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Abstract
In recent years, the agricultural sector has been subject to many technological advances. Farmers

do not necessarily have to base their decisions only on proper observatory skills any longer. They can
be supported by systems, analysing the satellite images of their fields and data obtained from sensors
mounted on agricultural vehicles. This is called precision agriculture or satellite farming, and in most
cases aims at maximising the obtained amount of yield. Considering the growing world population, in
order to assure a stable food supply, not only an optimal yield performance but also plants adapted to
the given conditions are of high importance.
The branch of phenotyping addresses this challenge by studying the genotype-phenotype interaction,
in order to obtain plants perfectly adapted to specific environments and climate conditions. Entire
plant stands are analysed during their growth in so-called high throughput phenotyping platforms. The
collected amount of data is large and requires appropriate analysis techniques.
The domain of data mining focuses on the discovery of knowledge in large datasets and already provides
well-established tools, which have proven their utility in various domains such as Finance, Biology and
Medicine.
This thesis examines the appropriate data mining techniques for the present case of phenotyping, shows
the benefit of automatic outlier detection and clustering of agronomic time series to the phenotyping
community and addresses promising future directions.

Zusammenfassung
Die Landwirtschaft erfuhr in den letzten Jahren eine große Anzahl technologischer Erneuerungen.

Landwirte müssen sich bei ihrer Entscheidungsfindung nicht mehr nur auf eigene Beobachtungen und
die langjährige Erfahrung verlassen, sondern können durch Softwaresysteme unterstützt werden. Die
sogenannten Decision Support Systems (DSS) berücksichtigen Ergebnisse aus der Bildanalyse der Satel-
litenbilder der Felder und weitere meist durch Sensoren ermittelte Daten. Diese Verfahrensweise nennt
sich Precision Farming und hat oft zum Ziel die optimale Nutzung landwirtschaftlicher Nutzflächen und
somit auch einen optimalen Ertrag.
In Anbetracht der wachsenden Weltbevölkerung ist eine gesicherte Nahrungsmittelversorgung von
höchster Bedeutung, ein optimaler Ertrag und an die Bedingungen angepasste Pflanzen bilden dafür
die Grundbausteine. Um an gegebene Umwelteinflüsse angepasste Pflanzen zu erhalten befasst sich der
Bereich der Phänotypisierung mit Studien zu Phänotyp und Genotyp Wechselwirkungen. Dafür werden
Merkmale ganzer Pflanzenbestände während ihres Wachstums in Phänotypisierungplattformen gemes-
sen. Die resultierenden Datensätze sind groß und benötigen für die Analyse eine passende Herangehens-
weise.
Data Mining widmet sich der Analyse großer Datensätze und bietet bereits anerkannte Methoden die
bereits in Bereichen wie Finanzwesen, Biologie und Medizin ihren Einsatz fanden.
Diese Arbeit untersucht die Tauglichkeit unterschiedlicher Data Mining Methoden für den Fall der Phäno-
typisierung. Wir zeigen in diesem Zusammenhang den Nutzen von Techniken wie Ausreißererkennung
und Clustering, und diskutieren mögliche künftige Entwicklungen.
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1 Introduction
“Actualizing early insights by Lippmann (1922), Allport (1954) and Tajfel (1969a), the ba-

sic tenet of the social cognitive approach was that social information is much too complex to
be dealt with satisfactorily. As a consequence, human information processors need to sim-
plify the environment. Categorization offers a means to treat individual stimuli as instances
of larger groups about which prestored knowledge is available.”[Spears et al., 1997]

It is not without reason that the current age is referred to as the Information Age. We are constantly
exposed to an incredible amount of information. We see on television and hear on the radio about local
events and happenings in the world, we can read it on various newspapers, on different information web-
sites, we get personalised updates from microblogging and social networks and we are left alone with
the decision of what is important, what is trustworthy and what is worth seeing, listening or reading.
Nowadays not only the social information requires a simplification to be satisfactorily dealt with but wee
also need in our daily live broader categories in order to maintain an overview and make faster decisions.

Classification is not limited to the human subconsciousness, it is even one of the basic elements of
scientific research. In Biology Aristotle created a decision system to classify the different animal species
into similar groups. Beginning with the blood colour, red or not and adding the way the young are
produced. In plant science Theophratos created the first classification of plants and their structure and
in physics the main understandings of the atom were driven by the element classification of Mendeleyev
in the 1860s. E.g.,[Everitt et al., 2011].

These classifications have been created with much effort and long manual work. Today a manual
treatment of the incredible amount of data we are often dealing with is not imaginable. In case we
already know the groups we want our data to be assigned to, we use classifications algorithms, which
require already assigned example instances to be trained on. Once trained they classify the rest of the
data automatically. If the classes are not known in advance or if we want to explore the inherent groups
of our dataset, we use clustering algorithms which group elements into clusters, based on their high
similarity.

We have seen that information appears in many various formats, as video, text, audio, images or
measurements to name a few. All of them require an appropriate handling. In this work we focus on
the latter category, named time series. Time series are measurements which where continuously taken
in time. They appear in a great variety of fields: the financial sector, the probably mostly known time
series is the Dow Jones; the field of seismology where seismograms measure the earth movement at a
given time point; in biology, time series may represent the growth of an organism.

This thesis deals with time series in the domain of agronomy, more precisely plant phenotyping. Plant
phenotyping is the analysis of the phenetic characteristics of plants. Often this implies the goal to under-
stand the relation between the genetic assets of individuals and their phenotypic traits. Especially today
the estimated world population of 7 billions [Weltbevölkerung, 2012] requires not only a stable but an
increasing food supply. Therefore phenotyping needs to analyse a large amount of plant species in order
to find the best performing or best adapted species to certain environments.

In this thesis we show that techniques well-established in the data mining community, such as cluster-
ing and outlier detection, are of great benefit for distant fields like phenotyping.
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In Chapter 2 we provide an introduction to the format of time series, possible analysis goals and the
applied methods. Also we discuss similarity measures applicable to time series data which are required
for many further analysis tasks.

Chapter 3 outlines the context of this work by examining different aspects of phenotyping, its different
goals and analysis methods. An important part of this section builds Section 3.2, which introduces the
platform the data at hand comes from and describes the characteristics of our data.

