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The Task 

 

The main task of the WikiHow QA project was to build a question answering system based 

on some data source. Possible data sources are WikiHow, which is a website dedicated for 

answering complex question by giving detailed instructions on how to solve a certain 

problem, or for example Reddit’s community “Explain it like I am 5”, in short “ELI5”, which is 

a community that explains complex question using very simple language. Of course, another 

possibility is to crawl the web and find answers there. For example, crawling “Frequently 

Asked Questions” from various websites as well as crawling websites that are designed for 

question answering, for example Quora, would be a good way to start. However, this project 

simply utilizes the WikiHow dataset, which is described in detail in the next chapter. 

The second task for the WikiHow QA project was to develop an interface that enables 

possible users to give feedback as well as an option to correct results or simply to label 

results as for example good and bad. By doing so, the final system will be able to improve 

with the help of users, which is a great idea and definitely a goal to strive for. 

  



Dataset 

 

The WikiHow dataset was released in October 2018 together with the paper “WikiHow: A 

Large Scale Text Summarization Dataset” written by Mahnaz Koupaee and William Yang 

Wang. The dataset is available on GitHub (https://github.com/mahnazkoupaee/WikiHow-

Dataset) and is still updated regularly according to the authors.  

As the title of the paper suggests, the dataset was extracted from the online knowledge base 

“WikiHow”, which is written by many different human authors. Also, the dataset is meant to 

be used as a dataset for summarization.  

The dataset consists of more than 230,000 articles and for each article there exists a 

summary. These article and summary pairs were extracted automatically from “WikiHow”, 

which is shortly described next. 

A WikiHow article typically consists of a headline, which is the question to be answered, 

followed by various steps, that explain how to solve the problem at hand. Each step consists 

of a main sentence, that could stand for itself, followed by some more sentences explaining 

this step in a more detailed way. The summary is then generated by concatenating all main 

sentences, whereas the article is constructed by concatenating all explaining sentences. 

Therefore, this dataset requires very complex summarization techniques to achieve good 

results. The authors state that current state-of the art sequence-to-sequence models are not 

able to perform well on this dataset, which calls for new innovative models.  

https://github.com/mahnazkoupaee/WikiHow-Dataset
https://github.com/mahnazkoupaee/WikiHow-Dataset


Architecture Idea & Scope of the project 

 

Since WikiHow QA is a Question Answering system, it was necessary to look at Question 

Answering system architectures before starting the development.  A typical Question 

Answering architecture can be seen above.  

First, a user inputs a question into the system. During the Question Processing step, this 

question is further analyzed. Typically, the system tries to extract the question type, the 

expected answer type, which is later useful for ranking different possible answers, important 

named entities, the main topic of the question and so on. 

With the help of this extracted information, a query is formulated, which is then used to find 

relevant documents in the document index. The document index could be for example a 

crawl of the “Frequently Asked Questions” of various websites. 

Having the top relevant documents, the next step is to find relevant passages in these 

documents that might contain the answer to the given question. A passage is typically a 

sentence but could also be a paragraph or a section. To find the most relevant passages, all 

passages are ranked for example based on the number of correct Named Entities (that 

appear in question and passage) or for example based on the number of keywords (that 

appear in question and passage).  

The final step is to utilize the top ranked passages as well as hints from the question 

processing to construct the final answer to the question.   



 

As briefly described before, building a Question Answering system requires many 

subsystems. For Question Processing a classifier for question type classification and a 

classifier for answer type classification is needed. Also, a Named Entity Recognition 

component is helpful as well as a Keyword Extraction component. Moreover, to find and 

determine the topic of the question, for example a topic model would be necessary. Next, to 

build a document index, it is necessary to develop a crawler as well as to set up a database, 

where all documents are stored, indexed and ranked. For passage retrieval, a component 

that is able to extract the most relevant passages based on the Question Processing is 

needed. Lastly, a final component that constructs the answer is needed as well as a 

frontend, so that a possible user could also use this system. In total, this are 9 different 

subsystems, most of which are not of-the-shelf NLP systems. 

