
INDEPENDENT STUDY

NAMED ENTITY RECOGNITION WITH NEURAL

NETWORKS

November 30, 2017

Student ID: 6886047

University of Hamburg

Department of Language Technology

Examiner: Prof. Dr. Chris Biemann

1

Fabian Karl University of Hamburg

Contents

1 Named Entity Recognition 3

2 Data 3

3 Neural Networks 4

3.1 Recurrent Neural Networks . 5

3.2 Convolutional Neural Network . 5

3.3 Conditional Random Fields . 6

4 Methods 6

4.1 Word embedding . 6

4.2 Bi-directional context . 7

4.3 Model architecture . 7

4.4 Character embedding . 9

4.5 CNN instead of LSTM . 9

5 Related Work 9

6 Results and Performance 10

6.1 Model Architecture . 12

6.2 CoNLL-2003 . 12

6.3 GermEval-2014 . 12

6.4 Convolutional Neural Network . 12

7 Discussion 14

7.1 Character Embedding . 14

7.2 Conditional Random Field . 15

7.3 English vs. German . 15

8 Conclusion 16

References 17

Page 2 of 18

Fabian Karl University of Hamburg

1 Named Entity Recognition

Named Entity Recognition (NER) describes the task of finding or recognizing named entities.

Since ’entity’ is a very broad term, meaning something that exists, it is concretized for this

purpose. Named entity refers to either Person, Location, Organization or Misc-Entity in this

context. Any other word is referred to as being no entity. One could argue, that these four

types of entities do not cover the whole semantic space of possible entities, but since most

of the available data is labeled in this fashion, it is used in various studies, including this

one. Finding entities in text or speech is an essential preprocessing step in oder to extract

further information. Almost all information in text or speech can be decomposed into entity-

to-entity-relations or subject-object-relations, where subject and object are normally some

form of entity. So in order to find relations in language, a distinction between entities and

no-entities or other semantic word forms is necessary.

Next to this, tagging words with their respective entity-tag will increase the general rich-

ness of information provided by that word. This means, that further natural language algo-

rithms can use these words combined with their NER tags in order to increase their perfor-

mance. For example, if one wanted to determine the POS tag (noun, verb, ...) for these words

now, the NER tags would provide critical information. This can also be done the other way

round, which is actually more common.

NER can also be used to acquire general information about text. E.g. if it is mostly about

Locations or Persons or what the composition between the different entities is.

The goal of this study is to replicate the state-of-the-art performance in NER without any

handcrafted rules, but only by using pre-labled training data. In addition, approaches to

further increase the performance are described and evaluated.

Similar studies that reach state-of-the art performance with neural architectures can be

looked up in (Ma & Hovy, 2016) or in (Lample, Ballesteros, Subramanian, Kawakami, & Dyer,

2016).

2 Data

Two labeled data collections were used for training the networks and testing them. The first

one is the CoNLL-2003 (Tjong Kim Sang & De Meulder, 2003)1 dataset, which is probably

the most widely used dataset for NER. Text is split word wise and every word is tagged with

it’s POS and entity-tag. In total there are nine different token-level-tags, representing four

1https://www.clips.uantwerpen.be/conll2003/ner/

Page 3 of 18

Fabian Karl University of Hamburg

Table 1: Table of the different datasets split up into their respective training, development and test set.
The number of words with respective tags can be seen. In the second last column the total number
of words per document is listed. In the last column the percentage of words with a tag for the whole
document is shown. The English dataset has a higher percentage of tagged word compared to the
German ones.

