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Abstract

In this paper, We describe our approach for
Germeval 2019 Task 1, a hierarchical multi-
label multi-class text classification task. This
task involves two subtasks where short de-
scriptive text about German books need to be
classified into one or multiple (a) top level cat-
egories (8 classes). (b) specific categories (343
classes). We present a novel approach of using
Convolutional Seq2Seq modeling for solving
both the tasks with a single model. In addition,
We use category based random over sampling
to handle the imbalance. Our approach reaches
f1-micro score of 0.867 on Subtask (a) and
0.6722 on Subtask (b). Our approach achieved
first rank in Subtask (a) and second rank in
Subtask (b) in the test phase of the shared
task. Our code is available in the link https:
//gitlab.com/vumaasha/germeval.

1 Introduction

Multi-label Multi-class Hierarchical classification
(MLMCHC) refers to a setting where We can as-
sign one or more labels to each instance (multi-
label) where each label can have more than two
possible classes (multi-class) that could be or-
ganized in a hierarchical structure (hierarchical).
MLMCHC problems are common in domains like
text classification (Rousu et al. (2006)), image
classification (Hsu et al. (2009)) and bioinformat-
ics (Barutcuoglu et al. (2006), Feng et al. (2017)).
It is more commonly used in the field of Natural
Language Processing (NLP) to classify text doc-
uments where a document can have multiple top-
ics associated with them. Unlike the traditional
flat classification approach, in MLMCHC the la-
bel cardinality (Charte et al., 2015) and number of
labels is typically high. Also, the labels are inter-
dependent and their distribution is skewed.

Traditionally, the hierarchical classification
problem is solved by a binary relevance approach

where the task is reduced to a flat classification
problem by ignoring the label hierarchy and learn-
ing an independent binary classifier for each la-
bel in the taxonomy or ontology (Tsoumakas et al.
(2009)). However, this approach neglects the cor-
relations between labels. Cerri et al. (2016) follow
a top-down strategy using neural networks where
they use the previous level along with the feature
vectors to predict the current level. The issue in
this strategy is that the error in a level gets prop-
agated to all the levels following it. Classifier
chains (CC) proposed by Read et al. (2011) uses
a chain of binary classification problems to model
the correlations between labels. This approach is
computationally expensive since it relies on train-
ing a cascade of classifiers.

Seq2Seq models have achieved tremendous
success in machine translation (Bahdanau et al.
(2014), Cho et al. (2014)). Li et al. (2018) and
Hiramatsu and Wakabayashi (2018) have used
RNN in their Seq2Seq models for product taxon-
omy classification. For machine translation tasks,
RNNs are most preferred choice than CNN be-
cause of their superior performance on text ap-
plications. Gehring et al. (2017) have proposed
a Convolutional Seq2Seq model which achieves
state-of-the-art accuracy at nine times the speed of
recurrent neural systems.

In our approach, we use Convolutional
Seq2Seq architecture to model MLMCHC as a
translation task, apply it to Germeval Task1 and
evaluate the results. Experiments show that our
approach can classify the books more precisely
and our model reaches the f1-micro scores of
0.867 on Subtask (a) and 0.6722 on Subtask (b).
Our approach achieved first rank in Subtask (a)
and second rank in Subtask (b) in the test phase of
the shared task. The rest of the paper is organized
as follows. We describe the characteristics of the
dataset in Section. 2. In Section. 3, we present
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our modeling pipeline that explains the sequence
of steps in our approach. Feature engineering, im-
balance handling and model architecture are ex-
plained in Section. 3.1, Section. 3.3 and Section.
3.6 respectively. In Section. 3.9 and Section. 4
we provide our experiment setup. Finally, in Sec-
tion. 5 we conclude and provide details about the
possible future works.

2 Germeval 2019 Task 1 Dataset

The dataset contains the attributes URL, ISBN, ti-
tle, authors, blurbs, categories, and date of publi-
cation corresponding to German books which are
crawled from randomhouse.de. The categories
could be organized as a hierarchy tree and the
metadata corresponding to the hierarchy is pro-
vided. This dataset follows the policies described
in the RCV1 dataset by Lewis et al. (2004).

343 unique categories are hierarchically struc-
tured (8, 93 and 242 on level 1, 2 and 3 respec-
tively). One or more specific categories are as-
signed to each book. Specific categories need not
have to be a leaf node. For instance, the most
specific category of a book could be Romane &
Erzäulungen, although Roman & Erzählungen has
further children categories, such as Romanbiogra-
phien.

