COMTRAVO-DS team at GermEval 2019 Task 1 on Hierarchical
Classification of Blurbs

David S. Batista
Comtravo GmbH
david.batista@comtravo.com

Abstract

We present two systems developed by the
Comtravo Data Science team for the Ger-
mEval’ 19 Task 1 on hierarchical classification
of blurbs. The challenge is a document clas-
sification task where the hierarchical structure
of each document needs to be captured. Our
systems achieved the 13th place out of 19 sub-
missions for Sub-Task A and the 11th place
out of 19 submissions for Sub-Task B. We de-
scribe in detail these two systems pointing out
the advantages and disadvantages of each as
well as laying out future research directions.

1 Introduction

This paper describes the approach taken by the
Comtravo Data Science team for the GermEval’ 19
Task 1 (Remus et al., 2019). The task aimed at de-
veloping systems to tackle the task of multi-label
hierarchical classification of text.

Several real-world classification problems are
naturally cast within a hierarchy, where the labels
to be predicted are organized in an hierarchy. Typ-
ically the hierarchies form a tree, several trees (a
forest) or a directed acyclic graph.

Examples of hierarchical document categoriza-
tion are for instance categorizing news articles
into an hierarchy of categories (Lewis et al.,
2004), a web page into a web directory struc-
ture, Wikipedia articles into the Wikipedia taxon-
omy (Partalas et al., 2015), or in biomedical lit-
erature, for instance, the assignment of Medical
Subject Headings to PubMed abstracts (Lipscomb,
2000).

We developed two distinct approaches, one
based on a local classifier strategy, where different
classifiers are trained according to the hierarchical
structure of the label space, another approach uses
a single classifier which tries to naively predict the
entire label hierarchy for each sample.

Matti Lyra
Comtravo GmbH
matti.lyra@comtravo.com

This paper is organized as follows, in Section 2
we describe the task in detail and give a statisti-
cal description of the provided dataset. In Sec-
tion 3 we briefly describe some of the proposed
approaches in the literature for hierarchical docu-
ment classification. In Section 4 we describe our
approaches to tackle both sub-tasks. Section 5 de-
tails the our experimental setup and results. Fi-
nally in Section 6 we outline some ideas for future
work.

2 Task

The GermEval 2019 Task 1 on hierarchical clas-
sification of blurbs involved the classification of
german language books into genres given a book’s
blurb i.e., a short textual description of the book
and related meta-data. The competition contained
two sub-tasks:

e Sub-Task A: classify German books into one
or multiple general genres, a non-hierarchical
multi-label classification task with a total of 8
classes.

e Sub-Task B: targets hierarchical multi-label
classification into multiple writing genres. In
addition to the general genres from Sub-Task
A, any number of sub-genres of increasing
specificity can be assigned to a book.

2.1 Dataset

The dataset made available for these tasks contains
3 label levels organized in a hierarchy; any book
can be can associated with more than one label at
any given level of the hierarchy. In the hierarchy
every child-label has exactly one parent-label.
The hierarchy contains a total of 343 distinct
classes, 3 datasets were provided: 14 548 samples
available for training, 2 079 for development and
4 157 for testing. Tables 1, 2, 3 contain a detailed

Training set

Avg. length of blurb (tokens) 96.78
Std. deviation o (tokens) 39.63
Avg. length of blurb (sentences) 6.55
Std. deviation o (sentences) 2.76
Nr. unique tokens original 114 903
Nr. unique tokens lowercase 107 998
Total number of genres 343
Possible genres per level (1;2;3) 8;93; 242
Avg. genres per blurb 3.1
Std. deviation o 1.36
Avg. genres per blurb at level (1;2;3) | 1.06; 1.34; 0.69
Std. deviation o 0.27; 0.76; 0.79
Avg. blurb per co-occurrence 6.48
Co-Occurrence std. deviation 35.90
Nr. samples with leaf nodes at:

- Level 1 1.9% (311)
- Level 2 44,6% (7.422)
- Level 3 53,5% (8.894)
Total number of samples 14 548

Development set

Avg. length of blurb (tokens) 98.71
Std. deviation o (tokens) 46.29
Avg. length of blurb (sentences) 6.68
Std. deviation o (sentences) 3.80
Nr. unique tokens original 33599
Nr. unique tokens lowercase 31818
Total number of genres 343
Possible genres per level (1;2;3) 8;93; 242
Avg. genres per blurb 3.1
Std. deviation o 1.39
Avg. genres per blurb at level (1;2;3) | 1.07;1.35;0.69
Std. deviation o 0.27;0.80;0.79
Avg. blurb per co-occurrence 3.08
Co-Occurrence std. deviation 8.19
Nr. samples with leaf nodes at:

- Level 1 1.6% (34)
- Level 2 44.8% (932)
- Level 3 53.6% (1113)
Total number of samples 2079

Table 1: Quantitative analysis of the training dataset.

description of the datasets provided i.e.: training,
development and test, respectively. One can see
that in terms of tokens and sentences the 3 datasets
are aligned, and also between training and devel-
opment in terms of labels per blurb, and labels per
blurb per level.

