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Abstract

Open-world planning poses a significant chal-
lenge for general artificial intelligence due to
environmental complexity and task diversity,
especially in long-term tasks and lifelong learn-
ing. Inspired by cognitive theories, we pro-
pose M2PA, an open-world multi-memory plan-
ning agent. M2PA innovates by combining
Large Language Models (LLMs) with human-
like multi-memory systems, aiming to fully
leverage the strengths of both while mitigat-
ing their respective limitations. By integrating
the expansive world knowledge and language
processing capabilities of LLMs with the per-
ception and experience accumulation abilities
of the human memory system, M2PA exhibits
situation awareness, and experience generaliza-
tion capabilities, as well as the potential for
lifelong learning. In experiments, M2PA sig-
nificantly outperforms current state-of-the-art
agents across 50 Minecraft tasks in zero-shot
learning. In exploratory lifelong learning ex-
periments, M2PA demonstrates its continuous
learning ability, achieving a 38.33% success
rate in the “ObtainDiamond” task. Our findings
provide a novel paradigm for constructing more
effective agents in open-world environments.

1 Introduction

Planning (Russell and Norvig, 2016), a core ability
of intelligent agents, involves decomposing com-
plex tasks into sub-goals and generating action se-
quences for each sub-goal. In open-world envi-
ronments like Minecraft (Wikipedia contributors,
2024), planning faces new challenges due to com-
plex environments and diverse tasks. Recent work
(Wang et al., 2023; BAAI, 2023; Zhu et al., 2023;
Liu et al., 2024; Qin et al., 2024) shows that Large
Language Models (LLMs) (Achiam et al., 2023;
OpenAI, 2023; Guo et al., 2024; Team, 2024) with
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Figure 1: Multi-Memory Planner Design Inspired
by Human Memory System. (Left) Human multi-
memory system: sensory, short-term (working), and
long-term (semantic, episodic, procedural) memory.
(Right) Proposed multi-memory planner: sensory,
working, semantic, and episodic memory components.
Procedural memory is excluded from the scope of the
current study.

their rich knowledge and reasoning capabilities, of-
fer a new paradigm for open-world planning. How-
ever, current approaches directly use raw informa-
tion as the external knowledge library (Wang et al.,
2024) or focus only on single-modal memory (Zhu
et al., 2023; Qin et al., 2024), failing to directly
connect to agents’ experiences or generalize knowl-
edge to unfamiliar situations or novel tasks.

Human players in games combine the current sit-
uation with past experiences for planning and con-
tinuously accumulate experiences to improve task
success rates. This observation aligns with research
on human cognitive systems (Anderson et al., 2004;
Laird, 2019; Kotseruba and Tsotsos, 2020; Wang
et al., 2025), particularly memory mechanisms
(Tulving et al., 1972; Squire, 2004). Neuroscience
and cognitive psychology reveal that humans pos-
sess a complex multi-memory system (Figure 1) for
information storage and recall. When faced with
new problems, humans can flexibly invoke and
integrate various memory types, such as semantic
memory (general knowledge) and episodic memory
(specific experiences) (Tulving, 2002), combining
the knowledge required to solve problems with the
experiences of the current situation to generate fea-
sible plans. This enables humans to continuously
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learn, and cope with unfamiliar situations or novel
tasks, supporting lifelong learning. However, hu-
man semantic memory is inherently limited and
leads to constrained planning capabilities.

Inspired by these, we propose the Multi-Memory
Planning Agent (M2PA), integrating LLMs with
human-like multi-memory systems. M2PA lever-
ages LLMs’ expansive world knowledge and lan-
guage processing capabilities while incorporating
perception, task-specific experiences, and lifelong
learning capabilities from the multi-memory sys-
tem. This integration enables M2PA to handle im-
mediate contexts while maintaining consistency
with long-term goals and past experiences. It em-
phasizes what human multi-memory systems do
best (perception, dynamic knowledge integration,
experience utilization, and continuous learning)
and what LLMs do best (massive knowledge repre-
sentation and efficient retrieval).

The M2PA design comprises a semantic mem-
ory module based on LLMs, serving as the primary
knowledge source; an episodic memory module
using vector databases to abstract successful plans
into reusable experiences through innovative en-
coding, retrieval, and updating mechanisms; a sen-
sory memory with a visual buffer capturing the
current scene; a working memory prompter that
integrates various memory and feedback, provid-
ing richer task prompts for LLMs. This design
enables the agent to utilize semantic, episodic, sen-
sory, and working memory for experience accu-
mulation, situation-aware planning, and lifelong
learning. Compared to agents based on external
knowledge, M2PA offers strong dynamic adapt-
ability (automatic update mechanisms), long-term
consistency (decisions and actions are consistent
with long-term goals and past experiences), and
multimodal information management (seamless in-
tegration and utilization of multimodal informa-
tion).

In experiments, M2PA significantly outperforms
current state-of-the-art agents across 50 Minecraft
tasks, which include short-term, medium-term, and
long-term tasks. Notably, it demonstrates strong
planning capabilities in long-term tasks and tack-
ling new challenges without additional training.
We also find that the LLM, with its richer world
knowledge as semantic memory, boosts planning
success rates. In addition, lifelong learning ex-
periments show M2PA’s potential for continuous
learning through step-by-step exploration of the
world and experience accumulation, enhancing its

planning ability.
To summarize, our main contributions are:

• M2PA innovates by integrating LLMs with
human-like multi-memory systems, com-
bining the strengths of both to offset the lim-
itations of each: It combines LLMs’ world
knowledge and language processing capabil-
ities with human-like perception, experience
utilization, and lifelong learning, offering a
new paradigm for open-world agents.

• We design an episodic memory mecha-
nism for LLM-based agents, abstracting suc-
cessful plans as experiences using vector
databases with an automatic update mecha-
nism. Episodic memory enables experience
generalization, supporting lifelong learning.

