

2019

WikiHow QA

PROJECT REPORT

BY TIM FISCHER

GitHub: https://github.com/bigabig/wikihow-qa/

Live Demo: http://ltdemos.informatik.uni-hamburg.de/wikihowqa/

https://github.com/bigabig/wikihow-qa/
http://ltdemos.informatik.uni-hamburg.de/wikihowqa/

Table Of Contents
The Task ... 2

Dataset .. 3

Architecture Idea & Scope of the project .. 4

Summarization .. 6

Summarization Evaluation... 7

Summarization methods ... 8

TextRank .. 8

Pointer-Generator Network .. 9

BertSum ... 10

Features ... 11

Feature 1: Answering “How to …” Questions.. 11

Feature 2: Summarize provided text ... 12

Feature 3: Evaluate summarization techniques .. 13

Feature 4: Statistics ... 14

Application Architecture ... 15

Technology (API, Databases, Frontend) .. 16

Installation / Deployment ... 17

The Task

The main task of the WikiHow QA project was to build a question answering system based

on some data source. Possible data sources are WikiHow, which is a website dedicated for

answering complex question by giving detailed instructions on how to solve a certain

problem, or for example Reddit’s community “Explain it like I am 5”, in short “ELI5”, which is

a community that explains complex question using very simple language. Of course, another

possibility is to crawl the web and find answers there. For example, crawling “Frequently

Asked Questions” from various websites as well as crawling websites that are designed for

question answering, for example Quora, would be a good way to start. However, this project

simply utilizes the WikiHow dataset, which is described in detail in the next chapter.

The second task for the WikiHow QA project was to develop an interface that enables

possible users to give feedback as well as an option to correct results or simply to label

results as for example good and bad. By doing so, the final system will be able to improve

with the help of users, which is a great idea and definitely a goal to strive for.

Dataset

The WikiHow dataset was released in October 2018 together with the paper “WikiHow: A

Large Scale Text Summarization Dataset” written by Mahnaz Koupaee and William Yang

Wang. The dataset is available on GitHub (https://github.com/mahnazkoupaee/WikiHow-

Dataset) and is still updated regularly according to the authors.

As the title of the paper suggests, the dataset was extracted from the online knowledge base

“WikiHow”, which is written by many different human authors. Also, the dataset is meant to

be used as a dataset for summarization.

The dataset consists of more than 230,000 articles and for each article there exists a

summary. These article and summary pairs were extracted automatically from “WikiHow”,

which is shortly described next.

A WikiHow article typically consists of a headline, which is the question to be answered,

followed by various steps, that explain how to solve the problem at hand. Each step consists

of a main sentence, that could stand for itself, followed by some more sentences explaining

this step in a more detailed way. The summary is then generated by concatenating all main

sentences, whereas the article is constructed by concatenating all explaining sentences.

Therefore, this dataset requires very complex summarization techniques to achieve good

results. The authors state that current state-of the art sequence-to-sequence models are not

able to perform well on this dataset, which calls for new innovative models.

https://github.com/mahnazkoupaee/WikiHow-Dataset
https://github.com/mahnazkoupaee/WikiHow-Dataset

Architecture Idea & Scope of the project

Since WikiHow QA is a Question Answering system, it was necessary to look at Question

Answering system architectures before starting the development. A typical Question

Answering architecture can be seen above.

First, a user inputs a question into the system. During the Question Processing step, this

question is further analyzed. Typically, the system tries to extract the question type, the

expected answer type, which is later useful for ranking different possible answers, important

named entities, the main topic of the question and so on.

With the help of this extracted information, a query is formulated, which is then used to find

relevant documents in the document index. The document index could be for example a

crawl of the “Frequently Asked Questions” of various websites.

Having the top relevant documents, the next step is to find relevant passages in these

documents that might contain the answer to the given question. A passage is typically a

sentence but could also be a paragraph or a section. To find the most relevant passages, all

passages are ranked for example based on the number of correct Named Entities (that

appear in question and passage) or for example based on the number of keywords (that

appear in question and passage).

The final step is to utilize the top ranked passages as well as hints from the question

processing to construct the final answer to the question.