3 Hierarchical Document Classification

There are have been different strategies to ap-
proach the problem of hierarchical classifying a
document (Silla and Freitas, 2011; Wehrmann
et al., 2017; Kowsari et al., 2017). Within the con-
text of GermEval’ 19 Task 1 we explored two main
strategies: a local classifier and a global classifier.

3.1 Local Classifier

The local classifier strategy is one way to approach
the hierarchical document classification task and it
was first proposed, to the best of our knowledge, in
the seminal work of Koller and Sahami (1997), it
is also sometimes referred to as top down approach
in the literature.

There are different approaches, based on the
idea of a local classifier, depending on how they
use the local information and devise a strategy to
build several classifiers.

3.1.1 A classifier per node

The local classifier per node approach consists
of training one binary classifier in a one-versus-
rest scenario for each node in the hierarchy, where
each label in the hierarchy is a node. Normally,

Table 2: Quantitative analysis of the development
dataset.

Test set
Avg. length of blurb (tokens) 96.91
Std. deviation o (tokens) 39.83

Avg. length of blurb (sentences) 6.55
Std. deviation o (sentences) 2.62
Total number of samples 4157

Table 3: Quantitative analysis of the test dataset.

the negative training data is taken from the same
level in the label hierarchy as the positive data.

During prediction a top-down strategy is ap-
plied, the output of each binary classifier is a pre-
diction of whether or not a given test sample be-
longs to the classifier’s predicted class. This ap-
proach is naturally multi-label since it is possible
to predict multiple labels at each level of the hier-
archy.

This approach, however, is prone to label in-
consistency. Consider a document that has, for
the first level, labels 1, 2 and 3, and, for the sec-
ond level, labels 1.1, 1.2. Since the classifiers
for nodes 1 and 1.1 are independently trained, it
is possible to classify a sample as having labels
1.2 and 1.1 but not the parent label 1. This ap-
proach should, therefore, be complemented by a
post-processing method that tries to correct the la-
bel inconsistency.

3.1.2 A classifier per parent node

In a classifier per parent node approach, a multi-
class classifier, possibly also multi-label, is trained
for each parent node in the label hierarchy. The
classifier is trained to classify the probability of

a given sample belonging to each of the parent’s
child nodes. In this case, a parent node is every
label in the hierarchy-tree which has one or more
child labels.

Given a test sample, first the top-level classifier
is applied, then for every top-level predicted la-
bel (e.g., class 2 and 3) its child classifiers, e.g.: a
classifier trained to predict the 2.x labels and an-
other for 3.x labels, and so on until the last level is
reached.

Note that the sub-classifiers are only trained
with the children of each respective parent label,
therefore this approach avoids the label inconsis-
tency problem and respects the constrains of class-
membership defined by the label hierarchy.

3.1.3 A classifier per level

The local classifier per level approach consists of
training one multi-class, and possibly also multi-
label, classifier for each level of the label hierar-
chy. When a new test sample is presented the out-
put of the classifiers from each level is used as the
final classification.

This approach, however, is prone to label incon-
sistency, as different classifiers are trained for each
level of the hierarchy and should, therefore, also
be complemented by a post-processing method to
correct the prediction inconsistency.

One common problem for all local classifier
strategies the utilize the top-down class-prediction
approach is the propagation of errors down the hi-
erarchy.

3.2 Global Classifier

Another type of strategy is to learn a classifier
than can globally learn to output the predictions
for each level in the hierarchical structure. This is
done by flattening the whole hierarchical structure.
Having only a single classifier, although easier
to tune, it can turn the hierarchical classification
into a much harder problem, specially having a
sparse label space with an order of magnitude of
102, i.e. there are 343 possible classes, but the la-
bels co-occurrence can be a good guiding heuristic
for a statistical model to infer the hierarchical label
structure associated with a given sample.