Figure 1: Top Level label distribution

The category distribution for top levels, all lev-
els and specific categories are shown in figures
1, 3 and 2. From the distributions, it can be ob-
served that label distributions on the top level and
all levels are much skewed than that of specific
categories.

Charte et al. (2015) provides various metrics for
characterizing imbalance in Multi-Label Datasets
(MLD). According to them, any MLD with a Max
Imbalance Ratio per Label (MeanIR) value higher
than 1.5 (50% more of samples with majority label
vs minority label, in average) and Coefficient of
variation of IRLbl (CVIR) value above 0.2 (20% of
variance in the IRLbl values) should be considered

Figure 2: Label distribution for specific categories ex-
cluding ancestors for top 30 classes

Figure 3: Label distribution including ancestors for top
30 classes

as imbalanced. Our dataset has a high MeanIR of
118.46 and high CVIR of 1.76 for specific category
assignments. This shows that this dataset suffers
from severe imbalance.

3 Modeling Pipeline

Our modeling work flow is shown in the figure 4.
we used a single model for both the subtasks. Our
model was trained to perform the Subtask (b). The
results from the Subtask (b) are used to generate
the results for Subtask (a).

3.1 Data Preparation
We created a hierarchy object from the relation-
ship information provided in the file hierarchy.txt.
This hierarchy object provides a programmatic
interface to get information about any category
in the hierarchy. The raw data is provided in
the XML format. We parsed the XML files us-
ing BeautifulSoup, a Python package for parsing
HTML and XML documents and converted them

https://www.randomhouse.de/


Figure 4: Modeling Pipeline

into CSV format.
We concatenated author, title, year along with

the blurb into a single text for every book. For
the author, title and year, we applied contextual
concatenation by inserting markers at the start
and end of the context. We concatenated the au-
thor information as (@AUTHOR <Author names>
AUTHOR@) and similarly for title and year, we
used (@TITLE <Title> TITLE@) and (@YEAR
<Year> YEAR@). A 13 digit ISBN consists
of five parts. We extracted the 2 and 3rd part
corresponding to Group and Publisher and ap-
pended them to the input text as (@ISBN_GRP
<Group> ISBN_GRP@ and @ISBN_PUB <Pub-
lisher> ISBN_PUB@). This contextual concate-
nation allows us to use a single shared embed-
ding representation for multiple modalities such as
author, title, year, ISBN without losing the con-
text of individual attributes. Also, we preserve
the punctuation and special characters by mak-
ing them valid tokens. We split the labeled data
into two splits for training (95%) and validation
(5%) and use the unlabelled data as the test split.

3.2 Hierarchical Pruning

For each book, we only pick their specific cate-
gories (category tags that contain label="True"
attribute) as labels. When a book has multiple spe-

cific categories, our label is a concatenated string
of all the corresponding specific categories. After
predicting these specific categories, the hierarchy
object explained in Section. 3.1 can be used to
query the ancestor categories of a predicted node,
so we avoided including ancestor categories in our
labels.

3.3 Category Based Random Over Sampling

In our approach, we only use specific category
assignments as labels and skip the correspond-
ing ancestors that can be looked using the hier-
archy. Still, as we highlighted already in Sec-
tion. 2 the training split suffers from severe im-
balance. We alleviate this problem by performing
category based random oversampling on the train-
ing split. Our oversampling algorithm is shown in
Algorithm. 1. We oversample the training split by
15%, by using a value of fraction = 0.15. We
observe improvements in the imbalance metrics,
particularly the MeanIR reduces to 45.17 from
118.46. The imbalance metrics for specific cate-
gories on oversampled data is shown in Table 1
and a comparison of the distribution of top 30 mi-
nority classes are shown in the figure 5.