• Multimodal dynamic working memory au-
tomatically constructs prompts based on task
instructions and environment information,
overcoming LLMs’ context window limita-
tions and enhancing contextual connectivity
between sub-goals.

2 Method

In this section, we first provide an overview of our
proposed M2PA. Next, we elaborate on the design
of the multi-memory components and then detail
how these modules interact within M2PA.

2.1 Overview
Our M2PA comprises three modules: a Multi-
Memory Planner, a Reflector, and a Controller
(Figure 2 (a)). Unlike other LLM-based agent that
use LLMs as central controllers, M2PA positions
the LLM as semantic memory. It works in conjunc-
tion with an episodic memory based on a vector
database, updating the episodic memory repository
when plans are successful.

The Multi-Memory Planner aligns with hu-
man memory systems, integrating multi-memory
information. This approach combines knowledge
with experiences and perception with motor capa-
bilities, enhancing planning abilities in open-world
environments. Planning involves task decomposi-
tion, sub-goal planning, and plan generation. The
process could be formulated as follows:

P={p1, p2, ..., pn}=plan(E,T ;Θ,P),

pi={ai1, ai2, ..., ait}=sub-plan(E,gi;Θ,P),

{g1, g2, ..., gn}=decompose(E,T ;Θ,P).

(1)
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Figure 2: M2PA Architecture and Module Interaction Overview. (a) M2PA includes a multi-memory planner
for producing plans, a reflector for providing execution feedback, and an action controller. (b) The Multi-memory
planner incorporates a semantic memory module leveraging LLMs, an episodic memory module utilizing vector
databases, a sensory memory with a visual buffer, and a working memory prompter. (c) After receiving the task
instruction, the working memory integrates observations, task information, and planning experiences from episodic
memory. Then, it uses a prompt template to guide the semantic memory in generating a plan. Successful plans are
subsequently updated in the episodic memory for future reference.

We define E as the environment and T as the
task. At time step t, gi represents a sub-goal, pi
denotes the corresponding sub-plan, and ait is the
action taken. Θ and P represent the parameters of
the LLM and the task prompts, respectively.

The Reflector triggers self-reflection on exe-
cution performance, either periodically or under
specific conditions (such as encountering obstacles
or achieving intermediate goals). During reflection,
working memory processes and integrates knowl-
edge and experiences from semantic and episodic
memory, conducting comprehensive analysis. This
design strengthens the agent’s self-awareness and
adaptive capabilities.

The Controller parses and executes action se-
quences from the planner. We replace low-level
keyboard and mouse operations with high-level ac-
tions (such as find, craft, mine, etc.) (Details in
Appendix B.2). This approach enables precise han-
dling of environmental observations and operations,
enhances the LLM understanding of situations and
user intentions, and improves interaction efficiency.

2.2 Multi-Memory Planner

The Multi-Memory Planner, M2PA’s core, com-
prises sensory memory, semantic memory, working
memory, and episodic memory (Figure 2 (b)).

2.2.1 Sensory Memory.
M2PA uses self-centric RGB images from
Minecraft as scene graphs in its sensory memory.
These images capture the environment and entities,
similar to human perception, supporting situation-
aware planning. We use MineClip (Fan et al.,
2022), which performs better than CLIP (Radford
et al., 2021) at instruction following, to encode
sensory memory for multimodal retrieval.

2.2.2 Semantic Memory
The LLM serves as semantic memory with exten-
sive knowledge and language processing capabil-
ities. Semantic memory, through interactive plan-
ning (Pallagani et al., 2024), iteratively decom-
poses complex tasks into a hierarchical sub-goal
tree using environment information and experi-
ences from sensory and episodic memory. Action
sequences are generated for each sub-goal (Equa-
tion 1), forming a skill tree (Figure 3).

We provide a structured template for goal de-
composition (Prompt can be found in Appendix D),
including materials, tools, and a set of structured
actions that can be executed by the controller. The
LLM recursively decomposes tasks (e.g., “stone
pickaxe” ) using this template until the sub-goals
are indivisible (e.g., log ), forming a sub-goal
structure tree and skill tree (Figure 3). This en-
hances plan readability and interpretability, aid-
ing error localization during execution failure. For
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Figure 3: Generating-experiences. Working memory employs a goal-oriented prompting strategy, guiding the
LLM to follow established human logical thinking, iteratively decomposing complex tasks into a sub-goal tree
structure, and generating executable action sequences for each sub-goal, forming a skill tree. This skill tree’s
sequence is executable by the action controller. The experience tree, abstracted from successful plans, aids in
guiding subsequent planning tasks.

more details about semantic memory, please check
Appendix A.1.

2.2.3 Working Memory
The Working Memory Prompter simulates human
short-term memory for processing visual informa-
tion, retrieving and generating episodic memories,
and integrating feedback from the reflector. We
design a standardized prompt template that fuses
multi-memory data and feedback (Figure 2 (c)). We
introduce the “Reference for Selection” method
(Gramopadhye and Szafir, 2023) to incorporate
past experiences to autoregressively prompt the
LLM, which can reduce the sub-goal space. Sub-
sequently, we employ the “Evaluation of Sub-goal
Achievement based on Sub-goal Results” method
(Madaan et al., 2023) to integrate feedback, en-
hancing the self-correction capabilities of the LLM.
This goal-oriented prompting strategy (Li et al.,
2024) can guide the LLM to follow established
human logical thinking, efficiently transforming
sub-goal and skill trees into experience trees (Fig-
ure 3), and storing them in episodic memory for
future tasks. See Appendix A.2 for details.

2.2.4 Episodic Memory
Episodic memory, a key M2PA component, stores
experiences in vector form to support planning.
As episodes accumulate, raw language data causes
memory bloat and lower retrieval efficiency. An
efficient episodic memory mechanism requires effi-
cient coding, retrieval, and updating mechanisms.

Figure 4: Feasibility and Quality of Planning are
Determined by Multiple Factors. Including biome,
surrounding resource distribution, and agent’s current
inventory status.