4 Systems Developed

We developed two systems implementing the fol-
lowing approaches:

Local Classifier: a classifier per parent node us-
ing different types of classifiers;

Global Classifier: a single classifier relying on
the hypothesis to explore the labels co-
occurrence;

4.1 Local Classifier

We employed a classifier per parent node ap-
proach, which has the advantage of not being
prone to label inconsistency errors. We need to
train classifiers for each parent node. For Level 3
we don’t need to train any classifier since it con-
tains only leaf nodes, plus some nodes on Level 2
are already leaf nodes.

According to Table 1 the Level 1 has 8 possible
labels, which means that the parent node of the
first level (i.e, the Root Node) needs to be trained
in a multi-label fashion and predict over 8 classes.
Each of these 8 classes represents a parent node of
some child classes on the next level of the hierar-
chy. So for Level 1 we need to train eight multi-
label classifiers where the labels are the child‘s of
each parent in the root level. Finally, for Level 2,
we train only 42 classifiers, since according to the
hierarchy-tree some labels in this level are already
leaf nodes, and only 42 labels have then child la-

bels. So, in total we trained 51 classifiers dis-
tributed by different levels as described in Table 4.
Level Nr. Parent Nodes
Root Node 1
Level 1 8
Level 2 42
Total Classifiers 51

Table 4: Number of parent nodes per level in the hier-
archy.

As stated before, one of the advantages of this
approach is that it always produces a label struc-
ture that is enforced by the hierarchy-tree, but it
is prone to error propagation from the top levels
further down the tree.

4.2 Global Classifier

The global classifier needs to be a multi-label clas-
sifier targeting a label space with a total of 343
classes. One of the advantages is that there is
only one single multi-label classifier to tune and
explore, but on the other and it has a high and
sparse label space. Plus, one needs to employ

some post-processing cleaning to enforce the hi-
erarchical structure, since there is an hierarchical
dependency between the some of the 343 possible
classes. For instance, the classifier can predict the
labels 4.3 and 4.4 - corresponding to labels in the
Level 2 in the hierarchy - but not the label 4, cor-
responding to Level 1 in the hierarchy.

5 Experiments and Results

In this section we describe the experimental setup
and results for the two devised strategies for tack-
ling both sub-tasks.

5.1 Results on the Development Set

During the development phase we only had the la-
bels for training, so we randomly split the train-
ing dataset into two-subsets of 70% and 30% for
training and parameter tuning, respectively. Then,
train on the whole dataset with the best parameters
and using the model to generate predictions on the
development dataset. This approach was mainly
to have a working framework for experiments and
submit valid results.

During the test phase the labels for the devel-
opment set were made available and we could
use them to tune the classifiers. We used 3-fold
cross-validation to perform parameter search us-
ing the training dataset. The parameter configura-
tion which yielded the best results was then used
to train the classifiers over the complete training
dataset, and the classifier is then evaluated against
the development set. Results reported in this sec-
tion are all in regard to the development set.

5.1.1 Pre-processing

For representing a book we concatenated the
book’s title with book’s textual description. In
some cases only the title is present, for this cases
we simply use the title.

We explored two tokenization schemas, one to-
kenizes the blurbs into sentences, and then from
sentences into tokens, considering the title of the
book as a sentence, this tokenization strategy was
based on the german sentence tokenizer, and the
word_punkt_tokenizer from NLTLK 3.4.1 (Bird
et al., 2009), and considered alphanumeric tokens
only. The other approach was based on a simple
regular expression: (?u) \b\w\w+\b. We also
experimented lower casing and removing stop-
words. After running a few experiments and com-
paring some initial results we opted for the regular

expression for tokenization, lower case token rep-
resentations and removal of stop-words. For the
neural networks the padding was done to match
the size of the longest document in the dataset.

5.1.2 Prediction threshold gltment

We set the prediction threshold to 0.5, so any label
with a predicted probability above 0.5 is selected.
We noticed that for some samples no labels were
being selected, as all labels had predicted proba-
bility scores lower than 0.5. To tackle this prob-
lem, for a given sample, if no predictions were
done we lowered the threshold to 0.4, if still no
label predictions are done, we lowered again the
threshold to 0.3. This was done in a simple ad-hoc
way, and no proper strategy was employed, and is
done in a per label fashion.

5.1.3 Models implementation

For all the neural network models we used pre-
trained embeddings, specifically the public avail-
able German fastText embeddings trained on
Wikipedia, of dimension 300 and obtained using
the skip-gram model as described in Bojanowski
et al. (2017), the embeddings are fine-tuned dur-
ing learning and out of vocabulary words are ran-
domly initialized.

