
Convolutional Neural Networks for Classification of German Blurbs

Erdan Genc, Louay Abdelgawad, Viorel Morari, Peter Kluegl

Averbis GmbH, Freiburg, Germany
{firstname}.{lastname}@averbis.com

Abstract

This paper presents the submission of the
system AVERBIS BOHB CNN for the Shared
Task on hierarchical classification of German
blurbs (short texts) - GermEval 2019 Task 1.
We optimized the hyperparameters of a CNN
based on a fastText word embedding layer and
combined it with a variant of a T-Criterion
classification method. The model was able to
achieve an F1 score of 0.834 (ranked 6th) for
subtask a and of 0.644 (ranked 3th) for subtask
b on the respective test sets.

1 Introduction

Hierarchical multi-label text-classification (HMC)
is the task of classifying text into categories with
an underlying hierarchical structure. As more and
more text becomes available in digital form the
need for such automated and robust text classifi-
cation grows bigger. To foster research in the do-
main of HMC the organizers of GermEval 2019
called for participation in Shared Task 1 - hier-
archical classification of German blurbs. In this
work, we describe our submission to the task.

The task consists of two subtasks (subtask a,
subtask b) in which the participants are chal-
lenged to classify short German text snippets
advertising books into one or multiple of 8
non-hierarchically (a) and 343 (b) hierarchically
structured categories, respectively.

We approach the subtasks with a convolutional
neural net (CNN) (Kim, 2014), using word
embeddings trained with fastText (Bojanowski
et al., 2017). In order to optimize the involved
hyperparameters, we used BOHB (Falkner et al.,
2018). BOHB is a hyperparameter search tech-
nique, which combines Bayesian optimization
with bandit-based methods to find good configu-
rations in feasible time. The hierarchy of labels in

subtask b was not incorporated in the learning
process, i.e. the labels’ hierarchical structure
was flattened. To further improve the predictions
based on the probability distributions, we adapted
the T-Criterion (Boutell et al., 2004) classification
method. The approach reaches F1 scores of 0.850
on the validation set of subtask a and 0.664 on
subtask b.

The rest of the paper is structured as fol-
lows. The next Section (2) describes the provided
dataset. Section 3 introduces the preliminaries. In
Section 4, the system description is layed out. Sec-
tion 5 illustrates the results and Section 6 summa-
rizes the learnings and gives an outlook for future
work.

2 Dataset

The dataset is a collection of short German text
sequences, so called blurbs, advertising German
books. Figure 1 shows an example of a blurb.
Each instance features different fields such as title,
body, copyright, categories, authors, published,
isbn, url. The body is the main text field and con-
tains the advertising description.

The categories are the target classes of the clas-
sification tasks. Each blurb can be classified into
one or multiple categories. Each category consists
of one or many hierarchically structured topics.

For subtask a the blurbs need to be classified
into one or multiple of the eight first level classes,
i.e. root level topics (d = 0):

• Literatur & Unterhaltung
• Sachbuch
• Kinderbuch & Jugendbuch
• Ratgeber
• Ganzheitliches Bewusstsein
• Glaube & Ethik
• Künste
• Architektur & Garten

For subtask b, the blurbs need to be classi-
fied into multiple hierarchical classes, i.e. topics
(d ∈ {1, 2}). In total there are 343 topics with a
maximum level depth of three.

The complete dataset contains 20,784 instances
of German blurbs. 14,548 labeled instances for
training (train) as well as 2,079 labeled in-
stances for local validation (dev). All results in
this work are based on these two sets. A third set
of 4,157 unlabeled instances was made available
for result submission (test).

Figure 1: Example blurb taken from the dev set.

With concatenated fields, the average length of
a blurb is 231 words with a standard deviation of
64. The smallest blurb counts 66 words, the largest
1017.

The distribution of classes in the train set
for subtask a are shown in Figure 2. As we
can see, the distribution is highly imbalanced with
more than half of the instances being labeled with
the topic Literatur & Unterhaltung.

3 Preliminaries

This section introduces the preliminaries. The
support vector machine that serves as baseline in
Subsection 3.1, word embeddings (3.2), convolu-
tional neural networks (3.3) and hyperparameter
optimization (3.4).