(1) Encoding. Open-world planning (e.g.,
Minecraft) heavily depends on environmental fac-
tors that determine plan feasibility and quality (Fig-
ure 4). We encode six key elements in multimodal
vectors: [ goal, scene graph, plan, inventory, biome,
and time ]. Scene graphs come from sensory mem-
ory. Cross-modal storage captures key features and
relationships. Feature extraction reduces memory
usage and improves retrieval efficiency. See Ap-
pendix A.4.1 for encoding details.

(2) Retrieval. Human planning primarily relies
on situational cues and the recency effect. Situa-
tions provide key cues and trigger points for recall,
with higher similarity memories more easily ac-
tivated. We design an algorithm simulating the
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human memory retrieval process. This algorithm
integrates multimodal information from various
elements (e.g., inventory, scene graph) through a
weighted average approach, forming a comprehen-
sive query vector. Values are then selected based
on similarity. The process is described as follows:

q = α · qcontext + (1− α) · qimage,

R = top-k
(
(argmax)v∈D (similarity (q, v))

)
.

(2)

Where the weight α (which is between 0 and 1)
is used to fuse qcontext and qimage into a comprehen-
sive query vector q. D represents the set of vectors
in the vector database. v is a candidate vector, and
R is the retrieved memory. For more details, please
check the Appendix A.4.2.

(3) Updating. Memory accumulation may
cause reasoning issues. Existing methods, such as
ChatDB (Hu et al., 2023) and RET-LLM (Modar-
ressi et al., 2023), use manual deletion and FIFO
strategies, respectively, but fail to enable automatic
memory replacement. Inspired by human memory
reconsolidation and integration, we design two up-
dating modes: real-time and periodic. For more
details, please check the Appendix A.4.3.

• Real-time updating: New information re-
places original memory when similarity
reaches a threshold, ensuring timeliness and
accuracy.

• Periodic updating: The entire memory repos-
itory undergoes restructuring and optimization
when system resources permit.

M2PA’s dual updating mechanism compresses stor-
age space, enhances retrieval efficiency, and pre-
serves core memory information. The formal de-
scription follows:

Mupdate =

{
f(M,N) if similarity > θ,

g ({Mi}) if |{Mi}| > δ.
(3)

Where f(·) and g(·) denote memory integration
functions. M represents existing memories, and
N represents new information. The thresholds θ
and δ are introduced to represent decision criteria,
where |{Mi}| indicates the number of memories
associated with the same task i.

2.3 Module Interaction
Let’s take the example (“CraftFrame” in
Minecraft) shown in Figure 2 (b)(c) to demonstrate
the workflow of module interactions in M2PA.

First, working memory retrieves relevant experi-
ences M∗

Epis.(t) from episodic memory MEpis.(t),
combining observation MSen.(t) from sensory
memory and task instruction T . Then, working
memory generates a multimodal query prompt
Prompt(t) by filling the template with M∗

Epis.(t),
MSen.(t), T , and feedback Rit. Next, semantic
memory MSem. uses Prompt(t) to prompt LLM
to decompose the complex task and generate a
plan P ∗ . If P ∗ succeeds, the
corresponding information updates MEpis.. If
P ∗ fails, the reflector generates feedback R∗

it,
triggering plan revision. This process repeats
until the task is completed. In this closed-loop
process, the LLM functions as both a planner and
a reflector.

M∗
Epis.(t) = retrieve(MSen.(t), T ;MEpis.),

Prompt(t) = combine(M∗
Epis.(t),MSen.(t), T,

Rit;MWork),

P ∗ = plan(Prompt(t);MSem.),

R∗
it = execute(ait),

MEpis. = update(PSucc;MEpis.).

(4)

3 Experiments

3.1 Experiments Setting

Environment. We leverage OpenAI’s GPT-4o
(Achiam et al., 2023) and GPT-3.5-turbo (OpenAI,
2023) APIs as M2PA’s semantic memory core for
text completion. Along with text-embedding-ada-
002 (OpenAI, 2022) API for text embedding, en-
abling efficient storage and retrieval. Integration
with MineClip (Fan et al., 2022) vision encoder en-
hances M2PA’s in-game visual information parsing,
yielding better results compared to directly using
multimodal large models(Qin et al., 2024).

Task Setting. We select 50 tasks from Mine-
Dojo (Fan et al., 2022) (Minecraft benchmark)
(Wikipedia contributors, 2024). Tasks vary in pe-
riod and complexity, focusing on obtainable over-
world items. Tasks are categorized into five diffi-
culty levels (basic to complex) based on minimum
required sub-goals (Appendix C).

Baselines. We compare M2PA with three repre-
sentative baselines in the experiments. Plan4MC
(BAAI, 2023), further integrates LLMs and Re-
inforcement Learning (RL) (Matsuo et al., 2022)
without using memory for planning. DEPS (Wang
et al., 2023), utilizes text-based memory as the ini-
tial plan, but lacks visual information integration
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for planning. MP5 (Qin et al., 2024), combines vi-
sual information for situation-aware planning, but
lacks scene-related elements when encoding mem-
ory.

Evaluation metrics. Agents start in survival
mode with empty inventories. Success means
obtaining targets within time limits, while death
counts as a failure. Each task runs 30 times with
random starting positions and seeds. All methods
use standardized prompts, feedback templates, and
controllers. We report average success rates and
include game steps as metrics in lifelong learning
experiments.

Task level Task
Average Success Rate (%)

Plan4MC DEPS MP5 M2PA

Basic
53.33 80.00 100 100.00

Average 64.33±9.7 91.00±3.3 97.00±2.8 99.33±2.0

Easy
46.67 63.33 76.67 93.33

Average 43.43±6.3 80.33±5.0 84.67±4.8 99.27±1.3

Medium
36.66 76.67 73.33 90.00

Average 25.53±8.7 53.67±18.1 71.33±6.5 84.33±5.4

Hard
16.67 20.00 43.33 50.00

Average 15.07±6.2 19.20±4.5 43.00±4.8 52.00±7.2

Complex
2.00 6.00 16.00 33.33

Average 0.20±0.6 0.80±1.8 9.67±5.9 20.20±7.7

Table 1: M2PA and baselines performance on
Minecraft tasks. Detailed results for each task can
be found in Appendix C.

