context, and thus a single
static embedding cannot capture the full richness of a word’s meaning.

2.2.4 Recurrent Neural Networks (RNNs)

One crucial limitation of vanilla FNNs is that they can only take �xed-size input
vectors, thus, fall short in modeling sequential data of variable lengths, such as natural
language. One solution would be to use a sliding window approach and concatenate the
previous � tokens, as done in the “neural probabilistic language model” proposed by
Bengio et al. (2003). However, the receptive �eld or context window remains strictly
limited to the last � tokens, which is a signi�cant limitation for many NLP tasks
where long-range dependencies are crucial. To overcome this limitation, Recurrent
Neural Networks (Rumelhart et al., 1985) (RNNs) were introduced as a specialized
architecture explicitly designed to handle sequences of varying lengths. This is achieved
by maintaining an internal memory that captures information from preceding inputs
that is updated at each step.

More precisely, an RNN processes a sequence one element at a time while maintaining
a hidden state vector �� (the internal memory) that holds information from previous
steps. Formally, the hidden state at time step � can be computed by combining the
input �� with the previous hidden state ���1 as follows:

�� = �(������1 +�����) (2.13)

where � is typically a non-linear activation function such as tanh, and ���, ��� are
parameter matrices to be learned during training. This recurrent process can also be
interpreted as a loop over the sequence, where the hidden state �� is updated at each
time step based on the current input �� and the previous hidden state ���1, and the
hidden state is passed to the next time step. An output vector �� , which often is a
probability distribution over all words in the vocabulary, can be computed from the
hidden state �� at each time step:

�� = softmax(�����) (2.14)

where ��� is again a learnable parameter matrix that maps the hidden state to the
output. Note that all weights are shared across time steps, which essentially means that
the same parameters are used to process each input in the sequence.

RNN RNN RNN RNNunroll

Figure 2.2: A schematic overview of a Recurrent Neural Network (RNN) architecture.

Figure 2.2 illustrates an RNN architecture unfolded over time, highlighting how the
hidden state propagates information across steps in the sequence. This allows RNNs
to theoretically capture long-range dependencies in sequences, addressing one of the
primary limitations of �-gram models and FFNs, making them suitable for tasks such
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as language modeling, machine translation, or summarization. Note that usually only
the last output �� of the RNN is computed and used for prediction, where � is the last
time step in the sequence. Furthermore, RNNs can also be stacked to create deeper
architectures, where the output of the last step �� is passed to a second RNN layer,
which can learn more complex representations of the input sequence.

Limitations of Vanilla RNNs

Despite their potential in sequence processing, vanilla RNN architectures su�er from
the so-called “vanishing gradient” (Hochreiter, 1998) or “exploding gradient” (Bengio
et al., 1994) problems, where the gradients become exceedingly small or large as they
are backpropagated through time when training on long sequences (Pascanu et al.,
2013). The issues arise from the repeated multiplication of the weight matrices ���

and��� during training with backpropagation through time (BPTT). If those weights
are smaller than 1 the gradient quickly vanishes to zero, and if they are larger than
1 the gradients explodes. This leads to ine�ective training, as the model struggles
to update its parameters meaningfully, especially for long sequences. Further, these
limitations prevent the networks from e�ectively learning long-range dependencies,
drastically limiting their practical e�ectiveness in language modeling tasks involving
lengthy texts. One remedy to the gradient-related issues of vanilla RNNs is a specialized
RNN architecture called Long Short-Term Memory (LSTM) (Hochreiter et al., 1997). This
sophisticated architecture introduces an additional cell state and gating mechanisms,
allowing the model to learn what to retain or forget over long sequences. More precisely,
LSTMs incorporate three types of gates: input, forget, and output gates, which are
trainable neural network layers. Moreover, instead of only passing a single hidden
state from step to step, LSTMs have an additional internal cell state that serves as a
kind of conveyor belt for long-term memory. As opposed to vanilla RNNs, the weights
of LSTM cell states are not recurrently updated through multiplication but addition,
which helps to mitigate the vanishing gradient problem.

Since their introduction in 1997, many variations of LSTMs, such as Bi-directional
LSTMs (BiLSTMs) (Schuster et al., 1997; Huang et al., 2015), Gated Recurrent Units
(GRUs) (Cho et al., 2014), or Convolutional LSTMs (ConvLSTMs) (Shi et al., 2015), have
been proposed. These architectures have shown signi�cant improvements over vanilla
RNNs in terms of performance and training stability and thus have been widely adopted
in NLP tasks, especially before the advent of Transformer-based models. However, due
to their sequential nature, all kinds of RNNs are forced to process sequences step-by-step,
which limits their ability to leverage parallelization. More precisely, the hidden state ��

at time step � can only be computed after the hidden state ���1 at time step � � 1 has
been computed, which prevents parallelization across time steps, making the models
inherently slow and ine�cient during training. Another signi�cant limitation of the
classical RNN architectures is that the input sequence and the output sequence are of
the same length. This is because the output at each time step � is computed from the
hidden state �� at the same time step, which means that the model can only produce
one output for each input in the sequence.
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2.2.5 Sequence-to-Sequence Models

While traditional RNNs e�ectively handle sequential data such as text by maintaining
context through their hidden states, they inherently require input and output sequences
of the same length. However, numerous NLP tasks, such as machine translation,
summarization, and question answering, involve input and output sequences of di�ering
lengths. To address this limitation, Sequence-to-Sequence (seq2seq) models were
introduced (Sutskever et al., 2014; Cho et al., 2014), speci�cally designed to handle these
variable-length input-output mappings by employing an encoder-decoder architecture
as illustrated in Figure 2.3.

Input Sequence of lengths T

Output Sequence of lengths T'

Encoder
RNN

Encoder
RNN

Decoder
RNN

Decoder
RNN

Decoder
RNN

Figure 2.3: A schematic overview of a Sequence-to-Sequence (seq2seq) architecture.

Generally, a seq2seq model consists of two separate RNNs: an encoder and a decoder.
Both can be any RNN, but LSTMs or GRUs are typically preferred due to their improve-
ments in handling long-range dependencies. The encoder processes the input sequence
� = [�1, … , �� ] step-by-step, compressing the information into a �xed-length context
vector �. This context vector is the �nal hidden state (cf. Equation 2.13) computed by the
encoder RNN after processing the entire input sequence. Next, the decoder RNN utilizes
the context vector � to generate the output sequence � = [�1, … , �� �] step-by-step.
During each step, it takes the previously generated output, along with its current hidden
state ���1, and context vector �, to produce the next hidden state and a distribution over
the vocabulary �� for the next word in the output sequence:

�� = �(������1 +������1 +����), �� = softmax(�����) (2.15)

where the weights ���, ���, ���, and ��� are learnable parameters. This two-
step process allows seq2seq models to produce output sequences of arbitrary length,
independent of the input sequence length.

Attention Mechanism

While seq2seq models can handle input and output sequences of arbitrary lengths,
they still face challenges with handling long-range dependencies in prolonged inputs.
As the input sequence length gets longer, it becomes increasingly di�cult for the
encoder to capture and compress all relevant information in a single vector. This, on the
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other hand, hinders access to critical details for the decoder, making it challenging to
generate coherent outputs for long input sequences. To mitigate this issue, an attention
mechanism (Bahdanau et al., 2015) was proposed, which extends the seq2seq architecture
to dynamically compute context vectors, allowing the decoder to selectively attend to
di�erent parts of the input at each decoding step.

More precisely, at each decoding step �, an attention weights ��� measure the relevance
of the � encoder hidden states ��1, … , �� , … , ��� with respect to the current decoder
hidden state ��

��1. Therefore, �rst, a score ��� is calculated based on an alignment
function, typically implemented as an FNN, that measures the relevance or alignment
between the decoder state ��

��1 and the encoder state �� :

��� = FNNscore(��
��1, ��) (2.16)

Next, the attention weights are computed by applying a softmax over the scores,
e�ectively turning them into a probability distribution:

��� = softmax(���) (2.17)

Finally, the context vector �� at decoding step � is calculated as a weighted sum of
encoder hidden states using these attention weights:

�� =
�

�
�=1

����� (2.18)

This dynamically computed context vector provides the decoder with speci�c, relevant
information from the encoder states at each decoding step. Incorporating attention
signi�cantly improves the performance of seq2seq models, enabling more e�ective
modeling of long-range dependencies and better information �ow between the encoder
and decoder. Furthermore, the attention mechanism laid the groundwork for the current
state-of-the-art Transformer architecture (Vaswani et al., 2017), now the de facto standard
in NLP and has largely replaced traditional seq2seq models.

2.3 Transformer Models for Modern Natural Language
Processing

As discussed in the previous section, recurrent architectures like RNNs and LSTMs
marked a signi�cant step forward in processing sequential data, i.e., text, for NLP,
o�ering improved performance compared to traditional statistical models, especially
in capturing long-range dependencies and word-level semantics. However, despite
their advancements, they still face critical limitations, particularly with contextual
semantics, prolonged input and output sequences, limited parallelization, and training
e�ciency. Inspired by the attention mechanisms in seq2seq models, Vaswani et al. (2017)
proposed the “transformer” architecture addressing these limitations by entirely dis-
carding recurrence and instead relying solely on attention mechanisms to directly
model relationships between all words in the input sequence simultaneously. This
architectural shift made training on huge datasets very e�cient because it allows for
highly parallelizable implementations on modern hardware accelerators like GPUs
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or TPUs. Due to their advantages, transformers revolutionized the �eld and led to
unprecedented performance on a wide range of tasks, thus quickly becoming the
foundational architecture for NLP and beyond.

In the following, we discuss transformer models and their key concepts, especially the
self-attention mechanism at their core, di�erent architectural variants, and discuss how
the architecture has evolved into modern large language models (LLMs).

2.3.1 The Transformer Architecture

Transformer models (cf. Figure 2.4a) were introduced in the seminal paper “Attention Is
All You Need” (Vaswani et al., 2017), which implemented them following an encoder-
decoder architecture (cf. §2.3). Initially, transformers were designed for machine

(a) The original transformer architecture.
Left: Encoder. Right: Decoder.

(b) Scaled-Dot Product Attention

(c) Multi-Head Attention

Figure 2.4: The original transformer architecture proposed as encoder-decoder seq2seq model for
machine translation and its core attention mechanisms. Images taken from Vaswani et al. (2017).

translation, where the encoder �rst maps an input sentence in the source language
� = (�1, … , �� ) to a sequence of latent representation � = (�1, … , �� ). Given �, the
decoder then generates an output sequence � = (�1, … , ��) of words in the target
language, one word at a time. Instead of two RNNs, Vaswani et al. (2017) employed
transformer models as the encoder and decoder. More precisely, they used a stack of
transformer encoder layers to form the encoder and a stack of transformer decoder
layers to form the decoder. Each encoder layer consists of two main sub-layers: a
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multi-head self-attention layer and a 2-layer FFN with ReLU activation after the �rst
layer. Similarly, each decoder layer consists of three main sub-layers: a masked multi-
head self-attention layer, a multi-head cross-attention mechanism over the encoder’s
output, and a 2-layer FFN with ReLU activation after the �rst layer. Further, residual
connections (He et al., 2016) are employed around each of the sub-layers, followed by
layer normalization (Ba et al., 2016). In the following, we will cover the key components
of the architecture in more detail.

The Self-Attention Mechanism

The self-attention mechanism is the core component of transformers, speci�cally
designed to allow the model to assess how relevant each word in a sequence is to
every other word simultaneously. More speci�cally, the mechanism transforms each
input embedding into a contextual representation by computing a weighted sum of
all input embeddings, where the weights are determined by the relevance of each
word to the others.

Scaled Dot-Product Attention In their paper, Vaswani et al. (2017) implemented the
self-attention mechanism as the scaled dot-product attention (SDPA) illustrated in
Figure 2.4b. The input to SDPA is a set of � input vectors � = (�1, … , �� ), each of
dimension �model. Then, each input vector �� is projected into three di�erent vectors:
a query vector ��, a key vector ��, and a value vector ��.

�� = ���� , �� = ���� , �� = ���� , (2.19)

where �� ,�� ,�� � R�modelñ�� are learned linear layers, and �� is the dimension of
the query, key, and value vectors. Typically, this is computed in parallel for all input
vectors, resulting in matrices �,�,� � R�ñ�� , where each row corresponds to the
respective query, key, and value vectors.

Next, the attention scores are computed as the dot product of the query and key vectors
and turned into a probability distribution by applying softmax:

� = softmax
�
���

�
�� �

, � � R�ñ� (2.20)

where ��� is the attention score between the �-th query and the �-th key and the division
by

�
�� is a scaling factor introduced to improve training stability.

The �nal output of SDPA, i.e., the matrix of contextual representations, is computed
from the sum weighted by the attention scores and the value vectors:

SDPA(�,� ,� ) = �� = softmax
�
���

�
�� �

�, �, SDPA(�) � R�ñ�� (2.21)

Multi-Head Attention To enhance the token representations further, transformers
implemented multi-head attention (MHA; illustrated in Figure 2.4c), which computes
multiple SDPAs in parallel, each with di�erent learned linear projections. This en-
ables each attention head to focus on di�erent characteristics and relationships in
the input sequence.
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Formally, in MHA, the output of � parallel attention heads are concatenated and
linearly projected to the model dimension �model:

MHA(�,�,�) = Concat(head1, … , head� )�� , MHA(�) � R�ñ�model (2.22)

where�� � R�modelñ�model is a learned linear projection, and each attention head is com-
puted as:

head� = SDPA(��(�)
� ,��

(�)
� ,��

(�)
� ), head�(�) � R�ñ�� (2.23)

where�(�)
� ,�

(�)
� ,�

(�)
� � R�modelñ�� are learned linear projections for the �-th attention head

and �� = �model/� is the dimension of the query, key, and value vectors in each head.

Masked Attention In the decoder, the self-attention mechanism is modi�ed to prevent
the model from attending to future tokens, which is crucial for autoregressive generation
tasks like language modeling. This is simply done by setting the attention scores for
future tokens to �� before applying softmax so that they do not contribute to the
attention distribution. Usually, this is implemented by using a triangular mask, which
is applied to the attention scores before softmax:

� = softmax
�
���

�
��

+�
�
, ��� =

�
0 if � � �

�� otherwise
(2.24)

where � � R�ñ� is a matrix to mask-out the future tokens.

Cross-Attention Another di�erence between encoder and decoder layers in the orig-
inal transformer architecture is the cross-attention mechanism in the decoder. This
modi�ed attention mechanism allows the decoder to attend to the encoder’s output
so that it can incorporate meaningful information from the contextual representations
from the input sequence. Computationally, cross-attention is similar to self-attention:

CrossAttention(�,�,�) = MHA(�,�,�), � � R�decñ�model , �,� � R�encñ�model

(2.25)
where� is the query from the decoder, and�,� are the keys and values from the encoder.

Positional Encodings

One critical aspect of the transformer architecture is that it does not inherently capture
the sequential order of the input tokens because it processes all tokens at once in
parallel. To address this, Vaswani et al. (2017) introduced so-called positional encodings,
which hold information about the position of each token in the sequence and are added
to the input embeddings before entering the �rst encoder or decoder layer. In their
original implementation, these encodings are computed from interleaving sine and
cosine functions of di�erent frequencies:

�� =

�
sin � �

100002�/�model � if � mod 2 == 0

cos � �
100002�/�model � if � mod 2 == 1

, � = 1,… ,� , � = 1,… , �model (2.26)
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where �� � R�model is the positional encoding for the �-th token, and � is the maximum
sequence length. This results in a unique positional encoding for each token position,
which is then added to the input embeddings to provide the model with information
about the sequential order of the input tokens:

�� = �(�)
emb + ��, �� � R�model , �(�)

emb � R|V |ñ�model (2.27)

Layer Normalization (LayerNorm)

When training on large datasets, it is very probable that the samples therein are
not normalized, i.e., the input features have di�erent scales and distributions. This
can be problematic for training deep neural networks, as it can lead to vanishing or
exploding gradients and other instability issues, making it di�cult to train the model
e�ectively (Io�e et al., 2015; Ba et al., 2016). In order to stabilize training and fasten
convergence, it was found that normalizing the input features to each layer improves
the training process signi�cantly. Most, if not all, transformer models employ layer
normalization (Ba et al., 2016) (LayerNorm) after each sub-layer, which normalizes the
input along the feature dimension so that they have the same distribution. Therefore,
�rst, the mean and variance of an input feature � � R�� are computed:

� =
1
�

��

�
�=1

��, �2 =
1
�

��

�
�=1

(�� � �)2 (2.28)

Then, the input is normalized by subtracting the mean and dividing by the stan-
dard deviation:

��� =
�� � �

�
�2 + �

, �� =
� � �

�
�2 + �

(2.29)

where � is a small constant to avoid division by zero. Finally, the normalized input
is scaled and shifted by learned parameters � and � by element-wise multiplication
and addition, respectively:

� = � � �� + �, �, ��,�,� � R�� (2.30)

This results in the LayerNorm output �, which is then passed to the next layer.

Position-wise Feed-Forward Networks (FFN)

After each self-attention or cross-attention sub-layer, the output is passed through a
2-layer feed-forward network (FFN) with ReLU activation after the �rst layer. This FFN
is applied independently to each token �� � R�m in the sequence, which is why it is
often referred to as a position-wise FFN. Typically, it consists of two linear layers with a
non-linear ReLU (Agarap, 2018) activation in between, which �rst layer�1 � R�mñ4�m

projects the input to a higher-dimensional space and the second layer �2 � R4�mñ�m

projects it back to the original dimension �m:

FFN(��) = �� = ReLU(���1)�2 (2.31)



2. Theoretical Background 29

where �� � R�m is the output of the FFN for the �-th token. Note that the magic number,
i.e., the dimension of the hidden layer in the FFN, is usually set to 4�m, as proposed in
the original transformer implementation. Since the attention mechanism comprises
primarily linear transformations, the FFN layers, which also typically account for the
majority of a transformer’s parameters, are crucial because they introduce non-linearity
into the model, enabling it to learn complex patterns and relationships.

2.3.2 Transformer Encoder Models

Transformer encoder models such as BERT (Devlin et al., 2019) omit the decoder entirely
and are built only with a stack of encoder layers relying solely on self-attention to
process the input sequence. Typically, these models are pre-trained using “masked
language modeling” (MLM) and “next sentence prediction” (NSP) on large generic text
corpora. In MLM, random words are masked out, and the model’s task is to predict the
missing words based on the context. In NSP, two sentences are given, and the model
must classify whether the second sentence in the input is a successor of the �rst sentence.
This process enables deep semantic understanding and rich contextual embeddings for
each token in the input sequence. The resulting contextual embeddings can then be
leveraged for various NLP downstream tasks, such as text classi�cation, named entity
recognition, or question answering. Often, a special “CLS” or “class” token is prepended
to the input sequence, which is used to aggregate the contextual representations of
the entire sequence into a single vector representation, which can then be used for
downstream. This is achieved by either �ne-tuning themodel on the speci�c task or using
the embeddings as input features for a separate classi�er, often realized as a simple FFN.

Formally, the input to a transformer encoder model is a sequence of � input vectors
� = (�1, … , �� ) each of which gets transformed simultaneously into contextual represen-
tations � = (�1, … , �� ) by passing it through a stack of � encoder layers. Usually, the input
vectors are word embeddings (� � R�model ), jointly learned via an additional embedding
layer (�emb � R|V |ñ�model ) from a vocabulary V of |V | tokens generated by a tokenizer
(cf. §2.2.3), such as WordPiece (Wu et al., 2016) or SentencePiece (Kudo et al., 2018),
which are then additively combined with positional embeddings as described in §2.3.1.

An overview of a classical transformer encoder and its components is illustrated in Fig-
ure 2.5.
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Figure 2.5: Left: An overview of the classical transformer encoder architecture. Center: Inner
architecture of a transformer encoder layer with multi-head attention. Right: A random
examplatory attention matrix.
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2.3.3 Transformer Decoder Models

As opposed to encoder models, transformer decoder models, such as GPT (Radford et al.,
2018), are designed to generate coherent text. These models only consist of a stack of
decoder layers exclusively relying on the masked self-attention mechanism, sometimes
also referred to as causal self-attention. The training objective is typically language
modeling, where the model learns to predict the next token in a sequence based on the
previous tokens in an autoregressive manner, i.e., one token at a time. An overview of a
classical transformer decoder and its components is illustrated in Figure 2.6.
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Figure 2.6: Left: An overview of the classical transformer decoder architecture including
sampling of the next token. Center: Inner architecture of a transformer decoder layer with
causal multi-head attention. Right: A random examplatory causal attention matrix.

This is achieved by passing a sequence of � input vectors � = (�1, … , �� ) akin to
the encoder input through a stack of � decoder layers to produce an output sequence
� = (�1, … , �� ) of contextual representations from the causal self-attention mechanism.
Note that usually a special “BOS” or “beginning of sequence” token is prepended to the
input sequence, which is used to indicate the start of the sequence. Next, the last out
representation of the �nal decoder layer output �� , is forwarded through a so-called
“language model head”, which is a linear layer that projects �� to the vocabulary size |V |:

�� = ����
lm, �� � R|V |, �lm � R�modelñ|V | (2.32)

To generate the next token, �rst, a softmax function is applied to the output vector ��
to obtain a pseudo probability distribution over the vocabulary:

P(��+1|�1, … , �� ) � �� = softmax(�� ), �� � R|V | (2.33)

Finally, the next token ��+1 is sampled from this distribution, which is then added to
the input sequence for the next step. The simplest sampling strategy, besides more
advanced techniques like nucleus sampling or beam search, is to select the token with
the highest probability, also known as greedy decoding:

� = argmax (�� ) and ��+1 = �(�)
emb, �emb � R|V |ñ�model (2.34)

This autoregressive generation process is repeated until a stopping criterion is met,
such as reaching a maximum sequence length or generating a special “EOS” or “end-
of-sequence token”.
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2.3.4 Large Language Models (LLMs)

In the following, we will brie�y discuss the evolution of transformer decoder models
into modern large language models (LLMs), which have become the de facto standard
in current NLP, as well as the basics of LLM training.

From Transformer Decoders to Large Language Models

The successful implementation of language models as autoregressive transformer de-
coders like the Generative Pre-trained Transformer (GPT) (Radford et al., 2018) model
marked a signi�cant milestone in NLP. In their paper, the authors showed that training
a transformer decoder on large text corpora in an unsupervised manner via standard
language modeling objective on large text corpora, referred to as “pre-training”, yields
powerful task-agnostic foundation models that require only minimal task-speci�c �ne-
tuning to achieve state-of-the-art performance on various NLP tasks. Following this
approach, subsequent models, such as GPT-2 (Radford et al., 2019), GPT-3 (Brown
et al., 2020), and many others (Yang et al., 2019; Keskar et al., 2019; Lieber et al., 2021;
BigScience et al., 2022; Zhang et al., 2022; inter alia), scaled up the model size2 and
training data in multiple orders of magnitude, leading to greatly improved performance
and capabilities. Due to their size, these models are referred to as “large language
models”. However, despite some architectural improvements, the scaling of model
size and training data, as well as new training paradigms, the core of LLMs, i.e., the
transformer decoders with causal self-attention, remains largely unchanged from the
original GPT model. In their paper, Brown et al. (2020) showed that scaling up not
only improves performance on existing tasks but also enables LLMs to perform well on
unseen tasks without any �ne-tuning by providing the models with a task description
and a few examples of the new tasks during inference (few-shot) or even without
any examples (zero-shot). This phenomenon is known as “in-context learning” (ICL)
because the model learns from the given context and happens during inference time,
not from pre-training or �ne-tuning. Providing the model with a task description and
examples is often referred to as “prompting” the model, and the task description and
examples are called “prompts”. While scaling and ICL lead to signi�cant improvements
in numerous tasks, the great breakthroughs that led to the current generation of LLMs
were new training paradigms called “instruction tuning” (Wei et al., 2023) and “preference
alignment” (Ouyang et al., 2022).

LLM Training

The training pipeline for contemporary LLMs usually consists of three main stages:
pre-training, instruction tuning, and preference alignment.

Pre-training The pre-training phase is the �rst stage of LLM training and arguably the
most crucial one since the model learns the fundamental language understanding and
world knowledge during this stage. Therefore, the model is trained in an unsupervised
fashion on huge general-purpose text corpora containing hundreds of GigaBytes of

2. GPT-1 has 117M parameters, GPT-2 has 1.5B parameters, and GPT-3 has 175B parameters.
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texts from Common Crawl dumps, Wikipedia, various books, scienti�c articles, and
other sources (Gao et al., 2020). The pre-training is called unsupervised, or more
precisely, self-supervised training, because the model learns to predict the next token
in a sequence without any explicit labels, i.e., the next token is simply the next word
in the text corpus. This is typically performed on large distributed computing clusters
with hundreds or thousands of GPUs or TPUs (Chowdhery et al., 2023), allowing for
e�cient training on massive datasets. Notably, the pre-training data also often contains
programming code from various programming languages, which enables the model
to learn programming concepts and syntax.

The pre-training objective is language modeling, where the model is trained to predict
the next token in a sequence based on the previous tokens. Formally, this is achieved
by minimizing the negative log-likelihood (NLL) practically implemented as the cross-
entropy loss (CEL) between the predicted token probabilities and the actual next token
in the sequence:

LNLL = �
�

�
�=1

log P��� � �1, … , ���1� � LCEL (2.35)

LCEL = �
�

�
�=1

|V |
�
�=1

��,� log ���,� , ��, ��� � R|V | (2.36)

where �� � R|V | is a one-hot vector with ��,� = 1 if the �-th token in the vocabulary V
is the actual next token after the �th token, and ��� � R|V | = softmax(����

lm)� are the
predicted token probabilities computed by the language model head �lm � R�modelñ|V |
from the output representation �� � R�model of the �nal decoder layer.

Instruction Tuning After pre-training, the model acquired a strong understanding of
language and world knowledge, but since it was trained only to predict the next token
in a sequence, it is not yet capable of performing speci�c tasks or following instructions.
To address this, the model is further trained in a supervised manner on a much smaller
dataset, often referred to as “instruction tuning” (Wei et al., 2023) or “supervised �ne-
tuning”. Such a dataset is usually a mixture of other datasets from various domains
and tasks, such as question answering, summarization, translation, sentiment analysis,
coding problems, and many others, which are reformatted into instruction-output pairs.
For example, a question-answering sample can be reformatted into an instruction like
“Answer the following question: What is the capital of France?” with the ground-truth
answer being “Paris”. Since the input and output of the model are both sequences of
words or tokens, the model is trained to predict the output sequence given the input
instruction sequence using the same language modeling objective as in pre-training.
After the instruction tuning stage, the model learned to follow instructions and perform
various tasks, and can be thought of as a task-agnostic foundation model.

Preference Alignment After instruction tuning, the model is capable of following
instructions and performing various tasks, but it is not yet aligned with human values
and or company preferences, which is crucial for safe deployment in real-world appli-
cations. For example, the model might generate harmful or biased content, produce
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inconsistent or non-facetious stories, or output text in a tone or style that does not
match a company’s values.

To address these issues, the model undergoes another round of supervised training on a
dataset of instruction-output pairs, but this time, the dataset and training objective
di�er substantially from the previous stages. This process is often referred to as
“preference alignment” and was introduced by Ouyang et al. (2022) who implemented
it as “reinforcement learning from human feedback” (RLHF). As the name suggests, the
authors applied sophisticated techniques from reinforcement learning (RL) (Schulman
et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020) to optimize the model’s behavior, i.e.,
its output, based on human feedback on the model’s responses to various instructions.
This involves additional auxiliary models, such as a reward model, which is trained to
predict the quality of the model’s responses based on human-ranked responses, and
a policy model, which is used to update the model’s parameters based on the reward
signal. While RLHF and multiple other RL approaches (Bai et al., 2022; Glaese et al.,
2022; Dai et al., 2024; Shao et al., 2024) is an e�ective approach for preference alignment,
due to its complex implementation, which we will not cover here, its large compute and
memory requirements, instability issues during training, and the need for costly human
feedback datasets, simpler and more e�cient non-RL approaches have been proposed
in recent years. Besides others (Azar et al., 2024; Hong et al., 2024), one of the most
popular and widely used non-RL approaches due to its simplicity is Direct Preference
Optimization (DPO) (Rafailov et al., 2023), which directly optimizes the LLM without
the need for a reward model and simpler supervised �ne-tuning on a dataset of human
preferences in the form of an instruction, positive response, and negative response.

Architectural Improvements

While the core architecture of LLMs is still based on the original transformer decoder,
several architectural improvements have been introduced in recent years to enhance
their performance and capabilities.

Relative Positional Encodings One limitation of the vanilla transformer architecture is
the use of absolute positional encodings (cf. §2.3.1), which encode the absolute position
of each token in the sequence. This limits the model to a �xed maximum sequence
length, often called “context window”, which is �xed and determined by the dimensions
of the positional encoding matrix. To overcome this, Shaw et al. (2018) proposed
relative position encodings, which encode the relative distances between tokens rather
than their absolute positions and allow the model to generalize to longer sequences
than seen during training. Typically, relative position encodings are computed as a
function of the distance between tokens and are added directly to the attention scores
before applying softmax instead of added to the input embeddings. Current state-of-
the-art LLMs (Achiam et al., 2023; Touvron et al., 2023; Jiang et al., 2023; Team et al.,
2024) often use advanced positional encoding techniques such as ALiBi (Press et al.,
2022) or RoPE (Su et al., 2024) to support multiple orders of magnitude larger context
windows than the early GPT models.
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Pre-Norm In the original transformer architecture, the LayerNorm is applied after
each sub-layer, i.e., after the self-attention or cross-attention and the FFN. However,
it was found that this can lead to training instability, especially when scaling up
the model size (Child et al., 2019; Xiong et al., 2020). To address this issue, modern
transformers apply the normalization before each sub-layer, which is often referred
to as “pre-norm” and has become the defacto-standard approach. Further, there are
other normalization techniques, such as “RMSNorm” (Zhang et al., 2019), which are
commonly used in current LLMs.

E�cient Attention Mechanisms Another limitation of the vanilla transformer archi-
tecture is the quadratic runtime complexity �(� 2) of the self-attention mechanism,
which makes it computationally expensive for long sequences. To overcome this issue,
numerous more e�cient attention mechanisms (Tay et al., 2022) have been proposed,
which reduce the computational complexity by trading o� accuracy for e�ciency or
memory for computation. This is typically achieved by computing the attention scores
only for a subset of the input tokens, e.g., via sparse attention (Child et al., 2019) or sliding
window attention (Beltagy et al., 2020), by approximating the attention scores using
low-rank approximations (Wang et al., 2020) or kernel methods (Choromanski et al.,
2020), by reducing the number of key and value projections (Shazeer, 2019), or other
techniques involving considerable architectural changes (Dai et al., 2019). Further, very
e�cient, hardware-optimized algorithms such as FlashAttention (Dao et al., 2022; Dao,
2024) have been developed, which allow for e�cient computation on modern hardware
accelerators by elaborately allocating GPU memory and improving cache utilization.
Most modern LLMs employ grouped-query attention (Ainslie et al., 2023), an improved
successor of the multi-query attention (MQA) (Shazeer, 2019) mechanism, which also
reduces the number of key and value projections by sharing them across groups of query
heads in combination with FlashAttention or similar hardware optimized algorithms.

KV-Caching Key-Value (KV) caching is a technique used to improve the e�ciency of
transformer decoder models during inference. In the default architectures, self-attention
requires the computation of attention scores for all pairs of tokens in the input sequence
and, therefore, has a quadratic runtime complexity �(� 2), which is computationally
expensive for long sequences. KV caching addresses this issue by trading o�memory for
computation, i.e., it caches the key and value matrices � and � of previously processed
tokens. In subsequent forward passes, � and � are not recomputed for the previous
tokens, but instead, the cached representations are reused. This means that only for
the newly generated token �� , the �� , �� , and �� vectors are computed, and the attention
scores are computed only between the new token and the cached keys and values:

�� = softmax
�
����

�
�� �

�, �� � R1ñ(�+1) (2.37)

where �� � R�� is the query vector for the new token �� , and �,� � R(�+1)ñ�� are the
cached key and value matrices from the previous tokens with �� and �� appended, and �
is the number of previously processed tokens. This allows the model to avoid redundant
computations and signi�cantly speeds up inference, especially when generating long
sequences. As of 2024, KV caching is a standard technique with various optimized
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variants and has been widely adopted in most LLM implementations and inference
libraries (Li et al., 2024a).

Mixture of Experts (MoE) By scaling LLMs to hundreds of billions or even trillions of
parameters (Kaplan et al., 2020; Chowdhery et al., 2023; Achiam et al., 2023) several chal-
lenges arise, such as increased computational costs, memory requirements, and training
time. While those issues cannot be completely resolved, one approach to mitigate them
is to leverage mixture of experts (MoE) architectures introduced in the 1990s (Jacobs
et al., 1991; Jordan et al., 1993) in the form of “dense” MoE architectures. Later, a “sparse”
MoE architecture has been successfully applied to LSTM-based LMs (Shazeer et al.,
2017) and transformer-based LMs (Lewis et al., 2021). The idea of MoE architectures
is to have di�erent layers, referred to as “experts”, which are usually implemented as
shallow FFNs and specialized to a certain “tasks”. In a forward pass through a sparse
MoE layer, only a subset of the experts is “activated”, i.e., used to process an input
token while the remaining experts are not used. The experts are dynamically selected
based on a “routing” or “gating” network, which assigns each token to di�erent experts
based on the token’s representation. After forwarding the tokens through the respective
experts, the outputs are combined, usually by a weighted sum, to compute the �nal
output of a MoE layer. In an MoE transformer model, the FNN layer in each transformer
layer is usually replaced by an MoE layer with multiple experts and a shallow linear
layer as the gating network. Note that the above explanation only describes the basic
idea of MoE architectures, whereas the actual implementation, especially in modern
LLMs, is much more complex and involves various optimizations and techniques to
ensure e�cient training and inference.

2.4 Multimodal Transformer Models for Vision-Language
Tasks

This section covers how transformer models can be adapted to process multimodal
data, speci�cally focusing on vision-language tasks. We will explore various architec-
tures, including encoder-only vision-language models (VLMs), as well as generative
decoder-only large vision-language models (LVLMs), their inner workings, and training
methodologies. Further, we will discuss models that are particularly important for this
thesis as they have been employed throughout the papers core to this dissertation.

2.4.1 Vision Transformers (ViTs)

Vision Transformers (ViTs), �rst introduced by Dosovitskiy et al. (2021) and illustrated
in Figure 2.7, are a type of transformer encoder models capable of processing visual
data, i.e., images, and therefore play a crucial role as a core component in many VLMs
and LVLMs. While there have been numerous variations and advancements in the
architecture, training, and scaling of ViTs (Touvron et al., 2021; Caron et al., 2021; Bao
et al., 2021; He et al., 2021; Oquab et al., 2025; Dehghani et al., 2023a), this section brie�y
introduces the basic ViT architecture and its key components.
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Architecture Overview

Figure 2.7: Left: An overview of the vanilla Vision Transformer (ViT) architecture. Right: Inner
architecture of a transformer encoder layer. Image taken from (Dosovitskiy et al., 2021).

The general idea behind ViTs is to decompose an image into smaller patches, which
are then treated as tokens similar to words in text-based transformer models. With
this approach, ViTs can be implemented as a standard transformer encoder, with the
self-attention mechanism to capture dependencies and relationships within an image.
However, since images are two-dimensional and represented as a grid of RGB values,
they must be preprocessed to feed them into the transformer encoder.

Image Preprocessing

Before an image can be processed by a ViT, it has to be preprocessed into a sequence
of token embeddings by applying the following steps.

Image Patching A naive approach would be to use every pixel of the image as a token,
but this would result in an extremely long sequence, making it computationally infeasible
due to the quadratic complexity of the self-attention mechanism in transformers. As
proposed by Dosovitskiy et al. (2021), a more e�cient approach is to divide the image
into smaller, non-overlapping patches, which are then �attened and projected into
the patch embedding space using a linear projection layer. Formally, given an image
� � R�ñ�ñ� with height � , width � , and � channels, the image is divided into �
patches of size � ñ � , where � = � ��

�2 . The patched image is then represented as a
matrix �� � R�ñ(�2ñ�), where each row corresponds to a �attened patch. For example,
given an RGB image � � R224ñ224ñ3 and a patch size of � = 16, the image is patched into
� = 224�224

162 = 196 patches of size 16 ñ 16 ñ 3 represented as �� � R196ñ768.

Patch Embedding To forward the patches through the encoder layers, their dimensions
must match the hidden dimension �m of the model. Hence, each patch is projected by a
linear layer �patch � R(�2 ��)ñ�m, resulting in a sequence of patch embeddings � � R�ñ�m.
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Class Token Since the ViT model was designed to learn strong representations for
image classi�cation tasks, the authors took inspiration from the successful text-only
encoder model BERT (Devlin et al., 2019) and introduced a special token to aggregate
the information from all patches. More speci�cally, in addition to the patch embeddings,
a special “class token” or “CLS” token �cls � R�

m is prepended to the sequence of patch
embeddings �, resulting in the �nal input sequence �� � R(�+1)ñ�m.

Position Embeddings Since a transformer model on its own does not preserve the
sequential order of the input tokens (cf. §2.3.1), positional embeddings are added to
the patch embeddings to retain this information. While images are inherently two-
dimensional, Dosovitskiy et al. (2021) found that one-dimensional positional embeddings
work surprisingly well for ViTs. This positional embedding layer is implemented as a
learnable linear layer �pos � R(�+1)ñ�m, where � is the number of patches and �m is the
hidden dimension of the model. This results in a �nal input sequence � = �� +�pos �
R(�+1)ñ�, which is then fed into the transformer encoder layers.

Training

In the original paper, the training of ViTs for image classi�cation tasks consisted of
two supervised stages.

In the �rst stage, the models are pre-trained on large datasets comprising (hundreds
of) millions of images with class labels via cross-entropy loss. More precisely, the
representation of the class token �(�)cls � R�m after the �nal encoder layer is passed
through a linear layer3 or “classi�cation head” �cls � R�mñ� , where � is the number
of classes, to produce logits �. Next, the logits are used to compute the cross-entropy
loss with respect to the one-hot encoded ground truth label � � R� :

L���(�, �) = �
�

�
�=1

�� log
exp(��)

��
�=1 exp(��)

, � = �(�)cls�cls, �, � � R� (2.38)

The goal of this stage is for the model to learn strong general representations of the
images that can be used for downstream tasks.

In the second stage, the pre-trained model is �ne-tuned on a smaller dataset for a
specialized downstream classi�cation task. Therefore, the classi�cation head of the
pre-trained model is discarded, and a new classi�cation head adjusted to the number
of classes in the downstream task is trained in the same way as in the pre-training
stage. This strategy is also referred to as “transfer learning” because it aims to transfer
the knowledge gained from the pre-training phase to downstream tasks and is widely
used in modern machine learning.

The authors also experimented with a di�erent, unsupervised training stage, where
the model is trained to predict the masked-out patches of an image. This approach
is similar to the masked language modeling (MLM) objective used in BERT (Devlin
et al., 2019) and has been shown to be e�ective for learning strong representations of

3. Originally, the authors propose to use a two-layer MLP but most implementations use a single linear
layer.
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images. Following this approach, other successful ViT variations such as BEiT (Bao
et al., 2021), MAE (He et al., 2021), or DINO (Caron et al., 2021; Oquab et al., 2025)
have been proposed, which use di�erent masking strategies and training objectives
to learn strong image representations.

Usage of ViTs in this Thesis

Vision Transformers are a core component of modern VLMs and LVLMs, which are
leveraged in all foundational as well as additional papers of this thesis (cf. §1.4).
In particular, we use pre-trained ViTs as image encoders to extract image features
from images, which are then processed by the respective VLM or LVLM. Moreover,
in (Schneider et al., 2025b), we also use a pre-trained DINOv2 (Oquab et al., 2025) to
extract image features from video frames in order to compute similarities to other images.

2.4.2 Encoder-based Vision-Language Models (VLMs)

As de�ned in §1.2, throughout this thesis, we refer to vision-language models (VLMs)
as transformer encoder-based models that compute joint representations in a shared
embedding space. In other words, with VLMs, the goal is to learn semantically rich
image and text representations that can be used to measure the similarity between the
two modalities and various other downstream tasks. This section provides an overview
of the di�erent high-level architectures and training strategies of VLMs, as well as some
seminal VLM foundation models core to this thesis.

VLM Architectures

As comprehensively covered in recent survey papers (Zhang et al., 2024b; Shaikh et al.,
2024), there is a plethora of VLM architectures which can generally be categorized into
two main types and a combination of both: “early-fusion”, “late-fusion” (cf. Figure 2.8),
and “hierarchical-fusion” models. Simply put, “early-fusion” models process both modal-
ities simultaneously in a single multimodal encoder, “late-fusion” or “”dual-encoder
models process each modality in a separate text and image encoder and then combine
the representations at a later stage, and “hierarchical-fusion” models combine both
approaches by processing each modality �rst separately in a text and image encoder and
then passing the representations jointly through a multimodal encoder. In the following,
we brie�y describe these three types of VLMs from an architectural perspective. Since the
training of VLMs is often model- and task-speci�c, we will cover the training strategies
for the VLMs core to this thesis in their respective sections.

Early-Fusion VLMs Early-fusion VLMs comprise a single multimodal transformer
encoder that simultaneously processes text and image inputs. Therefore, a text is �rst
tokenized and embedded into a sequence of text embeddings, while an image is patched
and embedded into a sequence of patch embeddings. Note that image patching and
embedding, as described in 2.4.1, is only one of many approaches for extracting a
sequence of features from an image. Other approaches often leverage convolutional
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Figure 2.8: High-level overview of typical architectures for transformer encoder-based vision-
language models (VLMs). The �gures are inspired by (Shaikh et al., 2024).

neural networks (CNNs) (LeCun et al., 1998) such as ResNet (He et al., 2016) or Faster
R-CNN (Ren et al., 2016) to extract features from an image. If the text and image
embeddings do not already have the same hidden dimension �m of the multimodal
encoder, they are typically projected into this shared space by a simple linear layer.
Next, both embedding sequences are concatenated and passed through the multimodal
transformer encoder, where the self-attention mechanism captures the relationships
between the text and image tokens. The output of the multimodal encoder is a joint
representation of the text and image, which can be used for various downstream tasks
by applying a task-speci�c head on (a subset of) the output tokens.

While early-fusion VLMs can capture �ne-grained complex interactions between text and
image tokens, they are more computationally expensive due to the quadratic complexity
of the self-attention mechanism. Furthermore, since the resulting joint representations
are contextualized, i.e., the representation of a text token depends on the image and
vice versa, they are unsuitable for e�cient online retrieval tasks. This is because, at
inference time, to calculate the maximum similarity between a query and all entries in
the database, the query and all entries must be passed through the multimodal encoder,
which is computationally expensive.

Late-Fusion VLMs Late-fusion VLMs, also known as dual-encoder models, process
text and image inputs separately in two modality-speci�c encoders. As in early-fusion
VLMs, the text is �rst tokenized and embedded into a sequence of text embeddings,
while the image is patched and embedded into a sequence of patch embeddings. While
modern VLMs rely on ViTs to process images, this is not a strict requirement, and other
approaches �rst extract features from an image, e.g., by using a CNN, and then forward
them through a stack of standard transformer encoder layers. After passing the text and
image embeddings through the separate text and image encoders, if they do not already
have the same hidden dimension �m, they are projected into a shared multimodal
embedding space by a linear layer. To fuse the modalities, i.e., to compute a joint
representation, the two separate encoders and the optional projection layers are jointly
trained by using a loss function that takes both the text and image representations as
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input. The resulting text and image representations can then be used for vision-language
downstream tasks, e.g., by �ne-tuning a task-speci�c head.

Since the text and image features are processed through separate encoders, late-fusion
VLMs are more e�cient than early-fusion VLMs. However, they can be less performant
on tasks that require �ne-grained interactions between text and image tokens, as
the self-attention mechanism is only applied within and not across the modalities.
Another bene�t of late-fusion VLMs is that they can pre-compute the text and image
representations for large datasets and store them in a vector database, which allows
for e�cient retrieval because, at query time, only the query embedding needs to be
computed and compared against the pre-computed representations.

Hierarchical-Fusion VLMs Hierarchical-fusion VLMs combine the early- and late-
fusion approaches by �rst processing the text and image inputs separately in a text and
image encoder, respectively, and then passing the resulting representations through
a multimodal transformer encoder. This approach allows for contextualized repre-
sentations to capture relationships intra- and inter-modality and, therefore, can be
more performant on complex tasks. However, since three separate encoders are used,
hierarchical-fusion VLMs aremore computationally expensive than the other approaches.
To increase e�ciency for latency-constrained tasks, the representations of the text
and image encoders can be pre-computed and stored in a vector database, similar
to late-fusion VLMs.

Transformer Encoder Reasoning and Alignment Network (TERAN)

This model, which was introduced by Messina et al. (2021), is a special kind of late-fusion
VLM designed to learn �ne-grained alignment between texts and images. We employed
TERAN in the Golden Retriever (Schneider et al., 2022) paper and works (Schneider
et al., 2021; Wang et al., 2022) for cross-modal text-image (I2T) retrieval tasks, in which
the goal is to retrieve the best matching images for a given text query. As illustrated

Figure 2.9: Architecture of the Transformer Encoder Reasoning and Alignment Network
(TERAN) (Messina et al., 2021). Image taken from the original paper.
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in Figure 2.9, image features are extracted using a pre-trained Faster R-CNN (Ren
et al., 2016) model, which is a CNN-based object detection model that extracts features
from the respective regions of interest (RoIs) in an image and combines them with
the bounding box coordinates of the RoIs using linear layers. Texts are �rst tokenized,
embedded, and then forwarded through a pre-trained BERT (Devlin et al., 2019) model
to obtain the text features. Then, instead of using a simple linear layer to project
the text and image features into a shared multimodal embedding space, in TERAN,
the text and image features are forwarded through two separate stacks of multimodal
encoder layers. Formally, given a sequence of text features � � R��ñ�m and a sequence
of image features � � R��ñ�m, where �� and �� are the number of text and image tokens,
respectively, the text features are passed through the text encoder �� and the image
features through the image encoder �� to compute aligned text and image features ��

and ��. Further, TERAN computes a Word-Region Alignment (WRA) matrix � � R��ñ�� ,
where each cell ��� represents the alignment score, i.e., cosine-similarity, between the
�-th text token and the �-th image region:

��� =
��
� � �

�
�

���
� � � ���� �

(2.39)

To obtain a global similarity score �(�, �) between the text and image, the WRA matrix
is aggregated or “pooled” using a special pooling operation:

�(�, �) = �
����

max
����

��� (2.40)

Training TERAN is trained in a supervised manner on di�erent datasets containing
aligned text-image pairs, e.g., MS-COCO (Lin et al., 2014), Flickr30k (Plummer et al.,
2015), or our WISMIR3 (Schneider et al., 2024a) dataset, using a contrastive loss function.
Contrastive loss functions are widely used in VLMs to learn joint representations or an
alignment between text and image features by minimizing the distance between positive
pairs, i.e., aligned text-image pairs, and maximizing the distance between negative
pairs, i.e., unaligned text-image pairs. While there exist many di�erent contrastive loss
functions, which we will partially cover when discussing the training of the respective
VLMs, TERAN employs a so-called “margin-based triplet loss” function (Faghri et al.,
2018) to train themodel. To compute a triplet loss, �rst an anchor sample �� and a positive
sample �+ are sampled from the training dataset, while a negative sample �� is sampled
from the remaining dataset so that it does not match the anchor text. Note that sampling
negatives is a challenging task, as it is crucial to sample hard negatives, i.e., images that
are similar to the anchor text but not alignedwith it. The loss is then computed as follows:

Ltriplet (��, �+, ��) = max(0,� + �(��, ��) � �(��, �+)), (2.41)

where � is a margin hyperparameter that de�nes the minimum distance between
positive and negative pairs. The goal of this loss function is to ensure that the similarity
score between the anchor text and the positive image is higher than the similarity score
between the anchor text and the negative image by at least the margin �. To train
TERAN, the authors computed the �nal symmetric loss by adding the triplet loss for all
text-image pairs and all image-text pairs and sampled hard negatives from the minibatch
at each training step instead of the entire dataset.
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Contrastive Language-Image Pre-training (CLIP)

Introduced by Radford et al. (2021), Contrastive Language-Image Pre-training or CLIP
marked a milestone advancement in late-fusion VLMs. While the abbreviation CLIP is
commonly used to refer to the model, note that CLIP is not a single model but a family
of models that share the same or similar architecture and, most importantly, the same
training technique. The core innovation of the CLIP paper is a large-scale pre-training
method based on e�cient contrastive learning. This approach leverages natural language
as a supervised training signal to learn from massive datasets comprising hundreds of
millions (Sun et al., 2017; Radford et al., 2021) or even multiple billions (Schuhmann et al.,
2022) of image-text pairs. The large-scale pre-training enables the model to compute
semantically rich and generalizable multimodal representations, which can be e�ectively
transferred to obtain strong performance across various downstream tasks. Furthermore,
the authors showed that CLIP models also perform strongly in zero-shot settings, i.e.,
without any �ne-tuning on the downstream task, using prompt engineering to adapt the
model to the respective task. Thanks to these advancements, CLIP models have since
become foundational models in the �eld of multimodal machine learning and computer
vision, in�uencing numerous subsequent architectures and methodologies.

Figure 2.10 provides an overview of a CLIP model and how it can be applied to down-
stream tasks, e.g., image classi�cation in a zero-shot setting. From an architectural

Figure 2.10: An overview of CLIP models. Image taken from Radford et al. (2021).

perspective, CLIP is a relatively simple late-fusion VLM that implements a dual-encoder
architecture to process text and image inputs separately. While the authors also
experimented with di�erent setups involving CNNs such as ResNet (He et al., 2016)
as image encoders, in most modern CLIP models, the image encoder is typically a
ViT, while the text encoder is a BERT-like transformer model. To obtain a single
embedding vector that globally represents the input image or text, the outputs of
the respective encoder are either pooled or the output of a special token, e.g., the
“EOS” or “CLS” token is used. Formally, given an input image I and an input text
T, the image encoder Encimg and the text encoder Enctxt compute the global features
�� = Encimg(I) � R�i and �� = Enctxt(T) � R�t . Next, the image and text features are
projected into a shared multimodal embedding space by linear layers �img � R�iñ�m
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and �txt � R�tñ�m, respectively, and L2-normalized to compute the �nal multimodal
text and image embeddings:

�� = �
��� ��img��2, �� � R�m (2.42)

�� = �
��� ��txt��2, �� � R�m (2.43)

The global similarity �(�, �) = �� � �� between the text and image representations is
then computed using cosine similarity expressed as the dot product of the normal-
ized embeddings.

Training As mentioned, the core innovation of CLIP is the large-scale pre-training on
massive datasets of aligned image-text pairs using natural language from captions as the
training signal. At the time of its introduction, this was especially challenging as existing
datasets were much smaller in size or only contained coarsely aligned image-text pairs,
i.e., the text was not necessarily a description of the image but rather a caption or a tag.
Moreover, e�cient approaches to scale this training approach were not yet established
as prior work, e.g., Desai et al. (2021), relied on autoregressive language models to
predict the caption of an image, which is computationally infeasible for large datasets.

To address these challenges, the authors �rst crafted a well-aligned dataset of 400 million
image-text pairs from the Web, referred to as “WebImageText”. Further, they proposed
a simple yet e�ective training approach that leverages contrastive learning to align
the global image and text representations �� and �� instead of considering the �ne-
grained alignment of individual image and text features. More speci�cally, the paper
introduced a symmetric contrastive loss that, given a (large) batch of image-text pairs,
maximizes the similarity between matching the pairs, i.e., the diagonal of the similarity
matrix, while minimizing the similarity between non-matching pairs, i.e., the upper
and lower triangular parts of the similarity matrix (cf. Figure 2.10). Formally, given
a batch B = {(�(�)� ,�

(�)
� ) | � = 1,… ,� } of � text-image pair embeddings, the similarity

matrix � � R�ñ� is computed as:

� =
�
�
�
�
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The CLIP loss for the batch is then computed as the symmetric cross-entropy loss
(CEL) over the similarity matrix, i.e., the average of the image-to-text (I2T) CEL and
text-to-image (T2I) CEL:

LCLIP(�) =
1
2�

L�2� + L� 2�� (2.45)

= �
1
2�

�

�
�=1 �

log
exp(��,�/�)

��
�=1 exp(��,�/�)

+ log
exp(��,�/�)

��
�=1 exp(�� ,�/�)�

. (2.46)

where � denotes a learnable temperature hyperparameter controlling the sharpness
of the similarity distribution.

Note that the loss is symmetric, i.e., the I2T and T2I losses are considered, which the
authors found to be crucial for the model’s performance. Further, since all negatives
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come from the same batch, the authors found that huge batch sizes (e.g., 32,768) are
crucial to obtaining a strong model and stabilizing training. One reason for this is that
the larger the batch size, the more negative samples are available, which is important
for contrastive training as it allows the model to learn more robust representations.
This is also another reason for the symmetric loss, as it basically doubles the number
of negative samples per batch.

Usage in Downstream Tasks After pre-training the CLIP models from scratch, the
authors demonstrated that they could be e�ectively used for various downstream
tasks, such as image classi�cation, image retrieval, and OCR tasks across various
domains, e.g., natural images, cars, medical images, art, and many more. Particularly,
the authors showed two setups for using CLIP models in downstream tasks: “zero-
shot” and “linear probing”.

In the zero-shot setup, the CLIP model is used without any �ne-tuning on the down-
stream task by leveraging the learned multimodal representations and prompt engi-
neering. For example, for image classi�cation tasks, the authors proposed to use the
set of class labels as text prompts, e.g., “a photo of a {class}”, and compute the similarity
between the image embedding and the text embeddings for each class. The class with the
highest similarity score is then selected as the predicted class. Using this approach, the
model outperformed fully supervised linear classi�ers on top of traditional CNN-based
image models on a wide range of image classi�cation datasets.

In the linear probing setup, a linear classi�er,i.e., a linear layer, is trained on top of
the CLIP image or text embeddings while keeping the CLIP model frozen. Also, in
this setup, the model outperformed various traditional CNN-based models as well as
pure ViT models on a wide range of datasets using only a tiny amount of labeled
data, also called few-shot learning, usually with less than 20 samples per class. Most
interestingly, the authors showed that the zero-shot performance outperforms a 4-shot
linear probing setup on average.

All these results demonstrate the e�ectiveness of CLIP models in learning strong
generalizable multimodal representations that can be e�ectively used for transfer
learning across various downstream tasks.

CLIP Variants Since the introduction of CLIP, numerous variants have been proposed
to extend the model capabilities, for example, by adapting it to speci�c tasks and
specialized domains using �ne-tuning on in-domain datasets (Zhao et al., 2023b; Cartella
et al., 2023). Other works focused to generally improve the performance and e�ciency
of CLIP-style models by scaling them to even larger and multilingual datasets (Gadre
et al., 2023; Schuhmann et al., 2021; Schuhmann et al., 2022; Chen et al., 2023b; Zhu
et al., 2023) or larger models with more parameters while at the same time improving
the training and data e�ciency, and extend the models capabilities to multilingual
and multicultural settings (Jia et al., 2021; Zhai et al., 2022; Zhai et al., 2023; Li et al.,
2023c; Sun et al., 2023; Li et al., 2023d; Chen et al., 2023a; Tschannen et al., 2025). Most
modern CLIP variants, e.g., EVA-CLIP models (Sun et al., 2023; Fang et al., 2024; Sun
et al., 2024a) or SigLIP (Zhai et al., 2023; Tschannen et al., 2025) models, additionally
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employ improved ViT models to allow for processing of higher-resolution images of
any aspect ratio (Beyer et al., 2023; Dehghani et al., 2023b).

Usage of VLMs in this Thesis

Throughout many papers of this thesis, VLMs were leveraged for cross-modal retrieval
tasks. In particular, we leverage TERAN (Messina et al., 2021) and UNITER (Chen et al.,
2020) in the Golden Retriever (Schneider et al., 2022) and other works (Schneider et al.,
2021; Wang et al., 2022) for cross-modal text-image (I2T) retrieval tasks. In the Golden
Retriever (Schneider et al., 2022) and MOTIF (Wang et al., 2022) papers, TERAN is
also employed for open-vocabulary object detection. Furthermore, we used di�erent
pre-trained CLIP models (Radford et al., 2021; Zhai et al., 2023) in WISMIR3 (Schneider
et al., 2024a), CollEX (Schneider et al., 2025a), and many other works (Schneider et
al., 2021; Schneider et al., 2024a; Schneider et al., 2023b) for zero-shot cross-modal
retrieval tasks including image-text (I2T), text-image (T2I) as well as text-text (T2T),
and image-image (I2I) retrieval.

In (Schneider et al., 2023a), we also used pre-trained CLIP models for zero-shot visual
word sense disambiguation (VWSD) tasks, where the goal is to disambiguate themeaning
of a word given a minimal textual context and a set of 10 images that are possible
interpretations of the word.

Another use of CLIP models, or more precisely, the image encoder of a pre-trained SigLIP
model (Zhai et al., 2023), is in the Centurio (Geigle et al., 2025) paper. There, we used and
�ne-tuned the ViT model as the image encoder to train massively multilingual LVLMs.

2.4.3 Decoder-based Large Vision-Language Models (LVLMs)

In contrast to VLMs, which are encoder-only models and therefore designed to com-
pute embeddings, in this thesis, we refer to large vision-language models (LVLMs) as
autoregressive decoder-based models designed to generate text based on a prompt that
can contain both text and images. Or, to put it di�erently, LVLMs can be seen as LLMs
that are extended with vision capabilities, i.e., they can additionally understand images
and generate text based on a multimodal prompt. The strong visual understanding of
ViTs, combined with the world knowledge, language understanding, and text generation
capabilities of LLMs, drastically extends the capabilities of LVLMs beyond those of LLMs
and ViTs alone, enabling a wide range of complex tasks that require both language
and vision understanding. Such vision-language tasks (VLTs, cf. 1.2) are, for example,
image captioning, visual question answering, open-vocabulary object detection, or
optical character recognition. Moreover, due to their multimodal capabilities and world
knowledge, which more closely resemble human-like perception, LVLMs allow for more
natural human-computer interaction and became powerful tools for everyday tasks
beyond purely academic benchmarks. This trend is even more pronounced in the most
recent generation of LVLMs, also often called “omni” or “any-to-any” models, which
are capable of processing additional modalities like audio or video, and generate not
only text but also other multimodal content (Xu et al., 2025; Deng et al., 2025; Chen
et al., 2025; Hurst et al., 2024; Team et al., 2024). However, this thesis focuses on LVLMs
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designed to generate text based on multimodal prompts containing only text and images
or videos expressed as a sequence of images without audio.

In the next sections, we will �rst brie�y cover the extraction of visual features common
to the majority of LVLMs, followed by an overview of di�erent LVLM architectures,
and �nally cover common training strategies.

Image Feature Extraction

In most LVLMs, the image features are extracted using a pre-trained ViT model, which
is typically the vision encoder of a state-of-the-art CLIP model, e.g., SigLIP (Zhai et al.,
2023; Tschannen et al., 2025) or EVA (Sun et al., 2023; Fang et al., 2024). This is because
these models are trained on large-scale datasets via language supervision, which was
found to be bene�cial for combining the extracted visual features with the text tokens
of the LLM backbone. Other approaches employ other ViT models like DINO (Caron
et al., 2021; Oquab et al., 2025), combine multiple encoders (Lu et al., 2023; Tong et al.,
2024), or train custom (large-scale) vision encoders from scratch (Chen et al., 2023c).
Recent LVLMs mostly use enhanced ViT models such as NaViT (Dehghani et al., 2023b)
that allow for processing images of any aspect ratio and higher resolution, extended by
introducing advanced positional encodings for multimodal inputs (Wang et al., 2024a;
Bai et al., 2025; Zhu et al., 2025).

To further improve the performance of LVLMs on tasks that require �ne-grained visual
understanding, e.g., understanding of texts in images, HD images are required. Many
recent works allow for such high-resolution inputs by extracting features from the same
image at di�erent scales and combining the extracted features afterward as introduced
by Liu et al. (2024). This is typically achieved by tiling the high-resolution image into
smaller subimages and extracting features from the down-scaled HD image and the
subimages, which are then concatenated to form a single sequence of image features.

One issue that arises when adding single image features as additional input to the
LLM backbone is that the number of tokens forwarded through the model increases,
leading to much higher computational cost due to the quadratic complexity of the
self-attention mechanism. For example, a typical CLIP-ViT model used in many LVLMs
extracts 729 image features from a single image. This number quadruples when using 4
sub-image tiles, leading to a total of (1 + 4) � 729 = 3645 additional visual tokens that
need to be processed by the LLM backbone. This becomes especially problematic for
multi-image or video inputs, as supported by the majority of recent LVLMs. To address
this issue, many LVLMs reduce the number of visual tokens by applying some post-
processing network (Li et al., 2023b; Zhang et al., 2025a), by stacking the features along
the channel dimension (Shi et al., 2024), token merging or pruning operations (Yang
et al., 2025), or other sophisticated methods applied to the attention-layers in the
LLM (Chen et al., 2024a).

LVLM Architectures

While generative models that generate text conditioned on images existed for a long time
and were historically implemented using non-neural, purely statistical models (Farhadi
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et al., 2010; Li et al., 2011), and later combined CNNs and RNNs (Kiros et al., 2014;
Donahue et al., 2015; Wang et al., 2016), their performance was limited by the capabilities
of the underlying models. Building on the advancements of transformer models and
VLMs, one of the �rst successful LVLMs that laid the foundation for modern transformer-
based LVLMs covered in this thesis was the Flamingo model introduced by Alayrac
et al. (2022). Since then, the �eld has seen a surge in interest, leading to a rapid develop-
ment of hundreds of LVLMs, comprehensively summarized by multiple recent survey
papers (Ca�agni et al., 2024; Zhang et al., 2024a; Liang et al., 2024; Wadekar et al., 2024).
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Figure 2.11: A high-level overview of main LVLM architectures.

General LVLM Architecture What the large majority of LVLMs have in common is
that they employ some (often pre-trained) ViT model to extract image features from
one or more images (cf. 2.4.3), which are then combined with the textual tokens of the
(pre-trained) LLM backbone. From a high-level perspective, LVLMs can be categorized
into four main architectures (cf. Figure 2.11) that can be further categorized into two
super types: “deep-fusion” and “early-fusion” models. As the name suggests, deep-
fusion LVLMs combine the text and image modalities in the inner decoder layers of
the model, whereas early-fusion LVLMs combine the modalities at the input stage, i.e.,
before the decoder layers. How the text and image modalities are combined depends on
the architecture type and will be brie�y described in the following paragraphs. Note,
however, that there are variations in the details of these architectures that depend on
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the speci�c implementation of the respective LVLM, which we will not cover in detail
here as this would go beyond the scope of this thesis.

Cross-Attention Deep-Fusion LVLMs This architecture (cf. Figure 2.11a) was imple-
mented by Alayrac et al. (2022) in their Flamingo model and was popular in “earlier”
LVLMs. It consists of a pre-trained LLM backbone with the decoder layers extended
by multimodal cross-attention layers and a (usually pre-trained) ViT model to extract
image features. After extracting the image features, they are combined with the text
tokens by the additional cross-attention layers, which compute the attention between
the text tokens and the image features, allowing the model to attend to relevant visual
information while generating text. Usually, these cross-attention layers are inserted
before the causal self-attention layers of the LLM backbone, but some works also insert
them after the self-attention layers.

Due to the complex setup and increased computational cost for training as well as
inference introduced not only by the visual tokens but also by the cross-attention layers,
this architectural type is much less common in modern LVLMs.

Adapter Deep-Fusion LVLMs Similar to cross-attention deep-fusion LVLMs, adapter
deep-fusion LVLMs (cf. Figure 2.11b) also inject the visual features into the decoder
layers of the LLM backbone. However, instead of using cross-attention layers, they
use custom modules called “adapters” that are inserted into the LLM backbone. These
adapters can be specialized cross-attention layers, mixture-of-experts (MoE) layers
(cf. 2.3.4), or popular parameter e�cient adapter layers (Houlsby et al., 2019) such
as LoRA (Hu et al., 2022). Further, they can be inserted before or after the attention
modules in the decoder layers of the LLM backbone.

While LVLMs following this architecture are e�cient when employing LoRA or similar,
models usingMoE layers or custom cross-attention layers are computationally expensive.
Due to this and the deep-fusion architecture, this type of LVLM has also not been
common in recent LVLMs.

Tokenize-Only Early-Fusion LVLMs This architecture (cf. Figure 2.11d) type di�ers
fundamentally from the two previously covered. Firstly, because it is an early-fusion type,
i.e., it does not inject the visual tokens into the backbone LLM or adapt it in any other
way. Instead, the visual tokens are simply concatenated to the text tokens before being
forwarded through the LLM. Secondly, visual features are not extracted by a pre-trained
ViT model but by a specialized “image tokenizer” that is separately trained to transform
an image into a sequence of discrete visual tokens (Ramesh et al., 2021; Esser et al., 2021).

While the setup is simpler than deep-fusion architectures, the main challenges are
training a strong image tokenizer and adapting the LLM to these visual tokens. Further,
due to this design choice, it is not possible to leverage powerful vision encoders pre-
trained on billions of text image pairs, thereby losing the bene�ts of language supervision.
Due to these limitations, this architecture type is generally not common in LVLMs.
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Projection Early-Fusion LVLMs This architecture (cf. Figure 2.11c) is the simplest
and, at the same time, one of the most powerful approaches for integrating visual
information into LLMs. One of the �rst successful implementations was the seminal
LLaVA model (Liu et al., 2023), which is why LVLMs following this architecture are
also often referred to as “LLaVA-style” models. As opposed to the tokenize-only early-
fusion architecture, in this architecture, the visual features are extracted by a pre-
trained ViT model, typically a CLIP-ViT, and then projected into a shared multimodal
embedding space using a simple projection module. In pure LLaVA-style models, the
projectionmodule is a simple linear layer or a two-layer FFN, which transforms the visual
features into the same hidden dimension as the text embeddings of the LLM backbone.
Afterward, the visual features are optionally reduced and �nally concatenated with the
text embeddings before being forwarded through the LLM backbone.

Due to the simple projection strategies and the ability to leverage powerful pre-trained
vision encoders, this architecture type is easy to implement and, therefore, widely
used in modern LVLMs.

LVLM Training Strategies

This section provides an overview of common training strategies for LVLMs that employ
a pre-trained LLM backbone and (most of the time) a pre-trained ViT model to extract
visual features. However, due to the large number of di�erent LVLMs, there are also
many di�erent strategies to train these models. While earlier LVLMs, especially those
based on the cross-attention deep-fusion or “Flamingo-style” architecture, relied on
single-stage training strategies, more recent LVLMs, especially LLaVA-style models,
employ two-stage or three-stage training strategies. Another model-dependent design
choice is which components or layers in which stage are trained from scratch, �ne-
tuned, or kept frozen during training. Nevertheless, in the following, we will cover
the key aspects of the three stages, i.e., “pre-training” or “vision-language alignment”,
“multimodal instruction tuning”, and “post-training” or “preference alignment”.

Stage 1: Pre-Training or Vision-Language Alignment During this �rst stage, the
objective is to align the visual features extracted from an image by a pre-trained ViT
model with the text embeddings computed from the tokenized text by the embed-
ding layer of the LLM backbone. Similar to VLM training, this involves large-scale
datasets of aligned image-text pairs from the Web such as LAION-5B (Schuhmann et al.,
2022) or DataComp (Gadre et al., 2023), traditional image captioning datasets such as
COCO (Lin et al., 2014), SBU (Ordonez et al., 2011), or more recent synthetic datasets
like ShareGPT4V-PT (Chen et al., 2024b) that contain detailed generated image captions.
However, instead of using contrastive learning, LVLMs are trained in an autoregressive
manner to generate the target captions given the respective image and an optional
prompt using simple next-token prediction via a cross-entropy loss. Note that as soon as
the image features are combined with the text features into a single sequence, this is, in
principle, the same as pre-training a standard LLM (cf. § 2.3.4), but with the additional
visual features as pre�x or context that condition the text generation. Formally, given a
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target caption as a sequence of � text embeddings � = {�1, … , �� } for an image expressed
as a sequence of � visual features � = {�1, … , ��}, the cross-entropy loss is de�ned as:

LCE(�, �) = �
1
�

�

�
�=1

log���� � �<�, ��, (2.47)

where �<� = (�1, … , ���1) and �(�) is the probability computed by the language modeling
head of the LVLM. Note that the � image features � are not considered in the loss
function, i.e., they are only used as context to condition the text generation, not
as target labels.

In this stage, most LVLMs keep the LLM and the ViT frozen and only train the projection
module or the adapter layers that combine the visual and text features, while somemodels
also �ne-tune the ViT model. After successful training, LVLMs learned to understand
images, align the visual information with text, and generate textual descriptions or
captioning of images. However, the models are not yet able to complete other tasks
as they have not seen them during training.

Stage 2: Instruction Tuning or Supervised Fine-Tuning To make an LVLM a task-
agnostic tool that can be used for various downstream vision-language tasks (VLTs) as
their text-only counterparts, the model needs to be further trained in a second stage,
which is often referred to as “multimodal instruction tuning”. One of the �rst LVLMs that
successfully employed this training strategy was the LLaVA model introduced by Liu
et al. (2023) in their seminal paper titled “Visual Instruction Tuning”.

For this stage, a mixture of datasets is used that contain a diverse set of VLTs, such
as various types of visual question answering (VQA), visual entailment (VNLI), image
captioning, optical character recognition, object detection, and many more. Some
of the datasets only contain samples with one image, while others contain samples
with multiple inter-leaved images as they occur in typical chat-style conversations or
web pages. Before the datasets can be used for training, they need to be converted
into a format suitable for instruction tuning that the LVLM can process. For example,
each sample of a VQA dataset can be converted into an instruction-following format
with the following template:

Question: <question>
Image: <image>
Answer : <answer>

where <question>, <image>, and <answer> are placeholders for the question, image,
and answer of a sample, respectively. Or, for a VNLI task where the model needs
to predict whether a statement about two images is correct or not, the following
template could be used:

Image 1: <image>
Image 2: <image>
Given the two images, is the following statement correct? Answer with yes or
no.
Statement: <statement>
Your Answer : <answer>
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where <image>, <statement>, and <answer> are placeholders for the images, state-
ment, and answer of a sample, respectively. Popular instruction tuning datasets that
are already in such a format and comprise a wide range of VLTs covering various
domains like science, math, arts, or general topics are LLaVA-665K (Liu et al., 2023)
or Cambrian (Tong et al., 2024).

Due to the fact that the datasets contain supervised labels, often, this training stage is
referred to as “supervised �ne-tuning” or SFT of the LVLM. However, since the samples
can be converted into a sequence of text and image tokens, the model can again be
trained in an autoregressive manner similar to the alignment stage, i.e., by predicting
the next token given the prompt, the image, and the previous tokens. Formally, given
� = {�1, … , ��}, � = {�1, … , ��}, and � = {�1, … , �� } as the prompt embeddings, the image
embeddings, and the target-answer embeddings, respectively, the cross-entropy loss is:

LCEL(�, �,�) = �
1
�

�

�
�=1

log���� � �<�, �, ��, (2.48)

where �<� = (�1, … , ���1) and �(�) is the probability computed by the language modeling
head of the LVLM.

During this stage, the LLM backbone, together with the projection module, is usually
�ne-tuned, while the ViT model is often kept frozen. However, this depends on the
speci�c implementation of the LVLM, as some models also �ne-tune the ViT model,
train only some layers of the LLM backbone, or keep the projection module frozen.
Further, some approaches also combine the �rst and second stages into a single stage
by converting the pre-training data into an instruction-following format.

After this stage, the LVLM is a task-agnostic multimodal model that can be used for
various VLTs, often in zero-shot or few-shot settings, i.e., without any further �ne-
tuning on the downstream task.

Stage 3: Post-Training or Preference Alignment After the second stage, some LVLMs
employ this third stage to further improve and align the LVLM to human preferences
and also enhance the visual grounding capabilities, reducing hallucination problems
and making it more trustworthy and safe for real-world applications. The approach, i.e.,
the use of reinforcement learning techniques, of this stage, is similar to the preference
alignment training of LLMs (cf. § 2.3.4), except that when applied to LVLMs, also images
are used as input. The inclusion of multimodal data and transfer of the approaches
to LVLMs introduced several challenges, e.g., in collecting preference data or in the
design of e�ective reward models. However, recent works overcame these challenges
and successfully applied preference alignment to LLaVA-style LVLMs, outperforming
non-preference-aligned models on hallucination benchmarks as well as other popular
datasets (Sun et al., 2024b; Zhang et al., 2025b; Yu et al., 2024)

Since most open-source LVLMs do not apply these training strategies, we will not
cover them here.
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Usage of LVLMs in this Thesis

We make use of various LVLMs and investigate their limitations and strengths across
many diverse vision-language tasks in several papers of this thesis. In particular, we
benchmark a wide range of (primarily LLaVA-style) LVLMs to assess their multilingual
performances on VLTs such as VQA, VNLI, visually-grounded reasoning (VGR), image
captioning in our M5 paper (Schneider et al., 2024b) and cross-modal topic classi�cation
in (Schmidt et al., 2025). Further, in the GIMMICK benchmark (Schneider et al., 2025b),
we evaluated even more LVLMs on their knowledge of globally distributed cultures and
their capabilities to understand and generate culturally relevant content. In the Centurio
paper (Geigle et al., 2025), we trained massively multilingual LLaVA-style LVLMs based
on pre-trained CLIP-ViTs and LLMs from scratch applying vision-language pre-training
and multimodal instruction tuning strategies on large multilingual datasets. To assess
their performance and compare them to other LVLMs, we evaluated the models on
an extended version of the M5 benchmark. Another application of LVLMs in this
thesis is their use at the core of a multimodal agentic RAG system as described in our
CollEX (Schneider et al., 2025a) paper.

2.5 Summary

In this chapter, we have provided an histroical as well as technical overview of the
theoretical background necessary to understand the papers core to this thesis. In the
�rst three parts, we have discussed the evolution of neural networks, their application
in natural language processing, and the evolution from transformer models to modern
large language models (LLMs). These sections provide the basis for understanding the
multimodal transformer encoder-based models (VLMs) and transformer decoder-based
models (LVLMs). These models are particularly relevant for the thesis as they are core
to every paper this thesis is based on. While we discussed the basic architectures and
training strategies of VLMs and LVLMs, more detailed information also about their
speci�c usage and functionality can be found in our respective papers.
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In this chapter, we �rst concisely answer the three research questions (RQ1, RQ2,
RQ3) core to this dissertation (cf. § 1.3) and summarize the key �ndings of our work.
Afterward, we discuss the limitations of our work and �nally provide an outlook on
future research directions.

3.1 Summary

This thesis explored the strengths of VLMs and LVLMs concerning their practical
applicability for real-world scenarios (RQ1), their limitations concerning performance
and robustness in out-of-distribution, multilingual, and multicultural settings (RQ2),
and proposed solutions to mitigate limitations concerning multilingual performance
degradation (RQ3). A high-level overview of the research questions and key �ndings
in abbreviated form is provided in 3.1. Detailed answers to the research questions

Training Strategies to Improve
Massively Multilingual Performance
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(Geigle et al., 2025) LVLM

Cross-Modal Retrieval (CMR)
Open-Vocabulary Object Detection
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Figure 3.1: Overview of the research questions and key �ndings of this thesis.

are provided in the following subsections, where we also summarize the key �nd-
ings of our work.

3.1.1 Research Question 1: Strengths

In all our papers, we addressed the �rst research question concerning the strengths
of VLMs and LVLMs to some extent but focused particularly on their potential and
practical applicability in the following two papers.

Concentrating on transformer encoder-based VLMs, we showed in our Golden Re-
triever (Schneider et al., 2022) paper that these models, particularly dual-encoder late-
fusion architectures like TERAN (Messina et al., 2021), can be e�ectively leveraged for
real-time capable cross-modal text-image retrieval systems. This was achieved by global
average pooling of �ne-grained word-region-alignment (WRA) matrices in which a cell
represents the semantic similarity between a word, i.e., a token, in the query sequence
and a region in an image. Moreover, applying local average pooling, taking into account
only a subset of the query sequence, we showed that these models can also be employed
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for open-vocabulary object detection. However, practicably leveraging such models in
a real-time system imposes challenges due to the relatively long computation time of
a WRA matrix for a given image. Hence, we implemented a sophisticated two-stage
algorithm that �rst drastically reduces the search space by employing e�cient retrieval
methods based on pre-computed indices to a few candidate images, for which the WRA
matrices are computed and pooled in the second stage.

Concerning transformer decoder-based LVLM, we showed how these models can be
employed e�ectively as chatbots in multimodal agentic RAG systems in our CollEX
paper (Schneider et al., 2025a). Speci�cally, we pre-compute multimodal embeddings of
texts and images of records in scienti�c collections utilizing a strong VLM and store
them in a hybrid vector database for e�cient retrieval. The LVLM sits at the core of the
system and is operated through an agentic loop, in which the model plans the actions to
be executed to ful�ll a user request. These actions, provided to the model via function-
calling techniques, are simple database lookups, cross-modal and uni-modal semantic
similarity search as well as lexical search methods, and image analysis methods such as
visual question answering (VQA), optical character recognition (OCR), open-vocabulary
detection (OVD), or image captioning. We also employed an LVLM using specialized
prompts for the latter image analysis methods.

3.1.2 Research Question 2: Limitations

The second research question targets di�erent limitations of VLMs and LVLMs and
was primarily addressed in three papers, focusing on out-of-distribution data in cross-
modal retrieval settings, robustness in massively multilingual setups, and awareness
beyond Western cultures, respectively.

We showed in our WISMIR3 (Schneider et al., 2024a) paper that the performance
degradation of transformer encoder VLMs for cross-modal text-to-image retrieval
settings is severe when employing them in scenarios with data that di�ers from their
pretraining distribution. Therefore, we �rst evaluated a set of VLMs on typical text-
to-image retrieval benchmarks and analyzed their data in detail by collecting a wide
range of linguistic statistics on the image captions. Here, we found that the average
captions are short, simple in terms of classic readability scores, and contain little to
no named entities. To challenge the VLMs and measure their robustness, we crafted a
novel dataset fromWikipedia articles, including over 300,000 images of diverse sceneries
described by lengthy and complex captions comprising many, often multiple named
entities. In our evaluation setup, we measured the robustness of VLMs of three di�erent
archetypes and observed severe drops in performance on our test set compared to
standard benchmarks in a zero-shot setting. Further, we �ne-tuned a dual-encoder
late-fusion VLM (TERAN (Messina et al., 2021)) on the train split of our dataset (295K
samples) and found that the model was unable to learn strong representations from
the complex data. Both �ndings demonstrate signi�cant limitations of encoder VLMs
for complex out-of-distribution data.