In Chapter 4 we underline the importance of outlier detection and present common approaches and
techniques used to detect outliers in various datasets. Finally we describe our approach and its evalua-
tion.

Starting from an outlier-free dataset in Chapter 5, we identify different categories of clustering algo-
rithms and present own results and their evaluation. At the end of this chapter we discuss a subspace
clustering approach which aims at finding genetic marker relevant for a certain growing behaviour.

Finally in Chapter 6 we summarise and conclude our work giving suggestions for further improvements
and possible investigations.
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2 Time Series
This chapter serves as introduction to time series and outlines the related tasks and challenges espe-

cially in the domain of data mining. Topics of particular interest of the here presented work as time
series representation and similarity measures are discussed in broader detail.

A time series is a sequence of points measured successively in time. The most obvious example for a
time series is probably the Dow Jones or the development of certain stock prices. An increasingly large
part of worlds data is in the form of time series [Maimon and Rokach, 2005]. But not only the economy
and financial sector produce a large amount of such data. Social media platforms and messaging services
record up to a billion of daily interactions [Piro, 2009] which can be treated as time series. Besides the
high dimensions of this data, the medical and biological sector provide a great variety of time series, as
gene expression data, electrocardiograms, growth development charts and many more. Example time
series for stock prices and search trends are shown in Figure 2.1.

Although statisticians have worked with time series for a century, the increasing use of temporal data
and its special nature have attracted the interest of many researchers in the field of data mining [Fu,
2011, Maimon and Rokach, 2005].

2.1 Time Series Data Mining

We have seen that time series can have a variety of sources as weekly sales and stock prices in the
financial sector, daily temperature, earth movements, development of organisms in fields such as meteo-
rology, seismology or phenomics, just to name a few. The analysis objectives can be as diverse as the data
sources and formats. Time series as seismograms or the Dow Jones are mostly analysed with the goal to
predict its evolution for the next days based on previous observations, in order to forecast earthquakes
or unprofitable economic trends. But they can also be investigated to extract interesting or surprising
trends in order to explore and understand their cause.

Before we dive deeper into this topic it is essential to clarify certain terms which will be used through-
out this work. In the following we adopt the definitions stated by [Ding et al., 2008] and [Esling and
Agon, 2012]:

Definition Time Series: A time series T of length n is a sequence of pairs

T = [(p1, t1), (p2, t2) · · · (pi, t i) · · · (pn, tn)] || (t1 < t2 · · ·< t i < · · ·< tn)

where each pi is a data point in a d-dimensional space and each t i represents the point in time when pi was
measured. If the relevant time-series share the same sampling rates, the time stamps can be omitted and the
time series can be regarded as an ordered sequence of d-dimensional data points. Nevertheless we will keep
the time stamps as the dataset at hand does not provide equal sampling conditions.

Definition Representation: The representation of a time series T with length n is a model T with reduced
dimensions, so that T approximates T.

Definition Similarity Measure: A similarity measure D(T, U) between the series T and U is a function
that takes two times series as input and returns their distance d.

From the data mining perspective time series analysis is often divided in the following categories: [Fu,
2011, Maimon and Rokach, 2005, Keogh and Kasetty, 2003]
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(a) (b)

Figure 2.1: Time series examples. Image 2.1a shows the development of stock prices for 6 months, beginning Feb. 25.2013 for

Google in blue and Apple in red, taken from http://www.nasdaq.com/. Image 2.1b illustrates the development

of world wide search trends for the time frame 2004 – 2013, issued from http://www.google.com/trends/

explore

Indexing Indexing enables the querying of content from a storage pool. Given a query time series Q
the goal is to retrieve similar time series from a collection using a similarity measure. This can be
either used to only match entire sequences or retrieve similar subsequences. It is used to respond to
tasks as ’Find products with similar price patterns’ or more complex as ’Find seismic subsequences
differing from sequences resulting from geological irregularities’ [Agrawal et al., 1995]. Besides its
usefulness for exploratory analysis similarity search acts a great part in further data mining tasks
as clustering and classification [Chakrabarti et al., 2002]. To speed up sequence retrieval and to
deal with the high dimensionality of this data, dimensionality reduction techniques are applied and
the results are often stored in index structures adapted for the given representation, such as the
R-tree proposed by Guttman [1984] or the F-index from Agrawal et al. [1993]. For more details
on different index structures see [Fu, 2011]. Section 2.2 gives an overview of techniques to reduce
dimensionality.

Prediction Given a time series T , the prediction or forecasting task aims to predict the next data points
based on the evidence extracted from previous points. This is one of the most applied time series
task [Esling and Agon, 2012]. Prediction methods can be divided into two classes, linear and non-
linear. Linear methods estimate the future values based on a linear combination of past and present
values. The parameters for such a combination can be estimated by optimising an error function
such as Gaussian Least Squares. Real world data rarely provides a linear relationship, thus requires
non-linear models. The task of time series prediction can be considered as a supervised learning
approach, taking a range of past and present values of a series as input vector and the future
points as target values. This view has enabled the use of supervised learning techniques for time
series forecasting in the non-linear case, such as Multilayer Perceptron (MLP) and Support Vector
Machines (SVM) [Sapankevych and Sankar, 2009, Esling and Agon, 2012]. Moreover, Barreto
[2007] shows that unsupervised techniques can be suitable for this task as well and outlines the
use of Self-Organizing Maps (SOM) to tackle this problem.

Clustering Clustering is the most common method applied to the mining task of pattern discovery [Fu,
2011]. It aims to separate the given elements into ’natural’ groups so that these elements are
similar under a given similarity measure while elements from different groups should be highly
different. In other words, those groups should minimise intra cluster variance while maximising
inter cluster variance. The obtained clusters can then be used as basis for further investigations.

Classification While clustering aims at finding the naturally present groups in a dataset, classification cre-
ates a mapping from given time series to classes, which are predefined in advance. This approach
requires a training set, a dataset with input time series and their class assignment. It is used to
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Time Series Representations
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Figure 2.2: Hierarchy of time series representations found in the literature [Lin et al., 2003, Maimon and Rokach,
2005, Ding et al., 2008, Esling and Agon, 2012]

learn the distinctive features which determine the class affiliation in order to assign new unlabelled
time series to the most appropriate class, based on those features.