Model O B-Per I-PER B-ORG I-ORG B-LOC I-LOC B-MISC I-MISC total No.entities/total
CoNNLEngTrain 170524 6482 4646 6110 3915 7039 1258 3357 1236 204567 16.64%
CoNNLEngDev 38554 1579 1194 1595 901 1645 280 683 235 46666 17.38%
CoNNLEngTest 42975 1816 1333 1289 803 1802 292 904 364 51578 16.68%

CoNNLDeuTrain 192915 2793 1735 2147 1666 4208 789 767 464 207484 7.02%
CoNNLDeuDev 47682 1206 634 580 425 1038 213 203 117 52098 8.48%
CoNNLDeuTest 46035 1393 606 1088 860 1190 148 214 111 51645 10.86%
GermEvalTrain 410764 7925 4498 6101 3788 11602 1189 3450 3536 452853 9.29%
GermEvalDev 37693 731 441 590 373 1050 151 303 321 41653 9.51%
GermEvalTest 87530 1694 915 1330 703v 2376 307 778 866 96499 9.29%

different entities: ’O’ for no-entity and two different tags for each entity (Person, Location,

Organization, Misc), signaling whether the entity is at the beginning or inside an entity that

possibly spans over more than one word. The categories or possible token-tags look like this:

’O’, ’B-PER’, ’I-PER’, ’B-ORG’, ’I-ORG’, ’B-LOC’, ’I-LOC’, ’B-MISC’, ’I-MISC’.

Depending on the tagging schema ’B-Entity’, ’I-Entity’ and ’E-Entity’ are used for Begin-,

Inside- or End-position of the tag. In this work, the IBO2 tagging schemaWu, Yang, Lee, and

Yen(2006) was used. Here ’B-Entity’ is used when ever a new entity is beginning (regardless

if it is longer than one word or not). ’I-Entity’ is used for the words after ’B-Entity’, when

an entity spans over more than one word.The CoNLL-2003 dataset was used in English and

German language.

The third dataset is the GermEval-20142 dataset. This dataset provides more information

about entities (e.g. about nested entities). This information was not taken into account. It

was changed to the same data format as the CoNLL-2003 dataset. By doing so, the same

evaluation script could be applied to both dataset, making them directly comparable. Also

the same system could then train on training sets from both datasets. Detailed information

about the sizes and the distributions of tags in the different datasets and languages can be

seen in Table 1.

3 Neural Networks

Neural networks (NN) consist of a number of weight matrices, used to project a given input

[x] to an output [y]. By providing training data, and a loss function, optimization algorithms

like gradient decent are used to adapt the weights in order to minimize the given loss function.

2https://sites.google.com/site/germeval2014ner/data

Page 4 of 18

Fabian Karl University of Hamburg

If the network contains more than one layer between input and output layer - called hidden

layers - then a backpropergation algorithm is used to propergate the loss through the whole

network. Basic knowledge about neural networks is assumed in this paper. If this is not

the case, Schmidhuber(2015) and Haykin(1994) have a more detailed explanation of the

underlying mechanisms and algorithms.

3.1 Recurrent Neural Networks

In order to implicitly give time- or sequence-information to a NN, recurrent neural networks

(RNN) are used. RNNs get a sequence of features as input, where each feature could stand

for one timestep of some process. In this study every sentence is represented as a sequence

and every word is a feature. Since RNNs suffer from problems like the vanishing/exploding

gradient, LSTMs are used instead. Long-short-term-memory (LSTM) cells are designed to

keep important information even if the sequences are very long and important information

was recognized in one of the first samples of the sequence. This is done implicitly with the

architecture of LSTM cells. Every LSTM cell is build up by a number of gates (e.g. forget

gate), which allow it to store important information much longer and discard unimportant

one faster. Ma and Hovy(2016) explain this in more detail if needed. LSTMs are one of the

most widely used forms of RNNs and NN in general. They have proven state-of-the-art

performance in many sequence based problems.