Actual Oversampled
Label Cardinality 1.46 1.55
Label Density 0.0043 0.0045
MeanIR 118.46 45.17
MaxIR 1474.00 1474.00
CVIR 1.76 1.85

Table 1: Imbalance characteristics for specific cate-
gories in Actual and Oversampled data

input : dataset, fraction
output: oversampled_dataset

1 oversample_size← size_of(dataset) ∗ fraction;
2 category_wise_freq← category_frequencies(dataset);
3 category_freq_mean← mean (category_wise_freq);

4 minority_categories← {};
5 foreach category, freq ∈ category_wise_freq do
6 if freq < category_freq_mean then
7 minority_categories← minority_categories ∪ {category};
8 end
9 end

10 // Average number of samples to be added for each
minority category

11 mean_increment← oversample_size/size_of(minority_categories);

12 over_samples← {};
13 foreach category ∈ minority_categories do
14 mean_diff← category_freq_mean− frequency(category);
15 samples_to_add← min(mean_diff, mean_increment);
16 over_samples

← over_samples ∪ random_sample(category, samples_to_add);
17 end
18 oversampled_dataset← dataset ∪ over_samples

Algorithm 1: Category Based ROS



Figure 5: Top 30 Minority categories distribution

3.4 fastText Pretraining

In this phase, We use all the available data (over-
sampled training, validation and test splits) to
learn fastText embeddings for all the tokens in
the corpus. fastText provides an implementa-
tion for learning character n-grams based continu-
ous word representations proposed by Bojanowski
et al. (2017). Each word is considered as a bag
of character n-grams and the representation for a
word is obtained by the sum of the corresponding
character n-gram embeddings. This approach has
the advantage of taking morphological features of
a word into consideration and also provides repre-
sentations for words that are not seen in the train-
ing corpus.

We learn 2 sets of 100 dimensional embeddings.
One for the tokens in the input text (blurbs, title,
author, year and ISBN) and another for the cate-
gories. Each category in the hierarchy is consid-
ered as an individual token. We have a total of
142624 tokens in the input text and 343 tokens
in the categories. We use skip-gram and nega-
tive sampling options available in fastText. We
trained the word embeddings in the input text for
20 epochs and the category embeddings for 100
epochs with a learning rate of 0.05. We use these
generic word embeddings to initialize the embed-
dings in our Seq2Seq model.

3.5 Seq2Seq Preprocessing

We use FAIRSEQ (Ott et al., 2019), a sequence
modeling toolkit based on PyTorch. FAIRSEQ

provides predefined architectures and compo-
nents for Seq2Seq modeling. During preprocess-
ing, FAIRSEQ uses our predefined vocabulary (a
global dictionary of tokens from the whole corpus)
and encodes the training, validation and test data
into integers. The encoded data is saved data in
a binary format that supports indexed access and
faster loading time.

3.6 Seq2Seq Model Training

A Seq2Seq model mainly contains 2 components,
namely encoder and decoder. The encoder con-
verts the input sequence into a fixed size thought
vector and the decoder sequentially generates the
output sequence one step at a time by conditioning
on the encoder output and predicted value in the
previous time step. Recurrent Neural Networks
(RNN) are a popular choice for solving Seq2Seq
problems. However, their sequential nature im-
plies that they take longer to train since the train-
ing cannot be parallelized.

Gehring et al. (2017) introduced a Seq2Seq ar-
chitecture that is entirely based on Convolutional
Neural Networks (CNN). Convolutional architec-
ture reduces the training time significantly by al-
lowing parallel computation across time and sam-
ples. The predictions have to be still performed se-
quentially, one step at a time. In this architecture,
both encoder and decoder are made of convolu-
tional blocks (figure 6). Each block contains one
dimensional convolution with a kernel width k,
which is followed by a Gated Linear Unit (GLU)
(Dauphin et al., 2017) as non-linearity. The GLU
facilitates the gradient propagation by implement-
ing a simple gating mechanism over the convolu-
tion output. The GLU operation is given by the
equation 1, where Y = [A B] ∈ R2d is the con-
volution output A,B,GLU([A B]) ∈ Rd,⊕ is
point-wise multiplication and σ is sigmoid opera-
tion.

GLU([A B]) = A⊕ σ(B) (1)

The convolutional blocks are stacked in multi-
ple layers with residual connections from the in-
put of the block to the output of the block to fa-
cilitate the flow of gradients during backpropaga-
tion. When the input and the output dimensions
of block differ, linear projections are used in the
residual connections to match the number of di-
mensions. Multi-layer CNN networks create hier-
archical representations over the input sequence.



Figure 6: Convolutional Block

This provides a quicker way to obtain dependen-
cies between elements which are far apart in the
sequence. With only O(nk ) convolutional oper-
ations, the representations for n words in a se-
quence can be obtained, k is the kernel width.
However, in a RNN, it would takeO(n) linear op-
erations to get the representation for nwords. Fur-
ther, an attention network is added to every layer
in the decoder.