Segmentation The task of time series segmentation, given a time series T , containing n points, is to pro-
duce the best representation using only K segments, where K << n. ’Best’ representation can be
defined so that K are internally homogeneous sections [Maimon and Rokach, 2005]. This prob-
lem is known as change point detection, Guralnik and Srivastava [1999] describe an algorithm
to detect such points which then can be mined for ’interesting episodes’, Yamanishi and Takeuchi
[2002] present an on-line algorithm for the detection of change points data streams. Another
’best’ representation can be such that K segments reduce dimensionality while retaining the most
characteristic features of the time series [Esling and Agon, 2012]. This is also referred to as sum-
marisation, it creates a high level representation of the data which can be beneficial to following
mining tasks. Further representations and approaches to cope with high dimensional time series
are discussed in Section 2.2.

Sometimes one can find further task groups in the literature, such as anomaly detection and motif dis-
covery (see [Maimon and Rokach, 2005, Esling and Agon, 2012]). Given a labelled normal time series T
and another unlabelled time series the goal of anomaly detection is to determine all sections containing
unexpected events. The usual approach is similar to the prediction task, which is to build a model from
the normal series and to flag sequences as anomalies that appear too far from the expectation [Esling
and Agon, 2012]. Another option presented by Salvador et al. [2004] is to create time-point clusters
representing the normal points of a series. A further task often found in the literature is motif discovery
[Patel et al., 2002, Esling and Agon, 2012, Chiu et al., 2003]. It could be regarded as a specification of
the segmentation or summarisation task due to their similarities. Its goal is the detection and enumer-
ation of motifs in a long time series. Patel et al. [2002] define motifs as reoccurring mutually exclusive
subsequences of a time series. They state that motif discovery is in particular useful to summarise and
visualise large time series collections. Further Keogh and Lin [2005] have shown that clustering of time
series subsequences produces essentially random clusters and thus is meaningless. They propose motif
discovery to find meaningful clusters.

2.2 Representations

Many time series datasets are large and high dimensional. Lets take an audio stream as example.
Adopting the settings as used by BBC in the UK [Courtice, 2010], sampling rate at 44.1KHz and 16 bits
per sample using two channels. A two-hour long audio stream results in more than 1,2 GB of data to
be analysed. Accessing each point, in cases of naive approaches even multiple times, is computationally
too expensive, therefore analysis are often performed not on the raw data itself, but on a more abstract
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(a) (b) (c)

Figure 2.3: The commonly used wavelet shapes. (a) represents one of the first used wavelets, the Haar wavelet. (b) is the

Daubechies and (c) the coiflet.

representation. This has the advantage of requiring less space, speeding up calculation procedures and
implicit noise reduction [Esling and Agon, 2012]. Nevertheless, we have to keep in mind that despite
the listed benefits the reduction of dimensionality of a time series will highly influence the outcome of
further processing. We can not expect an analysis performed on a bad approximation to yield results of
same quality as one would obtain from an analysis on the original data. Therefore, an dimensionality
reduction algorithm has to fulfil certain requirements:

– It has to maintain the local and global shape characteristics of the time series.
– It should be computationally efficient in order to enable its application to large datasets.
– An insensitivity to noise is desirable, but it could also be handled by a preprocessing step.
– And even if it is obvious it should effectively reduce the data’s dimensionality.

In the last decade, plenty approaches have been proposed to tackle this problem. Figure 2.2 outlines
the different categories proposed by [Ding et al., 2008, Maimon and Rokach, 2005] and some of their
methods. Keogh and Kasetty point out that the high number of very different approaches, the lack of
comparison and testing on real datasets results in confusion and contradictory claims, such as “wavelets
outperform the DFT”, “DFT filtering performance is superior to DWT” and ‘‘DFT-based and DWT-based tech-
niques yield comparable results”, see [Keogh and Kasetty, 2003]. Thus they addressed this issue by
re-implementing eight different dimensionality reduction methods and evaluated their performance on
different datasets. The results show that the power of reduction and thus the indexing effectiveness of
the different methods have about the same performance on the different datasets. However, Chakrabarti
et al. [2002] argue that beside the prune power, further traits have to be considered when choosing a
representation, such as its suitability for indexing or the supported similarity measures. Therefore, we
aim to give an intuition for the variety of representations and will discuss the three main categories of
dimensionality reduction techniques outlining the most relevant methods.

2.2.1 Non data-adaptive representation

Non data-adaptive techniques use the same set of parameters for dimensionality reduction regardless
of the underlying data. One of the early works on this topic was achieved by Agrawal et al. [1993], who
used the Discrete Fourier Transform (DFT).

This algorithm is based on the idea that any time sequence can be expressed as a superposition of
sine or cosine waves. It projects a time series into the frequency domain, by decomposing the series
into sinusoidal waves which are represented by complex coefficients, the Fourier coefficients. [Agrawal
et al., 1993] observed that only the first few waves appear to be dominant and therefore the rest can be
omitted without any great impact on the reconstruction error. Thus the final time series representation
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after DFT are the coefficients of the first k waves. Agrawal et al.’s experiments on synthetic data showed
that two coefficients are sufficient for good results in the retrieval of similar series. A very important
property of DFT for data mining applications is Parseval’s Theorem. It states that the total energy of a
signal in the time domain is preserved in its projection into frequency space [Shatkay, 1995, Keogh and
Pazzani, 2000b]. Disregarding the error introduced by the truncation at k, this means that the euclidean
distance will hold the same for the original signal as its transformation [Keogh and Pazzani, 2000b].
This responds greatly to our needs for a good time series representation, the reduction of dimension-
ality is implied by the usage of k complex coefficients. Further the Parseval’s Theorem provides that
the relation, hence the distance between series is preserved and DFT can be calculated efficiently with
O(n log n)[Agrawal et al., 1993]. A concern pronounced by Keogh and Pazzani [2000b] is that the
coefficient truncation of positive terms at k causes the distance in the frequency space to be less than the
truth distance, resulting in false positives in applications such as similarity search.