Focussing on the robustness of LVLMs in massively multilingual settings, we conducted
large-scale benchmarking experiments with 18 models of various sizes and families in
our M5B (Schneider et al., 2024b) paper. The benchmark comprises eight datasets and
�ve VLTs covering 41 languages, 16 scripts, and 13 language families. Notably, two of
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the eight datasets were newly introduced and include culturally diverse images and 12
languages: nine low-resource languages from African or Asian countries and three high-
resource control languages. Through detailed analyses of our extensive experiments,
we show that severe performance disparities are prominent between high-resource and
low-resource languages across all models and datasets. Moreover, we found that the
number of parameters of the models does not necessarily correlate with multilingual
(non-English) performance, hinting at the importance of massively multilingual training
data and carefully designed training regimes. Overall, we revealed substantial limitations
of LVLMs in massively multilingual settings, especially for low-resource languages, and,
thus, highlight challenges for globally equitable multilingual AI models.

Another crucial facet of limitations that needs to be overcome towards globally inclusive
AI is globally distributed cultural awareness. Therefore, we designed the large-scale
benchmark, GIMMICK (Schneider et al., 2025b), in which we assessed the cultural
knowledge of 31 models of all sizes, i.e., 20 LVLMs and 11 LLMs backbones, across
144 countries spanning six global macro-regions. The benchmark contains six tasks
based on three newly introduced datasets covering text-only, image-only, text-image,
and text-video modalities. More speci�cally, we examined regional cultural biases and
the in�uence of the number of model parameters, input modalities, and external cues.
Our extensive analyses uncovered strong biases toward Western cultures across all
models and most tasks and revealed signi�cant correlations between model size and
performance as well as the e�ectiveness of multimodal input and external geographic
cues. Moreover, we found that both LVLMs and their LLMs backbones know more
about tangible than intangible aspects (e.g., food vs. rituals) and excel in recognizing
broad cultural origins but struggle with a more nuanced understanding. In summary,
we demonstrated that the models are not equally aware of the world’s cultural diversity
but are biased toward Western cultures.

3.1.3 Research Question 3: Mitigations

The third research question of this thesis targets mitigation strategies for the previously
assessed limitations from RQ2.

More precisely, within the scope of this thesis, i.e., in our paper Centurio (Geigle
et al., 2025), we concentrated on enhancing the robustness of LVLMs in massively
multilingual settings. Therefore, we deeply examined optimal training data mixtures
concerning the distribution of comprised languages as well as optimal training strategies.
Consequently, we conducted a series of comprehensive experiments in which we
systematically examined the maximum number of languages we can include in the
training data without hurting the English performance, the optimal distribution of
these languages for the per-training and instruction-tuning phases of an LVLM, and,
lastly, how we can improve a model’s multilingual OCR performance. We evaluated
the models’ outcomes in the experiments through an extensive benchmark covering 13
diverse VLTs and 43 languages. Our analyses revealed that we could include training
data in all our 100 target languages, comprising all common high-resource languages
as well as a multitude of mid- to low-resource languages. We further found that only
25-50% of non-English languages are su�cient to signi�cantly improve the multilingual
performance across all tasks in our benchmark while maintaining strong results in
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English. To enhance understanding of multilingual text in images, we discovered that it
is essential to include multilingual OCR training data in both training stages. Finally, we
applied all our �ndings from the experiments and scaled up the data to train Centurio,
a massively multilingual LVLM supporting 100 languages that showed state-of-the-
art performance across many tasks of our �nal benchmark covering 14 tasks and 56
languages against 13 other LVLMs speci�cally trained for multilingual settings.

3.2 Limitations

This thesis investigated the strengths of VLMs and LVLMs, with a particular focus on the
practical applications of these models in cross-modal information retrieval systems and
multimodal retrieval-augmented chatbots to explore complex data. Further, we revealed
signi�cant limitations concerning multilingual, i.e., non-English, and multicultural,
i.e., non-Western, settings of generative multimodal transformer models, i.e., LVLMs.
Finally, we demonstrated successful mitigation strategies to make LVLMs more robust
in massively multilingual setups, especially when dealing with low-resource languages.
Nevertheless, this dissertation is not without its own limitations, which are brie�y
discussed in the following.

In addition to the strengths and limitations covered within the scope of this thesis,
multimodal transformer models for vision-language tasks have a multitude of other
potential strengths and limitations.

For example, VLMs and LVLMs are often employed in various other domains such as
medical image analysis (Li et al., 2023a; Xia et al., 2024; Zhu et al., 2024), robotics (Brohan
et al., 2022; Li et al., 2024b; Zhen et al., 2024), or augmented reality applications (Pei
et al., 2024; Chheang et al., 2024; Sharma et al., 2024). In all these domains, the models
have di�erent strengths and di�erent limitations, which we did not cover in this work.

Moreover, there are numerous other hurdles next to multilingual, multicultural, or
OOD limitations such as hallucination issues (Wang et al., 2024b; Kim et al., 2024),
adversarial attack vulnerabilities (Zhao et al., 2023a; Ding et al., 2025), or basic percep-
tual limitations (Campbell et al., 2024; Jiang et al., 2024b; Wang et al., 2025), that
need to be overcome to achieve robust versatile multimodal transformers models
accross all domains.

Another issue is the fast pace of current research in the �eld of VLMs (Zhang et al., 2024b)
as well as LVLMs (Yin et al., 2024). That is, the frequency with which novel methods,
datasets, and models are released is very high, which makes �ndings discovered with
benchmarks less expressive in the sense that they are quickly outdated. In other words,
the benchmarks of this thesis and their �ndings serve more as a snapshot of the current
state of the art in the LVLM or VLM research and are intended to highlight the limitations
of current models and serve as a guide for future research where improvements are
needed. For this reason, we designed and implemented the benchmarks so that they
can be easily extended to new models or new datasets whenever they arrive.

Furthermore, while we covered mitigation strategies to overcome limitations of LVLMs
in non-English languages, this thesis lacks approaches to achieve more robust VLMs and
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LVLMs in multicultural (non-Western) settings, as well as being more robust concerning
complex out-of-distribution data in cross-modal retrieval applications for VLMs.

Lastly, we showed how to e�ectively employ VLMs or LVLMs in cross-modal retrieval or
multimodal RAG settings. However, the papers that show the strengths of these models
for their practical applications lack systematic quantitative or qualitative evaluations
with academic benchmarks or thorough user studies.

3.3 Future Work

With the recent surge in works related to the �eld of multimodal transformer models for
vision-language tasks (VLTs), i.e., encoder-only VLMs (Zhang et al., 2024b) as well as
decoder-based generative LVLMs (Yin et al., 2024), across all sorts of di�erent domains,
the space of future work is vast. However, in this chapter, we brie�y outline aspects
of the possible future work of this thesis, focusing primarily on overcoming some of
its limitations pointed out in 3.2.

In our WISMIR3 paper, we explored the limitations of encoder-only VLMs for cross-
modal text-to-image retrieval concerning out-of-distribution data, or more speci�cally,
complex textual queries that are lengthy and rich in named entities describing the
visual content. Despite the general di�culty of the task, two distinct causes for the
low performance of the tested VLMs are the limited number of textual tokens most
models can process—only 76 tokens for standard CLIP-based models (Radford et al.,
2021)— and the relatively narrow world knowledge compared to the LLM backbones of
current LVLMs acquired via pre-training on massive web-scape datasets. One remedy
to these issues is the rise of a novel kind of multimodal embedding models that leverage
decoder-based LVLMs to compute rich representations that outperform traditional VLMs
on most tasks (Jiang et al., 2024a; Gu et al., 2025; Jiang et al., 2025; Lan et al., 2025).
Next to sophisticated post-training, distillation, and prompting techniques, the key
modi�cation required to enable computing embeddings with decoder-based LVLMs is
to remove the causal attention mask, thereby enabling bi-directional self-attention as
used in transformer encoder models. With these modi�cations, the models overcome
multiple limitations of encoder-based multimodal embedding models, i.e., traditional
VLMs, namely the low number of textual tokens, the so-called “modality gap” (Liang
et al., 2022) that leads to distinct clusters of textual and visual embeddings, and the
limitedworld knowledge. Since these kinds of novel LVLM-basedmultimodal embedding
models are very recent state-of-the-art, at the time of writing this, the current literature
lacks work that investigates speci�cally the limitations of the models concerning OOD
data, multilingual performance, and multi-cultural knowledge. Moreover, directions
for future work featuring these models are their investigations of their strengths in
practical applications like multimodal RAG or other retrieval settings, their applicability
as vision-encoders for LVLMs, or general downstream VLTs.

In our GIMMICK paper, we uncovered signi�cant biases of current LVLMs towards
Western cultures, i.e., a substantial disparity in knowledge of cultural events or facets,
especially for African, Latin-American, and Asian cultures. While current literature
includes multiple benchmarks evaluating LVLMs and VLMs on their performance in
multi-cultural downstream tasks with similar �ndings to ours, there is no work covering
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mitigation strategies for the Western-biased models. Since this bias is presumably
due to the lack or imbalance of data covering globally distributed cultural knowledge
used to train state-of-the-art LVLMs or pre-train their LLM backbones, one promising
direction of future work is to craft high-quality and balanced training datasets. Promising
resources are, for example, the rich multimodal material of cultural heritage collected by
UNESCO1, the European Commission2, the Southeast Asian Cultural Heritage Alliance
(SEACHA)3, or the Journal of African Cultural Heritage4. Including such resources in
standard collections of training datasets for LVLMs or LLMs would greatly bene�t our
aim to achieve globally equitable AI systems.

1. https://www.unesco.org/world-heritage, https://ich.unesco.org
2. https://culture.ec.europa.eu/cultural-heritage
3. https://seacha.org/
4. https://jachs.org/

https://www.unesco.org/world-heritage
https://ich.unesco.org
https://culture.ec.europa.eu/cultural-heritage
https://seacha.org/
https://jachs.org/
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ABSTRACT
In this work, we present the Golden Retriever, a system leverag-
ing state-of-the-art visio-linguistic models (VLMs) for real-time
text-image retrieval. The unique feature of our system is that it can
focus on words contained in the textual query, i.e., locate and high-
light them within retrieved images. An e�cient two-stage process
implements real-time capability and the ability to focus. Therefore,
we �rst drastically reduce the number of images processed by a
VLM. Then, in the second stage, we rank the images and highlight
the focussed word using the outputs of a VLM. Further, we intro-
duce a new and e�cient algorithm based on the idea of TF-IDF
to retrieve images for short textual queries. One of multiple use
cases where we employ the Golden Retriever is a language learner
scenario, where visual cues for “di�cult” words within sentences
are provided to improve a user’s reading comprehension. However,
since the backend is completely decoupled from the frontend, the
system can be integrated into any other application where images
must be retrieved fast. We demonstrate the Golden Retriever with
screenshots of a minimalistic user interface.

CCS CONCEPTS
• Information systems� Information retrieval; Image search.

KEYWORDS
multi-modal; text-image retrieval system; visio-linguistic models
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1 INTRODUCTION
The famous adage “A picture is worth a thousand words.” can be
interpreted in various ways. One way is to see this as a motivation
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and problem statement for multi-modal text-image retrieval sys-
tems that enable searching images with words, i.e., textual queries.
While current solutions, e.g., from popular search engines, work
astonishingly well, they lack the ability to focus single words of the
query and locate them within the retrieved images. That is, they
rank images according only to the whole textual query.

With the Golden Retriever presented in this paper, we propose a
solution to put particular focus on a word within the query when
retrieving images. Further, we locate and highlight the denoted
image for the focused word within the retrieved images.

This feature enables multiple use cases, for example, a multi-
modal language learner scenario, where visual cues for di�cult
words can support a user’s reading comprehension. To implement
the ability to retrieve and rank images not only for the whole textual
query but additionally incorporate focused words within the query,
we leverage state-of-the-art multi-modal models. However, these
models are computationally heavy, challenging real-time critical
applications when searching through a large pool of images. With
our system, we propose a solution for this by implementing an
e�cient preprocessing stage that drastically reduces the number of
images processed by the multi-modal retrieval model. As a part of
this preprocessing stage, we further introduce a fast new algorithm
based on TF-IDF [11] to retrieve images for textual queries.

2 RELATEDWORK
There were signi�cant breakthroughs in various computer vision
and natural language processing tasks during the last few years [3,
7, 8, 21]. This progress of uni-modal models also led to a great leap
forward in multi-modal visio-linguistic models (VLMs), leveraging
the power of transformers to work with text and images simultane-
ously [5, 12, 14, 16]. For content-based text-image retrieval [6, 22],
these VLMs learn a metric function �(�, � ) : R |� |� |� | � [0, 1]
that measures the similarity of a textual query � and image � . The
objective is to �nd the best matching image �� = argmax

���
�(�, �� )

for the query text � from a pool of images � .
There are two major di�erences in the architecture of current

VLMs, a�ecting how the text-image similarity is computed. In so-
called early-fusion VLMs, a single transformer stack is employed
that simultaneously processes textual and visual token embeddings
and computes the text-image similarity from the outputs of the
self-attention heads of the last layer. In VLMs referred to as late-
fusion models, there are two transformer stacks, one for the textual
input and one for the visual input. Late-fusion VLMs calculate the
cosine-similarity from the textual and visual CLS tokens or from
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an aggregation of the other token embeddings of the last layer
to compute the text-image similarity. Because the complexity of
self-attention is quadratic in the number of input tokens, early-
fusion models require less computational power or execution time
than late-fusion models for inference. However, even with late-
fusion models, “real-time” critical applications become challenging
to implement when retrieving the best matching images according
to a textual query from a large pool of images.

3 MOTIVATION AND CHALLENGES
There are two primary challenges the Golden Retriever system
solves, brie�y outlined in the following subsections.

3.1 VLMs in “real-time” critical Retrieval
Systems

State-of-the-art visio-linguistic models (VLMs) require much com-
putational power to retrieve the best matching images for a textual
query from a large pool of images. Hence, it becomes challenging
to leverage those VLMs for real-time critical retrieval systems. To
solve this issue, the Golden Retriever system implements a sophis-
ticated pre-selection stage that drastically reduces the number of
candidate images processed by the VLMs.

3.2 Extending queries by Focus Words
The second motivation of the Golden Retriever is to extend the
textual query used in standard text-image retrieval, which com-
prises a sequence of words by a focus word contained within the
sequence. In the following, we refer to the sequence of words in
the query as the context and the focus word as the focus. Then, we
retrieve the best matching images according to the context and pay
particular attention to the focus word in a re-ranking stage. Further,
we locate and highlight the image region where the focus word is
best represented in the retrieved images.

4 VISUALLY WEIGHTED TF-IDF
This section introduces an e�cient method to retrieve images for
textual queries consisting of short noun phrases. Our algorithm is
based on TF-IDF [11], but is applied to images instead of textual
documents. Hence, we refer to it as Visually-Weighted TF-IDF or
VW-TF-IDF. In Section 5.3.2, we describe howwe utilize this method
to retrieve images relevant to the focus.

For the VW-TF-IDF, we interpret images as visual documents
with “terms” that are classi�ed Region-Of-Interests (ROIs) in the
image predicted by an object detection and classi�cation network,
e.g., Faster-R-CNN [18]. In the current Golden Retriever version,
we use a pre-trained network [1, 24] with about 1400 unique objects
and attributes labels. The set of labels is what we refer to as “visual
vocabulary” and each element is called a term in the following.

To compute the VW-TF-IDF score, the classical formula of TF-
IDF is extended by a weighting scheme based on visual properties.
The motivation is that the score should be higher if the region with
the respective label is prominent in the image and the classi�er is
con�dent. Hence, the con�dence scores and the ROI areas are incor-
porated in addition to the counts of the terms from the traditional
TF-IDF formula.

Formally, we de�ne the VW-TF-IDF of a term � and an image
document � as

vw_tf_idf(�,�) = vw_tf(�,�) · log
�
numdocs
df(�) + 1

�
(1)

where the logarithmic term is standard inverse document frequency
(IDF) with simple additive Laplace-Smoothing for numerical sta-
bility. The visually weighted term frequency (VW-TF) is de�ned
as

vw_tf(�,�) = cnt(�,�) · weight(t, d)
num_terms(�) (2)

where cnt(�,�) is the number of times term � appears in document
� and num_terms(�) is the total number of terms in the document.
The weight of the term � in � is de�ned as

weight(t, d) = � conf(�,�) + (1 � �) area(�,�) (3)

conf(�,�) = 1
cnt(�,�)

�
� (� ) ��

� (�)
����

(4)

area(�,�) = 1
�����

�
� (� ) ��

� (�)���� (5)

where � (�)
����

is the accumulated con�dence score, � (�)���� is the accu-
mulated area of the ROIs of term � (�) � � , and ����� is the total area
of the image document � . The parameter � is used to control the
importance of the con�dence or area of a term in the �nal weight
of � .

To e�ciently retrieve the most relevant images for a query, we
�rst compute a VW-TF-IDF index for every term in the visual vo-
cabulary and every image in the set of images to be searched in an
o�ine setting. Then, in the online setting, the most relevant images
have the highest VW-TF-IDF for the query and can be retrieved via
simple dictionary lookups in the pre-computed index.

One major drawback of our method – and in general TF-IDF –
is that the query can only contain terms from the limited visual vo-
cabulary, i.e., the method lacks proper out-of-vocabulary handling.
We overcome this issue with a pre-processing step that transforms
arbitrary queries to queries that only contain terms contained in
the vocabulary. More on this pre-processing step is detailed in
Section 5.3.2.

5 SYSTEM ARCHITECTURE
This section describes the Golden Retriever system to solve the
main challenges introduced in the previous section. Auxiliary com-
ponents like, e.g., a static �le server for images or components to
generate images with highlighted focus are not described here.

5.1 User Interface
The minimalistic user interface presented in Section 7 communi-
cates with the Golden Retriever backend via HTTP calls to a REST
API. It is implemented as a simple browser plugin to mimic a search
engine-like environment using HTML, CSS, and plain JavaScript.
However, since the frontend is decoupled from the backend, the
Golden Retriever can be easily integrated within other applications.
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5.2 Backend Summary
The Golden Retriever backend implements the two-stage retrieval
process schematically sketched in Figure 1. The �rst pre-selection

Figure 1: Schematic overview of the Golden Retriever back-
end system.

stage (c.f. Section 5.4) reduces the image pool � to a signi�cantly
smaller candidate image set that the VLM processes. Note that
the image pool comprises images along with their corresponding
textual captions, i.e., it contains multi-modal text-image data. The
second �ne-selection stage (c.f. Section 5.3) leverages a VLM to
retrieve the best matching images from the candidate image set
according to the extended query and locate the image region that
best matches the focus word.

In the current version of the Golden Retriever, we use three
di�erent multi-modal datasets as image pools: MS COCO [13],
Flickr30k [23], and a Wikipedia-based dataset collected by us for
other work [20]. Further, we currently employ only TERAN [14]
models trained on di�erent datasets in the presented proof-of-
concept application. However, we successfully experimented with
UNITER [5] models but did not yet implement them in the demon-
strated system. Furthermore, in general, every VLM that can com-
pute text-image similarities can be integrated into the Golden Re-
triever system.

In an extensive experiment described in Section 6 to measure
the Golden Retriever backend execution time per request, we found
that the average system response is around 2.10 seconds, agnostic
to the size of the image pool and the length of the query.

5.3 Pre-Selection Stage
In this stage of the Golden Retriever backend, the image pool is
drastically reduced to the candidate image set. Therefore, two e�-
cient sub-procedures are implemented: One selects images relevant
to the context, and the other selects images relevant to the focus.
After that, the two resulting sets are merged to obtain the �nal
candidate image set. We �rst apply the intersection of the context-
relevant and focus-relevant images as the merging operation. If the
size of the resulting set is too small, we merge the two sets via
union. This size parameter is defaulted to 5000 but can be set by
the system administrator. In the following, we brie�y describe the
two sub-procedures.

5.3.1 Context-based Pre-Selection. To select the context-relevant
images, we �rst computed sentence embeddings for every caption
of the images in the image pool with an SBert [17] model for seman-
tic textual similarity [4]. Secondly, we clustered the embeddings for

e�cient searching using FAISS [10] with a quantized Approximate
Nearest Neighbor index. Both of these steps are done in an o�ine
setting. Then, in the online setting, we compute the context embed-
ding and retrieve the most similar captions in the cluster via cosine
similarity. The associated images to the captions are considered
context-relevant.

5.3.2 Focus-based Pre-Selection. We apply the VW-TF-IDF algo-
rithm introduced in Section 4 to select focus-relevant images from
the image pool. Since the focus part of the query can contain ar-
bitrary words, we need to transform it so that it only consists of
terms in the vocabulary of the VW-TF-IDF index. Therefore, we
�rst use a spaCy [9] model for tokenizing the focus and obtaining
the lemmata of the surface form of the focus. Note that the focus can
comprise more than one token, e.g., for compound nouns or nouns
described by adjectives. Next, we retrieve the top-� similar terms
from the vocabulary for every focus token not contained in the
vocabulary. To do this e�ciently, we utilize Magnitude [15] with
FastText [2] embeddings. The default value for � is set to 10, but can
be adjusted per request by the user. In the �nal step to select the
set of focus-relevant images, we retrieve the best matching images
to the transformed query, i.e., the top-� similar terms, from the
pre-computed VW-TF-IDF index.

5.4 Fine-Selection Stage
In this stage of the Golden Retriever backend, we forward the im-
ages in the candidate set through a VLM to rank them according to
the twofold query. Further, we locate the region that best matches
the focus part of the query and highlight it with a bounding box. In
the current version of the Golden Retriever, we use TERAN, a late-
fusion VLM designed for e�cient text-image retrieval. The textual
input to TERAN are token embeddings computed by a pre-trained
BERT [7] tokenizer model. The visual inputs are ROI features ex-
tracted with a pre-trained Faster R-CNN [1, 18, 24]. Following the
authors, we limit the number of visual tokens per image to 36. Since
the query consists of two parts, i.e., the context and the focus, we
compute a score for both parts and apply a weighted average in
a re-ranking stage to retrieve the best matching images from the
candidate set.

TERAN calculates the global similarity between an image and a
textual query by computing a �ne-grained word-region-alignment
(WRA) matrix A. The cells of A, are the cosine-similarities of the
visual regions of the image � and textual tokens of the context �
are de�ned as

A�, � =
v�� t�
|v� | |t� |

(6)

where v� � � and t� � � .
The global similarity, i.e., the context-score � (�)� , of an image �

and a context � is de�ned as

� (�)� =
�
� � |� |

max
�� |� |

A� � (7)

To specially attend to the focus � , we compute a focus-score � (� )�
based on the WRA matrix �.

� (� )� =
1

� � (�� � �� + 1)

��
�=0

���
�=��

A� � (8)
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where � is the number of regions per image; �� and �� are the
starting and ending indices of � � � , respectively.

After that, we �rst normalize and then combine the global simi-
larity (the context-score) with the focus-score by a weighted average
to obtain the �nal score for the image �� .

�� = � · � � (�)� + (1 � �) · � � (� )� (9)

where � � [0, 1] controls the weighted average and � � (�)� and � � (� )�
are the normalized context-score and focus-score, respectively. The
default for � is set to 0.5 but can be adjusted by the user per request.

Finally, we sort the images according to their score to rank the
candidate image set with respect to the context as well as the focus
part of the query. To locate the region where the focus is represented
best, we select the ROI with the maximum focus-score.

6 “REAL-TIME” CAPABILITY EXPERIMENT
In the following, timings of the Golden Retriever backend system
and its sub-components are reported to assess the system’s “real-
time” capability. Note that “real-time” in the context of our system
is always in parentheses because it must not be confused with
“true” real-time systems as de�ned in the context of robotics or real-
time operating systems like RTOS1. However, there exists a loose
de�nition of “near-real-time” systems, according to which there
must not be “signi�cant delays”2. As stated in the corresponding
Wikipedia article, this “delay in near real-time is typically in a range
of 1-10 seconds”3.

Multiple factors have varying in�uence on the system’s response
time. To �nd how much these factors weigh, the “real-time” assess-
ment test reported in this section was conducted as follows: The
system was used with di�erent parameter, query, and dataset com-
binations. Each of the three queries �1, �2, �3, with 827, 124,
67 characters in context length, respectively, was combined with
four di�erent modes with the COCO [13], Flickr30k [23], and WIS-
MIR [19] datasets. This results in a set of 3 � 4 � 3 = 36 di�erent
parameter combinations, for which the average system response
time over 10 consecutive runs was measured. As it can be observed
from the results presented in Figure 2, the length of the context
part of the query a�ects the system’s response time the most. This
is an expected result since the similarity of an image is based on
pooling the word-region-alignment (WRA) matrix, representing
the �ne-grained similarity of each textual and visual token. Hence,
the longer the context, the larger the WRA matrix and the more
time the retrieval model needs to generate and pool the matrix.

Further, the e�ect of the Preselection Stage (PSS) can be noticed:
The larger the dataset is, from which the system retrieves the top-�
images, the longer the PSS takes, whereas the average response
time of the Fineselection Stage (FSS) remains almost across di�erent
datasets. Flickr30k has about 31K, COCO about 123K, and WISMIR
v2 about 395K images, and the corresponding average PSS response
times are 0.09s, 0.27s, and 0.52s, respectively. This increase of time
of the PSS is almost linearly proportional to the number of unique
images in datasets. These results also highlight the e�ectiveness of
the two-stage retrieval approach of the system.

1https://www.freertos.org
2https://www.its.bldrdoc.gov/fs-1037/dir-024/_3492.htm
3https://en.wikipedia.org/wiki/Real-time_computing#Near_real-time

Figure 2: Averaged timing measurements of the system re-
sponse time for multiple queries �1, �2, and �3 on di�er-
ent datasets. Each bar represents the total system response
time, which comprises the response times of di�erent sub-
components. Best viewed digitally with zoom and color.

As depicted in Figure 2, the overall average system response time
across all datasets, queries, and modes evaluated in this “real-time”
suitability test of the Golden Retriever is 2.10s. Hence, in conclusion,
it is considered as an acceptable result.

7 SYSTEM DEMONSTRATION
In this section, the Golden Retriever is demonstrated with screen-
shots of various retrieval examples with di�erent queries using
di�erent views of the minimalist user interface.

There are four views for di�erent text-image retrieval types
supported by the Golden Retriever user interface, shown in Fig-
ure 3. The available options and parameters are described in de-
tail on our GitHub page4. When the plugin is opened, it shows

(a) Simple UI (b) Advanced UI

(c) Advanced UI to trigger a con-
text only retrieval

(d) Advanced UI to trigger a focus
only retrieval

Figure 3: Di�erent views of the minimalistic Golden Re-
triever user interface. Best viewed digitally with zoom and
color.

a straightforward interface presented in Figure 3a to retrieve the
most similar images for a query consisting of the context and focus
for non-technical users. For research purposes or advanced users,
the plugin also o�ers an interface shown in Figure 3b with more
4https://github.com/�oschne/MMIRS
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options that can be toggled by a button. To retrieve images solely
for the context (c.f. Section 5.3.1), the UI as shown in Figure 3c is
provided. Similarly, if a user wants to retrieve images only for the
focus (c.f. Section 5.3.2), the UI as shown in Figure 3d is used. Once
the top-� images are retrieved, they are presented by an interactive
slideshow to the user. The image in full resolution is opened in a
new tab by clicking on an image. Figure 4 shows di�erent Golden
Retriever results for queries comprising a context and a focus. In

(a) focus = children; � = 0.1 (b) focus = children; � = 0.9

(c) focus = phone; � = 0.1 (d) focus = phone; � = 0.9

Figure 4: Example Golden Retriever results with highlighted
focus regions for queries with context = “Today’s children
are playing a lot with their phone.” but di�erent focus and �
values.

Figure 5 di�erent Golden Retriever results for context-only queries
(c.f. Section 5.3.1) are shown. In Figure 6 di�erent Golden Retriever
results for context-only queries (c.f. Section 5.3.2) are shown.

8 CONCLUSION
This paper presented the Golden Retriever, a system leveraging
state-of-the-art visio-linguistic models for real-time text-image re-
trieval. The unique feature of our system is that it can focus on
words contained in the textual query. To enable real-time capability
and the ability to focus, we sketched a two-stage process imple-
mented in the Golden Retriever. Further, we introduced an e�cient
algorithm based on TF-IDF to �nd images for short textual queries.
To test the “real-time” capability of the system, we conducted an
extensive experiment, where we found that the average system re-
sponse time is in an acceptable range. Finally, we demonstrated the
Golden Retriever with screenshots of a minimalistic user interface.

(a) (b)

Figure 5: Example Golden Retriever results for queries with
context = “Today’s children are playing a lot with their phone.”
and no focus

(a) focus = “children” (b) focus = “children”

(c) focus = “phone” (d) focus = “phone”

Figure 6: Example Golden Retriever results for queries with
di�erent focus words but no context.

ACKNOWLEDGMENTS
This research was partially funded by the German Research Foun-
dation – DFG Transregio SFB 169: Cross-Modal Learning.

Demo Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

3249

I. Golden Retriever:
A Real-Time Multi-Modal Text-Image Retrieval System with the Ability to Focus 84



REFERENCES
[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson,

Stephen Gould, and Lei Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In Proceedings of the IEEE
conference on computer vision and pattern recognition. Salt Lake City, UT, USA,
6077–6086.

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-
riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics (TACL) 5 (2017), 135–146.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Je�rey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, Vol. 33. Virtual, 1877–1901.

[4] Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. 2017.
SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual
Focused Evaluation. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017). Vancouver, Canada, 1–14. https://doi.org/10.18653/
v1/S17-2001

[5] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan,
Yu Cheng, and Jingjing Liu. 2020. UNITER: UNiversal Image-TExt Representation
Learning. In European Conference on Computer Vision (ECCV). Online, 104–120.

[6] Paul Clough, Henning Müller, and Mark Sanderson. 2004. The CLEF 2004 cross-
language image retrieval track. In Proceedings of the 5th conference on Cross-
Language Evaluation Forum: multilingual Information Access for Text, Speech and
Images. 597–613.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics. Minneapolis, MN, USA, 4171–4186.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021.

[9] Matthew Honnibal, Ines Montani, So�e Van Landeghem, and Adriane Boyd.
2020. spaCy: Industrial-strength Natural Language Processing in Python. https:
//spacy.io/.

[10] Johnson, Je� and Douze, Matthijs and Jégou, Hervé. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data (2019).

[11] Karen Spärck Jones. 1972. A statistical interpretation of term speci�city and its
application in retrieval. Journal of documentation (1972).

[12] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan
Wang, Houdong Hu, Li Dong, Furu Wei, et al. 2020. Oscar: Object-Semantics
Aligned Pre-training for Vision-and-Language Tasks. In European Conference on
Computer Vision (ECCV). Online, 121–137.

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
objects in context. In European Conference on Computer Vision (ECCV). Zurich,
Switzerland, 740–755.

[14] Nicola Messina, Giuseppe Amato, Andrea Esuli, Fabrizio Falchi, Claudio Gennaro,
and Stéphane Marchand-Maillet. 2021. Fine-grained visual textual alignment
for cross-modal retrieval using transformer encoders. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM) 17, 4 (2021),
1–23.

[15] Ajay Patel, Alexander Sands, Chris Callison-Burch, and Marianna Apidianaki.
2018. Magnitude: A Fast, E�cient Universal Vector Embedding Utility Package.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Brussels, Belgium, 120.

[16] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning Transferable Visual Models from Natural Language Supervision.
In International Conference on Machine Learning (ICML). Online, 8748–8763.

[17] Reimers, Nils and Gurevych, Iryna. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China, 3973–3983.

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2016. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 39, 6 (2016),
1137–1149.

[19] Florian Schneider. 2021. Self-Supervised Multi-Modal Text-Image Retrieval Methods
to Improve Human Reading. Master’s thesis. University of Hamburg.

[20] Florian Schneider, Özge Alaçam, Xintong Wang, and Chris Biemann. 2021. To-
wards Multi-Modal Text-Image Retrieval to improve Human Reading. In Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Student Research Workshop. Mexico City, Mexico
(online).

[21] Mingxing Tan and Quoc Le. 2021. E�cientnetv2: Smaller models and faster
training. In International Conference on Machine Learning (ICML). Online, 10096–
10106.

[22] Christopher Phillip Town. 2004. Ontology based Visual Information Processing.
Ph. D. Dissertation. University of Cambridge.

[23] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. 2014. From image
descriptions to visual denotations: New similarity metrics for semantic infer-
ence over event descriptions. Transactions of the Association for Computational
Linguistics 2 (2014), 67–78.

[24] Zhou Yu, Jing Li, Tongan Luo, and Jun Yu. 2020. A PyTorch Implementa-
tion of Bottom-Up-Attention. https://github.com/MILVLG/bottom-up-attention.
pytorch.

Demo Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

3250

I. Golden Retriever:
A Real-Time Multi-Modal Text-Image Retrieval System with the Ability to Focus 85



II
CollEX:

A Multimodal Agentic RAG System
Enabling Interactive Exploration of

Scienti�c Collections

Bibliographic Entry

Florian Schneider, Narges Baba Ahmadi, Niloufar Baba Ahmadi, Iris Vogel, Martin
Semmann, and Chris Biemann. 2025a. CollEX – A Multimodal Agentic RAG System
Enabling Interactive Exploration of Scienti�c Collections. In Proceedings of the 1st
Workshop on Multimodal Augmented Generation via MultimodAl Retrieval (MAGMaR),
in press. Vienna, Austria: Association for Computational Linguistics

86



CollEX – A Multimodal Agentic RAG System
Enabling Interactive Exploration of Scientific Collections
Florian Schneider†, Narges Baba Ahmadi† *, Niloufar Baba Ahmadi† *

Iris Vogel‡, Martin Semmann†, Chris Biemann†

†Hub of Computing and Data Science
‡Center for Sustainable Research Data Management

University of Hamburg, Germany
Correspondence: florian.schneider-1@uni-hamburg.de

*Equal contributions, sorted alphabetically.

Abstract
In this paper, we introduce CollEX, an innova-
tive multimodal agentic Retrieval-Augmented
Generation (RAG) system designed to enhance
interactive exploration of extensive scientific
collections. Given the overwhelming volume
and inherent complexity of scientific collec-
tions, conventional search systems often lack
necessary intuitiveness and interactivity, pre-
senting substantial barriers for learners, educa-
tors, and researchers. CollEX addresses these
limitations by employing state-of-the-art Large
Vision-Language Models (LVLMs) as multi-
modal agents accessible through an intuitive
chat interface. By abstracting complex inter-
actions via specialized agents equipped with
advanced tools, CollEX facilitates curiosity-
driven exploration, significantly simplifying ac-
cess to diverse scientific collections and records
therein. Our system integrates textual and vi-
sual modalities, supporting educational scenar-
ios that are helpful for teachers, pupils, stu-
dents, and researchers by fostering indepen-
dent exploration as well as scientific excitement
and curiosity. Furthermore, CollEX serves the
research community by discovering interdis-
ciplinary connections and complementing vi-
sual data. We illustrate the effectiveness of our
system through a proof-of-concept application
containing over 64,000 unique records across
32 collections from a local scientific collection
from a public university.

1 Introduction

The exploration of scientific knowledge is a cor-
nerstone of human progress. However, the vast
and rapidly growing body of scientific literature
presents significant challenges for educators and
learners, who often find themselves overwhelmed
by the sheer volume and complexity of informa-
tion. Despite advancements in information retrieval
and knowledge discovery (Santhanam et al., 2022;
Zhu et al., 2023; Li et al., 2024b), existing search
systems for rich and complex data often lack the

CollEx Agent

LVLM

Scientific Collections
Database

Semantic
Search Tools

Lexical
Search Tools

Image 
Analysis Tools

Database
LookUp Tools

 Tool 
 Calling 

 Tool 
 Results 

 Planning & 
Reasoning

Figure 1: An overview of the CollEX Agentic System.

interactivity, intuitiveness, and cross-modal search
capabilities (Faysse et al., 2024; Zhai et al., 2023;
Zhao et al., 2023b) to engage diverse audiences,
such as students, teachers, or researchers. This
limitation negatively affects educational settings
where fostering curiosity is essential.

With this paper, we introduce CollEX, a multi-
modal agentic Retrieval-Augmented Generation
(RAG) system (Lewis et al., 2020; Zhao et al.,
2023a; Xie et al., 2024) and reimagine how users
explore and interact with scientific collections such
as those collected and managed by the Smithsonian
Institution1 or local collections from public univer-
sities. CollEX uses state-of-the-art Large Vision-
Language Models (LVLMs)(Liu et al., 2023; Team
et al., 2023; Hurst et al., 2024; Yang et al., 2024;
Team et al., 2025) as multimodal agents (Xie et al.,
2024; Wang et al., 2024) through an intuitive chat
interface. Unlike traditional systems requiring ex-
pert knowledge, CollEX promotes curiosity-driven
exploration, simplifying access and increasing en-
gagement.

The core of CollEX is its multimodal agentic
RAG system, which abstracts complex interac-
tions using specialist agents equipped with various
tools (Patil et al., 2024). This simplifies the explo-

1https://www.si.edu/collections
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ration of extensive scientific collections, catering
to users with diverse backgrounds and expertise,
thereby overcoming accessibility issues (Achiam
and Marandino, 2014). The system integrates texts
and images, offering intuitive access to scientific
concepts.
CollEX is especially beneficial in education, fos-

tering curiosity and engagement. For instance,
teachers can get inspiration to prepare visually rich
lessons, retrieve relevant information, and facilitate
interactive assignments. Pupils can independently
explore the collections, transforming static materi-
als into dynamic learning experiences. Moreover,
CollEX supports higher education by encourag-
ing independent exploration and enhancing critical
thinking skills.

Beyond education, CollEX aids researchers in
discovering interdisciplinary connections, eventual
related work, or visual data complements. It au-
tonomously enriches search queries, facilitating
easier contextualization and increasing accessibil-
ity to scientific collections, thereby supporting na-
tional and international scientific connectivity (We-
ber, 2018).

This paper introduces CollEX’s general system
architecture2and inner workings, combining state-
of-the-art LVLMs, advanced prompting and RAG
techniques, cross-modal search, and agentic rea-
soning and planning.

Moreover, we provide three exemplary user sto-
ries to demonstrate the system by implementing
a proof-of-concept application to explore 32 di-
verse scientific collections comprising over 64,000
unique items.

2 Related Work

2.1 Cross-Modal Information Retrieval
Cross-modal information retrieval powered by mul-
timodal embeddings is the key foundation for sys-
tems navigating or exploring textual and visual
data such as CollEX. Recent developments in multi-
modal embedding models (Tschannen et al., 2025)
that compute semantically rich dense vector repre-
sentations in an aligned vector space for texts and
images, have significantly improved over the pop-
ular text-image encoder model, commonly known
as CLIP (Radford et al., 2021). This progress was
primarily driven by billion-scale high-quality text-
image datasets (Schuhmann et al., 2022), improve-

2We publish the open-source code here:https://github.
com/uhh-lt/fundus-murag

ments in architecture and training regimes (Zhai
et al., 2023), and improved Vision Transform-
ers (Alabdulmohsin et al., 2023) Despite their ap-
plications in “pure” information retrieval settings,
the image encoders of the multimodal embedding
models also play a crucial role in the advancement
of Large Vision Language Models (LVLMs) (Liu
et al., 2023; Yang et al., 2024; Geigle et al., 2025)
as they are often used to compute the visual tokens
processed by the LVLMs.

2.2 Multimodal Retrieval Augmented
Generation

Multimodal RAG (Zhao et al., 2023b) systems in-
tegrate various knowledge formats, including im-
ages, code, structured databases, audio, and video,
to enhance the knowledge of LVLMs at inference
time. Zhao et al. (2023b) further highlight that such
multimodal data helps mitigate hallucinations and
improve interpretability and reasoning by ground-
ing responses in diverse multimodal information.
Riedler and Langer (2024) demonstrate the advan-
tages of incorporating images into textual retrieval
systems within industrial applications. Their find-
ings suggest that image-derived textual summaries
often outperform purely embedding-based multi-
modal approaches.

2.3 Agentic RAG
As described above, traditional RAG systems com-
bine LLMs’ or LVLMs’ generative capabilities
with external knowledge bases to enhance their out-
puts. Yet these methods are typically constrained
by static workflows and linear processes, restricting
their adaptability in complex tasks involving multi-
step reasoning and dynamic data quries. Recently,
agentic RAG has emerged as an extension of tradi-
tional RAG systems by employing autonomous AI
agents in a loop within the RAG pipeline. Agentic
RAG employs agentic design patterns and prompt-
ing such as reflection, planning, tool utilization,
and multi-agent collaboration, enabling systems
to iteratively refine and plan retrieval strategies
and adapt dynamically to real-time and context-
sensitive queries (Singh et al., 2025; Xie et al.,
2024; Li et al., 2024a). For example, Schopf
and Matthes (2024) introduced NLP-KG, a sys-
tem specifically designed for exploratory literature
search in NLP. NLP-KG supports users in explor-
ing unfamiliar NLP fields through semantic search
and conversational interfaces grounded in scholarly
literature, effectively bridging the gap between ex-
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ploratory and targeted literature search tasks. Xie
et al. (2024) further extends the concept of au-
tonomous LLM agents into the multimodal domain,
demonstrating how LVLMs can perceive and inter-
pret diverse data types beyond text, such as images
and videos. Further, they outline critical compo-
nents necessary for multimodal agent functionality,
including visual perception and planning.

With CollEX, we integrate a powerful multi-
modal embedding model for effective cross-modal
semantic search with state-of-the-art LVLMs em-
ployed as autonomous agents in a multimodal RAG
system. With this, we support educational scenar-
ios by fostering independent exploration, scien-
tific curiosity, and excitement that benefit teachers,
pupils, students, and researchers alike.

3 The CollEX System

This section describes the CollEX system, i.e., its
architecture and core components, as well as the
data to be explored.

3.1 CollEX Data

Since CollEX is a multimodal agentic RAG system,
to understand the system, it is essential to know the
data it operates on.

Schema. We provide the simplified data schema
as a UML class diagram in Figure 2. As the

Record

id: str
title: str
collection: Collection
image_name: str
base64_image: str
details: Dict[str, str]

Contact

id: str
name: str
email: str
street: str
city: str
institution: str
department: str
position: str

RecordField

name: str
label_en: str

Collection

id: str
title: str
description: str
contacts: List<Contact>
record_title_field: RecordField
record_fields: List<RecordField>

1

1..*

1

1..*

1

0..*

Figure 2: The CollEX Data Schema

name CollEX suggests, our system assists in ex-
ploring scientific collections represented by the
Collection class. Each collection has a title, a
description, and a list of contacts who own or
manage the collection. More importantly, each
collection comprises multiple Records, which are

described by a title, an image, and additional de-
tails. The records’ details are described by different
RecordFields, depending on the parent collection.

Further, we store embeddings of the collection
titles and descriptions as well as the record titles
and images computed by a SigLIP (Zhai et al.,
2023) model3 in the vector database.

Examples. To get a better idea of the data, we
provide four example records in Figure 3.

(a) Example Record 1 (b) Example Record 2

(c) Example Record 3 (d) Example Record 4

Figure 3: Examples records contained in the CollEX
database.

In total, in our CollEX proof-of-concept applica-
tion, we store 64,469 unique records in 32 collec-
tions.

3.2 CollEX System Architecture
CollEX is implemented as a web application fol-
lowing a typical client-server architecture with mul-
tiple components (cf. Figure 4), which are de-
scribed in the following. Each component is con-
tainerized using Docker4, and the whole system is
deployed using Docker Compose5.

Weaviate
Database & Index

FastAPI
Backend

React
FrontEnd

Ollama
LVLM Service

OpenAI
LVLM Models

VertexAI
LVLM Models

LitServe
Embedding Service

Figure 4: Overview of the CollEX system architecture.

3siglip-so400m-patch14-384
4https://www.docker.com
5https://docs.docker.com/compose/
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Backend: This component is the core of CollEX
responsible for orchestrating and communicating
between the other components. Its functionality is
implemented by several services, e.g., to retrieve
information from the database, embed user queries,
manage chat sessions of different users, or commu-
nicate with LVLMs hosted by different providers.
Most importantly, it implements the CollEX Agent
described in Section 3.3. Its core functionality is
exposed as REST API endpoints implemented us-
ing FastAPI6.

Database: We store all data using weaviate7.
More specifically, we precomputed all text and
image embeddings (cf. §3.1) and store them in
an HNSW (Malkov and Yashunin, 2018) index for
efficient semantic search. Further, to enable lexical
search, we store collection descriptions and titles,
as well as record titles in a BM25 (Robertson and
Zaragoza, 2009) index. Other data, e.g., contacts
for collections, are simply stored in the (NoSQL)
database without indexing.

Embedding Service: To efficiently embed user
queries of arbitrary texts and images for cross-
modal semantic search, we use LitServe8. That is,
we serve the same SigLIP embedding model used
to compute the embeddings stored in the HNSW
index and expose the functionality through a REST
API.

LVLM Models: At the core of CollEX, we em-
ploy a Large Vision-Language Model (LVLM)
that handles user queries and powers the agent
(cf. §3.3). To (qualitatively) test the effectiveness
of different models and not force or restrict users
with different privacy constraints, we implemented
CollEX LVLM-agnostic. That is, we provide mul-
tiple proprietary as well as open-weight LVLMs
such as Gemma3 (Team et al., 2025), Gemini (Team
et al., 2023) 1.5 and 2.0 models, GPT-4o (Hurst
et al., 2024), or o1 (Jaech et al., 2024) to power our
multimodal agentic RAG system. However, one
important constraint to the LVLMs is that it must
support function calling (Patil et al., 2024).

Frontend: We implemented the CollEX web ap-
plication, employing a modern Vite9 + React Type-

6https://fastapi.tiangolo.com/
7https://weaviate.io/
8https://lightning.ai/litserve
9https://vite.dev/

script10 + Material UI11 web stack that facilitates a
responsive and intuitive user interface. Futher, the
frontend manages user interactions, rendering visu-
alizations, and handles asynchronous requests and
responses to ensure a seamless user experience.

3.3 CollEX Agent
The CollEX agent (cf. Figure 1 sits at the core
of our multimodal agentic RAG system and is de-
scribed in the following.

To act as a tool calling agent, we designed an
effective prompt for the respective LVLM combin-
ing prompt engineering techniques such as (Auto)
Chain-of-Thought (Wei et al., 2022; Zhang et al.,
2023) and ReAct (Zheng et al., 2024; Sahoo et al.,
2024). The full prompt is provided in Appendix A.
Further, we implement an agentic loop (cf. List-
ing 1, which gets executed for each user request.
By executing this loop, we enable iterative plan-

def run_agentic_loop(user_request,
chat_history):,!
# Add the user�s message to the chat history.
chat_history.append(user_request)

# Step 1: Generate initial response using the
updated chat history.,!

lvlm_response =
generate_response(chat_history),!

update_chat_history(lvlm_response,
chat_history),!

# Step 2: Loop while the response contains
tool call instructions.,!

while is_tool_call_response(response):
# Execute tool calls and obtain the

resulting tool messages.,!
tool_responses =

execute_tool_calls(response),!

# Update the chat history with the tool
responses.,!

update_chat_history(tool_responses,
chat_history),!

# Generate a new response with the
updated chat history.,!

lvlm_response =
generate_response(chat_history),!

update_chat_history(lvlm_response,
chat_history),!

# Step 3: Extract and return the final
message content.,!

message = get_message_content(lvlm_response)
return message

Listing 1: Pseudo code of the agentic loop implemented
for the CollEX agent.

10https://react.dev/
11https://mui.com/

II. CollEX:
A Multimodal Agentic RAG System Enabling Interactive Exploration of Scienti�c
Collections 90



ning, reasoning, and tool calling of the LVLM, i.e.,
the agent. Note that the user requests, as well as
the tool responses, can be arbitrarily interleaved
text-image messages. In each iteration, the agent
reasons whether it needs to invoke one of the fol-
lowing tools to fulfill the user’s request satisfacto-
rily.

DataBase Lookup Tool: This tool provides a
comprehensive interface for querying the CollEX
database. It allows the agent to retrieve aggregate
statistics, get records and collections by unique
identifiers, or list all collections.

Lexical Search Tool: This tool enables textual
searches over the collections and records in the
database by querying the BM25 index through
weaviate.

Similarity Search Tool: This tool allows for ef-
ficient semantic similarity search to find relevant
records or collections. It supports both textual and
image-based cross-modal or uni-modal similarity
searches by querying the HNSW index through
weaviate. Further, we employ query-rewriting tech-
niques (Ma et al., 2023) to enhance the original
user request and improve the search results.

Image Analysis Tool: This tool offers advanced
image processing capabilities tailored for images
of the records. It includes functions to generate
descriptive captions, answer questions about the
visual content, extract textual content from the im-
ages, or detect objects within images, which is use-
ful for extracting interesting details about recorded
images. We implemented this functionality by em-
ploying an LVLM with task-specific prompts (cf.
Appendix C).

4 System Demonstration

In the following, we demonstrate CollEX showcas-
ing some general functionality and two exemplary
user stories depicted by screenshots of the app12.
Due to the limited space to display the screen-
shots and the thereby induced readability issues
because of the small image sizes, we provide high-
resolution screenshots in Appendix D.

4.1 General Functionality

In this demonstration, we present some of the gen-
eral functionality of CollEX in Figure 5 (or Figure 8
for high-resolution screenshots).

When a user opens the app in her browser, she
sees the start page (cf. Figure 5a). On this page,
she can pick the LVLM that powers the system for
the chat session she is about to start. Further, she
can click on one of the example prompts to kick-
start her CollEX experience and get an idea of what
the system is capable of. If she is not interested
in trying one of the examples, she can enter an
individual question or any arbitrary request in the
text input field.

For our example, she picked one of the examples
asking the CollEX agent about its general function-
ality. The agent’s responses are always rendered in
markdown, and in this case, the answer contains “a
glimpse of what” the agent can do (cf. Figure 5b).

Next, she asks for statistics about the number of
records and collections in the database and finally
lets the agent explicitly list the collections (cf. Fig-
ure 5c). In the backend, the LVLM makes multiple
calls to the Database Lookup Tool and prints the
received results in a human-readable way.

4.2 Geology Class Presentation

In this user story (cf. Figure 6 or 9), Alice needs
inspiration for a presentation she has to create about
her geology class.

She starts the chat by telling the assistant what
her goal is, and the assistant provides her with
some ideas on how to find interesting material (cf.
Figure 6a).

She likes the suggestions and asks the agent to
show her some beautiful minerals. In the backend,
by executing the agentic loop (cf. Listing 1), the
LVLM reasons about how to best fulfill the user
request and decides to use the text-to-image simi-
larity search provided by the Similarity Search Tool
with an initial query “beautiful minerals”. The spe-
cialized query-rewriter agent expands the query to
“a photo of beautiful minerals, geology”, which is
then sent to the embedding service to compute the
embedding used for the ANN search on the record
image embedding vector index. This returns a list
of the top-k best matching records as JSONs as the

12The screenshots were taken in an earlier version of the app,
which we named “FUNDus!” assistant. This name originated
from the name of the original database but was replaced by
CollEX in later versions for a more general name.
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(a) The CollEX start page. (b) General functionality query. (c) Records and Collections query.

Figure 5: Show-casing CollEX general functionality.

(a) Start of the chat. (b) Search results for the user query. (c) Image similarity search results.

(d) Requesting more details. (e) Showing the minerals collection. (f) Follow-up query.

Figure 6: A demonstration of CollEX based on an exemplary use case of getting inspiration for a geology class
presentation.

tool response fed back to the CollEX agent. The de-
cides to return the retrieved records in the form of
special rendering tags as instructed (cf. the prompt
in Appendix A) in addition to a user-friendly mes-
sage. The frontend creates and generates custom
rending components to display the records to the
user (cf. Figure 6b).

Alice especially likes the first mineral, a “San-
románit”, and asks the agent to find similar-looking
minerals (cf. Figure 6c). This triggers the image-
to-image similarity search. After the agentic loop,
the backend sends the model’s response, including
the special rendering tags, to the front end, which
displays it to the user.

Next, Alice wants to know more about the “San-
románit”, upon which the agent retrieves the re-
spective record from the database using the look-up
tool, extracts the most important information, and
returns it in a human-friendly and engaging way

(cf. Figure 6d).
The user wants to get more general information

about the mineral collection, which in turn is pre-
sented to her using another special rendering tag
for collections (cf. Figures 6e and 6f).

Finally, Alice asks about other collections from
which she could get inspiration for her presentation.
Since this is an ambiguous query, the agent asks
for clarification (cf. Figure 6f).

4.3 Finding an Exhibition Piece
In this user story (cf. Figure 7), a user, Bob, re-
cently visited a museum and took a photo of an
interesting statue.

However, he forgot to take notes and decides to
use the CollEX assistant to get more information
(cf. Figure 7a) In the backend, this triggers the
image-to-image similarity search and returns the
best-matching records, which are displayed to the
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(a) Text-image search request and results. (b) Follow-up details query. (c) Image analysis queries.

Figure 7: A demonstration of CollEX based on an exemplary use case of finding an exhibition piece.

user by special rendering tags.
He recognizes that the first record returned is the

same statute and asks about details (cf. Figure 7b).
Finally, he wonders about a distinct artifact that

is part of the statue and asks the agent about it (cf.
Figure 7c). This triggers a call to the visual ques-
tion answering (VQA) functionality of the Image
Analysis Tool, which returns an answer. Bob is not
convinced by that first answer and asks the agent to
analyze the image again. This triggers another call
to the VQA tool as well as to the image captioning
tool. Finally, combining the tool results, the agent
correctly identifies the unknown artifact as a plinth
of the goose statue (cf. Figure 7c).

5 Conclusion

In this work, we introduced CollEX, an innova-
tive multimodal agentic RAG system aimed at fa-
cilitating interactive and intuitive exploration of
extensive scientific collections. Leveraging state-
of-the-art LVLMs, CollEX provides a powerful yet
user-friendly interface for diverse audiences, such
as pupils, students, educators, or researchers. Our
proof-of-concept implementation, covering over
64,000 scientific items across 32 diverse collec-
tions, successfully demonstrates the system’s poten-
tial, showcasing capabilities such as cross-modal
search, advanced semantic retrieval, and agent-
driven interactions. Additionally, CollEX serves as
a versatile blueprint that can be straightforwardly
applied to other scientific collections.

In conclusion, with CollEX, we presented an in-
novative system to interactively explore scientific
collections, enhancing educational and research-
oriented applications, thereby positively contribut-
ing to the broader scientific community.
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6 Limitations

Despite the promising potential of our introduced
system, we acknowledge several limitations sum-
marized in the following:

Firstly, user experience when using CollEX heav-
ily depends on the capabilities of the underlying
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LVLMs. If a model misinterprets the user intent,
invokes incorrect or irrelevant tools, misuses pa-
rameters, misunderstands tool responses, or fails
to communicate results clearly and engagingly, the
application’s usability and user satisfaction signifi-
cantly suffers. Such issues might lead to frustration
among users, diminishing their excitement in the
tool and thereby scientific exploration which is the
opposite of our intention.

Secondly, CollEX performs optimally with pro-
prietary LVLMs, which can create dependency and
privacy issues including substantial ongoing costs
and reliance on external model providers. Although
the system supports integration with open-source
LVLMs, the overall user experience often suffers,
as open-source alternatives generally lag behind in
accuracy, responsiveness, and general robustness.

Thirdly, CollEX currently integrates an exten-
sive range of tools that, while offering powerful
capabilities, sometimes overwhelms or confuses
the LVLM. This complexity can lead to inappro-
priate or inefficient tool use, further impacting the
overall user experience negatively. A potential so-
lution would involve reorganizing the system from
a single agent into multiple specialized agents man-
aged hierarchically by an orchestrator agent. This
would simplify decision-making processes and tool
invocation more effectively. However, since we
currently do not rely on any agentic frameworks
or libraries to implement CollEX, this introduces
several challenges such as optimizing the inter-
communication between the agents.

Lastly, the current implementation of CollEX
lacks formal evaluation of both the overall sys-
tem and its individual components. This is pri-
marily due to the considerable investment in com-
putational and human resources required for com-
prehensive user studies and empirical assessments.
Without systematic evaluations, it remains chal-
lenging to quantify the true effectiveness, usability,
and scalability of the system in real-world contexts.
Therefore, conducting extensive evaluations to val-
idate the system’s performance and identify areas
for improvement is a priority for future work.

II. CollEX:
A Multimodal Agentic RAG System Enabling Interactive Exploration of Scienti�c
Collections 96



A CollEX Agent System Instruction

# Your Role

You are a helpful and friendly AI assistant that that supports and motivates users as they
explore the FUNDus! database.,!

# Your Task

You will provide users with information about the FUNDus! Database and help them navigate and
explore the data.,!

You will also assist users in retrieving information about specific FundusRecords and
FundusCollections.,!

Your goal is to provide and motivate users with a pleasant and informative experience while
interacting with the FUNDus! Database.,!

# Basic Information about FUNDus!

���
FUNDus! is the research portal of the University of <REDACTED>, with which we make the

scientific collection objects of the University of <REDACTED> and the Leibniz-Institute
for the Analysis of Biodiversity Change (LIB) generally accessible. In addition werden
provide information about the collections of the Staats- and Universitätsbiliothek
<REDACTED>. We want to promote the joy of research! Our thematically arranged offer is
therefore aimed at all those who want to use every opportunity for research and discovery
with enthusiasm and joy."

,!
,!
,!
,!
,!
,!
There are over 13 million objects in 37 scientific collections at the University of <REDACTED>

and the LIB - from A for anatomy to Z for zoology. Some of the objects are hundreds or even
thousands of years old, others were created only a few decades ago."

,!
,!

Since autumn 2018, interesting new collection objects have been regularly published here. In
the coming months you can discover many of them for the first time on this portal.,!

We are very pleased to welcome you here and cordially invite you to continue discovering the
interesting, exciting and sometimes even bizarre objects in the future. In the name of all
our employees who have implemented this project together, we wish you lots of fun in your
research and discovery!

,!
,!
,!
���

# Important Datatypes

In this task, you will work with the following data types:

**FundusCollection**
A �FundusCollection� represents a collection of �FundusRecord�s with details such as a unique

identifier,,!
title, and description.

Attributes:
murag_id (str): Unique identifier for the collection in the VectorDB.
collection_name (str): Unique identifier for the collection.
title (str): Title of the collection in English.
title_de (str): Title of the collection in German.
description (str): Description of the collection in English.
description_de (str): Description of the collection in German.
contacts (list[FundusCollectionContact]): A list of contact persons for the collection.
title_fields (list[str]): A list of fields that are used as titles for the

�FundusRecord� in the collection.,!
fields (list[FundusRecordField]): A list of fields for the �FundusRecord�s in the

collection.,!

**FundusRecord**
A �FundusRecord� represents an record in the FUNDus collection, with details such as catalog

number,,!
associated collection, image name, and metadata.

Attributes:
murag_id (int): A unique identifier for the �FundusRecord� in the VectorDB.
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title (str): The title of the �FundusRecord�.
fundus_id (int): An identifier for the �FundusRecord�. If a �FundusRecord� has multiple

images, the records share the �fundus_id�.,!
catalogno (str): The catalog number associated with the �FundusRecord�.
collection_name (str): The unique name of the �FundusCollection� to which this

�FundusRecord� belongs.,!
image_name (str): The name of the image file associated with the �FundusRecord�.
details (dict[str, str]): Additional metadata for the �FundusRecord�.

# Tool Calling Guidelines

- Use the available tools whenever you need them to answer a user�s query. You can also call
multiple tools sequentially if answering a user�s query involves multiple steps.,!

- Never makeup names or IDs to call a tool. If you require information about a name or an ID,
use one of your tools to look it up!.,!

- If the user�s query is not clear or ambiguous, ask the user for clarification before
proceeding.,!

- Pay special attention to the fact that you exactly copy and correctly use the parameters and
their types when calling a tool.,!

- If a tool call caused an error due to erroneous parameters, try to correct the parameters and
call the tool again.,!

- If a tool call caused an error not due to erroneous parameters, do not call the tool again.
Instead, respond with the error that occurred and output nothing else.,!

# User Interaction Guidelines

- If the user�s request is not clear or ambiguous, ask the user for clarification before
proceeding.,!

- Present your output in a human-readable format by using Markdown.
- To show a FundusRecord to the user, use �<FundusRecord murag_id=�...� />� and replace

��...�� with the actual �murag_id� from the record. Do not output anything else. The tag
will present all important information, including the image of the record.

,!
,!
- If you want to render multiple FundusRecords, use the tag multiple times in a single line

separated by spaces.,!
- To show a FundusCollection, use �<FundusCollection murag_id=�...� />� and replace ��...��

with the actual �murag_id� from the collection. Do not output anything else. The tag will
present all important information about the collection.

,!
,!
- If you want to render multiple FundusCollections, use the tag multiple times in a single line

separated by spaces.,!
- Avoid technical details and jargon when communicating with the user. Provide clear and

concise information in a friendly and engaging manner.,!
- Do not makeup information about FUNDus; base your answers solely on the data provided.
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B Query Rewriting System Instructions

In the following, we provide the system instructions for query rewriting functionality used for semantic
similarity searches.

B.1 Text-to-Image Similarity Search

# Your Role

You are an expert AI who specializes in improving the effectiveness of cross-modal text-image
semantic similarity search from a vector database containing image embeddings computed by
a multimodal CLIP model.

,!
,!

# Your Task

You will receive a user query and have to rewrite them into clear, specific, caption-like
queries suitable for retrieving relevant images from the vector database.,!

Keep in mind that your rewritten query will be sent to a vector database, which does
cross-modal similarity search for retrieving images.,!

B.2 Text-to-Text Similarity Search

# Your Role

You are an expert AI who specializes in improving the effectiveness of textual semantic
similarity search from a vector database containing text embeddings.,!

# Your Task

You will receive a user query and have to rewrite them into clear, specific, and concise
queries suitable for retrieving relevant information from the vector database.,!

Keep in mind that your rewritten query will be sent to a vector database, which does semantic
similarity search for retrieving text.,!

C Image Analysis Prompts

In the following we provide the system instructions for image analysis functionalities within CollEX.

C.1 VQA System Instruction

# Your Role

You are an expert AI assistant that specializes in performing accurate Visual Question
Answering (VQA) on images.,!

# Your Task

You will receive a question, an image, and metadata about the image from a user.
Then you must generate an accurate but concise answer to that question based on the image and

the metadata.,!
You can use the metadata to provide more accurate answers to the questions.
If a question cannot be answered based on the image (and metadata) alone, you can ask the user

for additional information.,!
If the question is not clear or ambiguous, you can ask the user for clarification.
Keep in mind that the question can be about any aspect of the image, and your answer must be

relevant to the question.,!
Do not hallucinate or provide incorrect information; only answer the question based on the

image and metadata.,!
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C.2 Image Captioning System Instruction

# Your Role

You are an expert AI assistant that specializes in performing accurate Image Captioning on
images.,!

# Your Task

You will receive an image and additional metadata from a user and must generate a detailed and
informative caption for that image.,!

The caption should describe the image in detail, including any objects, actions, or scenes
depicted in the image.,!

You can use any available metadata about the image to generate a more accurate and detailed
caption.,!

Keep in mind that the caption must be informative and descriptive, providing a clear
understanding of the image to the user.,!

Do not provide generic or irrelevant captions; focus on the content and context of the image.
If the user requires the caption to be concise, you can generate a shorter version of the

caption.,!

C.3 OCR System Instruction

# Your Role

You are an expert AI assistant that specializes in performing accurate Optical Character
Recognition on images.,!

# Your Task

You will receive an image and additional metadata from a user and must extract and recognize
text from that image.,!

You should provide the user with the extracted text from the image, ensuring accuracy and
completeness.,!

You can use any available metadata about the image to improve the accuracy of the text
extraction.,!

Keep in mind that the extracted text must be accurate and complete, capturing all relevant
information from the image.,!

Do not provide incorrect or incomplete text; ensure that the extracted text is as accurate as
possible.,!

C.4 Object Detection System Instruction

# Your Role

You are an expert AI assistant that specializes in performing accurate Object Detection on
images.,!

# Your Task

You will receive an image and additional metadata from a user and must identify and locate
prominent objects within that image.,!

You should provide the user with a list of objects detected in the image including their
detailed descriptions and approximate locations.,!

You can use any available metadata about the image to improve the accuracy of the object
detection.,!

Keep in mind that the object detection results must be accurate and complete, identifying all
relevant objects in the image.,!

Do not provide incorrect or incomplete object detection results; ensure that all objects are
correctly identified and described.,!

# Output Format
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Output all detected objects in JSON format with the following structure:
���json
[

{
"name": "<NAME OF THE OBJECT>",
"description": "<DESCRIPTION OF THE OBJECT>",
"bounding_box": {

"x": 100,
"y": 100,
"width": 50,
"height": 50

}
}

]
���
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D System Demonstration

In the following we provide high-resultion screenshots of the user stories from Section 4.

D.1 General Functionality

(a) The CollEX start page.

(b) General functionality query.

Figure 8: Show-casing CollEX general functionality.
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(c) Records and Collections query.

Figure 8: Show-casing CollEX general functionality.
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D.2 Geology Class Presentation

(a) Start of the chat.

(b) Search results for the user query.

Figure 9: A demonstration of CollEX based on an exemplary use case of getting inspiration for a geology class
presentation.
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(c) Image similarity search results.

(d) Requesting more details.

Figure 9: A demonstration of CollEX based on an exemplary use case of getting inspiration for a geology class
presentation.
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(e) Showing the minerals collection.

(f) Follow-up query.

Figure 9: A demonstration of CollEX based on an exemplary use case of getting inspiration for a geology class
presentation.
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D.3 Finding an Exhibition Piece

(a) Text-image search request and results.

(b) Follow-up details query.

Figure 10: A demonstration of CollEX based on an exemplary use case of finding an exhibition piece.
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(c) Image analysis queries.

Figure 10: A demonstration of CollEX based on an exemplary use case of finding an exhibition piece.
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Abstract
This paper presents WISMIR3, a multi-modal
dataset comprising roughly 300K text-image
pairs from Wikipedia. With a sophisticated au-
tomatic ETL pipeline, we scraped, filtered, and
transformed the data so that WISMIR3 intrin-
sically differs from other popular text-image
datasets like COCO and Flickr30k. We prove
this difference by comparing various linguis-
tic statistics between the three datasets com-
puted using the pipeline. The primary purpose
of WISMIR3 is to use it as a benchmark to
challenge state-of-the-art text-image retrieval
approaches, which already reach around 90%
Recall@5 scores on the mentioned popular
datasets. Therefore, we ran several text-image
retrieval experiments on our dataset using cur-
rent models, which show that the models, in
fact, perform significantly worse compared to
evaluation results on COCO and Flickr30k. In
addition, for each text-image pair, we release
features computed by Faster-R-CNN and CLIP
models. With this, we want to ease and moti-
vate the use of the dataset for other researchers.

1 Introduction

Current multi-modal text-image retrieval ap-
proaches already reach over 90% Recall@5 on
popular evaluation sets (Wang et al., 2023). The
reason for this is definitely due to the advances in
visio-linguistic approaches implemented by state-
of-the-art models like UNITER (Chen et al., 2020),
TERAN (Messina et al., 2021), CLIP (Radford
et al., 2021), or BEiT3 (Wang et al., 2023). How-
ever, we argue that this is not solely due to the
model’s architecture but also because of the sim-
plicity of the widely used training data and its simi-
larity to the evaluation data. Although more recent
datasets exist, the most popular datasets used to
train and evaluate state-of-the-art text-image re-
trieval methods are still COCO (Lin et al., 2014)
and Flickr30k (Young et al., 2014). Both datasets
comprise short and simple captions created by

crowdsourcing workers for Flickr images show-
ing everyday scenes. Schneider et al. (2021)
showed that recent multi-modal transformer-based
approaches trained on these popular datasets can-
not generalize well on out-of-domain data with
more complexity and variety. In the mentioned
work, two preliminary datasets were introduced.
However, during detailed data analysis, we found
multiple issues in these preliminary datasets, which
we address in this work.

The main contribution of this work is the release
of WISMIR3 (WIkiCaps Subset for Multi-Modal
Text-Image Retrieval v3)1, a clean multi-modal
dataset, thought of as a benchmark to challenge
state-of-the-art text-image retrieval models. WIS-
MIR3 contains more than 300K text-image pairs
from Wikipedia, scraped, filtered, transformed, and
statistically analyzed by a sophisticated automatic
ETL pipeline tool. Further, we provide a detailed
overview, discuss and release linguistic statistics of
the comprised data, and compare it to COCO and
Flickr30K. Additionally, we release pre-computed
image features from a popular pre-trained Faster-
R-CNN (Ren et al., 2016) model and image and
text embeddings from pre-trained CLIP models
employing ViT (Dosovitskiy et al., 2021) as the
image encoder. With this, we aim to ease the use
of the dataset to train, finetune, or evaluate models
on the WISMIR3 dataset. By evaluating different
state-of-the-art text-image retrieval approaches on
WISMIR3 and comparing the results with their per-
formance on COCO and Flickr30k, we show that
these models indeed perform much worse on our
dataset.

2 Related Work

State-of-the-art approaches for multi-modal text-
image retrieval are typically trained on text-image

1https://github.com/floschne/wismir3
https://huggingface.co/datasets/floschne/wismir3

1
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pairs. Despite their age, the most popular datasets
to train and evaluate models on this task are still
COCO (Lin et al., 2014) and Flickr30k (Young
et al., 2014). COCO is a well-known dataset for
various Computer Vision tasks like object detec-
tion, object segmentation, image captioning, key-
point detection, human pose estimation, and text-
image retrieval. Besides labels and annotations, the
dataset contains about 123K carefully selected im-
ages from Flickr with five descriptive captions each.
Flickr30k contains about 30K icon photographs of
everyday activities, events, and scenes from Flickr,
where also five different captions describe each
image. Both COCO and Flickr30k are datasets
designed by researchers and handcrafted by crowd-
sourcing workers to describe the images with short,
simple, and descriptive captions.

Less popular but larger datasets like SBU Cap-
tions (Ordonez et al., 2011), Conceptual Cap-
tions (Sharma et al., 2018), or Visual Genome (Kr-
ishna et al., 2017) are primarily designed for tasks
like image-captioning, visual question answering,
or visual entailment. However, since they com-
prise text-image pairs, the datasets are often part
of the training data for text-image retrieval ap-
proaches. Visual Genome contains about 108K im-
ages collected from an intersection of MS COCO
and YFCC-100M (Thomee et al., 2016) with cap-
tions created by crowdsourcing workers. SBU Cap-
tion contains about 1M photos and their captions
from Flickr. Conceptual Captions contains approxi-
mately 3.3M text-image pairs scraped from billions
of websites and automatically transformed and fil-
tered by a sophisticated pipeline.

Further, WIT (Srinivasan et al., 2021) and
LAION-5B (Schuhmann et al., 2022) are huge
text-image datasets suitable for pre-training vison-
language foundation models like CLIP (Radford
et al., 2021), ALIGN (Jia et al., 2021), or BLIP2 (Li
et al., 2023). The WIT dataset contains about
37.5M text-image pairs, comprising 11.5M unique
images with captions from Wikipedia across 108
different languages. The LAION-5B dataset
contains about 5B non-curated text-image pairs
scraped from Common Crawl dumps.

Another text-image dataset is WikiCaps (Scha-
moni et al., 2018), containing about 3.8M text-
image pairs from Wikipedia. Captions are taken
from the associated Wikimedia image descriptions,
mainly in English. This dataset is the basis of
WISMIR3 and is of particular interest in this work
because the data is from random Wikipedia articles.

Figure 1: A schematic overview of the pipeline used to
collect the WISMIR3 dataset.

Therefore, the captions and images cover a wide
range of different topics and concepts.

3 Data Collection Pipeline

A schematic overview of the pipeline used to col-
lect the WISMIR3 dataset, presented by this work,
is shown in Figure 1. In the following, more details
about the single steps are described.

The input to the pipeline is a CSV file released
by the WikiCaps authors, containing 3.8M Wikime-
dia image file IDs and the corresponding English
captions. Since this file format is unhandy to com-
pute statistics or apply transformations, it is con-
verted into a pandas DataFrame, used throughout
the whole pipeline.

In the first stage, extensive corpus statistics are
collected for each caption using a spaCy pipeline
with the “en_core_web_lg” model. These statistics
include, for example, the number of tokens and
sentences, POS tags of each token, counts of the
Universal Dependency tags (Nivre et al., 2020),
the language of each sentence, named entities, and
ratios between the number of all tokens and nouns
or named entities.

The DataFrame is then filtered based on these
statistics, as described in the following. Samples
are dropped if

• the caption consists of less than 10 or more
than 300 tokens

• the caption consists of less than 1 or more than
7 sentences

• the number of tokens in a sentence in the cap-
tion is less than 5

2
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• the ratio between all tokens and tokens that
are part of named entities does not exceed 0.8

Further samples were removed if the language of
every sentence in the caption was not English.

Moreover, since the purpose of this dataset is
to challenge text-image retrieval approaches, it is
essential that most of the words in an image de-
scription are also represented in the image. Hence,
we created a blocklist of non-depictable words like
“URL”, “Sarcasm”, “Confusion” and filtered out
every sample that contains one or more of these
terms.

In the next pipeline stage, the duplicate filter-
ing stage, we remove duplicate captions so that
one caption describes at most five different images.
This decision was inspired by COCO or Flickr30k,
where it is the other way round, i.e., five different
captions describe one image.

With the mentioned filtering stages, we reduced
the 3.8M WikiCaps samples by about 92% to
304317 samples. After downloading the images,
we removed 3431 that were too small or had er-
roneous data format. We applied the following
transformations to every image in the final pipeline
stage.

• converting to RGB if it was grayscale before
• resizing while keeping the aspect ratio with

bicubic interpolation so that the maximum
width and maximum height do not exceed 640
pixels

• compressing to a max of 72 DPI
• converting to and persisting as PNG

The final output of the pipeline is the WISMIR3
dataset, comprising 300886 text-image pairs. A
detailed overview is described in the following sec-
tions.

4 Dataset Structure and Statistics

4.1 Structure
The textual data of the WISMIR3 is released in two
pandas DataFrames2, one for the training set and
one for the test or evaluation set. In addition to the
”raw” format, we also release the dataset on Hug-
gingFace3. The training and test split comprises
295886 and 5000 randomly chosen text-image
pairs, respectively. Besides the caption and the
corresponding image filename, both DataFrames

2https://github.com/floschne/wismir3
3https://huggingface.co/floschne/wismir3

contain various linguistic statistics of the caption,
as described in Table 1. To compute these statistics,
we used spaCy4 with the “en_core_web_lg” model.

Column Name Description
wikicaps_id The row index in the original WikiCaps CSV file
wikimedia_file_id The Wikimedia File ID of the original image
caption The caption of the image
tokens The list of tokens in the caption
num_tok The number of tokens in the caption
sentence_spans A list of tuples containing the start and end index of the sen-

tences w.r.t. the list of tokens
num_sents The number of sentences in the caption
min_sent_len The minimum length of the sentences in the caption
max_sent_len The maximum length of the sentences in the caption
num_ne The number of named entities in the caption
ne_types A list of the named entity types in the caption
ne_texts A list of the named entity surface forms in the caption
num_nouns The number of tokens tagged as NOUN
num_propns The number of tokens tagged as PROPN
num_conj The number of tokens tagged as CONJ
num_verb The number of tokens tagged as VERB
num_sym The number of tokens tagged as SYM
num_num The number of tokens tagged as NUM
num_adp The number of tokens tagged as ADP
num_adj The number of tokens tagged as ADJ
ratio_ne_tok The ratio of tokens that belong to named entities versus all

tokens of the caption
ratio_noun_tok The ratio of tokens tagged as NOUN versus all tokens of the

caption
ratio_propn_tok The ratio of tokens tagged as PROPN versus all tokens of the

caption
ratio_all_noun_tok The ratio of tokens tagged as NOUN or PROPN versus all

tokens of the caption
image_id The filename of the image corresponding to this sample
clip_embs_id The ID of the CLIP image and text embeddings of this sample

in the CLIP embeddings tensor
frcnn_embs_id The filename of the Faster-R-CNN image embedding of this

sample

Table 1: The extensive list of the columns and their
descriptions contained in WISMIR3.

The images related to the samples are released as
single PNG files. Further, we released 36 bounding
boxes for regions of interest with corresponding
feature vectors extracted by a pretrained Faster-R-
CNN (Ren et al., 2016; Yu et al., 2020) model for
each image as single NumPy archive files. Ad-
ditionally, we computed and published the cap-
tion and image embedding for each sample com-
puted with two pretrained CLIP (Radford et al.,
2021) models employing 16x16 and 32x32 patch
ViT (Dosovitskiy et al., 2021), respectively.

Three random samples of WISMIR3, i.e., the im-
ages with their corresponding captions, are shown
in Figure 2.

4.2 Statistics
In this section, we present a statistical overview of
WISMIR3 in Table 2 and, based on this, discuss
the contrasts between the dataset and COCO or
Flickr30k.

An appreciable difference between WISMIR3,
COCO, and Flickr30k becomes apparent when
comparing these statistics between the respective
datasets. For example, in COCO and Flickr30k, the
respective average number of tokens per caption is

4https://spacy.io
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(a) (b) (c)

Figure 2: Randomly chosen images and their captions
included in WISMIR3. (a) Fanta Klassik, 75th anniversay edition of the

Fanta soft drink, 2015. Front view of the bottle. (b) Image of the Sultanina Rosea variety of

grapes (scientific name: "Vitis"), with this specimen originating in Niles, Fremont, Alameda

County, California, United States. Source: U.S. Department of Agriculture Pomological

Watercolor Collection. Rare and Special Collections, National Agricultural Library, Beltsville,

MD 20705. (c) "The painting is a design for a poster." image: Three figures dominate

the image. A Red Cross nurse stands in the centre. A wounded soldier with a crutch and

bandaged head leans on her right arm. On her left a small child in a red dress clings to her

skirts; the nurse has her hand resting reassuringly on the child’s shoulder. There is the ruin

of a building in the background.

min max avg
Number of tokens 12 294 59.8
Number of sentences 1 6 2.71
Ratio of NOUN or
PROPN tokens

0.0 0.92 0.44

Ratio of named entity to-
kens

0.0 0.79 0.31

Cosine similarity of cap-
tion and image embed-
dings

0.04 0.53 0.32

Table 2: Various aggregated per-caption statistics in
WISMIR3. The cosine similarity was computed using a
CLIP model with a ViT using 16x16 patches.