3.2 Main Results
Table 1 shows experimental results across diffi-
culty levels (Detailed accuracy in Appendix C).
M2PA performs best in all categories. For Basic
and Easy tasks, all methods perform similarly, with
M2PA slightly ahead (average success rate over
99%). As task complexity increases, M2PA’s ad-
vantage grows, with a success rate of 52%, nearly
three times that of DEPS (Wang et al., 2023)
and Plan4MC (BAAI, 2023). For Complex tasks,
M2PA achieves a 20.20% success rate, twice that
of MP5, and outperforms other methods. Its ex-
cellent performance in Hard and Complex tasks
demonstrates strong long-term planning and envi-
ronmental adaptability.

3.3 Ablation Study
We conduct ablation studies to evaluate the effec-
tiveness of various modules in the multi-memory
system (Table 2). Our analyses are as follows:

Semantic Memory. Using LLM alone achieves
33.33% success rate for “Crafting Table” , show-

Sema.
Mem.

Sens.
Mem.

Work
Mem.

Epis.
Mem.

Average Success Rate (%)

✓ 33.33 16.00 0.00 0.00 0.00
✓ ✓ 66.67 33.33 0.00 0.00 0.00
✓ ✓ ✓ 93.33 83.33 66.67 43.33 6.67
✓ ✓ ✓ ✓ 100.00 100.00 90.00 76.67 16.67

Table 2: Ablation study. Sema. Mem.: Semantic
Memory; Sens. Mem.: Sensory Memory; Work Mem.:
Working Memory; Epis. Mem.: Episodic Memory.

ing planning potential. Sensory Memory. Agents
with sensory memory show higher success rates,
demonstrating better environmental understanding.
Working Memory. Agents with working memory
first complete “Diamond pickaxe” , highlighting
its role in memory integration and feedback pro-
cessing. It provides better prompts and helps cor-
rect errors, crucial for long-term tasks. Episodic
Memory. Agents with episodic memory nearly
triple the success rate for the “Diamond pickaxe”

, showing experience’s significant impact on per-
formance.

3.4 Exploring Lifelong Learning Capabilities

In this section, we further explore M2PA’s lifelong
learning capabilities.

3.4.1 The Compensatory Effect of Episodic
Memory on Semantic Memory

We tested four M2PA configurations: GPT-3.5-
turbo and GPT-4o, both with and without episodic
memory. Results in Figure 5 show performance
increases in order: GPT-3.5-turbo < GPT-4o <
GPT-3.5-turbo + episodic memory < GPT-4o +
episodic memory. Meanwhile, the play-game steps
decreased in the same order. These findings demon-
strate tha LLMs with richer world knowledge and
language processing capabilities (serving as seman-
tic memory) improve planning success and effi-
ciency. Episodic memory provides complementary
benefits to semantic memory, and together these
memory mechanisms significantly enhance LLM
planning capabilities.

3.4.2 The Impact of Situation-Awareness on
Planning Efficiency

We find that tasks show higher success rates above
ground than underground at the same difficulty
level. Task difficulty increases with depth, likely
due to higher scene similarity. Deeper environ-
ments are harder to distinguish, limiting planning
effectiveness (Figure 6).
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Figure 5: Success rates and play-game steps for var-
ious configurations and task terms. We find that
episodic memory compensates for semantic memory
limitations.

Figure 6: Screenshots of scenes with varying recog-
nizability. We present three screenshots of scenes at
different depths above and below ground.

To quantify visual recognizability’s impact, we
compare CLIP (Radford et al., 2021) (simulating
low-recognizability underground) and MineClip
(Fan et al., 2022) (simulating high-recognizability
above-ground). Analysis of equal-difficulty tasks
confirms situation awareness significantly affects
success rates (Table 3).

Visual
Encode

Average Success Rate(%)
Basic Simple Medium Hard Complex

Clip (Radford et al., 2021) 97.27 88.10 58.50 36.70 12.90
MineClip (Fan et al., 2022) 99.33 99.27 84.33 52.00 20.20

Table 3: Success rates for different visual encoding
models.

3.4.3 Mechanistic Analysis of Episodic
Memory Effectiveness

To investigate episodic memory mechanisms, we
analyze three aspects:

(1) Success Rate with Episodic Memory. We
introduced two metrics: overall success rate
Roverall, and conditional success rate Rcondition

(Bishop and Nasrabadi, 2006). The latter measures
the success rate after the first successful execution,
i.e., after acquiring episodic memory.

Roverall =
Ns

Nt
, Rcondition =

Ns| c

Nt| c
. (5)

In this equation, Ns represents successful at-
tempts, Nt denotes total attempts, Ns| c refers to

successful attempts under condition c, and Nt| c
indicates total attempts under condition c.

Figure 7: Overall success rate and conditional success
rate for typical items in each task group. We report
two metrics for typical items.

Figure 7 shows Roverall significantly declines
as task difficulty increases. However, Rcondition

remains less affected by task difficulty, nearly dou-
bling compared to Roverall in “ObtainDiamond” .
This indicates episodic memory significantly im-
proves overall planning stability.

(2) Impact of Scattered Memory Fragments
on Comprehensive Success. Experiments on the
“ObtainDiamond” (12 sub-goals) reveal a positive
correlation between the number of sub-goals in
episodic memory and success rate (Figure 8).

We do not directly store information related to
“ObtainDiamond” , but instead use the experi-
ences of its sub-goals, encoding their key elements
into episodic memories. This is not mere data reuse.
The increased planning success rate observed with
more sub-goals memories indicates that M2PA can
solve unfamiliar scenarios and tasks through expe-
rience generalization.