Another very related approach is the Discrete Wavelet Transform (DWT). While DFT uses sinusoidal
waves to represent the general shape of a time sequence, DWT processes the series at different scales
and resolution. In contrary to DFT, DWT uses localised wavelets of final energy to represent the data.
A mother wavelet defines the overall shape and further analysing wavelets derived through shift and
scaling add the necessary details to the representation. There is a variety of functions which can be used
for DWT. Chan et al. [2003] showed that DWT using a Haar wavelet can be calculated and indexed effi-
ciently. The characteristics of the transform can be controlled by the choice of the mother wavelet as all
further wavelets derive from it [Sripath, 2003]. Some common wavelet shapes are shown by Figure 2.3.
One drawback is that classical DWT is only defined for sequences with length of powers of two [Maimon
and Rokach, 2005], which can be overcome by zero-padding, smooth-padding or periodic extension.
Although there are contradictory claims on the performance of DWT (see [Keogh and Kasetty, 2003]),
Wu et al. [2000] underlines that DWT’s superiority lies in its time complexity of O(N) and the multilevel
resolution.

A completely different approach, especially targeting the domain of time series, is the Piecewise Aggre-
gate Approximation (PAA) independently proposed by [Keogh et al., 2001, Yi and Faloutsos, 2000]. The
very simple idea appears to be competitive in comparison to the more sophisticated transforms [Maimon
and Rokach, 2005]. The idea is to segment a time series T of length n into N consecutive sequences of
same length. Then the mean is calculated for each of those sequences resulting in a new representation
of N mean value points. Keogh et al. [2001] show that PAA supports comparison of series with different
lengths and supports the Euclidean distance measure.

2.2.2 Data-adaptive representation

This category of time series representations assembles techniques which take into account the under-
lying data and adjust their parameters accordingly. Almost any non-data adaptive approach can become
data adaptive by adding a parameter selection step [Esling and Agon, 2012]. Vlachos et al. [2004],
Struzik and Siebes [1999] realised this idea for DFT and DWT.

As DFT and DWT, Singular Value Decomposition (SVD) is another transformation-based approach. The
important difference to the afore mentioned transforms is that while DFT and DWT apply local trans-
formations, SVD acts globally [Keogh et al., 2001]. This means that the other transforms process one
data point at a time. The resulting transformation is independent of the rest of the data. Whereas SVD
examines the entire data and rotates the axes to maximise variance along the first few dimensions [Ravi
Kanth et al., 1999]. The resulting representation consists of the first few dimensions. Although SVD is
an optimal transformation in the sense of minimal reconstruction error [Keogh et al., 2001], it requires
the computation of eigenvalues for large data matrices making it computationally very expensive [Esling
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(a) (b)

Figure 2.4: Figure (a) illustrates the PAA method. C represents the original time series and C̄ is the PAA approximation using

the averages of eight subsequences of equal length. Figure (b) shows the SAX approximation based on the PAA

results from (a). The separation of the distribution space into segments of equal probability, a,b and c, is depicted

on the left of this image. The final SAX representation of the here presented time series is baabccbc.

and Agon, 2012, Chakrabarti et al., 2002].

In Chakrabarti et al. [2002], they propose an improved and data adaptive version of PAA, called Adap-
tive Piecewise Constant Approximation (APCA). While PAA stores the means of consecutive fixed length
segments, APCA allows the segments to be of different length, thus more adapting to the data. This
means that a region of low activity can be represented by one long segment and regions with high ac-
tivity are depicted by several short segments. The final representation stores two numbers per segment:
its mean and the segment length. Following in terms of dimensionality reduction, PAA with N segments
corresponds to APCA with N/2 segments. Despite of the coverage of fewer segments, [Chakrabarti et al.,
2002] showed that APCA performed at least as good as PAA and often better, in terms of quality mea-
sured by the reconstruction error.
This now gives rise to the question of how to determine the best possible segmentation for APCA. Falout-
sos and Jagadish [1997] state that finding the optimal piecewise polynomial representation for a time
series using dynamic programming requires O(Mn2) time. Chakrabarti et al. [2002] therefore propose
a method achieving an almost optimal representation for APCA using O(n log(n)) time. Taking into
account that Haar wavelet transforms can be obtained in O(n) [Wu et al., 2000], they transform the
problem into a wavelet transformation task and convert the resulting coefficients back to APCA repre-
sentation.

A completely different approaches to dimensionality reduction is the conversion of time series into se-
quences of symbols. This implies the discretisation of the series, its segmentation and finally a mapping
to an alphabet of symbols. Lin et al. [2003] propose an approach called Symbolic Aggregate Approxima-
tion (SAX), which is closely related to PAA. The main idea is to use a PAA representation as intermediate
step between the raw data and the resulting symbolic sequence. The distribution space (y-axis) is divided
into regions of equal probability and each region is associated with a symbol. The PAA sequences falling
into those regions are mapped to the corresponding symbol as illustrated by Figure 2.4b. Thus the final
representation is the string of successive symbols. This approach have been shown to be competitive in
tasks such as time series classification and clustering [Keogh et al., 2004].

2.2.3 Model-based representation

Approaches of the model based category assume that a given time series was produced by an underlying
model. Dimensionality reduction is obtained by representing the time series by the model’s parameters,
used to produce the series. As a consequence time series similarity is measured based on the model
parameters [Esling and Agon, 2012]. There are several approaches using parametric temporal models
such as statistical modeling via feature extraction [Nanopoulos et al., 2001] or the ARMA and ARIMA
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models, see [Kalpakis et al., 2001]. More sophisticated approaches include Markov Chains or Hidden
Markov Models (HMM) [Panuccio et al., 2002]. The objective of those approaches is often not the ex-
plicit reduction of dimensionality but rather the improvement of similarity distances for further tasks
such as clustering or classification [Kalpakis et al., 2001, Panuccio et al., 2002].

Given this variety of representations, it is a complex task to choose the best approach for a given
context, as each approach has its special properties which might be inconvenient in one case but a virtue
in another. Although Ding et al. [2008] showed that all eight compared representations yield about the
same performance, there are slight differences depending on the dataset. Their findings are that spectral
methods such as DFT are good at representing highly periodic datasets and APCA performs significantly
better on datasets containing bursts.