3.2 Convolutional Neural Network

Convolutional neural networks (CNN) are based on NN, but realize some new ideas, especially

in oder to analyze image-data. Where a regular feed forward neural network connects every

node from one layer to every node of its preceding layer, a CNN only connects a certain

number of nodes to one of its preceding nodes. One can understand this like applying a

filter or a convolution to an image. By doing so, one saves a lot of computational time on

the one hand, on the other hand local context becomes more important in comparison to a

feed forward network, where always the context of the whole input is considered. CNNs have

proven themselves in various image classification tasks and, like LSTMs for sequences, have

become state of the art for many image/pixel based problems. Since embedding every word

of a sentence into a vector creates a n*m matrix, where n is the number of words and m is the

embedding size, CNNs can also be applied to embedded text data.

Page 5 of 18

Fabian Karl University of Hamburg

3.3 Conditional Random Fields

An additional Conditional Random Field (CRF) instead of the last softmax layer of one of

the previously described neural networks allows to take the context of the output tags into

account as well. Where the LSTM or CNN are used to extract the information from the input

context, the CRF layer is doing so for the context of the output tags. This means, it can make

predictions about the out-coming tag on the basis of the whole output sequence. This can

be helpful, because certain combinations of output tags are not possible and should never

occur. The CRF layer can detect these rules and apply them accordingly. Literature shows an

increase of performance on sequence tagging tasks through adding a CRF layer as last layer

of the model architecture; see Section 4.3

4 Methods

4.1 Word embedding

In order to create a numeric representation of the textual input, every word/token has to

be embedded into some vector representation. The easiest approach for this is to one-hot

encode every word that is present. This would results in n vectors with the size n, for n being

the number of different words, and no meaningful relation between two vectors. A better

solution is, to embed each word based on its context. On a very high level what is done: Words

are one-hot encoded and trained on their context words (surrounding words) with one hidden

layer. The weights of this hidden layer are taken as word embedding for each word respectively.

More detailed information about how this can be done is provided in Mikolov, Chen, Corrado,

and Dean(2013). More important for this paper than the actual implementation, are the

implications from this embedding. A word embedding where words are embedded on the

basis of their neighboring words allows a meaningful comparison between vectors. Since

similar words occur in similar contexts, similar vectors can be interpreted as a semantic

similarity. Also this method allows to embed words into smaller vectors. A very often seen

embedding size is 300.

For this paper the embedding was done with different pre-trained models, all having an

embedding size of 300.

Most of the experiments were done with a pretrained fasttext model3. Fasttext is an

embedding model, that uses continuous word representations. Instead of using discrete

representations of every word, "each word is represented as a bag of character n-grams. A

3https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Page 6 of 18

Fabian Karl University of Hamburg

vector representation is associated to each character n-gram; words being represented as the

sum of these representations"(Bojanowski, Grave, Joulin, & Mikolov, 2016)

Also Google’s pretrained word2vec4 and BPEmb5 models have been tried out, but since

they performed worse than the fasttext model, were not used for further experiments. When

embedding the words, all numbers were replaced with 0 and all unknown words with a ’-’

in them were divided into two separate words. The ’-DOCSTART-’ symbol was handled as a

unique token and all characters were converted to lower case (except in the word2vec model),

since the fasttext and BPEmb model were only trained on lower case words. Other than that,

the words were not preprocessed in any way.

At last, to get more information about the word in question, the word was separated into

its characters and and every character was encoded into its ASCII value; see Section 4.4.

4.2 Bi-directional context

In order to take context information into account when predicting the tag of a word, the

words before and after the word in question were also embedded and used as additional

information. The sentence was split into two lists, where the first list contained all word

embeddings of words from the beginning of the sentence until the word in question inclusive,

and the second list contained all the embeddings from the last word to the word in question

(inclusive). The target variable for one of these data points was a one-hot encoding over the

9 previously described categories of ’O’, ’B-PER’, ’I-PER’, ’B-ORG’, ’I-ORG’, ’B-LOC’, ’I-LOC’,

’B-MISC’, ’I-MISC’. An example of one data point can be seen in Figure 1.