Since this seemed way out of scope for this short project, the typical question answering 

architecture had to be changed. As shown in the image above, the Question Processing 

component was completely removed. Also, the index that contains various documents was 

replaced by an index that contains answers only, which in this case are answers from the 

WikiHow dataset. Moreover, the Passage Retrieval component was replaced by a 

Summarization component that sums up the WikiHow articles to give a short and precise 

answer to the question. In total, the new architecture consists of 3 components (Answer 

Index, Summarization, Frontend) which seemed like a much more reasonable scope for this 

project.   



Summarization 

 

As described in the chapter before, the WikiHow QA system utilizes a summarization 

component. Therefore, it is helpful to take a look at different summarization techniques. 

Summarization is a long-researched topic of the NLP community and is typically divided into 

two types: extractive and abstractive summarization. Extractive summarization systems 

produce extracts, whereas abstractive summarization systems produce abstracts. An extract 

consists of the original phrases and sentences from the document that should be 

summarized, whereas an abstract is a text which is different from the original document. 

Hence, extractive summarization is regarded as the easier approach to summarization. 

However, approaches to summarization can be further categorized. For example, there are 

single document summarization systems, as opposed to multi-document summarization. 

Also, there are generic summarization systems that do not account the user’s information 

need, as opposed to query-focused summarization systems. 

Regarding the WikiHow QA project, the goal was to have both summarization techniques 

available. At least on extractive and one abstractive summarization component were 

developed to be able to compare these two different approaches. The developed 

summarization components are generic, single-document summarization systems. 

  



Summarization Evaluation 

 

As stated in the chapter before, one goal of this project was to develop two different 

summarization components, one extractive and one abstractive, and to compare these two 

approaches. To evaluate and compare different summaries of the same document, NLP 

researchers have used the ROUGE-N metric for a long time. ROUGE is short for Recall-

Oriented Understudy for Gisting Evaluation. The formula can be seen in the image above. 

The ROUGE evaluation is based on a very simple mechanic: Given a gold standard summary, 

which is considered as the “correct” summary, and the system summary, calculate the n-

gram overlaps between these two summaries. This basically leads to: “the more and the 

longer n-gram overlaps, the better”. 

Unfortunately, this measure is not suited for abstractive summarization systems. Abstractive 

summarizations introduce many new words, that may neither appear in the document nor in 

the gold standard summary. So even though the meaning of the abstractive summaries may 

be the same, the words may not. Therefore, the n-gram overlaps are less and shorter, which 

consequently leads to worse scores. Using ROUGE as evaluation often leads to extractive 

summarization systems performing better than abstractive summarization systems. 

Even though this problem is well known among the researches, ROUGE is still used as it 

works well enough to compare different summarization methods. However, for the WikiHow 

QA project, a new goal rose: Provide a better & user-friendly method to compare different 

summarization methods.   



Summarization methods 

TextRank  

 

TextRank is an extractive summarization method developed by Rada Mihalcea and Paul 

Tarau in 2004. It is a simple, but very effective way of using graph-based algorithms for 

summarization. 

First, a graph needs to be created to initialize the algorithm. Therefore, each sentence is 

considered as a node, whereas edges represent the sentence similarities. Sentence 

similarities can be calculated for example by using cosine-similarity.  

Next, PageRank, a popular graph-based ranking algorithm, is executed on this sentence 

graph until it converges. PageRank basically gives nodes a higher ranking the more in-links 

they have, with the addition that in-links from important nodes are more important. 

Finally, the top N sentences are selected, ordered and form the summary. A simple heuristic 

is to order the sentences is simply to order them as they appear in the original document.  

TextRank comes with one disadvantage. It is necessary to specify the parameter N (the 

number of sentences that form the final summary). In some applications, it is not known 

beforehand, how many sentences or words the generated summary should have. So, this 

could be a problem.  



Pointer-Generator Network 

 

The Pointer-Generator Network is an abstractive summarization method and was developed 

by A. See, P. Liu and Christopher Manning in 2017. At the time of its development, this 

model achieved state-of-the-art performance and is still considered as a top performing 

model for abstractive summarization. 

At first glance, this neural network is a simple encoder-decoder model. Basically, the 

document to be summarized is encoded sentence by sentence by the encoder into a neural 

representation. This neural representation of a sentence of the document is now decoded by 

the decoder into a summary sentence. 