2.3 Distance Measures

Almost every data mining task requires a notion of similarity between objects, based on their shape.
Such as clustering, classification or indexing. While human intuitively disregard disturbing aspects like
amplitude scaling, time shifts, noise and outliers, these factors complicate the task to find a distance
measure reflecting the human intuitive perception of similarity. Obviously, which distance measure fits
best depends on the context but the following characteristics appear to be desirable in most scenarios,
that involve time series:

– It should be consistent with human intuition.
– Perceptually similar objects should be classified correspondingly even if they are not mathematically

identical.
– It has to take into account the local and global shape characteristic of a series.
– And finally probably one of the most important points is that it should be almost insensitive to noise,

outliers and different transformations between series. Transformations such as shifts in amplitude
and scaling.

A further criteria especially important to indexing tasks is the lower bounding lemma introduced by
Faloutsos et al. [1994].

Dindex(T, S)≤ Dt rue(T, S) (2.1)

This means that in order to avoid false dismissals the distance measure should never overestimate the
true distance between some time series T and S. In the following we will present the Lp norms, which
despite of their simple nature, especially the Euclidean distance, are very often applied in data mining
tasks [Ding et al., 2008]. A further category of similarity measures are elastic measures, elastic in the
sense that in contrast to Lp norms which compare point i of a series T with point i of S, they allow a
one-to-many comparison [Esling and Agon, 2012].

Besides the different characteristics of each distance measure, Ding et al. [2008] underlines that the
reported measure accuracy and speed has to be regarded with care. The size of the dataset the measure
is evaluated on plays an important role. They have shown that as datasets get larger, the speed of elastic
measures approaches the speed of simple approaches such as the Euclidean distance and the accuracy
of the Euclidean distance approaches that of elastic measures. This means that the superior aspects of
a measure diminish or even disappear with the growing size of a dataset. With this aspect in mind we
will regard the mostly used distance measures in data mining, Euclidean distance and Dynamic Time
Warping (DTW) in more detail.
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(a) (b) (c) (d)

Figure 2.5: These time series were adjusted in order to outline the similarity notions of the different Lp norms. A nearest-

neighbour search has been performed for the time series in Figure (a). The use of L1 obtained time series (b) as

nearest-neighbour, L2 (c) and L∞ (d).

2.3.1 Lp-Norms

The literature offers a large number of similarity measures, the Lp norm is one of the most popular
classes and is defined as

Lp(T, S) = (
N
∑

i

|t i − si|p)
1
p (2.2)

where T and S are time series of length N and t i is the measurement of T at time point i. This holds
correspondingly for S and si. The variable p denotes the norm in use. p = 1 is the Manhattan distance,
p = 2 represents the well-known Euclidean distance and p =∞ the maximum or Chebyshev distance.
Yi and Faloutsos [2000] outline the different aspects of this norms very well using an example depicted
in Figure 2.5. All series illustrated in this figure are of length 32. Figure 2.5a is the original series, to
Figure 2.5b they added a peak of 2.5 units height and to 2.5c two additional bursts of 1.5 units height.
In 2.5d they added and subtracted 0.5 units alternately. The nearest-neighbour search for the series in
2.5a using the different norms shows, that L1 chooses (b), L2 (c) and L∞ the series in (d) to be the
most similar one. This illustrates [Yi and Faloutsos, 2000] statement that the L1 norm is optimal when
measurement errors are additive Laplacian as it is more robust against outliers. The Euclidean distance
is the most widely used distance in similar time series matching [Agrawal et al., 1993]. Powerful feature
extraction methods, such DFT and DWT, are only defined for the L2 norm, due to the projection into
frequency space the feature distances are only preserved for the euclidean distance [Keogh and Pazzani,
2000b]. However it does not inherently deal with challenges such as transformations along the y-axis.
Two series could fluctuate in the same manner, but at different amplitude levels. This problem can be
overcome using normalisation. Another point to consider is that such distances often fail to represent a
shape similarity which is obscured by a misalignment in the time axis, see Figure 2.6a. This aspect has
given rise to elastic methods discussed in the following section.

2.3.2 Elastic Measures

For most applications, simple distance measures such as Lp norms are sufficient. They are easy to
implement, provide a low time complexity, are parameter-free and show good performances [Wang
et al., 2012]. Nevertheless there are cases when the overall shape of two time series is similar, but one
of them is accelerated or decelerated. Lets take recorded speech as an example of a time series. The
same word spoken by two different speakers will produce time series similar in shape, but deformed by
the speakers pace and intonation. In order to find the similarity and thus to achieve a better alignment,
we have to ’warp’ the time axis. This idea is illustrated by Figure 2.6b. The left part of the image shows
a simple alignment of two perceptually similar time series using Euclidean distance, which will produce
a rather high dissimilarity value due to its sensitivity to irregularities in the time axis. This issue is
addressed by elastic distance measures.
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(a) (b)

Figure 2.6: The left figure shows an alignment of two time series of similar overall shape. The Euclidean distance will give a

high dissimilarity measure as it does not consider the misalignment in the time axis. The right side shows the same

time series aligned using DTW. The non-linear alignment allows to provide more representative similarity measure.

(a) (b)

Figure 2.7: The left figure shows the two time series T and S on the left and top of the image. The matrix in the middle is

the cost matrix C obtained by evaluating the local cost distance for each element pair of both series. Dark colours

represent lower cost and light parts of the image represent high cost respectively. Figure 2.7b is the corresponding

accumulated cost matrix. The optimal warping path is plotted in white, note that the path traverses only the darkest

regions. These figures are inspired by the example used in [Müller, 2007]

Dynamic Time Warping

Dynamic Time warping (DTW) has originally been used to compare different speech patterns in au-
tomatic speech recognition (ASR) tasks [Sakoe and Chiba, 1978, Myers and Rabiner, 1981, Komori and
Katagiri, 1992]. It was already a well-established tool in the domain of speech processing when Berndt
and Clifford [1994] demonstrated its utility in the data mining domain. Since then it has been used
in various tasks such as clustering, classification and anomaly detection [Keogh and Pazzani, 2000a,
Tormene et al., 2009, Petitjean et al., 2011]. DTW’s main characteristic, the non-linear alignment of
time series, overcomes the weakness of the euclidean distance ,which is very sensitive to distortion in
the time axis. Despite of its relatively high time complexity of O(N2) of the classic version it has been
successfully applied in domains such as Bioinformatics [Aach and Church, 2001], Medicine [Tormene
et al., 2009] and even entertainment [Zhu and Shasha, 2003]. But before we delve any deeper in its
assets and disadvantages, we will explain the actual algorithm.