4.3 Model architecture

The architecture of the Bi-LSTM neural network model was adjusted during the experiment

phase, but most of the experiments were done with a similar architecture. After the embed-

ding, two LSTM networks with 300 LSTM cells each were added to the model. Those were

concatenated afterwards and their result was fed into two three connected dense layers with

300 and 100 and 9 units respectively. After the concatenation and the first dense layer a

dropout of 0.6 was applied. If the CRF layer was not used, the softmax activation function was

applied for the last layer, yielding a probabilistic distribution over the nine output categories.

For all other layers the ReLu activation function was used.

4https://code.google.com/archive/p/word2vec/
5https://github.com/bheinzerling/bpemb

Page 7 of 18

Fabian Karl University of Hamburg

Figure 1: Architecture of the model with an example data point. The word ’New’ is the word to be
tagged in this example. This shows the full architecture of the model. On the right the different steps
are labeled.

Page 8 of 18

Fabian Karl University of Hamburg

If the CRF layer was used, ReLu activation function was also used for the last dense

layer. The last layer was then reshaped to a sequence length of one and given into the CRF

layer which returned a one-hot-encoding over the nine output categories. This architecture

resulted in having around 1.7 million trainable parameters. Batchsize was set to 512 for all

experiments without CRF, and 300 for all others. The code is openly available.6

4.4 Character embedding

In order to give more importance to the actual word in question, the word was separate into

its characters and the ASCII representation (a -> 97) of every character was saved in a list.

This list was reversed and used as separated input (next to the bi-directional LSTM inputs),

that was given into a dense layer and then concatenated with the first dropout layer after the

concatenation of the two LSTM layers; Figure 1.

4.5 CNN instead of LSTM

A second architecture was experimented with. The two LSTM layers were replaced by a num-

ber of convolutional layers, spanning over a different number of words. Each convolutional

layer consists of a fixed number of convolutional filters, each spanning over a matrix of 300*n,

where 300 is the embedding size of each word and n is the number of words. Depending on n,

the context information increases. If n would be 1, the filter would only ’see’ one word at a

time and have no direct context information. If n would be the same as the sentence length

(defined to 20 in this case), the filter would ’see’ the whole sentence and context information

could be included directly. A bigger filter increases the trainable parameters and thus training

time. The idea behind a CNN is therefore to use multiple smaller filters in order to capture

spacial and local information (mostly in images). This can also be applied to text input, since

relevant information is often (depending on the language) packed together. In this task for

example: ’I-LOC’ will always be next to ’B-LOC’ or ’I-LOC’. Size and number of CNN layers

are reported within the results below.

5 Related Work

As mentioned before, the goal of this study was to replicate state-of-the-art behavior for

the NER task. The methods by which this was tried, are similar to other papers. It is not a

6https://github.com/fabudlx/NER

Page 9 of 18

Fabian Karl University of Hamburg

one to one replication study, but the main elements of the neural network architecture have

been used in other studies before and proven to show a very good performance. The two

papers that were used most importantly as reference, and are similar to the approach in this

article, are Ma and Hovy(2016) and Lample et al.(2016). Lample et al. also use a Bi-LSTM

with CRF layer and character embedding for their best F1-Score performance: 90.94 on

English, 78.76 in German CoNLL-2003 dataset. By doing so, they increased the best F1-Score

for the German CoNNL-2003 by 2.54%. They outperformed Gillick, Brunk, Vinyals, and

Subramanya(2015), who used character based word representations/embeddings and used a

sequence to sequence learning approach. Ma and Hovy use a combination of BI-RNN, CNN

and CRF to score a F1-Score of 91.21% on the English CoNNL-2003 dataset. Using a CNN

layer instead of a LSTM layer like mentioned in 4.5 was done by Collobert et al.(2011) and

also showed comparable but worse results than the Bi-LSTM architectures. Huang, Xu, and

Yu(2015) use a similar LSTM-CRF architecture, but they use handcrafted spelling features to

increase the performance of their model. Table 2 and Table 3 show the best performance for

CoNNL-2003 dataset of this paper compared to other state-of-the art approaches.