In addition to that, the neural network utilizes a so-called context vector, which is created by 

aggregating the attentions of the encoder. This context vector basically represents “what has 

already been said”. Therefore, the context vector helps the model to avoid repetition. 

Lastly, the Pointer-Generator Network makes use of a special variable called p_gen, which is 

responsible for making this model an abstractive summarization method. This variable is 

directly influenced by the context vector as well as the decoder and represents the 

probability of choosing a word from the document or choosing a word from the vocabulary. 

In other words, this variable decides whether a word is copied from the original document, 

or a new word is used from the vocabulary.  

  



BertSum 

 

The last method used by WikiHow QA to summarize answers is called BertSum and was 

developed by Yang Liu in 2019. This is an extractive summarization method that utilizes BERT 

and is currently considered as the state-of-the-art model for extractive summarization. To 

understand this method, it is first important to briefly understand BERT. BERT is a famous 

pretrained transformer that creates context-based word and sentence embeddings. These 

embeddings carry a huge amount of contextual information, which is the reason why BERT 

was able to achieve great performance in many NLP tasks. BERT takes word-pieces (special 

BERT word tokens) as input, whereby the first token must be the special [CLS] token, 

marking the beginning of the sentence, and the last token must be the special [SEP] token, 

marking the end of the sentence. Typically, BERT is used with one or two sentences, as it was 

pretrained with next-sentence prediction and masked language modeling. Then, a sentence 

embedding is obtained by taking the embedding of the [CLS] token. Yang Liu, however, kind-

of “tricked” BERT by inserting multiple sentences, each with its own [CLS] token, as it can be 

seen in the image above. In this way, the proposed BertSum model can calculate multiple 

sentence embeddings at a time. In short, the BertSum model inputs every sentence of the 

document to be summarized into BERT. Next, the model gets each sentence embedding. 

Lastly, each sentence embedding is forwarded into another neural network, for example a 

simple linear layer (but this layer can be complex as well), that calculates a ranking of each 

sentence. The final summary is then created by concatenating the top N ranked sentences.  



Features 

Feature 1: Answering “How to …” Questions 

 

The image above shows the Question Answering component of WikiHow QA. It shows the 

input mask, as well as the answers. Features that are available on this view are: Question 

Answering, User-Feedback and Auto-Completion. 

Note that there are two answers. The "Short Instructions" box shows the summarized 

answer, whereas the "Detailed Instructions" box shows the full detailed answer to the 

question. The "Short Instructions" box also contains a button asking the user to provide a 

better summary, if the current one is not satisfying as it can be seen in the image below. 

 

The input mask consists of a simple input field for the question as well as a drop-down menu 

to select the summarization method. While typing in the input field, the system will suggest 

possible questions. These suggestions can be selected either with the arrow keys and enter 

key or simply with a mouse click. See the image below to get an idea of the auto completion. 

 

 



Feature 2: Summarize provided text 

 

The image above shows the summarization component of WikiHow QA. It shows the input 

mask with some example text as well as it's summary. Similar as with the Question 

Answering component, the input mask consists of a simple text input field for the text and a 

drop-down menu to select the summarization method. 

  



Feature 3: Evaluate summarization techniques 

 

The User Interface of the "User Studies" component of WikiHow QA can be seen in the 

image above. The output is organized differently compared to the other components. One or 

more summaries are shown on the left side and the full article is shown on the right side. In 

contrast to previous components, this component has a very complex input mask. Again, 

there is an input field for the question as well as a drop-down menu to select the 

summarization method. Moreover, there are various checkboxes to select different types of 

Named Entities that should be visualized in the summary and in the full article. Also, it is 

possible to highlight keywords in the texts as in the image above or just display them as a 

list. Moreover, the ROUGE evaluation score can be displayed as seen below.

 



Feature 4: Statistics 

 

The statistics component of WikiHow QA visualizes collected ratings. Both, the total ratings 

graph as well as the average ratings per day graph for a certain summarization technique are 

shown in the image above. Any user can submit a star rating in the “User Studies” 

component, please see the image of “Feature 3: Evaluate summarization techniques”. 

On the left side, the total ratings graph shows how many and which star ratings a certain 

summarization technique received.  