Figure 8: Impact of a number of sub-goals in episodic
memory on success rate. Taking “ObtainDiamond”
as an example, we report its success rate as the number
of sub-goals increases.

(3) Impact of Episodic Memory Capacity. We
assess episodic memory capacity’s impact (repre-
senting different learning stages) on M2PA’s perfor-
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mance, setting a 300-entry memory limit. Figure 9
shows success rates increase with memory capac-
ity across tasks. Short-term tasks (Basic, Easy,
and Medium) exhibit a saturation effect, reaching
high, stable success rates at specific memory thresh-
olds, while long-term tasks (Hard and Complex)
keep improving, even when reaching the capacity
limit, with the task of “ObtainDiamond” reach-
ing 38.33%. This improvement likely comes from
M2PA’s built-in memory update mechanism dy-
namically merges and compresses similar experi-
ences. This shows M2PA’s growing planning abili-
ties and lifelong learning potential.

Figure 9: The impact of memory capacity on M2PA
success rates. We report how the success rates of typical
items change with varying memory capacity.

4 Related Work

4.1 Planning with LLM-based Agent

Traditional methods like symbolic planning have
required environment modeling and have been lim-
ited to handling a single task in open worlds, re-
stricting generalization (Benyamin et al., 2023)
(Wichlacz et al., 2019). Reinforcement learning
(RL) (Matsuo et al., 2022) has emerged as the dom-
inant approach for creating game-playing agents,
while RL agents struggle with open-world tasks
due to their high computational overhead and lim-
ited task generalization (Baker et al., 2022; Hafner
et al., 2023).

LLMs have leveraged their vast knowledge and
language processing abilities to provide a new
paradigm for planning. Recent work (Wang et al.,
2023) (Liu et al., 2024) (BAAI, 2023) (Zhu et al.,
2023) has incorporated LLMs as planning and re-
flection modules but has lacked visual information
integration and experience utilization for planning.
GITM (Zhu et al., 2023) and DEPS (Wang et al.,
2023) have directly used text-based memory as the

initial plan, which limits the comprehensive utiliza-
tion of experience, especially in situation-aware
planning. Jarvis-1 (Wang et al., 2024) has utilized
raw multimodal data but has lacked abstract inte-
gration of memory, resulting in insufficient utiliza-
tion of experience. MP5 (Qin et al., 2024) com-
bines visual information but lacks scene-related
elements when encoding memory. Despite LLM-
based agents having extensive world knowledge,
they still face limitations in situation awareness,
experience utilization, and lifelong learning.

4.2 Human Memory Systems

The human memory system consists of three main
types: sensory memory (ultra-short-term), work-
ing memory (short-term), and long-term memory.
Long-term memory (Tulving et al., 1972) has two
components: semantic and episodic. Semantic
memory stores general knowledge and supports
basic reasoning (Collins and Quillian, 1969; Mc-
Clelland and Rogers, 2003), which aligns with the
capabilities of LLMs. Episodic memory stores
personal experiences, and its absence can limit
learning and adaptation (Rosenbaum et al., 2005).
Human episodic memory and semantic memory
work together, enabling the effective use of past
experiences and broad knowledge when facing
new challenges. Additionally, sensory memory
captures immediate perceptual information, while
working memory (Baddeley, 1992; Roth and Court-
ney, 2007) processes and integrates it with past
experiences and knowledge for decision-making.
This collaboration enables humans to continuously
learn, supporting lifelong learning.

5 Conclusion

This paper presents M2PA, a multi-memory plan-
ning agent for open-world environments. M2PA
aligns with human multi-memory functions, inte-
grating semantic and episodic memory modules to
leverage situation awareness, past experiences, and
knowledge to enhance decision-making and plan-
ning abilities. Experiments demonstrate M2PA’s
efficiency across short-term, medium-term, and
long-term Minecraft tasks. It significantly outper-
forms existing baselines in zero-shot learning. Fur-
thermore, M2PA exhibits lifelong learning abili-
ties through dynamic memory updates and opti-
mization. Future research will explore M2PA’s
multi-modal capabilities. It will also refine mem-
ory integration and planning abilities, to advance
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the development of general artificial intelligence.

6 Limitations

Our M2PA aims to enhance open-world planning
performance by combining the strengths of human
memory systems with LLMs. Although replanning
rounds and token costs were not formally evalu-
ated as primary metrics, preliminary testing indi-
cates that M2PA performs comparably to baseline
models. A key limitation stems from the proba-
bilistic nature of LLMs’ reasoning process, which
causes prerequisite identification errors, resulting
in incorrect feedback loops and unnecessary plan
revisions. Although incorporating rule-based rea-
soning or structured knowledge could potentially
address these issues, such modifications could im-
pair generalization. Future work will explore the
trade-off between symbolic reasoning and computa-
tional overhead, aiming to improve computational
efficiency while maintaining robust generalization
across diverse scenarios.

7 Ethics Statement

Inspired by cognitive theory, we propose M2PA,
a planning agent for open-world tasks. It inno-
vates by integrating LLMs with human-like multi-
memory systems, combining the strengths of both
to offset the limitations of each. It combines LLMs’
world knowledge and language processing capabili-
ties with human-like perception, experience utiliza-
tion, and lifelong learning, offering a new paradigm
for open-world agents. Our experiments were con-
ducted in MineDojo, an open-source simulation
framework for Minecraft that provides a wide range
of procedurally generated tasks and a comprehen-
sive benchmark suite. MineDojo is built upon MIT-
licensed code and APIs, ensuring ethical compli-
ance and research reproducibility. Additionally, we
have submitted our code to ensure that researchers
and practitioners can easily access and implement
our methods.
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A Implementation Details of M2PA

A.1 Semantic Memory

Semantic memory functionality, primarily imple-
mented through Large Language Models (LLMs),
plays an essential role in our system. We integrate
OpenAI’s GPT-4o and GPT-3.5-turbo via API in-
terfaces for complex text completion tasks. By
combining sensory and episodic memory with situ-
ation awareness and experiences, we address com-
plex tasks through interactive planning. Our ap-
proach decomposes large tasks into manageable
sub-tasks using a goal decomposition template,
guiding LLMs to create a hierarchical sub-goal tree
structure. LLMs then generate executable actions
for each sub-goal, forming a skill tree that enables
progressive task completion while maintaining fo-
cus on overall objectives. This method enhances
problem-solving capabilities across varying task
complexities.