Related work with the GermEval-2014 dataset can be found in Benikova, Biemann, Kisse-

lew, and Padó(2014). Nam(2014) and Nouvel and Antoine(2014) use forms of supervised or

semi-supervised training to solve the task, but only reach F1-Scores of 72.30% or 62.85%

respectively. Hänig, Bordag, and Thomas(2014) score an F1-Score of 77.14%, and have the

highest found performance on this dataset. But they use external resources, like looking up

unknown words in the Wikipedia API, for example, which increases their performance. These

performances refer to GermEval-2014 metric 2, which are in line with the metric used for

CoNNL-2003 results, and are also used for this paper. Metric 2 refers to using the same tag

schema as described in Section 2. Table 4 shows a comparison on different studies on this

dataset.

6 Results and Performance

The performance of the NER task is measured and shown with the average F1-Score between

all the categories. Since the most words are no-entities, accuracy can lead to misinterpretation

of the results. Tagging everything as no-entities yields a accuracy between 80-90% depending

on the percentage of entities in all words. F1-Score on the other hand gives a more accurate

picture of the actual performance in a categorization task. F1-Score is the harmonic mean

between precision and recall. All F1-scores shown are calculated by the evaluation script

provided for the CoNNL-2003 task. For a multi-category problem the average F1-Score is

Page 10 of 18

Fabian Karl University of Hamburg

Table 2: Shows different performances on the CoNLL-2003 English dataset of models from various
studies

Model F1
(Lin & Wu, 2009) 83.78
(Collobert et al., 2011) 89,59
(Luo, Huang, Lin, & Nie, 2015) + gaz 89.90
(Passos, Kumar, & McCallum, 2014) 90.05
(Huang et al., 2015) 90.10
This paper 90.14
(Passos et al., 2014) 90.90
(Lin & Wu, 2009) 90.90
(Lample et al., 2016) 90.94
(Luo et al., 2015) + gaz + linking 91.20
(Ma & Hovy, 2016) 91.21

Table 3: Shows different performances on the CoNLL-2003 German dataset of models from various
studies

Model F1
(Gillick et al., 2015) 72.08
(Ando & Zhang, 2005) 75.27
(Qi, Collobert, Kuksa, Kavukcuoglu, & Weston, 2009) 75.72
(Gillick et al., 2015) 76.22
(Lample et al., 2016) 78.76
This paper 79.89

Table 4: Shows different performances on the GermEval-2014 dataset with Metric 2 (subtypes base,
deriv and part collapsed)

Model F1 (Metric 2)
(Nouvel & Antoine, 2014) 62.85
(Nam, 2014) 72.30
This paper 77.02
(Hänig et al., 2014) 77.14

Page 11 of 18

Fabian Karl University of Hamburg

Table 5: This Table shows the results from the CoNNL-2003 dev and test set for different architectures
and training sets.

Model CoNNL Eng dev CoNNL Eng test CoNNL Deu dev CoNNL Deu test
Bi-LSTM 83.9 88.72 79.28 79.49

CRF 84.07 88.36 76.67 78.53
CHAR 86.07 90.14 78.96 79.89

CRF+CHAR 86.01 89.6 78.12 78.84

calculated over all classes.

6.1 Model Architecture

Performance was tested with four different LSTM conditions, referring to four different model

architectures. The basic architecture was the Bi-LSTM architecture described in Section 4.3

(LSTM). The other three architectures have either a CRF layer added (CRF), the character

embedding of the word in question as an additional input (CHAR) or both (CRF+CHAR).

The resulting average F1-Score for all four conditions on all three datasets (CoNNL-eng,

CoNNL-ger, GermEval) can be seen in Table 5 and Table 6. The CHAR model shows best

results over almost all categories.

6.2 CoNLL-2003

The results shown in Table 2 and in Table 3 are acquired after 15-17 training epochs on the

whole training data and tested on the test data. Test data was only used once for the final

test, which yielded the results shown in the tables. All fine-tuning of variables of the network

architecture were made, based on the results from the development dataset.