11.34 and 13.49, which is close to the minimum
number of tokens and about 4 to 5 times smaller
than the average number of tokens per caption in
WISMIR3.

Further, by looking at the average ratio of named
entity tokens of COCO and Flickr30k, which are
0.02 and 0.03, respectively, it becomes clear that
there are almost no named entities in the two
datasets. However, in WISMIR3, this ratio lies
at 0.44 on average. We argue that in real-world
image-retrieval systems, users search for images
of specific entities, e.g., with textual queries like
“The Eifel Tower at night.” instead of general im-
ages with queries like “A large iron tower at night”.
Hence, the training and evaluation data for models
powering these real-world systems should contain
named entities.

Another difference between WISMIR3 and
COCO or Flickr30k is the number of nouns per
caption. In COCO and Flickr30k, the average ratio
of noun tokens compared to all tokens of a caption
is 0.33 and 0.31, respectively, while, in WISMIR3,
it is 0.44.

Furthermore, we computed Flesch-Kincaid (Farr
et al., 1951) (FK) and Dale-Chall (Chall and Dale,
1995) (DC) readability scores for the captions in
the three datasets, which are similar for COCO and
Flickr30k but much higher for WISMIR3 (c.f. Fig-
ure 3). This suggests a much higher textual com-

Figure 3: Comparison of Flesch-Kincaid (FK) and Dale-
Chall (DC) readability scores of COCO (C), Flickr30k
(F), and WISMIR3 (W) captions containing 106±0.1%
characters.

plexity of WISMIR3 compared to the two other
datasets. That is, COCO and Flickr30k should be
easily understood by an average 4th to 6th-grade
US student, while WISMIR3 captions are recom-
mended for college students.

We further computed the text-image cosine sim-
ilarity for each sample in WISMIR3 using a pre-
trained CLIP model. With the average similarity
of 0.32 being above the minimum threshold of the
LAION-400M dataset, we consider the text-image
alignment in WISMIR3 as acceptable.

5 Image Retrieval Experiments

This section presents text-image retrieval evalua-
tion results of various recent models on the WIS-
MIR3 dataset and compares them to the models’
performances on COCO and Flickr30k. As listed
in Table 3, evaluation scores of all listed models on
the WISMIR3 (W3) evaluation set are significantly
worse compared to the models’ performances on
COCO (C) and Flickr30k (F30K).

Further observed is that COCO and Flickr30k
data did not contribute anything meaningful dur-
ing TERAN training processes when evaluating the

4
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Text-Image Retrieval (t2i)
Model Data R@1 R@5 R@10
CLIPViT�B�16 W3 47.9 72.42 80.32
TERANW3 W3 15.3 39.6 53.1
UNITERbase W3 8.76 21.84 29.54
TERANCOCO W3 1.1 3.7 5.6
TERANF30K W3 0.9 2.7 4.4
CLIPViT�B�16 COCO 58.4 81.5 88.1
UNITERbase COCO 50.33 78.52 87.16
TERANCOCO COCO 42.6 72.5 82.9
CLIPViT�B�16 F30K 68.7 90.6 95.2
UNITERbase F30K 72.52 92.36 96.08
TERANF30K F30K 59.4 84.8 90.5

Table 3: Recall@K evaluation results of different mod-
els and evaluation sets on text-image retrieval on the
WISMIR3 test set. ”W3” stands for WISMIR3. In
the model column, the subscript datasets indicate the
training data of the TERAN model. For evaluation on
COCO, we used the 5k evaluation set. Further, we used
CLIP or UNITER in a zero-shot setting without fine-
tuning on WISMIR3.

models on WISMIR3. However, one noticeable
finding is that the CLIP model5 performs excep-
tionally well on WISMIR3 compared to UNITER
and even the TERAN model trained on the WIS-
MIR3 training set. Also, UNITER performs much
better than TERAN on WISMIR3. Since CLIP
was trained on a very large-scale dataset contain-
ing more than 400M text-image pairs scraped from
random websites, its training data is probably rela-
tively similar to the data contained in WISMIR3 or
even comprises the data. Moreover, UNITER was
trained on much larger datasets of roughly 5.6M
samples compared to WISMIR3.

These findings show that current text-image re-
trieval approaches perform significantly worse on
WISMIR3 than COCO and Flickr30k.

6 Conclusion

This paper presents WISMIR3, a clean multi-modal
dataset containing roughly 300K text-image pairs.
The dataset comprises images with corresponding
captions from Wikipedia using WikiCaps as the
source dataset. By implementing a sophisticated
automatic ETL pipeline tool, we scraped, filtered,
and transformed the data so that WISMIR3 differs
from popular datasets like COCO and Flickr30k.
We prove this difference by comparing linguistic
statistics between the three datasets also computed
using the tool. The purpose of WISMIR3 is to use
it as a hard benchmark to challenge state-of-the-
art text-image retrieval approaches, which already

5https://huggingface.co/openai/clip-vit-base-patch16

reach 90% Recall@5 scores on the mentioned pop-
ular datasets. With the experiments in this paper,
we show that the text-image retrieval performance
of the current models on WISMIR3 is much lower
than on COCO or Flickr30k, as anticipated.

7 License

The dataset is licensed under the Creative Com-
mons Attribution-ShareAlike 4.0 International (CC
BY-SA 4.0) 6. This allows copying and redistribut-
ing the data in any medium or format when appro-
priate credit is given and a link to the license is
given. Further, it is allowed to mix, transform, or
extend the dataset for any purpose. However, every
change has to be indicated.
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Abstract

Since the release of ChatGPT, the field of Natu-
ral Language Processing has experienced rapid
advancements, particularly in Large Language
Models (LLMs) and their multimodal coun-
terparts, Large Multimodal Models (LMMs).
Despite their impressive capabilities, LLMs of-
ten exhibit significant performance disparities
across different languages and cultural contexts,
as demonstrated by various text-only bench-
marks. However, current research lacks such
benchmarks for multimodal visio-linguistic set-
tings. This work fills this gap by introducing
M5, the first comprehensive benchmark de-
signed to evaluate LMMs on diverse vision-
language tasks within a multilingual and mul-
ticultural context. M5 includes eight datasets
covering five tasks and 41 languages, with a fo-
cus on underrepresented languages and cultur-
ally diverse images. Furthermore, we introduce
two novel datasets, M5-VGR and M5-VLOD,
including a new Visio-Linguistic Outlier Detec-
tion task, in which all evaluated open-source
models fail to significantly surpass the random
baseline. Through extensive evaluation and
analyses, we highlight substantial task-agnostic
performance disparities between high- and low-
resource languages. Moreover, we show that
larger models do not necessarily outperform
smaller ones in a multilingual setting.

1 Introduction

Since the release of ChatGPT, Natural Language
Processing has experienced a significant surge in
interest and research, with a particular focus on
LLMs finetuned to follow human instructions. Be-
sides proprietary models like GPT-4 (Achiam et al.,
2023), Claude (Bai et al., 2022), or Gemini (Anil
et al., 2023), there are also successful open-source
variants such as Llama (Touvron et al., 2023),

1This works was done during a research internship with
Microsoft Research India (Bangalore) between November
2023 and March 2024.

Phi (Gunasekar et al., 2023; Abdin et al., 2024),
or Mistral (Jiang et al., 2023). While LLMs of-
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Figure 1: An overview of the average performance of the
models on the datasets included in the M5 benchmark.
For xFlickrCO and XM3600, we report BERTScore F1.
For the other datasets, the accuracy metric is reported.
ten demonstrate impressive performance on a wide
range of tasks, quantifying and measuring this per-
formance is challenging. Nevertheless, recent eval-
uation studies have shown that LLMs generally
perform well in English but much worse in other
languages (Ahuja et al., 2023a,b; Holtermann et al.,
2024).

In this work, we focus on multimodal variants of
LLMs, Large Multimodal Models (LMMs), such
as GPT 4V (OpenAI, 2023), Gemini Pro V (Anil
et al., 2023), or the popular open-source model,
LLaVA (Liu et al., 2023a,b). LLMs are not text-
only but are also capable of processing images
in addition to text. Most open-source LMMs
comprise three major components: an LLM, a
vision-encoder model, and a mapping network that
projects image embeddings into the text embed-
ding space. With this architecture, where an LLM
serves as the core, we argue that LMMs inher-
ently suffer from the same issue as LLMs: they
generally perform much worse in non-English lan-
guages. However, existing benchmarks are either
text-only (Ahuja et al., 2023a) or multimodal but
monolingual (Yue et al., 2023), thus unable to prove
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Datasets: xGQA, MaXM
Languages: 8 + 7 = 13 uniq.
Samples: 77328 + 2142
Label Format: Open Vocab.
Task Inputs:
Image A, Question, Prompt

Visual Question Answering 
(VQA)

Datasets: MaRVL, M5-VGR
Languages: 12 + 5 = 16 uniq.
Samples: 5670 + 1432
Label Format: Binary Class
Task Inputs:
Images A + B, Hypothesis, 
Prompt

Visually Grounded 
Reasoning (VGR)

Datasets: XVNLI
Languages: 5
Samples: 5500
Label Format: Binary Class
Task Inputs:
Image A, Hypothesis, 
Prompt

Visual Natural Language 
Inference (VNLI)

Datasets: M5-VLOD
Languages: 12
Samples: 1422
Label Format: Mul. Choice
Task Inputs:
Images A + B + C+ D + E, 
Hypothesis, Prompt

Visio-Linguistic Outlier 
Detection (VLOD) Image Captioning (IC)

Datasets: XM3600, xFlickrCO
Languages: 36 + 8 = 36 uniq.
Samples: 129600 + 14000
Label Format: Free Text
Task Inputs:
Images A, Prompt

M5
Multi-Lingual: 41 languages, 16 scripts, 13 language families
Multi-Modal: Text + image as input and text as output
Multi-Cultural: Cultural diversity in images taken across the globe
Multi-Task: Five different vision-language tasks
Multiple Models:  18 different LMMs, 10 model families, S to XL sizes

Figure 2: An informative overview of the M5 Benchmark introduced in this work.

this hypothesis. In other words, current research
lacks multimodal multilingual benchmarks to ex-
amine LMMs’ multilingual capabilities. In this
work, we fill this gap by introducing the M5 Bench-
mark, taking a significant step towards identifying
and measuring the performance disparities of cur-
rent LMMs between various languages. Figure 2
and Figure 1 present a high-level summary of our
benchmark. Moreover, we introduce two new eval-
uation datasets, including a novel vision-language
task. Both datasets focus on African and Asian
cultures, which are underrepresented or even non-
existent in previous benchmarks. Our exhaustive
analyses additionally investigate the influence of
different factors on the performance, such as the
models’ size or language fidelity.

Major Contributions The major contributions
of this work are (a) M5, the first multimodal bench-
mark to assess the performance of current LMMs
across five tasks, eight datasets, and 41 languages;
(b) Two novel datasets spanning 10 underrepre-
sented African and Asian languages, English and
German, with images depicting the respective cul-
tures. (c) A novel vision-language task: Visio-Lin-
guistic Outlier Detection (VLOD); (d) A large-s-
cale evaluation of 18 recent LLMs and a thorough
analysis of their multilingual performance. (e) A
public release of our codebase and all datasets in a
uniform schema to foster future research for more
equitable and accessible LMMs or AI in general1.

2 Related Work

Large Multi-Modal Models This work focuses
on the multimodal counterpart of large language
models (LLMs), often referred to as Large Mul-
timodal Models (LMMs). LMMs are language

1https://github.com/floschne/m5b

models capable of processing and “understanding”
data other than text. While this generally subsumes
images, video, audio, or more, we concentrate on
visio-linguistic LMMs, i.e., models that take text
and/or images as input and generate textual output.

The vast majority of open-source LMMs com-
prise three major components: a pretrained genera-
tive LLM as the core, a pretrained vision-encoder
model that computes semantically rich image em-
beddings, and a shallow mapping network that
learned to project image embeddings into the text
embedding space. One of this architecture’s suc-
cessful open-source implementations with a re-
cent LLM, i.e., the Llama-based Vicuna (Chiang
et al., 2023; Touvron et al., 2023), is LLaVA (Liu
et al., 2023b), from which many others took in-
spiration also regarding the training data and pro-
cess. Besides this, LMMs also exist, which use
Cross-Attention (Wang et al., 2023; Bai et al.,
2023), Q-Formers (Li et al., 2023; Geigle et al.,
2023), Adapters (Eichenberg et al., 2022), or Pre-
ceiver Resamplers (Alayrac et al., 2022; Awadalla
et al., 2023) to process image embeddings. For
an overview including architectural details and the
number of parameters of the 18 LMMs’ compo-
nents we employed in this work, please see Table 8.

Evaluation Benchmarks With the recent surge
in the research of LLMs and LMMs, analyzing
the models’ performances is crucial yet challeng-
ing. Popular benchmarks like BIG-Bench (bench
authors, 2023), HELM (Liang et al., 2022), or
MMLU (Hendrycks et al., 2020) are the defacto-
standard to evaluate LLMs on text-only tasks pri-
marily in English. Efforts like MEGA (Ahuja et al.,
2023a), MEGAVERSE (Ahuja et al., 2023b), or
MultiQ (Holtermann et al., 2024) extended these
monolingual benchmarks to a large set of diverse

4310

IV. M5 – A Diverse Benchmark to Assess the Performance of Large Multimodal Models
Across Multilingual and Multicultural Vision-Language Tasks 118



languages and showed that the LLMs’ performance
in English versus non-English languages differs sig-
nificantly.

Similarly, efforts have been made to eval-
uate multimodal models. Benchmarks like
MMMU (Yue et al., 2023), MME (Fu et al., 2023),
or MMBench (Yuan et al., 2023) assess the per-
formance of LMMs on a vast number of text-
image tasks. However, these benchmarks primar-
ily focus on English, with some tasks available in
Chinese. Like MMMU, there is CMMMU (Ge
et al., 2024), which focuses on text-image tasks in
Chinese. Nonetheless, evaluating state-of-the-art
LMMs in a massively multilingual large-scale set-
ting remains largely unexplored. There are only
a few multimodal multilingual evaluation datasets
(see Section 3.2 and 8.6) and only two benchmarks:
IGLUE (Bugliarello et al., 2022) and MEGA-
VERSE. However, IGLUE evaluates only non-
autoregressive transformer-encoders, thus lacking
state-of-the-art LLMs. In MEGAVERSE, only five
recent LMMs are evaluated on two datasets.

3 The M5 Benchmark

This section describes the setup of the M5 Bench-
mark introduced by this work. Details about the
experimental setup, including prompts and hyper-
parameters, are reported in Appendix A.

3.1 Models

We chose the LMMs included in this benchmark for
the following reasons: Firstly, we focussed on pub-
licly available models released on Hugging Face
except for GPT-4 Vision and Gemini Pro. Sec-
ondly, we included LMMs well-performing on pop-
ular multimodal English-only benchmark s such as
MMMU (Yue et al., 2023) and MME (Fu et al.,
2023). Thirdly, we aimed to cover a mixture of
different model families and a broad model size
spectrum, including small models with 3B to 9B,
medium models with 10B to 19B, and large models
with 20B to 40B parameters. For an overview of
all models, including their number of parameters
and other architectural details, see Table 8.

3.2 Datasets

This section briefly introduces the existing datasets
included in our benchmark. In addition to these,
we crafted two novel datasets described in Sec-
tion 4. For details about the languages covered by
the datasets, please refer to Table 6.

xGQA The xGQA dataset (Pfeiffer et al., 2022)
is a cross-lingual visual question-answering dataset.
It extends the well-known English-only GQA
dataset (Hudson and Manning, 2019) by manually
translating the questions in the balanced test-dev
set. Each of the 9666 questions is available in eight
languages covering five scripts, while the answers
are in English only. The dataset holds 300 unique
images from Visual Genome (Krishna et al., 2017).

MaXM The MaXM dataset was introduced
by Changpinyo et al. (2023) and is a VQA dataset
comprising seven languages in five scripts. In
MaXM, the questions and their respective answers
are in the same language. The images are a subset
of the XM3600 (Thapliyal et al., 2022) dataset and
are chosen to match a region where the language
of the question-answer pair is spoken. This ensures
cultural diversity in the images in addition to the
language diversity in the question-answer texts.

XVNLI The XVNLI dataset (Bugliarello et al.,
2022) introduces the task of Cross-lingual Vi-
sual Natural Language Inference where a model
needs to predict whether a textual hypothesis en-
tails, contradicts, or is neutral concerning a visual
premise. XVNLI comprises five languages cov-
ering three scripts and 357 unique images from
Visual Genome.

MaRVL The MaRVL dataset (Liu et al., 2021)
aims to benchmark models on Multicultural Rea-
soning over Vision and Language. A task sample
comprises two images, a textual statement, and a
binary true or false answer grounded in the im-
ages. MaRVL comprises five languages covering
three scripts and 4914 culturally diverse images
that match the respective languages. The images
in a sample are chosen to match the culture of the
annotator who has written the textual statement in
his or her native language.

XM3600 The XM3600 dataset (Thapliyal et al.,
2022) is a large multilingual image captioning
dataset comprising 36 languages with 261375 cap-
tions covering 13 different scripts for 100 unique
images per language. The images are selected to
match the language’s cultural background, ensuring
cultural and linguistic diversity. The captions were
not automatically translated but manually created
by professional annotators who are native speakers
of the respective language.
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xFlickrCO The xFlickrCO dataset (Bugliarello
et al., 2022) is an image captioning dataset and com-
prises 1000 images from Flickr30k (Young et al.,
2014) and 1000 images from COCO (Lin et al.,
2014). Each image is captioned in eight languages,
covering four different scripts. For all languages
except English and German, the captions were man-
ually crafted by crowdsourcing workers instead of
translated from English to prevent bias and increase
linguistic diversity.

4 Novel M5 Datasets

In addition to the existing datasets introduced in
the previous section, we crafted two novel multi-
modal and multilingual evaluation datasets. The
principal motivation behind this is to fill the gap
in existing vision-language datasets concerning the
lack of underrepresented languages, tasks, and cul-
tural diversity. Moreover, we aim to enable further
examination of LMMs and their performance on
non-English and non-Western data with a partic-
ular focus on African and Asian regions. More
details, statistics, and examples are reported in Ap-
pendix B.

Common Characteristics

Languages Both datasets comprise samples in
12 languages covering seven scripts (see Table 6):
Amharic, Berber, Bengali, German, English, Fil-
ipino, Hausa, Hindi, Russian, Swahili, Thai, Zulu.
The languages were selected to enrich the set of
languages covered by existing datasets, focusing
on underrepresented languages from Asian and
African countries or regions. To our knowledge,
no other visio-linguistic evaluation dataset covers
Amharic, Berber, Hausa, or Zulu.

Data Annotation The textual data in both
datasets is manually created by professional anno-
tators who are native speakers of the respective lan-
guages. All annotators work for a data annotation
company, and fluent English-speaking correspon-
dents handle communication and task delegations.
In order to ensure that the annotators can fulfill
the tasks as well as possible, detailed guidelines,
including multiple good and bad examples, have
been drawn up in English. These guidelines were
explained in detail to the correspondents. The corre-
spondents then delegated the tasks to the annotators
by having internal company guidelines drawn up
in the target languages. After the annotation tasks

were finished, we conducted the following quality
assessment procedure:

1. We translated all manually created annotations
to English using the Bing Translate API.

2. We developed a small tool that displays a sam-
ple, including the images, target language,
original and English-translated annotations,
and other metadata.

3. We used the tool to manually inspect 20% of
the samples and tagged them as “good”, “bad”,
or “ambiguous/problematic”.

4. We discussed in detail our findings with the
annotators’ correspondents, who then dele-
gated the tasks to improve the quality of the
annotations.

5. This loop was executed two times until no
more issues were found by the authors and the
annotators’ correspondents.

Depicting Cultural Diversity The images in
our datasets originate from the Dollar Street
dataset (Gaviria Rojas et al., 2022), comprising
around 38K photos taken in 63 different regions
or countries around the globe. These photos de-
pict the lives of families, including their homes,
neighborhoods, or everyday objects, in a culturally
diverse way. Further, each image in the original
dataset is tagged with one or more “topics” that
roughly describe its visual content.

Image Basis For our datasets, we sampled
a subset of images from the Dollar Street
dataset (Gaviria Rojas et al., 2022) taken in re-
gions where the 12 target languages are spoken.
In this subset, which forms the visual basis for
both of our datasets and is referred to as B, each
image itl 2 B is tagged with exactly one topic
t 2 T = {t0, . . . , t86} and was taken in a region
rl where language l 2 L = {l0, . . . , l11} is spoken.
More information about the image topic distribu-
tion per language can be found in Appendix B.1.3.

4.1 M5-VGR
Inspired by MaRVL, the goal of the M5-VGR
dataset is to provide a visually grounded reason-
ing (VGR) evaluation dataset that covers a wide
range of topologically different languages and, at
the same time, visually represents a diverse set of
cultures in which the respective languages are spo-
ken. However, since the MaRVL dataset contains
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Figure 3: An Zulu example of the novel M5-VGR
dataset. Hypothesis: “Isithombe sokuqala nesithombe
sesibili sibonisa iqanda elisehhokweni. (The first pic-
ture and the second picture show the egg on the head.)”,
Label: False

only five languages, we chose 11 additional topo-
logically diverse languages for our dataset. To guar-
antee visual and linguistic diversity and high data
quality in our dataset, we hired professional native-
speaker annotators of the respective languages to
annotate the data. Moreover, we performed several
rounds of data quality assessment in close collabo-
ration with the annotators.

A task sample s in M5-VGR contains two im-
ages ia and ib, a textual visually grounded hypoth-
esis h, and a binary label c which is either true or
false concerning the two visual premises (see Fig-
ure 3). More specifically, for each language l 2 L,
we created 120 tasks sl 2 Sl as follows: In the first
step, we sampled 120 unique images atl 2 B from
our image basis so that each topic t 2 T occurs at
least once across all 12 languages. Then, for each
of the 120 images, we randomly selected another
image btl2 2 B associated with another language
l2 6= l 2 L that shares the topic t. In the third
step, we asked the native-speaker annotators of the
language l to manually create a hypothesis h and a
label c which is either true or false concerning the
image premises

�
atl , b

t
l2

�
. Further, the annotators

were instructed to generate a hypothesis semanti-
cally related to the topic t if possible.

4.2 M5-VLOD

Figure 4: A Swahili example of the novel M5-VLOD
dataset. Hypothesis: “Picha zote zinaonyesha sabuni
inayotumika kwa mikono na mwili bila mtu yeyote. (All
the images show soap applied to the hands and body
without anyone.)”, Outlier: 1.

With the M5-VLOD dataset, we introduce a

novel multimodal task: Visio-Linguistic Outlier
Detection. The objective of the task is to detect
an outlier image from a set of images consider-
ing a textual statement. An example of the task is
shown in Figure 4, where five images related to the
topic “soap for hands and body” are shown. The
machine-translated English statement is: “All the
images show soap applied to the hands and body
without anyone.”. Because only the first image
shows a person, the statement is incorrect for the
first image and, therefore, is considered the outlier
image.

The dataset was collected similarly to M5-VGR,
as described in the previous section. The major dif-
ference is that instead of sampling only one image
in the second step, we sample four images so that
a sample sl0 2 Sl0 for language l0 2 L comprises
of five images: {atl0 , b

t
l1
, ctl2 , d

t
l3
, etl4 , } associated

with five different languages {l0, . . . , l4 2 L} that
share one topic t 2 T. In the third step, we asked
the native-speaker annotators of the language l to
manually create a textual statement h, valid for all
but one of the images labeled as the outlier image.

5 General Results Discussion

This section discusses the models’ performance on
the datasets considered in our benchmark. Table 1
provides an overview of the performance in En-
glish compared to non-English languages for all
models and datasets. Note that we use friendly
names for the models for better readability (see Ta-
ble 8). Detailed results for each dataset and all their
respective languages are provided in Appendix D.

5.1 Summary of Findings

Table 1 shows a clear pattern: Generally, LMMs
perform significantly worse in non-English lan-
guages across all tasks. More specifically, the av-
erage performance across all models and datasets
in English is 0.63 versus 0.47 in non-English lan-
guages. Most models have an average performance
difference from English to non-English larger or
equal to 0.12. However, for GPT 4V and despite
their much smaller size also for mBlip BloomZ,
and mBlip T0, the difference is smaller than 0.1.
For the two mBLIP models, the authors explicitly
stated in their paper the language distribution in the
training data, which covers 96 languages. Hence, it
can be assumed that this is the reason for this slight
absolute performance difference, and, further, this
might indicate that GPT 4V was also trained in a
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Model Dataset

xGQA MaXM XVNLI MaRVL M5-VLOD M5-VGR xFlickrCO XM3600 ALL
E NE E NE E NE E NE E NE E NE E NE E NE E NE �

CogVLM 0.59 0.30 0.43 0.02 0.47 0.29 0.60 0.51 0.10 0.08 0.68 0.55 0.87 0.60 0.88 0.65 0.58 0.38 �0.20
BakLLaVA 0.62 0.32 0.53 0.08 0.48 0.34 0.59 0.53 0.14 0.20 0.71 0.48 0.91 0.63 0.88 0.64 0.61 0.40 �0.21
LLaVA 1.6 7B 0.60 0.34 0.34 0.16 0.59 0.45 0.62 0.53 0.14 0.21 0.55 0.42 0.88 0.64 0.88 0.67 0.57 0.43 �0.15
LLaVA 1.5 7B 0.62 0.30 0.52 0.15 0.60 0.47 0.57 0.52 0.15 0.20 0.48 0.42 0.92 0.68 0.89 0.67 0.59 0.43 �0.17
Yi-VL 6B 0.57 0.32 0.53 0.20 0.56 0.38 0.59 0.53 0.20 0.19 0.73 0.61 0.91 0.64 0.91 0.66 0.62 0.44 �0.18
MiniCPM-V 0.55 0.31 0.56 0.19 0.66 0.49 0.61 0.53 0.20 0.20 0.80 0.56 0.91 0.65 0.90 0.65 0.65 0.45 �0.20
LLaVA 1.5 13B 0.62 0.34 0.56 0.19 0.59 0.49 0.60 0.54 0.16 0.21 0.57 0.46 0.91 0.69 0.90 0.69 0.61 0.45 �0.16
Qwen-VL 0.59 0.33 0.50 0.23 0.62 0.54 0.60 0.53 0.16 0.21 0.82 0.54 0.89 0.62 0.90 0.65 0.64 0.46 �0.18
Yi-VL 34B 0.58 0.38 0.53 0.20 0.59 0.51 0.62 0.58 0.26 0.19 0.77 0.52 0.91 0.64 0.90 0.66 0.65 0.46 �0.19
Gemini Pro V 0.46 0.34 0.48 0.23 0.49 0.49 0.55 0.55 0.52 0.36 0.79 0.66 0.86 0.67 0.63 0.41 0.60 0.46 �0.13
OmniLMM 12B 0.49 0.36 0.48 0.11 0.64 0.54 0.64 0.56 0.19 0.21 0.78 0.59 0.91 0.66 0.89 0.68 0.63 0.46 �0.16
LLaVA 1.6 13B 0.65 0.38 0.46 0.24 0.61 0.55 0.65 0.65 0.14 0.21 0.78 0.50 0.90 0.67 0.88 0.68 0.63 0.48 �0.15
mBliP BloomZ 0.44 0.39 0.55 0.29 0.40 0.44 0.55 0.56 0.14 0.21 0.69 0.56 0.92 0.72 0.91 0.71 0.58 0.49 �0.09
InternVL V1.1 0.63 0.48 0.58 0.34 0.61 0.56 0.63 0.60 0.13 0.21 0.73 0.62 0.92 0.66 0.91 0.68 0.64 0.52 �0.12
LLaVA 1.6 34B 0.65 0.46 0.58 0.32 0.62 0.58 0.64 0.66 0.26 0.22 0.87 0.64 0.89 0.68 0.88 0.70 0.67 0.53 �0.14
mBliP mT0 0.44 0.40 0.50 0.42 0.59 0.57 0.60 0.63 0.12 0.17 0.74 0.69 0.92 0.73 0.91 0.71 0.60 0.54 �0.07
InternVL V1.2+ 0.67 0.43 0.60 0.42 0.63 0.58 0.68 0.61 0.28 0.23 0.86 0.68 0.92 0.71 0.90 0.70 0.69 0.55 �0.15
GPT 4V 0.45 0.41 0.49 0.53 0.69 0.68 0.64 0.66 0.70 0.42 0.88 0.81 0.90 0.70 0.89 0.72 0.70 0.62 �0.09

Random Baseline – – 0.33 0.50 0.20 0.50 – – – –

Average 0.57 0.37 0.51 0.24 0.58 0.50 0.61 0.57 0.22 0.22 0.73 0.57 0.90 0.67 0.88 0.66 0.63 0.47 �0.15

Table 1: Average performance in English (E) and non-English languages (NE) on all datasets for all models. For
each dataset and the � column, the heatmaps are created individually, indicated by the column gutter. The column
“ALL” represents the average across all datasets. For xFlickrCO and XM3600, we report BertScore F1 and for the
rest of the datasets, we report the relaxed accuracy.

multilingual fashion. Due to the difference in size
and the architecture2 of the mBlip models and GPT
4V, applying this multilingual training strategy for
LMMs would generally lead to more robust multi-
lingual performance.

The average performance difference of the mod-
els is most significant on the MaXM, XM3600,
and xFlickrCo datasets, for which the models are
required to generate non-English text.

Interestingly, for the M5-VLOD dataset, the
models that performed worse than the random base-
line of 0.2 in English performed better in non-
English languages. An explanation for this could
be false assumptions drawn from the English text.
This finding also explains why the average English
versus non-English performance disparity across
all models is equal for the dataset and lies around
the random baseline, indicating the challenge intro-
duced by our dataset.

5.1.1 Dataset-Specific Discussion
Note that due to brevity constraints, we report ex-
act numbers and diagrams of the language-specific
results for each dataset in Appendix D.

xGQA All models perform best in English
mostly, with a significant gap in accuracy to the
second-best language from up to 0.62 in English
to 0.36 in Russian for LLaVA 1.6 7B. In Bengali,
where the models have the lowest average accuracy
of 0.19, all models besides GPT 4V, which achieves

2While the architecture of GPT 4V is not known, it is likely
different from the mBlip models’ architecture, which employs
Q-Formers, rarely used in state-of-the-art LMMs.

0.44, perform worst by far. The best-performing
model in English and the best-performing model on
average over all languages are the InternVL v1.2
and InternVL v1.1 models. Notably, despite their
(estimated) much larger size, GPT 4V and Gemini
Pro V are among the worst-performing models
in English. After manually inspecting the results,
we found the reason for this to be that the models
did not respond in a single word but with a brief
sentence, which is considered a false answer ac-
cording to the applied metric (see Appendix A.2
and Section 8.2).

MaXM The average accuracy of the models for
Hindi (0.22), Hebrew (0.19), Romanian (0.27),
Thai (0.25), and Chinese (0.24) is much lower than
for English (0.51) and French (0.35). It is also
worth pointing out that most models, regardless of
their size, perform remarkably worse in languages
other than English (and French). In contrast, on
xGQA, which is also a VQA dataset, the differ-
ences between the languages are much more minor.
This is likely due to the difference between the two
datasets, i.e., that xGQA has multilingual questions
but only English answers, while MaXM has mul-
tilingual questions and expects the answers in the
respective language, too. We further underline this
in our language fidelity analysis in Section 6.3.

XVNLI English accuracy is the best for most
models, with an average of 0.58, whereas Arabic
accuracy is the worst, with an average of 0.43. The
performance drop from English to the other lan-
guages, i.e., Spanish (0.51), French (0.52), and
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Russian, with average accuracy scores of 0.51,
0.52, and 0.52, is less substantial. Note that
XVNLI is an NLI dataset, i.e., the random base-
line is at 1

3 . All models surpass this baseline in
all languages, except for CogVLM in Arabic (0.26)
and French (0.27). The best-performing model is
GPT4 V with an average accuracy across all lan-
guages of 0.68, followed by LLaVA 1.6 34B and
InternVL V1.2+ with average scores of 0.59 and
0.58, respectively.

MaRVL The dataset’s random baseline is 0.5,
which is often only slightly surpassed by most mod-
els, especially for Swahili and Tamil languages,
with an average accuracy of 0.53 and 0.54, respec-
tively. Notably, only 8 of 18 models perform best
in English, with an average accuracy of 0.61. For
the other models, the English performance is sur-
passed by Chinese, Indonesian, or Turkish, with
an average accuracy of 0.60, 0.60, and 0.59, re-
spectively. GPT-4V is on par with LLaVA 1.6 34B
despite the latter having much fewer parameters.

M5-VGR As with MaRVL, this dataset’s ran-
dom baseline is at 0.5. Only one of 18 models,
i.e., InternVL V1.2+, could surpass or reach this
baseline in all languages. As expected, most mod-
els performed best in English, German, or Rus-
sian, with average accuracies of 0.73, 0.68, and
0.69, respectively. They performed worst in low-
resource languages such as Amharic, Berber, Ben-
gali, Hausa, or Zulu, with an average accuracy
of 0.53, 0.49, 0.55, and 0.52, respectively. Only
three models, i.e., Gemini Pro V, mBlip mT0, and
GPT 4V, consistently and significantly surpass the
random baseline in all languages except for Berber.
The only languages where the average performance
is significantly higher than the 0.5 random baseline
are English (0.73), German (0.68), Russian (0.69),
and Thai (0.62). The average scores of the other
languages range from 0.49 in Berber to 0.57 in
Hindi.

M5-VLOD The dataset’s random baseline is 0.2
since the models need to find the outlier within
five images. Only GPT 4V and Gemini Pro V sig-
nificantly surpassed that baseline in all languages,
with an average accuracy of 0.42 and 0.36, respec-
tively. They achieve the best scores in English with
an average accuracy of 0.70 (GPT 4V) and 0.52
(Gemini Pro V. However, in Berber, both mod-
els only achieve scores around the random base-
line. All other models do not surpass the random

baseline in all languages, including English, by
more than 0.1, with average scores between 0.08
(CogVLM) and 0.23 (InternVL V1.2+) This high-
lights the challenge introduced by our dataset and
the performance gap between proprietary and open-
source models.

xFlickrCO The majority of models perform best
in English, often with a significant margin in av-
erage chrF++, i.e., 24.93 in English and 12.49 in
non-English languages. Other languages where
the models perform comparably well are German
and Spanish, with average chrF++ scores of 19.95
and 19.55, respectively. Interestingly, all mod-
els perform worse in non-Latin script languages,
i.e., Russian (9.70), Chinese (4.53), and Japanese
(4.05). Unexpectedly, the proprietary models GPT
4V and Gemini Pro V are surpassed by mBliP
BloomZ, mBliP mT0, and InternVL V1.2+, which
are much smaller open-source models. Even in
English, most open-source models outperform the
proprietary models.

XM3600 Note that due to limited resources, we
evaluated GPT 4V only on a subset of 12 of 36
languages. Most models perform best in English
(27.14 average chrF++) by a large margin, followed
by other Latin scripts in high-resource languages
such as French (23.65), Spanish (23.52), or Dutch
(21.01). On average, the models perform worst on
non-Latin script languages like Korean (3.50), Tel-
ugu (4.79), and Bengali (5.11). However, although
the chrF++ metric claims to be script and language-
independent, the low scores in high-resource lan-
guages like Chinese (3.95) and Japanese (5.13)
make the metric questionable. While detailed anal-
ysis is out of the scope of this work, in future
work, we will investigate this issue further (see
Section 8.1).

6 Aggregated Result Analyses

6.1 Performance per Language
Figure 5 shows the average performances ag-
gregated by language3 or language taxonomy
classes (Joshi et al., 2020). These taxonomy classes
indicated how well a respective language is rep-
resented and considered within the research field
of NLP based on papers published at CL confer-
ences. High-resource languages such as English
or German are in Class 5, whereas low-resource

3We do not show all 36 languages of XM3600 for better
readability.
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languages such as Berber are in Class 0. For details
about the languages and their taxonomy classes,
please refer to Table 7.

As can be observed from Figure 5a and Fig-
ure 5b, the models perform best in English, fol-
lowed by other European languages across all
datasets. Our newly presented M5-VLOD dataset
is an exception, where the average performance
for all languages is around the random baseline,
indicating the challenge it implies. As expected,
the models consistently perform worse on low-
resource languages than on high-resource lan-
guages on all datasets. This is also displayed in
Figure 5c, where it can be observed that the av-
erage performance decreases with the language
taxonomy class. Note that this is not precisely true
for xFlickrCO and XVNLI because the average
on Class-5 languages is lowered by outliers, as in-
dicated by the large error bars. In contrast, the
models performed comparably well in only one
Class 3 or 4 language, respectively.

(a) Performance on VQA, VGR, and VNLI datasets aggre-
gated by language.

(b) Performance on image captioning datasets aggregated by
language.

(c) Performance on datasets aggregated by language taxonomy
class as introduced by Joshi et al. (2020).

Figure 5: Models’ performances on all datasets aggre-
gated by language or language taxonomy classes.

6.2 Performance vs. Model Parameters

In Figure 6, we plot the English and non-English
average performance on the employed datasets ver-

sus the models’ sizes in multiple regression plots.
Note that, on the x-axes, we indicated the unknown
sizes of GPT 4V and Gemini Pro V by “???”, which
are estimated to be of magnitudes larger than all
other models evaluated in this benchmark hence
should be much further right. However, we did not
do so to improve the readability of the plots.

In the figures, we can make several observa-
tions: Firstly, the average English performance
is higher than the non-English performance for
all models on all datasets. Secondly, the mark-
ers, which represent the average performance of a
specific model on a dataset, show that the largest
model does not always perform best and that the
difference between smaller and larger models is of-
ten neglectable. The same finding is shown by the
relatively flat slope of the regression lines. How-
ever, for the M5-VLOD and VGR datasets, the
regression line for the average English scores is
steeper, meaning that larger models perform con-
siderably better than the smaller models. Since this
work introduces the datasets and M5-VLOD even
introduces a novel task, it can be concluded that
larger models can better generalize to unseen data.

Figure 6: Regression plots showing the English and
average non-English performance versus model size
on different datasets. On the x-axis, we indicated the
unknown sizes of GPT 4V and Gemini Pro V by “???”.

6.3 Language Fidelity Analysis
Inspired by Holtermann et al. (2024), we report
the results of a language fidelity analysis, which
assesses how often a model responds in the re-
quested language on average. For this, we used
GlotLIDv3 (Kargaran et al., 2023) to predict the
language based on the output text of the respective
models. Since it is hard to predict the language of
a word or a multi-word expression due to ambigu-
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ity, we selected the xFlickrCO dataset, where the
expected response of a model is an image caption,
i.e., a sentence, in one of eight languages. As it can
be observed from Table 2, all models achieve (al-
most) perfect fidelity in English where, whereas for
Japanese, Russian, and Turkish, the average fidelity
drops to two-thirds. Interestingly, the small-sized
mBLIP models have almost perfect fidelity in all
languages, (slightly) surpassing larger models like
InternVL V1.2+ and GPT 4V.

Table 2: Language fidelity results on the xFlickrCO
dataset.

Model Language

zh en de id ja ru es tr Avg.

BakLLaVA .00 1.0 .39 .06 .00 .00 .44 .00 .24
Yi-VL 6B .14 1.0 .20 .00 .20 .01 .57 .00 .28
Qwen-VL .95 .99 .18 .11 .15 .08 .15 .07 .33
Yi-VL 34B .43 1.0 .79 .45 .58 .22 .25 .33 .51
CogVLM .44 .95 .74 .76 .38 .43 .82 .54 .63
LLaVA 1.5 13B .88 1.0 .75 .55 .90 .26 .75 .40 .69
LLaVA 1.5 7B .83 1.0 .96 .83 .09 .22 .97 .67 .70
MiniCPM-V .21 1.0 .93 .79 .89 .96 .91 .68 .80
LLaVA 1.6 7B .99 .99 .66 .91 .59 .88 .91 .89 .85
InternVL V1.1 .96 1.0 .93 .78 .88 .89 .97 .66 .89
OmniLMM 12B .63 1.0 .95 .92 .83 .92 .98 .88 .89
Gemini Pro .95 .95 .95 .88 .91 .96 .97 .96 .94
LLaVA 1.6 13B 1.0 1.0 .90 .96 .91 .87 .97 .93 .94
LLaVA 1.6 34B .88 1.0 .99 .99 .86 .99 .99 .99 .96
GPT 4V .97 1.0 1.0 .98 .88 .99 .99 1.0 .98
InternVL V1.2+ .99 1.0 1.0 .95 .97 .99 .99 .96 .98
mBliP BloomZ .96 1.0 1.0 .99 .99 1.0 1.0 .99 .99
mBliP mT0 .96 1.0 1.0 .99 .99 1.0 1.0 1.0 .99
Avg. .73 .99 .79 .72 .67 .65 .81 .66 .75

While the language fidelity of a model focuses
on the generated text, we argue that the fidelity
is also an indicator of the model’s general lan-
guage capabilities. To prove this hypothesis, we
computed Pearson correlation coefficients between
the reported fidelity and the models’ performance
on the datasets for the xFlickrCO languages. As
shown in Table 17, there is a positive moderate or
high correlation between the average fidelity and
the average score for most datasets. However, for
xGQA and M5-VLOD, there is only a minor posi-
tive average correlation.

7 Conclusion

We introduced M5, a diverse benchmark in
which we evaluated 18 Large Multimodal Mod-
els (LMMs) with varying sizes across five visio-
linguistic tasks in eight datasets comprising 41
unique languages. Further, we presented two novel
datasets – M5-VGR and M5-VLOD – which focus
on underrepresented languages and depict cultur-
ally diverse scenes. With M5-VLOD, we intro-
duce a new visio-linguistic outlier detection task
in which only proprietary models achieve reason-
able scores. Our experiments revealed that model

size does not always correlate with better perfor-
mance, especially in non-English languages, un-
derscoring the importance of diverse, multilingual
training data and robust architectures. Performance
disparities were prominent between high-resource
languages like English and low-resource languages
across all datasets and models, highlighting on-
going challenges in achieving globally equitable
multilingual AI. With M5, we aim to impel the de-
velopment of more inclusive models suitable for
diverse languages and cultures.

8 Limitations

This section outlines several limitations of our cur-
rent study that will be addressed in future work.

8.1 Metrics for Multilingual Image
Captioning

Our benchmark and current research generally lack
robust metrics for evaluating multilingual image
captioning, especially for non-Latin script lan-
guages. The issue, which is the same for ma-
chine translation tasks, arises because of the na-
ture of most metrics, such as chrF (Popović, 2017),
CIDEr (Vedantam et al., 2015), ROUGE (Lin,
2004), BLUE (Papineni et al., 2002), or ME-
TEOR (Banerjee and Lavie, 2005), which are based
on comparing word or character n-grams between
the source and target sequence. For non-Latin
scripts, tokenization or segmentation can be chal-
lenging because it might not contain spaces or punc-
tuation, or the characters are logographic. Hence,
their usability or effectiveness is doubtful in such
scenarios because the metrics rely on tokenization.

Other metrics, such as BERTScore (Zhang
et al., 2020), CLIPScore (Hessel et al., 2021), or
COMET (Rei et al., 2020), do not rely on the cap-
tions’ surface forms but on their token or sentence
embeddings. However, they suffer from other is-
sues: They require strong multilingual or cross-
lingual encoder models capable of computing em-
beddings for many languages, which itself is a chal-
lenging task. Further, the scores computed with
these metrics are often not calibrated across lan-
guages and thus not directly comparable between
different languages.

A promising currently popular solution might
be the use of robust multilingual state-of-the-art
LLMs such as GPT 4o4, Claude 3 Opus5, or Gem-

4https://openai.com/index/hello-gpt-4o/
5https://www.anthropic.com/news/
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ini 1.5 Ultra6 as a judge (Zheng et al., 2024). How-
ever, this would require more computational and
financial resources and, most importantly, more
investigation.

8.2 VQA Metrics for Generative Models
The problem when employing and evaluating gener-
ative language models on question-answering tasks
is that the models can generally output arbitrary
token sequences. However, the gold label answers
are limited and often comprise only a short phrase,
a single word, or even a binary label. Hence, map-
ping the predicted answers to their gold labels is
not straightforward, and the difficulty drastically
increases in multilingual scenarios. The relaxed
accuracy metric employed in this study (see Sec-
tion A.1) has been found to occasionally incorrectly
classify correct answers, leading to false negatives,
especially in open vocabulary visual question an-
swering (VQA). One way to address this issue is
to leverage strong state-of-the-art LLMs as judges,
as described above, to enhance the accuracy of the
evaluations.

8.3 Influence of Prompting
Another limitation of this and most, if not all, other
current studies is grounded in the model prompting.
Since different models might react differently to
specific prompting styles, and we only employ a
single prompt per dataset for all models7 (see Fig-
ure 7), the results might not be optimal. This issue
has been partially addressed by Ahuja et al. (2023a)
but is out of the scope of this work.

8.4 “Outdated” Models
Since the pace of current research in NLP, CV, and
multimodal machine learning is swift, the models
employed in our benchmarking exercise might be
considered slightly outdated. Note that we consid-
ered models released until March 2024. Since then,
numerous improved LMMs based on state-of-the-
art LLMs, such as Llama38 and novel image en-
coders techniques such as NaVIT (Dehghani et al.,
2024), have been publicly released. Because this
was foreseeable, we designed our benchmark to be
easily extendable with newer models, which we
will include in future work.
claude-3-family

6https://blog.google/technology/ai/
google-gemini-next-generation-model-february-2024/

7We do apply the model-specific prompt or chat templates,
though.

8https://ai.meta.com/blog/meta-llama-3

8.5 Small M5 Datasets
This work introduced two datasets, M5-VGR and
M5-VLOD, which comprise about 115 samples
for each of the 12 languages. Compared to other
datasets, they can be considered small. We will
increase their sizes in future work to obtain more
robust and generalizable results.

8.6 Missing multimodal and Multilingual
Datasets

Currently, the M5 Benchmark comprises 5 text-
image tasks, i.e., VQA, VGR, VNLI, and image
captioning, thus missing other suitable tasks like
multimodal and multilingual summarization. Fur-
ther, other multimodal multilingual VQA and VGR
datasets have emerged while writing this paper. We
will include both new tasks and new datasets in
future versions of the M5.
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A Experimental Setup Details

This section details the employed metrics, prompts, and generation hyperparameters.
Note that we ran all experiments on A6000 (50GB) and A100 (80GB) GPUs. The largest evaluated

model (40B) fits on an A100.

A.1 Metrics
Following Geigle et al. (2023), we report a relaxed accuracy metric for the xGQA, MaXM, XVNLI, and
MaRVL datasets due to the generative nature of the considered models. More specifically, we post-process
the generated answers by, e.g., lowercasing, stripping, or removing punctuation. We then consider the
processed generated answer correct if it matches the gold answer or starts or ends with the gold answer.
Further, we allow synonyms for boolean and numerical values. Examples can be found in Table A.2.

Inspired by Ahuja et al. (2023b), we report the chrF++ (Popović, 2017) metric for the xFlickrCo and
XM3600 datasets.

A.2 Relaxed Accuracy Metric

Table 3: Examples of generated answers considered correct or incorrect in the relaxed accuracy metric used to
measure the performance on the xGQA, MaXM, MaRVL, XVNLI, M5-VGR, and M5-VLOD datasets. For more
details, please refer to our GitHub repository.

Generated Answer Gold Answer Considered Correct

{Yes, 1, True} true yes
{No, 0, False} false yes
A car. car yes
Yes, it is correct. yes yes
It is not correct, no. no yes
The color of the leaf is green. green yes
There are three birds. three birds yes
Five 5 yes
{yes, true} entailment yes
{no, false} contradiction yes
maybe neutral yes
There are three birds in the image. three birds no
There are three birds. 3 no
three birds 3 no
three birds 3 birds no

A.3 Prompts
Figure 7 presents the dataset-specific textual prompts we used for all models in this benchmark. Note that
this does not include model-specific prompt templates, image placeholders, special tags, or symbols, only
the ”raw” textual prompt, which is then embedded in the template as required by the respective model.
The placeholders {QUESTION}, {LANGUAGE}, or {HYPOTHESIS} are replaced by the sample specific text.
The prompts are partially inspired by Geigle et al. (2023) or Bugliarello et al. (2022).

A.4 Hyperparameters
This section briefly reports hyperparameters used within our experiments for better reproducibility.

A.4.1 Generation Parameters
We used the same generation hyperparameters to generate responses with all the employed open-source
models on all datasets (see Table 4). Those are inspired by the default parameters in the “transformers”
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xGQA

Question: {QUESTION} Short answer in English:

MaXM

Question: {QUESTION} Short answer in {LANGUAGE}:

MaRVL

Based on the two images, is it correct to say “{HYPOTHESIS}”? Yes or no? One word answer in
English:

XVNLI

Is it guaranteed true that “{HYPOTHESIS}”? Yes, no, or maybe? One word answer in English:

M5-VGR

Based on the two images, is it correct to say “{HYPOTHESIS}”? Yes or no? One word answer in
English:

M5-VLOD

Based on the 5 images ordered from top-left to bottom-right, which image does not match the
hypothesis “{HYPOTHESIS}”? Choose one from [A, B, C, D, E] and only output a single letter:

xFlickrCo

Brief caption in {LANGUAGE}:

XM3600

Brief caption in {LANGUAGE}:

Figure 7: Prompts employed for the different datasets.

library9. Because for CogVLM, beam search is not supported, we set “num_beams” to 1. For GPT 4V
and Gemini Pro V, we use the default parameters of the respective Python clients.

Table 4: Generation hyperparameters to generate responses with all the employed models on all datasets.

Parameter Value

num_beams 2
do_sample True
max_new_tokens 50
temperature 1.0
top_k 50
top_p 0.95

A.4.2 Image Order for Multi-Image Datasets
Most models employed in our dataset only support a single image per prompt. For datasets where a
sample comprises more than one image, i.e., for MaRVL, M5-VGR, and M5-VLOD, we use the following
strategy: We first stack the images horizontally with a gutter of 10 pixels, provide them as a single image
in the prompt, and generate the response. Then, we do the same again but stack the images vertically. For

9https://huggingface.co/docs/transformers/en/main_classes/text_generation
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M5-VLOD, we also create a stacked image with two columns and three rows. The reported scores are the
average of all variants.
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B Dataset Details

B.1 M5-VGR and M5-VLOD Details
B.1.1 M5-VGR Examples

Figure 8: Amharic M5-VGR Sample.

Figure 9: Bengali M5-VGR Sample.

Figure 10: Berber M5-VGR Sample.

Figure 11: English M5-VGR Sample.
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Figure 12: Filipino M5-VGR Sample.

Figure 13: German M5-VGR Sample.

Figure 14: Hausa M5-VGR Sample.

Figure 15: Hindi M5-VGR Sample.

Figure 16: Russian M5-VGR Sample.
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Figure 17: Swahili M5-VGR Sample.

Figure 18: Thai M5-VGR Sample.

Figure 19: Zulu M5-VGR Sample.
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B.1.2 M5-VLOD Examples

Figure 20: Amharic M5-VLOD Sample. The images are ordered from top-left to bottom-right.

Figure 21: Bengali M5-VLOD Sample. The images are ordered from top-left to bottom-right.

Figure 22: Berber M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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Figure 23: English M5-VLOD Sample. The images are ordered from top-left to bottom-right.

Figure 24: Filipino M5-VLOD Sample. The images are ordered from top-left to bottom-right.

Figure 25: German M5-VLOD Sample. The images are ordered from top-left to bottom-right.

Figure 26: Hausa M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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Figure 27: Hindi M5-VLOD Sample. The images are ordered from top-left to bottom-right.

Figure 28: Russian M5-VLOD Sample. The images are ordered from top-left to bottom-right.

Figure 29: Swahili M5-VLOD Sample. The images are ordered from top-left to bottom-right.

Figure 30: Thai M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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Figure 31: Zulu M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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B.1.3 Topics

Table 5: Number of images tagged with a certain topic in the M5-VGR (A) and M5-VLOD (B) datasets.

Topic Language
Amharic Berber Bengali German English Filipino Hausa Hindi Russian Swahili Thai Zulu
A B A B A B A B A B A B A B A B A B A B A B A B

armchair 1 2 1 1 1 1 1 1 1 2 3 1 1 1 1 1 2 1 3 1 1 1 1 1
backyard 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1
bathroom privacy 1 1 3 3 1 1 2 1 1 1 3 4 1 1 1 1 1 1 2 1 1 1 1 1
bathroom/toilet 1 2 3 1 1 2 1 3 2 1 1 1 2 1 1 1 1 1 3 3 1 1 1 1
bed 1 1 1 2 2 1 1 1 1 3 1 2 4 1 1 1 2 2 1 1 4 1 1 1
bedroom 2 4 1 2 2 2 1 1 1 2 1 1 3 1 1 2 1 1 2 1 1 1 1 1
books 2 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1
ceiling 1 2 1 1 2 1 1 1 2 2 1 1 1 4 2 1 2 1 2 2 2 1 1 2
children room 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1
cleaning equipment 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
cooking pots 1 1 2 2 2 1 1 1 1 1 2 1 2 2 1 1 2 1 1 2 1 2 1 1
cooking utensils 1 1 3 2 1 3 1 1 1 1 1 1 1 3 2 1 1 1 1 1 2 1 1 1
couch 1 1 1 1 1 1 1 2 2 1 3 3 3 1 1 1 2 1 2 1 1 1 3 1
cups/mugs/glasses 1 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
cutlery 1 1 1 1 1 1 1 1 2 1 3 1 1 1 1 2 1 1 1 1 1 2 1 1
dish racks 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1
dish washing brush/cloth 2 1 1 1 3 1 1 1 1 3 1 1 1 1 3 2 1 2 1 1 1 1 1 1
dish washing soap 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 2 2 2 2 2 1 2 1 1
drainage 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1
drinking water 3 4 2 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 4 2
drying 3 1 1 1 5 1 1 1 1 1 2 2 1 2 3 1 1 1 1 1 1 1 1 1
everyday shoes 1 2 1 2 2 1 3 1 1 1 2 1 2 3 1 1 1 2 1 2 2 1 2 2
family 2 2 4 1 2 1 3 2 1 1 2 1 3 3 1 1 1 2 1 1 2 2 2 2
floor 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1
front door 2 1 4 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 4 1 3 2 1 1
grains 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1
guest bed 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1
hair brush/comb 1 1 1 1 3 1 2 3 1 1 1 1 2 2 1 1 2 1 1 2 1 1 3 1
hand back 1 2 1 1 1 1 1 1 1 1 2 2 3 1 2 1 2 1 1 1 1 2 1 2
hand palm 1 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1
hand washing 2 1 3 2 1 1 1 5 1 1 1 4 2 1 1 3 2 2 2 1 2 1 2 3
home 1 1 3 2 2 1 2 1 1 2 1 4 1 1 5 1 1 2 1 2 2 2 1 2
jewelry 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1
kitchen 2 1 1 2 1 1 1 1 4 1 2 2 1 1 1 1 2 2 1 2 2 2 1 1
kitchen sink 1 2 2 2 1 1 4 2 1 2 2 1 1 2 1 2 1 1 1 3 1 1 3 3
light source in kitchen 1 1 2 1 2 3 2 2 3 2 1 1 1 1 3 1 1 1 2 1 1 1 1 1
light source in livingroom 1 2 2 2 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1
living room 1 1 1 1 1 1 1 2 2 1 3 1 1 1 1 1 2 2 1 1 2 1 1 1
lock on front door 1 1 1 1 1 4 1 1 3 1 1 1 2 1 1 3 1 2 1 1 2 3 1 1
make up 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1
meat or fish 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
medication 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1
most loved item 1 1 1 1 1 2 3 1 2 2 3 3 2 1 2 2 2 2 2 0 1 1 4 4
most loved toy 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1
nicest shoes 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 1 1 1 1 2 2 2 1 1
oven 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 1
paper 2 1 1 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
pen/pencils 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1
phone 2 2 1 1 2 1 1 1 2 3 1 3 2 1 2 1 2 1 1 3 1 1 2 1
place where eating dinner 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 2 1 1
plate of food 2 1 1 4 1 1 2 3 1 1 2 1 3 1 1 1 1 2 1 1 1 1 1 1
plates 2 1 1 1 2 2 1 1 1 1 1 3 1 1 1 1 1 2 1 1 2 1 1 1
play area 1 1 2 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1
power outlet 1 2 1 1 1 1 3 4 2 1 1 1 1 1 3 1 1 1 1 1 1 4 2 1
refrigerator 1 1 1 1 2 1 4 4 1 3 1 3 1 1 1 3 2 1 1 1 1 1 1 1
roof 2 1 1 1 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
shampoo 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 2 1 1
shower 1 1 1 2 1 1 1 1 1 2 1 2 1 1 1 1 2 2 1 1 1 1 1 1
sitting area 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
soap for hands and body 1 1 2 2 2 2 1 2 1 1 1 1 2 1 2 1 2 1 1 1 2 2 1 1
social drink 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
sofa 1 1 1 1 1 1 1 1 1 2 1 1 2 4 1 1 1 1 1 1 2 1 1 1
source of cool 1 1 1 1 2 1 1 1 2 1 1 1 2 1 2 2 1 1 1 1 1 1 1 2
spices 1 2 1 1 2 1 1 3 3 3 2 1 1 1 2 1 2 2 1 2 1 2 1 3
storage room 1 2 1 1 1 2 1 1 1 1 5 1 2 1 1 2 1 2 1 1 1 1 1 1
stove/hob 2 1 1 2 1 1 1 1 1 3 1 1 1 5 1 2 1 1 2 3 2 1 1 4
street detail 4 1 1 1 1 1 1 1 1 3 2 1 1 2 1 2 2 1 2 1 2 1 1 1
street view 1 1 1 2 1 4 2 1 1 1 1 1 1 2 1 3 1 1 2 1 2 2 1 2
switch on/off 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 3 1 1
table with food 2 4 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
teeth 1 1 1 1 1 1 1 1 1 2 1 2 3 1 1 1 2 2 2 2 1 2 1 1
toilet 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1
toilet paper 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 3 2
tooth paste 2 1 1 1 1 2 2 3 2 2 2 1 1 1 4 1 2 2 3 1 1 1 2 3
toothbrush 1 2 1 1 1 1 3 2 1 1 2 1 1 2 1 1 1 2 1 3 1 1 3 3
toys 2 1 2 1 3 5 1 1 1 3 1 2 2 1 1 4 2 3 1 1 2 3 1 1
trash/waste 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
tv 1 1 1 2 3 2 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 2 4 6
vegetables 1 2 2 1 2 1 1 1 3 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1
wall 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
wall clock 2 1 1 2 1 1 1 1 1 1 1 4 1 1 1 2 2 1 1 1 1 2 1 1
wall decoration 1 2 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 2 2 0 2 1 1 1
wall inside 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1
wardrobe 1 3 2 1 2 1 1 2 1 1 2 1 1 1 2 2 1 1 2 2 2 2 1 1
washing clothes/cleaning 1 1 1 2 1 1 1 1 1 2 1 1 1 1 3 1 1 1 4 4 1 3 1 1
washing detergent 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 2 2 1 2 1 1
water outlet 2 1 3 2 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
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B.2 Dataset Language Details

Table 6: Language support of the datasets considered in this work. More details one the languages are reported in
Table 7.

Language Script MaXM xGQA XNLVI MaRVL M5-VLOD M5-VGR xFlickrCO XM3600

Amharic Ethiopic no no no no yes yes no no

Arabic Arabic no no yes no no no no yes

Bengali Bengali no yes no no yes yes no yes

Berber Tifinagh no no no no yes yes no no

Chinese Hanzi yes yes no yes no no yes yes

Croatian Latin no no no no no no no yes

Czech Latin no no no no no no no yes

Danish Latin no no no no no no no yes

Dutch Latin no no no no no no no yes

English Latin yes yes yes no yes yes yes yes

Filipino Latin no no no no yes yes no yes

Finnish Latin no no no no no no no yes

French Latin yes no yes no no no no yes

German Latin no yes no no yes yes yes yes

Greek Greek no no no no no no no yes

Hausa Latin no no no no yes yes no no

Hebrew Hebrew yes no no no no no no yes

Hindi Devanagari yes no no no yes yes no yes

Hungarian Latin no no no no no no no yes

Indonesian Latin no yes no yes no no yes yes

Italian Latin no no no no no no no yes

Japanese Japanese no no no no no no yes yes

Korean Hangul no yes no no no no no yes

Maori Latin no no no no no no no yes

Norwegian Latin no no no no no no no yes

Persian Perso-Arabic no no no no no no no yes

Polish Latin no no no no no no no yes

Portuguese Latin no yes no no no no no yes

Quechua Latin no no no no no no no yes

Romanian Latin yes no no no no no no yes

Russian Cyrillic no yes yes no yes yes yes yes

Spanish Latin no no yes no no no yes yes

Swahili Latin no no no yes yes yes no yes

Swedish Latin no no no no no no no yes

Tamil Tamil no no no yes no no no no

Telugu Telugu no no no no no no no yes

Thai Thai yes no no no yes yes no yes

Turkish Latin no no no yes no no yes yes

Ukrainian Cyrillic no no no no no no no yes

Vietnamese Latin no no no no no no no yes

Zulu Latin no no no no yes yes no no

Unique Languages 7 8 5 5 12 12 8 36
Unique Scripts 4 5 3 3 7 7 4 12
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B.3 Language Details

Table 7: Details and statistics of languages comprised in the datasets of this benchmark. The continent and
subregion columns refer to the content or subregion where the respective language is mostly spoken. The number of
speakers is an estimate of the number of L1 and L2 speakers based on different public sources such as Wikipedia10,
Ethnologue 11, and Statista12. The “Taxonomy” column indicates the taxonomy class of the language based on Joshi
et al. (2020).

Language ISO 639 Lang. Family Script Continent Subregion Taxonomy Speakers / 106

Arabic ar Afro-Asiatic Arabic Afrika & Asia North Africa & Middle East 5 630.00
Chinese zh Sino-Tibetan Hanzi Asia Northeastern Asia 5 1330.00
English en Indo-European Latin America North America 5 1457.00
French fr Indo-European Latin Europe Western Europe 5 310.00
German de Indo-European Latin Europe Western Europe 5 175.00
Japanese ja Japonic Japanese Asia Northeastern Asia 5 128.00
Spanish es Indo-European Latin Europe Southern Europe 5 600.00
Croatian hr Indo-European Latin Europe Central & Eastern Europe 4 6.80
Czech cs Indo-European Latin Europe Central & Eastern Europe 4 11.00
Dutch nl Indo-European Latin Europe Western Europe 4 30.00
Finnish fi Uralic Latin Europe Northern Europe 4 5.80
Hindi hi Indo-European Devanagari Asia Central & South Asia 4 600.00
Hungarian hu Uralic Latin Europe Central & Eastern Europe 4 17.00
Italian it Indo-European Latin Europe Southern Europe 4 68.00
Korean ko Koreanic Hangul Asia Northeastern Asia 4 82.00
Persian fa Indo-European Perso-Arabic Asia Middle East 4 130.00
Polish pl Indo-European Latin Europe Central & Eastern Europe 4 41.00
Portuguese pt Indo-European Latin Europe & America Southern Europe & South America 4 360.00
Russian ru Indo-European Cyrillic Asia Central Asia 4 260.00
Swedish sv Indo-European Latin Europe Northern Europe 4 13.00
Turkish tr Turkic Latin Asia Middle East 4 90.00
Vietnamese vi Austroasiatic Latin Asia Southeastern Asia 4 85.00
Bengali bn Indo-European Bengali Asia Central & South Asia 3 270.00
Danish da Indo-European Latin Europe Western Europe 3 6.00
Filipino fil Austronesian Latin Asia Southeastern Asia 3 83.00
Greek el Indo-European Greek Europe Central & Eastern Europe 3 13.50
Hebrew he & iw Afro-Asiatic Hebrew Asia Middle East 3 9.00
Indonesian id Austronesian Latin Asia Southeastern Asia 3 300.00
Romanian ro Indo-European Latin Europe Central & Eastern Europe 3 28.50
Tamil ta Dravidian Tamil Asia Central & South Asia 3 86.00
Thai th Kra-Dai Thai Asia Southeastern Asia 3 80.00
Ukrainian uk Indo-European Cyrillic Europe Central & Eastern Europe 3 32.80
Amharic am Afro-Asiatic Ethiopic Africa Eastern Africa 2 57.00
Hausa ha Afro-Asiatic Latin Africa Western Africa 2 79.00
Swahili sw Niger-Congo Latin Africa Eastern Africa 2 73.00
Zulu zu Niger-Congo Latin Africa Southern Africa 2 28.00
Maori mi Austronesian Latin Australia & Oceania Australia & Oceania 1 0.19
Norwegian no Indo-European Latin Europe Northern Europe 1 4.32
Quechua quz Quechuan Latin America South America 1 9.00
Telugu te Dravidian Telugu Asia Central & South Asia 1 96.00
Berber ber Afro-Asiatic Tifinagh Africa Northern Africa 0 26.20

3https://en.wikipedia.org/wiki/List_of_languages_by_total_number_of_speakers
4https://www.ethnologue.com/
5https://www.statista.com/statistics/266808/the-most-spoken-languages-worldwide/
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C Model Details

Table 8: Architectural details of the LMMs evaluated in this study. The columns LM, VM, and ML are “Language
Model”, “Vision Model”, and “Mapping Modules”, respectively, and show the number of parameters of the
particular module. “|Total|” shows all parameters of the model. Note that we report friedly names of the models
which are enriched with hyperlinks pointing to the respective Huggingface repositories (when viewed digitally). For
Gemini Pro Vision and GPT-4 Vision, we used the gemini-1.0-pro-vision and gpt-4-1106-vision-preview
variants, respectively.

Model LM VM MM |Total| |LM| |VM| |MM|

MiniCPM-V [27; 50] MiniCPM-2B SigLIP 400M MLP 3.43B 3.01B 397.75M 29.51M
mBliP mT0 [22] Flan-T5-XL EVA01 CLIP-ViT-g QFormer 4.84B 3.74B 985.95M 106.71M
Yi-VL 6B [5] Yi-6B-Chat CLIP-ViT-H-14 MLP 6.71B 5.80B 631.75M 22.04M
LLaVA 1.6 7B [38] Vicuna-7B-v1.5 CLIP-ViT-L MLP 6.76B 6.61B 303.51M 20.98M
LLaVA 1.5 7B [39] Vicuna-7B-v1.5 CLIP-ViT-L MLP 7.06B 6.74B 303.51M 20.98M
BakLLaVA [39] Mistral 7B v0.1 CLIP-ViT-L MLP 7.57B 7.24B 303.51M 20.98M
mBliP BloomZ [22] BloomZ 7B EVA01 CLIP-ViT-g QFormer 8.16B 7.07B 985.95M 108.29M
Qwen-VL [9] Qwen-7B CLIP-VIT-bigG CrossAttn 9.66B 7.10B 1.94B 80.00M
OmniLMM 12B [50] Zephyr 7B � EVA02 CLIP ViT-E MLP 11.61B 7.24B 4.28B 93.36M
LLaVA 1.6 13B [38] Vicuna-13B-v1.5 CLIP-ViT-L MLP 13.05B 12.85B 303.51M 31.47M
LLaVA 1.5 13B [39] Vicuna-13B-v1.5 CLIP-ViT-L MLP 13.35B 13.02B 303.51M 31.47M
CogVLM [48] Vicuna-7B-v1.5 EVA02 CLIP ViT-E CrossAttn 17.64B 6.74B 4.28B 6.62B
InternVL V1.1 [15] Llama-2-13B InternViT 6B MLP 19.11B 13.12B 5.91B 91.79M
LLaVA 1.6 34B [38] Nous-Hermes-2-Yi-34B CLIP-ViT-L MLP 34.45B 33.93B 303.51M 58.73M
Yi-VL 34B [5] Yi-34B-Chat CLIP-ViT-H MLP 35.08B 33.93B 631.75M 60.60M
InternVL V1.2+ [15] Nous-Hermes-2-Yi-34B InternViT-6B V1-2 MLP 40.07B 34.39B 5.54B 143.17M
Gemini Pro Vision [7] ? ? ? ? ? ? ?
GPT-4 Vision [40] ? ? ? ? ? ? ?

4335

IV. M5 – A Diverse Benchmark to Assess the Performance of Large Multimodal Models
Across Multilingual and Multicultural Vision-Language Tasks 143



D Results Details

D.1 General Results
D.1.1 xGQA

Figure 32: A bar plot showing the average accuracy per language and model on the xGQA dataset. The models on
the x-Axis are ordered by their average score across all languages so that the best performing model is on the right
and the worst is on the left.

Table 9: The average accuracy per language and model on the xGQA dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
bn de en id ko pt ru zh NEA

LLaVA 1.5 7B 0.06 0.35 0.62 0.33 0.29 0.35 0.36 0.35 0.30
CogVLM 0.05 0.38 0.59 0.34 0.30 0.33 0.33 0.37 0.30
MiniCPM-V 0.11 0.42 0.55 0.33 0.40 0.45 0.35 0.08 0.31
BakLLaVA 0.06 0.39 0.62 0.16 0.34 0.37 0.44 0.45 0.32
Yi-VL 6B 0.11 0.39 0.57 0.35 0.34 0.39 0.41 0.22 0.32
Qwen-VL 0.13 0.43 0.59 0.34 0.34 0.37 0.39 0.31 0.33
LLaVA 1.6 7B 0.07 0.42 0.60 0.37 0.33 0.39 0.37 0.38 0.34
Gemini Pro V 0.33 0.37 0.46 0.34 0.34 0.34 0.31 0.35 0.34
LLaVA 1.5 13B 0.10 0.44 0.62 0.34 0.31 0.38 0.40 0.40 0.34
OmniLMM 12B 0.21 0.42 0.49 0.35 0.37 0.38 0.41 0.39 0.36
LLaVA 1.6 13B 0.11 0.52 0.65 0.37 0.39 0.40 0.44 0.41 0.38
Yi-VL 34B 0.18 0.50 0.58 0.42 0.39 0.47 0.41 0.32 0.38
mBliP BloomZ 0.40 0.38 0.44 0.41 0.29 0.43 0.39 0.41 0.39
mBliP mT0 0.39 0.42 0.44 0.39 0.39 0.41 0.41 0.40 0.40
GPT 4V 0.44 0.42 0.45 0.42 0.41 0.41 0.38 0.41 0.41
InternVL V1.2+ 0.22 0.51 0.67 0.46 0.49 0.52 0.47 0.37 0.43
LLaVA 1.6 34B 0.21 0.54 0.65 0.48 0.44 0.52 0.50 0.56 0.46
InternVL V1.1 0.31 0.53 0.63 0.48 0.48 0.51 0.49 0.55 0.48

Average 0.19 0.43 0.57 0.37 0.37 0.41 0.40 0.37 0.37
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D.1.2 MaXM

Figure 33: A bar plot showing the average accuracy per language and model on the MaXM dataset. The models on
the x-Axis are ordered by their average score across all languages so that the best performing model is on the right
and the worst is on the left.

Table 10: The average accuracy per language and model on the MaXM dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
en fr hi iw ro th zh NEA

CogVLM 0.43 0.03 0.01 0.04 0.02 0.00 0.03 0.02
BakLLaVA 0.53 0.14 0.02 0.02 0.06 0.14 0.07 0.08
OmniLMM 12B 0.48 0.28 0.03 0.01 0.17 0.13 0.06 0.11
LLaVA 1.5 7B 0.52 0.34 0.13 0.05 0.16 0.09 0.12 0.15
LLaVA 1.6 7B 0.34 0.38 0.09 0.11 0.14 0.10 0.12 0.16
LLaVA 1.5 13B 0.56 0.35 0.09 0.05 0.32 0.12 0.19 0.19
MiniCPM-V 0.56 0.28 0.12 0.09 0.13 0.13 0.39 0.19
Yi-VL 34B 0.53 0.21 0.14 0.14 0.16 0.23 0.31 0.20
Yi-VL 6B 0.53 0.32 0.13 0.16 0.12 0.18 0.29 0.20
Qwen-VL 0.50 0.37 0.15 0.20 0.20 0.29 0.17 0.23
LLaVA 1.6 13B 0.46 0.43 0.13 0.16 0.38 0.17 0.17 0.24
mBliP BloomZ 0.55 0.23 0.53 0.18 0.32 0.19 0.42 0.31
LLaVA 1.6 34B 0.58 0.44 0.25 0.27 0.43 0.25 0.32 0.32
InternVL V1.1 0.58 0.47 0.33 0.22 0.36 0.28 0.40 0.34
mBliP mT0 0.50 0.42 0.50 0.37 0.41 0.58 0.24 0.42
InternVL V1.2+ 0.60 0.52 0.35 0.35 0.44 0.31 0.55 0.42
Gemini Pro V 0.48 0.50 0.47 0.43 0.43 0.61 0.29 0.45
GPT 4V 0.49 0.55 0.52 0.62 0.53 0.64 0.31 0.53

Average 0.51 0.35 0.22 0.19 0.27 0.25 0.24 0.25

4337

IV. M5 – A Diverse Benchmark to Assess the Performance of Large Multimodal Models
Across Multilingual and Multicultural Vision-Language Tasks 145



D.1.3 XVNLI

Figure 34: A bar plot showing the average accuracy per language and model on the XVNLI dataset. The models on
the x-Axis are ordered by their average score across all languages so that the best performing model is on the right
and the worst is on the left.

Table 11: The average accuracy per language and model on the XVNLI dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
ar en es fr ru NEA

CogVLM 0.26 0.47 0.31 0.27 0.32 0.29
BakLLaVA 0.32 0.48 0.33 0.33 0.36 0.34
Yi-VL 6B 0.34 0.56 0.38 0.39 0.41 0.38
mBliP BloomZ 0.40 0.40 0.45 0.48 0.44 0.44
LLaVA 1.6 7B 0.36 0.59 0.46 0.50 0.46 0.45
LLaVA 1.5 7B 0.34 0.60 0.52 0.53 0.50 0.47
Gemini Pro V 0.46 0.49 0.48 0.50 0.52 0.49
LLaVA 1.5 13B 0.39 0.59 0.53 0.54 0.52 0.49
MiniCPM-V 0.36 0.66 0.53 0.57 0.51 0.49
Yi-VL 34B 0.39 0.59 0.55 0.56 0.54 0.51
OmniLMM 12B 0.43 0.64 0.55 0.57 0.59 0.54
Qwen-VL 0.46 0.62 0.57 0.57 0.57 0.54
LLaVA 1.6 13B 0.49 0.61 0.57 0.56 0.57 0.55
InternVL V1.1 0.50 0.61 0.57 0.57 0.57 0.56
mBliP mT0 0.55 0.59 0.56 0.57 0.58 0.57
InternVL V1.2+ 0.53 0.63 0.59 0.60 0.59 0.58
LLaVA 1.6 34B 0.54 0.62 0.59 0.60 0.59 0.58
GPT 4V 0.67 0.69 0.66 0.68 0.70 0.68

Average 0.43 0.58 0.51 0.52 0.52 0.50
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D.1.4 MaRVL

Figure 35: A bar plot showing the average accuracy per language and model on the MaRVL dataset. Note that
MaRVL does not contain English data originally and we machine-translated English from the other languages and
averaged the results. The models on the x-Axis are ordered by their average score across all languages so that the
best performing model is on the right and the worst is on the left.

Table 12: The average accuracy per language and model on the MaRVL dataset. Note that MaRVL does not contain
English data originally and we machine-translated English from the other languages and averaged the results. The
column “NEA” stands for the average of Non-English languages.

Model Language
en id sw ta tr zh NEA

CogVLM 0.60 0.53 0.51 0.49 0.51 0.53 0.51
LLaVA 1.5 7B 0.57 0.53 0.51 0.51 0.51 0.53 0.52
BakLLaVA 0.59 0.54 0.51 0.50 0.53 0.55 0.53
LLaVA 1.6 7B 0.62 0.57 0.51 0.50 0.51 0.54 0.53
Qwen-VL 0.60 0.52 0.50 0.50 0.54 0.59 0.53
Yi-VL 6B 0.59 0.53 0.49 0.50 0.54 0.61 0.53
MiniCPM-V 0.61 0.53 0.50 0.50 0.56 0.58 0.53
LLaVA 1.5 13B 0.60 0.60 0.51 0.50 0.54 0.56 0.54
Gemini Pro V 0.55 0.55 0.53 0.55 0.56 0.55 0.55
OmniLMM 12B 0.64 0.62 0.51 0.51 0.57 0.57 0.56
mBliP BloomZ 0.55 0.57 0.56 0.57 0.56 0.56 0.56
Yi-VL 34B 0.62 0.62 0.53 0.51 0.59 0.65 0.58
InternVL V1.1 0.63 0.61 0.54 0.58 0.65 0.63 0.60
InternVL V1.2+ 0.68 0.67 0.53 0.53 0.64 0.70 0.61
mBliP mT0 0.60 0.63 0.60 0.64 0.66 0.62 0.63
LLaVA 1.6 13B 0.65 0.66 0.60 0.65 0.69 0.64 0.65
LLaVA 1.6 34B 0.64 0.72 0.56 0.57 0.70 0.76 0.66
GPT 4V 0.64 0.71 0.59 0.63 0.73 0.66 0.66

Average 0.61 0.60 0.53 0.54 0.59 0.60 0.57
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D.1.5 M5-VGR

Figure 36: A bar plot showing the average accuracy per language and model on the M5-VGR dataset. The models
on the x-Axis are ordered by their average score across all languages so that the best performing model is on the
right and the worst is on the left.