Experiments reveal that GPT-3.5-turbo, despite
inferior inferential capabilities compared to GPT-
4o, significantly improves when combined with
episodic memory. This finding highlights episodic
memory’s compensatory role for semantic mem-
ory, particularly in enhancing planning capabilities
for complex tasks, bringing GPT-3.5-turbo’s per-
formance closer to that of GPT-4o.

A.2 Working Memory

The working memory prompt simulates human
short-term memory, processing visual buffer in-
formation, retrieving and generating episodic mem-
ories, and integrating reflector feedback. It main-
tains and manipulates information over short pe-
riods, providing contextual support for M2PA’s
decision-making and actions.

For sensory memory processing, we adopt
Mineclip over CLIP (Radford et al., 2021) due
to its superior performance in instruction follow-
ing strategies. MineClip (Fan et al., 2022) effi-
ciently retrieves relevant episodes from episodic
memory through encoded visual buffer informa-
tion, enabling M2PA to associate current visual
inputs with past experiences for contextually rele-
vant decisions.

We design a standardized prompt template to in-
tegrate multiple memories and feedback efficiently.
Two innovative methods are introduced: (1) Ref-
erence for selection, which prompts LLMs au-
toregressively by incorporating historical experi-
ence, reducing sub-goal space and enabling faster,

more accurate sub-goal generation; (2) Evaluation
of Sub-goal Achievement based on sub-goal Re-
sults, integrating feedback into prompts to enhance
LLMs’ self-correction ability. This method allows
real-time strategy adjustments, improving system
adaptability and robustness. Our goal-oriented
prompting strategy guides LLMs to follow estab-
lished human logical thinking patterns, enhancing
system transparency and interpretability. It facili-
tates the efficient transformation of sub-goal and
skill trees into experience trees, improving learning
efficiency and enabling effective storage of accu-
mulated experiences in episodic memory.

A.3 Sensory Memory
M2PA utilizes RGB images as sensory memory,
stored in the visual buffer. These images capture
the environment, objects, and entities, approximat-
ing human perception. The working memory em-
ploys a MineClip (Fan et al., 2022) visual encoder
to encode sensory memory for multimodal vector
retrieval and storage.

A.4 Episodic Memory
A.4.1 Encoding
In open-world environments like Minecraft, plan-
ning is highly context-dependent. Even simple
tasks have multiple planning paths, determined
by biome, resource distribution, and inventory sta-
tus. Resource availability varies across biomes,
requiring flexible acquisition strategies. To ad-
dress this contextualized planning problem while
avoiding memory explosion and low retrieval ef-
ficiency, we propose an innovative experience ab-
straction and encoding method. We encode six
key elements: [ goal, scene graph, plan, inven-
tory, biome, and time ] into structured experiences
stored in episodic memory. This method enables
effective interpretation of plan generation reasons
and retrieval of relevant past experiences. The en-
coded elements capture context-dependency and
environment-relatedness in planning:

Goal: Defines the specific task. Scene Graph:
Provides environmental information. Plan: Record
steps to achieve the goal. Inventory: Reflects avail-
able resources. Biome: Determines resource dis-
tribution. Time: Serves as a marker for memory
updating.

This structured encoding mechanism improves
planning efficiency, adaptability, and interpretabil-
ity. It provides a foundation for efficient and re-
liable planning in complex, dynamic open-world
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environments, enabling wiser and more flexible
decision-making.

A.4.2 Retrieval
Human episodic memory retrieval relies on situa-
tional cues and the recency effect. Environmental
context triggers recall, activating highly related
memories. The recency effect prioritizes tempo-
rally similar situations. We emulate this process
by searching for successful past plans, combining
task, scene, inventory, and time information. The
most recent successful plan serves as the initial
plan for the next round. The implementation pro-
cess involves: (1)Fusing multimodal information
through weighted averaging to form a comprehen-
sive query vector. (2)Returning memories meeting
a similarity threshold (score below 0.05). (3)Re-
sorting results using the time element, selecting
the most recent record. When no similarity scores
are below 0.05, indicating no relevant knowledge,
LLMs plan based on sensory memory and objec-
tive knowledge. This refined search and decision-
making mechanism enhances planning decisions
across various task scenarios, improving overall
task execution efficiency and success rate.

A.4.3 Updating
Human memory is a dynamic reconstruction pro-
cess, continuously influenced by time and context.
This leads to constant updating of episodic memo-
ries, contributing to a coherent self-historical cog-
nition.

Memory updating occurs through reconsolida-
tion and integration. Reconsolidation allows new
information to merge with retrieved memories be-
fore re-storage. Integration consolidates similar
memories into a unified representation, reducing
redundancy and improving retrieval efficiency. Our
updating process design draws on these mecha-
nisms:

(1)Real-time updating: Mimicking reconsolida-
tion, high-similarity memories are merged, with
new memories replacing similar old ones. (2)Peri-
odic updating: Inspired by integration, the entire
memory library is reconstructed at regular intervals
when resources permit. Using the Top-K method
(K=3), the three most similar memories are inte-
grated, with the most recent record replacing the
others.