6.3 GermEval-2014

The same models used for the CoNNL-2003 dataset were trained and tested on the GermEval-

2014 dataset. The results can be seen in Table 6. The overall results for the test data are

slightly worse than for the CoNNL-2003 German dataset.

6.4 Convolutional Neural Network

As described in Section 4.5 a CNN-CHAR model was also trained and tested on the CoNNL-

2003 English dataset. F1-Scores are shown in Table 7. The CNN-CHAR model is build like the

Page 12 of 18

Fabian Karl University of Hamburg

Figure 2: F1-Score for different LSTM-condition for CoNNL-2003 English test data.

Table 6: This Table shows the results from the GermEval-2014 dev and test set for different architec-
tures and training sets.

Model GermEval dev GermEval test
Bi-LSTM 76.65 77.02

CRF 74.2 74.11
CHAR 77.45 76.94

CRF+CHAR 74.49 73.27

Page 13 of 18

Fabian Karl University of Hamburg

Table 7: This Table shows the comparison between CNN-CHAR and Bi-LSTM-CHAR for the CoNNL-
2003 English dataset. Trainable parameters shows the size of the network

Model CoNNL Eng dev dev CoNNL Eng test Trainable par.
CNN-CHAR 84.68 88.96 881,809

Bi-LSTM-CHAR 86.07 90.14 1,723,909

BI-LST-CHAR model, but instead of the two LSTM layers, four different CNN layers (two for

forward and two for backward) with window size of 2 and 5 and 50 filters each are used. The

resulting model is much smaller than the LSTM model but also performs worse than it.

7 Discussion

7.1 Character Embedding

The results show, that the best performance in the English conditions, regarding F1-Score,

were observed when using a char representation of the word in question next to the Bi-

directional embedding of the whole sentence with a pretrained fasttext word embedding

model. Other models like the plain Bi-LSTM also perform in a similar range of F1-Score, but

the adding of the character embedding always increases the performance.

For the two German conditions (CoNNL-2003 Ger and GermEval-2014) the character

embedding shows an increase in performance for the test dataset of CoNNL-2003 ger and

for the development set of GermEval-14. For the respective development and test set, the

plain Bi-LSTM scores the highest F1-Score. Combined, the overall performance over both

German conditions over development and training sets was slightly higher for the condition

with character representations.

This can be explained by the increased information gain by this direct character em-

bedding. Especially since the chosen fasttext word embedding converts everything to small

letters before reading it. This completely obscures the difference between capitalized and non

capitalized words. For example the word ’us’ could not be differentiated from the word ’US’.

This effect is much weaker for the German condition. In German, all nouns are capitalized,

where in English only proper names or proper nouns are capitalized. We can assume that

this is the reason, why precise character information was more useful for the English model

than for the German model.

Page 14 of 18

Fabian Karl University of Hamburg

7.2 Conditional Random Field

The CRF conditions showed inferior performance than the softmax layer, in contrary to

results reported in the literature. Lample et al.(2016) could observe a rise in F1-Score of 1.79

percentage points and many other papers also experienced an addition of 1-2 percentage

points in F1-Score when adding an CRF layer as last layer. A good explanation for this could

not be found. Maybe more hyper-parameter tuning regarding batchsize, number of epochs

and learning rate/optimizer could have given the expected rise in performance.

Hyper-parameter tuning was not done in a systematic fashion, since time and computa-

tional power did not allow for it. While a small optimization potential is to expect, further

optimization was not deemed necessary in light of already good performance.

7.3 English vs. German

The clear difference in performance between English and non-English conditions was ob-

served the same as reported in literature.