Table 13: The average accuracy per language and model on the M5-VGR dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
am ber bn de en fil ha hi ru sw th zu NEA

LLaVA 1.5 7B 0.43 0.50 0.36 0.44 0.47 0.52 0.42 0.38 0.41 0.36 0.38 0.36 0.42
LLaVA 1.6 7B 0.43 0.50 0.36 0.47 0.55 0.52 0.42 0.39 0.45 0.36 0.36 0.36 0.42
LLaVA 1.5 13B 0.43 0.50 0.37 0.65 0.57 0.52 0.42 0.45 0.56 0.37 0.41 0.36 0.46
BakLLaVA 0.42 0.51 0.37 0.62 0.71 0.55 0.48 0.37 0.68 0.42 0.48 0.33 0.48
LLaVA 1.6 13B 0.44 0.50 0.36 0.79 0.78 0.49 0.42 0.53 0.81 0.33 0.48 0.37 0.50
Yi-VL 34B 0.43 0.50 0.51 0.74 0.77 0.60 0.42 0.44 0.69 0.40 0.57 0.36 0.52
Qwen-VL 0.30 0.17 0.60 0.63 0.82 0.53 0.57 0.56 0.66 0.63 0.62 0.61 0.54
CogVLM 0.53 0.46 0.54 0.74 0.68 0.53 0.54 0.59 0.61 0.54 0.60 0.41 0.55
mBliP BloomZ 0.46 0.50 0.64 0.61 0.69 0.50 0.42 0.64 0.60 0.60 0.46 0.69 0.56
MiniCPM-V 0.61 0.64 0.55 0.69 0.80 0.55 0.43 0.64 0.68 0.38 0.56 0.41 0.56
OmniLMM 12B 0.51 0.69 0.58 0.65 0.78 0.62 0.49 0.51 0.78 0.47 0.64 0.51 0.59
Yi-VL 6B 0.62 0.31 0.64 0.74 0.72 0.54 0.70 0.62 0.72 0.55 0.63 0.59 0.61
InternVL V1.1 0.48 0.50 0.63 0.76 0.73 0.68 0.47 0.68 0.75 0.58 0.81 0.47 0.62
LLaVA 1.6 34B 0.51 0.65 0.57 0.80 0.87 0.58 0.47 0.67 0.82 0.63 0.74 0.59 0.64
Gemini Pro V 0.71 0.50 0.64 0.62 0.79 0.63 0.62 0.66 0.68 0.68 0.83 0.66 0.66
InternVL V1.2+ 0.51 0.55 0.66 0.78 0.86 0.73 0.54 0.67 0.85 0.64 0.90 0.66 0.68
mBliP mT0 0.81 0.42 0.67 0.68 0.74 0.56 0.87 0.67 0.75 0.67 0.75 0.73 0.69
GPT 4V 0.82 0.47 0.80 0.81 0.88 0.84 0.93 0.79 0.88 0.80 0.94 0.83 0.81

Average 0.53 0.49 0.55 0.68 0.73 0.58 0.53 0.57 0.69 0.52 0.62 0.52 0.57
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D.1.6 M5-VLOD

Figure 37: A bar plot showing the average accuracy per language and model on the M5-VLOD dataset. The models
on the x-Axis are ordered by their average score across all languages so that the best performing model is on the
right and the worst is on the left.

Table 14: The average accuracy per language and model on the M5-VLOD dataset. The column “NEA” stands for
the average of Non-English languages.

Model Language
am ber bn de en fil ha hi ru sw th zu NEA

CogVLM 0.10 0.07 0.08 0.06 0.10 0.07 0.09 0.08 0.06 0.06 0.07 0.09 0.08
mBliP mT0 0.14 0.22 0.16 0.10 0.12 0.24 0.24 0.15 0.10 0.22 0.15 0.14 0.17
Yi-VL 6B 0.14 0.21 0.20 0.12 0.20 0.26 0.21 0.21 0.13 0.24 0.22 0.19 0.19
Yi-VL 34B 0.15 0.22 0.14 0.27 0.26 0.21 0.17 0.27 0.21 0.16 0.16 0.17 0.19
MiniCPM-V 0.17 0.19 0.20 0.11 0.20 0.19 0.22 0.16 0.15 0.29 0.23 0.24 0.20
LLaVA 1.5 7B 0.18 0.22 0.15 0.13 0.15 0.19 0.25 0.19 0.19 0.25 0.27 0.19 0.20
BakLLaVA 0.25 0.19 0.21 0.12 0.14 0.21 0.22 0.15 0.17 0.22 0.26 0.26 0.20
LLaVA 1.5 13B 0.18 0.23 0.19 0.17 0.16 0.24 0.25 0.14 0.13 0.26 0.28 0.20 0.21
InternVL V1.1 0.18 0.22 0.20 0.11 0.12 0.24 0.29 0.16 0.11 0.29 0.29 0.19 0.21
LLaVA 1.6 7B 0.17 0.22 0.18 0.14 0.14 0.24 0.27 0.18 0.15 0.29 0.27 0.19 0.21
LLaVA 1.6 13B 0.18 0.23 0.19 0.13 0.14 0.25 0.29 0.16 0.13 0.28 0.26 0.22 0.21
Qwen-VL 0.18 0.22 0.20 0.14 0.16 0.25 0.29 0.16 0.13 0.29 0.27 0.19 0.21
mBliP BloomZ 0.20 0.20 0.19 0.15 0.14 0.24 0.29 0.17 0.12 0.26 0.28 0.21 0.21
OmniLMM 12B 0.18 0.16 0.25 0.17 0.19 0.25 0.30 0.17 0.25 0.20 0.21 0.22 0.21
LLaVA 1.6 34B 0.19 0.24 0.20 0.14 0.26 0.30 0.28 0.16 0.19 0.26 0.25 0.18 0.22
InternVL V1.2+ 0.24 0.20 0.28 0.29 0.28 0.20 0.14 0.20 0.24 0.24 0.28 0.24 0.23
Gemini Pro V 0.33 0.19 0.37 0.42 0.52 0.43 0.27 0.38 0.40 0.43 0.37 0.39 0.36
GPT 4V 0.36 0.22 0.38 0.42 0.70 0.53 0.38 0.47 0.50 0.44 0.48 0.46 0.42

Average 0.20 0.20 0.21 0.18 0.22 0.25 0.25 0.20 0.19 0.26 0.26 0.22 0.22
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D.1.7 xFlickrCO

Figure 38: A bar plot showing the average chrF++ score per language and model on the xFlickrCO dataset. The
models on the x-Axis are ordered by their average score across all languages so that the best performing model is on
the right and the worst is on the left.

Table 15: The average chrF++ score per language and model on the xFlickrCO dataset. The column “NEA” stands
for the average of Non-English languages.

Model Language
de en es id ja ru tr zh NEA

Qwen-VL 9.00 18.68 8.69 4.88 0.77 0.74 3.91 5.62 4.80
Yi-VL 6B 11.53 24.54 14.61 8.37 0.78 0.90 8.15 0.79 6.45
CogVLM 11.08 16.76 12.32 11.27 0.56 3.71 7.62 0.46 6.72
BakLLaVA 13.21 26.79 14.17 10.48 0.06 0.75 9.49 0.09 6.89
Yi-VL 34B 17.02 24.62 11.36 11.79 2.00 2.57 9.50 2.44 8.10
MiniCPM-V 19.05 27.43 18.81 14.62 4.69 10.73 13.18 1.40 11.78
InternVL V1.1 18.21 27.98 20.74 14.69 4.31 7.07 8.67 9.38 11.87
LLaVA 1.5 7B 23.22 28.32 21.95 17.58 0.44 4.45 10.77 5.29 11.96
LLaVA 1.5 13B 21.66 29.39 19.37 15.59 6.63 5.02 10.45 6.72 12.21
LLaVA 1.6 7B 19.70 19.31 21.48 19.32 4.60 11.27 13.14 6.78 13.75
OmniLMM 12B 23.39 30.76 22.05 20.50 2.89 13.29 14.55 2.59 14.18
LLaVA 1.6 13B 22.55 23.94 21.98 20.73 7.57 13.26 14.79 6.39 15.33
LLaVA 1.6 34B 24.38 23.52 23.98 22.36 5.08 16.40 15.05 6.34 16.23
GPT 4V 24.56 24.17 22.82 23.29 4.73 15.82 17.58 5.60 16.34
mBliP BloomZ 24.39 25.99 25.12 23.56 7.18 15.31 17.16 3.93 16.67
Gemini Pro V 24.17 22.13 23.50 23.10 5.75 17.28 18.03 5.24 16.73
InternVL V1.2+ 25.81 28.41 24.13 20.48 7.25 17.34 16.73 8.54 17.18
mBliP mT0 26.10 26.07 24.74 22.41 7.56 18.64 19.58 3.87 17.56

Average 19.95 24.93 19.55 16.95 4.05 9.70 12.69 4.53 12.49
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D.1.8 XM3600

Figure 39: A bar plot showing the average chrF++ score per language and model on the XM3600 dataset. Due to
resource restrictions, we evaluated GPT 4V only on a subset of languages. The models on the x-Axis are ordered by
their average score across all languages so that the best performing model is on the right and the worst is on the left.
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Table 16: The average chrF++ score per language and model on the XM3600 dataset. Due to resource restrictions,
we evaluated GPT 4V only on a subset of languages. The column “NEA” stands for the average of Non-English
languages.

Model Language
ar bn cs da de el en es fa fi fil fr

CogVLM 0.07 0.04 9.30 11.92 12.50 0.25 24.26 14.25 0.02 10.52 10.96 13.18
BakLLaVA 0.21 0.22 8.65 11.45 14.33 0.24 25.39 17.13 0.64 10.02 11.41 18.33
Qwen-VL 2.08 0.17 9.89 14.38 13.14 2.32 27.89 16.00 4.09 7.13 11.36 14.70
Yi-VL 6B 4.65 2.98 9.48 13.55 15.58 4.54 28.59 18.58 3.50 9.29 12.42 17.12
Yi-VL 34B 4.24 4.14 9.52 15.40 17.00 8.00 27.11 17.86 10.06 9.17 14.73 16.93
MiniCPM-V 6.38 1.96 9.05 15.52 19.60 2.98 28.53 23.54 3.57 12.33 16.19 23.98
Gemini Pro V 14.90 4.94 17.79 18.32 17.63 10.36 21.81 18.64 0.21 14.50 2.25 20.15
LLaVA 1.5 7B 6.30 3.71 13.80 15.93 21.18 7.42 26.02 23.60 7.45 15.67 17.38 23.83
mBliP mT0 12.68 10.79 17.20 19.43 18.74 15.76 28.68 20.71 16.19 13.26 20.79 20.52
InternVL V1.1 12.23 2.55 14.74 22.82 23.77 10.20 32.10 27.91 11.94 16.47 19.20 25.95
mBliP BloomZ 18.10 14.92 16.99 19.16 21.17 11.03 28.05 26.73 15.59 11.86 14.47 25.28
OmniLMM 12B 9.48 3.51 14.24 23.15 25.05 7.37 24.42 26.75 10.65 13.78 20.92 28.18
LLaVA 1.6 7B 12.52 6.13 15.79 14.50 24.06 11.11 26.41 27.37 13.07 17.23 17.76 27.48
LLaVA 1.5 13B 7.07 1.80 14.75 21.74 24.15 6.49 29.55 26.59 14.90 19.51 22.91 29.14
InternVL V1.2+ 13.59 6.19 15.34 24.85 27.05 11.20 29.84 29.50 15.69 17.01 27.22 29.80
LLaVA 1.6 13B 14.07 5.42 17.51 22.30 25.95 11.90 26.42 28.39 14.72 20.44 23.14 29.42
LLaVA 1.6 34B 13.85 6.20 16.94 24.44 26.51 12.17 26.52 28.90 16.09 18.08 28.35 29.83
GPT 4V 22.67 16.27 - - 29.24 - 26.89 30.86 - - - 31.82

Average 9.73 5.11 12.83 17.16 20.92 7.41 27.14 23.52 8.80 13.13 16.19 23.65

Model Language
he hi hr hu id it ja ko mi nl no pl

CogVLM 0.52 0.38 10.25 8.25 10.70 13.11 0.07 0.13 10.00 13.59 11.73 9.98
BakLLaVA 1.07 0.71 10.33 8.98 12.59 16.12 0.07 0.16 10.62 14.56 11.48 10.97
Qwen-VL 0.58 2.32 11.33 9.60 11.50 13.76 2.75 0.70 8.73 15.91 12.64 10.59
Yi-VL 6B 2.78 3.86 9.82 9.12 10.90 14.69 2.40 1.32 8.81 16.04 13.30 10.88
Yi-VL 34B 5.58 5.64 10.31 9.23 13.30 16.55 2.21 2.02 9.55 17.43 13.79 10.40
MiniCPM-V 4.86 2.36 11.96 10.91 16.94 19.06 2.92 0.39 10.49 18.47 14.27 11.51
Gemini Pro V 7.12 6.98 13.48 9.22 16.98 18.44 6.63 6.43 3.55 19.67 17.43 17.29
LLaVA 1.5 7B 3.76 6.29 13.05 11.69 19.33 20.73 3.48 3.93 10.10 23.30 19.79 16.10
mBliP mT0 11.16 12.08 10.26 14.59 17.39 17.92 5.79 6.00 11.88 24.20 19.97 14.49
InternVL V1.1 8.80 6.47 15.05 12.49 24.31 23.13 6.09 4.83 15.93 25.02 22.45 17.58
mBliP BloomZ 9.16 16.18 9.78 13.84 21.44 21.39 6.53 3.67 5.99 26.17 17.35 16.07
OmniLMM 12B 3.99 9.91 18.84 16.72 25.07 22.50 3.16 2.31 14.94 26.47 21.36 19.16
LLaVA 1.6 7B 10.61 10.26 16.52 18.26 24.05 24.71 6.66 6.09 13.12 25.07 20.49 19.38
LLaVA 1.5 13B 11.63 9.13 16.87 16.54 25.13 26.11 8.16 6.86 13.98 27.52 23.77 17.96
InternVL V1.2+ 10.88 7.69 17.07 14.70 24.65 25.94 7.96 5.53 14.17 29.11 23.02 18.37
LLaVA 1.6 13B 12.54 11.00 19.99 19.52 26.15 26.66 8.27 6.95 13.73 27.15 21.19 21.03
LLaVA 1.6 34B 11.30 7.27 18.16 16.57 27.69 27.40 7.75 5.60 16.69 28.42 24.45 19.49
GPT 4V - 17.16 - - 33.24 - 11.46 - - - - -

Average 6.46 7.54 12.95 12.23 20.08 19.35 5.13 3.50 10.68 21.01 17.14 14.51

Model Language
pt quz ro ru sv sw te th tr uk vi zh NEA

CogVLM 12.87 9.75 11.23 0.86 12.57 9.41 0.51 0.26 9.58 0.46 6.74 0.29 7.04
BakLLaVA 14.00 9.00 11.30 0.85 11.61 9.37 1.47 0.57 9.36 0.31 7.11 0.03 7.58
Qwen-VL 14.17 8.25 13.60 4.30 13.59 8.75 1.44 1.28 8.26 5.66 5.76 6.20 8.20
Yi-VL 6B 13.77 8.25 10.04 6.57 15.64 8.94 4.93 2.57 9.55 2.65 7.76 2.61 8.82
Yi-VL 34B 14.57 7.64 10.95 6.95 14.42 9.71 5.62 2.92 10.84 4.19 8.74 2.82 9.78
MiniCPM-V 18.21 7.21 14.94 3.69 15.36 11.16 1.83 2.24 13.47 1.74 8.88 2.46 10.30
Gemini Pro V 20.60 4.72 10.98 15.27 20.60 15.80 1.87 12.45 15.62 10.82 16.48 4.88 12.37
LLaVA 1.5 7B 21.57 9.55 12.38 10.08 20.68 9.59 2.23 5.51 11.78 5.84 14.34 3.87 12.44
mBliP mT0 19.35 7.70 13.05 14.63 20.66 14.45 12.42 14.76 14.13 13.60 18.73 2.59 14.80
InternVL V1.1 24.47 7.91 17.55 16.39 23.40 9.82 4.73 6.85 13.22 11.26 10.80 7.76 14.97
mBliP BloomZ 23.93 4.32 14.59 16.25 18.31 14.82 14.12 9.19 15.34 13.35 22.14 2.65 15.20
OmniLMM 12B 22.75 10.61 18.61 17.49 22.09 13.68 5.41 6.84 14.68 17.49 16.58 3.00 15.34
LLaVA 1.6 7B 23.42 10.04 15.55 15.18 21.42 11.69 4.60 9.62 14.81 11.40 15.54 5.58 15.46
LLaVA 1.5 13B 26.51 9.70 21.33 8.53 24.80 13.81 3.39 10.84 15.98 6.36 21.66 6.22 16.05
InternVL V1.2+ 26.63 6.20 18.06 19.30 26.27 14.83 7.79 5.30 17.30 13.79 17.22 7.71 17.05
LLaVA 1.6 13B 25.07 10.60 21.96 14.86 21.01 14.80 5.18 11.11 17.03 14.03 21.44 6.02 17.44
LLaVA 1.6 34B 22.85 10.39 20.08 20.11 24.92 18.73 8.70 7.19 18.83 15.36 16.23 7.02 17.79
GPT 4V 30.13 - 25.41 - - - - - 25.70 - - - 24.91

Average 20.83 7.88 15.65 10.63 18.19 11.63 4.79 6.08 14.19 8.24 13.12 3.98 13.64

D.2 Language Fidelity Analysis
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Table 17: Pearson correlation coefficients between language fidelity on xFlickrCO and Performance on other
datasets.

Dataset Language

Avg. zh en de id ja ru es tr

xFlickrCO .91 .85 .65 0.86 .88 .91 .92 .90 .84
XM3600 .81 .74 .63 0.63 .69 .74 .76 .67 .82
MaXM .55 .17 .43 - - - - - -
XVNLI .51 - .46 - - - .47 .20 -
MaRVL .46 .21 .41 - .50 - - - .50
M5-VGR .34 - .11 0.15 - - .42 - -
xGQA .21 .35 .47 0.08 .37 - -.04 - -
M5-VLOD .14 - .44 0.20 - - .14 - -
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Abstract

Large Vision-Language Models (LVLMs) have
recently gained attention due to their distinctive
performance and broad applicability. While it
has been previously shown that their efficacy
in usage scenarios involving non-Western con-
texts falls short, existing studies are limited in
scope, covering just a narrow range of cultures,
focusing exclusively on a small number of cul-
tural aspects, or evaluating a limited selection
of models on a single task only. Towards glob-
ally inclusive LVLM research, we introduce
GIMMICK, an extensive multimodal benchmark
designed to assess a broad spectrum of cultural
knowledge across 144 countries representing
six global macro-regions. GIMMICK comprises
six tasks built upon three new datasets that span
728 unique cultural events or facets on which
we evaluated 20 LVLMs and 11 LLMs, includ-
ing five proprietary and 26 open-weight mod-
els of all sizes. We systematically examine
(1) regional cultural biases, (2) the influence
of model size, (3) input modalities, and (4)
external cues. Our analyses reveal strong bi-
ases toward Western cultures across models and
tasks and highlight strong correlations between
model size and performance, as well as the ef-
fectiveness of multimodal input and external
geographic cues. We further find that models
have more knowledge of tangible than intangi-
ble aspects (e.g., food vs. rituals) and that they
excel in recognizing broad cultural origins but
struggle with a more nuanced understanding.1

1 Introduction

Recently, proprietary as well as open-weight Large
Vision-Language Models (LVLMs) (OpenAI, 2023;
Liu et al., 2023; Wang et al., 2024; Chen et al.,
2023, inter alia) have attracted marked atten-
tion due to their broad applicability across vari-
ous domains. Several large-scale holistic bench-
marks (Duan et al., 2024; Yue et al., 2024; Fu et al.,

1http://github.com/floschne/gimmick

2023) demonstrate LVLMs’ remarkable perfor-
mances in a wide range of multimodal tasks. How-
ever, most benchmarks concentrate on Western-
centric English tasks, and multilingual bench-
marks (Ahuja et al., 2024; Schneider and Sitaram,
2024) reveal a significant deterioration in perfor-
mance on non-English tasks. While multilingual-
ism is essential for globally equitable AI, multi-
culturalism (Gabriel, 2020; Adilazuarda et al.,
2024) is equally crucial for models to reflect and
respect the diverse cultural backgrounds of users
worldwide. In this context, it has been shown
that current LLMs (Myung et al., 2024; Chiu
et al., 2024) and LVLMs suffer in tasks involv-
ing knowledge from non-Western cultures. How-
ever, the scope of existing multimodal cultural stud-
ies is still severely limited: Existing research of-
ten focuses only on specific concepts like food or
dance (Winata et al., 2025; Burda-Lassen et al.,
2025), covers a limited number of cultures (Urail-
ertprasert et al., 2024; Baek et al., 2024), evaluates
only a small selection of LVLM models (Cao et al.,
2024; Nayak et al., 2024), or tests only a single
combination of input modalities.
To address these gaps, we introduce GIMMICK, a
comprehensive evaluation framework assessing 31
state-of-the-art models, ranging from proprietary
LVLMs to open-weight LLMs and LVLMs of all
sizes—from 500M to 78B parameters—across mul-
tiple model families. It comprises six tasks built
on three novel datasets that contain 728 unique
cultural events or facets (CEFs) from 144 coun-
tries in six global macro-regions and target both
high-level and nuanced cultural knowledge through
multimodal and unimodal tasks. Our VQA tasks
span a total of 57 cultural aspects (see §B.2) Ulti-
mately, GIMMICK enables us to answer four research
questions:
(RQ1) Are there regional biases in LLMs’ and

LVLMs’ cultural knowledge, and if so, which?

For the most complex tasks, we observe consis-
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Cultural Image VQA

Cultural Video VQA

Cultural Origin QA

Cultural Knowledge QA

Type   Open-Ended
Input  I+T
Label  Answer Word
Score  Accuracy

Samples       2233
Images       1928
Cult. Events  635
Countries     144

Type   Open-Ended
Input  V+T
Label  Answer Word
Score  Accuracy

Samples       1809
Videos       1809
Cult. Events  553
Countries     139

Type   Multi. Choice
Input  I+T, T, I
Label  Choice Letter
Score  Accuracy

Samples    982/759
Images       6857
Cult. Events   728
Countries      144

Type   Open/Long Form
Input  I+T, T, I
Label  Title/Desc.
Score  Judge Score

Samples        728
Images       6857
Cult. Events   635
Countries      144

GIMMICK
Total Models   31
LLMs        11
LVLMs        20
Open-Weight    26
Proprietary    5
Families       13
Size Groups    5

Figure 1: An overview of the GIMMICK benchmark and its tasks.

tent cultural regional biases (up to 14.72pp differ-
ence between instances targeting Western Europe
& North America vs. Subsaharian Africa; §5.1) –
even for the largest models. For less complex tasks,
these differences flatten out.
(RQ2) To what degree does model size influence

performance? We show that increasing the number
of parameters significantly boosts performance on
complex tasks, with larger models exhibiting less
regional biases (§5.2). Still, even the largest models
still struggle with nuanced cultural understanding.
(RQ3) How do input modalities affect cultural

understanding? We observe that providing input
in multiple modalities typically leads to the best
results, as models leverage the cultural cues present
in the visual inputs we provide (§5.3). Interestingly,
on text-only tasks, LVLMs perform consistently
worse than their LLM backbones, indicating a loss
of cultural knowledge during integration training.
(RQ4) What is the influence of external cultural

cues? We demonstrate that providing country in-
formation consistently guides the models towards
better answers, especially for regions for which
the models perform poorly (§5.4). Overall, with
GIMMICK, we hope to encourage more research on
culturally-aware and more globally-inclusive AI.

2 Related Work

Multicultural LLM Benchmarks. Naous et al.
(2024) introduce CAMeL, a dataset that contrasts
Arab and Western cultures to measure cultural bi-
ases in LLMs through extrinsic and intrinsic evalu-
ations on core NLP tasks. With CultureAtlas, Fung
et al. (2024) introduced an approach for massively
multicultural knowledge acquisition and bench-
marking of 5 LLMs from Wikipedia articles on
cultural topics. BLEnD (Myung et al., 2024) is
a large benchmark to evaluate LLMs’ everyday
knowledge across diverse cultures and from 16

BENCHMARK #M #DS #T #S #C #R MODS

SEA-VQA
Urailertprasert et al. (2024) 2 1 1 1,999 8 1 T+I
WorldCuisines
Winata et al. (2025) 18 1 2 1.15M 189 6 T+I
CROPE
Nikandrou et al. (2025) 17 1 1 1,060 6 3 T+I
CulturalVQA
Nayak et al. (2024) 8 1 1 2,378 11 5 T+I
Ananthram et al. (2025) 10 – 3 – 2 2 T+I
GlobalRG
Bhatia et al. (2024) 12 2 2 3,591 51 6 T+I
MOSAIC-1.5K
Burda-Lassen et al. (2025) 4 1 1 1,500 – 6 T+I
FoodieQA
Li et al. (2024) 8 1 3 1,839 1 1 T+I
Cao et al. (2024) 1 – 3 – 5 3 T+I
K-VISCUIT
Baek et al. (2024) 13 1 1 657 1 1 T+I
CVQA
Romero et al. (2024) 8 1 1 10,374 30 6 T+I
CulturalBench
Chiu et al. (2024) 30 2 1 6,135 45 6 T+I

GIMMICK (ours) 31 3 6 7,239 144 6
T+I
V+T
T, I

Table 1: A comparative overview of recent benchmarks
assessing cultural knowledge of LVLMs. The abbrevia-
tions in the columns stand for the (combined) number of:
(unique) Models, Datasets, Tasks, Samples, Countries,
or Regions contained. The Modalities column lists the
input modalities—Text, Image, Video—contained.

.

countries in 13 different languages. (Mukherjee
et al., 2024) test four popular LLMs with cultur-
ally sensitive and non-sensitive prompts on both
sensitive and neutral datasets. Instead of assess-
ing models’ intrinsic cultural knowledge, (Bhatt
and Diaz, 2024) focuses on the extrinsic evaluation
of cultural competence, e.g., in user-interaction,
in two text generation tasks, open-ended question
answering, and story generation of 6 LLMs.

Multicultural LVLM Benchmarks. Bhatia et al.
(2024) introduced the GlobalRG benchmark, which
comprises two tasks: retrieving culturally diverse
images for universal concepts from 50 countries
and grounding culture-specific concepts within im-
ages from 15 countries. Karamolegkou et al. (2024)
proposed a culture-centric evaluation benchmark
investigating the reliability of LVLMs as visual as-
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sistants for blind people in a culturally diverse set-
ting. Using the CulturalVQA (Nayak et al., 2024),
the authors assessed geo-diverse cultural under-
standing of nine “1st-Gen” LVLMs on a curated
dataset of 2,378 VQA pairs representing cultures
from 11 countries and five cultural aspects. Cul-
turalBench (Chiu et al., 2024) is a dataset of 1,227
human-written and human-verified questions for
evaluating LLMs’ cultural knowledge, covering 45
global “regions”. Nikandrou et al. (2025) propose
CROPE, a VQA benchmark designed to probe the
knowledge of culture-specific concepts and evalu-
ate the capacity for cultural adaptation through con-
textual information featuring over 1M data points
across 30 languages and dialects.See Table 1 for an
overview and a comparison or related work with
GIMMICK.

Multilingual Multicultural LVLM Benchmarks.
Several studies evaluate the cultural awareness and
capabilities of LVLMs in a multilingual setting.
Geigle et al. (2025) extensively benchmarked state-
of-the-art LVLMs across multiple multilingual
and multicultural datasets, including MaRVL (Liu
et al., 2021), XM3600 (Thapliyal et al., 2022)
and MaXM(Changpinyo et al., 2023), M5B-VGR
and M5B-VLOD (Schneider and Sitaram, 2024),
CVQA (Romero et al., 2024) Winata et al. (2025)
created WorldCuisines, a large-scale benchmark
for multilingual and multicultural VQA on global
cuisines. However, in GIMMICK, we focus on the En-
glish language, considering English performance
as an upper bound.

3 The GIMMICK Benchmark

Cultural Benchmark Positioning Adilazuarda
et al. (2024) surveyed 90+ recent papers on cultural
awareness in LLMs and found that none explicitly
define “culture”. Instead, these studies evaluate
models on datasets capturing only specific cultural
aspects, which the authors organize into two dimen-
sions: demographic and semantic proxies (with
seven and five subsets, respectively). In GIMMICK,
we adopt the proposed taxonomy by using coun-
tries and regions as demographic cultural proxies.
Our tasks span all five semantic proxies: “emo-
tions and values”, “food and drink”, “social and
political relations”, “basic actions and technology”,
and “names”. We implement primarily “black-box”
generative and discriminative probing approaches.

UNESCO Intangible Cultural Heritage. All
tasks in GIMMICK are based on high-quality open-

REGION ABBRV. #C #CEF

Arab A 18 76
Asia & Pacific AP 35 226
Eastern Europe E 25 150
Latin-America & Caribbean LAC 28 98
Subsaharian Africa SA 40 73
Western Europe & North America W 23 149

Unique 144 728

Table 2: Regions within GIMMICK. #C and #CEF stand
for the number of Countries and CEFs related to the re-
spective region. Some CEFs may span multiple regions.

access data from the UNESCO Intangible Cultural
Heritage (ICH) project2, which aims to safeguard
cultural traditions and practices vital to the iden-
tity and heritage of communities worldwide while
honoring cultural diversity.Intangible cultural her-
itage encompasses oral traditions, performing arts,
rituals, festive events, traditional craftsmanship,
and cultural knowledge. The open-access dataset is
structured as a knowledge graph, where most nodes
represent cultural events or facets (CEFs; e.g., Yuki-
tsumugi, a silk fabric production technique from
Japan3), with additional nodes including countries,
regions, case studies in which the CEFs occur. For
GIMMICK, we extract the CEFs, each together with
their title, description, associated macro-regions
and countries, and several images depicting dif-
ferent aspects of the CEF. Moreover, each CEF
is detailed in one or more YouTube videos. In
total, GIMMICK contains 728 CEFs from 144 coun-
tries represented by 6,887 images and 993 videos4.
While most CEFs (88.60%) are associated with
one country, some are associated with two or more
countries.The UNESCO ICH project groups the
countries into six global macro-regions5, which
we adopt in this work. Throughout the paper—
including all figures and tables—we use the region
abbreviations listed in Table 2.

3.1 Datasets and Tasks

We created three novel multimodal datasets that
serve as the foundation for six tasks designed to
evaluate the cultural knowledge of models. See
Figure 1 for an overview of the different tasks.6

2https://ich.unesco.org
3More examples including images are shown in §A.2.1
4We provide licensing details in §A.1
5We provide a comprehensive list in Table 4 in §A.3
6Sample counts per task & region are shown in §A.3.1
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3.2 Cultural Image VQA

In the Cultural Image VQA (CIVQA) task, models
are presented with an image depicting a CEF and
a question that relates to a particular CEF aspect
(see §B.1 for examples). Models are evaluated
based on answer correctness. To create the data for
CIVQA, we couple synthetic data generation with a
two-stage annotation process.

Synthetic Data Generation. Building on the high-
quality UNESCO ICH data, we applied synthetic
data generation by prompting GPT-4o7 to construct
the basis for our dataset.Each VQA pair is related
to a CEF and consists of an image depicting one
aspect of the CEF, a question related to the CEF
and the image, and an answer. Maximizing the
quality of the generated silver data, we applied ex-
tensive prompt engineering combining techniques
such as Few-Shot, Chain-of-Thought, ReAct (Wei
et al., 2022; Zhang et al., 2023; Zheng et al., 2024;
Sahoo et al., 2024) to craft the prompt. Key as-
pects of the prompt are a role description, a general
task description, detailed annotation guidelines, a
step-by-step strategy, an expected output format,
few-shot examples, and the information of the tar-
get CEF (see §B.4 for the full prompt). We then
generated silver VQA pairs for each of the 6,827
images contained in the ICH data source, which
resulted in 17,369 pairs. Afterward, we automat-
ically removed pairs where 1) the question con-
tained words that introduce subjectiveness or am-
biguity (“could”, “should”, “maybe”, etc.); 2) the
answer contained abstract words that are hard to
depict visually; and 3) where the answer is not
a substring of the description of the related CEF.
This way, we obtained 9,900 silver VQA samples
related to 5,517 images from all 728 CEFs.

Annotation Process. Opting for high-quality VQA
pairs as well as cultural diversity, we devised a two-
stage annotation process with 18 trained experts
from various cultural backgrounds covering all six
regions (see Table 8 in §B.5). Each silver pair
was evaluated using two questionnaires—one with
seven question-related requirements and another
with four answer-related requirements. Questions
had to target the CEF and image content directly,
require cultural knowledge, and depend on visual
evidence (Chen et al., 2024a). Answers needed to
be clear, objective, concise, and depictable. For
details on the annotation process, see §B.5.

7gpt-4o-2024-08-06

In the first round, we annotated each sample
once, resulting in 4,114 samples, of which 2,826
(68.69%) met all criteria. In the second round, five
annotators re-evaluated these, retaining only sam-
ples with concordant approval. This process finally
yielded 2,233 samples for 1,928 images from 728
CEFs across 144 countries in six global regions.

3.3 Cultural Video VQA
In this task, models are evaluated on questions re-
lating to videos instead of single images, again
employing accuracy as the metric. To this end, we
extend CIVQA in two steps: synthetic data genera-
tion and quality annotation.

Synthetic Data Generation. First, we adjusted
the CIVQA questions by replacing the term “image”
with “video”. We then coupled the question with
a short video clip, for which we started from the
CEF’s associated YouTube video. We ensured that
the shortened clip contains relevant information
for answering the question as follows: From each
video, we extracted one frame per second, and com-
puted image embeddings for both the frames and
the CIVQA image, using DINOv28 (Oquab et al.,
2024; Darcet et al., 2024). We then identified the
frame that best matches the original image by cal-
culating Cosine similarity. We selected this frame
as the center (at t = 0) for a 10-second clip9 (from
t = �5 to t = 5). We only include clips with a
best-matching frame similarity > 0.5, which we
found to yield high-quality instances based on a
manual inspection of random samples. Overall,
this procedure resulted in 2,001 silver samples.

Annotation Process. For additional quality con-
trol, a trained expert annotated 20% of the silver
data (400 samples). Each sample was evaluated us-
ing a three-item questionnaire10 assessing whether
(1) the video contained frames resembling the CEF
image, (2) it clearly answered the question, or (3)
neither condition was met. Overall, 95% of the
annotated samples were accepted. For closer in-
spection, we stratified the annotated samples into
four similarity bins, revealing that roughly 10% of
those in the lower bins ([0.5, 0.75[) were rejected,
while nearly all, i.e., 99% and 100%, in the higher
bins ([0.75, 1.0]) were retained. The residual 5%
label noise was considered acceptable based on fur-
ther manual analysis. Notably, we found that of

8facebook/dinov2-with-registers-large
9We do not include the audio stream in our clips.

10cf. §C for details.
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the 20 rejected samples, only 9 were unanswerable
based on the video, while the remaining 11 exhib-
ited only a suboptimal frame match w.r.t. the CIVQA
image. The final GIMMICK CVVQA dataset contains
1,809 samples (see §C.1 for examples) linked to
553 CEFs from 139 countries.

3.4 Cultural Origin QA
With Cultural Origin QA (COQA), we test a model’s
ability to capture coarse-grained cultural knowl-
edge. Given a CEF’s images, title, or both, the
models must select its cultural origin (multiple-
choice). We refer to the task as COQAR when the
origin is a region and as COQAC when it is a country.

Dataset Construction. The COQA dataset contains
all 728 CEFs from UNESCO ICH. To ensure that
each instance corresponds to a unique origin, we
replicate each CEF N times—where N represents
the number of associated regions (for COQAR) or
countries (for COQAC). For COQAR, three negatives
are randomly sampled from the remaining pool.
Negatives for COQAC drawn from those within the
same region as the target country.

Input Modalities and Prompts. The COQA tasks
support multiple input configurations alongside the
task prompt. In the text-only setting, only the title
of the CEF is provided, whereas in the “image-
only” setting, all images associated with the CEF
are included. Both the title and the images are used
in the text-image setting. Examples and complete
prompts for all variations are shown in §D.2.

3.5 Cultural Knowledge QA
In GIMMICK Cultural Knowledge QA (CKQA), we
evaluate whether current AI models capture fine-
grained cultural knowledge. The dataset supports
two open-answer tasks: naming (CKQAN) and de-
scribing (CKQAD). For CKQAN, the ground truth cor-
responds to the title of the CEF, while for CKQAD,
it is the detailed description. For both tasks, we
leverage all 728 CEFs from UNESCO ICH. As
with COQA, CKQA supports multiple input configu-
rations: text-only, “image-only”, and text+image.
We provide examples and prompts for all variations
in §E.1.

4 Experimental Setup

Models and Inference. We evaluate a total of
31 models, including five proprietary LVLMs, 15
open-weight LVLMs, and 11 open-weight LLMs—
the backbones of the respective LVLMs—covering

GROUP PARAMETERS (B) LLMS LVLMS

S 0.5 – 4 5 5
M 7 – 11 3 6
L 26 – 38 2 2
XL 72 – 78 1 2
Closed unkown 0 5
Total 11 20

Table 3: The size groups we define for result aggregation
according to models’ number of parameters.

9 LVLM and 4 LLM model families. The sizes of
the open-weight models vary, categorized as small,
medium, large, and extra-large (see Table 3). A
comprehensive list of models is provided in Table 6
in §A.4. For our experiments, we download open
weights from the respective Huggingface (Wolf
et al., 2020) repositories (see Table 6) and generate
responses employing greedy decoding. For pro-
prietary models, we use the official Python SDKs.
More details are reported in §F.

Metrics. For the CIVQA, CVVQA, and COQA tasks,
we report relaxed answer accuracy, for which we
consider a generated answer correct if it starts with
the ground truth answer. For CKQAD and CKQAN,
due to their generative nature, we use GPT-4o11 in
an “LVLM-as-a-Judge” (Zheng et al., 2023; Xiong
et al., 2024) setup to judge responses with a score
s 2 [0, 100]. Where s = 0, s = 50, and s = 100
indicate completely incorrect or irrelevant, par-
tially correct or relevant, and perfectly correct and
complete answers, respectively.

Video Processing. The 10-second video clips from
CVVQA do not contain an audio stream, and we only
use the visual information. Following established
praxis (e.g., Wang et al., 2024), we extract one
frame per second from the videos and provide them
to the models as input alongside the textual prompt.
Specifics about the image and video processing of
the individual models are documented in the code.

5 Results and Analyses

In this section, we present a series of in-depth anal-
yses based on the outcomes of our benchmark. We
show aggregated results: open-weight models are
grouped and averaged by parameter size, and pro-
prietary models are averaged together (see Table 3).
We provide the complete numerical results for all
tasks and models in § G. In the following, we use
abbreviations for regions‚ as defined in Table 2.

11gpt-4o-2024-11-20
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Figure 2: Aggregated results of the VQA tasks.
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Figure 3: CIVQA ground-truth answer perplexity.

5.1 General Trends and Cultural Bias

We discuss general trends and investigate cultural
bias across regions (Figures 2 and 3).
CIVQA & CVVQA. Figures 2a–c show clear re-
gional performance disparities. Across all models—
proprietary and open-weight, regardless of size—
scores are highest for Western and Asian targets
( W, E, and AP) and lowest for SA. XL
models, e.g., reach 24.04 on W and 9.32 on
SA on average. A and LAC fall in between,
with model performance varying by size. Since
CIVQA is an open-answer task, often with rare
culturally specific terms, we also evaluated the
task with GPT-4o as LVLM-as-a-Judge to ac-
count for imperfect naming or spelling. While
this method yields higher scores, it confirms
the same trend: models exhibit a strong bias to-
ward Western contexts. However, even the best
model (GPT-4O) scores only 31.58% on W and
25.44% on average, highlighting GIMMICK as
a challenging benchmark and the lack of fine-
grained cultural knowledge in current mod-
els. We supplement our analysis with a more
fine-grained investigation of how well models

“know” the cultural concepts discussed. Here,
we focus on the QWENVL models on CIVQA
and the compute perplexity of ground truth
answers (conditioned on the input context) as
a proxy of model cultural knowledge (details
in §G.1.2). Figure 3 shows that for the 7B and
72B models, perplexity is consistently lower
for W, E, and AP compared to A and SA,
aligning with our performance findings. For
the 2B model, however, E and SA yield the
highest perplexities, which we attribute to the
overall brittleness of the model. Moreover, we
revisit the performance on questions about the
prevalent cultural aspects in CIVQA (details in
§G.1.2) and find that models perform notably
better on tangible cultural aspects than on in-
tangible ones. For instance, closed models
achieve an accuracy of 30% for food-related
questions and only 8% and 10% for questions
concerning rituals or festivals. This highlights
biases along the cultural dimension, which are
particularly pronounced in non-Western con-
texts.
CKQAN & CKQAD. For CKQAN, regional dif-
ferences are minor, though proprietary mod-
els significantly outperform open-weight ones
(see Figure 2c). The large error bars for closed
models indicate inconsistent performance—
particularly from GPT-4O MINI and GEMINI FLASH

models, which perform similarly to large open-
weight models. XL and L models perform
worst on SA and LAC and best on A and
AP with minor differences to W and E.

For CKQAD (Figure 6c), performance is 10˘20%
higher than on CKQAN, likely because describ-
ing a CEF is easier than exactly naming it.
However, regional biases are larger, with con-
sistently higher scores on W than on SA, pri-
marily for closed models like GPT-4O, which
reaches 53.66 for W and 43.70 on SA.
COQAC & COQAR. Figure 6a shows minimal re-
gional differences for COQAC.Average accura-
cies range from close to or above 90% for
closed, XL, and L models to 77.42% for S
models. However, performance on COQAR is
lower than on COQAC—85.02% vs. 81.17% on
average over all models and regions— with
models achieving the highest scores in AP.
Notably, the regional ranking is mostly in-
verted compared to other tasks— SA, A,
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Figure 4: Model size vs. performance on GIMMICK tasks.
The x-axis is in log scale. The trend line was computed
using OLS regression. We report the Pearson correlation
coefficient r ( * indicates statistical significance).
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Figure 5: Relative Difference to W for CIVQA.

LAC, E, and AP score higher than W—
suggesting more distinct visual and linguistic
features in non-Western regions.

5.2 Influence of Model Size

We assess how model size impacts perfor-
mance and whether it affects regions equally.

Figure 4 shows that model size12 signifi-
cantly influences performance, with moderate
to strong Pearson correlations and steep regres-
sion lines across tasks except COQAR, where
the effect is minimal. Figure 5 shows that
relative performance declines from the best-
performing region ( W) to others, particularly
SA, varying by model size: the drops are

�63.39 (S), �63.85 (M), �50.60 (L), �54.57
(XL), and �41.52 (Closed). We conclude that
bigger sizes tend to result in smaller gaps with-
out size presenting a strict ordering criterion.

5.3 Influence of Modalities

We explore how input modality—text-only,
image-only, or text+image—affects perfor-

12For closed source models, we manually set the number of
parameters to 1T, except for Gemini Flash and GPT-4o mini,
for which we set the number to 500B.

mance on COQAC, COQAR, and CKQAD. Further,
we compare LVLMs to their LLM backbones
to assess potential losses in cultural knowledge
during multimodal training.
Input Modalities. Figure 6 shows that
text+image (I+T) inputs consistently yield the
highest performance across all tasks, confirm-
ing that textual and visual data provide comple-
mentary cultural cues. The gap between I+T
and text-only (T) is slightly more prominent for
COQAC than COQAR, suggesting that visual infor-
mation aids in inferring fine-grained, country-
level details. In contrast, image-only (I) inputs
perform poorly, indicating that textual informa-
tion, such as CEF titles, carries more cultural
context. The high variance in T results for the
COQA tasks stems from the performance dispar-
ity between GEMINI PRO and CLAUDE 3.5 SONNET

(e.g., 59.38 vs. 83.75 for W).
LVLM vs. LLM-Backbone. Comparing
LVLMs with their LLM backbones reveals that
multimodal training can impair the acquisi-
tion of detailed cultural knowledge (notably in
CKQAD) while having minimal impact on coarse-
grained cultural understanding (COQA). For
large models, significant performance gaps—
50.62 for QWEN2.5 72B vs. 40.02 for QWEN2VL
72B on AP—on the CKQAD task between the
LVLMS and their LLM backbones can be ob-
served, whereas, for smaller models, the effect
is subtle. Overall, our findings highlight that
while images complement text for culturally
grounded tasks, it is ultimately the synergy be-
tween both modalities that leads to robust and
broad cultural understanding.

5.4 Influence of External Cues
We examine how external hints, i.e., inform-
ing a model about the country or region of
a CEF, affect VQA performance. For CIVQA
(Figure 7a), country hints consistently boost
performance across model sizes and regions,
while regional cues yield only modest—or
even slightly adverse—effects in larger mod-
els. Gains from country hints are around 50%
for most regions, but in SA, improvements
nearly double (e.g., 97.48% for INTERNVL 2.5
78B and 97.13% for INTERNVL 2.5 38B). A similar
pattern emerges for CVVQA (Figure 7b). Hints
generally enhance performance across regions
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Figure 6: Aggregated results including multimodal input variations: Text-only, Image-only, Text+Image.

Closed XL L M S
0

50

100 Region Country Both W E AP A LAC SA

Re
l.

 G
ai

n 
(%

)

(a) SIVQA

Closed XL L M S
0

50
100
150
200

Re
l.

 G
ai

n 
(%

)

(b) VVQA

Figure 7: Relative gains on VQA tasks from providing external geographical hints.

and models, with SA showing the most sig-
nificant gains. Proprietary and small models
exhibit subtle improvements, whereas L and
XL models see much higher relative gains—up
to 240.7% for INTERN VL 38B. Notably, regional
cues have a more positive impact on CVVQA
than on CIVQA.

6 Conclusion

We introduce GIMMICK, a comprehensive
benchmark to assess various aspects of cul-
tural knowledge of current LVLMs and LLMs
and introduce six tasks built upon three

novel datasets, which span 728 unique cul-
tural events or facets (CEFs) from 144 coun-
tries grouped into six global macro-regions.
Through extensive analyses, we study general
cultural biases and the influence of model size,
input modalities, and external cues. Our re-
sults consistently reveal a prominent bias to-
ward Western cultures across all models. In-
terestingly, when only coarse cultural knowl-
edge is required—such as regional origins—
models performed remarkably better. Across
all tasks, significant correlations between a
model’s performance and its size are evident,
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with a substantial gap between proprietary
and open-weight models. Our analyses show
that while models grasp broad cultural cate-
gories, they struggle with nuanced understand-
ing. This suggests that GIMMICK poses a chal-
lenging benchmark and highlights the need for
further advances in modeling broad cultural
awareness.

Limitations

English-Only Benchmark Although we con-
sider the performance on tasks requiring cul-
tural understanding in English as an upper
bound for the majority of models, it is yet to be
tested if that hypothesis generally holds across
tasks, model size, and model family. Espe-
cially for models like QWENVL and INTERNVL,
which were pretrained on large portions of Chi-
nese textual data, Chinese could be pivotal
instead of English. Moreover, some cultural
nuances might not be translatable to other lan-
guages.

Open-Ended VQA. CIVQA and CVVQA com-
prise open-ended answers to their questions,
imposing challenges for adequate evaluation,
especially when employing binary metrics like
accuracy. This is especially true for rare, cul-
turally specific answer terms, such as in our
tasks, which are prone to spelling inaccuracies
or might have different names in different cul-
tures or languages. Although we alleviate this
issue by computing scores using GPT-4o in an
LVLM-as-a-Judge setting and thereby confirm
our findings, this requires additional computa-
tional and financial resources. A typical solu-
tion for this is transforming the questions into
multiple-choice questions, which, however, re-
quires culturally expert annotators, who are
challenging to find or train and expensive if
hired via professional annotation companies.

Small Number of Samples. With a total
of 7239 unique samples across all tasks in
GIMMICK—2233 (CIVQA), 1809 (CVVQA), 982
(COQAC), 759 (COQAR), 728 (CKQAD), and 728
(CKQAN)—, the benchmark itself has the third
most samples compared to other recent bench-
marks. However, the per-task number falls rel-
atively low, leading to even fewer counts per
country or culture, making judgments about

single countries not informative.
To increase the number of samples, we con-

sider two main options: 1) By expanding the
number of annotations by employing expert
annotators for an additional period of time
and/or increasing the amount of silver data
as described in §B.4, which would lead to
an increase of samples for the CIVQA and
CVVQA datasets. 2) By incorporating the newly
released UNESCO data every year, as well
as leveraging other high-quality sources such
as UNESCO World Heritage13, the European
Commission14, the Southeast Asian Cultural
Heritage Alliance (SEACHA)15, the Journal of
African Cultural Heritage16, or ICH Links17

Ethical Considerations

Country and Region Definitions. GIMMICK
adopts the country and region classifications
from the UNESCO ICH dataset. While these
classifications are widely used, we recognize
the potential for differing interpretations.
Potentially Offensive Questions. We em-
ployed semi-automatic data generation strate-
gies to create the CIVQA dataset. Here, the sil-
ver data was generated using GPT-4o, which
we showed displays significant cultural biases
towards Western contexts. Although we pro-
vided the model with high-quality ground-truth
information from the UNESCO ICH project
and trained expert annotators with diverse cul-
tural backgrounds to filter low-quality VQA
samples, certain questions or their answers
might still be offensive to people with certain
cultural origins. Since this is subjective, we
need to accept it as is for now. Nevertheless,
we encourage contacting us if any offensive
or otherwise harmful sample raises someone’s
attention.
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Appendix Overview

Due to the number of experiments, the general density of our work, and our aim to be as
transparent as possible in the sense of open science, the following appendix is extensive. Hence,
we provide a brief outline of its content to ease navigation and to get an overview quickly.

A GIMMICK Benchmark Details
Details on license, examples, regions, models.

B CIVQA Details
Details on examples, synthetic data generation, and the annotation project.

C VVQA Details
Details on examples and the annotation project.

D COQA Details
Details on prompts, and examples.

E CKQA Details
Details on prompts.

F Experimental Setup
Details on prompts hyperparameters.

G Results and Analyses
Details on complete results of all models and datasets and additional analyses.
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A GIMMICK Benchmark Details

A.1 Data License

GIMMICK is built upon the open-access data from the UNESCO Intangible Cultural Heritage
(ICH) project, which is organized as a knowledge graph. The graph can be downloaded in
English, French, and Spanish on the ICH project website: https://ich.unesco.org/en/open-access-
to-dive-data-01218, with details about its structure and subsets also provided. In GIMMICK, we
work with the English graph only. The open-access license of the knowledge graph is defined on
the UNESCO website18 as follows:

By ’open access’ to the literature, we mean its free availability on the public internet,
permitting any users to read, download, copy, distribute, print, search, or link to the
full texts of these articles, crawl them for indexing, pass them as data to software, or
use them for any other lawful purpose, without financial, legal, or technical barriers
other than those inseparable from gaining access to the internet itself.

The images and videos within the data are shared via URLs and hosted by UNESCO or on
YouTube, respectively. Further, each image and video node in the knowledge graph has individual
copyright information attached. However, the licenses themselves are not discussed, and merely
the name of the photographer or institution or UNESCO itself is stated. Unfortunately, we did
not receive an answer to multiple emails in which we asked for clarification. Hence, we assume
that the image and video content also fall under the definition of ”open access”. If you are a
copyright holder of any of the images or videos and do not want your intellectual property to be
used or shared by us, please reach out via email: florian.schneider-1@uni-hamburg.de.

A.2 Cultural Event or Facets (CEFs)

A.2.1 Examples

In the following, we provide one example of CEFs per region from the UNESCO ICH project.
We also use the same information for the CKQAN and CKQAD tasks.

18https://www.unesco.org/en/open-access
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Western Europe ( W)

Title: The skills related to perfume in Pays de Grasse: the cultivation of
perfume plants, the knowledge and processing of natural raw materials, and the
art of perfume composition
Countries: France
Regions: Western European and North American States
Description:
The skills related to perfume in Pays de Grasse cover three different aspects: the cultivation
of perfume plants; the knowledge and processing of natural raw materials; and the art of perfume
composition. The practice involves a wide range of communities and groups, brought together
under the Association du Patrimoine Vivant du Pays de Grasse (Living Heritage Association of
the Region of Grasse). Since at least the sixteenth century, the practices of growing and
processing perfume plants and creating fragrant blends have been developed in Pays de Grasse,
in a craft industry long dominated by leather tanning. Perfume plant cultivation involves a
wide range of skills and knowledge, for instance pertaining to nature, soil, weather, biology,
plant physiology and horticultural practices, as well as specific techniques such as extraction
and hydraulic distillation methods. The inhabitants of Grasse have made these techniques their
own and helped improve them. In addition to technical skills, however, the art also calls for
imagination, memory and creativity. Perfume forges social bonds and provides an important source
of seasonal labour. Related knowledge is mostly transmitted informally through a long learning
process that still takes place primarily in perfumeries. In recent decades, however, there has
been a growing interest in standardizing learning through formalized teaching.

UNESCO ICH URL: https://ich.unesco.org/en/RL/the-skills-related-to-perfume-i...

Copyrigth: JM. Ghibaudo
APVPG 2011

Copyrigth: Musées de Grasse
2011

Copyrigth: N. Bédar APVPG
2015

Copyrigth: C. Barbiero/Musées
de Grasse 2010

Copyrigth: Daniel, Serre, M.
Roudnitska APVPG 2014

Copyrigth: Musées de Grasse
2012

Copyrigth: G. Voinot/Université
Sophia Antiopolis 2011

Copyrigth: Esat Les Restanques
2013

Copyrigth: Forum des Associa-
tions Pays de Grasse 2014

Copyrigth: PH. Massé APVPG
2014
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Eastern Europe ( E)

Title: Cultural Heritage of Boka Navy Kotor: a festive representation of a
memory and cultural identity
Countries: Montenegro
Regions: Eastern European States
Description:
Boka Navy is a traditional, non-governmental maritime organization founded in Kotor, Montenegro
in 809. Its origin is linked to the arrival of the relics of St. Tryphon, the patron saint of
the city of Kotor. Comprised of a community of seafarers with military, economic, educational
and humanitarian functions, Boka Navy has played a memorial role for two centuries, preserving
and promoting maritime history and tradition. Membership is voluntary and open to men, women
and children of all ages. The organization is founded on the respect of human rights and of
religious, national and cultural diversity. During formal celebrations, members wear colourful
traditional uniforms, carry historic weapons and perform the traditional circle kolo dance. Boka
Navy is the backbone of the annual St. Tryphon festivities, which take place from 13 January
through 3 February and include a procession and a series of rituals in the cathedral. The
external festivities begin with the Boka Navy’s traditional kolo circle dance and are followed
by a procession carrying the relics of St. Tryphon through the main town squares and streets.
Thousands of spectators attend the processions in the historic centre and observe the festive
events. Hundreds of women, men and children also participate in preparations of the activities.

UNESCO ICH URL: https://ich.unesco.org/en/RL/cultural-heritage-of-boka-navy-...

Copyrigth: Ministry of Culture
of Montenegro

Copyrigth: Ministry of Culture
of Montenegro

Copyrigth: Ministry of Culture
of Montenegro

Copyrigth: Ministry of Culture
of Montenegro

Copyrigth: Ministry of Culture
of Montenegro

Copyrigth: Ministry of Culture
of Montenegro

Copyrigth: Ministry of Culture
of Montenegro

Copyrigth: Ministry of Culture
of Montenegro

Copyrigth: Ministry of Culture
of Montenegro

Copyrigth: Ministry of Culture
of Montenegro
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Arab ( A)

Title: Arts, skills and practices associated with engraving on metals (gold,
silver and copper)
Countries: Algeria, Saudi Arabia, Egypt, Iraq, Morocco, Mauritania, Palestine, Sudan, Tunisia,
Yemen
Regions: Arab States
Description:
Engraving on metals such as gold, silver and copper is a centuries-old practice that entails
manually cutting words, symbols or patterns into the surfaces of decorative, utilitarian,
religious or ceremonial objects. The craftsperson uses different tools to manually cut symbols,
names, Quran verses, prayers and geometric patterns into the objects. Engravings can be concave
(recessed) or convex (elevated), or the result of a combination of different types of metals,
such as gold and silver. Their social and symbolic meanings and functions vary according to
the communities concerned. Engraved objects, such as jewelry or household objects, are often
presented as traditional gifts for weddings or used in religious rituals and alternative medicine.
For instance, certain types of metals are believed to have healing properties. Engraving on metals
is transmitted within families, through observation and hands-on practice. It is also transmitted
through workshops organized by training centres, organizations and universities, among others.
Publications, cultural events and social media further contribute to the transmission of the
related knowledge and skills. Practised by people of all ages and genders, metal engraving and
the use of engraved objects are means of expressing the cultural, religious and geographical
identity and the socioeconomic status of the communities concerned.

UNESCO ICH URL: https://ich.unesco.org/en/RL/arts-skills-and-practices-assoc...

Copyrigth: Huzaifa Ayad Bahaa
El Din, Iraq, 2021

Copyrigth: Huzaifa Ayad Bahaa
El Din, Iraq, 2021

Copyrigth: Huzaifa Ayad Bahaa
El Din, Iraq, 2021

Copyrigth: Zahia Benabdallah,
Algeria, 2021 Copyrigth: Azza Fahmi, Egypt,

2021

Copyrigth: Mustafa Kamil,
Egypt, 2021

Copyrigth: National Heritage
Preservation, Ministry of Cul-
ture, Youth and Sport and Rela-
tions with the Parliament, Egypt,
2022

Copyrigth: Direction du Patri-
moine Culturel, Morocco, 2021

Copyrigth: Direction du Patri-
moine Culturel, Morocco, 2021

Copyrigth: Ministry of Culture,
Palestine, 2021
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Asia and Pacific ( AP)

Title: Tugging rituals and games
Countries: Cambodia, Korea, Philippines, Vietnam
Regions: Asian and Pacific States
Description:
Tugging rituals and games in the rice-farming cultures of East Asia and Southeast Asia are enacted
among communities to ensure abundant harvests and prosperity. They promote social solidarity,
provide entertainment and mark the start of a new agricultural cycle. Many tugging rituals and
games also have profound religious significance. Most variations include two teams, each of which
pulls one end of a rope attempting to tug it from the other. The intentionally uncompetitive
nature of the event removes the emphasis on winning or losing, affirming that these traditions
are performed to promote the well-being of the community, and reminding members of the importance
of cooperation. Many tugging games bear the traces of agricultural rituals, symbolizing the
strength of natural forces, such as the sun and rain while also incorporating mythological
elements or purification rites. Tugging rituals and games are often organized in front of a
village’s communal house or shrine, preceded by commemorative rites to local protective deities.
Village elders play active roles in leading and organizing younger people in playing the game
and holding accompanying rituals. Tugging rituals and games also serve to strengthen unity and
solidarity and sense of belonging and identity among community members.

UNESCO ICH URL: https://ich.unesco.org/en/RL/tugging-rituals-and-games-01080...

Copyrigth: Siyonn Sophearith,
2013

Copyrigth: Siyonn Sophearith,
2013

Copyrigth: Siyonn Sophearith,
2013

Copyrigth: Renato S. Rastrollo,
NCCA

Copyrigth: Renato S. Rastrollo,
NCCA

Copyrigth: Vietnam Institute of
Culture and Arts Studies, 2013

Copyrigth: Vietnam Institute of
Culture and Arts Studies, 2013

Copyrigth: Joo Byung Soo,
2006

Copyrigth: Joo Byung Soo,
2006
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Latin America & Caribbean ( LAC)

Title: Ancestral system of knowledge of the four indigenous peoples, Arhuaco,
Kankuamo, Kogui and Wiwa of the Sierra Nevada de Santa Marta
Countries: Colombia
Regions: Latin-American and Caribbean States
Description:
The Ancestral System of Knowledge of the Arhuaco, Kankuamo, Kogui and Wiwa peoples of the
Sierra Nevada de Santa Marta is comprised of sacred mandates that keep the existence of the
four peoples in harmony with the physical and spiritual universe. Through many years of
dedication, the knowledgeable men (Mamos) and women (Sagas) acquire the necessary skills and
sensitivity to communicate with the snow-capped peaks, connect with the knowledge of the rivers
and decipher the messages of nature. Based on the Law of Origin, a philosophy that governs human
relationships to nature and the universe, the Ancestral System of Knowledge entails caring for
sacred sites and partaking in baptism rituals, marriage rites, traditional dances and songs,
and retributions or offerings to spiritual powers. This ancestral wisdom is believed to play a
fundamental role in protecting the Sierra Nevada ecosystem and avoiding the loss of the cultural
identity of the four peoples of the region. The Ancestral System of Knowledge is transmitted
from generation to generation through cultural practice, community activities, the use of the
indigenous language and the implementation of the sacred mandates. The transmission process
includes the understanding of physical and spiritual relationships with Mother Nature and sacred
sites.

UNESCO ICH URL: https://ich.unesco.org/en/RL/ancestral-system-of-knowledge-o...

Copyrigth: William Diaz, 2021

Copyrigth: Jorge Mario
Suarez/Government of
Magdalena, 2017

Copyrigth: Jorge Mario
Suarez/Government of
Magdalena, 2017 Copyrigth: William Diaz, 2021

Copyrigth: Jorge Mario
Suarez/Government of
Magdalena, 2017

Copyrigth: Jorge Mario
Suarez/Government of
Magdalena, 2017

Copyrigth: Jorge Mario
Suarez/Government of
Magdalena, 2017

Copyrigth: Jorge Mario
Suarez/Government of
Magdalena, 2017

Copyrigth: Jorge Mario
Suarez/Government of
Magdalena, 2017 Copyrigth: William Diaz, 2021
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Subsaharian Africa ( SA)

Title: Gada system, an indigenous democratic socio-political system of the
Oromo
Countries: Ethiopia
Regions: Subsaharian African States
Description:
Gada is a traditional system of governance used by the Oromo people in Ethiopia developed
from knowledge gained by community experience over generations. The system regulates political,
economic, social and religious activities of the community dealing with issues such as conflict
resolution, reparation and protecting women’s rights. It serves as a mechanism for enforcing
moral conduct, building social cohesion, and expressing forms of community culture. Gada is
organized into five classes with one of these functioning as the ruling class consisting of
a chairperson, officials and an assembly. Each class progresses through a series of grades
before it can function in authority with the leadership changing on a rotational basis every
eight years. Class membership is open to men, whose fathers are already members, while women
are consulted for decision-making on protecting women’s rights. The classes are taught by oral
historians covering history, laws, rituals, time reckoning, cosmology, myths, rules of conduct,
and the function of the Gada system. Meetings and ceremonies take place under a sycamore tree
(considered the Gada symbol) while major clans have established Gada centres and ceremonial
spaces according to territory. Knowledge about the Gada system is transmitted to children in
the home and at school.

UNESCO ICH URL: https://ich.unesco.org/en/RL/gada-system-an-indigenous-democ...

Copyrigth: Authority for Re-
search and Conservation of
Cultural Heritage (ARCCH),
Ethiopia, 2014

Copyrigth: Authority for Re-
search and Conservation of
Cultural Heritage (ARCCH),
Ethiopia, 2014

Copyrigth: Authority for Re-
search and Conservation of
Cultural Heritage (ARCCH),
Ethiopia, 2014

Copyrigth: Authority for Re-
search and Conservation of
Cultural Heritage (ARCCH),
Ethiopia, 2014

Copyrigth: Authority for Re-
search and Conservation of
Cultural Heritage (ARCCH),
Ethiopia, 2014

Copyrigth: Authority for Re-
search and Conservation of
Cultural Heritage (ARCCH),
Ethiopia, 2014

Copyrigth: Authority for Re-
search and Conservation of
Cultural Heritage (ARCCH),
Ethiopia, 2014

Copyrigth: Authority for Re-
search and Conservation of
Cultural Heritage (ARCCH),
Ethiopia, 2014

Copyrigth: Authority for Re-
search and Conservation of
Cultural Heritage (ARCCH),
Ethiopia, 2014

Copyrigth: Authority for Re-
search and Conservation of
Cultural Heritage (ARCCH),
Ethiopia, 2014

A.2.2 CEFs as Python a dataclass

Listing 1 presents a CEF implemented as a Python dataclass.

from dataclasses import dataclass

@dataclass
class CEF:

title: str
description: str
countries: list[str]
regions: list[str]
images: list[str] # URLs
videos: list[str] # URLs

Listing 1: Python pseudo-code for a dataclass representing a CEF.
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Region Abbrv. Countries Countries

Arab A 18 Algeria, Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Maurita-
nia, Morocco, Oman, Palestine, Qatar, Saudi Arabia, Sudan, Syria,
Tunisia, United Arab Emirates, Yemen

Asia & Pacific AP 35 Lao People’s Democratic Republic, Afghanistan, Australia,
Bangladesh, Bhutan, Cambodia, China, Cook Islands, Democratic
People’s Republic of Korea, Fiji, India, Indonesia, Iran, Japan,
Kazakhstan, Korea, Kyrgyzstan, Malaysia, Micronesia, Mongolia,
Myanmar, Nepal, New Zealand, Pakistan, Papua New Guinea,
Philippines, Samoa, Singapore, Sri Lanka, Thailand, Timor-Leste,
Tonga, Turkmenistan, Vanuatu, Vietnam

Eastern Europe E 25 Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina,
Bulgaria, Croatia, Czechia, Estonia, Georgia, Hungary, Latvia,
Lithuania, Moldova, Montenegro, North Macedonia, Poland, Ro-
mania, Russia, Serbia, Slovakia, Slovenia, Tajikistan, Ukraine,
Uzbekistan

Latin-America & Caribbean LAC 28 Antigua and Barbuda, Argentina, Bahamas, Belize, Bolivia, Brazil,
Chile, Colombia, Costa Rica, Cuba, Curaçao, Dominican Repub-
lic, Ecuador, El Salvador, Grenada, Guatemala, Haiti, Honduras,
Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, Saint Kitts
and Nevis, Saint Vincent and the Grenadines, Uruguay, Venezuela

Subsaharian Africa SA 40 Côte d’Ivoire, Angola, Benin, Botswana, Burkina Faso, Burundi,
Cabo Verde, Cameroon, Central African Republic, Chad, Congo,
Democratic Republic of the Congo, Djibouti, Eritrea, Eswatini,
Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Mada-
gascar, Malawi, Mali, Mauritius, Mozambique, Namibia, Niger,
Nigeria, Rwanda, Senegal, Seychelles, Somalia, South Africa,
South Sudan, Togo, Uganda, Zambia, Zimbabwe

Western Europe & North America W 23 Andorra, Austria, Belgium, Canada, Cyprus, Denmark, Finland,
France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg,
Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzer-
land, Türkiye, United Kingdom of Great Britain and Northern
Ireland

Table 4: Caption

A.3 Regions
A.3.1 Number of Samples per Task per Region
A.4 Models
We present the comprehensive list of all 31 models evaluated in GIMMICK in Table 6.

B CIVQA Details
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REGION CIVQA CVVQA COQAR COQAC CKQAD CKQAN

A 375 296 71 127 71 71
A AP 4 4 2 2 1 1
A AP E W 5 5 0 36 2 2
A E W 1 0 3 7 1 1
A SA 8 0 2 3 1 1
AP 444 407 211 222 211 211
AP E 7 7 6 6 3 3
AP E LAC SA W 1 1 0 8 1 1
AP E W 10 7 21 35 7 7
AP W 4 3 2 3 1 1
E 302 242 125 136 125 125
E W 21 20 22 56 11 11
LAC 420 341 96 106 96 96
LAC W 2 2 2 2 1 1
SA 388 299 71 80 71 71
W 241 175 125 153 125 125

Table 5: Number of samples per region(s) in GIMMICK tasks.
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MODEL ID PAPER NAME OPEN-WEIGHT SIZE GROUP IMAGE INPUT VIDEO INPUT TEXT INPUT LLM BACKBONE

claude-3-5-sonnet-20241022
Claude 3.5 Sonnet
(Anthropic, 2024) No A Yes Yes Yes –

gemini-1.5-pro-002
Gemini Pro

(Team et al., 2024) No A Yes Yes Yes –

gemini-1.5-flash-002
Gemini Flash

(Team et al., 2024) No A Yes Yes Yes –

gpt-4o-2024-11-20
GPT-4o

(Hurst et al., 2024) No A Yes Yes Yes –

gpt-4o-mini-2024-07-18
GPT-4o Mini

(Hurst et al., 2024) No A Yes Yes Yes –

opengvlab/internvl2_5-78b
InternVL2.5 78B

(Chen et al., 2024b) Yes XL Yes Yes Yes qwen/qwen2.5-72b-instruct

qwen/qwen2-vl-72b-instruct
Qwen2 VL 72B

(Wang et al., 2024) Yes XL Yes Yes Yes qwen/qwen2.5-72b-instruct

opengvlab/internvl2_5-26b
InternVL2.5 26B

(Chen et al., 2024b) Yes L Yes Yes Yes internlm/internlm2_5-20b-chat

opengvlab/internvl2_5-38b
InternVL2.5 38B

(Chen et al., 2024b) Yes L Yes Yes Yes qwen/qwen2.5-32b-instruct

meta-llama/llama-3.2-11b-vision-instruct
Llama 3.2 11B Vision

(AI, 2024) Yes M Yes Yes Yes –

qwen/qwen2-vl-7b-instruct
Qwen2 VL 7B

(Wang et al., 2024) Yes M Yes Yes Yes qwen/qwen2.5-7b-instruct

openbmb/minicpm-v-2_6
MiniCPM V 2.6
(Yao et al., 2024) Yes M Yes Yes Yes –

wuenlp/centurio_aya
Centurio Aya

(Geigle et al., 2025) Yes M Yes Yes Yes cohereforai/aya-expanse-8b

opengvlab/internvl2_5-8b
InternVL2.5 8B

(Chen et al., 2024b) Yes M Yes Yes Yes internlm/internlm2_5-7b-chat

wuenlp/centurio_qwen
Centurio Qwen

(Geigle et al., 2025) Yes M Yes Yes Yes qwen/qwen2.5-7b-instruct

qwen/qwen2-vl-2b-instruct
Qwen2 VL 2B

(Wang et al., 2024) Yes S Yes Yes Yes qwen/qwen2.5-1.5b-instruct

microsoft/phi-3.5-vision-instruct
Phi 3.5 Vision

(Abdin et al., 2024) Yes S Yes Yes Yes microsoft/phi-3.5-mini-instruct

opengvlab/internvl2_5-4b
InternVL2.5 4B

(Chen et al., 2024b) Yes S Yes Yes Yes qwen/qwen2.5-3b-instruct

opengvlab/internvl2_5-1b
InternVL2.5 1B

(Chen et al., 2024b) Yes S Yes Yes Yes qwen/qwen2.5-0.5b-instruct

opengvlab/internvl2_5-2b
InternVL2.5 2B

(Chen et al., 2024b) Yes S Yes Yes Yes internlm/internlm2_5-1_8b-chat

qwen/qwen2.5-72b-instruct
Qwen2.5 72B

(Yang et al., 2024) Yes XL No No Yes –

qwen/qwen2.5-32b-instruct
Qwen2.5 32B

(Yang et al., 2024) Yes L No No Yes –

internlm/internlm2_5-20b-chat
InternLM2.5 20B
(Cai et al., 2024) Yes L No No Yes –

cohereforai/aya-expanse-8b
Aya Expanse 8B

(Dang et al., 2024) Yes M No No Yes –

internlm/internlm2_5-7b-chat
InternLM2.5 7B
(Cai et al., 2024) Yes M No No Yes –

qwen/qwen2.5-7b-instruct
Qwen2.5 7B

(Yang et al., 2024) Yes M No No Yes –

qwen/qwen2.5-0.5b-instruct
Qwen2.5 0.5B

(Yang et al., 2024) Yes S No No Yes –

qwen/qwen2.5-3b-instruct
Qwen2.5 3B

(Yang et al., 2024) Yes S No No Yes –

qwen/qwen2.5-1.5b-instruct
Qwen2.5 1.5B

(Yang et al., 2024) Yes S No No Yes –

internlm/internlm2_5-1_8b-chat
InternLM2.5 1.8B
(Cai et al., 2024) Yes S No No Yes –

microsoft/phi-3.5-mini-instruct
Phi 3.5 Mini

(Abdin et al., 2024) Yes S No No Yes –

Table 6: Details about the models evaluated within the GIMMICK benchmark. The size “A” indicates that the model
is a proprietary API model with unknown size.
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B.1 Examples

In the following, we provide one random sample per region for the CIVQA task. Note that the
lower part of the examples, where the related CEF is provided, is not part of the actual sample.

A

Copyrigth: Conseil municipal de Sefrou, 2010

Question: What title is given to the woman wearing the sash in the
image?
Answer: Cherry Queen

Related Cultural Event or Facet

Title: Cherry festival in Sefrou
Countries: Morocco
Regions: Arab States
Description:
For three days in June each year, the local population of Sefrou celebrates the natural and
cultural beauty of the region, symbolized by the cherry fruit and that year’s newly chosen Cherry
Queen, selected during a pageant that draws competitors from the region and entire country. The
highlight of the festival is a parade with performing troupes, rural and urban music, majorettes
and bands, and floats featuring local producers. At the centre is the Cherry Queen, who offers
cherries to onlookers while dressed ornately and surrounded by attendants. The whole population
contributes to the success of the festival: craftswomen make silk buttons for traditional dresses,
fruit growers supply cherries, local sports clubs participate in competitions, and music and
dancing troupes animate the entire festival. The cherry festival provides an opportunity for
the entire city to present its activities and achievements. The younger generation are also
integrated into festival activities to ensure their sustainability. The festival is a source of
pride and belonging that enhances the self-esteem of the city and its people and constitutes a
fundamental contribution to their local identity.

UNESCO ICH URL: https://ich.unesco.org/en/RL/cherry-festival-in-sefrou-00641...
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AP

Copyrigth: 2010 by Centre for Research and Development of Culture, Indonesia

Question: What traditional dance are the performers engaging in, as
seen in the image?
Answer: Saman dance

Related Cultural Event or Facet

Title: Saman dance
Countries: Indonesia
Regions: Asian and Pacific States
Description:
The Saman dance is part of the cultural heritage of the Gayo people of Aceh province in Sumatra.
Boys and young men perform the Saman sitting on their heels or kneeling in tight rows. Each wears
a black costume embroidered with colourful Gayo motifs symbolizing nature and noble values. The
leader sits in the middle of the row and leads the singing of verses, mostly in the Gayo language.
These offer guidance and can be religious, romantic or humorous in tone. Dancers clap their
hands, slap their chests, thighs and the ground, click their fingers, and sway and twist their
bodies and heads in time with the shifting rhythm – in unison or alternating with the moves of
opposing dancers. These movements symbolize the daily lives of the Gayo people and their natural
environment. The Saman is performed to celebrate national and religious holidays, cementing
relationships between village groups who invite each other for performances. The frequency of
Saman performances and its transmission are decreasing, however. Many leaders with knowledge of
the Saman are now elderly and without successors. Other forms of entertainment and new games are
replacing informal transmission, and many young people now emigrate to further their education.
Lack of funds is also a constraint, as Saman costumes and performances involve considerable
expense.

UNESCO ICH URL: https://ich.unesco.org/en/USL/saman-dance-00509...
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E

Copyrigth: 2010 by M.Rahimov/Ministry of Culture and Tourism

Question: What is the name of the musical instrument observed by the
man in the image?
Answer: Tar

Related Cultural Event or Facet

Title: Craftsmanship and performance art of the Tar, a long-necked string
musical instrument
Countries: Azerbaijan
Regions: Eastern European States
Description:
The Tar is a long-necked plucked lute, traditionally crafted and performed in communities
throughout Azerbaijan. Considered by many to be the country’s leading musical instrument, it
features alone or with other instruments in numerous traditional musical styles. Tar makers
transmit their skills to apprentices, often within the family. Craftsmanship begins with careful
selection of materials for the instrument: mulberry wood for the body, nut wood for the neck,
and pear wood for the tuning pegs. Using various tools, crafters create a hollow body in the form
of a figure eight, which is then covered with the thin pericardium of an ox. The fretted neck is
affixed, metal strings are added and the body is inlaid with mother-of-pearl. Performers hold
the instrument horizontally against the chest and pluck the strings with a plectrum, while using
trills and a variety of techniques and strokes to add colour. Tar performance has an essential
place in weddings and different social gatherings, festive events and public concerts. Players
transmit their skills to young people within their community by word of mouth and demonstration,
and at educational musical institutions. Craftsmanship and performance of the tar and the
skills related to this tradition play a significant role in shaping the cultural identity of
Azerbaijanis.

UNESCO ICH URL: https://ich.unesco.org/en/RL/craftsmanship-and-performance-a...
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LAC

Copyrigth: Py, 2019

Question: What traditional tool from the Guaraní culture is depicted
in the image for drinking Terere?
Answer: Bombilla

Related Cultural Event or Facet

Title: Practices and traditional knowledge of Terere in the culture of Pohã
Ñana, Guaraní ancestral drink in Paraguay
Countries: Paraguay
Regions: Latin-American and Caribbean States
Description:
The practices and traditional knowledge of Terere in the culture of Pohã Ñana, Guaraní ancestral
drink in Paraguay, are widespread in the Paraguayan territory and involve a variety of bearers.
Terere is a traditional drink prepared in a jug or thermos, in which cold water is mixed with
Pohã Ñana crushed in a mortar. It is served in a glass pre-filled with yerba mate and sucked
with a bombilla (metal or cane straw). Preparing the Terere is an intimate ritual involving a
series of pre-established codes and each Pohã Ñana herb has health benefits linked to popular
wisdom passed down through the generations. Terere practices in the culture of Pohã Ñana have
been transmitted in Paraguayan families since approximately the sixteenth century. Traditional
knowledge about the healing attributes of the medicinal herbs that make up the Pohã Ñana and
their correct use are also transmitted spontaneously within the family. In recent years, the
figure of apprentices has risen, but family transmission remains the main mode of transmission.
The practice of the Terere in the culture of Pohã Ñana fosters social cohesion as the time and
space dedicated to preparing and consuming the Terere promote inclusion, friendship, dialogue,
respect and solidarity. The practice also strengthens new generations’ appreciation of the rich
cultural and botanical heritage of Guaraní origin.

UNESCO ICH URL: https://ich.unesco.org/en/RL/practices-and-traditional-knowl...
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SA

Copyrigth: The Authority for Research and Conservation of Cultural Heritage (ARCCH),
2013

Question: What festival are the people in the image celebrating?
Answer: Fichee-Chambalaalla

Related Cultural Event or Facet

Title: Fichee-Chambalaalla, New Year festival of the Sidama people
Countries: Ethiopia
Regions: Subsaharian African States
Description:
Fichee-Chambalaalla is a New Year festival celebrated among the Sidama people. According to the
oral tradition, Fichee commemorates a Sidama woman who visited her parents and relatives once a
year after her marriage, bringing ”buurisame”, a meal prepared from false banana, milk and butter,
which was shared with neighbours. Fichee has since become a unifying symbol of the Sidama people.
Each year, astrologers determine the correct date for the festival, which is then announced to
the clans. Communal events take place throughout the festival, including traditional songs and
dances. Every member participates irrespective of age, gender and social status. On the first day,
children go from house to house to greet their neighbours, who serve them ”buurisame”. During the
festival, clan leaders advise the Sidama people to work hard, respect and support the elders, and
abstain from cutting down indigenous trees, begging, indolence, false testimony and theft. The
festival therefore enhances equity, good governance, social cohesion, peaceful co-existence and
integration among Sidama clans and the diverse ethnic groups in Ethiopia. Parents transmit the
tradition to their children orally and through participation in events during the celebration.
Women in particular, transfer knowledge and skills associated with hairdressing and preparation
of ”buurisame” to their daughters and other girls in their respective villages.