As briefly described before, building a Question Answering system requires many

subsystems. For Question Processing a classifier for question type classification and a

classifier for answer type classification is needed. Also, a Named Entity Recognition

component is helpful as well as a Keyword Extraction component. Moreover, to find and

determine the topic of the question, for example a topic model would be necessary. Next, to

build a document index, it is necessary to develop a crawler as well as to set up a database,

where all documents are stored, indexed and ranked. For passage retrieval, a component

that is able to extract the most relevant passages based on the Question Processing is

needed. Lastly, a final component that constructs the answer is needed as well as a

frontend, so that a possible user could also use this system. In total, this are 9 different

subsystems, most of which are not of-the-shelf NLP systems.

Since this seemed way out of scope for this short project, the typical question answering

architecture had to be changed. As shown in the image above, the Question Processing

component was completely removed. Also, the index that contains various documents was

replaced by an index that contains answers only, which in this case are answers from the

WikiHow dataset. Moreover, the Passage Retrieval component was replaced by a

Summarization component that sums up the WikiHow articles to give a short and precise

answer to the question. In total, the new architecture consists of 3 components (Answer

Index, Summarization, Frontend) which seemed like a much more reasonable scope for this

project.

Summarization

As described in the chapter before, the WikiHow QA system utilizes a summarization

component. Therefore, it is helpful to take a look at different summarization techniques.

Summarization is a long-researched topic of the NLP community and is typically divided into

two types: extractive and abstractive summarization. Extractive summarization systems

produce extracts, whereas abstractive summarization systems produce abstracts. An extract

consists of the original phrases and sentences from the document that should be

summarized, whereas an abstract is a text which is different from the original document.

Hence, extractive summarization is regarded as the easier approach to summarization.

However, approaches to summarization can be further categorized. For example, there are

single document summarization systems, as opposed to multi-document summarization.

Also, there are generic summarization systems that do not account the user’s information

need, as opposed to query-focused summarization systems.

Regarding the WikiHow QA project, the goal was to have both summarization techniques

available. At least on extractive and one abstractive summarization component were

developed to be able to compare these two different approaches. The developed

summarization components are generic, single-document summarization systems.

Summarization Evaluation

As stated in the chapter before, one goal of this project was to develop two different

summarization components, one extractive and one abstractive, and to compare these two

approaches. To evaluate and compare different summaries of the same document, NLP

researchers have used the ROUGE-N metric for a long time. ROUGE is short for Recall-

Oriented Understudy for Gisting Evaluation. The formula can be seen in the image above.

The ROUGE evaluation is based on a very simple mechanic: Given a gold standard summary,

which is considered as the “correct” summary, and the system summary, calculate the n-

gram overlaps between these two summaries. This basically leads to: “the more and the

longer n-gram overlaps, the better”.

Unfortunately, this measure is not suited for abstractive summarization systems. Abstractive

summarizations introduce many new words, that may neither appear in the document nor in

the gold standard summary. So even though the meaning of the abstractive summaries may

be the same, the words may not. Therefore, the n-gram overlaps are less and shorter, which

consequently leads to worse scores. Using ROUGE as evaluation often leads to extractive

summarization systems performing better than abstractive summarization systems.

Even though this problem is well known among the researches, ROUGE is still used as it

works well enough to compare different summarization methods. However, for the WikiHow

QA project, a new goal rose: Provide a better & user-friendly method to compare different

summarization methods.

Summarization methods

TextRank

TextRank is an extractive summarization method developed by Rada Mihalcea and Paul

Tarau in 2004. It is a simple, but very effective way of using graph-based algorithms for

summarization.

First, a graph needs to be created to initialize the algorithm. Therefore, each sentence is

considered as a node, whereas edges represent the sentence similarities. Sentence

similarities can be calculated for example by using cosine-similarity.

Next, PageRank, a popular graph-based ranking algorithm, is executed on this sentence

graph until it converges. PageRank basically gives nodes a higher ranking the more in-links

they have, with the addition that in-links from important nodes are more important.

Finally, the top N sentences are selected, ordered and form the summary. A simple heuristic

is to order the sentences is simply to order them as they appear in the original document.

TextRank comes with one disadvantage. It is necessary to specify the parameter N (the

number of sentences that form the final summary). In some applications, it is not known

beforehand, how many sentences or words the generated summary should have. So, this

could be a problem.