7822

2202 1987 1864

804 599
147 128

Lit
er
at
ur

Sa
ch

bu
ch

Ki
nd

er
bu

ch

Ra
tg
eb

er

Gan
zh

eit
lic
h

Glau
be

Kü
ns

te

Ar
ch

ite
kt
ur

0

10000

2500

5000

7500

Figure 2: Number of samples per class for subtask a
in the train set.

3.1 SVM

Support Vector Machines (SVM) are a well es-
tablished machine learning approach for text clas-
sification (Manevitz and Yousef, 2001). In this
work, the multi-label classifier is implemented
by several one-vs-all linear SVMs (Fan et al.,
2008). The features of the single SVMs consist
of a bag-of-stems1. The stems are prefixed to en-
code the information to which field it belongs to,
e.g. title stem or body stem. The features are
weighted using logarithmic frequencies with re-
dundancy (Leopold and Kindermann, 2002) and
are L2-normalized. At prediction time the T-
Criterion classification method with a threshold of
0.5 is used for all labels. Opposed to state-of-
the-art neural classifiers in which the input is en-
coded using distributed representations for words,
e.g. word embeddings, SVMs with a bag-of-words
feature representation neglect all sequential infor-
mation.

3.2 Word Embeddings

A word embedding describes a mapping that trans-
lates single words or phrases taken from a vo-
cabulary into an n-dimensional real-valued vector
space. Using the context of the words, it is usually
the rationale to find a representation which pre-
serves syntactic and semantic attributes and can be
passed on to a machine learning algorithm.

The choice of an effective word embedding de-
pends on a large variety of parameters, e.g. the
model itself, embedding size, the corpora used for
training or the action taken for unknown words.
Many standardized and well-described word em-
beddings, trained on different corpora, can be
found online.

1https://snowballstem.org/, accessed September 18, 2019

For this work, fastText (Bojanowski et al., 2017)
was selected as it additionally considers n-gram
sub-words as input instead of whole words as
atomic units. Apart from the increased training
time, it enables the model to embed unseen words.
The word ”Propene”, for example, might be un-
seen in the training corpus, yet fastText is able to
assign a vector near the vector of the seen word
”Propylene” which can be advantageous in do-
mains with complex language.

3.3 CNN

Early improvements in text classification with
deep learning started with the Dynamic Convolu-
tional Neural Networks (DCNN) method (Kalch-
brenner et al., 2014). The authors first adopted
CNNs, a model well-received in the computer vi-
sion domain, to the field of NLP. Following this
work, Yoon Kim created another CNN architec-
ture (Kim, 2014). The main improvement was
to embed the input words using pre-trained word
embeddings (Mikolov et al., 2013) before passing
them into the neural network. Contrary to other
convolutional networks, Kim’s CNN uses a sin-
gle stage of wide parallel convolutions instead of
several stacked convolutions on top of each other.
This architecture has been selected as main ap-
proach in this work as it has been proven to be
versatile and efficient.

3.4 Hyperparameter Optimization

In general the parameters of a neural network can
be divided into two categories: the normal and
the hyperparameters. Normal parameters, such
as weights and biases, are changed during train-
ing time. Hyperparameters, such as learning rate
and batch size, are set before the training begins.
The right choice of parameters can effect the per-
formance of a neural network significantly (Hen-
derson et al., 2017). Therefore, hyperparameter
optimization aims to determine a set of hyperpa-
rameter values such that a objective function is
maximized. These techniques range from sim-
ple random search to more sophisticated, efficient
methods such as Bayesian Optimization (BO). In
this work, BOHB, a state-of-the-art hyperparam-
eter optimization technique developed by Falkner
et al., is used to tune the parameters. It combines
the best of two worlds leveraging the strong per-
formance of BO while maintaining the speed of
hyperband (HB).

4 System Description

This section presents a detailed description of the
used system and how the experiments were con-
ducted. It introduces the preprocessing steps, used
word embeddings, the model itself as well as the
hyperparameter optimization steps and the used
classification methods that turn the probabality
distributions into predictions.