UNESCO ICH URL: https://ich.unesco.org/en/RL/fichee-chambalaalla-new-year-fe...
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W

Copyrigth: Município de Estremoz, 2015

Question: What specific region’s attire is represented by the figures
in the image?
Answer: Alentejo

Related Cultural Event or Facet

Title: Craftmanship of Estremoz clay figures
Countries: Portugal
Regions: Western European and North American States
Description:
The Craftsmanship of Estremoz Clay Figures involves a production process lasting several days:
the elements of the figures are assembled before being fired in an electric oven and then
painted by the artisan and covered with a colourless varnish. The clay figures are dressed in
the regional attires of Alentejo or the clothing of religious Christian iconography, and follow
specific themes. The production of clay figures in Estremoz dates back to the seventeenth century,
and the very characteristic aesthetic features of the figures make them immediately identifiable.
The craft is strongly attached to the Alentejo region, since the vast majority of the figures
depict natural elements, local trades and events, popular traditions and devotions. The viability
and recognition of the craft are ensured through non-formal education workshops and pedagogical
initiatives by the artisans, as well as by the Centre for the Appreciation and Safeguarding of
the Estremoz Clay Figure. Fairs are organized at the local, national and international levels.
Knowledge and skills are transmitted both in family workshops and professional contexts, and
artisans teach the basics of their craft through non-formal training initiatives. Artisans are
actively involved in awareness-raising activities organized in schools, museums, fairs and other
events.

UNESCO ICH URL: https://ich.unesco.org/en/RL/craftmanship-of-estremoz-clay-f...

B.2 Cultural Aspects
During the synthetic data generation phase of the CIVQA, we also obtained a “target aspect” per
question (see §B.4 and §B.4.1). We report these aspects in the following.

B.3 External Hint Variations
For the CIVQA (and CVVQA) task, we ablate the effect of external cues or hints on the task
performance of models. In the following, we provide the Python pseudo-code snippet to generate
the prompt for a given sample.

B.4 Synthetic Data Generation
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Aspect Questions

traditions 390
rituals 241
art 233
music 210
craftsmanship 177
instruments 155
festivals 151
dance 150
tools 108
food 96
clothing 93
architecture 52
sports 38
location 28
symbols 19
drinks 14
customs 13
cultural significance 6
theatre 4

Aspect Questions

education 3
culture 3
games 3
performing arts 3
language 3
performance 3
characters 2
practices 2
skills 2
origin 2
cultural identity 2
technology 1
people 1
community 1
identity 1
environment 1
traditional medicine 1
nature 1
communication 1

Aspect Questions

jewelry 1
objects 1
animal 1
plants 1
process 1
agriculture 1
celebrations 1
details 1
historical 1
function or usage 1
symbolism 1
healthcare 1
knowledge 1
social status 1
religion 1
cultural space 1
social space 1
cultural practice 1
unknown 1

Table 7: Cultural aspects targeted by the questions within the CIVQA task.

Python Pseudo-Code for the external cue settings of the CIVQA and CVVQA tasks.

def apply_gimmick_prompt_template(
sample: dict[str, Any],
regions_hint: bool,
countries_hint: bool,

) -> str:

prompt_template = "{QUESTION}\n{HINTS}\n"
hints = ""

if regions_hint:
hints += (

"Hint: The question is related to a cultural event or facet from the following
region(s): ",!

f"{�, �.join(sample[�regions�])}\n"
)

if countries_hint:
hints += (

"Hint: The question is related to a cultural event or facet from the following
country or countries: ",!

f"{�, �.join(sample[�countries�])}\n"
)

return prompt_template.format(
QUESTION=sample["prompt"],
HINTS=hints,

)

Figure 73: Python Pseudo-Code to generate the prompt for a given CIVQA (or CVVQA) sample for the external cues
settings.
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B.4.1 System Prompt

# Your Role

You are a professional annotator specialized in creating VQA samples based on a provided
intangible cultural heritage(ICH) item. You will be given the following information
related to the item:

,!
,!

- Image: An image representing one aspect of the ICH item.
- Countries of Origin: The country or countries where this ICH is recognized.
- Regions of Origin: The country or countries where this ICH is recognized.
- Title: The official title of the ICH item.
- Description: A detailed description of the ICH item, including relevant details.

# Your Task

Your task is it to generate high-quality question-answer pairs in a VQA style to assess the
cultural knowledge of the intangible cultural heritage (ICH) item of state-of-the-art
multimodal AI models. Be sure to follow the annotation guidelines provided below to ensure
the quality and relevance of the question-answer pairs.

,!
,!
,!

# Annotation Guidelines

## Question Requirements

Make sure the question meets all of the following requirements:

1. Clear and Concise
The question is clear and concise and no longer than a single sentence.

2. Directly related to the ICH item
The question is directly related to the ICH item.

3. Directly related to the visible content
The question is directly related to the visible content in the image and requires visual

analysis to answer.,!
4. Does not (partially) contain the answer

The question does not contain any hints or clues to or parts of the answer that would make
the answer obvious.,!

5. Does not contain subjective words
The question does not contain subjective words like �likely�, �possibly�, �probably�,

�eventually�, �might�, �could�, �should�, etc., which could introduce ambiguity.,!
6. Requires both image and cultural knowledge to answer

The question requires both image and cultural knowledge to answer and is not answerable by
looking only at the image or only knowing about the ICH item or reading the textual
description.

,!
,!

7. (optional) Includes specific cultural terms
The answer includes specific cultural terms, names, or phrases related to the ICH item.

E.g., particular names mentioned in the description or parts of the title.,!

## Answer Requirements

Make sure the answer meets all of the following requirements:

1. Single Word or Multiword Expression
The answer is a single word or multiword expression.

2. Clear, Objective, and Correct
The answer is clear, objective, and unambiguously correct.

3. Directly Related to Visual Content
The answer is directly related to the visual content of the image.

4. No General or Abstract Words
The answer does not contain general, abstract, or non-depictable words like "Traditional",

"Cooperation", "Gathering", "Solidarity", "Community", "Indoor", "Outdoor", "Urban",
"Rural", etc.

,!
,!

5. Verifiable by Text and Image
The answer is unambiguously verifiable by reading the textual information and inspecting

the image.,!
6. (optional) Includes specific cultural terms

The answer includes specific cultural terms, names, or phrases related to the ICH item.
E.g., particular names mentioned in the description or parts of the title.,!
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## Question Characteristics

### Target Aspects

Make sure the question targets different aspects of the ICH item, such as:

- Food
- Drinks
- Clothing
- Art
- Tools
- Sports
- Instruments
- Dance
- Music
- Rituals
- Traditions
- Festivals
- Customs
- Symbols
- Architecture
- Other

### Question Categories

Make sure the question falls into different categories, such as:

- Identification
Questions that ask for the identification of objects, people, or elements in the image.

E.g.: What is the name of the instrument shown in the image?,!
- Origin

Questions that inquire about the origin or source of the CEF. E.g.: Which culture or
country does this artifact belong to?,!

- Cultural Significance
Questions that explore the cultural or religious significance of the depicted element. E.g.:

What cultural or religious significance does this item hold in its native context?,!
- Function or Usage

Questions that ask about the traditional or historical function or usage of the depicted
element. E.g.: What was this object traditionally used for?,!

- Material and Craftsmanship
Questions that focus on the materials used and the craftsmanship involved in creating the

depicted element. E.g.: What material is used to construct this artifact?,!
- Location

Questions that ask about the geographical location where the cultural event or facet takes
place. E.g.: In which place does this dance take place?,!

- Symbolism
Questions that delve into the symbolic meanings associated with the depicted element. E.g.:

What does the color red symbolize in this cultural context?,!
- Historical

Questions that relate to historical events or contexts depicted in the image. E.g.: What
historical event is depicted in this image?,!

- Details
Questions that ask for specific details about the formation, arrangement, or other aspects

of the depicted element. E.g.: What formation are the dancers in?,!
- Other

Questions that do not fall into the above categories but are relevant to the ICH item.

# Task Strategy

Before generating a question-answer pair, first think step-by-step and analyse the image:

1. What is visible in the image? Generate a highly detailed description of the key elements,
objects, or people in the image. Take into account the textual description provided to
identify details.

,!
,!
2. How does the visible content relate to the intangible cultural heritage item? Identify the

connection between the contents of the image and the intangible cultural heritage item.,!
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Then, think step-by-step about potential questions:

1. What can be asked about the image that is directly related to the visible content and the
intangible cultural heritage item?,!

2. Can a concise and clear answer to the questions be inferred from the image and the provided
information?,!

Finally, think step-by-step before generating the final question-answer pairs:

1. Does the question-answer pair strictly adhere to the guidelines provided above? Percisly
check every part of the guidelines and drop the question-answer pair if it does not meet
the criteria.

,!
,!
2. What aspect of the intangible cultural heritage item is targeted with the question?
3. What category does the question fall into?

# Output Format

For each question-answer pair, provide the following information in the following format:
���xml
<vqa-task>

<image-analysis>
<description>

<!-- PUT YOUR DETAILED DESCRIPTION OF THE IMAGE HERE -->
</description>
<cultural-relatetness>

<!-- PUT YOUR ANALYSIS OF HOW THE CONTENTS OF THE IMAGE RELATE TO THE INTANGIBLE
CULTURAL HERITAGE ITEM HERE -->,!

</cultural-relatetness>
</image-analysis>
<potential-questions>

<qa-candidate>
<question>

<!-- PUT YOUR QUESTION HERE -->
</question>
<answer>

<!-- PUT YOUR ANSWER HERE -->
</answer>
<guideline-adherence>

<question-requirments>
<clear-and-concise>

<!-- YES OR NO -->
</clear-and-concise>
<directly-related-to-ich>

<!-- YES OR NO -->
</directly-related-to-ich>
<directly-related-to-visual-content>

<!-- YES OR NO -->
</directly-related-to-visual-content>
<does-not-contain-answer>

<!-- YES OR NO -->
</does-not-contain-answer>
<does-not-contain-subjective-words>

<!-- YES OR NO -->
</does-not-contain-subjective-words>
<requires-both-image-and-cultural-knowledge>

<!-- YES OR NO -->
</requires-both-image-and-cultural-knowledge>
<includes-specific-cultural-terms>

<!-- YES OR NO -->
</includes-specific-cultural-terms>

</question-requirments>
<answer-requirments>

<single-word-or-multiword-expression>
<!-- YES OR NO -->

</single-word-or-multiword-expression>
<clear-objective-and-correct>

<!-- YES OR NO -->
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</clear-objective-and-correct>
<directly-related-to-visual-content>

<!-- YES OR NO -->
</directly-related-to-visual-content>
<no-general-or-abstract-words>

<!-- YES OR NO -->
</no-general-or-abstract-words>
<verifiable-by-text-and-image>

<!-- YES OR NO -->
</verifiable-by-text-and-image>
<includes-specific-cultural-terms>

<!-- YES OR NO -->
</includes-specific-cultural-terms>

</answer-requirments>
</guideline-adherence>

</qa-candidate>
...

</potential-questions>
<final-qa-pairs>

<!-- PUT ALL QA PAIRS THAT MEET ALL MANDATORY REQUIREMENTS HERE -->
<qa-pair>

<meets-requirements>
<!-- DOES YOUR QUESTION-ANSWER PAIR MEET ALL MANDATORY REQUIREMENTS? YES OR NO

-->,!
</meets-requirements>
<final-result-json>

<!-- PUT YOUR FINAL RESULT AS JSON HERE -->
{

"question": <insert question here>,
"answer": <insert answer here>,
"target_aspect": <insert target aspect here>
"question_category": <insert question category here>

}
</final-result-json>

</qa-pair>
...

</final-qa-pairs>
</vqa-task>
���

B.4.2 User Prompt Template

# Intangible Cultural Heritage Item

### Image

{IMAGE_PLACEHOLDER}

### Countries of Origin:

{LIST_OF_COUNTRIES}

### Regions of Origin

{LIST_OF_REGIONS}

### Title

{TITLE}

### Description

{DESCRIPTION}
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B.5 Annotation Project Details

We first conducted several internal pilot stud-
ies to iteratively create a straightforward anno-
tation task, guidelines, and an intuitive inter-
face for the final annotation project. To find
annotators, we advertised the task in our fac-
ulty research network, emphasizing our goal
of creating a culturally diverse benchmark for
assessing the cultural awareness of current
AI models. Therefore, we targeted primarily
individuals from non-Western cultural back-
grounds. We found 18 volunteers who have
spent most of their lives in 10 different coun-
tries from all six regions and thus cover diverse
cultural backgrounds (see Table 8). To train
the annotators, we provided detailed annota-
tion guidelines, followed by an oral introduc-
tion to the task. For more details, refer to the
(anonymized) original annotation guidelines
we shared here.

For the second annotation round, we hired 5
of the previous volunteering annotators (0, 1,
8, 15, 17) who assessed the kept samples from
the first round to obtain two annotations (from
distinct annotators) per sample. We paid the
second-round annotators a salary of roughly
12.5C per hour.

ID AGE PRONOUNS EDUCATION COUNTRY REGION ROUND(S)

0 23 she/her Bachelor Iran AP 1, 2
1 23 she/her Bachelor Iran AP 1, 2
2 28 she/her PhD Russia E 1
3 35 he/him Master Germany W 1
5 29 he/him Bachelor Guatemala LAC 1
6 29 he/him Master Germany W 1
7 42 he/him PhD Ethiopia SA 1
8 23 he/him Bachelor Egypt A 1, 2
9 33 she/her Master Iran AP 1
10 29 she/her Bachelor Afghanistan AP 1
11 23 she/her Bachelor India AP 1
12 33 he/him Bachelor Germany W 1
13 22 she/her Bachelor Pakistan AP 1
14 27 he/him Master China AP 1
15 29 she/her High School Germany W 1, 2
16 22 she/her Bachelor China AP 1
17 26 he/him High School Germany W 1, 2, 3

Table 8: Demographics of the annotators who partici-
pated in our VQA annotation project. For the country,
we asked the question, “Where did you spend most of
your life?”. The Round(s) column indicates which an-
notation rounds the annotator participated in.

B.5.1 CIVQA Annotation Interface

For the annotation project, we used a self-
hosted Label Studio19 instance with a custom

19https://labelstud.io/

labeling interface (see Figure 74) for all anno-
tation projects.
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Figure 74: Three screenshots showing examples of the Label Studio interface used in our CIVQA annotation tasks.
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B.5.2 First Annotation Round Statistics

Country Count

United Arab Emirates 101
China 98
Oman 91
Saudi Arabia 87
France 86
Croatia 84
Algeria 82
Morocco 81
Türkiye 78
Peru 75
Spain 74
Azerbaijan 69
Colombia 68
Islamic Republic of Iran 66
Mali 65
Mexico 64
Republic of Korea 62
Egypt 62
Tunisia 56
Iraq 54
Japan 52
Brazil 50
Italy 50
Belgium 50
Plurinational State of Bolivia 49
Mauritania 49
Bolivarian Republic of Venezuela 47
Nigeria 46
India 45
Malawi 43
Palestine 40
Greece 38
Uzbekistan 37
Kuwait 37
Kyrgyzstan 36
Cuba 35
Mauritius 34
Mongolia 34
Czechia 34
Jordan 32
Zambia 31
Côte d’Ivoire 31
Syrian Arab Republic 31
Kazakhstan 30
Portugal 29
Switzerland 29
Uganda 29
Ethiopia 29
Botswana 28
Viet Nam 28
Argentina 28
Armenia 28
Yemen 28
Turkmenistan 26
Sudan 26
Bahrain 26
Indonesia 26
Ecuador 25
Mozambique 25
Tajikistan 25
Austria 24
Hungary 24
Slovakia 23
Lebanon 23
Cyprus 22
Slovenia 22
Paraguay 21
Germany 21
Romania 21
Guatemala 20
Kenya 20
Poland 20

Country Count

Nicaragua 18
Chile 17
Serbia 17
Cambodia 17
Bangladesh 17
Bulgaria 17
Qatar 17
Ireland 17
Panama 16
Ukraine 16
Malaysia 16
Namibia 16
Philippines 15
Bosnia and Herzegovina 15
Niger 15
Estonia 14
Netherlands 14
Zimbabwe 14
Senegal 14
Madagascar 14
Belarus 13
Luxembourg 13
Togo 12
Burundi 12
Dominican Republic 12
Congo 11
Democratic Republic of the Congo 11
Benin 11
Finland 11
Angola 10
Afghanistan 10
Seychelles 10
Democratic People’s Republic of Korea 10
Norway 9
Lao Peoples Democratic Republic 9
Burkina Faso 9
Sweden 9
Bahamas 9
Georgia 9
Albania 9
Republic of Moldova 9
Cabo Verde 8
North Macedonia 8
Jamaica 8
Honduras 7
Latvia 7
Denmark 7
Pakistan 7
Belize 7
Uruguay 7
Timor-Leste 6
Montenegro 6
Sri Lanka 6
Thailand 6
Guinea 6
Malta 5
Andorra 5
Russian Federation 5
Lithuania 5
Tonga 4
Costa Rica 4
Cameroon 4
Vanuatu 3
Singapore 3
Gambia 3
Iceland 3
Federated States of Micronesia 2
Grenada 2
Samoa 2
Bhutan 1
Djibouti 1
Central African Republic 1

Table 9: The number of countries related to the QA pairs collected in the first annotation round for CIVQA.
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C VVQA Details

C.1 Examples

In the following, we provide one random sample per region for the CVVQA task. Note that the
lower part of the examples, where the related CEF is provided, is not part of the actual sample.

A

Question: What event are the women in the video participating in?
Answer: Moussem of Tan-Tan

Related Cultural Event or Facet

Title: Moussem of Tan-Tan
Countries: Morocco
Regions: Arab States
Description:
The Moussem of Tan-Tan in southwest Morocco is an annual gathering of nomadic peoples of the
Sahara that brings together more than thirty tribes from southern Morocco and other parts of
northwest Africa. Originally this was an annual event around the month of May. Part of the
agricultural and herding calendar of the nomads, these gatherings were an opportunity to group
together, buy, sell and exchange foodstuffs and other products, organize camel and horse-breeding
competitions, celebrate weddings and consult herbalists. The Moussem also included a range of
cultural expressions such as musical performances, popular chanting, games, poetry contests and
other Hassanie oral traditions.
These gatherings took the form of a Moussem (a type of annual fair with economic, cultural
and social functions) in 1963 when the first Moussem of Tan-Tan was organized to promote local
traditions and provide a place for exchange, meeting and celebration. The Moussem is said to
have been initially associated with Mohamed Laghdaf, who resisted the Franco-Spanish occupation.
He died in 1960, and his tomb lies near the town. However, between 1979 and 2004 it was not
possible to hold the Moussem because of security problems in the region.
Today, the nomadic populations are particularly concerned to protect their way of life. Economic
and technical upheavals in the region have profoundly altered the lifestyle of the nomadic
Bedouin communities, forcing many of them to settle. Moreover, urbanization and rural exodus
have contributed to the loss of many aspects of the traditional culture of these populations, such
as crafts and poetry. Because of these risks, Bedouin communities rely strongly on the renewed
Moussem of Tan-Tan to assist them in ensuring the survival of their know-how and traditions.

UNESCO ICH URL: https://ich.unesco.org/en/RL/moussem-of-tan-tan-00168...
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AP

Question: What traditional Japanese performance art is depicted by the
performers in the video?
Answer: Gagaku

Related Cultural Event or Facet

Title: Gagaku
Countries: Japan
Regions: Asian and Pacific States
Description:
Gagaku, characterized by long, slow songs and dance-like movements, is the oldest of the Japanese
traditional performing arts. It is performed at banquets and ceremonies in the Imperial Palace
and in theatres throughout the country, and encompasses three distinct arts. The first, Kuniburi
no Utamai, features ancient Japanese songs, partial accompaniment by harp and flute and simple
choreography. The second consists of instrumental music (especially wind instruments) and a
ceremonial dance developed on the Asian continent and subsequently adapted by Japanese artists.
The third, Utamono, is danced to vocal music whose texts include Japanese folk songs and Chinese
poems. Influenced by the politics and culture of different periods over its long evolution,
Gagaku continues to be transmitted to apprentices by masters in the Music Department of the
Imperial Household Agency, many of whom are the descendants of families with deep roots in
the art. It is not only an important cultural tool in confirming Japanese identity and a
crystallization of the history of Japanese society, but also a demonstration of how multiple
cultural traditions can be fused into a unique heritage through constant recreation over time.

UNESCO ICH URL: https://ich.unesco.org/en/RL/gagaku-00265...
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E

Question: What instrument is the individual playing in the video?
Answer: Tar

Related Cultural Event or Facet

Title: Craftsmanship and performance art of the Tar, a long-necked string
musical instrument
Countries: Azerbaijan
Regions: Eastern European States
Description:
The Tar is a long-necked plucked lute, traditionally crafted and performed in communities
throughout Azerbaijan. Considered by many to be the country’s leading musical instrument, it
features alone or with other instruments in numerous traditional musical styles. Tar makers
transmit their skills to apprentices, often within the family. Craftsmanship begins with careful
selection of materials for the instrument: mulberry wood for the body, nut wood for the neck,
and pear wood for the tuning pegs. Using various tools, crafters create a hollow body in the form
of a figure eight, which is then covered with the thin pericardium of an ox. The fretted neck is
affixed, metal strings are added and the body is inlaid with mother-of-pearl. Performers hold
the instrument horizontally against the chest and pluck the strings with a plectrum, while using
trills and a variety of techniques and strokes to add colour. Tar performance has an essential
place in weddings and different social gatherings, festive events and public concerts. Players
transmit their skills to young people within their community by word of mouth and demonstration,
and at educational musical institutions. Craftsmanship and performance of the tar and the
skills related to this tradition play a significant role in shaping the cultural identity of
Azerbaijanis.

UNESCO ICH URL: https://ich.unesco.org/en/RL/craftsmanship-and-performance-a...
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LAC

Question: In which environment do the cultural practices depicted in
the video typically occur?
Answer: Llanos

Related Cultural Event or Facet

Title: Colombian-Venezuelan llano work songs
Countries: Colombia, Venezuela (Bolivarian Republic of)
Regions: Latin-American and Caribbean States
Description:
Colombian-Venezuelan llano work songs are a practice of vocal communication consisting of tunes
sung individually, a capella, on the themes of herding and milking. The practice emerged from
the close relationship between human communities and cattle and horses and is in harmony with
the environmental conditions and the dynamics of nature, forming part of the traditional animal
husbandry system of the Llanos. Transmitted orally from childhood, the songs are repositories
of the individual and collective stories of the llaneros. Llano work songs have been gradually
affected by economic, political and social processes that, modifying the llanero cultural
universe, have significantly weakened the practice. For example, ambitious government plans
conceived from a developmental perspective have led to profound changes in the use of the land
and in ownership systems, and the modification of the social, cultural and natural sites of the
songs have resulted in a loss of interest in the values and techniques of llano work. Llanero
work songs thus face various threats to their viability. Efforts to safeguard the element are
nonetheless widespread, including a pedagogical strategy involving more than twenty meetings for
bearers and young people in the region, training projects for schoolteachers and a proliferation
of festivals.

UNESCO ICH URL: https://ich.unesco.org/en/USL/colombian-venezuelan-llano-wor...
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SA

Question: What type of theatre is depicted in the video, known for
using elaborate costumes and performances?
Answer: Kwagh-Hir

Related Cultural Event or Facet

Title: Kwagh-Hir theatrical performance
Countries: Nigeria
Regions: Subsaharian African States
Description:
Kwagh-Hir theatrical performance is a composite art form encompassing a spectacle that is both
visually stimulating and culturally edifying. Kwagh-hir has its roots in the story-telling
tradition of the Tiv people called ‘kwagh-alom’, a practice where the family was treated to a
storytelling session by creative storytellers, usually in the early hours of the night after
the day’s farming work. With time, creative storytellers began to dramatize these stories,
culminating in the present stage and status of Kwagh-hir. The practice is a social performance
with the potential to entertain and teach moral lessons through the dramatization and performance
of past and current social realities. As a form of total theatre, Kwagh-hir incorporates puppetry,
masquerading, poetry, music, dance and animated narratives in articulating the reality of the Tiv
people. People’s daily struggles, aspirations, successes and failures are all given expression
through creative dramatization. Khwagh-hir theatre is owned by the community, with knowledge
and skills being transmitted through apprenticeship. People who indicate an interest in the
troupe’s activities are trained and mentored until they reach a certain level of proficiency;
they are then accepted into the troupe. Regular performances are held to ensure the art is kept
alive and that the younger generation continues to identify with it.

UNESCO ICH URL: https://ich.unesco.org/en/RL/kwagh-hir-theatrical-performanc...

V. GIMMICK:
Globally Inclusive Multimodal Multitask Cultural Knowledge Benchmarking 199



W

Question: What traditional practice is depicted with the herders and
sheep in the video?
Answer: Transhumance

Related Cultural Event or Facet

Title: Transhumance, the seasonal droving of livestock
Countries: Albania, Andorra, Austria, Croatia, Spain, France, Greece, Italy, Luxembourg,
Romania
Regions: Western European and North American States, Eastern European States
Description:
Transhumance refers to the seasonal movement of people with their livestock between geographical
or climatic regions. Each year, in spring and autumn, men and women herders organise the movement
of thousands of animals along traditional pastoral paths. They move on foot or horseback, leading
with their dogs and sometimes accompanied by their families. An ancestral practice, transhumance
stems from a deep knowledge about the environment and entails social practices and rituals
related to the care, breeding and training of animals and the management of natural resources.
An entire socio-economic system has been developed around transhumance, from gastronomy to local
handicrafts and festivities marking the beginning and end of a season. Families have been
enacting and transmitting transhumance through observation and practice for many generations.
Communities living along transhumance routes also play an important role in its transmission,
such as by celebrating herd crossings and organising festivals. The practice is also transmitted
through workshops organised by local communities, associations and networks of herders and
farmers, as well as through universities and research institutes. Transhumance thus contributes
to social inclusion, strengthening cultural identity and ties between families, communities and
territories while counteracting the effects of rural depopulation.

UNESCO ICH URL: https://ich.unesco.org/en/RL/transhumance-the-seasonal-drovi...

C.2 Annotation Project Details
The expert who annotated the samples was Annotator 17 from Table 8. As for the CIVQA task,
we used a self-hosted Label Studio instance with a custom labeling interface. The UI is depicted
in Figure 75.

D COQA Details

D.1 Prompts
In the following, the prompts for the COQAR and COQAC tasks are provided. For the variations
involving images, the image placeholder gets replaced N times, where N is the number of
images related to the target CEF.
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Figure 75: Two screenshots showing examples of the Label Studio interface used in our VVQA annotation tasks.
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Region — Text-Only

From which of the following regions does the cultural event or facet with the title �{TITLE}�
originate?,!

Choose from the following options and output only the corresponding letter.

A. {REGION_OPTION_A}
B. {REGION_OPTION_B}
C. {REGION_OPTION_C}
D. {REGION_OPTION_D}

Your answer letter:

Region — Image-Only

<IMAGE_PLACEHOLDER>

From which of the following countries does the cultural event or facet shown in the images
originate?,!

Choose from the following options and output only the corresponding letter.

A. {REGION_OPTION_A}
B. {REGION_OPTION_B}
C. {REGION_OPTION_C}
D. {REGION_OPTION_D}

Your answer letter:

Region — Text-Image

<IMAGE_PLACEHOLDER>

From which of the following regions does the cultural event or facet with the title �{TITLE}�
shown in the images originate?,!

Choose from the following options and output only the corresponding letter.

A. {REGION_OPTION_A}
B. {REGION_OPTION_B}
C. {REGION_OPTION_C}
D. {REGION_OPTION_D}

Your answer letter:

Figure 76: Prompts for the COQAR task.
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Country — Text-Only

From which of the following countries does the cultural event or facet with the title
�{TITLE}� originate?,!

Choose from the following options and output only the corresponding letter.

A. {COUNTRY_OPTION_A}
B. {COUNTRY_OPTION_B}
C. {COUNTRY_OPTION_C}
D. {COUNTRY_OPTION_D}

Your answer letter:

Country — Image-Only

<IMAGE_PLACEHOLDER>

From which of the following countries does the cultural event or facet with the title
�{TITLE}� originate?,!

Choose from the following options and output only the corresponding letter.

A. {COUNTRY_OPTION_A}
B. {COUNTRY_OPTION_B}
C. {COUNTRY_OPTION_C}
D. {COUNTRY_OPTION_D}

Your answer letter:

Country — Text-Image

<IMAGE_PLACEHOLDER>

From which of the following countries does the cultural event or facet with the title
�{TITLE}� shown in the images originate?,!

Choose from the following options and output only the corresponding letter.

A. {COUNTRY_OPTION_A}
B. {COUNTRY_OPTION_B}
C. {COUNTRY_OPTION_C}
D. {COUNTRY_OPTION_D}

Your answer letter:

Figure 77: Prompts for the COQAC task.
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D.2 Examples

In the following, we provide one random sample per region for the COQAC task in the image-only
setting. For the other settings and the COQA tasks, the same pattern applies using the respective
prompts from above. Note that the lower part of the examples, where the related CEF is provided,
is not part of the actual sample.
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A

Copyrigth: Huzaifa Ayad Bahaa
El Din, Iraq, 2021

Copyrigth: Huzaifa Ayad Bahaa
El Din, Iraq, 2021

Copyrigth: Huzaifa Ayad Bahaa
El Din, Iraq, 2021

Copyrigth: Zahia Benabdallah,
Algeria, 2021 Copyrigth: Azza Fahmi, Egypt,

2021

Copyrigth: Mustafa Kamil,
Egypt, 2021

Copyrigth: National Heritage
Preservation, Ministry of Cul-
ture, Youth and Sport and Rela-
tions with the Parliament, Egypt,
2022

Copyrigth: Direction du Patri-
moine Culturel, Morocco, 2021

Copyrigth: Direction du Patri-
moine Culturel, Morocco, 2021

Copyrigth: Ministry of Culture,
Palestine, 2021

Question: In which of the following countries does the event shown in
the images take place? Choose from the following options and output only
the corresponding letter.
A. Kuwait
B. Jordan
C. Egypt
D. United Arab Emirates
Your answer letter:
Answer: C

Related Cultural Event or Facet

Title: Arts, skills and practices associated with engraving on metals (gold,
silver and copper)
Countries: Algeria, Saudi Arabia, Egypt, Iraq, Morocco, Mauritania, Palestine, Sudan, Tunisia,
Yemen
Regions: Arab States
Description:
Engraving on metals such as gold, silver and copper is a centuries-old practice that entails
manually cutting words, symbols or patterns into the surfaces of decorative, utilitarian,
religious or ceremonial objects. The craftsperson uses different tools to manually cut symbols,
names, Quran verses, prayers and geometric patterns into the objects. Engravings can be concave
(recessed) or convex (elevated), or the result of a combination of different types of metals,
such as gold and silver. Their social and symbolic meanings and functions vary according to
the communities concerned. Engraved objects, such as jewelry or household objects, are often
presented as traditional gifts for weddings or used in religious rituals and alternative medicine.
For instance, certain types of metals are believed to have healing properties. Engraving on metals
is transmitted within families, through observation and hands-on practice. It is also transmitted
through workshops organized by training centres, organizations and universities, among others.
Publications, cultural events and social media further contribute to the transmission of the
related knowledge and skills. Practised by people of all ages and genders, metal engraving and
the use of engraved objects are means of expressing the cultural, religious and geographical
identity and the socioeconomic status of the communities concerned.

UNESCO ICH URL: https://ich.unesco.org/en/RL/arts-skills-and-practices-assoc...
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AP

Copyrigth: Public Foundation
’Min Kiyal’, Kyrgyzstan, 2018

Copyrigth: Public Foundation
’Min Kiyal’, Kyrgyzstan, 2018

Copyrigth: Public Foundation
’Min Kiyal’, Kyrgyzstan, 2018

Copyrigth: Public Foundation
’Min Kiyal’, Kyrgyzstan, 2018

Copyrigth: Public Foundation
’Min Kiyal’, Kyrgyzstan, 2018

Copyrigth: Public Foundation
’Min Kiyal’, Kyrgyzstan, 2018

Copyrigth: Public Foundation
’Min Kiyal’, Kyrgyzstan, 2018

Copyrigth: Public Foundation
’Min Kiyal’, Kyrgyzstan, 2018

Copyrigth: Public Foundation
’Min Kiyal’, Kyrgyzstan, 2018

Copyrigth: Public Foundation
’Min Kiyal’, Kyrgyzstan, 2018

Question: In which of the following countries does the event shown in
the images take place? Choose from the following options and output only
the corresponding letter.
A. Kyrgyzstan
B. Timor-Leste
C. Thailand
D. Turkmenistan
Your answer letter:
Answer: A

Related Cultural Event or Facet

Title: Ak-kalpak craftsmanship, traditional knowledge and skills in making and
wearing Kyrgyz men’s headwear
Countries: Kyrgyzstan
Regions: Asian and Pacific States
Description:
Ak-kalpak craftsmanship is a traditional Kyrgyz handicraft. The Ak-kalpak is a traditional
male hat made with white felt, which bears deep sacral meanings. Ak-kalpak craftsmanship is
a cumulative, ever-evolving body of knowledge and skills passed down by craftswomen in the
communities concerned comprising felting, cutting and sewing and pattern embroidery. Related
knowledge and skills are transmitted via oral coaching, hands-on training and joint making in
workshops. More than eighty kinds of Ak-kalpak can be distinguished, decorated with various
patterns bearing a sacred meaning and history. Environmentally friendly and comfortable, the
Ak-kalpak resembles a snow peak, with four sides representing the four elements: air, water,
fire and earth. The four edging lines symbolize life, with the tassels on the top symbolizing
ancestors’ posterity and memory, and the pattern symbolizing the family tree. Ak-kalpak unites
different Kyrgyz tribes and communities and makes Kyrgyz people recognizable to other ethnic
groups. It also fosters inclusivity when representatives of other ethnic groups wear it on
holidays or days of mourning to express unity and sympathy. There are workshops all over the
country where related knowledge and skills are passed down, and in 2013 a project entitled ‘From
generation to generation’ was conducted on traditional Ak-kalpak-making techniques nationwide,
resulting in an exhibition and published book.

UNESCO ICH URL: https://ich.unesco.org/en/RL/ak-kalpak-craftsmanship-traditi...
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E

Copyrigth: Lithuanian National
Culture Centre, Archive, 2021

Copyrigth: Vilnius Ethnic Cul-
ture Centre, Archive, 2021

Copyrigth: Vilnius Ethnic Cul-
ture Centre, Archive, 2021

Copyrigth: Lithuanian National
Culture Centre, Archive, 2021 Copyrigth: Vilnius Ethnic Cul-

ture Centre, Archive, 2021

Copyrigth: Vilnius Ethnic Cul-
ture Centre, Archive, 2021

Copyrigth: Vilnius Ethnic Cul-
ture Centre, Archive, 2021

Copyrigth: Lithuanian National
Culture Centre, Archive, 2021

Copyrigth: Marija Liugienė,
Archive, 2003

Copyrigth: Lithuanian National
Culture Centre, Archive, 2021

Question: In which of the following countries does the event shown in
the images take place? Choose from the following options and output only
the corresponding letter.
A. Lithuania
B. Bosnia and Herzegovina
C. Russia
D. Poland
Your answer letter:
Answer: A

Related Cultural Event or Facet

Title: Sodai straw garden making in Lithuania
Countries: Lithuania
Regions: Eastern European States
Description:
Sodai straw gardens are hanging ornaments made from the stalks of grains. This practice
involves the cultivation of grain (typically rye), the treatment of straw and the creation of
geometric structures of varying sizes. The structures are then decorated with details symbolizing
fertility and prosperity. Sodai gardens are believed to reflect the pattern of the universe and
are associated with well-being and spirituality. They are hung over the cradles of babies and
over a wedding or family table to wish happiness to newborns, fertility to newlyweds or harmony
to the family. Lithuanian homes are also frequently decorated with sodai gardens for Easter
and Christmas. Some sodai-making families have been practising the tradition for generations.
Although most of the practitioners are women, workshops exist and are open to people of all
ages and genders. The practice is passed on informally within families or during events such
as festivals, exhibitions, conferences and summer camps. An integral part of traditional wooden
home interiors, sodai gardens are viewed as spiritual gifts. They provide a sense of shared
cultural heritage and continuity to the practising communities while strengthening communal
partnerships, intergenerational bonds and cultural diversity.
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Copyrigth: Gerson Fonse-
ca/Ministry of Culture of
Colombia, 2018

Copyrigth: Gerson Fonse-
ca/Ministry of Culture of
Colombia, 2018

Copyrigth: Gerson Fonse-
ca/Ministry of Culture of
Colombia, 2018

Copyrigth: Gerson Fonse-
ca/Ministry of Culture of
Colombia, 2018

Copyrigth: Gerson Fonse-
ca/Ministry of Culture of
Colombia, 2018

Copyrigth: Gerson Fonse-
ca/Ministry of Culture of
Colombia, 2018

Copyrigth: Gerson Fonse-
ca/Ministry of Culture of
Colombia, 2018

Copyrigth: Gerson Fonse-
ca/Ministry of Culture of
Colombia, 2018

Copyrigth: Gerson Fonse-
ca/Ministry of Culture of
Colombia, 2018

Copyrigth: Gerson Fonse-
ca/Ministry of Culture of
Colombia, 2018

Question: In which of the following countries does the event shown in
the images take place? Choose from the following options and output only
the corresponding letter.
A. Dominican Republic
B. Chile
C. Colombia
D. Grenada
Your answer letter:
Answer: C

Related Cultural Event or Facet

Title: Safeguarding strategy of traditional crafts for peace building
Countries: Colombia
Regions: Latin-American and Caribbean States
Description:
The safeguarding strategy of traditional crafts for peace building addresses the weakening
of traditional crafts through a system of intergenerational transmission of knowledge between
master and apprentice based on the non-formal ‘learning by doing’ method. The safeguarding
strategy aims to train different sectors of the population, create labour connections and foster
cultural entrepreneurship. It establishes a link between bearers of traditional crafts and skills
who are recognized by their communities for their empirical knowledge of the peculiarities of
their region and apprentices aged between fourteen and thirty-five who become builders of peace
by learning a skill or craft, seeking to transform their situation of vulnerability. The
safeguarding strategy is therefore geared at: allowing for the qualification of traditional
crafts, thereby improving employment opportunities; implementing a Traditional Crafts Policy to
guide and ensure continuity in the transmission and practice of these crafts; and enhancing the
Workshop Schools Programme. Priority is accorded to young people who are exposed to the effects
of armed conflict, a lack of opportunities, school desertion and unemployment. Training is also
combined with work, guaranteeing apprentices’ future employability. The strategy thus aims to
foster the safeguarding of traditional crafts as a tool for social inclusion, employment and
cultural entrepreneurship. In turn, the community can recognize the cultural and societal value
of safeguarding different traditional skills and crafts.
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Copyrigth: Etienne Kokolo, Kin-
shasa, République du Congo,
2018

Copyrigth: Etienne Kokolo, Kin-
shasa, République du Congo,
2019 Copyrigth: Etienne Kokolo, Kin-

shasa, République du Congo,
2018

Copyrigth: Etienne Kokolo, Kin-
shasa, République du Congo,
2018

Copyrigth: Etienne Kokolo, Kin-
shasa, République du Congo,
2018

Copyrigth: Etienne Kokolo, Kin-
shasa, République du Congo,
2017

Copyrigth: Etienne Kokolo, Kin-
shasa, République du Congo,
2018

Copyrigth: Etienne Kokolo, Kin-
shasa, République du Congo,
2020

Copyrigth: Etienne Kokolo, Kin-
shasa, République du Congo,
2017

Copyrigth: Etienne Kokolo, Kin-
shasa, République du Congo,
2020

Question: In which of the following countries does the event shown in
the images take place? Choose from the following options and output only
the corresponding letter.
A. Congo
B. Togo
C. Namibia
D. Nigeria
Your answer letter:
Answer: A

Related Cultural Event or Facet

Title: Congolese rumba
Countries: Congo, Democratic Republic of the Congo
Regions: Subsaharian African States
Description:
Congolese rumba is a musical genre and a dance common in urban areas of the Democratic Republic
of the Congo and the Republic of the Congo. Generally danced by a male-female couple, it is
a multicultural form of expression originating from an ancient dance called nkumba (meaning
‘waist’ in Kikongo). The rumba is used for celebration and mourning, in private, public and
religious spaces. It is performed by professional and amateur orchestras, choirs, dancers and
individual musicians, and women have played a predominant role in the development of religious
and romantic styles. The tradition of Congolese rumba is passed down to younger generations
through neighbourhood clubs, formal training schools and community organisations. For instance,
rumba musicians maintain clubs and apprentice artists to carry on the practice and the manufacture
of instruments. The rumba also plays an important economic role, as orchestras are increasingly
developing cultural entrepreneurship aimed at reducing poverty. The rumba is considered an
essential and representative part of the identity of Congolese people and its diaspora. It is
perceived as a means of conveying the social and cultural values of the region and of promoting
intergenerational and social cohesion and solidarity.
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Copyrigth: Servicio de Patrimo-
nio Histórico de la Región de
Murcia, 2005

Copyrigth: Generalitat Valen-
ciana, 2005

Copyrigth: Servicio de Patrimo-
nio Histórico de la Región de
Murcia, 2005

Copyrigth: Generalitat Valen-
ciana, 2005

Copyrigth: Servicio de Patrimo-
nio Histórico de la Región de
Murcia, 2005

Copyrigth: Servicio de Patrimo-
nio Histórico de la Región de
Murcia, 2005

Copyrigth: Servicio de Patrimo-
nio Histórico de la Región de
Murcia, 2005

Copyrigth: Servicio de Patrimo-
nio Histórico de la Región de
Murcia, 2005

Copyrigth: Servicio de Patrimo-
nio Histórico de la Región de
Murcia, 2005

Copyrigth: Servicio de Patrimo-
nio Histórico de la Región de
Murcia, 2005

Question: In which of the following countries does the event shown in
the images take place? Choose from the following options and output only
the corresponding letter.
A. Austria
B. Spain
C. Cyprus
D. United Kingdom of Great Britain and Northern Ireland
Your answer letter:
Answer: B

Related Cultural Event or Facet

Title: Irrigators’ tribunals of the Spanish Mediterranean coast: the Council of
Wise Men of the plain of Murcia and the Water Tribunal of the plain of Valencia
Countries: Spain
Regions: Western European and North American States
Description:
The irrigators’ tribunals of the Spanish Mediterranean coast are traditional law courts for water
management that date back to the al-Andalus period (ninth to thirteenth centuries). The two main
tribunals – the Council of Wise Men of the Plain of Murcia and the Water Tribunal of the Plain of
Valencia – are recognized under Spanish law. Inspiring authority and respect, these two courts,
whose members are elected democratically, settle disputes orally in a swift, transparent and
impartial manner. The Council of Wise Men has seven geographically representative members, and
has jurisdiction over a landowners’ assembly of 23,313 members. The Water Tribunal comprises
eight elected administrators representing a total of 11,691 members from nine communities. In
addition to their legal role the irrigators’ tribunals play a key part in the communities of
which they are a visible symbol, as apparent from the rites performed when judgments are handed
down and the fact that the tribunals often feature in local iconography. They provide cohesion
among traditional communities and synergy between occupations (wardens, inspectors, pruners,
etc.), contribute to the oral transmission of knowledge derived from centuries-old cultural
exchanges, and have their own specialist vocabulary peppered with Arabic borrowings. In short,
the courts are long-standing repositories of local and regional identity and are of special
significance to local inhabitants.

UNESCO ICH URL: https://ich.unesco.org/en/RL/irrigators-tribunals-of-the-spa...
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E CKQA Details

E.1 Prompts
In the following, the prompts for the CKQAN and CKQAD tasks are provided. For the variations
involving images, the image placeholder gets replaced N times, where N is the number of
images related to the target CEF. Examples without the respective prompts, i.e., only the related
CEFs, are provided in §A.2.1.

Naming — Image-Only

Name the cultural event or facet depicted by the following images. Answer briefly and
concisely.,!

<IMAGE_PLACEHOLDER>

Your answer:

Figure 138: Prompt for the CKQAN task.

Describing — Text-Only

Write a brief essay about the cultural event or facet with the title �{TITLE}�.

Your answer:

Describing — Image-Only

Write a brief essay about the cultural event or facet depicted by the following images.

<IMAGE_PLACEHOLDER>

Your answer:

Describing — Text-Image

Write a brief essay about the cultural event or facet depicted by the following images. It has
the title �{TITLE}�.,!

<IMAGE_PLACEHOLDER>

Your answer:

Figure 139: Prompts for the CKQAD task.
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F Experimental Setup

For inference, we load all models using the transformers library (v.4.48.0) in 16-bit with Flash
Attention 2 (Dao et al., 2022; Dao, 2024) (v.2.7.3), PyTorch (v.2.4.0), and CUDA (v12.1).
We used A40 (46GB) GPUs for models up to 26B parameters, A100 (80GB) GPUs for models
up to 38B parameters, and two H100 (96GB) GPUs for 70B+ models in a multi-GPU setup.
To generate responses, we use greedy decoding, i.e., we use the following arguments for the
generation method:

generation_kwargs = {
"max_new_tokens": 512,
"do_sample": False,
"temperature": None,
"top_p": None,
"top_k": None,

}

More details and exact hyperparameters are documented in the code base:
https://github.com/floschne/gimmick.

G Results and Analyses

G.1 CIVQA

G.1.1 Results
Relaxed Accuracy

Model West EU & North America Asia & Pacific Subsaharian Africa Arab East EU Latin-America & Caribbean Average

N R C B N R C B N R C B N R C B N R C B N R C B N R C B

GPT-4o 31.58 34.39 41.05 40.70 29.89 31.37 36.63 37.68 17.38 17.63 32.49 31.74 25.70 30.53 39.19 39.95 26.80 32.56 42.94 41.79 23.17 25.77 30.26 32.39 25.44 28.17 36.59 37.08
Gemini Pro 27.02 30.53 31.23 32.28 22.53 26.11 31.16 29.68 16.84 14.61 26.20 24.18 19.85 22.39 28.50 28.50 25.07 25.94 31.12 32.56 22.46 19.86 24.35 27.19 21.50 22.84 28.30 28.30
GPT-4o Mini 23.86 25.26 30.18 29.82 21.05 21.89 26.74 26.53 9.32 10.58 16.12 15.37 17.30 19.85 25.45 25.95 19.02 19.02 28.53 28.24 16.31 17.73 23.64 22.93 17.38 18.54 24.81 24.59
Gemini Flash 22.81 25.96 27.02 24.91 18.95 20.21 26.11 25.89 12.91 10.83 20.40 18.89 15.27 17.56 20.36 20.61 20.17 19.31 24.78 24.50 14.66 16.55 22.22 20.57 16.85 18.00 23.29 22.44
InternVL2.5 78B 25.61 23.86 29.82 29.12 20.21 19.79 26.32 27.58 10.33 11.08 20.40 20.40 17.81 19.85 27.74 27.99 19.02 17.58 24.50 23.63 13.95 15.13 20.80 21.51 16.75 16.97 24.45 24.72
Qwen2 VL 72B 22.46 22.81 29.82 29.12 17.47 19.16 21.47 23.37 8.31 8.56 12.85 13.10 13.99 16.28 20.10 19.85 21.04 20.46 28.53 29.39 13.00 14.66 19.86 19.62 15.32 16.26 21.45 21.59
InternVL2.5 38B 23.86 23.16 28.77 29.82 17.26 17.89 22.32 23.16 9.07 8.82 17.88 16.62 14.25 17.30 23.16 22.65 16.14 17.29 24.78 23.92 11.82 12.29 17.97 17.49 14.55 15.41 21.99 21.63
Claude 3.5 Sonnet 19.65 17.19 22.11 24.21 16.42 12.84 18.11 22.95 6.30 4.53 10.58 11.59 13.99 11.20 17.81 20.61 16.71 14.12 21.90 21.61 13.48 13.00 17.97 22.93 14.02 11.64 17.60 20.24
InternVL2.5 26B 20.00 19.65 25.61 25.96 13.26 14.95 18.95 18.74 6.30 6.80 11.59 12.34 12.98 14.76 20.61 21.12 15.56 14.41 21.04 21.04 13.00 14.89 19.62 19.39 13.03 14.15 19.44 19.61
Llama 3.2 11B Vision 16.49 18.95 20.70 20.35 13.26 12.84 15.79 16.84 5.29 5.54 9.07 8.31 7.89 7.89 10.18 10.18 12.68 13.54 17.29 19.02 11.82 11.82 13.95 14.66 10.61 11.06 13.97 14.20
InternVL2.5 8B 19.30 17.89 23.16 23.51 11.79 12.00 16.42 16.84 5.04 6.30 10.58 9.57 9.41 9.67 14.50 14.25 9.80 9.80 15.27 15.56 9.46 9.69 13.71 14.89 10.34 10.39 15.41 15.41
Qwen2 VL 7B 17.19 17.19 20.35 18.95 9.47 9.47 12.00 11.37 5.79 6.30 8.56 8.31 8.91 9.92 11.45 11.45 10.95 12.10 15.56 14.41 9.69 11.11 13.00 13.24 9.63 10.26 12.76 12.36
Phi 3.5 Vision 14.39 12.63 20.00 18.95 8.84 10.74 13.89 13.47 6.05 6.05 8.31 8.82 6.62 8.14 9.41 9.92 8.93 8.65 14.70 14.70 8.27 9.93 13.71 12.77 8.55 9.18 12.99 12.85
MiniCPM V 2.6 12.98 14.39 14.39 17.19 10.74 10.32 13.68 14.74 2.52 3.27 6.55 6.05 6.36 6.36 9.67 9.67 10.09 9.80 13.26 14.70 9.46 9.22 12.77 13.24 8.11 8.15 11.60 11.96
InternVL2.5 4B 14.04 16.49 16.84 14.39 9.47 14.53 13.47 9.05 3.53 7.05 7.56 4.03 7.89 9.16 9.16 6.87 8.07 11.53 10.66 8.07 8.04 11.58 11.82 7.33 7.97 11.42 11.29 7.79
Qwen2 VL 2B 13.33 12.28 13.68 14.39 9.68 9.47 11.79 10.95 4.03 3.78 5.54 4.28 6.11 5.09 6.11 6.11 8.36 8.93 12.97 12.10 7.33 8.27 10.40 9.69 7.97 7.88 9.94 9.49
Centurio Qwen 11.23 9.12 14.39 14.39 9.05 8.42 10.32 9.68 3.02 1.76 6.05 6.05 6.87 5.34 9.92 8.91 6.34 5.48 11.24 11.24 6.62 5.67 9.22 9.46 6.81 5.69 9.85 9.76
InternVL2.5 2B 6.67 7.37 10.18 9.47 4.21 4.63 6.95 5.89 2.27 2.02 3.53 5.29 2.80 3.56 5.34 5.60 3.17 3.75 7.49 6.92 5.44 5.44 8.04 6.15 4.03 4.39 6.85 6.45
InternVL2.5 1B 7.02 7.37 10.53 11.58 4.21 3.58 4.84 4.63 2.52 0.76 2.77 2.77 3.56 3.82 5.09 4.07 4.61 3.46 6.63 7.49 4.02 5.67 6.86 6.15 4.03 4.03 5.96 5.87
Centurio Aya 3.16 7.37 8.77 8.77 2.95 5.68 9.05 9.68 1.76 1.51 4.79 3.53 1.27 3.56 5.60 6.11 2.02 3.46 7.20 7.20 2.84 5.44 6.38 7.09 2.24 4.39 6.99 7.17

Average X-Large 24.04 23.33 29.82 29.12 18.84 19.47 23.89 25.47 9.32 9.82 16.62 16.75 15.90 18.07 23.92 23.92 20.03 19.02 26.51 26.51 13.48 14.89 20.33 20.57 16.03 16.61 22.95 23.15
Average Large 21.93 21.40 27.19 27.89 15.26 16.42 20.63 20.95 7.68 7.81 14.74 14.48 13.61 16.03 21.88 21.88 15.85 15.85 22.91 22.48 12.41 13.59 18.79 18.44 13.79 14.78 20.71 20.62
Average Medium 13.39 14.15 16.96 17.19 9.54 9.79 12.88 13.19 3.90 4.11 7.60 6.97 6.79 7.12 10.22 10.09 8.65 9.03 13.30 13.69 8.31 8.83 11.51 12.10 7.96 8.32 11.76 11.81
Average Small 11.09 11.23 14.25 13.75 7.28 8.59 10.19 8.80 3.68 3.93 5.54 5.04 5.39 5.95 7.02 6.51 6.63 7.26 10.49 9.86 6.62 8.18 10.17 8.42 6.51 7.38 9.40 8.49
Average Open 15.18 15.37 19.13 19.06 10.79 11.56 14.48 14.40 5.05 5.31 9.07 8.63 8.45 9.38 12.54 12.32 10.45 10.68 15.41 15.29 8.98 10.06 13.21 12.84 9.33 9.97 13.66 13.39
Average Proprietary 24.98 26.67 30.32 30.39 21.77 22.48 27.75 28.55 12.55 11.64 21.16 20.35 18.42 20.31 26.26 27.12 21.56 22.19 29.86 29.74 18.01 18.58 23.69 25.20 19.04 19.84 26.12 26.53
Average 17.63 18.19 21.93 21.89 13.54 14.29 17.80 17.94 6.93 6.89 12.09 11.56 10.94 12.11 15.97 16.02 13.23 13.56 19.02 18.90 11.24 12.19 15.83 15.93 11.76 12.44 16.78 16.67

Table 10: Cultural Image Visual Question Answering (CIVQA) scores. The reported score is relaxed accuracy. The
columns N, R, C, and B stand for the hints “None”, “Region”, “Country”, and “Both”, respectively.
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Figure 140: An overview of aggregated CIVQA Judge Score results.
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Model West EU & North America Asia & Pacific Subsaharian Africa Arab East EU Latin-America & Caribbean Average

N R C B N R C B N R C B N R C B N R C B N R C B N R C B

GPT-4o 55.86 55.46 64.33 64.49 56.91 56.42 63.09 63.20 39.13 35.97 48.90 47.93 51.89 56.53 65.71 67.59 54.26 55.62 67.56 67.33 48.32 46.69 53.05 54.09 51.06 51.12 60.44 60.77
Gemini Pro 55.44 56.30 63.15 62.06 54.23 54.15 59.84 59.14 38.74 39.51 47.63 46.74 49.83 52.96 58.10 57.65 51.67 52.23 62.48 63.77 46.54 45.32 51.95 52.03 49.41 50.08 57.19 56.90
Claude 3.5 Sonnet 50.65 51.35 65.33 64.14 50.11 51.07 63.70 63.59 35.06 39.90 57.56 56.52 48.99 55.34 67.49 67.86 50.42 51.80 70.12 70.20 41.49 46.10 57.85 59.53 46.12 49.26 63.68 63.64
Gemini Flash 50.49 49.93 56.29 56.11 48.19 47.42 53.20 53.11 35.60 31.32 39.58 38.54 44.04 44.25 50.85 49.03 46.66 47.34 57.24 55.22 43.59 41.58 47.74 46.88 44.76 43.64 50.82 49.81
GPT-4o Mini 48.98 48.47 53.10 54.28 44.83 44.24 49.96 49.05 32.78 35.06 35.49 35.98 42.24 43.83 47.98 48.58 46.57 43.40 55.06 53.76 40.74 38.24 44.21 44.19 42.69 42.21 47.63 47.64
Qwen2 VL 72B 40.28 40.05 48.04 46.90 38.65 39.25 43.02 44.15 25.79 26.30 31.52 30.57 32.77 35.27 42.89 41.64 38.95 39.44 50.55 49.74 30.64 33.06 39.66 40.27 34.51 35.56 42.61 42.21
InternVL2.5 78B 39.88 39.52 46.43 47.01 39.93 38.01 47.78 49.26 22.18 20.79 30.15 30.42 33.72 35.80 46.82 47.86 34.57 32.63 41.89 40.73 31.42 30.40 39.09 38.84 33.62 32.86 42.03 42.35
InternVL2.5 26B 37.00 34.65 39.75 41.00 32.64 32.97 39.10 39.47 22.63 21.71 29.40 27.22 30.89 31.39 38.10 38.81 34.34 32.38 41.14 41.53 29.34 29.69 37.05 37.78 31.14 30.47 37.42 37.64
InternVL2.5 38B 37.55 37.51 45.58 45.49 35.45 36.26 42.65 43.88 22.98 22.52 29.11 28.35 28.71 31.78 38.96 38.63 32.08 31.69 41.98 41.21 28.39 29.15 36.46 35.18 30.86 31.48 39.12 38.79
Qwen2 VL 7B 33.36 34.84 38.64 38.12 28.19 28.97 31.23 31.13 21.31 25.25 25.09 26.26 28.72 28.45 32.00 32.28 29.19 31.13 35.53 37.11 27.84 28.61 31.45 32.87 28.10 29.54 32.33 32.96
Llama 3.2 11B Vision 35.16 36.56 37.22 37.81 27.06 27.59 31.14 33.09 19.24 17.97 24.38 26.42 25.09 26.53 31.43 30.47 28.34 27.88 33.96 36.73 26.89 28.82 32.14 32.88 26.96 27.56 31.71 32.90
MiniCPM V 2.6 30.61 32.35 32.73 35.48 27.73 25.88 31.13 33.25 20.29 18.92 25.31 24.58 24.52 24.57 28.47 28.19 28.13 25.07 34.31 36.27 26.74 26.04 29.16 30.37 26.34 25.47 30.18 31.36
Qwen2 VL 2B 28.86 28.30 28.94 30.85 25.18 24.06 26.32 26.31 21.02 19.32 23.06 21.94 20.92 20.32 22.98 23.30 25.10 26.01 32.90 31.34 23.91 24.07 26.73 25.85 24.16 23.68 26.82 26.60
Centurio Aya 29.84 30.21 30.67 32.31 26.64 25.51 28.70 28.81 18.81 17.87 21.23 20.97 19.75 20.43 24.02 24.01 25.42 24.93 28.79 30.72 23.58 24.65 25.66 26.68 24.01 23.93 26.51 27.25
InternVL2.5 8B 30.12 32.19 35.35 36.47 23.62 23.93 29.75 29.92 16.70 17.20 20.54 21.81 23.61 23.46 30.65 29.92 24.94 24.67 32.73 33.66 22.80 22.13 26.78 27.99 23.63 23.93 29.30 29.96
Phi 3.5 Vision 24.84 26.93 33.43 33.45 23.46 25.36 29.18 29.02 21.28 21.65 23.63 25.92 21.06 23.26 26.18 26.48 24.70 24.88 31.32 31.82 24.47 25.73 29.67 30.56 23.30 24.64 28.90 29.54
Centurio Qwen 27.32 26.32 29.21 30.42 25.84 26.54 26.88 28.63 18.12 17.91 20.14 22.69 23.46 22.32 27.19 27.72 20.84 20.56 26.53 28.83 21.21 21.74 23.19 23.82 22.80 22.56 25.52 27.02
InternVL2.5 4B 25.18 26.06 26.71 29.67 20.67 22.04 26.29 27.53 12.32 14.45 14.99 17.91 18.42 21.62 24.43 25.80 20.22 22.07 26.43 28.43 17.56 20.93 23.45 24.29 19.06 21.19 23.72 25.61
InternVL2.5 1B 19.67 20.32 20.90 23.91 14.46 13.92 14.95 17.03 12.05 13.50 16.60 15.86 16.48 16.31 16.88 17.42 16.10 14.90 18.27 20.82 14.94 15.64 16.75 17.59 15.62 15.76 17.39 18.77
InternVL2.5 2B 18.19 19.35 20.25 21.95 14.75 15.99 16.42 18.36 13.14 10.52 12.88 14.96 15.55 14.08 16.69 18.03 14.77 13.73 17.43 18.32 15.57 15.86 18.04 18.77 15.33 14.92 16.95 18.40

Average X-Large 40.08 39.79 47.23 46.95 39.29 38.63 45.40 46.71 23.99 23.55 30.83 30.49 33.25 35.54 44.86 44.75 36.76 36.03 46.22 45.24 31.03 31.73 39.37 39.56 34.06 34.21 42.32 42.28
Average Large 37.28 36.08 42.67 43.25 34.05 34.61 40.88 41.68 22.81 22.12 29.25 27.79 29.80 31.58 38.53 38.72 33.21 32.04 41.56 41.37 28.86 29.42 36.75 36.48 31.00 30.98 38.27 38.22
Average Medium 31.07 32.08 33.97 35.10 26.51 26.40 29.80 30.80 19.08 19.19 22.78 23.79 24.19 24.29 28.96 28.77 26.14 25.71 31.98 33.89 24.84 25.33 28.06 29.10 25.31 25.50 29.26 30.24
Average Small 23.35 24.19 26.05 27.96 19.70 20.27 22.63 23.65 15.96 15.89 18.23 19.32 18.48 19.12 21.43 22.21 20.18 20.32 25.27 26.15 19.29 20.45 22.93 23.41 19.49 20.04 22.76 23.78
Average Open 30.52 31.01 34.26 35.39 26.95 27.08 30.97 31.99 19.19 19.06 23.20 23.73 24.24 25.04 29.85 30.04 26.51 26.13 32.92 33.82 24.35 25.10 29.02 29.58 25.30 25.57 30.03 30.76
Average Proprietary 52.28 52.30 60.44 60.22 50.85 50.66 57.96 57.62 36.26 36.35 45.83 45.14 47.40 50.58 58.03 58.14 49.92 50.08 62.49 62.05 44.14 43.59 50.96 51.34 46.81 47.26 55.95 55.75
Average 35.96 36.33 40.80 41.59 32.93 32.98 37.72 38.40 23.46 23.38 28.86 29.08 30.03 31.42 36.89 37.06 32.36 32.12 40.31 40.88 29.30 29.72 34.50 35.02 30.67 30.99 36.51 37.01

Table 11: Cultural Image Visual Question Answering (CIVQA) scores. The reported score is the average judge score.
The columns N, R, C, and B stand for the hints “None”, “Region”, “Country”, and “Both”, respectively.

G.1.2 Ground-Truth Answer Perplexity
The perplexity for every sample is computed as follows:

PPL(y | x) = exp

 
� 1

N

NX

t=0

log p (yt | yt�1, x)

!
(1)

where x = {s, v} are the textual (s) and visual (v) prompt (prefix) tokens and y are the N
ground-truth answer tokens.

Results Per Cultural Aspect
We computed the average accuracy for questions targeting one of the ten most frequent cultural
aspects (see §B.2), grouped by model size and region. For better interpretation, Table 12 reports
the counts of questions associated with each cultural aspect per region. As shown in Table 13,
our results reveal a consistent trend: models perform significantly better on tangible cultural
aspects (e.g., food) than on intangible ones. For instance, across all regions, closed models
achieve an average accuracy of 30% for food-related questions, compared to only 8% and
10% for questions concerning rituals and festivals, respectively. These findings highlight not
only regional biases but also biases along the cultural dimension, the latter being particularly
pronounced in non-Western contexts.

aspect art craftsmanship dance festivals food instruments music rituals tools traditions

A 45 32 20 6 33 20 37 32 30 76
AP 57 44 31 14 12 25 32 53 22 68
E 53 36 18 19 10 19 26 18 20 49
LAC 31 22 31 66 6 13 51 47 12 78
SA 14 16 40 16 22 64 41 73 7 70
W 33 27 10 30 13 14 23 18 17 49

Table 12: Number of questions targeting one of the top-10 cultural aspects per region in CIVQA.

G.2 CVVQA

G.2.1 Results
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AP A SA W E LAC OVERALL

A XL L M S A XL L M S A XL L M S A XL L M S A XL L M S A XL L M S A XL L M S

food 0.28 0.23 0.21 0.07 0.10 0.28 0.35 0.31 0.06 0.09 0.21 0.16 0.07 0.03 0.04 0.18 0.12 0.19 0.07 0.09 0.18 0.36 0.31 0.10 0.12 0.68 0.54 0.71 0.31 0.39 0.30 0.29 0.30 0.11 0.14
instruments 0.29 0.27 0.25 0.05 0.07 0.20 0.15 0.12 0.03 0.04 0.16 0.15 0.16 0.03 0.04 0.26 0.37 0.32 0.05 0.11 0.32 0.31 0.26 0.04 0.05 0.45 0.44 0.31 0.15 0.20 0.28 0.28 0.24 0.06 0.08
craftsmanship 0.15 0.17 0.15 0.04 0.07 0.18 0.24 0.22 0.08 0.08 0.11 0.09 0.08 0.04 0.02 0.14 0.19 0.12 0.10 0.08 0.26 0.28 0.27 0.13 0.17 0.12 0.12 0.12 0.06 0.07 0.16 0.18 0.16 0.08 0.08
music 0.20 0.32 0.26 0.07 0.09 0.10 0.09 0.12 0.03 0.04 0.13 0.11 0.13 0.03 0.03 0.25 0.27 0.28 0.10 0.13 0.10 0.10 0.05 0.02 0.02 0.19 0.22 0.22 0.08 0.12 0.16 0.19 0.18 0.06 0.07
tools 0.19 0.29 0.18 0.09 0.11 0.18 0.17 0.18 0.05 0.06 0.00 0.05 0.04 0.00 0.04 0.22 0.15 0.19 0.09 0.11 0.14 0.17 0.17 0.04 0.04 0.23 0.17 0.30 0.05 0.05 0.16 0.17 0.18 0.05 0.07
traditions 0.19 0.18 0.15 0.06 0.07 0.11 0.09 0.09 0.04 0.05 0.06 0.07 0.06 0.04 0.04 0.21 0.25 0.21 0.09 0.09 0.16 0.16 0.15 0.06 0.08 0.14 0.16 0.13 0.06 0.08 0.14 0.15 0.13 0.06 0.07
art 0.15 0.17 0.13 0.07 0.07 0.18 0.13 0.14 0.04 0.04 0.07 0.09 0.06 0.01 0.00 0.16 0.27 0.23 0.10 0.13 0.13 0.20 0.12 0.06 0.07 0.10 0.11 0.11 0.06 0.09 0.13 0.16 0.13 0.06 0.07
dance 0.07 0.07 0.04 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.05 0.04 0.02 0.01 0.01 0.26 0.39 0.35 0.17 0.11 0.22 0.23 0.17 0.04 0.03 0.14 0.11 0.08 0.04 0.03 0.13 0.14 0.11 0.05 0.03
festivals 0.18 0.20 0.18 0.09 0.08 0.02 0.06 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.04 0.06 0.13 0.11 0.05 0.02 0.01 0.13 0.11 0.11 0.04 0.04 0.10 0.10 0.07 0.03 0.03
rituals 0.09 0.08 0.09 0.02 0.03 0.06 0.06 0.05 0.02 0.03 0.06 0.07 0.04 0.02 0.04 0.12 0.10 0.08 0.02 0.02 0.13 0.16 0.08 0.01 0.01 0.04 0.06 0.03 0.01 0.00 0.08 0.09 0.06 0.02 0.02

Average 0.18 0.20 0.16 0.06 0.07 0.13 0.13 0.12 0.03 0.04 0.09 0.08 0.07 0.02 0.03 0.19 0.22 0.21 0.08 0.09 0.18 0.21 0.16 0.05 0.06 0.22 0.20 0.21 0.09 0.11 0.16 0.17 0.16 0.06 0.07

Table 13: The averaged accuracy per region per model size group (A, XL, L, M, S) per target cultural aspect for
samples in the CIVQA task.

Model West EU & North America Asia & Pacific Subsaharian Africa Arab East EU Latin-America & Caribbean Average

N R C B N R C B N R C B N R C B N R C B N R C B N R C B

GPT-4o 38.97 39.91 41.31 44.13 34.56 36.41 35.71 39.17 23.67 26.33 36.67 36.00 29.18 32.46 36.72 36.39 37.59 40.43 47.16 45.74 31.98 32.56 38.95 39.24 32.67 34.49 39.19 39.97
GPT-4o Mini 38.06 31.58 34.01 38.87 29.45 25.64 25.64 29.66 20.32 13.33 15.56 20.63 28.61 24.40 25.60 29.52 35.37 29.27 30.18 38.72 25.13 21.20 23.04 25.65 28.69 23.89 24.84 29.69
Gemini Pro 33.80 37.09 40.85 39.91 30.41 31.34 34.10 34.79 20.07 22.33 28.67 28.67 26.56 28.85 32.13 32.13 32.27 33.33 36.52 36.88 28.78 30.52 33.43 32.85 28.32 29.91 33.67 33.78
Gemini Flash 29.55 29.96 30.36 34.82 22.67 24.36 26.69 26.69 12.06 12.06 15.87 19.05 20.18 20.78 21.39 23.49 26.52 27.74 32.01 31.71 23.30 24.61 26.18 27.49 21.64 22.59 24.89 26.29
Claude 3.5 Sonnet 21.86 19.84 25.91 24.29 22.46 19.92 25.21 25.85 9.21 6.03 12.38 11.11 16.87 14.16 16.87 18.37 23.17 20.12 26.52 24.70 19.11 15.45 21.47 22.25 18.74 15.89 21.44 21.24
Qwen2 VL 72B 25.35 27.23 33.33 34.27 18.43 19.12 23.73 23.73 9.00 10.00 16.33 17.00 17.05 18.36 22.62 21.64 25.53 25.53 32.27 31.91 16.57 20.93 23.55 24.42 18.13 19.62 24.27 24.65
InternVL2.5 78B 23.94 29.11 31.92 31.46 19.12 24.19 28.11 29.49 7.33 12.33 18.67 19.67 13.44 22.30 25.90 25.90 19.50 24.82 30.14 29.43 15.41 21.22 24.42 26.45 15.75 21.56 25.98 26.70
InternVL2.5 38B 22.07 28.64 32.86 32.86 18.66 24.19 27.19 26.73 6.33 13.00 21.67 21.33 13.77 22.95 24.59 27.54 19.86 26.24 30.85 30.50 13.37 20.93 26.16 24.71 14.98 21.78 26.31 26.37
Qwen2 VL 2B 19.72 18.78 21.13 23.00 13.13 14.75 16.59 15.67 6.67 4.67 7.00 6.67 13.11 11.15 13.44 12.46 16.67 16.67 17.38 17.38 15.70 15.12 16.28 16.28 13.88 13.27 15.26 14.98
Qwen2 VL 7B 18.78 18.78 22.07 21.60 14.06 14.06 17.05 16.59 5.00 6.00 7.67 7.33 13.11 15.08 17.05 17.70 15.25 17.73 18.79 19.50 15.70 18.60 19.48 20.06 13.54 14.76 16.86 16.92
InternVL2.5 26B 20.66 25.35 28.64 29.11 16.36 19.35 23.27 24.88 3.33 7.33 9.33 10.33 11.80 15.41 19.67 20.00 17.73 21.63 24.82 24.11 13.66 18.31 21.51 22.97 13.32 17.30 20.78 21.61
MiniCPM V 2.6 16.90 19.25 18.31 19.72 14.75 16.82 17.28 18.43 5.67 10.00 11.33 11.00 12.13 13.44 14.75 14.75 19.15 20.21 22.34 21.99 15.41 17.44 16.28 19.19 13.16 15.37 16.14 17.03
Phi 3.5 Vision 16.43 14.55 16.90 16.90 13.82 14.06 17.51 17.28 8.67 8.33 10.67 10.33 9.84 10.16 11.15 10.82 15.60 15.25 19.15 19.86 13.95 15.12 18.60 18.90 12.82 12.88 16.09 15.87
Centurio Qwen 20.19 17.84 23.00 21.13 15.67 15.44 18.43 17.74 6.00 6.33 7.33 7.33 9.51 10.82 10.16 10.49 14.89 15.96 22.34 20.92 11.63 11.92 15.70 14.53 12.38 12.55 15.70 15.15
InternVL2.5 8B 14.55 19.25 20.66 23.00 11.98 15.44 18.43 18.43 3.33 6.33 9.33 9.00 9.84 13.77 15.08 16.07 15.25 17.73 23.05 23.05 10.17 12.21 16.28 16.57 10.61 13.82 16.92 17.36
InternVL2.5 4B 14.55 15.96 18.78 18.31 12.67 14.29 17.74 16.59 5.67 6.33 9.00 9.00 8.52 9.84 13.11 12.46 11.35 15.25 19.50 18.09 11.34 14.24 15.70 15.12 10.45 12.38 15.70 14.70
Centurio Aya 11.74 12.21 15.49 12.21 9.68 9.91 12.21 11.06 4.67 4.67 6.67 5.33 6.89 7.54 7.54 7.54 9.93 9.57 12.77 10.64 7.56 9.01 10.17 9.59 8.46 8.96 10.95 9.62
InternVL2.5 1B 8.45 9.86 11.27 12.21 5.76 8.29 9.22 7.60 1.67 2.33 4.00 2.67 5.90 7.87 8.85 8.85 6.74 7.45 10.99 10.64 7.27 8.72 9.01 9.01 5.86 7.46 8.90 8.35

Average X-Large 24.65 28.17 32.63 32.86 18.78 21.66 25.92 26.61 8.17 11.17 17.50 18.33 15.25 20.33 24.26 23.77 22.52 25.18 31.21 30.67 15.99 21.08 23.98 25.44 16.94 20.59 25.12 25.68
Average Large 21.36 27.00 30.75 30.99 17.51 21.77 25.23 25.81 4.83 10.17 15.50 15.83 12.79 19.18 22.13 23.77 18.79 23.94 27.84 27.30 13.52 19.62 23.84 23.84 14.15 19.54 23.55 23.99
Average Medium 16.43 17.46 19.91 19.53 13.23 14.33 16.68 16.45 4.93 6.67 8.47 8.00 10.30 12.13 12.92 13.31 14.89 16.24 19.86 19.22 12.09 13.84 15.58 15.99 11.63 13.09 15.31 15.21
Average Small 14.79 14.79 17.02 17.61 11.35 12.85 15.26 14.29 5.67 5.42 7.67 7.17 9.34 9.75 11.64 11.15 12.59 13.65 16.76 16.49 12.06 13.30 14.90 14.83 10.75 11.50 13.99 13.47
Average Open 17.95 19.75 22.64 22.75 14.16 16.15 18.98 18.79 5.64 7.51 10.69 10.54 11.15 13.75 15.69 15.86 15.96 18.00 21.88 21.39 12.90 15.68 17.93 18.29 12.57 14.75 17.68 17.64
Average Proprietary 32.45 31.67 34.49 36.40 27.91 27.53 29.47 31.23 17.06 16.02 21.83 23.09 24.28 24.13 26.54 27.98 30.98 30.18 34.48 35.55 25.66 24.87 28.61 29.50 26.01 25.35 28.80 30.19
Average 21.98 23.07 25.93 26.54 17.98 19.31 21.90 22.24 8.81 9.88 13.79 14.03 14.80 16.63 18.70 19.23 20.13 21.39 25.38 25.32 16.45 18.23 20.90 21.40 16.30 17.69 20.77 21.13

Table 14: GIMMICK Video Visual Question Answering (VVQA) results. The reported score is relaxed accuracy. The
columns N, R, C, and B stand for the hints “None”, “Region”, “Country”, and “Both”, respectively.

G.3 COQA Details
G.3.1 Results
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WEST EU & NORTH AM. EAST EU ASIA & PACIFIC LAT. AM. & CARIB. ARAB SUBS. AFRICA AVERAGE

I T I+T I T I+T I T I+T I T I+T I T I+T I T I+T I T I+T Avg.