The classical DTW takes two time series T and S of length N ∈ N and M ∈ N and assumes equidistant
samples. In order to compare two samples t i and si, one requires a cost measure. This measure is
referred to as local distance measure. An important characteristic of this measure is that it should assign
a low cost to similar time points and a large cost otherwise. As far as they fulfil this requirement any
of the afore mentioned distance methods can be used. Once we compute the cost measure c(t i, si) for
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each sample pair of both series, we obtain the cost matrix C ∈ RN×M . An example for such a matrix is
shown by Figure 2.7a, where dark regions represent lower cost. The main goal of DTW is to find the
best alignment between the given time series. This now can be achieved by finding the path through the
obtained matrix which minimises the overall cost. Such a path is called warping path. Müller [2007]
defined an alignment as follows:

Definition Warping path: A warping path for the time series T and S is a sequence p = (pi, · · · , pL) with
pl = (t l , ml) ∈ [1 : N]× [1 : M] for l ∈ [1 : L]. Typically this path has to fulfill the following constraints

1. Boundary condition: p1 = (1,1) and pL = (N , M). This simply states that the path has to begin and
to end in diagonally opposite corners of the matrix. For the alignment, it means that the first and last
points of the two time series have to be aligned to each other.

2. Monotonicity condition: n1 ≤ n2 ≤ · · · ≤ nL and m1 ≤ m2 ≤ · · · ≤ mL. This assures that the
elements of the resulting warping path are monotonically increasing in time.

3. Step size condition: pl+1 − pl ∈ {(1,0), (0,1), (1,1)} for l ∈ [1 : L − 1]. This defines that only
adjacent cells, including the diagonal cell, of a cost matrix are appropriate for the next step. It also
implies that no elements are omitted and that there are no replications in the resulting path p.

There are numerous possible paths in a cost matrix that satisfy the above stated conditions, but we are
particularly interested in the optimal warping path p∗ that minimises the total cost. The total cost of a
path is defined as

cp(T, S) =
L
∑

l=1

c(tnl
, sml
) (2.3)

and the final DTW distance for the series T and S is the total cost of path p∗:

DTW (T, S) = cp∗(X , Y ) (2.4)

= min{cp(T, S)|p is a warping path o f T and S)} (2.5)

In order to obtain the optimal warping path, the naive approach is to try any possible path, leading to
an exponential computational complexity. Instead, one makes use of an accumulated cost matrix D, see
Figure 2.7b. Defined as

D(n, m) = DTW (T1···nS1···m). (2.6)

This matrix can be computed efficiently by dividing the task into three sub-problems:

D(n, m) = min{D(n− 1, m− 1), D(n− 1, m), D(n, m− 1)}+ c(tn, sm) (2.7)

where 1< n≤ N and 1< m≤ M . We refer to [Müller, 2007] for a proof and further details.

There have been many attempts to modify the classical DTW for speed up or to adapt it to the given
context. One way to modify the warping path is the modification of the step size condition allowing
to omit certain points. In order to favour horizontal or vertical alignments, it is possible to apply local
weights. A well-known approach to speed up DTW is to impose global constraints on the admissible
region for a warping path. It has been shown that it not only speeds up the computation but improves
accuracy for measuring time series similarity by avoiding pathological paths Wang et al. [2012]. The
well-known constraint shapes such as Sakoe-Chiba band which runs along the main diagonal and allows
only usage of cells within a fixed width and the ‘Itakura parallelogram’ are reviewed in [Ratanamahatana
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(a) (b) (c) (d)

Figure 2.8: These figures are scatter plot representations of the distance measure benchmarks by [Wang et al., 2012]. The

x and y coordinates of a dot are the error ratios of the distance measures in comparison. Each dot represents a

dataset. In Figure 2.8a the data points above the diagonal line represent that L2 was more accurate for this dataset

than L1. The further a point is from the line, the greater the improvement in accuracy. The more dots are on one

side of the line means that the worse this measure performs in comparison to the other, like for the case in 2.8b

where the most dots are on the side of L∞, speaking for its inferior performance compared to L2.

and Keogh, 2004]. Thuong and Anh [2012] review three lower bound measures which produce an en-
velope on the possible warping path and create a lower bound approximation of the final DTW distance.
Such a measure should avoid false dismissals by providing measures lower or equal to the actual DTW
distance and it should be fast to compute. If the bound is tight enough, it can speed up similarity search.
Time series not similar to the lower bound can not be similar to the real series and can be pruned, thus
avoiding the computation of the real DTW distance. A related way of speed up is to apply DTW to an
approximated version of the data, as shown by Keogh and Pazzani [2000a] who worked on a PAA repre-
sentation of time series.

In spite of the wide application of DTW, Ratanamahatana and Keogh [2005] claim that there are still
myths about this algorithm causing confusion and resulting in papers solving problems that do not exist.
They investigated the claim that DTW is particularly good at handling sequences of different lengths,
and performed 1-nearest-neighbour classification on datasets with sequences of different length. They
computed the classification once on the original different-length time series and once after interpolation
of these series in order to get sequences of equal length. Their result is that there is no significant differ-
ence in accuracy between DTW on variable and equal-length series. Motivated by various work targeting
the speed up of DTW, they report that using a good lower bound, so that the actual distance has to be
rarely computed, “DTW is effectively O(n), and not O(n2), when searching large datasets” [Ratanama-
hatana and Keogh, 2005]. Wang et al. [2012] performed an exhaustive benchmark of different similarity
measures on 38 datasets. The pairwise comparison of DTW and the Euclidean distance is depicted by
Figure 2.8. Their results underline that elastic measures outperform the Euclidean distance by a large
percentage.
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3 Phenotyping
Phenotyping is the phenotypic analysis of organisms. In order to fully capture the extent of this

definition, it is important to clarify the term ’phenotype’ first. Already in 1909, Willhelm Johannsen
made the distinction between genotype and phenotype [Johannsen, 1909] and further developed his
thoughts in [Johannsen, 1911] by giving the following definitions:

Definition Genotype: “A “genotype” is the sum total of all the "genes" in a gamete or in a zygote.” 1

Definition Phenotype: “All “types” of organisms, distinguishable by direct inspection or only by finer meth-
ods of measuring or description, may be characterized as ”phenotypes”.”