4.1 Preprocessing

This subsection describes the applied preprocess-
ing steps for the experiments. The different fields
of the blurbs are first concatenated and then to-
kenized using JTok2. The text is normalized by
lower-casing, removing all non-alphabetic char-
acters and reducing all multi-spaces to a single
white space. As the types of CNNs used in this
work require a constant sized input the blurbs are
truncated/padded to a fixed length. This sequence
length is optimized as a hyperparameter.

4.2 Word embeddings

As mentioned before, fastText (Grave et al., 2018)
was used to obtain the word embeddings. In this
work the pre-trained German model is used.3 The
number of words, i.e. the top-n most frequent
words in the dataset that are embedded, is opti-
mized as a hyperparameter.

4.3 Model

The main focus of this work relies on optimiz-
ing CNNs for the task of classifying German text
blurbs. The preprocessed text is fed to the net-
work through the earlier described word embed-
ding lookup, which converts word IDs to vectors
represented in a high-dimensional vector space.

Afterwards, a convolutional layer is applied on
top of the embedding layer. The layer is specified
by two central hyperparameters: region sizes and
number of filters.

A region size can be understood as the 1-D con-
volution window size in the domain of computer
vison or the n-gram size in the domain of NLP.
Each region has a number of filters with different
weights. The weights of each filter are adjusted
during training time to detect different lexical fea-
tures in the text.

2https://github.com/DFKI-MLT/JTok, accessed July 30,
2019

3https://fasttext.cc/docs/en/crawl-vectors.html, accessed
August 05, 2019

In order to reduce the output of the differ-
ent filters at each position in the text, max-over-
time pooling is applied. The pooling returns the
highest value for each filter with respect to all
positions; i.e. after the pooling step, a layer
with |region sizes|·number of filters neurons is ob-
tained. These neurons are fully connected to the
final sigmoid layer which turns the input into a
probability distribution over the label classes.

In order to mitigate overfitting, a Dropout rate
is established between these last two layers. This
way the network is forced to not solely rely on the
activation of single filters.

Besides the CNN’s specific hyperparameters, it
is also recommended to optimize the learning rate
and batch size.

To adjust the weights during learning, Adam
optimization (Kingma and Ba, 2015) is used.

4.4 Applied Hyperparameter Optimization

In this section, the results of applying Hyperpa-
rameter Optimization by using BOHB (Falkner
et al., 2018) are investigated. The hyperparam-
eters are optimized by sampling a random 20%
train/test split at the beginning of each run, which
is necessary to mitigate overfitting. In total BOHB
evaluated 30 iterations to find the final configura-
tion. The search hyperparameter space is shown
in Table 1. The final hyperparameters are shown
in Table 2. The parameters are very different
for both subtasks. It can be seen that the best
parameters for the fine-grained classification of
subtask b span a more complex network than
for subtask a which intuitively makes sense.
The sequence length is more than twice as long
(191→ 410), the number of words almost reaches
the upper limit of the range (29, 524 → 48, 736)
and the number of filters per region is also highly
increased (560 → 975). The region size on the
other hand drops (15 → 7), which may indicate
that smaller text sequences play a more important
role for the fine-grained classification.

4.5 Classification Methods

A special classification method based on the T-
Criterion (Boutell et al., 2004) was used to fur-
ther improve the classification results based on
the probability distribution over the label classes.
In the standard above threshold classification
method, all class probabilities with a value above
a pre-set threshold (0.5), are considered as posi-

Table 1: Hyperparameter search ranges.

Parameter Range
Sequence Length [50; 1,000]
Number of Words [10,000; 50,000]
Regions Size [3; 18]
Number of Filters [200; 2,000]
Dropout Rate [0.0; 0.7]
Learning Rate [1e−4; 5e−2]
Batch Size [16; 256]

Table 2: Best found hyperparameter configurations for
both subtasks.

subtask
Parameter a b
Sequence Length 191 410
Number of Words 29,524 48,736
Regions Size [15] [7]
Number of Filters 560 975
Dropout Rate 0.10 0.03
Learning Rate 0.0017 0.0022
Batch Size 32 64

tive classes. There are two problems with this ap-
proach.