Comparing this paper to the very similar study of Lample et al.(2016) that used a similar

architecture and the CoNNL-2003 dataset in German and English, one interesting difference

could be observed. Lample et al. have a better F1-Score for the English condition (+0.80%),

but a worse F1-Score for the German condition (-1.13%). Since both studies used the same

architecture for both conditions, one possible explanation for this is the different word

embedding model (fasttext) used in this paper. Since word embedding models are often

trained on Wikipedia and large news corpora, the training data for English is normally much

larger than for any other language. The size and diversity of a training corpus, when creating

a word2vec model, using either hierarchical softmax or negative sampling is responsible for

the quality of the resulting model. The explanation for the better performance of the German

model compared to the slightly worse performance of the English model, in relation to other

studies, is, that the German word embedding is superior to the German embedding used

in previous studies. The English embedding models used in previous studies were already

performing very well and the fasttext embedding used in this paper could not increase the

richness of representation of words. In German on the other hand, models are generally not

performing as well as English models (due to training data). A second explanation could be,

that previous studies spend more time on increasing their score especially for the English

model, since it has more international prestige/importance. By doing more thorough hyper-

parameter tuning for example, they could have increased the score for the English models

further, while they were already satisfied with the results for other languages.

Page 15 of 18

Fabian Karl University of Hamburg

State-of-the-art performance could almost be replicated in regards to the final F1-Score

for the CoNNL-2003 English dataset. The model from this paper is 1.07 F1 percent points

short of the best performing model right now (Ma & Hovy, 2016). This is very likely due to no

systematic hyper-parameter tuning in this work and further improvements in architecture

design and data-preprocessing. For the GermEval-2014 dataset, the best score without

handcrafted features could be scored.

8 Conclusion

This work further proves the capabilities of neural architectures to learn tagging tasks (and

categorization tasks) with no external knowledge needed. It also shows that the importance

and performance of neural network architectures for natural language tasks will further

increase in the future. Improved architectures and new models will further increase in

accuracy and general performance in word embedding, information-inference form context

and categorization tasks. This allows to solve problems faster, with less or no handcrafted

features, and overall in a more general way.

Page 16 of 18

Fabian Karl University of Hamburg

References

Ando, R. K., & Zhang, T. (2005). A framework for learning predictive structures from multiple

tasks and unlabeled data. Journal of Machine Learning Research, 6(Nov), 1817–1853.

Benikova, D., Biemann, C., Kisselew, M., & Padó, S. (2014). GermEval 2014 Named Entity

Recognition Shared Task: Companion Paper. In Proceedings of the KONVENS GermEval

workshop (p. 104-112). Hildesheim, Germany.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with

Subword Information. arXiv preprint arXiv:1607.04606.

Chiu, J., & Nichols, E. (2016). Named Entity Recognition with Bidirectional LSTM-CNNs.

Transactions of the Association for Computational Linguistics, 4, 357–370. Retrieved

from https://transacl.org/ojs/index.php/tacl/article/view/792

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural

language processing (almost) from scratch. Journal of Machine Learning Research,

12(Aug), 2493–2537.

Gillick, D., Brunk, C., Vinyals, O., & Subramanya, A. (2015). Multilingual Language Processing

From Bytes. CoRR, abs/1512.00103. Retrieved from http://dblp.uni-trier.de/db/

journals/corr/corr1512.html#GillickBVS15

Hänig, C., Bordag, S., & Thomas, S. (2014). Modular classifier ensemble architecture for

named entity recognition on low resource systems. In Workshop Proceedings of the 12th

Edition of the KONVENS Conference (pp. 113–116).

Haykin, S. (1994). Neural networks: a comprehensive foundation. Prentice Hall PTR.

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF Models for Sequence Tagging.

CoRR, abs/1508.01991. Retrieved from http://dblp.uni-trier.de/db/journals/

corr/corr1508.html#HuangXY15

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural Archi-

tectures for Named Entity Recognition. In Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies (pp. 260–270). Association for Computational Linguistics. Retrieved

from http://www.aclweb.org/anthology/N16-1030 doi: 10.18653/v1/N16-1030

Lin, D., & Wu, X. (2009). Phrase clustering for discriminative learning. In Proceedings of

the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International

Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2 (pp.