On the right side, the average ratings per day graph visualizes the change of the ratings over 

time for a certain summarization technique.  

Next to that, basic statistics like the number of total votes are displayed. By scrolling down 

this page, the user can view the visualizations for all the other summarization techniques. 

  



Application Architecture 

 

The WikiHow QA system is at its core an ensemble of various microservices, multiple 

databases, a backend that combines all of them and a single frontend that utilizes all the 

features provided by the various microservices. Each of these small subsystems lives in its 

own docker container. As the image above suggests, the WikiHow QA system can be roughly 

grouped into 4 categories: Data, main application, utility and summarization. 

The two services responsible for holding all the relevant data are Elasticsearch and MySQL. 

Elasticsearch holds an index for each WikiHow article and also a special index that allows 

auto-completion for question titles. The MySQL database stores the summaries as well as 

the star ratings that are provided by the users. 

The three summarization services are stateless microservices that just provide one single 

functionality: Summarizing a given text. The functionality can be accessed with a simple API 

call. Each summarization method runs in its own environment as they have very different 

requirements (for example different TensorFlow versions). 

All three utility services are also stateless microservices that each provide a single 

functionality. The NER component utilizes a spaCy NER model to find Named Entities given a 

certain text. The LT Keyterms service utilizes a large background corpus to find keywords 

given a text. Lastly, the ROUGE microservice, calculates the ROUGE evaluation score given a 

gold and system summary. All three microservices are used in the “User-Studies” feature of 

WikiHow QA’s user interface. 

The Main Application consists of two services. The Backend component communicates with 

every single component and mainly acts as a broker between the frontend and every other 

service. This is achieved by exposing one single unified API to the frontend. The Frontend 

component, therefore, only needs to communicate with the Backend to make use of every 

available service. With access to all services, the frontend can realize all features explained in 

the previous chapter.  



Technology (API, Databases, Frontend) 

 

To build and develop the WikiHow QA system various technologies were used. 

The three main programming languages used in this project are JavaScript, Python and Java. 

The frontend is completely written with JavaScript and the Vue.js framework. Most 

microservices were written with Python. Lastly, the Backend that combines all microservices 

was written with Java. 

Each microservices has its own functionality that needs to be exposed and accessible. For 

that reason, the Python framework Flask was used to create a public REST API in most cases. 

The Backend component utilized the Java Spring framework in combination with the 

Swagger framework to create the REST API. Swagger provides a great automatically 

generated documentation of the developed REST API, which made the frontend 

development and communication with the Backend component much easier. 

The data of the WikiHow QA system is stored using Elasticsearch and MySQL. Elasticsearch 

was chosen because of its powerful indexing and fast access to unstructured information like 

full text articles. Therefore, Elasticsearch stores all WikiHow articles. MySQL was chosen 

because of its full integration with the Java Spring framework used by the Backend 

component. This way, it was easy to store user generated feedback in the database. 

Lastly, every single component utilizes Docker to make the whole WikiHow QA system as 

independent as possible and as easy to install as possible.   



Installation / Deployment 

 

Even though the WikiHow QA system is a very complex ensemble of many different 

subsystems, it is fairly easy to install & setup.  

To understand why it is hard to install such a large system, it is first necessary to understand 

the dependencies between the various components. The Frontend is completely dependent 

on the Backend. This means that without a running Backend component, no features of the 

Frontend are working. The Backend component, however, is dependent on the Elasticsearch 

component, which holds all WikiHow articles. 

One important criterion for the deployment was to be able to startup all docker containers 

at once and then the system is running. Even, if it is the first startup! Therefore, the startup 

order of the single components had to be enforced. Also, a service that sets up and imports 

all WikiHow Articles into Elasticsearch, but only runs on the first startup, was necessary. 

To install the WikiHow QA system, two steps are required. First, the WikiHow Articles must 

be downloaded. Next, all Docker containers must be started. Now, the Frontend starts when 

the Backend is available and the Backend starts when the Elasticsearch index is available. 

Since on first startup the Elasticsearch index is not available, the Setup component runs. This 

component waits until the Elasticsearch component is running, accesses the previously 

downloaded WikiHow Articles and imports them using a Python script. Once this is done, the 

whole application is running. 