Pointer-Generator Network

The Pointer-Generator Network is an abstractive summarization method and was developed

by A. See, P. Liu and Christopher Manning in 2017. At the time of its development, this

model achieved state-of-the-art performance and is still considered as a top performing

model for abstractive summarization.

At first glance, this neural network is a simple encoder-decoder model. Basically, the

document to be summarized is encoded sentence by sentence by the encoder into a neural

representation. This neural representation of a sentence of the document is now decoded by

the decoder into a summary sentence.

In addition to that, the neural network utilizes a so-called context vector, which is created by

aggregating the attentions of the encoder. This context vector basically represents “what has

already been said”. Therefore, the context vector helps the model to avoid repetition.

Lastly, the Pointer-Generator Network makes use of a special variable called p_gen, which is

responsible for making this model an abstractive summarization method. This variable is

directly influenced by the context vector as well as the decoder and represents the

probability of choosing a word from the document or choosing a word from the vocabulary.

In other words, this variable decides whether a word is copied from the original document,

or a new word is used from the vocabulary.

BertSum

The last method used by WikiHow QA to summarize answers is called BertSum and was

developed by Yang Liu in 2019. This is an extractive summarization method that utilizes BERT

and is currently considered as the state-of-the-art model for extractive summarization. To

understand this method, it is first important to briefly understand BERT. BERT is a famous

pretrained transformer that creates context-based word and sentence embeddings. These

embeddings carry a huge amount of contextual information, which is the reason why BERT

was able to achieve great performance in many NLP tasks. BERT takes word-pieces (special

BERT word tokens) as input, whereby the first token must be the special [CLS] token,

marking the beginning of the sentence, and the last token must be the special [SEP] token,

marking the end of the sentence. Typically, BERT is used with one or two sentences, as it was

pretrained with next-sentence prediction and masked language modeling. Then, a sentence

embedding is obtained by taking the embedding of the [CLS] token. Yang Liu, however, kind-

of “tricked” BERT by inserting multiple sentences, each with its own [CLS] token, as it can be

seen in the image above. In this way, the proposed BertSum model can calculate multiple

sentence embeddings at a time. In short, the BertSum model inputs every sentence of the

document to be summarized into BERT. Next, the model gets each sentence embedding.

Lastly, each sentence embedding is forwarded into another neural network, for example a

simple linear layer (but this layer can be complex as well), that calculates a ranking of each

sentence. The final summary is then created by concatenating the top N ranked sentences.

Features

Feature 1: Answering “How to …” Questions

The image above shows the Question Answering component of WikiHow QA. It shows the

input mask, as well as the answers. Features that are available on this view are: Question

Answering, User-Feedback and Auto-Completion.

Note that there are two answers. The "Short Instructions" box shows the summarized

answer, whereas the "Detailed Instructions" box shows the full detailed answer to the

question. The "Short Instructions" box also contains a button asking the user to provide a

better summary, if the current one is not satisfying as it can be seen in the image below.

The input mask consists of a simple input field for the question as well as a drop-down menu

to select the summarization method. While typing in the input field, the system will suggest

possible questions. These suggestions can be selected either with the arrow keys and enter

key or simply with a mouse click. See the image below to get an idea of the auto completion.

Feature 2: Summarize provided text

The image above shows the summarization component of WikiHow QA. It shows the input

mask with some example text as well as it's summary. Similar as with the Question

Answering component, the input mask consists of a simple text input field for the text and a

drop-down menu to select the summarization method.

Feature 3: Evaluate summarization techniques

The User Interface of the "User Studies" component of WikiHow QA can be seen in the

image above. The output is organized differently compared to the other components. One or

more summaries are shown on the left side and the full article is shown on the right side. In

contrast to previous components, this component has a very complex input mask. Again,

there is an input field for the question as well as a drop-down menu to select the

summarization method. Moreover, there are various checkboxes to select different types of

Named Entities that should be visualized in the summary and in the full article. Also, it is

possible to highlight keywords in the texts as in the image above or just display them as a

list. Moreover, the ROUGE evaluation score can be displayed as seen below.

Feature 4: Statistics

The statistics component of WikiHow QA visualizes collected ratings. Both, the total ratings

graph as well as the average ratings per day graph for a certain summarization technique are

shown in the image above. Any user can submit a star rating in the “User Studies”

component, please see the image of “Feature 3: Evaluate summarization techniques”.