GPT-4o 82.50 83.75 85.00 85.89 90.18 88.34 94.37 96.54 97.40 93.68 92.63 92.63 88.00 88.00 92.00 91.30 91.30 94.20 89.29 90.40 91.60 90.43
Claude 3.5 Sonnet 72.50 83.75 81.25 76.69 85.89 82.21 87.88 95.67 95.67 83.16 89.47 87.37 84.00 90.67 90.67 82.61 89.86 88.41 81.14 89.22 87.60 85.98
InternVL2.5 78B 77.50 80.00 86.88 83.44 82.21 88.96 94.37 94.81 96.97 88.42 92.63 92.63 88.00 90.67 92.00 92.75 91.30 92.75 87.41 88.60 91.70 89.24
Qwen2.5 72B – 81.25 – – 84.05 – – 96.10 – – 89.47 – – 86.67 – – 89.86 – – 87.90 – 87.90
GPT-4o Mini 76.25 82.50 86.25 84.66 82.21 84.66 94.37 95.67 96.54 87.37 90.53 90.53 85.33 86.67 86.67 91.30 89.86 92.75 86.55 87.90 89.57 88.01
InternVL2.5 38B 81.25 81.25 84.38 85.89 84.66 85.28 90.04 95.24 92.64 86.32 86.32 92.63 89.33 90.67 92.00 89.86 86.96 91.30 87.11 87.51 89.70 88.11
Qwen2 VL 72B 79.38 80.62 81.25 88.34 84.66 88.34 90.48 94.81 96.97 86.32 88.42 92.63 86.67 88.00 89.33 91.30 85.51 91.30 87.08 87.00 89.97 88.02
Gemini Flash 82.50 78.75 78.13 85.28 80.37 84.66 87.01 91.34 94.81 85.11 87.37 90.53 89.19 86.67 90.67 89.86 91.30 91.30 86.49 85.97 88.35 86.94
Qwen2.5 32B – 76.88 – – 79.75 – – 94.37 – – 87.37 – – 84.00 – – 89.86 – – 85.37 – 85.37
Qwen2 VL 7B 71.25 74.38 76.25 82.82 80.37 84.05 92.64 93.51 93.51 85.26 88.42 92.63 80.00 82.67 84.00 86.96 85.51 84.06 83.16 84.14 85.75 84.35
MiniCPM V 2.6 72.50 72.50 75.00 81.60 79.14 80.37 88.74 90.48 93.07 80.00 87.37 90.53 80.00 77.33 86.67 88.41 85.51 86.96 81.87 82.05 85.43 83.12
InternVL2.5 26B 77.50 74.38 80.62 87.12 75.46 87.12 91.77 91.77 96.54 88.42 84.21 93.68 84.00 85.33 88.00 91.30 79.71 86.96 86.69 81.81 88.82 85.77
Phi 3.5 Mini – 74.38 – – 72.39 – – 88.31 – – 83.16 – – 81.33 – – 86.96 – – 81.09 – 81.09
InternLM2.5 7B – 74.38 – – 76.69 – – 90.48 – – 80.00 – – 78.67 – – 85.51 – – 80.95 – 80.95
Centurio Qwen 75.63 74.38 80.00 79.75 76.69 82.82 86.58 92.64 92.21 83.16 86.32 89.47 78.67 77.33 88.00 86.96 76.81 89.86 81.79 80.69 87.06 83.18
InternLM2.5 20B – 74.38 – – 75.46 – – 89.18 – – 86.32 – – 76.00 – – 82.61 – – 80.66 – 80.66
Qwen2.5 7B – 71.88 – – 72.39 – – 93.51 – – 85.26 – – 77.33 – – 81.16 – – 80.26 – 80.26
Aya Expanse 8B – 68.12 – – 77.30 – – 91.77 – – 81.05 – – 80.00 – – 81.16 – – 79.90 – 79.90
InternVL2.5 8B 68.12 72.50 75.63 83.44 76.07 83.44 87.88 89.61 94.37 84.21 83.16 92.63 84.00 73.33 89.33 88.41 81.16 92.75 82.68 79.31 88.03 83.34
Centurio Aya 80.62 68.12 78.75 82.21 75.46 80.37 90.91 85.71 92.21 84.21 82.11 85.26 81.33 82.67 85.33 85.51 81.16 91.30 84.13 79.21 85.54 82.96
Phi 3.5 Vision 65.62 72.50 75.63 69.94 70.55 76.69 89.18 91.34 95.24 80.00 81.05 86.32 72.00 80.00 86.67 85.51 79.71 88.41 77.04 79.19 84.82 80.35
InternVL2.5 4B 66.88 66.88 76.25 84.66 75.46 84.05 87.01 86.15 93.07 83.16 78.95 87.37 80.00 82.67 86.67 86.96 84.06 89.86 81.44 79.03 86.21 82.23
Qwen2 VL 2B 77.50 72.50 78.75 84.05 64.42 84.05 91.77 82.68 92.21 88.42 81.05 86.32 84.00 70.67 89.33 88.41 79.71 91.30 85.69 75.17 86.99 82.62
Qwen2.5 3B – 68.75 – – 73.01 – – 83.12 – – 73.68 – – 74.67 – – 75.36 – – 74.76 – 74.76
Qwen2.5 1.5B – 61.88 – – 65.03 – – 82.25 – – 78.95 – – 72.00 – – 78.26 – – 73.06 – 73.06
Qwen2.5 0.5B – 68.12 – – 72.39 – – 67.53 – – 65.26 – – 70.67 – – 55.07 – – 66.51 – 66.51
InternLM2.5 1.8B – 56.25 – – 65.03 – – 65.37 – – 60.00 – – 66.67 – – 66.67 – – 63.33 – 63.33
InternVL2.5 2B 70.62 51.88 72.50 76.69 58.28 71.78 77.92 72.29 82.68 83.16 62.11 83.16 73.33 66.67 82.67 84.06 60.87 89.86 77.63 62.02 80.44 73.36
InternVL2.5 1B 63.75 58.75 66.88 62.58 60.74 74.23 64.50 61.90 80.09 77.89 57.89 87.37 62.67 68.00 82.67 75.36 59.42 82.61 67.79 61.12 78.97 69.29
Gemini Pro 76.25 59.38 78.13 68.10 55.21 82.21 82.25 56.28 89.61 79.79 61.05 85.11 79.73 61.33 84.00 72.46 65.22 95.65 76.43 59.75 85.78 73.99

Average X-Large LVLMs 78.44 80.31 84.06 85.89 83.44 88.65 92.42 94.81 96.97 87.37 90.53 92.63 87.33 89.33 90.67 92.03 88.41 92.03 87.24 87.80 90.84 88.63
Average Large LVLMs 79.38 77.81 82.50 86.50 80.06 86.20 90.91 93.51 94.59 87.37 85.26 93.16 86.67 88.00 90.00 90.58 83.33 89.13 86.90 84.66 89.26 86.94
Average Medium LVLMs 73.62 72.38 77.12 81.96 77.55 82.21 89.35 90.39 93.07 83.37 85.47 90.11 80.80 78.67 86.67 87.25 82.03 88.99 82.73 81.08 86.36 83.39
Average Small LVLMs 68.88 64.50 74.00 75.58 65.89 78.16 82.08 78.87 88.66 82.53 72.21 86.11 74.40 73.60 85.60 84.06 72.75 88.41 77.92 71.31 83.49 77.57
Average LVLMs 73.44 71.47 77.77 80.89 74.58 82.25 87.41 87.35 92.27 84.21 81.43 89.47 80.29 79.71 87.33 87.27 79.81 89.23 82.25 79.06 86.39 82.57
Average X-Large LLMs – 81.25 – – 84.05 – – 96.10 – – 89.47 – – 86.67 – – 89.86 – – 87.90 – 87.90
Average Large LLMs – 75.62 – – 77.61 – – 91.77 – – 86.84 – – 80.00 – – 86.23 – – 83.02 – 83.02
Average Medium LLMs – 71.46 – – 75.46 – – 91.92 – – 82.11 – – 78.67 – – 82.61 – – 80.37 – 80.37
Average Small LLMs – 65.88 – – 69.57 – – 77.32 – – 72.21 – – 73.07 – – 72.46 – – 71.75 – 71.75
Average LLMs – 70.57 – – 73.95 – – 85.64 – – 79.14 – – 77.09 – – 79.31 – – 77.62 – 77.62
Average X-Large 78.44 80.62 84.06 85.89 83.64 88.65 92.42 95.24 96.97 87.37 90.18 92.63 87.33 88.44 90.67 92.03 88.89 92.03 87.24 87.83 90.84 88.39
Average Large 79.38 76.72 82.50 86.50 78.83 86.20 90.91 92.64 94.59 87.37 86.05 93.16 86.67 84.00 90.00 90.58 84.78 89.13 86.90 83.84 89.26 84.98
Average Medium 73.62 72.03 77.12 81.96 76.76 82.21 89.35 90.96 93.07 83.37 84.21 90.11 80.80 78.67 86.67 87.25 82.25 88.99 82.73 80.81 86.36 82.26
Average Small 68.88 65.19 74.00 75.58 67.73 78.16 82.08 78.10 88.66 82.53 72.21 86.11 74.40 73.33 85.60 84.06 72.61 88.41 77.92 71.53 83.49 74.66
Average Open 73.44 71.08 77.77 80.89 74.31 82.25 87.41 86.60 92.27 84.21 80.42 89.47 80.29 78.56 87.33 87.27 79.59 89.23 82.25 78.43 86.39 80.39
Average Proprietary 78.00 77.62 81.75 80.12 78.77 84.42 89.18 87.10 94.81 85.82 84.21 89.23 85.25 82.67 88.80 85.51 85.51 92.46 83.98 82.65 88.58 85.07
Average 74.64 72.17 78.82 80.69 75.05 82.82 87.88 86.68 92.94 84.63 81.05 89.41 81.59 79.24 87.72 86.80 80.58 90.08 82.71 79.13 86.96 81.17

Table 15: GIMMICK Cultural Origin Question Answering – Regions (COQAR) results. The reported score is relaxed
accuracy. The columns I and T stand for image-only and text-only inputs to the model.
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WEST EU & NORTH AM. EAST EU ASIA & PACIFIC LAT. AM. & CARIB. ARAB SUBS. AFRICA AVERAGE

I T I+T I T I+T I T I+T I T I+T I T I+T I T I+T I T I+T Avg.

Claude 3.5 Sonnet 79.23 96.72 95.63 82.35 97.65 96.47 76.62 97.84 95.67 70.21 98.94 100.00 76.47 97.65 96.47 83.82 97.06 91.18 78.12 97.64 95.90 90.55
GPT-4o 93.44 95.08 96.17 94.71 98.24 98.24 93.51 97.40 98.27 97.87 98.94 98.94 95.29 95.29 98.82 95.59 97.06 100.00 95.07 97.00 98.41 96.83
InternVL2.5 78B 83.06 94.54 97.81 80.59 95.88 97.65 83.12 93.51 96.54 81.91 98.94 98.94 90.59 97.65 97.65 83.82 97.06 98.53 83.85 96.26 97.85 92.65
Qwen2.5 72B – 93.44 – – 96.47 – – 94.81 – – 98.94 – – 97.65 – – 94.12 – – 95.90 – 95.90
GPT-4o Mini 89.07 93.99 95.63 90.00 95.29 97.65 90.48 93.51 96.97 90.43 95.74 100.00 94.12 88.24 97.65 91.18 95.59 98.53 90.88 93.73 97.74 94.11
Qwen2.5 32B – 91.26 – – 93.53 – – 91.77 – – 94.68 – – 95.29 – – 92.65 – – 93.20 – 93.20
InternVL2.5 38B 78.69 91.80 92.35 77.06 91.18 92.94 77.49 93.07 93.94 79.79 95.74 96.81 84.71 94.12 95.29 88.24 92.65 98.53 80.99 93.09 94.98 89.69
Qwen2 VL 72B 87.98 87.43 95.08 94.12 90.59 96.47 90.04 90.04 97.84 91.49 97.87 98.94 92.94 89.41 98.82 91.18 97.06 98.53 91.29 92.07 97.61 93.66
Gemini Flash 90.56 89.01 97.27 90.59 88.82 97.06 91.77 90.48 98.70 90.43 93.62 97.87 90.59 88.24 97.65 88.24 95.59 97.06 90.36 90.96 97.60 92.97
InternVL2.5 26B 78.14 87.98 92.90 78.24 88.24 94.71 76.19 90.48 93.94 80.85 94.68 94.68 81.18 91.76 91.76 80.88 91.18 95.59 79.25 90.72 93.93 87.96
Qwen2.5 7B – 86.34 – – 88.24 – – 85.28 – – 95.74 – – 90.59 – – 94.12 – – 90.05 – 90.05
Aya Expanse 8B – 87.43 – – 88.24 – – 90.04 – – 93.62 – – 88.24 – – 89.71 – – 89.54 – 89.54
InternLM2.5 20B – 86.89 – – 87.06 – – 90.91 – – 90.43 – – 85.88 – – 89.71 – – 88.48 – 88.48
MiniCPM V 2.6 81.97 84.70 90.16 81.18 86.47 92.94 78.79 87.45 92.21 86.17 87.23 92.55 82.35 89.41 96.47 88.24 92.65 94.12 83.12 87.98 93.08 88.06
Qwen2 VL 7B 87.43 83.61 90.71 82.35 85.29 92.94 87.01 84.85 94.37 91.49 88.30 94.68 84.71 88.24 96.47 92.65 94.12 97.06 87.61 87.40 94.37 89.79
Qwen2.5 3B – 81.42 – – 85.88 – – 84.85 – – 92.55 – – 88.24 – – 86.76 – – 86.62 – 86.62
InternLM2.5 7B – 83.61 – – 85.88 – – 85.71 – – 90.43 – – 77.65 – – 88.24 – – 85.25 – 85.25
Centurio Qwen 78.69 82.51 89.07 78.82 82.94 89.41 78.79 84.42 92.64 76.60 85.11 91.49 80.00 83.53 88.24 79.41 91.18 92.65 78.72 84.95 90.58 84.75
Centurio Aya 65.57 83.61 85.79 72.35 81.76 85.88 75.76 85.71 88.31 74.47 87.23 82.98 70.59 80.00 89.41 66.18 89.71 89.71 70.82 84.67 87.01 80.83
InternVL2.5 8B 68.31 82.51 88.52 70.59 84.71 90.00 75.32 86.58 91.34 75.53 87.23 94.68 76.47 83.53 90.59 82.35 82.35 89.71 74.76 84.49 90.81 83.35
Phi 3.5 Mini – 80.87 – – 82.94 – – 83.98 – – 84.04 – – 82.35 – – 88.24 – – 83.74 – 83.74
InternVL2.5 4B 68.85 77.05 89.62 72.35 82.94 89.41 71.43 86.15 90.48 76.60 87.23 89.36 72.94 81.18 84.71 76.47 82.35 97.06 73.11 82.82 90.11 82.01
Phi 3.5 Vision 72.13 79.78 86.89 68.82 82.94 92.35 69.70 81.82 89.61 74.47 91.49 91.49 81.18 77.65 90.59 76.47 82.35 95.59 73.79 82.67 91.09 82.52
Qwen2.5 1.5B – 78.69 – – 81.18 – – 82.68 – – 82.98 – – 75.29 – – 80.88 – – 80.28 – 80.28
Qwen2 VL 2B 83.06 74.32 87.43 84.71 77.06 87.65 83.55 80.95 90.48 92.55 81.91 94.68 83.53 76.47 91.76 89.71 80.88 94.12 86.18 78.60 91.02 85.27
Qwen2.5 0.5B – 65.03 – – 68.82 – – 72.29 – – 75.53 – – 69.41 – – 77.94 – – 71.51 – 71.51
InternVL2.5 1B 61.20 66.12 73.77 59.41 65.88 73.53 62.34 75.76 77.06 67.02 74.47 76.60 56.47 63.53 75.29 55.88 72.06 70.59 60.39 69.64 74.47 68.17
InternLM2.5 1.8B – 63.39 – – 66.47 – – 71.00 – – 67.02 – – 58.82 – – 64.71 – – 65.23 – 65.23
InternVL2.5 2B 62.84 65.57 74.32 61.76 64.71 72.35 61.04 68.40 80.95 67.02 68.09 80.85 67.06 55.29 74.12 73.53 63.24 77.94 65.54 64.22 76.76 68.84
Gemini Pro 76.67 43.17 92.70 75.88 39.41 92.94 78.79 34.20 92.64 78.72 39.36 93.62 78.82 35.29 91.76 82.35 19.12 94.12 78.54 35.09 92.96 68.86

Average X-Large LVLMs 85.52 90.98 96.45 87.35 93.24 97.06 86.58 91.77 97.19 86.70 98.40 98.94 91.76 93.53 98.24 87.50 97.06 98.53 87.57 94.16 97.73 93.16
Average Large LVLMs 78.42 89.89 92.62 77.65 89.71 93.82 76.84 91.77 93.94 80.32 95.21 95.74 82.94 92.94 93.53 84.56 91.91 97.06 80.12 91.90 94.46 88.82
Average Medium LVLMs 76.39 83.39 88.85 77.06 84.24 90.24 79.13 85.80 91.77 80.85 87.02 91.28 78.82 84.94 92.24 81.76 90.00 92.65 79.01 85.90 91.17 85.36
Average Small LVLMs 69.62 72.57 82.40 69.41 74.71 83.06 69.61 78.61 85.71 75.53 80.64 86.60 72.24 70.82 83.29 74.41 76.18 87.06 71.80 75.59 84.69 77.36
Average LVLMs 75.57 81.54 88.17 75.88 82.90 89.16 76.47 84.94 90.69 79.71 87.54 91.34 78.91 82.27 90.08 80.36 86.34 92.12 77.82 84.26 90.26 84.11
Average X-Large LLMs – 93.44 – – 96.47 – – 94.81 – – 98.94 – – 97.65 – – 94.12 – – 95.90 – 95.90
Average Large LLMs – 89.07 – – 90.29 – – 91.34 – – 92.55 – – 90.59 – – 91.18 – – 90.84 – 90.84
Average Medium LLMs – 85.79 – – 87.45 – – 87.01 – – 93.26 – – 85.49 – – 90.69 – – 88.28 – 88.28
Average Small LLMs – 73.88 – – 77.06 – – 78.96 – – 80.43 – – 74.82 – – 79.71 – – 77.48 – 77.48
Average LLMs – 81.67 – – 84.06 – – 84.85 – – 87.81 – – 82.67 – – 86.10 – – 84.53 – 84.53
Average X-Large 85.52 91.80 96.45 87.35 94.31 97.06 86.58 92.78 97.19 86.70 98.58 98.94 91.76 94.90 98.24 87.50 96.08 98.53 87.57 94.74 97.73 94.07
Average Large 78.42 89.48 92.62 77.65 90.00 93.82 76.84 91.56 93.94 80.32 93.88 95.74 82.94 91.76 93.53 84.56 91.54 97.06 80.12 91.37 94.46 89.83
Average Medium 76.39 84.29 88.85 77.06 85.44 90.24 79.13 86.26 91.77 80.85 89.36 91.28 78.82 85.15 92.24 81.76 90.26 92.65 79.01 86.79 91.17 86.45
Average Small 69.62 73.22 82.40 69.41 75.88 83.06 69.61 78.79 85.71 75.53 80.53 86.60 72.24 72.82 83.29 74.41 77.94 87.06 71.80 76.53 84.69 77.42
Average Open 75.57 81.60 88.17 75.88 83.41 89.16 76.47 84.90 90.69 79.71 87.66 91.34 78.91 82.45 90.08 80.36 86.24 92.12 77.82 84.38 90.26 84.29
Average Proprietary 85.79 83.59 95.48 86.71 83.88 96.47 86.23 82.68 96.45 85.53 85.32 98.09 87.06 80.94 96.47 88.24 80.88 96.18 86.59 82.88 96.52 88.66
Average 78.26 81.93 90.10 78.73 83.49 91.08 79.04 84.53 92.21 81.24 87.27 93.11 81.05 82.20 91.76 82.43 85.34 93.19 80.13 84.13 91.91 85.02

Table 16: GIMMICK Cultural Origin Question Answering – Country (COQAC) results. The reported score is relaxed
accuracy. The columns I and T stand for image-only and text-only inputs to the model.

G.4 CKQA

G.4.1 LLM-as-a-Judge Evaluation
To evaluate the CKQAD and CKQAN tasks, we used GPT-4o (gpt-4o-2024-11-20) as a judge using
the prompts shown in the next section. For each sample, we used the same system prompt and
generated user prompts per sample individually.
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System Prompt

# Your Role

You are an impartial judge who excels at critical and analytical thinking.

# Your Task

Your task is it to thoroughly analyze and evaluate the correctness of a generated answer to a
Cultural Knowledge Test.,!

1. Carefully analyze the ground truth and the generated answer.
2. Provide a brief summary (1 - 3 sentences) of your analysis, covering the accuracy,

relevance, and completeness of the generated answer.,!
3. Provide a one or two-sentence explanation justifying your final score. Ensure that your

explanation and score are consistent with each other and accurately reflect the quality of
the generated answer in relation to the ground truth.

,!
,!
4. Provide a single number from 0 to 100 representing the correctness of the generated answer,

where:,!
0 = Completely incorrect or irrelevant.
25 = Mostly incorrect or irrelevant.
50 = Partially correct or relevant.
75 = Mostly correct and relevant.
100 = Perfectly correct and complete.

You may use any whole number within this range to reflect nuanced judgments.

# Output Format

Provide your evaluation in the following format:

���xml
<evaluation>
<analysis>
<!-- Put your analysis summary here -->
</analysis>
<explanation>
<!-- Put your explanation here -->
</explanation>
<score>
<!-- Put your score here -->
</score>
</evaluation>
���

User Prompt Template

Evaluate the correctness of the generated answer with respect to Ground Truth.

# Ground Truth

���
{GROUND_TRUTH}
���

# Generated Answer

���
{GENERATED_ANSWER}
���

# Evaluation

G.4.2 Results
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WEST EU & NORTH AM. EAST EU ASIA & PACIFIC LAT. AM. & CARIB. ARAB SUBS. AFRICA AVERAGE

I T I+T I T I+T I T I+T I T I+T I T I+T I T I+T I T I+T Avg.

GPT-4o 46.98 56.78 57.21 38.20 54.30 54.87 44.71 59.20 58.56 34.08 51.53 52.45 44.41 57.76 56.91 29.04 50.68 51.37 39.57 55.04 55.23 49.95
Claude 3.5 Sonnet 43.05 56.64 55.60 35.20 55.97 50.07 39.54 59.67 54.05 26.84 53.32 49.23 41.45 56.78 53.68 24.73 50.34 44.79 35.14 55.45 51.24 47.28
Gemini Pro 42.28 53.29 57.21 36.80 50.07 53.67 37.47 52.94 55.18 29.18 49.44 50.00 38.68 48.68 54.08 22.05 41.23 46.23 34.41 49.28 52.73 45.47
Qwen2.5 72B – 47.55 – – 45.17 – – 50.62 – – 42.70 – – 44.47 – – 37.95 – – 44.74 – 44.74
Qwen2.5 32B – 47.89 – – 43.73 – – 48.45 – – 40.71 – – 42.17 – – 39.25 – – 43.70 – 43.70
GPT-4o Mini 34.36 48.89 55.70 27.70 46.63 54.00 30.73 49.05 53.61 24.95 43.72 49.44 36.84 47.50 54.21 21.03 39.25 46.78 29.27 45.84 52.29 42.47
Gemini Flash 36.54 52.75 54.70 29.67 46.87 51.30 31.78 50.40 51.62 23.20 46.07 49.07 32.43 46.64 51.45 16.44 36.37 42.12 28.34 46.52 50.04 41.63
Phi 3.5 Mini – 40.40 – – 35.23 – – 38.27 – – 34.80 – – 34.87 – – 30.00 – – 35.60 – 35.60
Aya Expanse 8B – 40.17 – – 36.13 – – 39.42 – – 34.18 – – 36.32 – – 26.71 – – 35.49 – 35.49
Qwen2.5 7B – 38.39 – – 36.50 – – 38.78 – – 34.23 – – 34.01 – – 29.04 – – 35.16 – 35.16
InternLM2.5 20B – 37.01 – – 34.13 – – 36.59 – – 31.17 – – 32.83 – – 27.53 – – 33.21 – 33.21
Llama 3.2 11B Vision – 36.44 – – 32.77 – – 35.75 – – 30.00 – – 33.68 – – 27.40 – – 32.67 – 32.67
InternVL2.5 38B 23.72 41.21 37.62 18.63 38.80 37.03 20.51 41.55 39.96 23.72 33.32 38.72 24.08 35.46 39.67 15.96 32.47 33.49 21.10 37.14 37.75 32.00
InternVL2.5 78B 19.33 40.84 36.28 17.63 37.73 37.10 19.16 41.57 38.23 19.64 37.50 36.58 22.89 35.66 42.57 14.86 33.22 35.34 18.92 37.75 37.68 31.45
Qwen2 VL 72B 20.67 40.81 41.01 17.37 37.03 42.13 18.23 40.02 42.10 14.08 36.02 37.60 23.42 36.12 41.91 10.62 29.38 35.14 17.40 36.56 39.98 31.31
InternLM2.5 7B – 34.33 – – 32.30 – – 34.62 – – 31.17 – – 29.93 – – 23.49 – – 30.97 – 30.97
Qwen2.5 3B – 32.75 – – 28.90 – – 33.05 – – 28.47 – – 26.58 – – 22.81 – – 28.76 – 28.76
InternVL2.5 26B 11.91 39.97 34.43 12.63 36.10 34.07 13.76 38.92 34.00 13.11 34.18 28.98 15.33 34.01 36.38 9.38 29.59 27.95 12.69 35.46 32.64 26.93
Qwen2 VL 7B 14.09 32.82 38.09 14.27 29.53 37.17 12.72 33.12 37.43 17.09 28.32 35.97 17.17 29.28 35.46 9.38 20.55 30.96 14.12 28.94 35.85 26.30
MiniCPM V 2.6 18.49 34.70 36.28 13.60 30.47 34.60 15.88 33.76 34.96 18.67 29.03 34.34 17.50 30.20 36.84 9.93 18.42 24.52 15.68 29.43 33.59 26.23
Centurio Qwen 14.87 31.38 32.05 14.47 29.23 29.97 15.07 31.57 34.76 16.38 27.40 35.77 18.62 27.30 36.32 13.01 20.41 32.60 15.40 27.88 33.58 25.62
Phi 3.5 Vision 12.08 36.64 35.03 12.43 32.10 35.23 10.09 33.36 32.30 13.78 29.74 29.80 16.97 31.97 33.42 11.99 25.75 26.78 12.89 31.59 32.09 25.53
InternVL2.5 8B 6.81 36.28 29.97 6.80 31.33 29.13 9.07 33.72 30.49 6.58 29.74 30.36 12.11 30.53 30.26 2.53 22.67 20.96 7.32 30.71 28.53 22.19
InternVL2.5 4B 5.44 35.81 27.89 5.40 33.07 27.80 5.97 35.71 28.08 7.14 34.29 27.24 9.01 28.62 29.54 4.79 25.68 23.63 6.29 32.20 27.36 21.95
Qwen2.5 1.5B – 24.03 – – 20.77 – – 26.66 – – 20.87 – – 21.45 – – 16.23 – – 21.67 – 21.67
InternLM2.5 1.8B – 23.56 – – 22.30 – – 22.94 – – 18.52 – – 21.78 – – 14.66 – – 20.63 – 20.63
Qwen2 VL 2B 11.41 23.29 31.95 11.57 20.03 28.90 12.48 20.97 29.00 14.18 20.51 28.16 16.32 18.29 29.47 11.92 13.63 25.96 12.98 19.45 28.91 20.45
InternVL2.5 1B 9.87 24.09 16.51 8.50 20.43 16.83 9.78 21.28 18.50 11.22 20.41 16.07 12.83 16.51 18.75 9.93 14.93 17.60 10.35 19.61 17.38 15.78
InternVL2.5 2B 5.30 23.26 18.72 4.80 19.50 21.90 4.47 22.26 20.58 7.30 21.48 19.95 9.34 21.38 20.72 5.68 15.96 18.77 6.15 20.64 20.11 15.63
Centurio Aya 4.80 29.33 5.94 5.30 25.50 7.53 2.94 28.85 5.02 7.50 24.23 8.47 4.28 24.21 4.21 4.45 19.38 5.89 4.88 25.25 6.18 12.10
Qwen2.5 0.5B – 13.96 – – 11.77 – – 14.40 – – 11.43 – – 8.29 – – 8.70 – – 11.42 – 11.42

Average X-Large LVLMs 20.00 40.83 38.64 17.50 37.38 39.62 18.70 40.80 40.16 16.86 36.76 37.09 23.16 35.89 42.24 12.74 31.30 35.24 18.16 37.16 38.83 31.38
Average Large LVLMs 17.81 40.59 36.02 15.63 37.45 35.55 17.14 40.24 36.98 18.42 33.75 33.85 19.70 34.74 38.03 12.67 31.03 30.72 16.90 36.30 35.20 29.46
Average Medium LVLMs 11.81 33.49 28.47 10.89 29.80 27.68 11.14 32.79 28.53 13.24 28.12 28.98 13.94 29.20 28.62 7.86 21.47 22.99 11.48 29.15 27.55 24.18
Average Small LVLMs 8.82 28.62 26.02 8.54 25.03 26.13 8.56 26.72 25.69 10.72 25.29 24.24 12.89 23.35 26.38 8.86 19.19 22.55 9.73 24.70 25.17 19.87
Average LVLMs 12.77 33.79 30.13 11.67 30.24 29.96 12.15 32.83 30.39 13.60 29.08 29.14 15.70 28.88 31.11 9.60 23.30 25.68 12.58 29.69 29.40 24.41
Average X-Large LLMs – 47.55 – – 45.17 – – 50.62 – – 42.70 – – 44.47 – – 37.95 – – 44.74 – 44.74
Average Large LLMs – 42.45 – – 38.93 – – 42.52 – – 35.94 – – 37.50 – – 33.39 – – 38.46 – 38.46
Average Medium LLMs – 37.63 – – 34.98 – – 37.61 – – 33.19 – – 33.42 – – 26.41 – – 33.87 – 33.87
Average Small LLMs – 26.94 – – 23.79 – – 27.06 – – 22.82 – – 22.59 – – 18.48 – – 23.62 – 23.62
Average LLMs – 34.55 – – 31.54 – – 34.89 – – 29.84 – – 30.25 – – 25.12 – – 31.03 – 31.03
Average X-Large 20.00 43.07 38.64 17.50 39.98 39.62 18.70 44.07 40.16 16.86 38.74 37.09 23.16 38.75 42.24 12.74 33.52 35.24 18.16 39.68 38.83 35.83
Average Large 17.81 41.52 36.02 15.63 38.19 35.55 17.14 41.38 36.98 18.42 34.84 33.85 19.70 36.12 38.03 12.67 32.21 30.72 16.90 37.38 35.20 33.96
Average Medium 11.81 34.87 28.47 10.89 31.53 27.68 11.14 34.40 28.53 13.24 29.81 28.98 13.94 30.61 28.62 7.86 23.12 22.99 11.48 30.72 27.55 27.41
Average Small 8.82 27.78 26.02 8.54 24.41 26.13 8.56 26.89 25.69 10.72 24.05 24.24 12.89 22.97 26.38 8.86 18.84 22.55 9.73 24.16 25.17 21.74
Average Open 12.77 34.11 30.13 11.67 30.79 29.96 12.15 33.70 30.39 13.60 29.40 29.14 15.70 29.46 31.11 9.60 24.07 25.68 12.58 30.26 29.40 27.21
Average Proprietary 40.64 53.67 56.08 33.51 50.77 52.78 36.85 54.25 54.60 27.65 48.82 50.04 38.76 51.47 54.07 22.66 43.57 46.26 33.35 50.43 52.31 45.36
Average 20.11 37.27 36.96 17.42 34.01 35.96 18.65 37.02 36.76 17.30 32.53 34.64 21.77 33.01 37.15 13.04 27.22 31.10 18.05 33.51 35.43 30.14

Table 17: Average Judge Score for the GIMMICK Cultural Knowledge Question Answering (CKQA) – Describing.
The columns I, T, and I+T stand for image-only, text-only, and image+text input to the model.

WEST EU & NORTH AM. EAST EU ASIAN & PACIFIC LATIN-AMERICA & CARIBBEAN ARAB SUBSAHARIAN AFRICA AVERAGE

GPT-4o 37.79 32.57 37.68 30.15 38.03 28.42 34.11
Claude 3.5 Sonnet 40.27 33.63 39.29 25.71 38.16 24.25 33.55
GPT-4o Mini 34.46 28.73 33.08 23.67 34.87 25.89 30.12
Centurio Qwen 18.69 19.10 21.97 18.67 25.46 15.96 19.98
Gemini Pro 16.91 15.60 16.71 11.13 17.30 10.55 14.70
Gemini Flash 15.77 16.27 14.87 11.60 14.61 11.30 14.07
InternVL2.5 38B 14.06 12.60 16.24 10.71 21.12 8.36 13.85
Phi 3.5 Vision 15.17 13.67 13.54 12.45 14.28 10.75 13.31
InternVL2.5 78B 12.08 14.73 14.89 7.35 15.72 7.53 12.05
InternVL2.5 26B 11.51 10.50 13.16 7.65 14.34 7.74 10.82
InternVL2.5 1B 10.20 9.43 10.42 10.71 14.80 8.22 10.63
Qwen2 VL 72B 11.04 10.07 9.96 7.40 11.45 8.56 9.75
MiniCPM V 2.6 8.89 8.60 11.42 4.74 10.99 9.79 9.07
Centurio Aya 6.95 6.57 6.06 8.78 5.20 7.40 6.83
InternVL2.5 2B 6.31 6.80 6.17 7.14 8.49 3.08 6.33
InternVL2.5 4B 6.28 5.47 5.07 6.02 9.28 5.00 6.19
InternVL2.5 8B 6.51 5.30 4.54 6.48 9.28 3.77 5.98
Qwen2 VL 2B 5.40 4.27 7.35 3.62 5.53 3.63 4.97
Qwen2 VL 7B 5.27 5.63 4.78 4.03 6.32 3.70 4.96

Average X-Large LVLMs 11.56 12.40 12.42 7.38 13.58 8.04 10.90
Average Large LVLMs 12.78 11.55 14.70 9.18 17.73 8.05 12.34
Average Medium LVLMs 9.26 9.04 9.75 8.54 11.45 8.12 9.36
Average Small LVLMs 8.67 7.93 8.51 7.99 10.48 6.14 8.29
Average LVLMs 9.88 9.48 10.40 8.27 12.30 7.39 9.62
Average X-Large 11.56 12.40 12.42 7.38 13.58 8.04 10.90
Average Large 12.78 11.55 14.70 9.18 17.73 8.05 12.34
Average Medium 9.26 9.04 9.75 8.54 11.45 8.12 9.36
Average Small 8.67 7.93 8.51 7.99 10.48 6.14 8.29
Average Open 9.88 9.48 10.40 8.27 12.30 7.39 9.62
Average Proprietary 29.04 25.36 28.33 20.45 28.59 20.08 25.31
Average 14.92 13.66 15.12 11.47 16.59 10.73 13.75

Table 18: Average Judge Score for the GIMMICK Cultural Knowledge Question Answering (CKQA) – Naming.
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Abstract

Most Large Vision-Language Models (LVLMs)
to date are trained predominantly on English
data, which makes them struggle to understand
non-English input and fail to generate output
in the desired target language. Existing efforts
mitigate these issues by adding multilingual
training data, but do so in a largely ad-hoc man-
ner, lacking insight into how different training
mixes tip the scale for different groups of lan-
guages. In this work, we present a comprehen-
sive investigation into the training strategies for
massively multilingual LVLMs. First, we con-
duct a series of multi-stage experiments span-
ning 13 downstream vision-language tasks and
43 languages, systematically examining: (1)
the number of training languages that can be in-
cluded without degrading English performance
and (2) optimal language distributions of pre-
training as well as (3) instruction-tuning data.
Further, we (4) investigate how to improve mul-
tilingual text-in-image understanding, and in-
troduce a new benchmark for the task. Sur-
prisingly, our analysis reveals that one can (i)
include as many as 100 training languages si-
multaneously (ii) with as little as 25-50% of
non-English data, to greatly improve multilin-
gual performance while retaining strong En-
glish performance. We further find that (iii) in-
cluding non-English OCR data in pre-training
and instruction-tuning is paramount for improv-
ing multilingual text-in-image understanding.
Finally, we put all our findings together and
train Centurio, a 100-language LVLM, offer-
ing highly competitive performance in an eval-
uation covering 14 tasks and 56 languages.

1 Introduction

Large Vision-Language Models (LVLMs) extend
Large Language Models (LLMs) (Brown et al.,
2020) to natively understand images as input (Li
et al., 2023; Liu et al., 2023). This leverages the

* Equal contribution.

impressive language generation and reasoning abil-
ities of recent LLMs (Llama Team, 2024; Yang
et al., 2024) for vision-language tasks like image
captioning or visual question answering.

While there exists a plethora of LVLMs (Zhang
et al., 2024), most models are trained with just En-
glish data (Liu et al., 2024a; Dai et al., 2023; Liu
et al., 2024b). This limits the access for speakers
of other languages as the resulting models have
several limitations even if the underlying LLMs
exhibit multilingual capabilities: the models fail
to understand non-English instructions (Schneider
and Sitaram, 2024), struggle with non-English text
content in images (Tang et al., 2024), and often fail
to reply in the correct language, i.e., they have prob-
lems with language fidelity (Hinck et al., 2024). To
ameliorate these issues, LVLMs need to be trained
on a multilingual data composition. As the amount
of data one can train on is always limited—by
time, computing resources, financial costs, or other
constraints—an effective distribution of the data
across different languages is paramount. Existing
multilingual LVLM work has, however, given min-
imal consideration to this central question of opti-
mal training data composition (e.g., Geigle et al.,
2023; Sun et al., 2024; Maaz et al., 2025).

In this work, we comprehensively investigate
the space of language distributions of LVLM train-
ing mixes, focusing on the presumed trade-off be-
tween the number of included languages and perfor-
mance across languages—grouped by the amount
of data available for them—under a fixed training
budget. We train several models with different
data compositions obtained by machine-translating
high-quality English data and benchmark them
across 13 downstream tasks covering 43 diverse
languages—from low-resource languages like Igbo
to high-resource languages like German. We focus
on four research questions, each building on the
previous one, designed to identify an optimal mul-
tilingual training mix: RQ1: What is the optimal
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Figure 1: Exploring drivers of multilingual ability: (1) Languages in the training data; (2) Distribution of languages
in the training data; (3) Incorporating multilingual OCR samples to understand non-English text in images.

number of training languages? RQ2 & RQ3: What
is the optimal distribution of data across languages
in (RQ3) pre-training data and (RQ2) instruction-
tuning? RQ4: How to improve the understand-
ing of multilingual text in images? To measure
progress for RQ4, we introduce SMPQA (Synthetic
Multilingual Plot Question Answering), a novel
dataset for testing multilingual OCR capabilities,
spanning 11 languages and 7 scripts.

Our findings are encouraging, albeit surprising.
1. We do not observe the infamous “curse of mul-
tilinguality” (Conneau et al., 2020; Pfeiffer et al.,
2022b) and find that gradually increasing the num-
ber of languages incurs only a negligible “per-
formance tax”: scaling from 7 to 100 languages
greatly improves performance for languages newly
added to the training data, especially with respect
to language fidelity, while largely retaining perfor-
mance levels for all previously added languages.
2. We find that exposure to a language matters more
than increasing the training portion of the language
or, in particular, that the majority of the training
data can still be in English, which lowers the cost
of acquiring training data in other languages (e.g.,
via machine translation). Concretely, we find that
turning 25 to 50% of training data multilingual
yields strong performance, with more data some-
times even degrading performance; in pre-training,
having a larger share of multilingual data is more
beneficial, but it also saturates after 50%.
3. We obtain mixed results for text-in-image prob-
lems: while incorporating (synthetic) OCR data
with 5k samples per language rapidly boosts the
performance for Latin-script languages, the same
does not hold for languages with other scripts.

Finally, to demonstrate the practical impact of
our findings, we train Centurio, a massively multi-
lingual LVLM with 100 languages, following what
we found to be an “optimal” data distribution across
languages for both training stages. Centurio

achieves state-of-the-art results over 14 tasks ,
matching the performance of popular multilingual
open-weight LVLMs like Qwen2-VL (Wang et al.,
2024b), InternVL 2.5 (Chen et al., 2024d) and
Pangea (Yue et al., 2025) on English and other
high-resource languages while outperforming them
on low(er)-resource languages.

2 Drivers of Multilingual Ability

The design space for training (multilingual)
LVLMs is extensive, ranging from the choice of
the image encoder and the alignment module be-
tween the image encoder and LLM to the selection
of training data. (Karamcheti et al., 2024; Lau-
rençon et al., 2025; Tong et al., 2024). Exhaus-
tively searching through the cross-product of all
choices is not feasible. In this work, we focus on
extensive evaluation of language distributions of
training data in both pre-training and instruction-
tuning. Intuitively, this should be a major factor
affecting the multilingual ability of an LVLM. Fig-
ure 1 illustrates the scope of our analysis. We
keep adding groups of languages—from highest-
to lowest-resourced, following the “resourceness”
tiers of (Joshi et al., 2020)—into the training mix
while keeping the data size fixed. Besides the num-
ber of languages, our main focus is on the divi-
sion of the training budget between English and
all other languages. Finally, we posit that, besides
understanding instructions and generating outputs
in different languages, truly multilingual LVLMs
must be able to “understand” multilingual text in
images. We thus pay special attention to training
adaptions for multilingual text-in-image problems.

2.1 Experimental Setup

Architecture. For our experiments, we adopt
the popular LLaVA architecture (Liu et al., 2023,
2024a): An image encoder encodes images into
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a sequence of visual tokens, which are projected
with a 2-layer MLP into the LLM embedding space.
These projected visual tokens are then concatenated
with the text tokens and fed through the LLM to
generate textual output.

For all our experiments, we chose SigLIP
SO4001 (Zhai et al., 2023) as the image encoder
because it seems to be the best-performing “CLIP-
like”, i.e., language-supervised, embedding model,
as shown by Tong et al. (2024). Further, we decided
against other current image encoders for the fol-
lowing two reasons:1) The multilingual language
understanding and text generation capabilities eval-
uated in RQ1, RQ2, and RQ3 are mainly attributed
to the LLM, with the image encoder expected to
play only a minor role. 2) When it comes to “text-
in-image” understanding capabilities assessed in
RQ4, where the image encoder is thought to play
a more important role, all relevant image encoders
are trained primarily with English image captions.
Hence, we expect all of them to struggle with low-
resource languages and especially with non-Latin
scripts due to the lack of exposure to respective
data during training.

We chose Phi 3.5 (Abdin et al., 2024b) as our
LLM because it exhibits strong multilingual per-
formance while its small size (3.8B parameters)
allows for more computationally efficient experi-
mentation while still exhibiting strong multilingual
performance. To show that our findings generalize
to other LLMs, we repeat a subset of the analy-
sis experiments with Llama 3 (8B) (Llama Team,
2024) as the LLM backbone (see Appendix D.1).

Training Setup. Following previous work (Liu
et al., 2024a; Tong et al., 2024), we split the train-
ing into two phases : 1) pre-training: the model
is trained only on image captioning, with dense
image captions; 2) instruction tuning: the model is
trained on a mix of diverse vision-language tasks
using several public datasets. While pre-training
benefits downstream performance, it is not strictly
necessary for the LVLM to perform well on the
downstream tasks (Karamcheti et al., 2024). To re-
duce the computational cost of our analysis (i.e., to
avoid coupling each language distribution over pre-
training data with every language distribution of
instruction-tuning data), we skip pre-training while
searching for an optimal language distribution for
instruction tuning. Then, with instruction-tuning
data fixed, we search for an optimal language dis-

1google/siglip-so400m-patch14-384

tribution for pre-training data. In both stages, we
freeze the image encoder and only update the MLP
and LLM (with LoRA (Hu et al., 2022)) weights.
We provide further details in Appendix A.

Training Data. Our controlled experiments require
comparable data over a wide range of languages.
Existing multilingual datasets, available only for
some tasks and in a handful of languages2 thus
do not meet our needs. Instead, we resort to ma-
chine translation (MT) and use the open NLLB
model (Costa-jussà et al., 2022)3 to translate read-
ily available English datasets.4 While MT results
in lower data quality, especially for lower-resource
languages, it is the only option to obtain multilin-
gual vision-language training data at scale. More-
over, gains from “low-quality” MT data are guar-
anteed to be met or even surpassed with higher-
quality translations (e.g., commercial MT or hu-
man translators). Our instruction-tuning data is
adapted from LLaVA-Next (Liu et al., 2024b) and
contains 0.77M samples. For pre-training, we use
the 1.3M dense captions from ShareGPT4v (Chen
et al., 2024b). We provide further details in Ap-
pendix B.

Evaluation. We curate an extensive test suite of 13
tasks covering 43 languages to assess the multilin-
gual abilities of our models. Following Joshi et al.
(2020), we cluster the tested languages into five
tiers, with T5 encompassing the high-resource lan-
guages (e.g., German, Chinese) and T1 extremely
low-resource languages (e.g., Maori, Telugu). The
tasks contained in our test suite are twofold: (1) dis-
criminative tasks with questions that require binary
(”yes/no”) or multiple-choice answers and (2) open
generation tasks, where the models need to gen-
erate output in the target language (e.g., an image
caption or a free-form answer). Generative tasks
additionally evaluate a model’s language fidelity,
i.e., the ability to generate the answer in the lan-
guage of the instruction. The full list of evaluation
tasks and languages, along with further details, is
in Appendix C. We report the results for language
tiers (T1–T5), averaging the scores over all tasks
and all tier languages.5 We separately report En-
glish performance and exclude it from T5.

2See, for example, datasets collected by Yue et al. (2025)
3facebook/nllb-200-distilled-1.3B
4We do not translate text-in-image datasets as that would

result in mismatches between the instruction/output language
and the English text in the image.

5While tasks use different measures, all are on the 0-100%
scale, so no task skews the average.
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2.2 RQ1: Number of Training Languages
We first investigate on how many languages to actu-
ally train with: does training on few high-resource
languages and (zero-shot) cross-lingual transfer to
unseen languages suffice, as suggested, e.g., by
Shaham et al. (2024); Chen et al. (2024c); Kew
et al. (2024), or do we need to explicitly include
each targeted languages? Conversely, does training
with more languages harm the per-language perfor-
mance, with a smaller portion of the training data
now allocated to each language?

Setup. We focus on the instruction-tuning step:
50% of the data is kept in English6, while the other
50% split between N other languages equally, i.e.,
each language gets 50

N % of the data budget. We
gradually increase N , starting with the highest-
resource tier (T5) and then including tiers of lower-
resource languages (T4 to T1), one at a time. This
results in the following setups: T5 (N = 6), T5-
T4 (N = 24), T5-T3 (N = 52), T5-T2 (N = 69),
and finally L100 (N = 99). In L100, in addition to
languages from T5-T2, we include T1 languages
to cover XM3600 (Thapliyal et al., 2022) and oth-
erwise randomly to reach 99 languages.

Results. Table 1 summarizes the results. Expect-
edly, we find that including a language (tier) in
instruction-tuning improves their performance (Ta-
ble 1a, top half). Nevertheless, the (negative) effect
of adding new languages on performance of pre-
viously included languages is negligible, if at all
present. This makes training massively multilin-
gual LVLMs feasible with only minor performance
drawbacks for any given language. In-language
training leads to dramatic improvements in lan-
guage fidelity (i.e., the model producing the output
in the correct language), as shown in Table 1b. In-
terestingly, the more multilingual the training, the
larger the fidelity gains also for languages not in-
cluded in training; explicit in-language training,
expectedly, then further improves fidelity for any
given language (see Table 27 in the Appendix for
detailed per language results). Even when exclud-
ing tasks where language fidelity plays a role (Ta-
ble 1a bottom), we observe the same trends: steady
improvements from in-language training, with neg-
ligible (if any) performance drops for other lan-
guages. A subset of experiments with Llama 3
(setups: English, T5, and L100) in Table 13 in the
Appendix confirms these trends observed with Phi

6More specifically, 50% of the 80% of non-text-in-image
data, which is excluded from translation.

Train Lang. T1 T2 T3 T4 T5 en
All tasks
English 14.4 30.4 24.4 23.6 28.5 53.6
T5 16.5 31.0 26.3 26.7 34.0 53.7
T5-4 17.4 30.6 27.9 29.6 33.5 51.5
T5-3 17.7 31.4 32.1 29.0 34.1 52.7
T5-2 17.0 34.5 30.0 28.2 33.4 54.1
L100 19.3 32.6 30.7 28.9 34.4 52.6

Tasks unaffected by language fidelity
English 33.0 32.5 36.3 38.5 42.9 55.7
T5 35.3 33.2 36.4 38.7 42.4 56.0
T5-T4 35.8 32.6 37.8 40.1 42.2 55.7
T5-T3 35.9 33.6 40.5 39.7 42.6 56.3
T5-T2 35.2 36.5 38.5 39.5 42.8 55.5
L100 36.1 34.3 39.1 39.8 42.7 54.6

(a) Scores are averaged over results from all tasks grouped
by language tier. The performance on the following tasks is
affected by language fidelity: XM3600, MaXM, MTVQA.

Train Lang. T1 T2 T3 T4 T5 en
English 0.2 0.2 0.1 2.4 6.2 100.0
T5 39.1 36.1 82.2 83.9 99.1 100.0
T5-T4 61.8 84.6 87.5 99.2 98.4 100.0
T5-T3 72.9 84.4 98.2 95.2 97.9 100.0
T5-T2 68.5 99.0 97.9 98.4 98.1 100.0
L100 72.9 98.2 95.4 97.8 98.2 100.0

(b) Average language fidelity on XM3600 in %.

Table 1: RQ1 (§2.2) results for models trained with
different sets of languages. We emphasize the best and
second-best result in each column.

3.5: in fact, we see even larger gains over all tasks
when training with more languages.

2.3 RQ2: Language Distribution in
Instruction-Tuning

RQ1 experiments show that massively multilin-
gual instruction-tuning data is beneficial across the
board. We now analyze how much of the training
data should be multilingual. On the one hand, in-
tuitively, increasing the non-English portion of the
training data budget could then lead to further gains.
On the other hand, the gains from more multilin-
gual training are, at some point, likely to be offset
by the fact that we are adding noisy (MT-obtained)
data at the expense of clean (English) data.

Setup. We opt for the full set of 100 languages
(L100) in this experiment due to their robust
multilingual performance. However, we adjust
the language distribution by keeping E% of the
data budget in English and splitting the remain-
ing 100 � E% equally across the other 99 lan-
guages7. We consider the following six setups:
E 2 {1, 10, 25, 50, 75, 90}.

Results. We present the results in Table 2. We ob-
7We observed no benefits from an unequal allocation that

up-samples low(er)-resource languages; see §D.2)
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English % T1 T2 T3 T4 T5 en

1 19.1 30.3 28.8 27.1 31.7 48.9
10 18.1 32.4 29.4 27.4 32.5 50.1
25 19.7 35.5 29.9 27.9 33.0 50.3
50 19.3 32.6 30.7 28.9 34.4 52.6
75 18.5 31.5 30.7 28.4 34.6 54.1
90 15.9 31.2 27.6 26.9 34.1 54.8

Table 2: RQ2 (§2.3) results for models trained with
different ratios of English to multilingual data in the
instruction-tuning phase. Scores are averaged over re-
sults from all tasks grouped by language tier.

serve peak performance for all language tiers when
between 25% and 75% of the training data is in En-
glish. For some tasks (e.g., XM3600, MaXM, BIN-
MC), we see weaker performance with more En-
glish data, while for others (e.g., MTVQA, xGQA,
MaRVL) more multilingual data leads to slight per-
formance drops (see per-task results in F.1). Over-
all, lower-resource languages benefit from more
multilingual data and, conversely, higher-resource
languages benefit from more English data. How-
ever, this is in part also a consequence of lan-
guage coverage across tasks: XM3600 and BIN-
MC profit from a more multilingual training mix;
at the same time, they are the tasks that encompass
the most low(er)-resource languages.

Results obtained with the Llama 3 backbone (see
Table 14 in the Appendix) follow the same pattern:
we observe the best performance in T1 and T2 with
E = 10; and for T5 and English with E = 90;
E = 50 yields the best results overall, considering
all tiers. Our findings align with concurrent work
by Yue et al. (2025), who found that anywhere
between 20 and 80% of English data yields good
global performance. Following these results, we
choose E = 50 as a robust value for the training.

2.4 RQ3: Language Distribution in
Pre-Training

As hinted by (Liu et al., 2023, 2024b) and explicitly
demonstrated by Tong et al. (2024), pre-training on
image-caption pairs improves the LVLM’s perfor-
mance. We therefore, after identifying an effective
distribution of instruction-tuning data, next explore
the effect of different distributions of pre-training
data across languages. Specifically, we test if bal-
ancing out the English and multilingual portions
delivers better performance than unbalanced distri-
butions, that assign more training budget to English
or the multilingual mix, respectively.

Setup. In these experiments, we fix the instruction-

English % T1 T2 T3 T4 T5 en
No pre-training 19.3 32.6 30.7 28.9 34.4 52.6

100 19.3 33.3 32.1 29.4 34.5 55.2
50 22.8 39.5 33.8 30.8 35.7 54.9
1 22.7 38.9 33.7 31.2 35.4 55.1

Table 3: RQ3 (§2.4) results with different English-to-
multilingual ratios (L100) for pre-training. All variants
are identically instruction-tuned (L100, 50% En.).

tuning mix to L100 with EIT = 50% of data
in English, which we found in the previous sec-
tion to produce overall most balanced results. For
the pre-training data mix, we select the same 100
languages, varying the portion of English image-
caption pairs, EPT 2 {100%, 50%, 1%}; as in
instruction-tuning, the non-English data budget is
equally distributed across the other 99 languages.

Results. Scores in Table 3 reveal that while
English-only pre-training yields downstream ben-
efits on English tasks, it has a largely negligible
effect on other languages. The multilingual mixes
substantially improve the performance for virtually
all language tiers, with gains being the most promi-
nent for lowest-resource languages from T2 and
T1. In contrast to instruction-tuning, a very low
proportion of clean English data does not result in
tangible performance degradation, but it generally
does not improve the multilingual performance ei-
ther. We thus select EPT = 50% as the “optimal”
choice for subsequent experiments. Experiments
with Llama 3, with 1% and 100% of English data
(see Table 15 in the Appendix) support this find-
ing that having a highly multilingual pre-training
benefits multilingual downstream performance.

2.5 RQ4: Improving on Multilingual
Text-in-Image Tasks

Finally, we focus on the models’ multilingual un-
derstanding of text in images and how to improve it.
Unlike tasks based on natural images, text-in-image
tasks cannot be translated trivially from English:
even if the prompt and output text are translated,
the text in the image remains in English. Because
of this, we test how synthetic multilingual OCR
data, which can be generated at scale in any num-
ber of languages, can help improve performance.

Novel Evaluation Dataset. To this end, we intro-
duce SMPQA (Synthetic Multilingual Plot QA) a
new multilingual evaluation dataset, which focuses
on two fundamental skills required in text-in-image
tasks: 1) reading (and outputting) the text from an

VI. Centurio:
On Drivers of Multilingual Ability of Large Vision-Language Model 224



Setup SMPQA Ground SMPQA Read
en Latin other en Latin other

No pre-training 69.6 67.2 51.9 33.4 12.8 0.1
No OCR 76.1 73.0 55.3 41.8 23.1 0.2

100% Eng. 78.4 74.7 57.9 55.8 39.9 3.9
50% Eng. 81.2 76.7 60.0 53.8 41.8 7.1
50% (frozen) 76.1 70.8 56.3 47.2 34.1 3.5
1% Eng. 81.0 78.3 64.1 54.8 43.5 8.0
Latin down 78.9 74.2 59.5 54.6 41.0 9.9

Table 4: RQ4 (§2.5) results of models trained with ad-
ditional synthetic OCR data on SMPQA for English,
Latin-script languages, and languages with other scripts.
No pre-training: from Table 2; No OCR: from Table 3;
frozen: image encoder frozen; N% Eng.: N% of OCR
data is English, rest uniform distributed over L100 lan-
guages; Latin down: 2.5k samples for all Latin-script
languages, 10k samples for others.

image and 2) grounding the input text (given as
part of the prompt) to the corresponding text in the
image (via balanced ‘yes/no’ questions, e.g., “Is the
bar with label $Label the largest?”). We provide
further details on the construction and examples in
Appendix C.5.8 We construct SMPQA to cover (i)
5 Latin-script languages, one from each tier, and (ii)
6 major languages with different non-Latin scripts.

Setup. We generate multilingual synthetic text-in-
image data for training following the Synthdog ap-
proach (Kim et al., 2022) (see B.3 for details). We
again adopt the training setup L100 with 50% En-
glish data, both in pre-training and fine-tuning, now
adding 500k Synthdog samples to pre-training and
a subset of 50k instances to the instruction-tuning
mix. As before, we select E 2 {100, 50, 1}% En-
glish samples, distributing the rest of the budget
equally over the other 99 languages. We test an
additional Latin-down distribution: we double the
budget allocated to 32 non-Latin-script languages
and cut the training budget for Latin-script lan-
guages (other than English) in half. Importantly, in
these experiments we unfreeze the image encoder
and fine-tune its parameters as well.

Results. Table 4 summarizes the results. The mod-
els from prior experiments, No pre-training and No
OCR, succeed for English and other Latin-script
languages but utterly fail on non-Latin scripts with
near-random performance. We note that the model
with the pre-training step (without the additional
OCR data) already performs better than the model
trained just via instruction-tuning; this is likely due

8While MTVQA and M3Exam also require OCR capabili-
ties, they also require input image resolution that is far greater
than what we use in our experiments (384px); SMPQA uses
bigger letters, making performance effects from multilingual
training on text-in-image understanding easier to measure.

to the presence of images with text coupled with
captions that explicitly mention this text. Training
with synthetic data greatly improves the perfor-
mance across all languages even if all of the OCR
data is in English (100% Eng.). Nonetheless, using
multilingual synthetic OCR data is very effective
and, importantly, does not degrade English SM-
PQA performance even if English constitutes only
1% of the training data. We note that unfreezing and
training the image encoder is critical for optimal
performance in all scripts. Despite all this, we still
observe a large performance gap between Latin-
and non-Latin-script languages, even if we skew
the training budget towards the non-Latin scripts
(Latin-down). We hypothesize that orders of mag-
nitude more text-in-image training data for other
scripts are required for adequate performance.9

3 Centurio: Applying Lessons Learned

Our answers to RQ1–RQ4 (see §2) point to the fea-
sibility of training massively multilingual LVLMs
supporting 100 languages with a “sweet spot”
of roughly 50% of the English data being MT-
translated to the languages covered. For improving
multilingual OCR capabilities, training on large-
scale synthetic data with an unfrozen image en-
coder has proven effective. Demonstrating the
practicability of our findings, we now train state-of-
the-art multilingual LVLMs applying our lessons
learned, which we call Centurio. We briefly de-
scribe further design choices below.

3.1 Design Choices

Text Encoder. The choice of the LLM greatly im-
pacts multilingual performance. We benchmark
several LLMs (with 7-9B parameters) following
the evaluation setup described in §2 for L100 lan-
guages and translations for 50% of the English in-
struct data to find candidates for Centurio (details
in Appendix D.3). The best performances where
obtained with Aya-Expanse (Dang et al., 2024) and
Qwen 2.5 (Yang et al., 2024) as backbones.

Image Tiling and Projection. Image tiling meth-
ods (Lin et al., 2024; Liu et al., 2024b) increase the
image resolution by concatenating encodings of n
non-overlapping tiles of an input image together,
which significantly helps with ‘reading’ small text

9Concurrently, in a preliminary exploration of text-in-
image capabilities, Yue et al. (2025) noted steady gains with
50k samples per language but also observed worse perfor-
mance for non-Latin-script languages.
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AVG. XM3600 MT- SMPQA G. SMPQA N. M3Exam xMMMU C-
en mul fid. VQA en mul en mul en mul en mul VQA

Parrot 25.8 5.6 0.4 25.0 2.0 51.0 49.9 0.0 0.0 46.6 36.2 35.3 32.4 41.1
PALO 7B 28.7 65.9 13.5 72.0 5.8 55.5 52.8 22.4 2.7 41.0 29.1 31.8 30.9 37.1
PALO 13B 29.9 67.3 17.0 60.1 6.3 54.0 51.5 25.6 4.0 45.2 28.3 32.4 28.9 39.6
Llama-Vision 3.2 11B *32.3 35.9 7.2 33.3 15.2 91.1 84.8 58.4 22.8 — — — — 38.8
Maya 33.4 55.9 14.6 65.7 5.3 51.4 50.9 14.6 1.8 49.2 36.3 37.9 33.3 39.8
Pixtral 12B 38.1 26.5 22.1 96.8 14.1 91.1 71.0 85.0 35.9 49.4 33.7 30.3 26.2 33.5
Phi 3.5 Vision 39.5 32.3 6.3 40.8 11.1 92.2 79.4 84.8 35.9 56.3 40.7 41.7 37.4 40.9
Qwen2VL 2B 41.2 68.8 5.2 13.2 19.0 85.0 83.5 68.8 47.4 47.9 40.5 36.8 35.5 33.6
MiniCPM 2.6 41.7 87.5 14.2 92.3 16.1 89.0 74.3 80.8 39.3 55.0 48.2 39.1 36.5 34.1
InternVL 2.5 4B 45.3 38.9 17.5 91.0 25.1 87.0 78.3 77.8 47.5 63.2 50.3 49.2 42.7 48.1
InternVL 2.5 8B 47.4 38.3 15.7 91.1 25.0 91.0 79.2 80.6 48.2 67.0 53.3 50.7 45.2 48.6
Qwen2VL 7B 47.7 50.3 24.6 90.0 23.2 91.2 90.9 85.0 64.9 56.1 49.7 43.0 40.7 37.6
Pangea 48.2 70.1 34.6 87.9 19.3 87.2 72.2 72.0 23.8 58.0 45.5 43.1 42.0 55.2
Centurio Aya 48.5 78.4 39.2 95.7 11.1 83.1 74.2 60.0 30.1 53.0 41.2 37.6 37.2 49.4
Centurio Qwen 51.6 79.1 34.4 95.2 11.9 84.8 76.1 65.2 31.7 61.2 46.9 46.4 43.0 52.9

MAXM xGQA BIN-MC XVNLI MaRVL VGR VLOD
en mul en mul en mul en mul en mul en mul en mul

Parrot 28.2 3.6 37.7 21.2 30.5 25.7 28.7 31.4 63.5 55.1 59.2 52.9 0.0 0.0
PALO 7B 54.0 22.5 59.1 36.6 58.7 38.6 58.0 53.4 62.7 24.1 48.3 25.6 5.8 6.8
PALO 13B 51.7 33.1 58.0 27.8 61.4 41.1 56.6 53.6 63.8 33.1 63.3 26.2 2.5 4.9
Llama-Vision 3.2 11B 0.0 4.7 39.3 27.6 75.6 50.8 — — — — — — — —
Maya 55.4 17.3 58.2 49.1 54.0 43.2 50.1 43.9 60.3 56.3 46.7 42.3 20.0 20.1
Pixtral 12B 59.4 43.4 59.9 3.8 71.0 54.2 60.9 52.7 67.7 60.7 55.8 47.7 9.2 12.4
Phi 3.5 Vision 43.6 17.9 65.2 38.0 63.1 36.8 58.9 53.3 73.4 46.4 81.7 50.3 45.8 31.5
Qwen2VL 2B 53.7 26.5 60.5 38.2 78.2 47.2 61.9 56.2 67.9 55.9 61.7 50.5 22.5 20.4
MiniCPM 2.6 53.4 22.3 57.9 45.7 72.6 47.4 71.9 65.4 70.2 57.9 52.5 49.1 9.2 14.6
InternVL 2.5 4B 46.0 42.5 63.6 28.0 68.4 45.4 69.0 58.7 74.9 59.0 72.5 49.7 24.2 21.0
InternVL 2.5 8B 45.6 38.2 63.4 32.0 70.3 44.2 73.5 66.4 83.0 63.3 87.5 51.6 57.5 29.0
Qwen2VL 7B 54.7 31.2 62.5 49.3 80.7 57.5 62.1 59.6 69.8 60.2 60.0 52.9 5.8 13.2
Pangea 61.4 55.0 64.6 60.4 70.3 52.1 69.0 65.2 75.8 70.5 69.2 58.9 0.0 6.7
Centurio Aya 55.7 49.3 59.1 53.2 69.7 54.7 65.0 62.4 85.0 77.9 82.5 66.8 12.5 20.7
Centurio Qwen 60.1 47.7 60.6 54.8 72.7 56.2 75.4 70.2 89.6 81.7 87.5 73.1 28.3 27.0

Table 5: Comparison of Centurio and 13 other LVLMs across 14 tasks. We highlight the best and second-best
results. Scores are accuracy (CIDEr for XM3600). en & mul are the English and averaged multilingual results.
XM3600 fid. is the language fidelity over all languages; SMPQA G. & N are Grounding and Naming. *: supports
only single-image input. AVG.: average over all tasks. Details on the setup and models are provided in Appendix C.

Model T1 T2 T3 T4 T5 en
Centurio Aya 35.1 46.4 47.0 46.7 48.3 60.6
Centurio Qwen 38.1 51.0 48.3 47.0 50.9 66.6
InternVL 2.5 8B 29.9 37.0 37.4 41.0 50.5 64.4
Qwen2VL 7B 30.6 36.8 40.5 46.2 48.0 56.8
Pangea 38.5 38.6 46.9 44.2 49.9 59.8

Without multi-image tasks (MaRVL, VGR, VLOD):
Centurio Aya 35.1 44.5 45.7 46.2 47.7 60.7
Centurio Qwen 38.1 49.5 45.6 45.8 49.6 66.0
InternVL 2.5 8B 29.9 40.4 35.2 39.4 49.7 62.3
Qwen2VL 7B 30.6 38.7 40.8 46.8 48.3 61.7
Pangea 38.5 46.5 47.7 44.4 49.9 64.9

Table 6: Comparison between Centurio and the top-3
models of Table 5. Scores are averages over results from
all 14 tasks grouped by language tier.

in images. However, they also greatly increase the
input length: a 2⇥2 tiling would yield 3,645 tokens
per image with our model.10 Instead, we adopt the
method by Shi et al. (2024), which concatenates the
tokens of the whole image and the tiles along the
feature dimension before projection by the MLP.
This gives an efficient trade-off between computing
cost—the number of tokens stays constant—and
performance gains for fine-grained content.

10The whole image plus four tiles, each with 729 tokens.

Training Data. We increase the amount of the pre-
training and instruct tuning data to further improve
performance beyond our analysis setup. For pre-
training, we add the 0.7M ALLaVA captions (Chen
et al., 2024a) to the ShareGPT-4V captions and
we use all synthetic OCR data generated in §2.5
(1.16M total: 500k English, 5k for Latin-script
language, 10k for other scripts). For instruction-
tuning, we incorporate additional datasets from the
Cambrian collection (Tong et al., 2024) along with
several text-only instruction-tuning datasets (see
Appendix B.2 for a list). We translate the data
to the L100 50% En. setup, excluding text-heavy
datasets and others that are problematic for MT.

3.2 Results

We compare our Centurio models against 13 other
multilingual LVLMs across the 13 tasks used in §2,
and additionally evaluate them on CVQA11, testing
the models’ capabilities across 56 languages. We
provide details for all models in Appendix C.6.

On average, Centurio achieves the best results

11CVQA has a private test set and only allows limited sub-
missions hence we left it out for our analysis experiments.
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across all 14 tasks (cf. Table 5). Focusing on
multilingual single-task performance, our model
sometimes lags behind the best-performing models
but still achieves best or second-best results in 9
of 14 tasks. While Centurio performs strongly
on English, it is more often surpassed by other
models. These results prove the effectiveness of
our training composition: we are able to retain
high English performances while maximizing the
models’ multilingual capabilities. When analyzing
these results grouped by language tier (Table 6), we
find that our models shine in the low-resource tiers
T112 and T2, with competitive results for higher-
resource languages—even when excluding multi-
image tasks (VGR, MaRVL, VLOD), where our
models greatly outperform most others.

For text-heavy tasks (primarily MTVQA and
SMPQA), we find that Centurio falls behind.
While we show the importance of multilingual
OCR training—Centurio succeeds at the SMPQA
reading task in more languages than, for example,
Pangea—the limited input resolution and magni-
tudes less OCR data compared to Qwen2-VL and
others result in comparably poor performance.

4 Related Work

Multilingual LVLMs. Building on the success of
monolingual LVLMs like BLIP-2 (Li et al., 2023)
and LLaVA (Liu et al., 2023, 2024a), researchers
extended the English training protocols to include
multilingual data for obtaining massively multilin-
gual LVLMs (e.g., Maaz et al., 2025; Geigle et al.,
2023). As such, Google’s PaLI models (Chen et al.,
2022, 2023) were the first closed-weight models
trained on multilingual captions and VQA data
with the recent open-weight PaliGemma (Beyer
et al., 2024) following a similar training strategy.
Geigle et al. (2023) presented with mBLIP the first
open model, trained with image captions and a
limited mix of instruct data translated to 98 lan-
guages. Subsequent models similarly followed an
established procedure by directly translating parts
of the English training data (Maaz et al., 2025; Hu
et al., 2024; Alam et al., 2024). For the concurrent
Pangea, Yue et al. (2025) optimized for multicul-
tural aspects and used a mix of machine-translated
data, existing multilingual data, and synthetically
generated data. While they analyze the ratio be-
tween English and multilingual data, they do not

12Despite 4 of 7 T1 CVQA languages not in our training
data.

vary the number of languages, fixing it at 39. Inter-
estingly, most researchers either (i) did not properly
motivate their multilingual data mix (e.g., Geigle
et al., 2023; Alam et al., 2024; Beyer et al., 2024),
or (ii) did not provide any details on the training
data composition (e.g., Wang et al., 2024b; Yao
et al., 2024; Chen et al., 2024d))

Multilingual OCR with LVLMs. While OCR re-
cently gained popularity for English LVLMs (Lu
et al., 2024; Tong et al., 2024), multilingual OCR
has largely been neglected in prior work. As an
exception, Qwen2-VL (Wang et al., 2024b) and
InternVL 2.5 (Chen et al., 2024d) exhibit excel-
lent multilingual OCR capabilities, but no training
details are known. Towards open knowledge on
improving multilingual OCR, Yue et al. (2025) per-
formed preliminary experiments leveraging data in
10 languages. However, such efforts are still hin-
dered by the lack of evaluation resources: MTVQA
(Tang et al., 2024) and M3Exam (Zhang et al.,
2023a) only cover up to 9 languages and conflate
language understanding (in the text input) with un-
derstanding text on images. In this work, we push
multilingual OCR research by presenting the novel
SMPQA dataset dedicated to evaluation of mul-
tilingual OCR. We further explore how synthetic
training data can improve models’ capabilities.

Multilingual Instruction Tuning of LLMs..
While older LLMs struggled in multilingual tasks
(Ahuja et al., 2024), more recent ones like Qwen
2.5 (Yang et al., 2024), Llama 3 (Llama Team,
2024), Gemma 2 (Team et al., 2024), or Aya
(Aryabumi et al., 2024) have greatly improved
in that respect, making them usable in many lan-
guages besides English. Still, current LLMs often
fail to respond faithfully to the prompting language
if that language is not English, especially for low-
resource languages (Holtermann et al., 2024; Kew
et al., 2024; Marchisio et al., 2024). To mitigate
this issue, several works have analyzed the impor-
tance of multilingual instruction tuning. Weber
et al. (2024) demonstrated that multilingual train-
ing is crucial for downstream performance even
if the base models are pre-trained on multilingual
data mixtures. Others showed that just a small set
of languages is sufficient to improve cross-lingual
transfer for multilingual downstream tasks signif-
icantly (Shaham et al., 2024; Chen et al., 2024c;
Kew et al., 2024). However, they focus on a small
set of primarily higher-resource languages, while
we consider the problem in the vision-language

VI. Centurio:
On Drivers of Multilingual Ability of Large Vision-Language Model 227



context for a wider language selection.
In (Soykan and Sahin, 2024), the authors pro-

pose methods to select the optimal mix of lan-
guages for instruction tuning in a ”linguistically-
informed manner”. However, they find no gen-
eral best selection, and instead a task- and model-
dependent selection is necessary. Therefore, in
our work, we do not apply these techniques and
instead choose languages based on the taxonomy
introduced by Joshi et al. (2020).

5 Conclusion

In this study, we systematically investigated the op-
timal data composition for training a multilingual
LVLM through four progressively refined analysis
setups. Our findings reveal that massively multilin-
gual training with 100 languages is highly effective,
achieving comparable results to configurations with
fewer languages. Moreover, only 25–50% of the
training data needs to be non-English, keeping the
cost of multilingual data production low. To en-
hance multilingual text understanding in images,
we introduced a novel evaluation benchmark and
demonstrated the importance and effectiveness of
including multilingual synthetic OCR data in the
training mix. Finally, we apply our findings to train
Centurio, massively multilingual LVLMs trained
with 100 languages, and achieve state-of-the-art
results on our evaluation suite covering 14 tasks
and 56 language tasks against 13 other LVLMs.

6 Limitations

Lack of Explicit Multicultural Training The
focus of this work is on language understanding
in a massively multilingual setup, that is, how to
train the model to maximize its ability to under-
stand and generate text in various languages. We
do not consider the multicultural aspect, that is,
training a model so that it is also more knowledge-
able about concepts from the countries whose lan-
guages it can understand as measured by bench-
marks like CVQA or CulturalVQA (Nayak et al.,
2024). While the two aspects — multilingual and
multicultural knowledge — can be intermingled in
practice, they require distinct approaches in train-
ing: Multilingual data is necessary for multilingual
language understanding, as we have shown. How-
ever, multicultural knowledge can be learned from
multilingual resources as created by, for example,
by Yue et al. (2025), but also from fully English
resources like Wikipedia (Srinivasan et al., 2021).

Using Machine-Translated Training Data We
train our model using machine-translated (MT)
data derived from high-quality English datasets.
This is advantageous because it allows us to create
comparable setups for our analyses with full control
over the languages and their proportions. While the
data proves effective in increasing multilingual per-
formance, MT data, especially for low-resource lan-
guages, can be of low quality and, even in higher-
resource languages, might exhibit unwanted “trans-
lationese” artifacts. This can negatively impact the
quality of generated text in a way that the metrics
employed in our evaluation suite do not adequately
measure. While native multilingual training data
is available, it is not available for all tasks or lan-
guages equally, or, for most languages, not at all.
Future work should consider evaluation setups to
quantify the effect the MT data has on the final
model, work on better MT pipelines, or create more
data through native speakers.

Using Synthetically Generated OCR Data The
text-heavy, “real-world” tasks in some datasets of
our instruction tuning mix, which cover diverse im-
age types such as plots, scans, application screen-
shots, or screenshots of webpages, are still en-
tirely in English. Due to the issues that arise when
translating such samples, we do not translate them.
Hence, our methods to improve the understanding
of multilingual texts in images are limited to only
using synthetically generated images. While we
have seen that our synthetic data positively impacts
the performance of models on the respective tasks,
future work should explore methods for collect-
ing or generating more diverse data in different
languages beyond our synthetic OCR data.

Another limitation regarding OCR capabilities
is our relatively small image input resolution com-
pared to models like Qwen2-VL or InternVL 2.5 —
both of which support image inputs in native reso-
lution at the cost of thousands of tokens per image
—, which limits the performance of Centurio for
images with small text.
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Appendix Overview

Due to the number of experiments, the general den-
sity of our work, and our aim to be as transparent as
possible in the sense of open science, the following
appendix is extensive. Hence, we provide a brief
outline of its content to ease navigation and to get
an overview quickly.
A Training Setup

Hyperparameters and Languages
B Training Data

Training Datasets
C Evaluation Setup

Hyperparameters, Metrics, Datasets
D Additional Experiments

Ablation Studies on Architecture and Data
E Qualitative Examples

Showcasing Centurio
B Full Results

All Models, Datasets, and Languages

A Training Setup

All models are trained with the following hyper-
parameters: AdamW optimizer (Loshchilov and
Hutter, 2019) with cosine learning rate schedule
and 3% linear warmup; LORA (Hu et al., 2022)
is used with rank 256 and ↵512 and applied to
all matrices in the LLM – the LLM is otherwise
frozen; the image encoder is frozen in the first three
experiments and jointly trained with the model oth-
erwise; weight decay is 0; batch size is 32 using
gradient accumulation; learning rate is 1e� 6 for
the image encoder, 1e� 4 for LORA and the MLP
in general except when training Centurio, we use
5e�5 during pretraining and 3e�5 during instruct
tuning. Models are always trained for one epoch
on the entire data. The training loss is causal lan-
guage modeling and we mask both image and input
prompt tokens for calculating the loss.

For going from the pretraining to the instruct tun-
ing phase, we found it best to continue training the
same LORA adapter; merging the LORA weights
after pretraining and initializing a new adapter gave
worse results.

Hyperparameter (LORA rank & ↵, learning
rates, weight decay) were tuned for Phi 3.5 and
transferred to the other LLMs.

All models were trained with 4 H100 GPUs.
Training Centurio took ⇡ 6 days (half for pre-
training, half for instruct tuning).

Training of one Phi 3.5 model for §2 takes 8-
10h for instruct tuning, and for pre-training 12 to

20h (with synthetic OCR data and unfrozen image
encoder).

A.1 Training Languages
We list the 100 languages used in training in Table 7.

B Training Data

B.1 For Analysis Experiments
The collections of datasets used in the instruct
tuning phase for the analysis experiments (§2) is
adapted from LLaVA-Next (Liu et al., 2024b). As
multiple evaluation datasets contain multiple im-
ages in the input (MaRVL, VGR, VLOD, M3Exam,
xMMMU), we include additional datasets to im-
prove capabilities for this situation. See Table 8 for
the full list.

B.2 For Training Centurio

For training Centurio, we combine the datasets
from Table 8 with additional datasets listed in Ta-
ble 9.

B.3 Synthetic OCR Data
We use the official Synthdog code13 to generate the
samples using the Google Noto font and with im-
ages from the ImageNet train split as background.
Text is sampled from Wikipedias of the respective
languages.

We consider the following 32 languages as not
using the Latin script: am, ar, as, azb, be, bg, bn,
bo, el, fa, he, hi, ja, ka, kk, km, ko, lo, mr, my, pa,
ru, sa, sd, sr, ta, te, th, ti, uk, ur, zh.

C Evaluation Setup

This section describes the details of our evaluation
setup.

C.1 Generation Parameters
In all experiments of our test suite, we
use greedy decoding (temperature=0.0;
do_sample=False;).

C.2 Metrics
Depending on the dataset and task, we employ
either CIDEr (Vedantam et al., 2015), the exact
match accuracy, or a relaxed match accuracy (see
Table C.4).