In our approach, We have modeled the
MLMCHC as a Seq2Seq based translation
task. We built a model that translates the given
input text into a list of categories. Conceptu-
ally, this is similar to the Classifier Chaining
since at each time step, We model the distribution
P (next category|previous categories, input text).
However, our approach does not suffer from the
problem of learning several classifiers.

3.6.1 Encoder
Our encoder (figure 7) starts with a linear layer
of size (100 × 100) followed by 5 convolution
blocks with output sizes (100, 100, 200, 200, 300)
and ends with a linear layer of size (300 × 100).
All the convolutional blocks have a kernel width of
3. We experimented with different number of con-
volution blocks such 20,15,10,7 and 5. We choose
to use 5 convolution blocks finally, since adding
more number of blocks did not improve the vali-
dation f-score but increased the model complexity
and size. The inputs to the encoder are the sum
of the word and positional embeddings. Positional
embeddings capture the ordering information by
embedding the absolute position of the token in
the input sequence.

3.6.2 Decoder
Our decoder architecture is similar to that of en-
coder. It starts with a linear layer of size (100 ×

Figure 7: Encoder

Figure 8: Decoder with Multi-Hop Attention

100) followed by 3 convolutions blocks with out-
put sizes (100, 100, 200), a linear layer of size
(200 × 256) and ends with a linear layer of size
(256× 343) where 343 is the total number of cat-
egories in the hierarchy. Additionally, every de-
coder layer has an attention layer which allows the
network to take repeated glimpses at the sequence
and decide which input words are more relevant
to predict the next word. At every decoder step, a
decoder summary is calculated by combining the
current decoder state with an embedding of the



previous target element.

3.6.3 Multi-Hop Attention
We use multi-hop attention mechanism similar to
Sukhbaatar et al. (2015) by carrying out this pro-
cess for each step or hops. The attention for each
source element is a dot product of the decoder
summary and the output of the last encoder block.
In multi-hop attention, the attention outputs for a
layer is calculated based on the previous layer’s
attention results. Hence the decoder has access to
attention values of all the previous layers which it
uses to predict current layers output.

3.6.4 Model Parameters and Optimization
We initialize the word and category embeddings
in the encoder and decoder using the fastText em-
beddings that We explained in the Section. 3.4 and
fine-tune them as a part of training the Seq2Seq
Model. We use Nesterov’s accelerated gradient
method with a momentum value of 0.99. We
renormalize gradients if their norm exceeds 0.1.
We use a fixed learning rate of 0.25. The hyper-
parameters were chosen based on manual search.
We trained the model for 13 epochs, after which
the validation loss stopped improving. Our model
has a total of 15962496 parameters and the size of
our trained model is 122 MB.

3.7 Seq2Seq Model Predict

We use fairseq-generate to generate predictions
using the Convolutional Seq2Seq model that We
trained in the previous section. The predicted out-
put is a sequence of all specific categories for the
given input data. During the prediction phase, We
use beam search with a beamwidth of 5 to identify
the most probable output sequence.

3.8 Hierarchical Inclusion

We use hierarchy object introduced in the Section.
3.1 to query the ancestor categories of specific cat-
egories predicted by the Seq2Seq Model. This
gives the solution for Subtask (b). We derive the
solution for Subtask (a) from the solution for Sub-
task (b) by picking the corresponding top levels
for predicted specific categories.

3.9 Experiment Setup

(1) Nvidia GPU GEFORCE GTX 1080 Ti 11GB
RAM (2) Intel R© Xeon R© Processor E5-2650 v4
30M Cache, 2.20 GHz, 12 Cores, 24 Threads
(3) 250 GB RAM (4) CentOS 7

4 Results

The test evaluation metrics are given in the Table.
2. In the test evaluation of the competition, Our
model secured the first rank in Subtask (a) with a
f1 score of 0.867 and second in Subtask (b) with
a f1 score of 0.6722.

Subtask (a) Subtask (b)
Precision 0.8923 0.7377
Recall 0.8432 0.6174
F1-Score (micro) 0.867 0.6722
Accuracy 0.8364 0.3791

Table 2: Evaluation metrics on test data

5 Conclusion

In our solution, We have successfully demon-
strated that Convolutional Seq2Seq modeling is
a promising approach to address MLMCHC. We
observed that the oversampling and pretraining
phases were key ingredients of our successful
recipe. In general, this emphasizes the importance
of transfer learning in NLP problems. In the fu-
ture, We plan to extend our approach by using
sophisticated transformers based architecture for
both pretraining and modeling phases.
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