First, given the Closed World Assumption that
every blurb belongs to at least one class, if there
is not a single label with a confidence greater than
0.5, there will be no prediction. This problem is
solved by using the T-Criterion, if all confidences
are lower than the pre-set threshold the label with
the highest confidence is assigned if the overall
confidence entropy is above a minimal threshold
(0.1).

Second, as we flatten the hierarchy structure of
subtask b for the training of the CNN, using T-
Criterion alone may result in positive classes for a
single node in the hierarchy. Therefore, a recon-
struction step is applied which additionally pre-
dicts the classes in the path from root to predicted
node. This classification method will be described
as T-Criterion.

5 Results

Table 3 illustrates the results for both subtasks
per approach based on the dev and test set.
As expected, the F1 scores for subtask a
(0.850) are higher than the scores for the HMC
subtask b (0.664) with 343 classes. The

dev test
Approach subtask a subtask b subtask a subtask b

SVM 0.783 0.577 - -
AVERBIS BOHB CNN 0.837 0.641 - -
AVERBIS BOHB CNN + T-Criterion 0.850 0.664 0.834 0.644

Table 3: F1 scores for both subtasks per approach.

AVERBIS BOHB CNN outperforms the baseline
SVM approach (+0.054). Moreover, applying the
T-Criterion classification method further im-
proves AVERBIS BOHB CNN (+0.013). Unfor-
tunately, the scores deteriorate comparing dev to
test set. This could indicate overfitting on the
test + dev set and therefore question the relia-
bility of the found hyperparameters. For more ro-
bust results we suggest to tweak the hyperparame-
ter ranges and increase the iteration budget of the
optimization.

6 Conclusion

In conclusion we have shown that a strong classi-
fier for German blurbs can be build using a CNN
with optimized hyperparameters. Yet, especially
the HMC subtask b is a challenging problem
that requires further work. The found hyperparam-
eters for both subtasks illustrate how the complex-
ity of a CNN, i.e. number of trainable parameters,
grows from a simple text-classification task with
8 labels to the hierarchical task with 343 labels,
given the same input.

As deployment into production is an impor-
tant factor for us, we plan to compare our results
to more recent approaches in terms of accuracy,
training and inference time; e.g. Acharya et al. re-
port on decreased model sizes and inference times
while maintaining high accuracy by compressing
the word embeddings.

References
Anish Acharya, Rahul Goel, Angeliki Metallinou, and

Inderjit Dhillon. 2019. Online embedding compres-
sion for text classification using low rank matrix fac-
torization. Proceedings of the AAAI Conference on
Artificial Intelligence, 33:6196–6203.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Matthew R. Boutell, Jiebo Luo, Xipeng Shen, and
Christopher M. Brown. 2004. Learning multi-

label scene classification. Pattern Recognition,
37(9):1757 – 1771.

Stefan Falkner, Aaron Klein, and Frank Hutter. 2018.
BOHB: robust and efficient hyperparameter opti-
mization at scale. CoRR, abs/1807.01774.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Peter Henderson, Riashat Islam, Philip Bachman,
Joelle Pineau, Doina Precup, and David Meger.
2017. Deep reinforcement learning that matters.
CoRR, abs/1709.06560.

Nal Kalchbrenner, Edward Grefenstette, and Phil
Blunsom. 2014. A convolutional neural net-
work for modelling sentences. arXiv preprint
arXiv:1404.2188.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Edda Leopold and Jörg Kindermann. 2002. Text cat-
egorization with support vector machines. how to
represent texts in input space? Machine Learning,
46(1-3):423–444.

Larry M Manevitz and Malik Yousef. 2001. One-class
svms for document classification. Journal of ma-
chine Learning research, 2(Dec):139–154.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

https://doi.org/10.1609/aaai.v33i01.33016196
https://doi.org/10.1609/aaai.v33i01.33016196
https://doi.org/10.1609/aaai.v33i01.33016196
https://doi.org/https://doi.org/10.1016/j.patcog.2004.03.009
https://doi.org/https://doi.org/10.1016/j.patcog.2004.03.009
http://arxiv.org/abs/1807.01774
http://arxiv.org/abs/1807.01774
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