The training was done with the Adam opti-
mizer (Kingma and Ba, 2014) using binary cross-
entropy as a loss function and 30% of the train-
ing dataset for validation. Unless stated otherwise
training was performed with mini-batch sizes of
16 for 10 epochs. All the neural network models
were implemented in Keras 2.2.4 with Tensorflow
1.13.1 backend. The Logistic Regression classifier
was based on the scikit-learn 0.21.1 (Pedregosa
etal., 2011).

All the code used for this experiments is avail-
able on-line !

5.1.4 Local classifier per node: Root Node

We explored different classifiers for the Root Node
and for Level 1 and Level 2 we selected a Convo-
lutional Neural Network (CNN).

We briefly describe the models used for the
Root Node and the parameters explored, in bold
we have the parameters that yielded the best
scores:

Logit (TF-IDF): a logistic regression classifier
with TF-IDF weighted vectors in a one-

'nttps://github.com/davidsbatista/
GermEval-2019-Task_1

https://github.com/davidsbatista/GermEval-2019-Task_1
https://github.com/davidsbatista/GermEval-2019-Task_1

versus-rest scenario varying the following pa-
rameters:

n-grams: 1, 2, 3;

class weight: balanced, not-balanced;
norm: 11, 12;

regularization C: 0.1, 10, 100, 300;

Training was performed with Stochastic Av-
erage Gradient for a maximum of 5 000 iter-
ations.

CNN (Kim, 2014): for sentence classification
with rectified linear units in the activation
functions of the 1D convolutions, and with a
fully connected layer of size 600 and varying:

e filter windows: (1), (1, 2), (1, 2, 3);
e feature maps: 256, 300;

LSTM (Hochreiter and Schmidhuber, 1997): re-
cursively reads each token in the text updat-
ing it’s internal state and using the last state to
represent the document, with a dropout layer
of rate 0.1 between the LSTM’s last state and
the final sigmoid layer.

e single LSTM vs bi-directional LSTM,;
e hidden units: 32, 64, 128;

Bag-of-Tricks (Joulin et al., 2017): token embed-
dings representations are averaged into a sin-
gle vector representation, which is fed to a
sigmoid classifier, we varied the following
parameters:

e n-grams: 2, 3,4, 5;
e top-k most frequent tokens: 100k, 90k,
80k;

Table 5 shows the results for different classifiers
when trained with the best parameters on the train-
ing set and evaluated against the development set.

Method Precision | Recall Fq
Logit (TF-IDF) 0.8211 | 0.8359 | 0.8284
CNN 0.8542 | 0.7879 | 0.8197
bi-LSTM 0.8062 | 0.7987 | 0.8024
Bag-of-Tricks 0.3787 | 0.6717 | 0.4843

Table 5: Results for different classifiers on the Sub-
Task A on the development set.

The Logistic Regression classifier achieved the
best results although the CNN classifier had a sim-
ilar F; score, essentially by trading recall for pre-
cision.

5.1.5 Local classifier per node: Level 1 and 2

For Level 1 and 2 in the hierarchy tree we trained
a total of 50 classifiers for each parent node, 8 for
Level 1 and 42 for Level 2. All these classifiers
were based on the CNN model.

We explored some parameters configurations by
varying the filter windows size and the filter maps
size, Table 6 shows a subset of the different con-
figuration parameters tried which yielded some of
the best results. All these classifiers were training
with mini-batch size of 16 for 5 epochs.

Filter Windows | Filter Maps

Conf; 1,2 300

Conf, 1,2,3 200

Confjs 1,2,3,5,7 300

Confy 3,5,6,10 256
Table 6: Different configuration parameters for the

CNN classifiers for Level 1 and 2.

In these experiments we used the Root Node
classifier which yielded the best results, i.e. the lo-
gistic regression, to predict the labels for the root
level, and experiment with different parameters for
the Levels 1 and 2. Table 7 shows the results for
Sub-Task B for configurations of parameters in Ta-
ble 6.

Precision | Recall Fq
Conf; 0.7151 | 0.5330 | 0.6108
Conf, 0.7144 | 0.5303 | 0.6087
Confj 0.7219 | 0.5235 | 0.6069
Confy 0.7274 | 0.5085 | 0.5986

Table 7: Results for Sub-Task B for different configu-
rations of the CNN-based classifier for Levels 1 and 2
of the hierarchy, using the best classifier for the Root
Level from Table 6.