13https://github.com/clovaai/donut/tree/master/
synthdog
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Name Script ISO-639 Flores-200 Tier

Arabic Arabic ar arb_Arab 5
Chinese Trad. Han zh zho_Hant 5
English Latin en eng_Latn 5
French Latin fr fra_Latn 5
German Latin de deu_Latn 5
Japanese Japanese ja jpn_Jpan 5
Spanish Latin es spa_Latn 5
Basque Latin eu eus_Latn 4
Catalan Latin ca cat_Latn 4
Croatian Latin hr hrv_Latn 4
Czech Latin cs ces_Latn 4
Dutch Latin nl nld_Latn 4
Finnish Latin fi fin_Latn 4
Hindi Devanagari hi hin_Deva 4
Hungarian Latin hu hun_Latn 4
Italian Latin it ita_Latn 4
Korean Hangul ko kor_Hang 4
Persian Arabic fa pes_Arab 4
Polish Latin pl pol_Latn 4
Portuguese Latin pt por_Latn 4
Russian Cyrillic ru rus_Cyrl 4
Serbian Cyrillic sr srp_Cyrl 4
Swedish Latin sv swe_Latn 4
Turkish Latin tr tur_Latn 4
Vietnamese Latin vi vie_Latn 4
Afrikaans Latin af afr_Latn 3
Bangla Bengali bn ben_Beng 3
Belarusian Cyrillic be bel_Cyrl 3
Bosnian Latin bs bos_Latn 3
Bulgarian Cyrillic bg bul_Cyrl 3
Cebuano Latin ceb ceb_Latn 3
Danish Latin da dan_Latn 3
Egyptian Arabic Arabic ar-eg arz_Arab 3
Estonian Latin et est_Latn 3
Galician Latin gl glg_Latn 3
Georgian Georgian ka kat_Geor 3
Greek Greek el ell_Grek 3
Indonesian Latin id ind_Latn 3
Kazakh Cyrillic kk kaz_Cyrl 3
Latin Latin la NO 3
Latvian Latin lv lvs_Latn 3
Lithuanian Latin lt lit_Latn 3
Malay Latin ms zsm_Latn 3
Romanian Latin ro ron_Latn 3
Slovak Latin sk slk_Latn 3
Slovenian Latin sl slv_Latn 3
Tagalog Latin tl tgl_Latn 3
Tamil Tamil ta tam_Taml 3
Thai Thai th tha_Thai 3
Ukrainian Cyrillic uk ukr_Cyrl 3

Name Script ISO-639 Flores-200 Tier

Urdu Arabic ur urd_Arab 3
Uzbek Latin uz uzn_Latn 3
Hebrew Hebrew iwhe heb_Hebr 3
Amharic Ethiopic am amh_Ethi 2
Haitian Latin ht hat_Latn 2
Hausa Latin ha hau_Latn 2
Icelandic Latin is isl_Latn 2
Irish Latin ga gle_Latn 2
Lao Lao lo lao_Laoo 2
Maltese Latin mt mlt_Latn 2
Marathi Devanagari mr mar_Deva 2
Punjabi Gurmukhi pa pan_Guru 2
Sanskrit Devanagari sa san_Deva 2
Swahili Latin sw swh_Latn 2
Tigrinya Ethiopic ti tir_Ethi 2
Tswana Latin tn tsn_Latn 2
Wolof Latin wo wol_Latn 2
Xhosa Latin xh xho_Latn 2
Yoruba Latin yo yor_Latn 2
Zulu Latin zu zul_Latn 2
Albanian Latin sq als_Latn 1
Assamese Bengali as asm_Beng 1
Azerbaijani Arabic azb azb_Arab 1
Bambara Latin bm bam_Latn 1
Burmese Myanmar my mya_Mymr 1
Esperanto Latin eo epo_Latn 1
Igbo Latin ig ibo_Latn 1
Javanese Latin jv jav_Latn 1
Khmer Khmer km khm_Khmr 1
Kikuyu Latin ki kik_Latn 1
Lingala Latin ln lin_Latn 1
Luxembourgish Latin lb ltz_Latn 1
Maori Latin mi mri_Latn 1
Norwegian Latin no nob_Latn 1
Occitan Latin oc oci_Latn 1
Quechua Latin qu quy_Latn 1
Samoan Latin sm smo_Latn 1
Sango Latin sg sag_Latn 1
Sardinian Latin sc srd_Latn 1
Scottish Gaelic Latin gd gla_Latn 1
Sindhi Arabic sd snd_Arab 1
Somali Latin so som_Latn 1
Swati Latin ss ssw_Latn 1
Telugu Telugu te tel_Telu 1
Tibetan Tibetan bo bod_Tibt 1
Tok Pisin Latin tpi tpi_Latn 1
Tsonga Latin ts tso_Latn 1
Twi Latin tw twi_Latn 1
Waray Latin war war_Latn 1
Welsh Latin cy cym_Latn 1

Table 7: The list of 100 languages used in our training experiments. The ”Tier” column represents the tier in the
taxonomy proposed by Joshi et al. (2020), where a higher tier indicates more available resources, i.e., data, in the
respective language.
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Dataset Size (Images) Translated?

Natural Image:
LLaVA Instruct (Liu et al., 2023) 160k yes
VQAv2 (Goyal et al., 2017) 83k yes
GQA (Hudson and Manning, 2019) 72k yes
OKVQA (Marino et al., 2019) 9k yes
A-OKVQA (Schwenk et al., 2022) 30k yes
RefCOCO (Kazemzadeh et al., 2014; Mao et al., 2016) 48k yes
VG (Krishna et al., 2017) 86k yes
MSCOCO (Lin et al., 2014) 50k (subset) yes

Multiple Images:
NLVR (Suhr et al., 2019) 86k yes
Spot-the-difference (Jhamtani and Berg-Kirkpatrick, 2018) 8k yes

OCR:
OCRVQA (Mishra et al., 2019) 50k (subset) no
DocVQA (Mathew et al., 2021) 10k no
AI2D (Kembhavi et al., 2016) 3k no
ChartQA (Masry et al., 2022) 18k no
DVQA (Kafle et al., 2018) 50k (subset) no
ScienceQA (Lu et al., 2022) 6k no

Total 766k

Table 8: List of datasets included in the instruct tuning
phase in our analysis experiments. All sizes are based
on unique images; examples about the same image are
packed into one sequence.

For the relaxed match accuracy, we consider an
answer correct if it starts with the correct choice
letter. For example, answers like ”A.” are also
counted as correct if the gold label is ”A”.

C.3 Prompts
We list the prompts for each dataset in our test suite
used for all models in Figure 2.

C.4 Datasets
In the following, datasets included in our test suite
are briefly introduced. An overview is provided in
Table 10. Details about the languages covered by
the datasets are listed in Table 11.

xGQA The xGQA dataset (Pfeiffer et al., 2022a)
is a cross-lingual visual question-answering dataset.
It extends the well-known English-only GQA
dataset (Hudson and Manning, 2019) by manually
translating the questions in the balanced test-dev
set. Each of the 9666 questions is available in eight
languages covering five scripts, while the answers
are in English only. The dataset holds 300 unique
images from Visual Genome (Krishna et al., 2017).

MaXM The MaXM dataset was introduced
by Changpinyo et al. (2023) and is a VQA dataset
comprising seven languages in five scripts. In
MaXM, the questions and their respective answers
are in the same language. The images are a subset
of the XM3600 (Thapliyal et al., 2022) dataset and
are chosen to match a region where the language
of the question-answer pair is spoken. This ensures
cultural diversity in the images in addition to the
language diversity in the question-answer texts.

Dataset Size (Images) Translated?

Natural Image:
ALLaVA Instruct1 (Chen et al., 2024a) 760k yes
LVIS Instruct4V (Wang et al., 2023) 223k yes
Visual7W (Zhu et al., 2016) 14k no
VizWiz QA (Gurari et al., 2018) 21k no
TallyQA (Acharya et al., 2019) 133k yes
SketchyVQA (Tu et al., 2024) 4k yes
OODVQA (Tu et al., 2024) 3k no

OCR:
ScienceQA (Cambrian version) 6k no
AI2D (Cambrian version) 4k no
Rendered Text 2 10k no
ScreenQA (Hsiao et al., 2025) 33k no
LLaVAR (Zhang et al., 2023b) 20k no
ArxivQA (Li et al., 2024) 54k no
Chart2Text (Obeid and Hoque, 2020) 25k no
InfographicVQA (Mathew et al., 2022) 2k no
VisText (Tang et al., 2023) 10k no
TQA (Kembhavi et al., 2017) 1k no
STVQA (Biten et al., 2019) 17k no
TAT-QA (Zhu et al., 2021) 2k no
TabMWP (Lu et al., 2023) 23k no
HiTab (Cheng et al., 2022) 2k no
IconQA (Lu et al., 2021b) 27k no
VisualMRC (Tanaka et al., 2021) 3k no
RobuT (Zhao et al., 2023) 113k no
FinQA (Chen et al., 2021) 5k no

Math & Code:
WebSight (Laurençon et al., 2024) 10k yes
Design2Code (Si et al., 2024) 0k yes
DaTikz (Belouadi et al., 2024) 48k no
CLEVR (Johnson et al., 2017) 70k yes
CLEVR-Math (Lindström and Abraham, 2022) 70k yes
Geo170k (Gao et al., 2023) 9k no
GeomVerse (Kazemi et al., 2023) 9k no
Inter-GPS (Lu et al., 2021a) 1k no
MathVision (Wang et al., 2024a) 3k no
Raven (Zhang et al., 2019) 42k no

Text (no images):
Aya Dataset (Singh et al., 2024) 202k –
Tagengo-GPT4 (Devine, 2024) 70k –
Magpie2 (Xu et al., 2024) 400k –

Total 2.47M

Table 9: Datasets used on top of the datasets from
Table 8 for the instruct tuning phase of Centurio.
1: also contains web-scraped images from LAION
(Schuhmann et al., 2022) which contain textual
elements. 2:https://huggingface.co/datasets/
wendlerc/RenderedText. 2: Combining magpie-ultra-
v0.1 (50k), Magpie-Qwen2-Pro-200K-English (200k),
Magpie-Llama-3.1-Pro-MT-300K-Filtered (150k sub-
set).

XVNLI The XVNLI dataset (Bugliarello et al.,
2022) introduces the task of Cross-lingual Vi-
sual Natural Language Inference where a model
needs to predict whether a textual hypothesis en-
tails, contradicts, or is neutral concerning a visual
premise. XVNLI comprises five languages cov-
ering three scripts and 357 unique images from
Visual Genome. It is based on a combination of
the text-only SNLI (Bowman et al., 2015) dataset
and its cross-lingual (Agić and Schluter, 2018) and
cross-modal (Xie et al., 2019) equivalents.

MaRVL The MaRVL dataset (Liu et al., 2021)
aims to benchmark models on Multicultural Rea-
soning over Vision and Language. A task sample
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SMPQA

<IMG>{QUESTION}\nAnswer the question using a single word or phrase.

CVQA

<IMG>{QUESTION}\nThere are several options:\nA. {OPTION A}\nB. {OPTION B}\nC. {OPTION C}\nD.
{OPTION D}\nAnswer with the option’s letter from the given choices directly.

xMMMU

{QUESTION}\nThere are several options:\nA. {OPTION A}\nB. {OPTION B}\nC. {OPTION C}\nD. {OPTION
D}\nAnswer with the option’s letter from the given choices directly.

MTVQA

<IMG>{QUESTION}\nAnswer the question using a single word or phrase.\nAnswer in {LANGUAGE}.

M3Exam

{QUESTION}\nOptions:\nA. {OPTION A}\nB. {OPTION B}\nC. {OPTION C}\nD. {OPTION D}\n Answer with
the option’s letter from the given choices directly.

BIN-MC

<IMG>Which of these choices (in English) is shown in the image?\n Choices:\nA. {CHOICE A}\nB.
{CHOICE B}\nC. {CHOICE C}\nD. {CHOICE D}\n Answer with the letter from the given choices directly.

xGQA

<IMG>{QUESTION}?\nAnswer the question using a single word or phrase.\nAnswer in English.

MaXM

<IMG>{QUESTION}?\nAnswer the question using a single word or phrase.\nAnswer in {LANGUAGE}.

MaRVL

<IMG>Given the two images <IMG><IMG>, is it correct to say “{HYPOTHESIS}”? Answer yes or no.’

XVNLI

<IMG>Is it guaranteed true that “{HYPOTHESIS}”? Yes, no, or maybe? Answer in English.

M5-VGR

Given the two images <IMG><IMG>, is it correct to say “{HYPOTHESIS}”? Answer yes or no.’

M5-VLOD

Based on the 5 images <IMG><IMG><IMG><IMG><IMG> ordered from top-left to bottom-right, which
image does not match the hypothesis “{HYPOTHESIS}”? Choose one from [A, B, C, D, E] and only
output a single letter:

XM3600

Briefly describe the image in {LANGUAGE} in one sentence.

Figure 2: Prompts used for the different datasets of our test suite. For M3Exam and xMMMU, the questions contain
images at individual positions, and also the options can consist of images. In total, a sample of M3Exam can contain
up to 8 images and 8 options, and a sample of xMMMU can contain up to 4 images and 4 options.
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Dataset Task Visual Input Textual Input Target Output Metric #Lang.

MaXM VQA Single-Image Question (TL) WoP (TL) E. Acc. 6
xGQA VQA Single-Image Question (TL) WoP (EN) E. Acc. 8
XVNLI VNLI Single-Image Hypothesis (TL) ’yes’ / ’no’ / ’maybe’ E. Acc. 5
M5B-VLOD VLOD Multi-Image Hypothesis (TL) LoC R. Acc. 12
M5B-VGR VGR Multi-Image Hypothesis (TL) ’yes’ / ’no’ E. Acc. 12
MaRVL VGR Multi-Image Hypothesis (TL) ’yes’ / ’no’ E. Acc. 6
MTVQA TH VQA Single-Image Question (TL) WoP (TL) E. Acc. 9
SMPQA - Name TH VQA Single-Image Question (TL) WoP (TL) E. Acc. 11
SMPQA - Ground TH VGR Single-Image Question (TL) ’yes’ / ’no’ E. Acc. 11
M3Exam TH MC VQA Single or Multi-Image Question (TL) LoC R. Acc. 7
MMMU TH MC VQA Single or Multi-Image Question (EN) LoC R. Acc. 1
xMMMU TH MC VQA Single or Multi-Image Question (TL) LoC R. Acc. 7
BabelImageNet-MC MC VQA Single-Image Question (TL) LoC R. Acc. 20
CVQA MC VQA Single-Image Question (TL) LoC R. Acc. 39
XM3600 Captioning Single-Image Prompt (EN) Caption (TL) CIDEr 36

Table 10: List of datasets contained in our test suite. In the Task column, ”VQA” ”VNLI”, ”VLOD”, ”VGR”, ”TH”,
and ”MC” are acronyms for ”Visual Question Answering”, ”Visual Natural Language Inference”, ”Visio-Linguistic
Outlier Detection”, ”Visually Grounded Reasoning”, ”Text-Heavy”, and ”Multiple-Choice”, respectively. In the
”Textual Input” and ”Target Output” columns, the acronyms ”WoP”, ”LoC”, ”TL”, and ”EN” stand for ”(Single)
Word or Phrase”, ”Letter of the correct Choice”, ”Target Language”, and ”English”, respectively. Further, ”E. Acc.”
is ”Exact Accuracy” and ”R. Acc.” is ”Relaxed Accuracy”. CVQA is not used in §2 due to its hidden test set with
limited submissions.

comprises two images, a textual statement, and a
binary true or false answer grounded in the im-
ages. MaRVL comprises five languages covering
three scripts and 4914 culturally diverse images
that match the respective languages. The images
in a sample are chosen to match the culture of the
annotator who has written the textual statement in
his or her native language.

XM3600 The XM3600 dataset (Thapliyal et al.,
2022) is a large multilingual image captioning
dataset comprising 36 languages with 261375 cap-
tions covering 13 different scripts for 100 unique
images per language. The images are selected to
match the language’s cultural background, ensuring
cultural and linguistic diversity. The captions were
not automatically translated but manually created
by professional annotators who are native speakers
of the respective language.

We only use a subset of 500/3600 images (se-
lected randomly) per language when evaluating
XM3600 due to its size.

Babel-ImageNet (multiple-choice) (BIN-MC)
Babel-ImageNet (Geigle et al., 2024b) translates
the labels of ImageNet (Deng et al., 2009) to nearly
300 languages, which allows us to test if models are
capable of recognizing and linking the diverse ob-
jects of ImageNet to their correct label in the tested
language. Testing all 300 languages would be too
expensive, instead we use it to deepen our evalu-
ation in languages appearing in only 1 or 2 other
datasets, plus English and select few high-resource

languages. Also, we only use 10 images per class
instead of 50, again, to keep computational cost
reasonable.

We formulate the task as a multiple-choice
problem, following the approach by Geigle et al.
(2024a) to mine hard negative options from the
total label pool. This avoids problems of unclear
or underspecified answers that appear in a tradi-
tional open-ended VQA formulation. We mine
negatives with the English labels, filtering out all
candidates not translated by Babel-ImageNet in the
target language, that is, in the end, we select the
three most similar negative labels that appear in the
Babel-ImageNet labels of a given language.

SMPQA We propose SMPQA (Synthetic Multi-
lingual Plot QA) as a novel test dataset for evaluat-
ing multilingual OCR capabilities in images – bar
plots and pie charts to be specific – in 11 languages,
covering different scripts and resource levels. See
§C.5 for details.

M5B-VGR The M5B-VGR dataset is a Visually
Grounded Reasoning dataset similar to MaRVL
and was introduced by (Schneider and Sitaram,
2024). A sample comprises two images, a tex-
tual statement, and a binary true or false answer
grounded in the images. It comprises 12 languages
covering 7 scripts and culturally diverse photos
taken in regions where the respective language is
spoken. The images are sampled from the Dollar
Street (Gaviria Rojas et al., 2022) dataset. For each
language, there are 120 samples.
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Name Tier ISO-639-3 ISO-639-1 Datasets

Afrikaans 3 afr af BabelImageNet-MC, M3Exam
Amharic 2 amh am BabelImageNet-MC, CVQA, M5B-VGR, M5B-VLOD
Arabic 5 ara ar MTVQA, SMPQA, XM3600, xMMMU, XVNLI
Bengali 3 ben bn CVQA, M5B-VGR, M5B-VLOD, xGQA, XM3600
Berber (macrolanguage) 0 ber - M5B-VGR, M5B-VLOD
Breton 1 bre br CVQA
Bulgarian 3 bul bg CVQA
Chinese 5 zho zh CVQA, M3Exam, MaRVL, MaXM, SMPQA, xGQA, XM3600
Croatian 4 hrv hr BabelImageNet-MC, XM3600
Cusco Quechua 1 quz - XM3600
Czech 4 ces cs BabelImageNet-MC, XM3600
Danish 3 dan da XM3600
Dutch 4 nld nl BabelImageNet-MC, XM3600
Egyptian Arabic 3 arz - CVQA
English 5 eng en BabelImageNet-MC, M3Exam, M5B-VGR, M5B-VLOD, MaRVL, MaXM,

MME, MMMU, SMPQA, xGQA, XM3600, xMMMU, XVNLI
Filipino 3 fil - CVQA, M5B-VGR, M5B-VLOD, XM3600
Finnish 4 fin fi BabelImageNet-MC, XM3600
French 5 fra fr MaXM, MTVQA, XM3600, xMMMU, XVNLI
German 5 deu de M5B-VGR, M5B-VLOD, MTVQA, SMPQA, xGQA, XM3600
Hausa 2 hau ha BabelImageNet-MC, M5B-VGR, M5B-VLOD
Hebrew 3 heb he XM3600
Hindi 4 hin hi M5B-VGR, M5B-VLOD, MaXM, SMPQA, XM3600, xMMMU
Hungarian 4 hun hu BabelImageNet-MC, XM3600
Igbo 1 ibo ig CVQA
Indonesian 3 ind id CVQA, MaRVL, SMPQA, xGQA, XM3600, xMMMU
Irish 2 gle ga CVQA
Italian 4 ita it M3Exam, MTVQA, SMPQA, XM3600
Japanese 5 jpn ja BabelImageNet-MC, CVQA, MTVQA, XM3600, xMMMU
Javanese 1 jav jv CVQA
Kanuri 0 kau kr CVQA
Kinyarwanda 1 kin rw CVQA
Korean 4 kor ko CVQA, SMPQA, xGQA, XM3600
Malay (macrolanguage) 3 msa ms CVQA
Maori 1 mri mi BabelImageNet-MC, XM3600
Mi-gkabau 1 min - CVQA
Modern Greek 3 ell el BabelImageNet-MC, XM3600
Mongolian 1 mon mn CVQA
Norwegian 1 nor no BabelImageNet-MC, CVQA, XM3600
Oromo 1 orm om CVQA
Persian 4 fas fa BabelImageNet-MC, XM3600
Polish 4 pol pl BabelImageNet-MC, XM3600
Portuguese 4 por pt CVQA, M3Exam, xGQA, XM3600, xMMMU
Romanian 3 ron ro BabelImageNet-MC, CVQA, MaXM, XM3600
Russian 4 rus ru CVQA, M5B-VGR, M5B-VLOD, MTVQA, SMPQA, xGQA, XM3600,

XVNLI
Sinhala 0 sin si CVQA
Spanish 5 spa es BabelImageNet-MC, CVQA, XM3600, XVNLI
Sundanese 1 sun su CVQA
Swahili (macrolanguage) 2 swa sw CVQA, M5B-VGR, M5B-VLOD, MaRVL, XM3600
Swedish 4 swe sv XM3600
Tamil 3 tam ta BabelImageNet-MC, CVQA, MaRVL
Telugu 1 tel te BabelImageNet-MC, CVQA, XM3600
Thai 3 tha th M3Exam, M5B-VGR, M5B-VLOD, MaXM, MTVQA, SMPQA, XM3600
Turkish 4 tur tr MaRVL, XM3600
Ukrainian 3 ukr uk XM3600
Urdu 3 urd ur CVQA
Vietnamese 4 vie vi M3Exam, MTVQA, XM3600
Zulu 2 zul zu BabelImageNet-MC, M5B-VGR, M5B-VLOD, SMPQA

Unique Languages 56 (43 without CVQA)

Table 11: List of languages covered in the datasets of our test suite. The ”Tier” column represents the tier in the
taxonomy proposed by Joshi et al. (2020), where a higher tier indicates more available resources, i.e., data, in the
respective language. CVQA is not used in §2 due to its hidden test set with limited submissions.

M5B-VLOD The M5B-VLOD (Visio-Linguistic
Outlier Detection) dataset was introduced
by (Schneider and Sitaram, 2024). A sample
comprises five images and a textual statement that
is true for all but one of the images. The task is to
find the outlier image, that is, the image that does
not match the statement. It comprises the same 12

languages as M5B-VGR and images sampled with
a similar strategy from the same dataset. For each
language, there are 120 samples.

MTVQA The MTVQA dataset was introduced
by (Tang et al., 2024) and comprises text-heavy
Visual Question Answering (VQA) tasks. It fea-
tures human expert annotations across 9 diverse

VI. Centurio:
On Drivers of Multilingual Ability of Large Vision-Language Model 242



languages, consisting of a total of 6778 question-
answer pairs across 2116 images. The images pri-
marily contain text in the respective language and
the question (and answer) related to that text. The
images are sampled from different publicly avail-
able datasets.

CVQA The CVQA dataset was introduced
by (Romero et al., 2024) and is a multilingual,
culturally nuanced VQA benchmark that includes
a diverse set of languages, many of them under-
represented and understudied in NLP. It consists
of 10000 questions across 30 countries, covering
31 languages, and in 39 distinct country-language
pairs (e.g., the dataset includes 7 different splits
for Spanish because it contains 7 countries where
Spanish is spoken). The images in the dataset were
manually gathered by human annotators to match
and depict the culture of the respective country-
language pair.

A sample consists of one image and a question
related to the image in the respective language. The
authors did not release the test set publicly but al-
lowed up to 5 daily submissions to their leader-
board to obtain evaluation results.

M3Exam The M3Exam dataset was introduced
by (Zhang et al., 2023a). It contains real-world
exam questions in 9 languages, which are either
text-only or multi-modal. In our test suite, we only
consider samples that require at least one image.
Further, due to the low number of resulting sam-
ples for Swhalili and Javanese, we only include
the remaining 7 languages. The remaining samples
consist of multiple-choice questions in the target
language and up to 8 images that can appear both
in the question and the answer options. Further, the
number of options ranges from 4 to 8 depending
on the individual sample.

xMMMU The xMMMU was introduced by (Yue
et al., 2025) and consists of college-level multiple-
choice VQA samples across seven languages. It
was automatically translated using GPT4o from a
subset of 300 randomly selected questions from the
MMMU (Yue et al., 2024) validation split.

C.5 Details for SMPQA
We propose SMPQA (Synthetic Multilingual Plot
QA) as a test dataset for evaluating multilingual
OCR capabilities, that is capabilities to identify and
read text in various languages in images, specifi-
cally bar plots and pie charts.

We test the capabilities in two directions: i)
grounding requires the model to ground a given
label in the user prompt to the corresponding part
in the plot to answer a yes/no question (“Is the bar
with label $X the biggest?”); ii) reading requires
the model to output the label of a specified part of
the plot (“What is the label of the biggest slice?”).
The questions are simple by design, requiring min-
imal reasoning, math, or multi-hop capabilities, as
to isolate solely the OCR capabilities in the tested
language. We show example plots and questions in
Figure 3.

We use exact match accuracy for both tasks. For
reading, edit distance to the correct word would be
a fine-grained alternative but since word lengths
differ between languages – Chinese can be 1-2
characters while Indonesian can be >10 – we opt
against it to more easily compare results between
languages. To have a fair comparison between lan-
guages, we construct the dataset in a way that plots
and questions about them are identical between
languages (except for labels in the respective lan-
guages, obviously).

Construction: SMPQA is constructed with a de-
terministic pipeline yielding identical results for
each language.
1. We define a list of diverse pie charts and bar
plots by randomly sampling the number of bars/s-
lices, the size of each, their colors, the plot size and
aspect ratio, and vertical/horizontal orientation for
bar plots, and exploding some slices in pie charts.
For each plot type, we define 50 configurations, so
we have 100 plots/images in total per language.
2. Using word lists of common words in the lan-
guages, we sample words for use as labels for the
bars and pie slices to fill and ultimately render the
pre-defined plots. This means the plots are iden-
tical between languages except for the labels and
some size adjustments caused by different word
lengths.
3. For each plot, we use templates to generate 5
questions for reading and 8 questions for grounding
(with balanced ‘yes’ and ‘no’ as answers). The
questions are always the same for a plot, so each
language has the same questions, just with different
labels.

Language Selection: We selected the languages
as follows: For Latin-script languages, we chose
English and one language from Tier 5 to 2 to have
both high- and low-resource languages: German,
Italian, Indonesian, and Zulu. For non-Latin scripts,
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HuggingFace Model ID Params

Qwen/Qwen2-VL-2B-Instruct (Wang et al., 2024b) 2B
Qwen/Qwen2-VL-7B-Instruct (Wang et al., 2024b) 7B
microsoft/Phi-3.5-vision-instruct (Abdin et al., 2024a) 4B
neulab/Pangea-7B-hf (Yue et al., 2025) 7B
openbmb/MiniCPM-V-2_6 (Yao et al., 2024) 8B
meta-llama/Llama-3.2-11B-Vision-Instruct (AI@Meta, 2024) 11B
mistralai/Pixtral-12B-2409 (Agrawal et al., 2024) 12B
AIDC-AI/Parrot-7B (Sun et al., 2024) 7B
MBZUAI/PALO-7B (Maaz et al., 2025) 7B
MBZUAI/PALO-13B (Maaz et al., 2025) 13B
OpenGVLab/InternVL2_5-4B (Chen et al., 2024e) 4B
OpenGVLab/InternVL2_5-8B (Chen et al., 2024e) 8B
maya-multimodal/maya (Alam et al., 2024) 8B

Table 12: List of models considered in our evaluation
experiments.

we select 6 languages to represent scripts with high
usage in the world: Russian (Cyrillic), Chinese,
Korean (Hangul), Hindi (Devanagari), Arabic, and
Thai.

We note that our dataset construction can easily
be extended to other languages if needed (as long as
word lists are available) to test, for example, more
scripts (Telugu, Greek, Hebrew, ...) or languages
using the Latin script with heavy use of diacritics
(Vietnamese, Turkish, ...). This makes SMPQA an
ideal starting point for probing OCR capabilities in
diverse languages.

C.6 Baseline Models

We list the evaluated baseline models in Ta-
ble 12. In all baseline evaluation experiments,
we use greedy decoding (temperature=0.0;
do_sample=False;). Further, we do not pre-
process the images in any way and use the provided
code for inference with the respective model.

We use relaxed match accuracy for all tasks even
if Centurio uses exact match for a fairer compari-
son because some models struggled with replying
just ‘yes’/‘no’ and similar issues.

D Additional Experiments

D.1 Analysis Results with Llama 3

We report the results with Llama 3 when repeating
the experiments of §2.2, 2.3, 2.4 in Table 13, 14,
15.

D.2 Non-Uniform Language Allocation

In our experiments in §2, we distribute the non-
English portion of the data uniformly over all lan-
guages. We now consider two stratified distribu-
tions that upsample low-resource languages. A
language with taxonomy i will get allocated the

Train Lang. T1 T2 T3 T4 T5 en

English 16.1 34.7 26.3 24.3 26.2 56.4
T5 19.1 32.5 29.3 27.2 35.5 54.3
L100 31.1 43.0 39.4 35.9 36.4 56.6

Without tasks affected by language fidelity:
English 36.6 37.1 39.0 39.6 40.0 54.6
T5 38.8 34.8 40.1 40.2 40.4 53.5
L100 46.3 44.0 45.0 42.8 42.9 55.3

Table 13: Experimental setup of Table 1 repeated with
Llama 3 and the setups: just English, T5 languages, and
L100 languages.

English % T1 T2 T3 T4 T5 en

10 32.9 43.1 38.7 35.4 35.4 54.2
50 31.1 43.0 39.4 35.9 36.4 56.6
90 26.9 38.7 36.9 34.2 35.8 56.6

Table 14: Experimental setup of Table 2 repeated with
Llama 3 and the setups: 10, 50, and 90% English in-
struct tune data.

following portion of the non-English data:

p(i) =
f(i)P

j2TrainLanguages f(j)
(1)

with f(i) = 1
i for Stratified-1 and f(i) = 1

exp i for
Stratified-2. This effectively doubles the allocated
data for T1 languages, and divides the data for
T5 languages by a factor 3 or 20 (depending on
Stratified-1 or -2).

Results are reported in Table 16. We do ob-
serve a small decrease for T5 and T4 languages,
and also for T3 with Stratified-2, but results for
T1 and T2 languages stay relatively constant de-
spite more data. This suggests that higher-resource
languages can be quite sample efficient even with
what amounts to a few hundred samples (at least
in the instruct tuning phase) but as the stratified
distributions fail to improve lower-resource lan-
guages, there is little reason in practice to not use
the uniform distribution which makes no assump-
tions about the resource-level of a language.

D.3 LLM Comparison
We train several recent 7-9B parameter LLMs on
the instruct tuning data mix used in our analysis
with L100 languages and 50% English. All models
are trained with the same hyperparameters. We
compare Llama 3 (Llama Team, 2024)14, Gemma 2

14While Llama 3.1 has officially better multilingual capa-
bilities, we found Llama 3 to work better.
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English % T1 T2 T3 T4 T5 en

No pretrain 31.1 43.0 39.4 35.9 36.4 56.6
100 33.9 44.7 43.3 39.9 39.9 60.8
1 37.8 47.4 45.0 41.1 40.7 61.4

Table 15: Results of Table 3 repeated with Llama 3 and
the setups: 1 and 100% English pre-train data.

Distribution T1 T2 T3 T4 T5 en

Uniform 18.9 32.6 30.7 28.8 34.4 52.6
Stratified-1 18.6 32.5 30.7 28.0 33.8 53.0
Stratified-2 19.2 32.6 29.5 27.4 33.9 52.0

Table 16: Comparison between our uniform allocation
of data compared to two stratified allocations that up-
sample low-resource languages.

(Team et al., 2024), Aya-Expanse (Aryabumi et al.,
2024; Dang et al., 2024), and Qwen 2.5 (Yang et al.,
2024).

Table 17 shows that Qwen and Aya yield the
overall best results with Aya slightly ahead in T3-
T5 and Qwen (with Llama 3) better in T1 and T2.
Qwen achievs by far the best English results. Qwen
is also notably strong in the exam tasks (M3Exam,
xMMMU) and is the only model with better-than-
guessing results on average for VLOD.

D.4 Qualitative Analysis of the Effect of
Synthetic OCR-Training Data on
Non-Latin Scripts

We performed a qualitative analysis of the predic-
tions in the SMPQA Naming subtask to identify
potential issues with non-Latin scripts when syn-
thetic OCR training data is used. However, the
results were not conclusive. For example, with-
out the OCR training data, some models answered
with colors or values (of the chart elements) but
only in non-Latin scripts, while they tried to give a
proper answer in other languages. We also saw (for
models trained with OCR data) that in some scripts
(e.g., Thai, Hindi), answers were sometimes nearly
correct with only 1 or 2 characters wrong, but e.g.,
in Chinese or Korean, predicted answers were often
completely wrong, i.e., did not just differ by 1 or 2
incorrect radicals.

E Qualitative Examples

We provide some qualitative examples of our
Centurio models. Figure 4, 5, and 6 show re-
sults with (non-English) text in images with En-
glish prompts. Figure 7 and 8 show examples for
multilingual prompts (and responses).

LLM T1 T2 T3 T4 T5 en

Phi-3.5-mini-instruct 18.9 32.6 30.7 28.8 34.4 52.6
gemma-2-9b-it 29.2 40.9 36.4 33.5 35.3 52.8
Meta-Llama-3-8B-Instruct 31.1 43.0 39.4 35.9 36.4 56.6
Qwen2.5-7B-Instruct 30.7 43.7 42.0 38.1 40.5 62.7
aya-expanse-8b 28.3 42.5 43.0 39.8 40.9 59.9

Table 17: Comparison between different LLM back-
bones all trained with the instruct tuning data with L100
languages and 50% English (as in §2.3).

F Full Results

We report the full results of all tasks with all
language-specific results. Avg. refers to the av-
erage without English. Metric are the same as in
§C.

F.1 Analysis Experiments
We report the full results for all models trained for
§2 (and also the LLMs tested for §D.3).

The following holds for all Tables: Models of
the form ‘Phi 3.5 - T5 50’ are to be interpreted as
using the LLM Phi 3.5 with the T5 languages and
50% English with analog interpretation for other
rows.

‘Phi 3.5 - PT 1’ means the model was pretrained
with 1% English and then instruct-tuned with the
L100 50% English mix (see §3).

‘Phi 3.5 - OCR 1’ means the model was pre-
trained with 50% English for the captions and 1%
English for the OCR data and then instruct-tuned
with the L100 50% English mix (see §4).

BIN-MC Table 18

M3Exam Table 19

VGR Table 20

VLOD Table 21

MaRVL Table 22

MaXM Table 23

MTVQA Table 24

xGQA Table 25

XM3600 Table 26. Language fidelity for §2.2 in
Table 27.

XVNLI Table 28

xMMMU Table 29

SMPQA - Ground Table 30

SMPQA - Name Table 31
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en avg. af am cs el es fa fi ha hr hu ja mi nl no pl ro ta te zu

Phi 3.5 - English 64.7 38.1 43.3 29.7 41.5 35.5 55.9 33.6 36.4 24.5 43.3 39.0 49.8 27.8 47.3 44.2 41.4 42.8 30.0 27.1 31.1
Phi 3.5 - T5 50 66.0 39.6 46.0 30.3 43.1 36.3 56.3 33.4 36.5 35.1 45.1 40.7 50.9 30.1 48.4 46.2 41.1 43.1 31.0 29.6 29.1
Phi 3.5 - T5-4 50 65.2 40.6 46.8 29.6 44.6 37.9 59.1 36.7 37.5 29.0 46.4 42.5 52.0 31.1 50.7 47.4 43.0 43.5 31.5 29.0 32.4
Phi 3.5 - T5-3 50 65.5 40.6 50.0 28.8 43.3 37.4 58.6 34.4 38.4 33.0 46.1 41.4 50.9 31.2 49.7 47.0 41.9 43.8 32.5 29.6 32.7
Phi 3.5 - T5-2 50 64.8 39.1 47.2 25.6 41.9 35.8 57.9 34.0 36.0 29.8 44.8 39.5 50.0 30.5 47.7 45.8 41.2 42.4 30.4 29.2 33.9
Phi 3.5 - L100 50 64.7 39.9 48.1 28.2 42.8 36.8 57.2 34.7 37.0 28.2 44.7 40.4 51.2 31.6 47.8 46.4 40.9 43.8 30.6 30.1 37.5
Llama 3 - English 65.4 40.9 44.0 28.2 46.9 42.2 53.0 42.4 38.7 31.1 47.6 46.3 48.6 30.1 48.2 47.4 44.0 44.9 31.6 32.5 29.3
Llama 3 - T5 50 63.9 43.7 50.6 28.7 49.2 46.4 54.6 46.6 41.7 35.4 50.7 50.8 51.9 30.0 51.2 50.9 47.0 48.4 31.1 35.6 30.1
Llama 3 - L100 50 66.2 48.8 55.3 35.1 54.2 51.2 56.2 47.6 46.2 37.2 56.1 54.1 53.3 33.7 54.6 54.3 50.8 51.9 43.6 50.9 40.8
Phi 3.5 - L100 1 63.1 39.7 47.4 26.8 42.9 36.7 56.2 34.3 35.9 33.5 46.8 40.5 49.0 32.7 48.4 46.7 41.3 43.1 29.0 29.9 34.2
Phi 3.5 - L100 10 62.7 39.4 47.1 27.1 43.1 36.8 56.5 34.4 36.5 29.3 43.8 40.9 49.8 29.8 47.2 48.2 41.4 43.6 30.2 28.0 34.4
Phi 3.5 - L100 24 63.3 40.4 48.0 29.0 43.3 37.7 56.5 35.2 36.7 32.4 46.9 40.7 50.7 33.0 49.3 47.2 41.8 44.4 31.9 31.2 31.1
Phi 3.5 - L100 50 64.7 39.9 48.1 28.2 42.8 36.8 57.2 34.7 37.0 28.2 44.7 40.4 51.2 31.6 47.8 46.4 40.9 43.8 30.6 30.1 37.5
Phi 3.5 - L100 75 65.4 39.8 47.1 26.0 42.0 37.1 57.4 34.7 36.9 32.2 44.2 40.4 51.3 31.5 49.4 46.8 41.6 42.9 31.1 28.5 34.2
Phi 3.5 - L100 90 64.7 37.5 43.8 24.1 40.3 35.8 57.1 31.8 35.7 25.0 43.1 39.2 49.1 24.9 47.9 44.4 39.3 42.8 28.7 27.7 31.9
Llama 3 - L100 10 65.9 49.8 58.4 38.1 55.0 50.9 58.5 49.3 45.7 40.7 59.4 56.3 54.1 34.9 53.7 56.8 51.8 51.3 42.6 51.9 36.0
Llama 3 - L100 50 66.2 48.8 55.3 35.1 54.2 51.2 56.2 47.6 46.2 37.2 56.1 54.1 53.3 33.7 54.6 54.3 50.8 51.9 43.6 50.9 40.8
Llama 3 - L100 90 64.4 45.3 52.5 26.8 51.0 47.2 54.8 45.9 44.0 29.5 54.1 50.0 51.2 31.3 52.1 51.8 48.6 49.8 36.5 48.3 34.7
Phi 3.5 - L100 50 64.7 39.9 48.1 28.2 42.8 36.8 57.2 34.7 37.0 28.2 44.7 40.4 51.2 31.6 47.8 46.4 40.9 43.8 30.6 30.1 37.5
Phi 3.5 - PT 100 66.3 38.9 48.4 25.0 42.7 36.0 57.3 33.2 36.5 22.3 44.8 39.8 49.9 31.3 48.6 46.4 41.3 43.2 30.5 30.8 30.6
Phi 3.5 - PT 50 65.7 42.2 50.0 37.8 44.2 40.0 57.8 36.0 36.5 33.0 45.2 41.8 49.3 35.0 49.0 48.1 42.0 44.1 33.7 37.7 40.6
Phi 3.5 - PT 1 65.8 42.8 50.1 35.1 44.8 38.9 56.9 37.9 37.5 41.2 49.1 42.1 49.6 33.4 49.6 48.2 43.6 45.9 34.9 36.1 38.5
Llama 3 - L100 50 66.2 48.8 55.3 35.1 54.2 51.2 56.2 47.6 46.2 37.2 56.1 54.1 53.3 33.7 54.6 54.3 50.8 51.9 43.6 50.9 40.8
Llama 3 - PT 1 69.6 55.5 62.4 44.0 60.4 60.4 62.9 55.3 51.7 40.4 63.0 62.1 59.9 36.6 59.4 62.1 58.0 58.6 50.6 60.6 45.7
Llama 3 - PT 100 68.7 53.6 63.4 36.8 59.6 58.1 62.5 54.1 50.8 37.5 63.1 61.6 60.7 36.9 59.9 61.0 58.0 58.0 46.5 54.0 34.9
Gemma 2 - L100 50 60.5 44.8 49.1 42.5 47.5 45.3 52.0 44.8 41.6 30.9 50.7 47.6 51.4 32.8 49.8 51.1 47.2 47.5 41.8 45.1 32.1
Llama 3 - L100 50 66.2 48.8 55.3 35.1 54.2 51.2 56.2 47.6 46.2 37.2 56.1 54.1 53.3 33.7 54.6 54.3 50.8 51.9 43.6 50.9 40.8
Qwen 2.5 - L100 50 68.2 50.6 62.4 37.1 57.9 50.8 63.4 49.6 42.6 28.7 61.0 48.3 63.1 33.5 58.8 58.2 57.2 55.4 36.8 55.6 40.6
Aya-Expanse - L100 50 67.6 52.0 62.2 31.0 65.3 65.5 63.2 58.9 39.8 33.2 60.8 46.3 65.1 33.1 61.3 55.5 60.2 61.9 43.5 43.2 37.2
Centurio Aya 69.7 54.7 63.6 29.4 66.2 67.8 65.1 60.0 43.3 37.5 63.6 49.8 66.7 37.0 62.4 59.1 62.6 64.0 46.9 50.9 42.6
Centurio Qwen 72.7 56.2 65.3 47.4 62.2 56.7 67.0 53.6 48.8 36.7 65.4 54.1 67.6 39.1 63.7 63.6 60.4 58.5 45.2 63.4 49.5

Table 18: BIN-MC

F.2 Comparison with Centurio

BIN-MC Table 32

M3Exam Table 33

VGR Table 34

VLOD Table 35

MaRVL Table 36

MaXM Table 37

MTVQA Table 38

xGQA Table 39

XM3600 Table 40. Language fidelity Table 41.

XVNLI Table 42

xMMMU Table 43

CVQA Table 44

SMPQA - Ground Table 45

SMPQA - Name Table 46
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en avg. af zh it pt th vi

Phi 3.5 - English 52.9 32.7 32.5 37.0 49.6 39.7 25.4 12.2
Phi 3.5 - T5 50 51.2 35.3 39.9 35.9 46.4 39.7 28.2 21.7
Phi 3.5 - T5-4 50 52.2 34.2 40.5 32.4 49.1 38.6 25.2 19.1
Phi 3.5 - T5-3 50 51.3 35.3 43.6 34.0 47.4 37.3 27.9 21.7
Phi 3.5 - T5-2 50 49.2 33.7 39.3 32.9 45.1 38.4 22.2 24.3
Phi 3.5 - L100 50 50.8 36.0 39.3 36.1 50.9 40.1 26.2 23.5
Llama 3 - English 46.1 32.5 38.6 32.6 41.6 35.0 25.9 20.9
Llama 3 - T5 50 45.0 33.8 40.5 34.3 41.9 34.1 25.7 26.1
Llama 3 - L100 50 46.6 34.2 44.2 31.0 42.4 34.6 27.2 26.1
Phi 3.5 - L100 1 50.3 35.1 39.9 35.4 46.6 39.2 23.9 25.2
Phi 3.5 - L100 10 48.8 33.9 35.0 33.6 48.1 36.1 24.7 26.1
Phi 3.5 - L100 24 50.8 36.5 41.7 37.0 51.6 35.9 27.7 25.2
Phi 3.5 - L100 50 50.8 36.0 39.3 36.1 50.9 40.1 26.2 23.5
Phi 3.5 - L100 75 48.0 36.1 44.2 35.9 47.1 38.4 26.7 24.3
Phi 3.5 - L100 90 51.7 35.1 36.8 38.0 48.1 36.8 26.4 24.3
Llama 3 - L100 10 43.7 33.6 41.7 29.4 44.9 35.3 23.7 27.0
Llama 3 - L100 50 46.6 34.2 44.2 31.0 42.4 34.6 27.2 26.1
Llama 3 - L100 90 43.3 34.6 37.4 32.2 44.9 35.3 30.2 27.8
Phi 3.5 - L100 50 50.8 36.0 39.3 36.1 50.9 40.1 26.2 23.5
Phi 3.5 - PT 100 50.3 35.8 41.7 37.5 49.4 36.6 24.2 25.2
Phi 3.5 - PT 50 49.7 33.1 41.1 36.1 44.4 35.0 21.7 20.0
Phi 3.5 - PT 1 48.4 33.8 41.7 35.9 46.4 34.8 23.2 20.9
Llama 3 - L100 50 46.6 34.2 44.2 31.0 42.4 34.6 27.2 26.1
Llama 3 - PT 1 50.2 37.9 44.8 34.7 48.1 40.6 31.4 27.8
Llama 3 - PT 100 52.9 37.1 50.3 33.8 46.6 37.5 30.2 24.3
Gemma 2 - L100 50 42.5 33.4 43.6 33.6 41.6 30.4 27.7 23.5
Llama 3 - L100 50 46.6 34.2 44.2 31.0 42.4 34.6 27.2 26.1
Qwen 2.5 - L100 50 53.6 39.6 46.0 44.7 50.6 42.4 29.7 24.3
Aya-Expanse - L100 50 49.3 36.5 46.6 36.8 51.9 39.0 26.2 18.3
Centurio Aya 53.0 41.2 52.8 40.3 51.4 47.7 27.4 27.8
Centurio Qwen 61.2 46.9 50.9 64.1 55.6 49.0 31.9 29.6

Table 19: M3Exam
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en avg. am ber bn de fil ha hi ru sw th zu

Phi 3.5 - English 80.8 54.1 45.0 50.8 41.5 71.7 55.8 41.7 62.7 85.0 35.8 68.3 36.2
Phi 3.5 - T5 50 75.8 50.9 49.2 49.2 40.7 72.5 55.0 42.5 54.2 60.8 37.5 60.8 37.9
Phi 3.5 - T5-4 50 83.3 55.1 51.7 43.3 49.2 70.8 65.8 42.5 61.9 70.8 38.3 75.0 36.2
Phi 3.5 - T5-3 50 83.3 56.6 43.3 50.8 50.8 74.2 69.2 42.5 57.6 76.7 43.3 71.7 42.2
Phi 3.5 - T5-2 50 81.7 57.5 45.8 52.5 44.1 73.3 64.2 39.2 59.3 73.3 60.0 60.8 59.5
Phi 3.5 - L100 50 76.7 56.4 46.7 46.7 54.2 71.7 60.0 45.0 57.6 70.8 57.5 65.8 44.0
Llama 3 - English 82.5 56.3 66.7 30.8 49.2 77.5 50.8 48.3 63.6 75.8 46.7 70.0 39.7
Llama 3 - T5 50 77.5 55.9 47.5 49.2 49.2 71.7 63.3 42.5 62.7 73.3 45.8 70.8 38.8
Llama 3 - L100 50 80.0 64.8 58.3 47.5 64.4 75.8 61.7 67.5 64.4 73.3 59.2 67.5 73.3
Phi 3.5 - L100 1 65.0 47.5 42.5 50.0 38.1 65.0 58.3 40.0 45.8 58.3 39.2 42.5 42.2
Phi 3.5 - L100 10 73.3 54.5 43.3 50.0 51.7 67.5 60.0 45.0 51.7 63.3 53.3 63.3 50.0
Phi 3.5 - L100 24 73.3 60.3 54.2 47.5 58.5 72.5 55.0 58.3 60.2 72.5 64.2 59.2 61.2
Phi 3.5 - L100 50 76.7 56.4 46.7 46.7 54.2 71.7 60.0 45.0 57.6 70.8 57.5 65.8 44.0
Phi 3.5 - L100 75 80.0 56.7 51.7 53.3 55.1 70.8 67.5 41.7 63.6 75.8 38.3 69.2 36.2
Phi 3.5 - L100 90 79.2 54.6 43.3 50.0 44.9 80.8 60.0 42.5 55.9 77.5 45.0 55.8 44.8
Llama 3 - L100 10 77.5 65.4 65.0 45.0 63.6 76.7 58.3 70.8 64.4 74.2 63.3 69.2 69.0
Llama 3 - L100 50 80.0 64.8 58.3 47.5 64.4 75.8 61.7 67.5 64.4 73.3 59.2 67.5 73.3
Llama 3 - L100 90 82.5 63.0 45.8 39.2 66.1 80.8 58.3 68.3 61.9 75.0 63.3 75.0 59.5
Phi 3.5 - L100 50 76.7 56.4 46.7 46.7 54.2 71.7 60.0 45.0 57.6 70.8 57.5 65.8 44.0
Phi 3.5 - PT 100 80.8 58.6 44.2 49.2 56.8 78.3 56.7 47.5 65.3 75.0 47.5 73.3 50.9
Phi 3.5 - PT 50 80.0 63.2 58.3 50.0 55.1 78.3 63.3 60.0 61.9 76.7 55.0 75.0 61.2
Phi 3.5 - PT 1 80.0 62.0 55.8 50.0 51.7 81.7 62.5 60.0 66.1 75.0 50.0 66.7 62.1
Llama 3 - L100 50 80.0 64.8 58.3 47.5 64.4 75.8 61.7 67.5 64.4 73.3 59.2 67.5 73.3
Llama 3 - PT 1 87.5 71.2 70.0 50.8 65.3 79.2 63.3 83.3 68.6 82.5 66.7 85.8 68.1
Llama 3 - PT 100 85.0 68.8 65.8 49.2 67.8 80.8 61.7 70.0 66.9 85.0 70.0 74.2 65.5
Gemma 2 - L100 50 77.5 61.8 64.2 52.5 48.3 70.8 51.7 64.2 58.5 71.7 54.2 70.8 73.3
Llama 3 - L100 50 80.0 64.8 58.3 47.5 64.4 75.8 61.7 67.5 64.4 73.3 59.2 67.5 73.3
Qwen 2.5 - L100 50 91.7 71.2 76.7 50.0 69.5 81.7 77.5 57.5 72.9 83.3 71.7 80.8 62.1
Aya-Expanse - L100 50 92.5 69.9 52.5 54.2 55.9 80.8 85.0 72.5 79.7 83.3 63.3 78.3 63.8
Centurio Aya 82.5 66.8 71.7 54.2 59.3 73.3 59.2 65.0 71.2 75.8 67.5 72.5 65.5
Centurio Qwen 87.5 73.1 77.5 49.2 62.7 80.8 78.3 76.7 72.9 85.0 70.0 81.7 69.0

Table 20: VGR

en avg. am ber bn de fil ha hi ru sw th zu

Phi 3.5 - English 16.7 21.3 20.8 20.8 19.2 16.7 25.8 28.3 17.0 12.5 25.0 26.7 22.0
Phi 3.5 - T5 50 23.3 20.0 15.0 18.3 20.8 21.7 16.7 20.0 23.2 27.5 22.3 15.8 18.6
Phi 3.5 - T5-4 50 17.5 18.2 19.2 20.8 13.3 20.8 17.5 16.7 21.4 26.7 16.1 10.0 17.8
Phi 3.5 - T5-3 50 25.8 19.8 16.7 17.5 21.7 21.7 20.0 21.7 23.2 20.8 18.8 16.7 18.6
Phi 3.5 - T5-2 50 21.7 20.5 21.7 18.3 16.7 22.5 27.5 27.5 17.9 21.7 17.0 13.3 21.2
Phi 3.5 - L100 50 18.3 19.5 16.7 20.8 19.2 25.8 20.0 16.7 25.0 20.8 13.4 17.5 18.6
Llama 3 - English 12.5 20.8 18.3 21.7 20.0 10.8 24.2 29.2 15.2 12.5 28.6 29.2 19.5
Llama 3 - T5 50 20.8 20.1 18.3 19.2 17.5 16.7 25.0 21.7 24.1 15.0 19.6 23.3 20.3
Llama 3 - L100 50 12.5 20.6 19.2 20.8 20.0 10.8 24.2 30.0 15.2 10.8 28.6 27.5 19.5
Phi 3.5 - L100 1 24.2 19.3 15.0 21.7 17.5 20.0 29.2 22.5 17.9 14.2 16.1 22.5 16.1
Phi 3.5 - L100 10 23.3 19.2 23.3 15.0 16.7 21.7 20.8 20.8 20.5 24.2 10.7 15.8 22.0
Phi 3.5 - L100 24 25.0 18.3 20.8 18.3 16.7 20.8 16.7 20.8 17.9 21.7 14.3 16.7 16.9
Phi 3.5 - L100 50 18.3 19.5 16.7 20.8 19.2 25.8 20.0 16.7 25.0 20.8 13.4 17.5 18.6
Phi 3.5 - L100 75 16.7 18.0 15.0 20.0 19.2 19.2 16.7 23.3 17.0 13.3 17.9 15.8 20.3
Phi 3.5 - L100 90 22.5 19.0 20.0 16.7 15.8 20.0 16.7 23.3 21.4 23.3 16.1 15.8 19.5
Llama 3 - L100 10 13.3 20.4 18.3 21.7 19.2 10.8 23.3 26.7 17.9 10.0 28.6 28.3 19.5
Llama 3 - L100 50 12.5 20.6 19.2 20.8 20.0 10.8 24.2 30.0 15.2 10.8 28.6 27.5 19.5
Llama 3 - L100 90 12.5 19.9 18.3 21.7 15.0 10.8 22.5 28.3 15.2 10.8 28.6 28.3 19.5
Phi 3.5 - L100 50 18.3 19.5 16.7 20.8 19.2 25.8 20.0 16.7 25.0 20.8 13.4 17.5 18.6
Phi 3.5 - PT 100 23.3 20.0 16.7 16.7 24.2 20.0 25.0 21.7 19.6 15.0 20.5 20.0 20.3
Phi 3.5 - PT 50 20.0 18.6 18.3 17.5 15.0 15.8 14.2 21.7 17.9 23.3 20.5 20.8 19.5
Phi 3.5 - PT 1 25.0 19.4 21.7 22.5 19.2 22.5 16.7 15.8 20.5 21.7 16.1 15.0 22.0
Llama 3 - L100 50 12.5 20.6 19.2 20.8 20.0 10.8 24.2 30.0 15.2 10.8 28.6 27.5 19.5
Llama 3 - PT 1 19.2 20.5 15.8 19.2 22.5 15.0 23.3 23.3 17.9 13.3 25.9 28.3 21.2
Llama 3 - PT 100 13.3 20.8 18.3 21.7 20.0 12.5 23.3 29.2 17.0 10.8 28.6 28.3 19.5
Gemma 2 - L100 50 14.2 21.1 18.3 22.5 20.8 10.8 25.0 28.3 16.1 11.7 27.7 30.0 20.3
Llama 3 - L100 50 12.5 20.6 19.2 20.8 20.0 10.8 24.2 30.0 15.2 10.8 28.6 27.5 19.5
Qwen 2.5 - L100 50 26.7 27.3 25.0 21.7 26.7 27.5 27.5 25.0 29.5 25.0 29.5 40.0 22.9
Aya-Expanse - L100 50 12.5 20.7 18.3 21.7 20.0 10.8 24.2 29.2 15.2 10.8 28.6 29.2 19.5
Centurio Aya 12.5 20.7 18.3 21.7 20.0 11.7 24.2 29.2 15.2 10.8 28.6 29.2 19.5
Centurio Qwen 28.3 27.0 18.3 20.0 33.3 32.5 29.2 22.5 25.0 22.5 30.4 30.0 33.1

Table 21: VLOD
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en avg. id sw ta tr zh

Phi 3.5 - English 82.1 61.4 65.6 50.8 53.3 63.8 73.2
Phi 3.5 - T5 50 81.5 61.8 66.4 53.4 53.7 61.6 73.8
Phi 3.5 - T5-4 50 81.2 64.3 68.7 52.3 54.3 70.2 76.2
Phi 3.5 - T5-3 50 81.5 65.9 70.8 56.4 56.7 68.9 76.7
Phi 3.5 - T5-2 50 79.7 66.4 70.2 62.2 57.5 66.7 75.4
Phi 3.5 - L100 50 79.6 64.4 69.0 59.0 53.6 67.5 73.0
Llama 3 - English 85.2 65.0 68.8 52.5 54.3 69.7 79.8
Llama 3 - T5 50 84.5 67.1 73.8 55.7 53.6 72.7 79.6
Llama 3 - L100 50 83.7 74.2 75.3 71.4 68.4 79.8 76.0
Phi 3.5 - L100 1 71.9 61.4 65.1 56.1 54.3 65.2 66.1
Phi 3.5 - L100 10 74.1 63.4 66.8 58.1 57.2 65.1 70.0
Phi 3.5 - L100 24 76.0 61.6 63.4 57.6 56.9 64.0 66.3
Phi 3.5 - L100 50 79.6 64.4 69.0 59.0 53.6 67.5 73.0
Phi 3.5 - L100 75 81.7 64.7 71.3 54.4 56.1 64.8 77.0
Phi 3.5 - L100 90 83.1 64.3 70.7 56.3 53.8 62.8 77.8
Llama 3 - L100 10 80.0 72.9 71.9 70.8 71.7 75.7 74.2
Llama 3 - L100 50 83.7 74.2 75.3 71.4 68.4 79.8 76.0
Llama 3 - L100 90 85.1 71.1 73.4 63.7 65.1 75.7 77.6
Phi 3.5 - L100 50 79.6 64.4 69.0 59.0 53.6 67.5 73.0
Phi 3.5 - PT 100 82.0 65.6 68.6 59.4 57.9 67.6 74.5
Phi 3.5 - PT 50 82.5 69.9 75.2 64.0 64.1 71.1 74.9
Phi 3.5 - PT 1 81.9 67.9 74.0 64.0 60.2 68.0 73.4
Llama 3 - L100 50 83.7 74.2 75.3 71.4 68.4 79.8 76.0
Llama 3 - PT 1 87.5 80.4 82.5 75.5 77.1 84.5 82.3
Llama 3 - PT 100 86.5 78.9 81.3 73.0 75.1 83.4 81.5
Gemma 2 - L100 50 82.5 73.0 72.6 71.4 68.3 76.4 76.2
Llama 3 - L100 50 83.7 74.2 75.3 71.4 68.4 79.8 76.0
Qwen 2.5 - L100 50 89.6 79.4 84.8 73.9 65.2 86.6 86.6
Aya-Expanse - L100 50 87.0 80.2 83.9 75.6 71.7 86.9 83.0
Centurio Aya 85.0 77.9 79.5 70.9 73.4 83.4 82.4
Centurio Qwen 89.6 81.7 85.0 76.8 76.0 84.2 86.7

Table 22: MaRVL
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en avg. fr hi he ro th zh

Phi 3.5 - English 53.0 9.2 14.3 11.9 7.9 7.2 7.0 7.2
Phi 3.5 - T5 50 51.3 25.6 41.0 30.6 17.5 15.6 27.5 21.5
Phi 3.5 - T5-4 50 51.0 33.1 45.4 50.7 27.0 23.7 32.5 19.5
Phi 3.5 - T5-3 50 53.7 36.7 41.0 45.9 33.0 36.6 40.4 23.5
Phi 3.5 - T5-2 50 53.4 35.9 42.3 48.0 33.3 35.1 32.8 23.8
Phi 3.5 - L100 50 54.4 36.6 43.0 48.0 30.8 35.1 39.1 23.5
Llama 3 - English 55.4 7.7 9.2 10.9 6.7 4.5 8.3 6.8
Llama 3 - T5 50 41.3 20.2 45.1 12.6 2.9 24.3 14.6 21.8
Llama 3 - L100 50 52.7 42.3 42.3 54.4 40.6 40.5 52.6 23.1
Phi 3.5 - L100 1 48.0 33.8 39.9 45.2 32.4 32.4 32.8 19.9
Phi 3.5 - L100 10 52.0 35.4 44.7 45.6 34.6 36.0 29.5 22.1
Phi 3.5 - L100 24 50.7 35.1 44.0 44.6 29.8 33.0 38.1 21.2
Phi 3.5 - L100 50 54.4 36.6 43.0 48.0 30.8 35.1 39.1 23.5
Phi 3.5 - L100 75 51.0 32.5 42.0 36.4 29.8 33.3 31.8 21.8
Phi 3.5 - L100 90 54.7 29.7 41.6 28.2 27.3 28.5 30.5 21.8
Llama 3 - L100 10 49.0 41.9 37.9 53.4 45.7 41.4 51.0 21.8
Llama 3 - L100 50 52.7 42.3 42.3 54.4 40.6 40.5 52.6 23.1
Llama 3 - L100 90 52.7 40.6 43.3 52.7 36.2 40.2 49.0 22.1
Phi 3.5 - L100 50 54.4 36.6 43.0 48.0 30.8 35.1 39.1 23.5
Phi 3.5 - PT 100 54.0 36.2 44.0 48.6 32.4 33.9 36.8 21.5
Phi 3.5 - PT 50 53.4 39.0 45.7 49.3 39.4 36.6 40.7 22.1
Phi 3.5 - PT 1 55.7 39.7 44.7 52.0 41.0 40.8 40.1 19.9
Llama 3 - L100 50 52.7 42.3 42.3 54.4 40.6 40.5 52.6 23.1
Llama 3 - PT 1 55.0 48.5 47.4 57.1 56.2 47.4 57.3 25.7
Llama 3 - PT 100 58.1 47.4 44.7 54.8 54.0 47.1 57.3 26.4
Gemma 2 - L100 50 51.7 41.5 39.6 52.4 44.1 39.3 48.7 24.8
Llama 3 - L100 50 52.7 42.3 42.3 54.4 40.6 40.5 52.6 23.1
Qwen 2.5 - L100 50 58.7 45.8 46.4 51.4 50.2 41.7 57.9 27.0
Aya-Expanse - L100 50 53.4 47.2 46.4 58.8 59.4 49.9 41.4 27.4
Centurio Aya 55.7 49.3 45.1 62.9 58.7 51.1 46.7 31.6
Centurio Qwen 60.1 47.7 47.1 56.8 45.1 47.7 57.0 32.2

Table 23: MaXM
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avg. ar de fr it ja ko ru th vi

Phi 3.5 - English 3.2 0.9 6.5 9.3 8.1 0.8 0.7 1.6 0.0 1.1
Phi 3.5 - T5 50 5.7 1.7 12.0 15.9 10.1 2.4 3.8 2.6 0.9 1.8
Phi 3.5 - T5-4 50 5.9 2.7 14.0 15.1 9.6 3.5 3.8 1.9 0.9 1.6
Phi 3.5 - T5-3 50 5.8 2.0 13.5 14.6 9.4 3.9 3.8 2.4 0.9 2.0
Phi 3.5 - T5-2 50 6.6 5.3 15.9 15.1 9.4 4.1 3.8 2.5 0.4 2.7
Phi 3.5 - L100 50 6.3 2.8 15.8 16.8 8.9 3.9 2.7 2.8 0.4 2.9
Llama 3 - English 3.2 0.3 6.9 8.0 8.7 0.7 0.5 0.7 0.4 2.7
Llama 3 - T5 50 5.6 2.0 14.2 15.0 9.1 1.9 1.4 2.6 1.3 2.8
Llama 3 - L100 50 6.0 2.1 11.9 15.8 7.2 2.1 3.2 2.4 4.8 4.1
Phi 3.5 - L100 1 4.7 2.0 12.0 9.4 7.5 3.4 3.4 1.9 0.9 2.3
Phi 3.5 - L100 10 5.7 3.0 12.1 14.2 8.6 4.6 4.1 2.1 0.9 1.5
Phi 3.5 - L100 24 6.2 3.6 14.0 15.8 8.7 3.1 3.8 3.3 0.9 2.5
Phi 3.5 - L100 50 6.3 2.8 15.8 16.8 8.9 3.9 2.7 2.8 0.4 2.9
Phi 3.5 - L100 75 6.3 2.6 13.8 18.3 8.7 4.3 2.9 2.8 0.9 2.8
Phi 3.5 - L100 90 7.0 2.6 14.7 19.3 10.4 3.6 4.1 3.2 3.5 1.5
Llama 3 - L100 10 5.3 1.6 11.3 13.8 7.5 2.9 3.4 2.6 0.9 3.5
Llama 3 - L100 50 6.0 2.1 11.9 15.8 7.2 2.1 3.2 2.4 4.8 4.1
Llama 3 - L100 90 6.5 2.1 14.0 17.8 9.7 2.5 3.8 2.8 2.2 3.5
Phi 3.5 - L100 50 6.3 2.8 15.8 16.8 8.9 3.9 2.7 2.8 0.4 2.9
Phi 3.5 - PT 100 6.9 3.7 16.0 15.9 11.3 3.4 3.2 2.9 2.2 3.5
Phi 3.5 - PT 50 6.1 1.8 14.8 15.8 10.5 3.5 2.9 2.6 0.9 2.1
Phi 3.5 - PT 1 6.2 1.6 14.9 15.9 11.1 3.7 3.0 1.7 0.9 2.7
Llama 3 - L100 50 6.0 2.1 11.9 15.8 7.2 2.1 3.2 2.4 4.8 4.1
Llama 3 - PT 1 6.9 2.4 17.1 16.6 9.1 3.4 4.5 2.5 1.7 5.2
Llama 3 - PT 100 8.3 2.6 18.7 19.6 11.4 4.0 4.3 4.0 4.8 5.3
Gemma 2 - L100 50 4.3 1.7 11.1 8.1 7.1 3.0 2.3 2.1 1.7 1.7
Llama 3 - L100 50 6.0 2.1 11.9 15.8 7.2 2.1 3.2 2.4 4.8 4.1
Qwen 2.5 - L100 50 6.4 5.5 12.0 13.0 10.3 3.0 3.2 2.9 2.2 5.2
Aya-Expanse - L100 50 6.2 3.7 13.2 13.9 9.5 3.0 3.4 3.4 1.7 3.6
Centurio Aya 11.1 6.7 19.9 22.5 16.7 5.0 9.0 5.2 5.2 9.7
Centurio Qwen 11.9 4.6 22.7 26.5 18.6 5.9 9.9 5.0 5.2 8.9

Table 24: MTVQA
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en avg. bn de id ko pt ru zh

Phi 3.5 - English 59.7 37.2 4.9 47.8 33.2 38.2 47.1 42.1 47.2
Phi 3.5 - T5 50 54.1 34.1 2.6 44.6 34.3 36.3 43.8 36.4 41.0
Phi 3.5 - T5-4 50 52.0 37.4 5.7 45.6 38.7 40.4 45.2 43.4 42.7
Phi 3.5 - T5-3 50 54.8 40.6 22.7 46.5 42.1 39.8 46.0 43.6 43.6
Phi 3.5 - T5-2 50 57.8 45.3 27.4 50.3 46.0 46.4 48.6 49.5 48.9
Phi 3.5 - L100 50 56.6 45.1 27.0 51.4 44.8 44.9 50.8 48.2 48.7
Llama 3 - English 61.9 39.2 13.2 49.0 35.6 39.1 44.9 44.1 48.4
Llama 3 - T5 50 49.3 33.8 5.9 43.8 38.0 32.4 41.7 37.3 37.4
Llama 3 - L100 50 60.6 51.0 46.7 54.1 51.2 49.4 53.4 51.2 51.3
Phi 3.5 - L100 1 48.4 40.3 28.2 43.9 41.1 40.6 43.0 42.8 42.8
Phi 3.5 - L100 10 51.8 42.2 27.6 46.3 43.0 42.2 45.7 44.8 45.6
Phi 3.5 - L100 24 53.8 42.9 29.1 47.6 43.4 42.2 46.6 45.9 45.4
Phi 3.5 - L100 50 56.6 45.1 27.0 51.4 44.8 44.9 50.8 48.2 48.7
Phi 3.5 - L100 75 58.6 45.8 26.4 52.4 44.4 45.4 51.9 49.9 50.0
Phi 3.5 - L100 90 58.5 42.1 14.2 53.0 39.8 43.3 51.4 45.7 47.7
Llama 3 - L100 10 54.9 45.0 40.5 46.4 45.7 42.5 46.5 46.2 47.4
Llama 3 - L100 50 60.6 51.0 46.7 54.1 51.2 49.4 53.4 51.2 51.3
Llama 3 - L100 90 61.9 51.4 42.5 56.2 51.7 50.1 54.6 52.5 52.1
Phi 3.5 - L100 50 56.6 45.1 27.0 51.4 44.8 44.9 50.8 48.2 48.7
Phi 3.5 - PT 100 58.0 46.1 29.5 52.8 46.1 44.5 51.7 49.5 48.3
Phi 3.5 - PT 50 58.3 47.6 35.4 52.8 48.7 45.5 52.5 49.6 48.6
Phi 3.5 - PT 1 58.3 47.0 37.6 52.6 46.8 44.1 51.5 48.1 48.1
Llama 3 - L100 50 60.6 51.0 46.7 54.1 51.2 49.4 53.4 51.2 51.3
Llama 3 - PT 1 61.1 55.1 52.8 56.6 56.0 53.9 56.0 55.4 55.0
Llama 3 - PT 100 61.6 53.0 50.4 54.9 53.6 52.4 53.0 53.1 53.4
Gemma 2 - L100 50 56.5 47.5 43.9 51.6 47.6 44.2 50.1 47.5 47.5
Llama 3 - L100 50 60.6 51.0 46.7 54.1 51.2 49.4 53.4 51.2 51.3
Qwen 2.5 - L100 50 60.3 51.9 44.2 54.8 53.1 51.3 54.3 53.2 52.8
Aya-Expanse - L100 50 60.5 52.5 45.2 54.6 53.8 51.7 54.7 53.9 53.4
Centurio Aya 59.1 53.2 43.4 56.9 54.4 53.6 56.2 54.0 54.3
Centurio Qwen 60.6 54.8 49.9 57.0 54.9 53.5 57.2 55.8 55.6

Table 25: xGQA
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en avg. ar bn cs da de el es fa fi fil fr he hi hr hu id

Phi 3.5 - English 33.6 1.2 0.0 0.0 0.7 1.1 1.7 0.0 10.5 0.0 0.4 1.6 4.4 0.0 0.0 0.5 0.6 1.5
Phi 3.5 - T5 50 33.0 9.5 7.8 0.6 3.9 8.2 24.7 0.6 34.4 0.4 1.8 1.9 39.1 3.4 3.5 2.6 4.0 7.9
Phi 3.5 - T5-4 50 25.2 11.8 6.9 1.0 13.8 10.8 24.4 1.4 27.3 8.6 7.0 3.6 31.3 3.5 9.7 9.2 10.5 8.4
Phi 3.5 - T5-3 50 32.7 13.6 6.5 5.9 13.8 18.2 25.4 7.0 31.0 7.1 5.7 11.9 30.7 7.6 7.2 9.4 8.2 22.9
Phi 3.5 - T5-2 50 29.9 11.1 4.5 5.5 10.7 12.4 20.4 6.4 20.4 5.7 5.5 10.1 24.8 7.4 6.7 8.0 7.1 17.5
Phi 3.5 - L100 50 31.0 13.2 5.6 3.3 10.9 18.0 26.4 4.5 30.9 4.1 4.4 11.1 38.5 6.7 6.3 7.3 7.8 22.4
Llama 3 - English 75.6 1.1 0.1 0.0 1.3 2.3 1.6 0.1 2.1 0.1 0.8 2.9 3.4 0.0 0.0 0.7 1.3 2.1
Llama 3 - T5 50 76.1 12.6 27.9 0.5 1.6 20.7 29.2 0.6 61.6 0.4 1.1 2.9 58.2 0.0 0.4 0.9 1.6 19.6
Llama 3 - L100 50 72.6 28.5 25.6 14.0 30.5 38.1 27.6 23.3 56.0 24.3 13.8 29.0 50.9 15.5 22.5 19.7 18.0 39.9
Phi 3.5 - L100 1 43.3 13.3 5.2 4.3 11.1 15.3 24.5 5.3 25.4 5.4 6.1 13.3 37.1 7.0 7.2 7.9 6.7 22.6
Phi 3.5 - L100 10 38.9 12.7 4.7 4.1 11.4 12.5 23.6 5.9 28.1 4.8 5.3 14.2 33.3 8.5 8.6 8.2 6.3 22.6
Phi 3.5 - L100 24 31.5 13.2 5.2 5.0 11.6 15.1 22.6 6.9 30.9 4.9 6.1 12.0 39.2 8.2 7.7 8.2 5.1 22.4
Phi 3.5 - L100 50 31.0 13.2 5.6 3.3 10.9 18.0 26.4 4.5 30.9 4.1 4.4 11.1 38.5 6.7 6.3 7.3 7.8 22.4
Phi 3.5 - L100 75 36.5 12.0 4.4 2.5 9.1 13.6 25.0 3.0 25.7 3.4 3.8 7.1 33.6 6.3 5.2 5.9 7.0 20.2
Phi 3.5 - L100 90 34.2 9.4 4.0 1.9 6.7 9.2 21.8 2.8 23.4 2.0 3.8 4.1 26.2 4.4 3.7 4.7 4.9 12.5
Llama 3 - L100 10 74.8 28.9 23.0 11.9 25.8 43.6 26.0 24.6 53.7 24.9 16.0 30.2 52.6 17.1 20.1 20.5 18.5 43.3
Llama 3 - L100 50 72.6 28.5 25.6 14.0 30.5 38.1 27.6 23.3 56.0 24.3 13.8 29.0 50.9 15.5 22.5 19.7 18.0 39.9
Llama 3 - L100 90 73.6 23.0 18.2 7.8 24.1 36.7 23.0 19.5 54.2 17.6 10.5 24.0 51.9 9.7 20.2 15.4 15.3 33.0
Phi 3.5 - L100 50 31.0 13.2 5.6 3.3 10.9 18.0 26.4 4.5 30.9 4.1 4.4 11.1 38.5 6.7 6.3 7.3 7.8 22.4
Phi 3.5 - PT 100 35.9 13.5 5.3 5.0 13.9 15.7 26.5 5.9 29.6 5.4 4.1 9.1 33.5 8.3 6.9 8.8 7.1 22.3
Phi 3.5 - PT 50 37.1 17.3 7.7 9.0 16.5 21.2 27.8 9.3 38.0 8.2 7.0 15.2 42.4 10.9 10.4 11.8 9.7 28.5
Phi 3.5 - PT 1 33.1 17.4 6.3 9.3 17.2 22.1 26.9 8.2 37.5 9.1 7.2 13.9 40.6 12.2 9.1 11.5 11.1 28.9
Llama 3 - L100 50 72.6 28.5 25.6 14.0 30.5 38.1 27.6 23.3 56.0 24.3 13.8 29.0 50.9 15.5 22.5 19.7 18.0 39.9
Llama 3 - PT 1 80.8 35.3 30.6 15.4 35.5 51.3 34.0 28.2 65.4 32.3 17.9 36.3 62.5 24.6 27.4 26.9 24.7 49.2
Llama 3 - PT 100 77.9 31.8 26.1 14.4 35.4 43.5 33.4 27.0 60.7 23.0 14.6 31.7 58.9 18.2 24.6 22.2 22.6 45.2
Gemma 2 - L100 50 66.6 27.5 24.5 17.9 28.6 35.1 26.0 18.2 54.7 29.4 13.7 26.8 54.3 22.8 21.6 17.7 20.1 43.8
Qwen 2.5 - L100 50 74.8 27.8 28.6 13.9 26.1 35.4 29.6 11.6 58.7 17.1 10.2 26.0 55.6 22.2 16.3 19.8 11.7 40.3
Aya-Expanse - L100 50 75.6 33.4 40.4 12.2 39.4 37.7 32.7 31.9 69.2 41.6 8.4 26.2 67.6 42.5 24.5 19.1 12.5 50.3
Centurio Aya 78.4 39.2 40.4 18.5 33.9 40.0 38.6 35.3 69.7 55.8 11.0 34.0 71.3 47.1 26.3 24.9 19.6 58.3
Centurio Qwen 79.1 34.4 36.6 17.1 29.7 43.1 32.0 19.2 69.2 31.2 12.0 33.6 67.6 27.6 20.3 22.0 18.7 50.4

it ja ko mi nl no pl pt quz ro ru sv sw te th tr uk vi zh

Phi 3.5 - English 9.2 0.1 0.0 0.0 1.6 1.5 0.7 1.9 0.1 0.7 0.4 1.1 0.6 0.0 0.2 0.3 0.1 0.6 0.0
Phi 3.5 - T5 50 28.5 27.6 1.6 0.1 20.4 8.8 4.8 30.2 0.7 5.4 17.5 11.8 1.3 0.0 4.0 3.2 5.7 2.6 12.8
Phi 3.5 - T5-4 50 24.9 27.9 3.1 2.1 21.7 12.0 14.1 24.0 0.5 6.0 22.5 24.1 2.1 0.0 5.8 9.4 4.6 18.8 10.6
Phi 3.5 - T5-3 50 26.0 27.3 3.0 1.8 28.5 14.1 13.6 22.1 0.4 11.0 16.7 23.8 1.5 0.0 12.9 7.6 10.0 15.9 20.2
Phi 3.5 - T5-2 50 18.5 27.0 2.5 2.0 18.9 11.2 10.0 18.1 0.4 7.6 21.1 17.8 7.0 0.0 12.6 7.9 10.3 12.7 9.5
Phi 3.5 - L100 50 30.6 23.7 2.5 2.6 24.2 18.8 10.8 29.0 1.1 8.1 18.6 17.8 8.1 1.5 10.2 7.2 8.3 14.7 15.6
Llama 3 - English 1.5 0.2 0.0 0.2 3.0 1.8 1.1 2.6 0.8 1.2 0.7 2.0 0.8 0.0 0.4 0.5 0.3 0.5 0.3
Llama 3 - T5 50 26.8 35.8 0.1 0.2 34.9 15.7 11.3 12.5 1.3 5.4 12.8 18.3 0.6 0.0 4.4 6.1 0.2 10.1 17.2
Llama 3 - L100 50 44.1 33.8 13.4 24.9 50.1 41.5 26.9 45.1 1.3 22.6 23.5 42.7 28.9 11.0 27.7 21.8 21.9 49.7 16.9
Phi 3.5 - L100 1 28.1 25.4 2.1 4.0 22.3 17.7 12.0 24.9 1.4 10.7 21.4 17.8 11.1 1.4 12.6 7.6 8.2 17.2 16.9
Phi 3.5 - L100 10 23.3 25.2 2.4 3.0 23.0 15.6 12.0 25.8 0.7 8.2 20.0 15.9 9.9 1.8 11.8 6.7 11.9 14.7 11.8
Phi 3.5 - L100 24 24.7 25.8 3.3 4.8 24.8 18.5 13.6 17.7 0.7 9.1 17.8 17.5 9.3 2.3 13.3 6.5 9.6 15.4 14.4
Phi 3.5 - L100 50 30.6 23.7 2.5 2.6 24.2 18.8 10.8 29.0 1.1 8.1 18.6 17.8 8.1 1.5 10.2 7.2 8.3 14.7 15.6
Phi 3.5 - L100 75 29.7 24.8 2.0 3.3 23.0 17.1 9.8 27.8 0.8 6.2 19.6 15.2 5.0 1.4 10.9 5.7 8.9 13.0 18.5
Phi 3.5 - L100 90 21.3 21.3 2.0 1.2 12.7 11.8 7.3 22.5 0.8 5.9 16.3 16.1 5.6 0.6 7.5 3.9 7.8 8.8 20.3
Llama 3 - L100 10 40.3 35.0 13.9 29.4 53.4 41.9 25.6 44.8 1.6 19.8 25.3 44.0 30.3 13.8 28.8 22.1 21.1 47.4 20.2
Llama 3 - L100 50 44.1 33.8 13.4 24.9 50.1 41.5 26.9 45.1 1.3 22.6 23.5 42.7 28.9 11.0 27.7 21.8 21.9 49.7 16.9
Llama 3 - L100 90 38.0 25.6 10.4 17.5 46.1 33.1 19.8 41.2 0.2 17.1 20.6 38.1 14.6 5.8 23.2 16.3 0.3 43.9 13.3
Phi 3.5 - L100 50 30.6 23.7 2.5 2.6 24.2 18.8 10.8 29.0 1.1 8.1 18.6 17.8 8.1 1.5 10.2 7.2 8.3 14.7 15.6
Phi 3.5 - PT 100 30.3 25.7 2.7 3.9 21.6 20.1 12.0 21.8 0.9 9.5 19.5 18.9 8.5 1.4 13.6 7.5 8.5 14.9 23.9
Phi 3.5 - PT 50 33.9 26.2 3.2 7.2 30.0 24.7 16.1 29.1 2.5 14.7 21.3 24.1 15.3 4.3 18.6 8.0 9.8 19.4 22.3
Phi 3.5 - PT 1 34.8 30.5 2.9 7.9 27.7 26.4 14.9 31.2 2.3 14.4 22.4 23.8 14.7 4.4 18.4 10.8 10.5 18.8 21.1
Llama 3 - L100 50 44.1 33.8 13.4 24.9 50.1 41.5 26.9 45.1 1.3 22.6 23.5 42.7 28.9 11.0 27.7 21.8 21.9 49.7 16.9
Llama 3 - PT 1 51.6 38.7 15.2 35.9 59.1 49.2 32.5 51.1 2.9 30.7 32.3 51.8 38.0 17.4 36.2 29.3 26.4 58.1 16.5
Llama 3 - PT 100 49.2 35.9 14.0 26.5 55.3 45.8 32.3 51.6 0.9 25.2 30.7 47.7 29.3 12.4 32.0 27.0 25.2 56.0 15.2
Gemma 2 - L100 50 39.7 36.3 11.5 21.5 46.2 38.7 25.1 45.3 1.8 21.7 24.0 37.9 27.2 13.1 28.5 19.0 0.2 50.1 18.5
Qwen 2.5 - L100 50 43.8 39.0 13.4 21.8 48.9 36.6 25.0 52.3 0.9 16.9 33.6 36.7 18.9 8.0 38.1 17.4 18.1 59.5 19.9
Aya-Expanse - L100 50 53.6 39.5 18.4 20.1 59.6 36.3 35.5 50.6 0.7 31.3 31.9 34.9 21.3 9.2 19.0 29.8 27.7 68.2 26.1
Centurio Aya 60.4 49.1 21.3 33.7 61.7 42.5 37.9 59.3 1.7 34.6 38.0 45.9 29.9 15.1 26.0 30.6 30.6 72.7 56.9
Centurio Qwen 53.7 43.5 13.4 34.9 56.2 41.4 30.0 59.9 2.1 23.4 39.2 42.7 30.2 13.5 42.3 23.3 20.3 69.4 33.8