A phenotype is determined by its gens, the environment and a stochastic developmental variation. De-
velopmental variation can favour or block the evolution of certain traits. This means that two organisms
of identical genotypes raised in the same environmental conditions can result in different phenotypes
[Vogt et al., 2008, Johannsen, 1909]. The biological literature shows a variety of further definitions for
these terms. Lewontin (1992) defines phenotype and genotype as classes of organisms satisfying certain
genetic or phenetic criteria [Mahner and Kary, 1997], whereas [Futuyma, 1986] refers to genotype as
a blueprint of an organism containing the instructions for development and sees the phenotype as the
manifestation of this blueprint, influenced by the environment. The most convenient definition seems
to depend on the context, for example it might be appropriate for an analysis of DNA sequences to see
genotype and phenotype as DNA and proteins whereas in the scope of phenotyping a broader defini-
tion is sufficient. For a more detailed discussion see [Mahner and Kary, 1997]. Further we will use the
following definitions inspired by [Johannsen, 1911] and [Herskowitz, 1977]:

Definition Genotype: A genotype is the genetic constitution of an organism.

Definition Phenotype: A phenotype is a collection of traits possessed by an organism that result from the
interaction of the genotype and the environment, influenced by the developmental variability.

As stated before, phenotyping is the analysis of the phenotype of an organism. The goal of this analysis
are manifold. Gregor Mendel used observable traits to define and follow units of inheritance [Bochner,
2003]. Phenotyping enables the detection of genetic changes, which confer a growth or an advantage
in an observable trait. As important as the advantageous traits are observations of their suppressors,
revealing the genes a gene of interest interacts with [Bochner, 2003, Nakazawa et al., 2003]. Thus
phenotyping enables the association of genotypes to their possible phenotypes. Phenotyping is used to
study developmental variability or organism responses to environmental stimuli [Granier et al., 2006]
and reveal genes associated with these responses [Nakazawa et al., 2003].

3.1 Plant phenotyping

This work is realised in the field of agronomy, and therefore, our focus lies on the phenetic analysis of
plants. Plant phenotyping has been performed since the beginning of farming, when farmers started to
select grasses with more desirable traits for propagation, for example with the goal to increase yield or
to obtain more resistant grasses.

1. A gamete is a cell fusing with another gamete during fertilisation in order to form a union, the zygote.
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(a) (b) (c)

Figure 3.1: The images were taken by the Daedalus sensor aboard a NASA aircraft flying over the Maricopa Agricultural Center

in Arizona. Figure 3.1a shows the colour variations determined by crop density where dark blues and greens

indicate lush vegetation and reds show areas of bare soil. The 3.1b image is a map of water deficit, derived from

the DaedalusŠ reflectance and temperature measurements. Green and blue points indicate wet soil and red points

show dry soil. Figure 3.1c shows where crops are under serious stress, as is particularly (indicated by red and

yellow pixels).[Moran, 2001]

Today the growth of the world population of more than 70 Millions yearly [Weltbevölkerung, 2012]
requires an adequate increase in food supply, and the additional climate change adds a further challenge.
This means we need a continuous improvement of cultivars, optimised for higher yield or stress tolerant
plants able to survive in harsh environments. This would allow the cultivation of further land which is
rarely used for farming due to its climate or soil conditions. Thus, an efficient and targeted selection is
required. Breeding programs face a considerable number of challenges, the number of species to be im-
proved is large and the traits to select for are diverse and often complex. In addition, cultivars are often
required to adapt to a broad range of environments. As a consequence, for certain species it requires up
to 20 years to produce novel cultivars with the desired traits [Walter et al., 2012]. The improvement
of phenotyping techniques by adoption and combination of technologies from different fields as remote
sensing, image analysis and spectroscopy aims to speed up this process by several years.
Currently there are two developing tracks: Phenotyping directly on the fields often called, field monitor-
ing or precision agriculture, and phenotyping platforms in the laboratories.

Precision agriculture aims at measuring the inter and intra-field variability. There are two approaches:
the map-based approach and the sensor-based approach. The map-based approach uses images of the
field taken from a satelitte or an aerial imager. These images in combination with laboratory analyses
of soil samples are used to identify the field conditions as shown in Figure 3.1. For the sensor-based ap-
proach, sensors are mounted on tractors and the desired properties are measured ’on the go’. Agricultural
harvesters equipped with near-infrared spectroscopy devices can capture physical and chemical charac-
teristic of the harvested material [Montes et al., 2007]. Montes et al. [2006] showed that those devices
can reveal amount of dry matter, starch and crude protein contents in corn grain. Another non-invasive
phenotyping approach is the measurement of spectral reflectance of the plant canopy. Those sensors are
mounted on tractors and traits as canopy architecture, water status and nitrogen concentration are cap-
tured in the spectra. In order to reveal those phenotypic values, the image undergoes of course a further
analysis step using a calibration model [Montes et al., 2007]. Imaging in the field faces several issues.
“Variable illumination, dissected, reflecting plant canopies, altered spectral composition of the sunlight
in different weather conditions, plant movements due to wind or rain, and many other factors compli-
cate the retrieval of quantitative information from pictures in the field” [Walter et al., 2012]. In order to
reveal significant information about the performance of plants in a certain environmental context, envi-
ronmental parameters have also to be recorded throughout the experiment. Nevertheless, experiments
designed for specific environmental conditions optimise statistical relevance of the collected data. Hence,
phenotyping experiments are more successful in the laboratory or greenhouse [Walter et al., 2012] as
new phenotyping platforms enable the control of most conditions.
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Figure 3.2: The PhenoArch platform

The combination of several techniques, as in the case of sensor-based field monitoring, have brought
laboratory phenotyping platforms to a new level. Those techniques now enable the detection of several
traits in laboratory grown plants while maintaining a high throughput of more than 1000 plants per
day [Granier et al., 2006, Rajendran et al., 2009]. Phenotyping platforms in the greenhouse often have
individual pots for each plant and therefore offer a very exact control of most environmental conditions.
This is important for the investigation on the genotype-environment interaction. In order to be certain
that a plant reaction is due to an environmental change, only this variable of interest should be modified,
as for example the amount of watering to analyse different genotype reactions to drought. A widely used
concept of advanced phenotyping is to determine phenotypical traits as plant height, total leaf area, leaf
number of canopy width from colour pictures of individual plants taken from different angles [Walter
et al., 2012]. Therefore, plants are either automatically delivered to a camera system, or the camera
is placed at a defined orientation towards the plant. This method depends heavily on further image
processing steps, in order to reveal the desired traits, and the quality of these measurements depends on
the accuracy of those techniques.