We opted not to use a logistic regression classi-
fier for Level 1 and 2 since this type of classifier
needed to be trained in a one-versus-rest fashion.
This would mean that for Level 2 we would need
to train 93 classifiers and 242 for Level 3.

5.1.6 Global classifier

The global classifier uses a flattened hierarchy and
learns how to predict a vector of 343 dimensions.

One advantage of this approach, in contrast to
the local one, is the we need only to tune a single
classifier, and both sub-tasks can also be tackled
with this single classifier.

Our initial idea was to use a neural net-
work architecture and leverage on the labels co-
occurrence by initializing a weight matrix - we de-
scribe this idea in Section 6 - but due to time con-
strains this was not possible to explore this idea to
the end. Also, due to time constrains we did not
employ a post-processing step.

Nevertheless, we still applied a CNN architec-
ture and explored different configuration parame-
ters, varying the filter windows and the filter maps.

We used the same tokenization schema as with
the Local classifier, as well as the same pre-trained
word embeddings, which are fine-tuned during
training.

The training was done with the Adam opti-
mizer (Kingma and Ba, 2014) using binary cross-
entropy as a loss function, with mini-batch sizes of
128 for 250 epochs and using 30% of the training
dataset for validation.

We also used the same threshold filtering strat-
egy as described in Section 5.1.2.

Table 8 presents some of the configurations of
parameters used in the experiments and Table 9 the
corresponding results for the same configurations
for both sub-tasks.

Filter Windows | Filter Maps

Conf] 1,2,3 300

Conf, 3,5,7,10 256

Conf; 1,2,3,5,7,10 256
Table 8: Different configuration parameters for the

CNN classifiers for the global classifier.

Precision | Recall Fq
COllfl
Sub-Task A 0.7163 | 0.7484 | 0.7320
Sub-Task B 0.5257 | 0.4603 | 0.4909
Conf,
Sub-Task A 0.7353 | 0.7686 | 0.7516
Sub-Task B 0.5470 | 0.4717 | 0.5066
Conf3
Sub-Task A 0.8389 | 0.7659 | 0.8008
Sub-Task B 0.6733 | 0.5032 | 0.5760

Table 9: Results for both sub-tasks using the configu-
ration parameters from Table 8.

5.2 Test Results

We applied the classifiers described in the Sec-
tion 5 with the parameters that yielded the best re-
sults on the development dataset, by training on all
available data (i.e., training + development sets)
and applied them on the test dataset, therefore gen-
erating two submissions for each sub-task.

5.2.1 Parent Per Node

With the one parent per node strategy classifier,
we achieved the 13th best place on Sub-Task A,
and the 11th best place on Sub-Task B, out of a
total of 19 submissions. Results for the detailed
evaluation metrics are described in Table 10.

This classifier achieved the 9th best recall and
the 15th best precision for Sub-Task A, and the
8th best recall and the 14th best precision for Sub-
Task B.

For roughly 5% of the test samples the classifier
did not produce any predictions, due to the class
probabilities scores being lower 0.3., the lowest
possibly threshold selected in the adjustment.

Task Precision | Recall Fq
Sub-Task A 0.8144 | 0.8255 | 0.8199
Sub-Task B 0.7042 | 0.5274 | 0.6031

Table 10: Best achieved results on the development set
for both Sub-Tasks A and B with the parent per node
classifier.

5.2.2 Global
With the global classifier strategy we achieved the
17th best place on Sub-Task A, and the 13th best

place on Sub-Task B. Detailed results are pre-
sented in Table 11.

Task Precision | Recall Fq
Sub-Task A 0.7761 | 0.7839 | 0.7839
Sub-Task B 0.5672 | 0.5185 | 0.5418

Table 11: Best achieved results on the development set
for both Sub-Tasks A and B with the global classifier.

This classifier achieved the 15th best recall and
the 17th best precision for Sub-Task A, and the
Oth best recall and the 18th best precision for Sub-
Task B. For roughly 1% of the samples the classi-
fier did not produced any predictions. The hierar-
chy consistency is of 0.9363, reflecting the lack of
a post-processing step to enforce the hierarchical
structure, which would be 1.0 if employed.

Considering only the best submissions from all
teams, we ranked 8th for Sub-Task A and 6th for
Sub-Task B.

6 Future Work

We had planned to explore different features and
carry more experiments but time constraints for
the submission of the test results did not allowed
us to experiment all that was planned.