(2) Retrieval. Human planning primarily relies
on situational cues and the recency effect. Situa-
tions provide key cues and trigger points for recall,

with higher similarity memories more easily ac-
tivated. We design an algorithm simulating the
human memory retrieval process. This algorithm
integrates multimodal information from various
elements (e.g., inventory, scene graph) through a
weighted average approach, forming a comprehen-
sive query vector. Values are then selected based
on similarity. The process is described as follows:

A.4.4 Storage
Memory storage preserves information over time.
Embedding technology, leveraging LLMs’ vec-
tor embedding capabilities, has become the main-
stream approach for memory representation. This
method encodes raw text into fixed-dimensional
vector space, offering two key advantages:

(1)Data knowledgeization: Vector databases
unify multi-modal data (text, images, audio) into
vector representations, enabling seamless integra-
tion and efficient cross-modal retrieval. This ap-
proach captures key features and intrinsic relation-
ships, achieving deep data alignment and integra-
tion. (2)Storage optimization: Vector representa-
tions, as compressed forms of data, significantly re-
duce storage requirements and computational over-
head, improving overall system efficiency.

These embeddings enable efficient similarity-
based retrieval using distance metrics. Vector
databases, unlike traditional relational databases,
support storage and retrieval of embedded represen-
tations, offering flexible solutions for complex data
processing. We employ OpenAI’s text-embedding-
ada-002 and MineClip to transform empirical data
into embeddings for vector database storage.

B Environment Setting

B.1 Observation Space

We impose significant restrictions on environmen-
tal information to achieve embodied agent-like per-
ception. Unlike omniscient perception methods
(e.g., LiDAR rays in GIMT (Zhu et al., 2023)), our
agent perceives its surroundings through egocentric
RGB images, mimicking human perception. The
observation space consists of two components:

Perceptual observations:
Egocentric, Minecraft-style RGB images (sen-

sory memory) 3x3x3 voxels encountered by the
agent (object properties)

Status observations:
Relevant ancillary text information (health statis-

tics, inventory details) This dual observation sys-
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Index Action Argument Description

1 Find Object Navigate the environment to locate a target object
2 Approach Object Move towards a target object
3 Mine Object, tool Using a tool to break down a block or object

4 Craft/Smelt Object, platform Combine raw materials or items at a crafting table or furnace to
create a new item

5 Attack Object, tool Attack entity
6 Equip Object Equip or hold a specific item or tool in the player’s hand

7 Dig-down Y-level, tool Dig or excavate downwards to a specified y-coordinate using a
tool

8 Dig-up Tool Dig or excavate upwards using a tool

Table 4: The definition of the Action Space we use in MineDojo simulator.

tem enables nuanced, context-aware environmental
interaction, aligning with human sensory integra-
tion for comprehensive understanding.

B.2 Action Space

The Controller module executes action sequences
defined in Table 4, formed through the MineDojo
API and refined via environmental interactions.
The "find" action, for instance, involves direction-
less movement, with the agent adjusting its orienta-
tion based on MineDojo’s field of view information
to approach targets.

C Minecraft Task Details

We analyze MineDojo tasks, categorizing them by
minimum required sub-goals (Table 5). The actual
sub-goal count may vary based on the initial state
and biome. We select 50 tasks in ascending order
of minimum sub-goals.

To validate M2PA, we choose tasks across five
complexity levels: basic, easy, medium, hard, and
complex. Tasks are defined by level, name, mini-
mum sub-goals, tools, platforms, initial inventory,
and maximum episode steps. Episode time lim-
its range from 12,000 (basic) to 36,000 (complex)
steps.

Given Minecraft’s open-world nature, we con-
duct 30 tests per task with randomized initial po-
sitions and environment seeds. We report mean
success rates per difficulty level. The agent starts
in survival mode with an empty inventory. Success
requires obtaining the target within the time limit;
agent death results in failure. The experimental
results of all tasks are shown in Table 6.

D Prompt

M2PA uses GPT-4o and GPT-3.5-turbo APIs as
semantic memory cores for interactive planning

with LLMs, enabling task decomposition and feed-
back explanation. Prompts consist of ’SYSTEM’
directives and ’USER’ inquiries in Table 7.
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Task level Task name Sub-goal Num. Tools/Platform Step Setting

Basic

mine log 1 -
mine sand 1 -
mine sapling 1 -
mine wheat seeds 1 -
mine dirt 1 -
mine grass 1 - 12K
craft plank 2 -
craft stick 3 -
craft button 3 -
craft crafting table 3 -

Easy

craft chest 4 crafting table
craft bowl 4 crafting table
craft boat 4 crafting table
craft wooden slab 5 crafting table
craft wooden pressure
plate 5 crafting table

craft ladder 5 crafting table 12K
craft barrel 5 crafting table
craft wooden axe 5 crafting table
craft wooden pickaxe 5 crafting table
craft wooden sword 5 crafting table

Medium

mine cobblestone 6 wooden pickaxe
mine coal ore 7 wooden pickaxe
craft furnace 7 crafting table
craft lever 7 crafting table
craft stone pickaxe 7 crafting table
craft stone axe 7 crafting table 24K
craft stone hoe 7 crafting table
craft stone shovel 7 crafting table
craft stone sword 7 crafting table
mine iron ore 8 stone pickaxe

Hard

smelt glass 9 furnace
smelt iron ingot 10 furnace
craft iron bars 11 crafting table
craft carpentry table 11 crafting table
craft iron pickaxe 11 crafting table
craft iron door 11 crafting table 36K
craft iron trapdoor 11 crafting table
craft rail 11 crafting table
craft cauldron 11 crafting table

Complex

obtain diamond 12 iron pickaxe
mine redstone 12 iron pickaxe
craft dropper 13 crafting table
craft redstone torch 13 crafting table
craft compass 13 crafting table
craft clock 13 crafting table 36K
craft piston 13 crafting table
craft diamond pickaxe 13 crafting table
craft diamond sword 13 crafting table
craft raw gold block 13 crafting table

Table 5: The details of all the tasks.
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Task level Task Success rate(%)
DEPS Plan4MC MP5 M2PA(our)