1030–1038).

Luo, G., Huang, X., Lin, C.-Y., & Nie, Z. (2015). Joint Named Entity Recognition and

Page 17 of 18

https://transacl.org/ojs/index.php/tacl/article/view/792
http://dblp.uni-trier.de/db/journals/corr/corr1512.html#GillickBVS15
http://dblp.uni-trier.de/db/journals/corr/corr1512.html#GillickBVS15
http://dblp.uni-trier.de/db/journals/corr/corr1508.html#HuangXY15
http://dblp.uni-trier.de/db/journals/corr/corr1508.html#HuangXY15
http://www.aclweb.org/anthology/N16-1030

Fabian Karl University of Hamburg

Disambiguation. Retrieved from https://www.microsoft.com/en-us/research/

publication/joint-named-entity-recognition-disambiguation/

Ma, X., & Hovy, E. H. (2016). End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-

CRF. In ACL (1). The Association for Computer Linguistics. Retrieved from http://

dblp.uni-trier.de/db/conf/acl/acl2016-1.html#MaH16

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word

Representations in Vector Space. CoRR, abs/1301.3781. Retrieved from http://

dblp.uni-trier.de/db/journals/corr/corr1301.html#abs-1301-3781

Nam, J. (2014). Semi-Supervised Neural Networks for Nested Named Entity Recognition.

Proceedings of the KONVENS GermEval Shared Task on Named Entity Recognition,

Hildesheim, Germany.

Nouvel, D., & Antoine, J.-Y. (2014). Adapting Data Mining for German Named Entity Recogni-

tion. In KONVENS’ 2014 (pp. 149–153).

Passos, A., Kumar, V., & McCallum, A. (2014). Lexicon Infused Phrase Embeddings for Named

Entity Resolution. In CoNLL.

Qi, Y., Collobert, R., Kuksa, P., Kavukcuoglu, K., & Weston, J. (2009). Combining labeled and

unlabeled data with word-class distribution learning. In Proceedings of the 18th ACM

conference on Information and knowledge management (pp. 1737–1740).

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61,

85–117.

Tjong Kim Sang, E. F., & De Meulder, F. (2003). Introduction to the CoNLL-2003 Shared

Task: Language-independent Named Entity Recognition. In Proceedings of the Seventh

Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4 (pp. 142–

147). Stroudsburg, PA, USA: Association for Computational Linguistics. Retrieved from

https://doi.org/10.3115/1119176.1119195 doi: 10.3115/1119176.1119195

Wu, Y.-C., Yang, J.-C., Lee, Y.-S., & Yen, S.-J. (2006). Efficient and robust phrase chunking

using support vector machines. Information Retrieval Technology, 350–361.

Page 18 of 18

https://www.microsoft.com/en-us/research/publication/joint-named-entity-recognition-disambiguation/
https://www.microsoft.com/en-us/research/publication/joint-named-entity-recognition-disambiguation/
http://dblp.uni-trier.de/db/conf/acl/acl2016-1.html#MaH16
http://dblp.uni-trier.de/db/conf/acl/acl2016-1.html#MaH16
http://dblp.uni-trier.de/db/journals/corr/corr1301.html#abs-1301-3781
http://dblp.uni-trier.de/db/journals/corr/corr1301.html#abs-1301-3781
https://doi.org/10.3115/1119176.1119195

	Named Entity Recognition
	Data
	Neural Networks
	Recurrent Neural Networks
	Convolutional Neural Network
	Conditional Random Fields

	Methods
	Word embedding
	Bi-directional context
	Model architecture
	Character embedding
	CNN instead of LSTM

	Related Work
	Results and Performance
	Model Architecture
	CoNLL-2003
	GermEval-2014
	Convolutional Neural Network

	Discussion
	Character Embedding
	Conditional Random Field
	English vs. German

	Conclusion
	References