One crucial aspect in the global classifier is a
post-processing step to make sure that the labels
output is in-line with the hierarchy-tree constrains.
The global classifier could also be improved by
initializing a weight matrix based on label co-
occurrence. Kurata et al. (2016) proposed a neu-
ral network initialization method to treat some of
the neurons in the final hidden layer as dedicated
neurons for each pattern of label co-occurrence.
These dedicated neurons are initialized to con-
nect to the corresponding co-occurring labels with
stronger weights than to others representing non
co-occurring labels. Baker and Korhonen (2017)
applied this idea in the biomedical domain and to
a much more compact hierarchy than the one pre-
sented in this paper.

In the local classifier strategy for Level 1 and 2
we use the same architecture for all classifiers and
tuned them in the same way, the type of architec-
ture and tuning process could be made dependent
on the numbers of samples available to train and
level in the hierarchical tree.

A few more features could have been explored,
for instance the author’s name and the release date
of the book. The padding of the documents rep-
resentation for the neural network could be set to
the average since of the documents, instead of the
longest one.

The values for the prediction threshold were se-
lected in an ad-hoc fashion, these could also be
properly set, through a set of experiments.

References

Simon Baker and Anna Korhonen. 2017. Initializ-
ing neural networks for hierarchical multi-label text
classification. In BioNLP 2017, pages 307-315,
Vancouver, Canada,. Association for Computational
Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python, 1st edi-
tion. O’Reilly Media, Inc.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735—
1780.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427-431, Valencia, Spain. Association
for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746-1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Daphne Koller and Mehran Sahami. 1997. Hierarchi-
cally classifying documents using very few words.
In Proceedings of the Fourteenth International Con-
ference on Machine Learning, ICML ’97, pages
170-178, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Kamran Kowsari, Donald E. Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, Matthew S. Ger-
ber, and Laura E. Barnes. 2017. Hdltex: Hierarchi-
cal deep learning for text classification. In ICMLA,
pages 364-371. IEEE.

Gakuto Kurata, Bing Xiang, and Bowen Zhou. 2016.
Improved neural network-based multi-label classifi-
cation with better initialization leveraging label co-
occurrence. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 521-526, San Diego, Califor-
nia. Association for Computational Linguistics.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan
Li. 2004. Rcvl: A new benchmark collection for
text categorization research. J. Mach. Learn. Res.,
5:361-397.

Carolyn E Lipscomb. 2000. Medical subject headings
(mesh). Bulletin of the Medical Library Association,
88(3):265.

Ioannis Partalas, Aris Kosmopoulos, Nicolas Baskiotis,
Thierry Artieres, George Paliouras, Eric Gaussier,
Ion Androutsopoulos, Massih-Reza Amini, and
Patrick Gallinari. 2015. LSHTC: A bench-
mark for large-scale text classification. CoRR,
abs/1503.08581.

https://doi.org/10.18653/v1/W17-2339
https://doi.org/10.18653/v1/W17-2339
https://doi.org/10.18653/v1/W17-2339
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/E17-2068
https://www.aclweb.org/anthology/E17-2068
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dl.acm.org/citation.cfm?id=645526.657130
http://dl.acm.org/citation.cfm?id=645526.657130
http://dblp.uni-trier.de/db/conf/icmla/icmla2017.html#KowsariBHMGB17
http://dblp.uni-trier.de/db/conf/icmla/icmla2017.html#KowsariBHMGB17
https://doi.org/10.18653/v1/N16-1063
https://doi.org/10.18653/v1/N16-1063
https://doi.org/10.18653/v1/N16-1063
http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf
http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. J. Mach.
Learn. Res., 12:2825-2830.

Steffen Remus, Rami Aly, and Chris Biemann. 2019.
Germeval-2019 task 1: Shared task on hierarchi-
cal classification of blurbs. In Proceedings of the
GermEval 2019 Workshop, KOVENS ’19, Erlangen,
Germany.

Carlos N. Silla, Jr. and Alex A. Freitas. 2011. A survey
of hierarchical classification across different appli-
cation domains. Data Min. Knowl. Discov., 22(1-
2):31-72.

Jonatas Wehrmann, Rodrigo C. Barros, Silvia N. das
Doéres, and Ricardo Cerri. 2017. Hierarchical multi-
label classification with chained neural networks. In
Proceedings of the Symposium on Applied Comput-
ing, SAC ’17, pages 790-795, New York, NY, USA.
ACM.

http://dl.acm.org/citation.cfm?id=1953048.2078195
https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1145/3019612.3019664
https://doi.org/10.1145/3019612.3019664