Table 26: XM3600

ar bn cs da de el en es fa fi fil fr he hi hr hu id

Phi 3.5 - L100 93.8 99.0 99.0 91.8 100.0 88.3 100.0 100.0 98.8 100.0 96.7 100.0 99.6 97.7 76.2 100.0 95.3
Phi 3.5 - T5-2 94.7 100.0 99.4 98.4 100.0 99.8 100.0 100.0 100.0 100.0 99.6 100.0 100.0 98.8 79.1 100.0 88.5
Phi 3.5 - T5-3 92.2 99.8 99.2 97.9 100.0 99.8 100.0 100.0 100.0 100.0 99.6 100.0 99.8 99.0 77.9 100.0 91.8
Phi 3.5 - T5-4 96.5 96.1 99.2 78.3 100.0 98.4 100.0 100.0 100.0 100.0 99.6 100.0 99.4 98.6 89.8 100.0 98.0
Phi 3.5 - T5 98.2 97.3 78.7 87.5 100.0 50.2 100.0 99.8 2.3 76.4 49.4 100.0 96.7 99.2 73.6 99.2 95.1
Phi 3.5 - English 0.0 0.0 0.0 0.2 0.2 0.0 100.0 31.4 0.0 0.8 0.0 5.3 0.0 0.0 0.2 0.0 0.6

it ja ko mi nl no pl pt quz ro ru sv sw te th tr uk vi zh

Phi 3.5 - L100 100.0 99.2 99.8 100.0 100.0 98.4 100.0 97.7 0.2 100.0 99.8 98.6 98.2 93.2 99.8 100.0 92.6 100.0 96.5
Phi 3.5 - T5-2 100.0 99.8 100.0 97.3 100.0 85.7 100.0 99.2 27.5 100.0 99.8 99.6 99.0 63.5 100.0 100.0 96.9 100.0 93.9
Phi 3.5 - T5-3 100.0 100.0 95.9 100.0 75.2 100.0 52.1 37.5 100.0 100.0 99.2 84.4 82.8 100.0 100.0 96.5 100.0 95.3
Phi 3.5 - T5-4 100.0 100.0 100.0 95.7 100.0 71.5 100.0 100.0 12.7 100.0 100.0 100.0 84.6 67.2 99.0 100.0 30.9 100.0 94.1
Phi 3.5 - T5 100.0 100.0 99.8 1.6 99.8 92.0 96.5 100.0 0.2 96.3 100.0 98.6 36.1 62.5 90.2 94.9 91.6 39.8 96.7
Phi 3.5 - English 31.2 0.0 0.0 0.0 0.2 1.0 0.0 2.5 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.6 0.0 0.0 0.0

Table 27: XM3600 language fidelity (§1b)
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en avg. ar es fr ru

Phi 3.5 - English 59.6 55.0 52.3 54.9 57.6 55.2
Phi 3.5 - T5 50 59.9 51.8 49.7 51.3 55.2 51.0
Phi 3.5 - T5-4 50 58.9 48.3 47.7 47.1 51.2 47.3
Phi 3.5 - T5-3 50 58.6 50.5 46.6 51.3 52.6 51.3
Phi 3.5 - T5-2 50 58.5 53.6 50.7 54.7 55.1 54.0
Phi 3.5 - L100 50 59.6 53.3 49.9 53.7 56.8 52.6
Llama 3 - English 46.1 36.3 33.4 37.0 36.5 38.2
Llama 3 - T5 50 45.4 37.5 36.6 36.1 38.7 38.7
Llama 3 - L100 50 59.7 54.8 53.0 54.7 56.3 55.4
Phi 3.5 - L100 1 55.2 48.2 42.2 50.6 51.1 48.8
Phi 3.5 - L100 10 58.3 53.4 50.5 54.3 55.7 53.1
Phi 3.5 - L100 24 58.2 48.4 43.5 50.3 52.7 47.3
Phi 3.5 - L100 50 59.6 53.3 49.9 53.7 56.8 52.6
Phi 3.5 - L100 75 61.9 54.5 50.3 56.2 57.5 54.2
Phi 3.5 - L100 90 60.0 50.5 43.6 53.8 55.1 49.5
Llama 3 - L100 10 60.8 55.3 56.3 52.6 55.0 57.1
Llama 3 - L100 50 59.7 54.8 53.0 54.7 56.3 55.4
Llama 3 - L100 90 57.8 51.1 48.9 52.3 52.1 51.0
Phi 3.5 - L100 50 59.6 53.3 49.9 53.7 56.8 52.6
Phi 3.5 - PT 100 54.3 45.4 40.1 47.8 49.4 44.4
Phi 3.5 - PT 50 58.9 52.5 49.0 53.8 54.6 52.5
Phi 3.5 - PT 1 56.8 49.7 46.8 49.6 53.9 48.6
Llama 3 - L100 50 59.7 54.8 53.0 54.7 56.3 55.4
Llama 3 - PT 1 61.7 59.4 58.8 59.0 60.0 59.7
Llama 3 - PT 100 60.3 57.3 56.5 56.5 58.3 57.8
Gemma 2 - L100 50 59.9 55.0 53.1 54.6 57.1 55.1
Llama 3 - L100 50 59.7 54.8 53.0 54.7 56.3 55.4
Qwen 2.5 - L100 50 57.8 52.6 55.7 47.5 52.5 54.8
Aya-Expanse - L100 50 58.2 54.7 54.7 54.0 56.4 53.5
Centurio Aya 65.0 62.4 61.7 61.0 64.3 62.7
Centurio Qwen 75.4 70.2 68.8 70.9 70.5 70.8

Table 28: XVNLI
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en avg. ar fr hi id ja pt

Phi 3.5 - English 38.4 36.2 36.2 41.9 29.9 35.4 34.2 39.7
Phi 3.5 - T5 50 36.7 36.2 31.5 38.9 31.6 37.0 34.9 43.4
Phi 3.5 - T5-4 50 37.0 33.9 33.2 39.9 29.2 32.3 31.2 37.7
Phi 3.5 - T5-3 50 37.3 35.8 32.5 39.3 32.3 37.0 36.8 37.0
Phi 3.5 - T5-2 50 37.6 35.1 32.2 40.3 32.6 34.7 32.3 38.7
Phi 3.5 - L100 50 36.6 32.0 28.5 35.9 27.8 32.0 31.2 36.7
Llama 3 - English 33.2 32.4 30.9 34.2 30.6 32.7 30.5 35.7
Llama 3 - T5 50 33.4 32.4 34.9 36.6 28.9 31.3 30.9 31.6
Llama 3 - L100 50 33.0 31.7 31.5 34.6 34.0 31.6 27.9 30.6
Phi 3.5 - L100 1 37.3 34.1 32.5 40.3 30.9 31.3 31.6 37.7
Phi 3.5 - L100 10 36.1 30.9 27.5 33.9 28.2 28.6 32.7 34.7
Phi 3.5 - L100 24 34.4 31.9 28.5 35.9 29.2 30.3 33.5 34.0
Phi 3.5 - L100 50 36.6 32.0 28.5 35.9 27.8 32.0 31.2 36.7
Phi 3.5 - L100 75 36.2 33.2 31.9 38.9 29.2 32.7 29.0 37.4
Phi 3.5 - L100 90 37.1 31.9 30.5 35.6 25.8 31.0 33.8 34.7
Llama 3 - L100 10 32.6 30.0 26.8 31.5 26.8 31.6 32.0 31.3
Llama 3 - L100 50 33.0 31.7 31.5 34.6 34.0 31.6 27.9 30.6
Llama 3 - L100 90 32.7 33.5 30.5 35.9 30.9 35.4 31.2 37.0
Phi 3.5 - L100 50 36.6 32.0 28.5 35.9 27.8 32.0 31.2 36.7
Phi 3.5 - PT 100 33.4 30.2 28.5 32.9 28.9 30.0 27.5 33.3
Phi 3.5 - PT 50 35.0 33.4 30.9 39.3 33.7 31.0 30.5 35.0
Phi 3.5 - PT 1 36.0 31.3 26.5 35.9 29.2 32.0 28.3 36.0
Llama 3 - L100 50 33.0 31.7 31.5 34.6 34.0 31.6 27.9 30.6
Llama 3 - PT 1 38.6 35.2 33.9 34.2 34.0 35.0 36.1 38.0
Llama 3 - PT 100 36.9 36.1 34.6 36.2 36.8 36.7 36.1 36.0
Gemma 2 - L100 50 32.8 32.0 32.5 30.9 33.0 30.6 32.7 32.0
Llama 3 - L100 50 33.0 31.7 31.5 34.6 34.0 31.6 27.9 30.6
Qwen 2.5 - L100 50 39.8 39.7 38.6 40.3 34.4 40.7 38.7 45.5
Aya-Expanse - L100 50 36.8 35.4 34.9 35.2 37.5 36.4 34.6 33.7
Centurio Aya 37.6 37.2 36.2 38.9 38.8 39.7 34.2 35.4
Centurio Qwen 46.4 43.0 39.6 45.0 41.6 44.1 43.5 44.1

Table 29: xMMMU
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en avg. avg.
Latin

avg.
other ar de hi id it ko ru th zh zu

Phi 3.5 - English 65.8 55.8 62.3 51.5 50.2 63.5 58.5 61.4 64.0 49.0 52.1 49.1 49.8 60.2
Phi 3.5 - T5 50 75.2 60.2 70.9 53.1 50.2 70.8 65.4 71.8 71.6 49.8 54.1 51.0 48.0 69.4
Phi 3.5 - T5-4 50 74.2 60.8 71.4 53.7 52.2 71.5 65.5 72.8 73.1 51.1 53.9 49.6 49.6 68.4
Phi 3.5 - T5-3 50 70.4 58.7 67.7 52.8 51.6 66.9 61.0 69.6 67.2 50.0 53.6 48.9 51.4 67.0
Phi 3.5 - T5-2 50 68.4 56.2 64.2 50.8 49.5 64.5 58.4 65.4 64.9 50.0 50.5 48.8 47.9 62.0
Phi 3.5 - L100 50 69.6 58.0 67.2 51.9 49.9 68.0 62.4 69.0 67.9 48.6 52.5 49.6 48.4 64.1
Llama 3 - English 72.0 60.5 69.6 54.4 53.5 69.9 67.2 71.1 70.9 48.9 57.5 50.1 49.4 66.5
Llama 3 - T5 50 73.4 62.2 72.5 55.4 54.5 72.2 67.1 74.4 71.5 50.5 56.6 51.6 51.9 72.0
Llama 3 - L100 50 72.0 58.4 67.9 52.1 51.6 69.6 62.0 65.9 70.4 49.9 52.0 48.8 48.4 65.6
Phi 3.5 - L100 1 58.4 52.6 55.7 50.5 50.2 55.2 53.5 57.5 56.4 49.6 50.9 48.2 50.5 53.5
Phi 3.5 - L100 10 56.9 51.6 54.9 49.4 48.5 54.8 49.6 55.1 56.8 50.5 48.2 49.6 50.0 52.9
Phi 3.5 - L100 24 60.4 54.0 58.8 50.8 51.8 58.9 54.5 58.1 60.0 50.0 51.1 48.4 49.2 58.0
Phi 3.5 - L100 50 69.6 58.0 67.2 51.9 49.9 68.0 62.4 69.0 67.9 48.6 52.5 49.6 48.4 64.1
Phi 3.5 - L100 75 74.5 61.2 71.6 54.2 53.2 71.2 63.8 74.0 70.5 50.5 54.2 51.9 51.8 70.6
Phi 3.5 - L100 90 71.6 59.4 69.2 52.9 51.0 70.2 60.5 69.4 71.2 49.6 54.1 50.4 51.8 66.1
Llama 3 - L100 10 65.9 56.6 62.6 52.6 51.5 62.1 59.5 62.6 65.8 50.8 54.5 50.4 48.8 59.9
Llama 3 - L100 50 72.0 58.4 67.9 52.1 51.6 69.6 62.0 65.9 70.4 49.9 52.0 48.8 48.4 65.6
Llama 3 - L100 90 73.1 59.4 68.4 53.3 51.0 67.4 65.8 71.0 69.0 50.6 52.6 49.9 50.1 66.2
Phi 3.5 - L100 50 69.6 58.0 67.2 51.9 49.9 68.0 62.4 69.0 67.9 48.6 52.5 49.6 48.4 64.1
Phi 3.5 - PT 100 79.5 63.3 74.8 55.6 52.8 75.8 68.5 76.2 76.5 50.8 59.6 50.9 51.0 70.8
Phi 3.5 - PT 50 76.1 62.4 73.0 55.3 52.4 72.2 69.6 73.6 73.8 49.2 59.9 50.0 50.6 72.2
Phi 3.5 - PT 1 78.1 64.5 74.5 57.7 57.0 74.0 72.8 76.8 75.0 52.8 62.2 51.4 50.2 72.4
Llama 3 - L100 50 72.0 58.4 67.9 52.1 51.6 69.6 62.0 65.9 70.4 49.9 52.0 48.8 48.4 65.6
Llama 3 - PT 1 76.9 65.1 74.4 58.9 55.0 74.8 73.0 75.5 74.4 53.4 65.9 52.5 53.8 72.9
Llama 3 - PT 100 79.9 65.2 77.4 57.0 52.6 77.6 73.4 78.1 78.2 51.0 64.0 49.1 51.8 75.8
Phi 3.5 - OCR English 78.4 64.6 74.7 57.9 59.1 77.1 70.9 73.6 74.5 50.6 66.5 51.1 49.0 73.6
Phi 3.5 - OCR 50 81.2 66.7 76.7 60.0 61.4 78.6 72.1 76.0 77.1 51.5 71.5 52.1 51.6 75.0
Phi 3.5 - OCR 1 81.0 69.8 78.3 64.1 66.8 78.0 76.8 78.5 79.1 56.9 73.2 58.6 52.4 77.6
Phi 3.5 - OCR Latin-down 78.9 65.4 74.2 59.5 57.8 75.5 67.6 75.0 75.0 56.4 67.8 55.0 52.5 71.1
Phi 3.5 - OCR 50 (frozen) 76.1 62.1 70.8 56.3 59.2 73.2 63.2 66.2 76.1 50.0 68.0 47.8 49.8 67.8
Gemma 2 - L100 50 59.9 53.5 57.1 51.1 49.6 59.1 56.5 56.8 58.9 49.9 51.0 50.6 49.2 53.6
Llama 3 - L100 50 72.0 58.4 67.9 52.1 51.6 69.6 62.0 65.9 70.4 49.9 52.0 48.8 48.4 65.6
Qwen 2.5 - L100 50 82.8 62.5 75.1 54.0 51.5 76.4 66.5 76.5 76.5 50.1 55.2 51.0 49.8 71.1
Aya-Expanse - L100 50 79.1 63.5 75.2 55.7 53.9 77.2 71.4 75.6 75.0 50.6 56.0 51.1 51.0 73.1
Centurio Aya 83.1 74.2 80.9 69.7 75.9 82.1 80.1 81.4 80.6 68.8 73.5 66.5 53.4 79.5
Centurio Qwen 84.8 76.1 82.7 71.8 76.9 83.5 82.4 83.8 83.1 72.4 75.6 64.4 58.9 80.2

Table 30: SMPQA Ground

en avg. avg.
Latin

avg.
other ar de hi id it ko ru th zh zu

Phi 3.5 - English 36.2 5.0 12.4 0.0 0.0 17.4 0.0 12.6 15.2 0.0 0.0 0.0 0.0 4.4
Phi 3.5 - T5 50 36.4 5.4 13.6 0.0 0.0 21.2 0.0 13.2 16.0 0.0 0.0 0.0 0.0 3.8
Phi 3.5 - T5-4 50 35.0 5.8 14.4 0.0 0.0 20.0 0.0 14.6 16.6 0.0 0.0 0.0 0.0 6.4
Phi 3.5 - T5-3 50 34.6 5.8 14.4 0.0 0.0 16.0 0.0 16.6 20.4 0.0 0.0 0.0 0.0 4.8
Phi 3.5 - T5-2 50 35.8 5.8 14.5 0.0 0.0 18.0 0.0 14.8 19.6 0.0 0.0 0.0 0.0 5.6
Phi 3.5 - L100 50 33.4 5.2 12.8 0.1 0.0 17.4 0.0 14.0 14.6 0.0 0.2 0.2 0.0 5.2
Llama 3 - English 41.0 8.5 21.1 0.0 0.0 24.4 0.0 21.6 23.8 0.0 0.0 0.2 0.0 14.8
Llama 3 - T5 50 41.4 8.2 20.4 0.0 0.0 25.2 0.0 21.8 23.4 0.0 0.0 0.2 0.0 11.2
Llama 3 - L100 50 39.2 7.3 18.2 0.0 0.0 21.6 0.0 18.8 21.6 0.0 0.0 0.2 0.0 10.8
Phi 3.5 - L100 1 22.0 4.0 10.1 0.0 0.0 12.0 0.0 9.0 14.0 0.0 0.0 0.0 0.0 5.2
Phi 3.5 - L100 10 24.6 4.1 10.3 0.0 0.0 11.6 0.0 10.0 14.2 0.0 0.0 0.0 0.0 5.4
Phi 3.5 - L100 24 26.0 3.8 9.5 0.1 0.0 12.2 0.0 8.4 12.6 0.0 0.0 0.4 0.0 4.8
Phi 3.5 - L100 50 33.4 5.2 12.8 0.1 0.0 17.4 0.0 14.0 14.6 0.0 0.2 0.2 0.0 5.2
Phi 3.5 - L100 75 38.4 6.0 15.1 0.0 0.0 21.0 0.0 14.8 18.6 0.0 0.2 0.0 0.0 5.8
Phi 3.5 - L100 90 39.8 6.5 16.1 0.0 0.0 21.0 0.0 17.0 21.8 0.0 0.0 0.0 0.0 4.8
Llama 3 - L100 10 32.0 6.3 15.6 0.1 0.0 17.8 0.0 15.8 19.2 0.0 0.0 0.4 0.0 9.6
Llama 3 - L100 50 39.2 7.3 18.2 0.0 0.0 21.6 0.0 18.8 21.6 0.0 0.0 0.2 0.0 10.8
Llama 3 - L100 90 40.0 7.5 18.8 0.0 0.0 21.2 0.0 21.0 20.4 0.0 0.0 0.2 0.0 12.6
Phi 3.5 - L100 50 33.4 5.2 12.8 0.1 0.0 17.4 0.0 14.0 14.6 0.0 0.2 0.2 0.0 5.2
Phi 3.5 - PT 100 44.0 9.9 24.5 0.2 0.0 31.4 0.0 25.6 26.8 0.0 1.2 0.2 0.0 14.0
Phi 3.5 - PT 50 41.8 9.4 23.1 0.2 0.0 27.8 0.0 24.4 25.0 0.0 1.2 0.2 0.0 15.0
Phi 3.5 - PT 1 42.2 9.5 23.7 0.1 0.0 27.2 0.0 24.4 29.0 0.0 0.4 0.0 0.0 14.0
Llama 3 - L100 50 39.2 7.3 18.2 0.0 0.0 21.6 0.0 18.8 21.6 0.0 0.0 0.2 0.0 10.8
Llama 3 - PT 1 48.4 11.4 27.9 0.4 0.0 29.6 0.2 30.6 30.6 0.0 1.6 0.4 0.0 20.6
Llama 3 - PT 100 48.8 10.5 25.0 0.8 0.0 28.8 2.6 26.2 28.4 0.2 1.8 0.4 0.0 16.6
Phi 3.5 - OCR English 55.8 18.3 39.9 3.9 5.2 38.6 2.4 43.2 41.6 0.0 15.2 0.4 0.0 36.4
Phi 3.5 - OCR 50 53.8 21.0 41.8 7.1 14.4 42.2 6.4 45.8 42.6 0.2 21.2 0.6 0.0 36.4
Phi 3.5 - OCR 1 54.8 22.2 43.5 8.0 17.2 43.8 6.2 46.4 42.8 1.2 21.4 1.8 0.0 40.8
Phi 3.5 - OCR Latin-down 54.6 22.4 41.0 9.9 20.2 41.6 7.0 42.6 43.0 2.8 25.6 3.4 0.6 36.8
Phi 3.5 - OCR 50 (frozen) 47.2 15.7 34.1 3.5 5.2 36.4 3.8 37.2 33.0 0.0 11.8 0.2 0.0 29.6
Gemma 2 - L100 50 28.6 3.8 9.4 0.1 0.0 13.8 0.0 10.4 8.4 0.0 0.0 0.4 0.0 5.0
Llama 3 - L100 50 39.2 7.3 18.2 0.0 0.0 21.6 0.0 18.8 21.6 0.0 0.0 0.2 0.0 10.8
Qwen 2.5 - L100 50 48.8 10.1 25.1 0.1 0.0 32.0 0.0 23.8 29.0 0.0 0.2 0.2 0.0 15.6
Aya-Expanse - L100 50 46.6 10.2 25.4 0.1 0.0 27.4 0.0 28.8 27.4 0.0 0.0 0.4 0.0 18.0
Centurio Aya 60.0 30.1 49.8 17.0 29.2 50.2 17.6 52.6 51.2 11.2 38.2 4.8 0.8 45.2
Centurio Qwen 65.2 31.7 54.3 16.6 21.4 53.2 21.4 55.4 56.6 16.2 34.8 5.2 0.6 52.2

Table 31: SMPQA Name
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en avg. af am cs el es fa fi ha hr hu ja mi nl no pl ro ta te zu

Centurio Aya 69.7 54.7 63.6 29.4 66.2 67.8 65.1 60.0 43.3 37.5 63.6 49.8 66.7 37.0 62.4 59.1 62.6 64.0 46.9 50.9 42.6
Centurio Qwen 72.7 56.2 65.3 47.4 62.2 56.7 67.0 53.6 48.8 36.7 65.4 54.1 67.6 39.1 63.7 63.6 60.4 58.5 45.2 63.4 49.5
Parrot 30.5 25.7 26.0 22.8 26.1 25.5 27.3 25.9 26.4 23.7 25.3 25.6 26.7 25.4 28.0 26.6 26.5 26.8 25.5 23.9 24.0
PALO 13B 61.4 41.1 48.4 25.9 47.9 35.8 53.2 37.5 42.7 26.1 52.3 47.9 49.1 31.0 48.9 51.2 46.1 46.5 28.9 32.2 28.3
PALO 7B 58.7 38.6 44.2 28.4 43.6 33.5 49.9 36.9 39.1 24.5 49.6 45.4 48.8 27.8 45.1 45.8 42.0 44.0 26.7 30.1 28.3
InternVL 2.5 4B 68.4 45.4 53.2 31.3 53.2 42.3 60.8 45.4 38.3 26.3 55.2 42.1 60.5 29.5 56.6 53.7 53.1 49.7 35.3 50.1 26.5
InternVL 2.5 8B 70.3 44.2 54.4 29.1 52.8 43.3 57.8 40.5 41.3 25.8 55.6 44.9 57.3 30.0 51.8 54.8 50.3 48.9 33.2 41.2 27.3
Qwen2-VL 2B 78.2 47.2 56.6 30.3 56.7 47.2 64.0 48.7 41.7 26.1 57.1 48.0 62.2 30.0 59.2 57.8 54.6 54.5 31.9 43.4 27.6
Qwen2-VL 7B 80.7 57.5 68.9 37.2 68.5 62.2 72.6 59.8 55.1 27.1 72.2 61.8 71.8 29.5 69.5 69.6 67.5 65.6 42.7 62.3 29.3
Maya 54.0 43.2 50.6 27.1 53.3 53.6 52.7 48.7 35.3 23.7 50.5 39.3 55.2 28.6 51.4 46.4 50.0 51.3 31.9 36.9 33.4
Llama-Vision 75.6 50.8 65.1 30.6 61.3 42.9 65.1 49.9 51.5 31.1 60.9 65.0 46.3 32.8 61.5 61.8 55.7 57.3 42.0 51.6 31.9
Phi 3.5 Vision 63.1 36.8 40.9 28.7 41.0 34.7 52.7 33.5 34.9 27.1 40.5 36.8 45.9 28.2 43.6 44.4 38.5 39.8 30.9 28.1 28.1
Pixtral 12B 71.0 54.2 62.3 34.3 61.6 58.3 66.1 57.3 52.0 27.7 67.1 60.4 64.8 31.9 58.6 62.1 59.8 59.0 56.7 64.5 25.0
Pangea 70.3 52.1 61.4 34.3 59.6 54.2 64.4 54.9 45.4 27.9 63.0 49.8 65.5 29.6 61.0 64.1 59.5 60.6 42.4 62.7 29.3
MiniCPM 2.6 72.6 47.4 56.0 29.9 55.1 46.6 62.1 48.5 41.8 22.9 59.5 44.9 62.9 29.0 57.8 55.2 54.7 52.7 34.5 53.9 33.4

Table 32: BIN-MC

en avg. af zh it pt th vi

Centurio Aya 53.0 41.2 52.8 51.4 47.7 27.4 27.8 40.3
Centurio Qwen 61.2 46.9 50.9 55.6 49.0 31.9 29.6 64.1
Parrot 46.6 36.2 38.0 37.8 36.8 25.9 23.5 55.1
PALO 13B 45.2 28.3 33.1 31.3 36.5 19.3 20.2 29.2
PALO 7B 41.0 29.1 34.4 31.5 32.7 21.8 21.1 33.4
InternVL 2.5 4B 63.2 50.3 46.0 60.9 50.3 34.9 39.1 70.4
InternVL 2.5 8B 67.0 53.3 57.7 61.7 53.2 33.0 39.1 75.2
Qwen2-VL 2B 47.9 40.5 38.0 51.6 36.4 36.2 26.1 54.9
Qwen2-VL 7B 56.1 49.7 50.9 58.6 46.8 34.7 38.3 69.0
Maya 49.2 36.3 48.5 46.4 36.6 25.9 20.0 40.3
Phi 3.5 Vision 56.3 40.7 51.5 54.4 44.1 25.2 24.3 44.4
Pixtral 12B 49.4 33.7 39.9 53.6 34.4 19.5 7.0 47.7
Pangea 58.0 45.5 50.3 58.6 49.0 32.2 27.8 55.3
MiniCPM 2.6 55.0 48.2 44.2 54.6 44.3 36.9 38.3 70.8

Table 33: M3Exam

en avg. am ber bn de fil ha hi ru sw th zu

Centurio Aya 82.5 66.8 71.7 54.2 59.3 73.3 59.2 65.0 71.2 75.8 67.5 72.5 65.5
Centurio Qwen 87.5 73.1 77.5 49.2 62.7 80.8 78.3 76.7 72.9 85.0 70.0 81.7 69.0
Parrot 59.2 52.9 45.0 64.2 53.4 63.3 49.2 41.7 62.7 62.5 35.8 67.5 36.2
PALO 13B 63.3 26.2 25.0 55.0 0.8 44.2 47.5 40.0 0.0 5.8 32.5 0.0 37.1
PALO 7B 48.3 25.6 40.8 75.0 0.0 0.0 49.2 40.0 0.0 0.0 39.2 0.0 37.9
InternVL 2.5 4B 72.5 49.7 43.3 50.0 40.7 62.5 56.7 41.7 42.4 63.3 35.8 74.2 36.2
InternVL 2.5 8B 87.5 51.6 43.3 50.0 41.5 64.2 49.2 41.7 59.3 75.8 36.7 68.3 37.1
Qwen2-VL 2B 61.7 50.5 44.2 50.0 43.2 65.0 53.3 41.7 61.0 52.5 38.3 67.5 38.8
Qwen2-VL 7B 60.0 52.9 48.3 50.0 46.6 60.0 50.0 46.7 48.3 63.3 58.3 60.8 49.1
Maya 46.7 42.3 43.3 48.3 33.9 50.8 51.7 40.8 42.4 45.8 34.2 38.3 35.3
Phi 3.5 Vision 81.7 50.3 45.8 49.2 56.8 73.3 54.2 41.7 56.8 85.8 38.3 15.0 36.2
Pixtral 12B 55.8 47.7 51.7 32.5 47.5 63.3 51.7 44.2 16.1 54.2 65.8 53.3 44.0
Pangea 69.2 58.9 45.8 90.0 53.4 61.7 55.0 41.7 60.2 74.2 54.2 75.8 36.2
MiniCPM 2.6 52.5 49.1 45.0 55.8 49.2 45.8 48.3 40.8 44.1 59.2 48.3 65.8 37.9

Table 34: VGR
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en avg. am ber bn de fil ha hi ru sw th zu

Centurio Aya 12.5 20.7 18.3 21.7 20.0 11.7 24.2 29.2 15.2 10.8 28.6 29.2 19.5
Centurio Qwen 28.3 27.0 18.3 20.0 33.3 32.5 29.2 22.5 25.0 22.5 30.4 30.0 33.1
Parrot 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PALO 13B 2.5 4.9 6.7 5.0 6.7 5.0 5.8 2.5 3.6 4.2 5.4 5.0 4.2
PALO 7B 5.8 6.8 8.3 9.2 10.0 5.8 6.7 4.2 9.8 5.0 4.5 5.8 5.1
InternVL 2.5 4B 24.2 21.0 18.3 26.7 17.5 20.8 20.0 23.3 22.3 20.0 23.2 20.0 18.6
InternVL 2.5 8B 57.5 29.0 25.0 22.5 25.8 38.3 36.7 25.8 41.1 35.8 15.2 30.0 22.9
Qwen2-VL 2B 22.5 20.4 17.5 20.0 13.3 26.7 25.0 24.2 20.5 16.7 21.4 15.8 23.7
Qwen2-VL 7B 5.8 13.2 14.2 15.8 13.3 11.7 10.0 15.0 12.5 12.5 13.4 13.3 13.6
Maya 20.0 20.1 20.0 25.8 19.2 20.8 15.0 25.8 17.9 23.3 21.4 15.8 16.1
Phi 3.5 Vision 45.8 31.5 27.5 29.2 23.3 36.7 30.0 31.7 33.9 29.2 37.5 35.8 31.4
Pixtral 12B 9.2 12.4 17.5 13.3 10.0 16.7 10.0 16.7 3.6 14.2 8.9 12.5 13.6
Pangea 0.0 6.7 0.0 0.8 0.0 20.8 24.2 15.8 6.2 0.8 3.6 0.8 0.8
MiniCPM 2.6 9.2 14.6 11.7 19.2 12.5 10.8 10.0 22.5 10.7 12.5 19.6 11.7 19.5

Table 35: VLOD

en avg. id sw ta tr zh

Centurio Aya 85.0 77.9 79.5 70.9 73.4 83.4 82.4
Centurio Qwen 89.6 81.7 85.0 76.8 76.0 84.2 86.7
Parrot 63.5 55.1 56.6 51.2 50.7 58.6 58.2
PALO 13B 63.8 33.1 58.7 50.9 2.6 53.1 0.2
PALO 7B 62.7 24.1 33.6 47.8 0.4 38.5 0.0
InternVL 2.5 4B 74.9 59.0 65.7 50.7 50.9 64.2 63.5
InternVL 2.5 8B 83.0 63.3 63.2 51.4 54.6 67.2 79.9
Qwen2-VL 2B 67.9 55.9 60.9 51.8 52.2 59.0 55.8
Qwen2-VL 7B 69.8 60.2 61.1 53.1 60.9 65.3 60.7
Maya 60.3 56.3 60.3 50.7 50.6 58.9 61.2
Phi 3.5 Vision 73.4 46.4 56.4 51.3 50.8 58.0 15.7
Pixtral 12B 67.7 60.7 62.5 54.4 61.8 65.5 59.1
Pangea 75.8 70.5 74.3 70.9 66.6 71.1 69.6
MiniCPM 2.6 70.2 57.9 57.8 54.2 57.2 63.3 57.2

Table 36: MaRVL
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en avg. fr hi he ro th zh

Centurio Aya 55.7 49.3 45.1 58.7 62.9 51.1 46.7 31.6
Centurio Qwen 60.1 47.7 47.1 45.1 56.8 47.7 57.0 32.2
Parrot 28.2 3.6 2.7 2.9 1.4 1.2 3.0 10.7
PALO 13B 51.7 33.1 42.0 17.5 53.4 34.2 20.9 30.6
PALO 7B 54.0 22.5 39.9 9.2 30.6 16.8 12.3 26.4
InternVL 2.5 4B 46.0 42.5 45.7 37.1 38.8 31.5 51.0 50.8
InternVL 2.5 8B 45.6 38.2 51.2 27.9 24.5 35.7 36.4 53.4
Qwen2-VL 2B 53.7 26.5 40.3 10.8 9.5 15.6 38.1 44.6
Qwen2-VL 7B 54.7 31.2 38.6 18.7 13.9 37.2 42.1 36.8
Maya 55.4 17.3 19.1 13.0 21.1 18.0 11.6 20.8
Llama-Vision 0.0 4.7 0.0 0.6 2.4 0.3 24.8 0.0
Phi 3.5 Vision 43.6 17.9 23.5 12.1 16.3 7.8 20.9 27.0
Pixtral 12B 59.4 43.4 46.8 31.7 54.4 44.1 44.4 39.1
Pangea 61.4 55.0 47.4 61.0 53.7 52.9 67.2 47.9
MiniCPM 2.6 53.4 22.3 14.3 12.1 5.1 19.5 53.6 29.3

Table 37: MaXM

avg. ar de fr it ja ko ru th vi

Centurio Aya 11.1 6.7 19.9 22.5 16.7 5.0 9.0 5.2 5.2 9.7
Centurio Qwen 11.9 4.6 22.7 26.5 18.6 5.9 9.9 5.0 5.2 8.9
Parrot 2.0 1.4 1.9 0.9 1.6 1.6 2.7 2.0 5.2 0.9
PALO 13B 6.3 2.6 15.6 12.1 10.4 4.0 4.3 4.0 0.0 4.2
PALO 7B 5.8 1.8 14.3 13.3 8.3 3.4 3.2 3.6 0.4 4.1
InternVL 2.5 4B 25.1 11.2 34.4 38.4 33.5 18.4 29.0 9.8 16.5 34.6
InternVL 2.5 8B 25.0 11.5 33.8 37.4 35.3 19.7 30.3 10.4 16.5 30.4
Qwen2-VL 2B 19.0 6.1 26.8 30.9 30.7 13.5 21.1 9.3 10.0 22.4
Qwen2-VL 7B 23.2 16.9 27.3 31.7 35.2 16.1 24.6 10.8 15.6 30.7
Maya 5.3 2.8 13.1 12.2 6.6 2.8 4.8 2.9 0.4 2.3
Llama-Vision 15.2 7.4 24.0 18.7 25.3 9.4 14.5 6.1 15.2 15.8
Phi 3.5 Vision 11.1 3.3 18.2 20.2 25.2 5.6 8.8 5.4 3.0 10.5
Pixtral 12B 14.1 4.3 25.7 27.3 25.2 5.9 9.1 7.5 5.2 16.6
Pangea 19.3 8.3 29.5 35.2 29.2 9.3 14.5 7.4 10.8 29.2
MiniCPM 2.6 16.1 2.3 23.9 27.5 32.7 11.7 12.7 7.3 10.0 16.5

Table 38: MTVQA
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en avg. bn de id ko pt ru zh

Parrot 37.7 21.2 20.2 23.2 19.8 22.8 21.7 19.7 21.2
PALO 13B 58.0 27.8 26.3 14.7 29.6 30.9 17.8 30.9 44.1
PALO 7B 59.1 36.6 42.8 34.5 30.0 40.8 27.7 32.2 47.9
InternVL 2.5 4B 63.6 28.0 28.1 29.2 15.4 38.3 27.2 31.5 25.9
InternVL 2.5 8B 63.4 32.0 17.4 23.8 25.0 38.2 27.6 36.4 55.2
Qwen2-VL 2B 60.5 38.2 18.6 43.2 32.6 39.0 39.9 44.1 50.3
Qwen2-VL 7B 62.5 49.3 37.4 51.1 48.4 50.3 51.8 52.1 54.1
Maya 58.2 49.1 40.1 53.2 49.7 47.2 52.5 50.6 50.1
Llama-Vision 39.3 27.6 26.0 29.2 26.8 24.9 27.9 30.7 27.9
Phi 3.5 Vision 65.2 38.0 5.0 51.9 37.3 35.6 50.6 45.9 39.5
Pixtral 12B 59.9 3.8 0.7 5.4 14.0 0.3 3.6 0.4 1.9
Pangea 64.6 60.4 59.1 61.6 60.7 58.8 62.1 60.7 59.6
MiniCPM 2.6 57.9 45.7 33.9 49.0 46.3 42.1 51.0 48.7 48.6

Table 39: xGQA

en avg. ar bn cs da de el es fa fi fil fr he hi hr hu id

Centurio Aya 78.4 39.2 40.4 18.5 33.9 40.0 38.6 35.3 69.7 55.8 11.0 34.0 71.3 47.1 26.3 24.9 19.6 58.3
Centurio Qwen 79.1 34.4 36.6 17.1 29.7 43.1 32.0 19.2 69.2 31.2 12.0 33.6 67.6 27.6 20.3 22.0 18.7 50.4
Parrot 5.6 0.4 0.6 0.0 0.2 0.0 0.0 0.0 3.3 2.3 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0
PALO 13B 67.3 17.0 23.5 22.9 7.9 30.3 32.4 0.2 57.0 1.5 6.6 8.4 66.2 0.6 25.0 9.9 2.7 22.7
PALO 7B 65.9 13.5 17.3 18.8 5.8 18.5 23.3 0.1 48.3 1.5 4.0 2.7 59.1 0.2 21.2 2.8 6.3 20.2
InternVL 2.5 4B 38.9 17.5 12.1 3.7 9.4 13.6 28.0 2.0 39.7 10.1 2.6 6.2 49.2 8.5 5.4 5.6 3.8 39.9
InternVL 2.5 8B 38.3 15.7 7.9 4.0 10.7 19.2 27.8 2.9 35.0 8.7 5.0 10.9 47.0 8.2 8.3 7.9 5.3 24.7
Qwen2-VL 2B 68.8 5.2 0.8 0.0 1.7 7.2 7.0 0.2 5.1 9.0 1.2 2.9 9.4 0.4 0.0 1.4 2.1 8.9
Qwen2-VL 7B 50.3 24.6 17.9 11.5 23.8 32.3 36.1 13.5 38.9 23.6 8.0 8.3 50.6 13.7 6.7 11.6 15.5 45.4
Maya 55.9 14.6 20.6 18.4 11.4 10.6 23.6 10.7 38.2 1.5 0.5 2.1 47.3 18.9 15.0 2.0 0.9 19.4
Llama-Vision 35.9 7.2 0.0 0.0 0.9 15.5 22.4 0.5 14.7 0.0 4.0 13.1 32.1 0.0 0.0 2.9 13.2 2.2
Phi 3.5 Vision 32.3 6.3 2.8 0.0 0.6 10.5 21.3 0.1 21.9 0.1 0.9 2.5 32.5 1.0 0.1 1.5 2.6 4.2
Pixtral 12B 26.5 22.1 18.6 9.6 16.8 24.4 33.2 8.9 36.5 20.5 10.4 15.3 47.8 18.0 6.3 18.7 15.6 44.6
Pangea 70.1 34.6 33.3 30.8 19.4 25.2 39.4 13.0 61.4 25.4 4.2 6.7 69.7 42.7 21.5 9.5 3.6 70.9
MiniCPM 2.6 87.5 14.2 6.7 3.3 8.5 8.7 27.5 1.7 44.0 5.8 3.2 5.0 52.1 1.5 3.0 6.1 5.8 24.6

it ja ko mi nl no pl pt quz ro ru sv sw te th tr uk vi zh

Centurio Aya 60.4 49.1 21.3 33.7 61.7 42.5 37.9 59.3 1.7 34.6 38.0 45.9 29.9 15.1 26.0 30.6 30.6 72.7 56.9
Centurio Qwen 53.7 43.5 13.4 34.9 56.2 41.4 30.0 59.9 2.1 23.4 39.2 42.7 30.2 13.5 42.3 23.3 20.3 69.4 33.8
Parrot 0.2 0.0 0.0 0.0 1.6 0.0 0.0 4.0 0.2 0.4 0.4 0.0 0.0 0.8 0.0 1.0 0.0 0.0 0.0
PALO 13B 40.4 19.7 0.2 0.3 36.5 31.0 9.1 13.8 0.8 14.5 21.3 33.9 0.8 0.0 0.5 0.6 2.6 15.6 37.0
PALO 7B 31.0 29.8 2.4 0.3 29.8 16.5 8.4 8.9 0.5 2.6 19.7 23.3 0.0 0.0 0.0 0.5 0.1 17.4 29.7
InternVL 2.5 4B 33.1 33.1 8.9 0.8 29.3 14.2 12.9 39.0 0.2 9.9 23.4 17.1 0.6 1.1 27.9 7.8 7.1 61.3 44.1
InternVL 2.5 8B 27.5 22.0 6.7 0.9 26.8 16.6 12.0 35.0 0.8 12.0 22.6 20.5 1.0 2.6 7.2 9.3 4.7 46.2 40.1
Qwen2-VL 2B 5.9 8.4 1.0 0.3 2.9 5.2 1.5 21.0 1.0 3.7 1.1 13.0 1.1 0.0 1.3 0.9 0.6 7.9 49.5
Qwen2-VL 7B 38.7 32.0 9.1 0.9 39.1 35.7 30.1 48.8 0.9 19.0 37.9 43.1 2.4 3.9 31.2 15.8 16.6 55.6 41.8
Maya 34.4 26.3 8.9 0.3 28.8 9.4 15.8 16.4 0.6 22.0 19.9 11.4 0.5 0.0 0.2 13.5 1.5 31.8 26.9
Llama-Vision 33.5 0.2 0.1 0.8 30.1 2.8 2.4 15.7 0.2 23.4 0.3 11.2 6.8 0.0 1.2 0.6 0.1 0.8 0.0
Phi 3.5 Vision 23.6 8.0 0.3 0.2 19.8 10.7 1.7 25.8 0.4 3.0 0.5 10.2 0.5 0.0 1.0 1.7 0.1 2.6 8.1
Pixtral 12B 32.8 21.8 12.0 5.9 29.7 26.0 19.6 42.4 1.0 20.2 33.8 30.0 10.4 6.2 23.8 14.9 18.4 51.7 28.1
Pangea 53.5 63.3 20.3 0.3 44.9 48.5 24.1 64.6 1.7 38.7 47.3 20.1 40.7 21.8 61.4 30.2 20.7 81.3 50.7
MiniCPM 2.6 24.6 18.6 4.4 2.2 27.8 12.0 12.0 36.0 0.2 10.0 20.0 17.0 1.5 0.5 20.9 8.0 7.5 25.8 39.4

Table 40: XM3600
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en avg. ar bn cs da de el es fa fi fil fr he hi hr hu id

Centurio Aya 100.0 95.7 93.6 100.0 97.7 96.7 100.0 100.0 99.8 100.0 99.8 100.0 100.0 99.8 99.6 84.6 99.8 99.2
Centurio Qwen 99.8 95.2 95.1 100.0 98.6 93.9 100.0 100.0 99.4 100.0 100.0 100.0 100.0 98.8 99.0 80.9 100.0 96.7
Parrot 100.0 25.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PALO 13B 100.0 60.1 98.6 93.9 47.1 87.5 100.0 60.7 99.6 0.0 74.0 71.5 99.8 35.4 98.2 70.1 9.0 66.4
PALO 7B 100.0 72.0 99.6 98.8 47.5 93.4 100.0 58.2 99.8 0.0 91.8 52.7 100.0 30.7 98.8 27.0 90.8 96.9
InternVL 2.5 4B 100.0 91.0 96.7 93.9 97.1 82.8 100.0 99.0 99.8 98.8 96.1 95.3 100.0 96.7 88.9 91.4 96.1 96.9
InternVL 2.5 8B 100.0 91.1 99.4 95.3 97.7 82.8 100.0 100.0 99.4 97.9 98.2 96.3 100.0 98.4 95.1 83.2 98.2 96.7
Qwen2-VL 2B 100.0 13.2 8.2 0.0 0.0 9.6 12.9 0.2 5.9 58.4 0.2 10.9 10.0 4.5 0.0 3.1 0.2 12.7
Qwen2-VL 7B 100.0 90.0 96.5 98.2 93.9 86.1 99.8 99.4 99.2 99.2 95.7 96.3 98.2 98.2 60.2 79.1 75.4 86.9
Maya 100.0 65.7 99.0 96.1 67.6 85.5 98.6 92.0 99.8 0.2 12.1 1.0 100.0 77.0 98.4 20.7 60.7 40.6
Llama-Vision 100.0 33.3 0.0 0.0 4.9 68.8 95.5 7.0 52.7 0.0 35.0 80.7 88.3 0.0 0.0 17.0 91.0 1.6
Phi 3.5 Vision 100.0 40.8 58.4 0.6 1.4 85.4 99.2 16.2 99.4 0.0 15.2 30.1 99.8 14.8 4.7 25.2 56.4 31.6
Pixtral 12B 100.0 96.8 99.8 99.6 98.8 95.9 100.0 99.4 100.0 100.0 99.8 99.8 100.0 99.8 100.0 93.4 100.0 99.6
Pangea 99.8 87.9 98.8 99.0 97.9 19.1 99.6 99.8 99.2 98.4 91.6 68.9 100.0 100.0 98.2 67.8 93.6 97.9
MiniCPM 2.6 99.8 92.3 94.7 96.5 95.5 96.3 100.0 99.8 99.8 99.0 98.4 97.9 100.0 62.9 92.6 77.3 94.5 93.6

it ja ko mi nl no pl pt quz ro ru sv sw te th tr uk vi zh

Centurio Aya 99.6 98.8 100.0 98.8 100.0 97.3 99.8 100.0 1.8 100.0 99.6 98.8 90.6 100.0 99.6 100.0 99.8 100.0 89.6
Centurio Qwen 99.8 98.8 100.0 100.0 100.0 95.7 99.6 99.4 3.7 100.0 99.4 98.2 86.5 100.0 99.8 99.6 99.2 100.0 86.5
Parrot 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0
PALO 13B 99.2 61.5 9.8 0.0 99.8 92.2 41.2 27.5 0.0 95.5 68.2 94.9 1.6 26.4 68.0 9.4 11.3 54.7 88.9
PALO 7B 99.4 99.2 91.6 0.0 99.4 95.1 95.5 27.0 0.0 69.1 100.0 96.9 0.0 56.8 91.6 84.4 0.0 99.6 99.8
InternVL 2.5 4B 99.6 100.0 99.2 48.2 99.6 83.0 99.6 100.0 7.0 98.8 99.2 97.7 34.6 90.8 98.2 97.7 95.7 96.1 99.8
InternVL 2.5 8B 100.0 99.8 99.2 66.8 99.2 86.5 99.6 99.8 1.2 99.8 99.8 98.2 54.7 99.4 99.2 98.4 40.6 100.0 99.8
Qwen2-VL 2B 3.9 19.3 18.0 0.2 0.0 5.3 0.0 34.0 0.0 15.4 0.0 23.6 4.5 0.0 1.0 1.0 0.8 12.7 98.8
Qwen2-VL 7B 99.0 98.8 99.0 64.5 99.2 94.1 95.7 95.3 0.2 98.2 99.4 97.9 72.1 95.1 98.8 89.8 83.2 98.2 99.0
Maya 99.6 99.8 91.4 0.0 99.8 80.1 92.0 43.9 0.0 95.7 100.0 96.7 1.6 0.0 47.9 96.3 7.2 62.5 99.8
Llama-Vision 94.7 0.0 0.0 93.0 99.6 9.0 9.2 48.2 0.8 92.6 0.2 33.8 73.6 0.0 2.3 0.2 0.0 0.2 0.0
Phi 3.5 Vision 99.0 58.6 9.0 1.0 93.6 89.8 27.3 63.9 0.0 56.8 0.0 85.0 2.9 13.7 3.5 38.1 0.0 51.8 37.9
Pixtral 12B 100.0 100.0 100.0 99.6 100.0 95.5 100.0 100.0 9.4 99.6 100.0 100.0 95.9 99.4 100.0 99.8 100.0 100.0 99.8
Pangea 100.0 99.4 100.0 0.8 99.6 95.7 99.6 100.0 0.0 100.0 99.6 67.0 82.4 99.8 100.0 99.8 91.0 99.8 99.0
MiniCPM 2.6 100.0 98.4 99.2 99.2 99.6 95.5 96.5 99.8 10.0 98.2 97.3 99.4 66.4 85.5 96.3 95.1 99.2 90.6 97.1

Table 41: XM3600 Language Fidelity

en avg. ar es fr ru

Centurio Aya 65.0 62.4 61.7 61.0 64.3 62.7
Centurio Qwen 75.4 70.2 68.8 70.9 70.5 70.8
Parrot 28.7 31.4 34.0 24.3 30.0 37.4
PALO 13B 56.6 53.6 51.8 52.7 54.9 55.0
PALO 7B 58.0 53.4 52.5 52.3 53.7 55.1
InternVL 2.5 4B 69.0 58.7 55.7 58.8 61.4 59.0
InternVL 2.5 8B 73.5 66.4 61.8 68.0 68.4 67.3
Qwen2-VL 2B 61.9 56.2 52.9 55.3 58.6 57.9
Qwen2-VL 7B 62.1 59.6 59.2 58.9 60.0 60.3
Maya 50.1 43.9 45.3 42.7 45.8 41.8
Phi 3.5 Vision 58.9 53.3 49.7 52.7 56.4 54.3
Pixtral 12B 60.9 52.7 36.0 57.9 59.0 58.1
Pangea 69.0 65.2 64.5 64.3 66.3 65.7
MiniCPM 2.6 71.9 65.4 61.1 67.5 67.0 66.1

Table 42: XVNLI
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en avg. ar fr hi id ja pt

Centurio Aya 37.6 37.2 36.2 38.9 38.8 39.7 34.2 35.4
Centurio Qwen 46.4 43.0 39.6 45.0 41.6 44.1 43.5 44.1
Parrot 35.3 32.4 31.9 34.9 26.1 31.3 34.9 35.4
PALO 13B 32.4 28.9 24.2 34.9 24.2 31.6 26.4 32.3
PALO 7B 31.8 30.9 28.2 33.6 27.3 30.6 32.3 33.3
InternVL 2.5 4B 49.2 42.7 41.6 45.6 33.7 43.4 44.2 47.8
InternVL 2.5 8B 50.7 45.2 40.3 48.7 41.2 43.1 47.6 50.2
Qwen2-VL 2B 36.8 35.5 31.5 41.3 30.2 36.7 36.1 37.0
Qwen2-VL 7B 43.0 40.7 36.9 42.6 38.5 41.1 41.3 43.8
Maya 37.9 33.3 32.6 36.6 31.3 31.6 32.0 36.0
Phi 3.5 Vision 41.7 37.4 34.9 44.3 29.2 37.7 35.7 42.4
Pixtral 12B 30.3 26.2 19.1 28.5 19.2 27.3 28.6 34.7
Pangea 43.1 42.0 37.6 43.0 38.5 46.8 41.6 44.8
MiniCPM 2.6 39.1 36.5 30.5 38.9 33.7 37.7 37.2 40.7

Table 43: xMMMU

VI. Centurio:
On Drivers of Multilingual Ability of Large Vision-Language Model 262



avg. amh-ethiopia arz-egypt ben-india bre-france bul-bulgaria fil-philippines gle-ireland hin-india ibo-nigeria

Centurio Aya 49.4 32.1 52.7 45.8 30.4 50.1 48.8 41.7 67.2 31.0
Centurio Qwen 52.9 38.0 52.7 54.9 30.6 49.6 51.7 48.5 65.7 30.5
Parrot 41.1 31.6 35.5 33.9 31.1 38.8 45.3 45.1 41.8 35.5
PALO 13B 39.6 26.1 31.5 33.9 31.6 35.3 45.3 41.1 40.3 32.5
PALO 7B 37.1 20.5 25.1 30.1 27.7 32.6 43.3 37.1 43.3 31.0
InternVL 2.5 4B 48.1 36.3 38.9 42.7 33.1 42.0 47.8 45.7 51.7 29.0
InternVL 2.5 8B 48.6 29.5 41.4 42.3 29.4 47.4 46.8 47.5 50.2 33.5
Qwen2-VL 2B 33.6 27.4 31.0 33.6 25.9 32.9 32.0 31.3 34.8 35.5
Qwen2-VL 7B 37.6 31.2 35.5 31.5 31.1 35.6 40.9 37.1 39.3 31.0
Maya 39.8 30.3 41.9 38.8 30.6 36.7 35.0 34.4 46.8 31.0
Llama-Vision 38.8 32.1 5.4 60.1 13.6 22.4 43.8 35.9 46.3 28.5
Phi 3.5 Vision 40.9 28.6 38.4 28.7 28.9 33.7 45.3 40.2 42.8 38.0
Pixtral 12B 33.5 22.6 27.1 21.7 24.9 30.5 35.5 38.7 41.3 26.5
Pangea 55.2 35.5 49.3 53.5 33.1 52.3 56.7 53.1 66.2 40.0
MiniCPM 2.6 34.1 26.9 31.5 27.6 25.9 32.6 31.5 37.1 32.3 36.0

ind-indonesia jav-indonesia jpn-japan kin-rwanda kor-south korea mar-india min-indonesia mon-mongolia msa-malaysia nor-norway

Centurio Aya 53.6 41.1 44.8 32.8 61.7 56.9 42.6 29.2 52.7 55.5
Centurio Qwen 54.9 46.1 44.8 42.1 66.2 55.9 41.8 33.3 55.9 58.2
Parrot 43.4 37.7 34.5 32.8 47.6 32.2 36.3 34.3 42.9 49.5
PALO 13B 41.0 35.4 33.0 28.9 42.8 37.6 37.8 26.3 44.1 54.5
PALO 7B 37.9 33.7 29.1 29.4 42.4 33.7 31.1 25.6 36.8 47.5
InternVL 2.5 4B 54.6 44.4 39.4 34.9 65.9 48.0 41.0 27.6 53.0 52.8
InternVL 2.5 8B 54.9 44.8 41.4 32.8 56.9 43.6 44.6 33.0 54.3 55.2
Qwen2-VL 2B 36.9 31.6 25.1 31.5 37.6 24.3 27.9 31.1 32.1 40.5
Qwen2-VL 7B 40.8 32.3 36.0 30.2 43.4 31.2 33.5 34.0 43.5 42.8
Maya 36.2 34.7 29.1 31.5 50.0 42.6 33.9 31.1 44.4 47.5
Llama-Vision 42.0 34.0 25.1 18.3 45.9 38.1 34.3 27.9 40.6 48.5
Phi 3.5 Vision 40.8 35.4 36.9 36.2 44.1 33.7 39.0 35.3 41.3 48.2
Pixtral 12B 36.9 32.3 27.6 25.1 39.7 24.3 28.3 24.7 36.8 32.1
Pangea 60.0 50.5 42.9 33.6 68.3 57.9 48.2 40.7 60.3 58.2
MiniCPM 2.6 36.2 31.6 33.5 30.6 31.0 32.2 29.9 29.2 34.6 40.5

orm-ethiopia por-brazil ron-romania rus-russia sin-sri lanka spa-argentina spa-chile spa-colombia spa-ecuador spa-mexico

Centurio Aya 36.4 65.1 61.6 65.5 28.9 60.0 58.5 56.0 55.2 52.6
Centurio Qwen 35.0 70.8 57.0 67.5 42.7 63.8 66.2 59.8 58.8 61.9
Parrot 34.6 60.9 44.0 45.0 28.0 47.9 52.1 48.5 43.9 44.3
PALO 13B 29.4 53.9 52.6 44.0 24.9 47.5 50.0 47.3 47.8 44.9
PALO 7B 51.1 49.3 45.5 24.0 47.5 49.1 45.2 45.9 42.4 57.5
InternVL 2.5 4B 34.6 66.5 49.7 65.5 34.7 60.4 59.8 54.4 56.6 53.9
InternVL 2.5 8B 32.2 64.4 60.3 62.5 29.8 60.4 65.4 56.4 59.7 57.0
Qwen2-VL 2B 33.2 39.8 32.5 33.0 24.9 40.0 40.2 40.7 39.0 35.0
Qwen2-VL 7B 37.4 47.9 34.8 47.5 30.7 44.5 47.9 40.7 42.3 40.2
Maya 29.9 53.5 51.3 42.0 30.2 44.9 47.4 45.2 45.6 39.3
Llama-Vision 23.4 38.7 47.7 52.0 48.4 47.9 55.1 51.0 48.1 48.3
Phi 3.5 Vision 33.6 62.0 43.7 45.0 29.3 55.1 59.0 51.9 52.8 48.0
Pixtral 12B 21.5 41.2 28.8 40.5 23.6 49.1 54.3 43.6 48.3 40.6
Pangea 36.4 69.7 62.9 73.5 36.0 63.8 67.1 61.4 62.4 60.7
MiniCPM 2.6 36.0 45.1 33.4 37.0 26.7 37.7 44.4 40.7 38.7 35.9

spa-spain spa-uruguay sun-indonesia swa-kenya tam-india tel-india urd-india urd-pakistan zho-china zho-singapore

Centurio Aya 68.2 40.3 42.0 50.2 49.5 37.0 47.3 50.5 64.6 65.6
Centurio Qwen 70.4 42.5 41.5 56.4 43.0 50.5 52.7 56.9 71.1 73.1
Parrot 65.7 36.2 31.5 40.7 36.9 29.5 31.8 32.9 64.3 55.2
PALO 13B 63.2 39.4 37.5 39.6 31.3 29.5 35.9 40.3 46.6 39.6
PALO 7B 57.5 36.2 31.5 31.1 29.0 28.5 34.1 40.3 46.3 42.0
InternVL 2.5 4B 68.2 44.8 44.0 45.8 35.5 41.0 47.7 41.7 74.6 66.5
InternVL 2.5 8B 72.3 44.8 41.5 50.9 35.5 39.5 44.1 39.8 78.5 72.6
Qwen2-VL 2B 42.1 34.6 33.5 37.7 25.2 27.0 30.5 31.9 44.1 41.5
Qwen2-VL 7B 47.8 41.6 31.5 34.1 26.6 26.5 37.3 31.0 51.4 43.4
Maya 55.7 34.3 33.5 38.8 32.2 29.0 43.2 48.1 50.5 50.9
Llama-Vision 70.1 37.1 29.5 52.0 60.7 62.5 24.5 15.3 36.3 23.1
Phi 3.5 Vision 64.2 45.1 32.0 46.5 29.4 32.5 29.5 26.9 51.1 40.6
Pixtral 12B 48.4 40.3 27.0 42.1 22.9 19.0 27.7 23.6 47.3 39.6
Pangea 73.0 44.8 49.0 65.6 46.7 55.0 57.7 65.7 71.7 68.4
MiniCPM 2.6 42.5 36.2 29.0 34.1 24.3 28.5 32.7 22.7 48.2 46.2

Table 44: CVQA

en avg. avg. Latin avg. other ar de hi id it ko ru th zh zu

Centurio Aya 83.1 74.2 80.9 69.7 75.9 82.1 80.1 81.4 80.6 68.8 73.5 66.5 53.4 79.5
Centurio Qwen 84.8 76.1 82.7 71.8 76.9 83.5 82.4 83.8 83.1 72.4 75.6 64.4 58.9 80.2
Parrot 51.0 49.9 50.5 49.5 50.4 51.6 49.6 51.0 49.8 50.4 50.5 48.2 47.8 49.5
PALO 13B 54.0 51.5 52.7 50.7 50.9 53.2 51.2 52.5 52.8 51.0 49.5 51.0 50.7 52.1
PALO 7B 55.5 52.8 55.4 51.0 50.4 56.9 51.0 55.0 54.1 51.6 51.1 51.4 50.2 55.8
InternVL 2.5 4B 87.0 78.3 86.9 72.6 54.9 87.6 59.8 87.0 88.2 89.4 86.4 55.1 90.4 84.8
InternVL 2.5 8B 91.0 79.2 88.7 72.8 55.8 89.8 54.9 89.1 89.1 92.5 86.9 53.1 93.6 86.9
Qwen2-VL 2B 85.0 83.5 83.4 83.5 70.6 84.4 86.5 84.1 83.5 88.1 78.8 86.4 90.4 81.8
Qwen2-VL 7B 91.2 90.9 90.1 91.4 83.4 90.5 94.8 91.0 90.8 93.8 87.5 94.1 94.9 88.2
Maya 51.4 50.9 51.6 50.4 50.4 53.4 50.1 51.5 50.0 49.9 49.5 51.1 51.6 51.6
Llama-Vision 91.1 84.8 89.9 81.5 63.2 90.1 91.1 89.5 91.9 87.4 83.0 84.8 79.5 88.0
Phi 3.5 Vision 92.2 79.4 90.2 72.2 53.1 91.9 83.8 89.2 90.9 77.9 86.6 55.5 76.5 88.8
Pixtral 12B 91.1 71.0 90.5 58.0 50.4 91.5 53.6 91.1 90.9 49.5 88.2 52.9 53.4 88.4
Pangea 87.2 72.2 85.7 63.1 51.5 86.6 69.4 86.2 87.1 71.4 79.2 54.4 52.9 82.9
MiniCPM 2.6 89.0 74.3 88.0 65.2 52.0 89.0 53.1 87.9 89.0 54.8 84.0 53.1 94.5 86.0

Table 45: SMPQA Ground
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en avg. avg. Latin avg. other ar de hi id it ko ru th zh zu

Centurio Aya 60.0 30.1 49.8 17.0 29.2 50.2 17.6 52.6 51.2 11.2 38.2 4.8 0.8 45.2
Centurio Qwen 65.2 31.7 54.3 16.6 21.4 53.2 21.4 55.4 56.6 16.2 34.8 5.2 0.6 52.2
Parrot 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0
PALO 13B 25.6 4.0 9.9 0.1 0.0 12.0 0.0 10.2 12.4 0.4 0.0 0.0 0.0 5.0
PALO 7B 22.4 2.7 6.7 0.1 0.0 8.4 0.0 7.0 7.0 0.4 0.0 0.0 0.0 4.4
InternVL 2.5 4B 77.8 47.5 67.7 34.0 0.0 71.0 0.0 69.8 69.6 69.0 54.4 0.2 80.2 60.4
InternVL 2.5 8B 80.6 48.2 68.1 34.9 0.0 69.2 0.0 70.4 70.8 67.2 61.2 0.2 80.8 62.2
Qwen2-VL 2B 68.8 47.4 60.0 39.0 0.2 61.2 24.8 59.4 61.2 66.0 46.8 24.0 72.0 58.2
Qwen2-VL 7B 85.0 64.9 76.2 57.4 1.8 80.6 58.6 75.8 79.2 77.6 70.6 43.8 92.0 69.2
Maya 14.6 1.8 4.3 0.1 0.0 8.2 0.0 3.6 4.6 0.4 0.0 0.0 0.0 0.8
Llama-Vision 58.4 22.8 46.6 6.9 0.0 55.4 2.4 38.4 37.2 8.4 13.0 6.0 11.8 55.4
Phi 3.5 Vision 84.8 35.9 69.4 13.5 0.2 70.8 12.0 69.4 76.6 15.4 40.4 0.2 12.8 61.0
Pixtral 12B 85.0 35.9 73.3 10.9 0.0 71.8 0.0 75.4 81.6 0.4 64.6 0.4 0.0 64.6
Pangea 72.0 23.8 54.4 3.4 0.0 58.6 0.2 57.2 64.4 0.4 19.2 0.4 0.0 37.4
MiniCPM 2.6 80.8 39.3 67.5 20.6 0.0 67.2 0.0 69.8 71.4 1.0 38.4 0.4 83.6 61.6

Table 46: SMPQA Name
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(a) Example of a bar plot in SMPQA for English.
Questions for Grounding: "Is the bar with label ’reward’ the
biggest?", "Is the bar with label ’incredible’ the biggest?", "Is
the bar with label ’reverse’ the smallest?", "Is the bar with
label ’sunset’ the smallest?", "Is the bar with label ’closed’
colored in yellow?", "Is the bar with label ’closed’ colored in
purple?", "Is the bar with label ’twitter’ colored in purple?",
"Is the bar with label ’twitter’ colored in red?"
Questions for Reading: "What is the label of the biggest
bar?", "What is the label of the smallest bar?", "What is the
label of the yellow bar?", "What is the label of the red bar?",
"What is the label of the purple bar?"

(b) The same plot in Indonesian. Note that all questions refer
to the same parts of the plot as the English version just with
different words for labels.
Questions for Grounding: "Is the bar with label ’tertulis’
the biggest?", "Is the bar with label ’hidangan penutup’ the
biggest?", "Is the bar with label ’korupsi’ the smallest?", "Is
the bar with label ’segel’ the smallest?", "Is the bar with label
’penting’ colored in yellow?", "Is the bar with label ’penting’
colored in purple?", "Is the bar with label ’engkau’ colored in
purple?", "Is the bar with label ’engkau’ colored in red?"
Questions for Reading: "What is the label of the biggest
bar?", "What is the label of the smallest bar?", "What is the
label of the yellow bar?", "What is the label of the red bar?",
"What is the label of the purple bar?"

Figure 3: Examples of one plot configuration in SMPQA
for English and Indonesian.
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Can you explain the joke of this German meme?

Centurio Aya: The humor in this image comes from juxtaposing a biblical figure, Jesus, with an everyday scene that is
both ordinary and unexpected. The man’s appearance as Jesus, complete with long hair and a beard, contrasts with the
mundane setting of a caravan park populated by caravans (trailers). This creates a humorous effect because it takes
something familiar (Jesus) and places it into a context that is not only unfamiliar but also somewhat banal or trivial. It
plays on the idea of finding divinity in the most unexpected places, which can be seen as a commentary on how we
perceive holiness or significance. Additionally, the caption "Jesus und seine Anhänger" further emphasizes the absurdity
by referencing followers, implying that even in such an unremarkable location, one could find disciples or supporters,
thus adding another layer to the comedic effect.

Centurio Qwen: The joke in this German meme plays on a pun. The phrase "Jesus und seine Anhänger"
translates to "Jesus and his followers." However, the word "Anhänger," which means "followers," is also slang for
caravans or RVs (recreational vehicles) in some contexts. Therefore, the image humorously suggests that Jesus has
modern-day followers who travel together in caravans instead of following him spiritually as he did with his original
disciples. This juxtaposition creates a humorous effect by combining religious iconography with contemporary culture.

Figure 4: Centurio explaining a German meme. Both models correctly read the caption but only Qwen ‘understands’
the pun and gets the explanation (mostly) correct.
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Summarize the table for me.

Centurio Aya: This is a detailed summary of the table:
The table compares Centurio and 13 other LLM models on 14 different tasks, using CIDEr as an evaluation metric. It
presents accuracy scores (AVG., MTXMUL) and their standard deviations (SD.) across various datasets like SQuAD G
& N, Image captioning, etc. Models are listed in descending order based on AVG score, with Paratrol being at the top
followed by others like PALO-TB, Lama Vision, etc. There’s also information about model names, task descriptions,
and additional metrics like BIN_MC, XNLI, MARVL, VGRU, VLOD, and C.Q.A. A note explains that only one image
input was used for evaluating language fidelity over all languages, and it mentions "CENTURIO QEN" which might
be a specific version or variant of the Centurio model. The bottom part of the table provides further details about the
evaluation setup and models’ performance on these tasks. Overall, this table seems to evaluate the Centurio model
against several others in terms of its ability to perform well on multiple NLP tasks.

Centurio Qwen: Here a summary:
The best model is Centurio Aya.
The worst model is Palo 7B.
The average score of all models is around 50%.
The most accurate model (Centurio Aya) has an accuracy over 63% in all tasks, while the least accurate one (Palo 7B)
has an accuracy under 28%.
In multilingual results, the best model is also the most accurate one and vice versa.
The most accurate model has an overall language fidelity over 94%, whereas the least accurate one has an overall
language fidelity below 13%.
All models have an input supported AVG. above 40%.
The highest number of errors made by any model was 128, which occurred on the Inten/VL 2.5 SB task.
The lowest number of errors made by any model was 1, which occurred on the MiniCPM 2.6 task.

What model is best? Explain why.

Centurio Aya: Centurio! QEN, with an AVG., MAMM/U 32.0 and C.QAL 41.8. It has the highest average over all
tasks compared to other models listed in table 6, indicating its superior performance across multiple linguistic tests.

Centurio Qwen: Centurio Aya Centurio’Queen. It has the highest accuracy score (65.7) and lowest error rate
(20.3).

Figure 5: Centurio struggle with images containing small text.
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What is written on this bottle?

Centurio Aya: The text on the bottle, in German, reads "Sasxia Natürliches Mineralwasser" which translates to "Sasxia
Natural Mineral Water." Below that, it says "Wort am Rhein," likely referring to a specific source or brand name
associated with the Rhine River. The phrase "ohne Kohlensäure" indicates that the water contains no carbonation.
There’s also some additional information such as size ("0,5L") and possibly an expiration date or batch number at the
bottom of the label, but these are not clearly visible in the image provided.

Centurio Qwen: The text on the label of the bottle reads "Saskia," followed by a description in German that
translates to "Natural Mineral Water" and "Mineral water from Württemberg am Rhein." Below, it states "still," indicat-
ing the type of mineral water. The bottom part mentions "ohne Kohlenstoffe," which means "without carbonation,"
confirming that the water is still (non-carbonated). Additionally, there’s a logo or emblem above the brand name
"Saskia," but due to the angle and focus of the image, specific details about the logo cannot be discerned. There are also
some numbers at the very top right corner of the label, likely related to product information such as batch number or
size, but they are not clearly visible. The overall design suggests a natural, possibly organic origin for the mineral water.
However, without clearer visibility of all elements, more detailed information would require further examination or
context. If you’re looking for precise nutritional facts or chemical composition, those specifics might not be available
from the visual content alone. For accurate information regarding the contents or any health-related aspects of the
beverage, consulting the official product packaging or manufacturer’s website would be advisable.
Please note: This analysis focuses solely on what can be seen within the provided image and does not include speculative
or unverifiable claims beyond what is directly observable. Any additional interpretation goes beyond the scope of the
given visual data.
If you need assistance with something else or have another question, feel free to ask!
In summary:
Brand Name: Saskia Type: Natural Mineral Water Origin: Württemberg am Rhein Carbonation Status: Still (Non-
Carbonated) Additional Information: Without Carbon Dioxide (Kohlensäure) Label Design Suggests Organic/Healthy
Origin Specific Nutritional Facts or Chemical Composition Not Clearly Visible in Image
For comprehensive details, refer to the actual product packaging or manufacturer’s resources.

Figure 6: Centurio summarizing the label of a water bottle. While mostly correct, there are some OCR mistakes,
e.g., with the city name (’Wörth‘)
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Opišite sliku što detaljnije. (Describe the image in as much detail as possible.)

Centurio Aya: Slika prikazuje mirno i živopisno prizoru vodopada koji se nalazi u bujnim zelenim krajoliku. Vodopad,
s više padina, stvara dinamičnu scenu sa čistim plavom vodi koja kontrastira sa okolnom zelenilom. Okolište je gusto
naseljen drvećem, a nekoliko oblaka može se vidjeti na nebu, dodajući dubinu sceni. (The image depicts a peaceful and
picturesque scene of a waterfall set in a lush green landscape. The waterfall, with multiple slopes, creates a dynamic
scene with its clear blue water contrasting with the surrounding greenery. The surroundings are densely populated with
trees, and a few clouds can be seen in the sky, adding depth to the scene.)

Centurio Qwen: Slika prikazuje mirnu vodopadsku scenu, karakterizirana svojim više padavina koji se spuš-
taju u čisto plavo-zeleno jezero ispod njih. Voda izgleda glatko i neometano, sugerirajući dubinu i čistost. Okolišna
vegetacija je bogata i živahna, ukazujući na dobro održavan ekosistem sa obiljem svježe vode. Nebo je jasno i plavo, s
minimalnim oblaci, što sugeriše sunčan dan bez vidljive atmosferske promene ili udaljenog dogad̄aja. Sama vodopada
nema ljudskih elemenata kao što su mostovi, klupi ili barijeri, što bi moglo značiti da je lokacija priloživa i možda
nepovremena za putnike. (The image depicts a tranquil waterfall scene, characterized by its multiple falls cascading
into a clear blue-green lake below. The water appears smooth and undisturbed, suggesting depth and purity. The
surrounding vegetation is rich and vibrant, indicating a well-maintained ecosystem with an abundance of fresh water.
The sky is clear and blue, with minimal clouds, suggesting a sunny day with no visible atmospheric change or distant
event. The waterfall itself has no human elements such as bridges, benches, or barriers, which could indicate that the
location is approachable and perhaps uninhabited by travelers.)

Figure 7: Centurio describing an image in Croatian. Translations by Google Translate are provided in brackets for
the reader.
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Cine este prezentat în acest portret? (Who is shown in this portrait?)

Centurio Aya: Portretul prezintă un om care pare a fi o figură istorică sau fictivă, probabil de rang înalt datorită
îmbrăcămintei sale regale s, i a bijuteriilor. Stilul picturii sugerează că ar putea fi din perioada Renas, terii sau barocă,
având în vedere detaliile meticuloase ale costumului s, i tehnica picturilor cu ulei. Fără context suplimentar, nu este
posibil să se identifice persoana exactă reprezentată, dar hainele s, i accesoriile sunt caracteristice celor care au det,inut
pozit,ii semnificative în istoria europeană. (The portrait depicts a man who appears to be a historical or fictional
figure, likely of high rank due to his regal attire and jewelry. The style of the painting suggests that it may be from the
Renaissance or Baroque period, given the meticulous detail of the costume and the oil painting technique. Without
further context, it is not possible to identify the exact person depicted, but the clothing and accessories are characteristic
of those who held significant positions in European history.)

Centurio Qwen: Persoana din portret pare a fi un om de natare, probabil o figură istorică sau nobilă, având în
vedere îmbrăcămintea s, i simbolismul capului. În mod specific, el poartă o coroană cu modele complicate, care ar putea
indica putere sau statut. Stila îmbrăcămintei sugerează că ar putea fi din secolul al XVIII-lea, ceea ce indică faptul că
figura poate fi asociată cu această epocă. Fără context suplimentar, nu este posibil să se determine identitatea exactă, dar
caracteristicile sale distincte sugerează că ar putea fi un lider politic, un regiune sau un alt individ important dintr-o
perioadă istorică. Portretul serves, te pentru a transmite autoritatea s, i statusul sa prin utilizarea elementelor visuale
ale îmbrăcămintei s, i accesoriilor. Este important de ment,ionat că, des, i detaliul exact al persoanei este neclar, natura
portretului sugerează că ea are un rol semnificativ în istoria respectivă. Portretul serves, te pentru a transmite autoritatea
s, i statusul sa prin utilizarea elementelor vizuale ale îmbrăcămintei s, i accesoriilor. (The person in the portrait appears to
be a man of character, perhaps a historical or noble figure, given the clothing and symbolism of the head. Specifically,
he is wearing an intricately patterned crown, which could indicate power or status. The style of the clothing suggests
that it may be from the 18th century, indicating that the figure can be associated with this era. Without additional
context, it is not possible to determine the exact identity, but his distinctive features suggest that he may be a political
leader, a regional leader, or another important individual from a historical period. The portrait serves to convey his
authority and status through the use of visual elements of his clothing and accessories. It is important to note that while
the exact detail of the person is unclear, the nature of the portrait suggests that he has a significant role in the history in
question. The portrait serves to convey his authority and status through the use of visual elements of his clothing and
accessories.)

Figure 8: Centurio answering a question in Romanian at length. Still, neither model correctly identifies the famous
portrait of Vlad III Dracula and both models are wrong with their guess of creation time (16th century). Translations
by Google Translate are provided in brackets for the reader.
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