Basic

mine log 93.33 73.33 96.67 100.00
mine sand 86.67 60.00 100.00 93.33
mine sapling 93.33 66.67 93.33 100.00
mine wheat seeds 93.33 60.00 96.67 100.00
mine dirt 96.67 80.00 96.67 100.00
mine grass 93.33 80.00 100.00 100.00
craft plank 90.00 60.00 93.33 100.00
craft stick 86.67 56.67 100.00 100.00
craft button 90.00 53.33 93.33 100.00
craft crafting table 86.67 53.33 100.00 100.00

Easy

craft chest 86.67 53.33 90.00 100.00
craft bowl 83.33 50.00 90.00 100.00
craft boat 86.67 43.33 86.67 100.00
craft wooden slab 76.67 46.67 80.00 100.00
craft wooden pressure plate 86.67 43.33 90.00 100.00
craft ladder 80.00 33.33 86.67 100.00
craft barrel 73.33 50.00 86.67 100.00
craft wooden axe 76.67 43.33 80.00 96.67
craft wooden pickaxe 73.33 33.33 80.00 96.67
craft wooden sword 80.00 46.67 76.67 100.00

Medium

mine cobblestone 76.67 40.00 80.00 93.33
mine coal ore 73.33 33.33 76.67 86.67
craft furnace 76.67 36.66 73.33 90.00
craft lever 66.67 20.00 73.33 86.67
craft stone pickaxe 60.00 16.00 76.67 83.33
craft stone axe 40.00 33.33 73.33 86.67
craft stone hoe 43.33 20.00 60.00 80.00
craft stone shovel 33.33 16.00 66.67 80.00
craft stone sword 40.00 20.00 73.33 83.33
mine iron ore 26.67 20.00 60.00 73.33

Hard

smelt glass 16.67 20.00 50.00 66.67
smelt iron ingot 26.67 23.33 46.67 60.00
craft iron bars 23.33 16.67 40.00 56.67
craft carpentry table 23.33 16.67 50.00 53.33
craft iron pickaxe 16.00 20.00 43.33 53.33
craft iron door 20.00 16.67 43.33 50.00
craft iron trapdoor 13.33 16.00 40.00 43.33
craft rail 23.33 13.33 43.33 46.67
craft cauldron 16.00 6.00 33.33 46.67
craft minecart 13.33 2.00 40.00 43.33

Complex

obtain diamond 6.00 2.00 16.00 33.33
mine redstone 2.00 0.00 20.00 33.33
craft dropper 0.00 0.00 13.33 23.33
craft redstone torch 0.00 0.00 6.00 20.00
craft compass 0.00 0.00 13.33 23.33
craft clock 0.00 0.00 6.00 16.00
craft piston 0.00 0.00 10.00 16.00
craft diamond pickaxe 0.00 0.00 10.00 13.33
craft diamond sword 0.00 0.00 0.00 10.00
craft raw gold block 0.00 0.00 2.00 13.33

Table 6: Success rates in all the tasks. Each task is tested for 30 episodes.
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SYSTEM:

You are a helpful planner in Minecraft, and good at planning workflows to complete tasks. You need to generate the sequences of
goals for a certain task in Minecraft.
I will give you a task, for which you need to conceive a plan, and then create a workflow composed of a sequence of various
actions to complete this task.
I will give you the following information:
task information:
- task: The name of the task.
- quantity: The required quantity for the task.
- material: The necessary materials for achieving the task in your inventory.
- tool: The primary tool necessary for this task, for instance a wooden pickaxe. If there are multiple tools, list only the most
fundamental one.
- platform: The crafting station or block that is necessary for this task, for instance a crafting table or a furnace.
current environment information: [The image input is a vector encoded by MineClip.]
inventory: a dict representing the inventory, whose keys are the names of the objects and the values are their quantities.
RESPONSE FORMAT
{ "explanation": "explain why the last action failed, set to empty string for the first planning",
"workflow": [ {"times": "the number of times the actions will perform", "actions": [ {"name": "action name", "args": {"arg
name": value}}, ... ]}
{"times": "the number of times the actions will perform", "actions": [ {"name": "action name", "args": {"arg name": value}}, ...
]}]}
Here are some examples for planning workflow:
Example
INPUT:
task information:
- task: iron pickaxe.
- quantity: 1.
- material: {"iron ingot": 3, "stick": 2 }
- tool: None
- platform: crafting table
- tips: 1 iron pickaxe can be crafted with 3 iron ingots and 2 sticks as the material and crafting table as the platform.
current environment information: - []The scene graph encoded by MineClip.]
inventory: {"iron ingot": 4, "stick": 3, "crafting table": 1}
RESPONSE:
{
"explanation": "...",
"workflow": [
{"times": "1", "actions": [ {"name": "craft", "args": {"obj": "iron pickaxe", "materials": {"iron ingot": 3, "stick": 2 }, platform:
"crafting table"} } ]} ]
}

USER:
My information is as follows:
- The task is:
{task_information}
- The current environment:
{current_environment_information}
- The current inventory: {inventory}
-Based on experience: {episodic_memory}
-The reflection is: {feedback}
Please plan for the task.

Table 7: Prompt for M2PA in Minecraft tasks.

17


	Introduction
	Method
	Overview
	Multi-Memory Planner
	Sensory Memory.
	Semantic Memory
	Working Memory
	Episodic Memory

	Module Interaction

	Experiments
	Experiments Setting
	Main Results
	Ablation Study
	Exploring Lifelong Learning Capabilities
	The Compensatory Effect of Episodic Memory on Semantic Memory
	The Impact of Situation-Awareness on Planning Efficiency
	Mechanistic Analysis of Episodic Memory Effectiveness


	Related Work
	Planning with LLM-based Agent
	Human Memory Systems

	Conclusion
	Limitations
	Ethics Statement
	Implementation Details of M2PA
	Semantic Memory
	Working Memory
	Sensory Memory
	Episodic Memory
	Encoding
	Retrieval
	Updating
	Storage


	Environment Setting
	Observation Space
	Action Space

	Minecraft Task Details
	Prompt