On the left side, the total ratings graph shows how many and which star ratings a certain

summarization technique received.

On the right side, the average ratings per day graph visualizes the change of the ratings over

time for a certain summarization technique.

Next to that, basic statistics like the number of total votes are displayed. By scrolling down

this page, the user can view the visualizations for all the other summarization techniques.

Application Architecture

The WikiHow QA system is at its core an ensemble of various microservices, multiple

databases, a backend that combines all of them and a single frontend that utilizes all the

features provided by the various microservices. Each of these small subsystems lives in its

own docker container. As the image above suggests, the WikiHow QA system can be roughly

grouped into 4 categories: Data, main application, utility and summarization.

The two services responsible for holding all the relevant data are Elasticsearch and MySQL.

Elasticsearch holds an index for each WikiHow article and also a special index that allows

auto-completion for question titles. The MySQL database stores the summaries as well as

the star ratings that are provided by the users.

The three summarization services are stateless microservices that just provide one single

functionality: Summarizing a given text. The functionality can be accessed with a simple API

call. Each summarization method runs in its own environment as they have very different

requirements (for example different TensorFlow versions).

All three utility services are also stateless microservices that each provide a single

functionality. The NER component utilizes a spaCy NER model to find Named Entities given a

certain text. The LT Keyterms service utilizes a large background corpus to find keywords

given a text. Lastly, the ROUGE microservice, calculates the ROUGE evaluation score given a

gold and system summary. All three microservices are used in the “User-Studies” feature of

WikiHow QA’s user interface.

The Main Application consists of two services. The Backend component communicates with

every single component and mainly acts as a broker between the frontend and every other

service. This is achieved by exposing one single unified API to the frontend. The Frontend

component, therefore, only needs to communicate with the Backend to make use of every

available service. With access to all services, the frontend can realize all features explained in

the previous chapter.

Technology (API, Databases, Frontend)

To build and develop the WikiHow QA system various technologies were used.

The three main programming languages used in this project are JavaScript, Python and Java.

The frontend is completely written with JavaScript and the Vue.js framework. Most

microservices were written with Python. Lastly, the Backend that combines all microservices

was written with Java.

Each microservices has its own functionality that needs to be exposed and accessible. For

that reason, the Python framework Flask was used to create a public REST API in most cases.

The Backend component utilized the Java Spring framework in combination with the

Swagger framework to create the REST API. Swagger provides a great automatically

generated documentation of the developed REST API, which made the frontend

development and communication with the Backend component much easier.

The data of the WikiHow QA system is stored using Elasticsearch and MySQL. Elasticsearch

was chosen because of its powerful indexing and fast access to unstructured information like

full text articles. Therefore, Elasticsearch stores all WikiHow articles. MySQL was chosen

because of its full integration with the Java Spring framework used by the Backend

component. This way, it was easy to store user generated feedback in the database.

Lastly, every single component utilizes Docker to make the whole WikiHow QA system as

independent as possible and as easy to install as possible.

Installation / Deployment

Even though the WikiHow QA system is a very complex ensemble of many different

subsystems, it is fairly easy to install & setup.

To understand why it is hard to install such a large system, it is first necessary to understand

the dependencies between the various components. The Frontend is completely dependent

on the Backend. This means that without a running Backend component, no features of the

Frontend are working. The Backend component, however, is dependent on the Elasticsearch

component, which holds all WikiHow articles.

One important criterion for the deployment was to be able to startup all docker containers

at once and then the system is running. Even, if it is the first startup! Therefore, the startup

order of the single components had to be enforced. Also, a service that sets up and imports

all WikiHow Articles into Elasticsearch, but only runs on the first startup, was necessary.

To install the WikiHow QA system, two steps are required. First, the WikiHow Articles must

be downloaded. Next, all Docker containers must be started. Now, the Frontend starts when

the Backend is available and the Backend starts when the Elasticsearch index is available.

Since on first startup the Elasticsearch index is not available, the Setup component runs. This

component waits until the Elasticsearch component is running, accesses the previously

downloaded WikiHow Articles and imports them using a Python script. Once this is done, the

whole application is running.