Thus the progress in advanced phenotyping relies on one hand on throughput, the ability to process a
large number of genotypes and on the other hand on phenotyping methods, such as automated imaging
and near-infrared spectroscopy. Most notably data management and data analysis techniques play a vital
role in this domain. Only via automatic and systematic analysis of plant images and spectra the phenetic
values can be revealed and used for biologic investigations.

3.2 PhenoArch

PhenoArch is a greenhouse phenotyping platform hosted by the LEPSE group (Laboratoire
d’Ecophysiologie des Plantes sous Stress Environnementaux, INRA) in France, Montpellier, shown by
Figure 3.2. The platform is designed to analyse genetic characteristics of plant responses to environmen-
tal conditions, in particular drought, temperature and light. This platform allows the measurement of
plant architecture, leaf area, plant volume/biomass and transpiration rate. It has a throughput of 1650
pots, each placed on its own cart on a conveyor belt, is equipped with two imaging systems for leaves
and for roots using near-infrared and contains further sensors to measure temperature, light, humidity
and so forth.
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(a) (b) (c)

Figure 3.3: Figure 3.3a shows a picture of a corn plant taken by the imaging system from one angle. 3.3b is the resulting

image after separation from the background and Figure 3.3c depicts the correlation of predicted biomass verses the

measured biomass after harvesting. These images are taken from [Tardieu, 2013]

3.2.1 Environmental measures

To keep track of environmental conditions, light, air temperature and Vapour Pressure Deficit (VPD)
are stored every 15 minutes and are measured at 6 positions in the greenhouse at plant level.

Definition VPD: “Vapour pressure deficit (V PDair) is the difference (deficit) between the amount of mois-
ture in the air (ea) and how much moisture the air can hold when it is saturated. The maximum water
holding capacity also called the dew point, esat(Ta) increases with temperature. Adding moisture to air
beyond it leads to deposition of water (dew)”[Poiré and Tardieu, 2013a].

The measurement of VPD is particularly useful as not only indicates humidity of the air but takes also
into account the influence of temperature on water holding capacity of the air. Higher VPD indicates
increase in transpiration, influencing how much plant moisture trails of into the air [Poiré and Tardieu,
2013a]. Further maps of light distribution and VPD, created at several times of a season, allow a precise
environmental characterisation. For eight plants distributed according to these maps the organ tem-
perature is measured using thermocouples. For further details and discussion see [Poiré and Tardieu,
2013a,b, Tardieu, 2013].

3.2.2 Soil water status

Especially for experiments on drought resistance, soil water status is one of the most important mea-
sures. Therefore plants are weighted up to four times a day and the soil water content is adjusted to the
desired amount. [Tardieu, 2013] describes its determination by using the following equations.

water v olumesoil = weightcur rent − (weightpot +weightdr y soil +weightplant est imated) (3.1)

water content =
water v olumesoil

weightdr y soil
(3.2)

3.2.3 Plant dimensions

The measurement of plant biomass and leaf area is realised by taking 3 images of each plant at different
angles. This images undergo a further image analysis procedure to separate the actual plant from its
background. Then the biomass estimation is done via a calibration model, mainly based on the number
of green pixels in the images. Once the plants are harvested, this model is evaluated and improved
against the measured biomass and leaf area. These steps are illustrated by Figure 3.3

26



Name Year Dent Genotypes Tropical Genotypes
ZC 2011 30 30
ZA 2012 - 200
ZB 2012 250 -
ZA 2013 250 -

Figure 3.4: Zea mays experiments carried out in the PhenoArch platform between 2011 and 2013

3.2.4 Thermal Time

Montes et al. [2007] argues that phenotypic traits are often treated as static and therefore are only
measured once, but for the analysis of genes and gene networks that are active at different development
phases and in order to record responses to environmental stress [Wu and Lin, 2006], it is important to
keep this dynamic nature. This requires consecutive trait measurements at regular intervals. Unfortu-
nately, when climate conditions are not strictly stable, the resulting time courses have to be analysed
individually for each experiment and each day. This is due to the major influence of temperature on
development processes. Starting from a minimum temperature threshold, the increase in temperature
accelerates enzyme activity, standing for faster growth and development. This proceeds until a maximum
temperature where the enzyme coagulates and the new structure is not able to catalyse the reaction [Bon-
homme, 2000]. Therefore it is desirable to obtain temperature independent measurements - the thermal
time. Thermal time is commonly used to model development of crop species [Granier, 2002]. Sadok
et al. [2007] showed that it is also suitable for the analysis of several corn populations at short time steps
of 15 minutes. Thermal time is applicable if the rate of the studied process is proportional to the plant
organ temperature, than a linear relationship can be integrated over time [Granier, 2002]. Sadok et al.
[2007] proposed the equation 3.3 to express temperature independent leaf length at any time (t):

L = a

∫ t

0

[T (t)− T0]
︸ ︷︷ ︸

thermal t ime

d t (3.3)

where a is the slope and T0 x-intercept of the relationship between the rate of leaf growth and temper-
ature, also called termed threshold temperature. For further discussion on this topic see [Sadok et al.,
2007, Wu and Lin, 2006, Bonhomme, 2000].

3.3 Data

The here analysed data results from experiments, called ’Manip’s, on corn plants (Zea mays). They
were carried out between 2011 and 2013 using the PhenoArch platform. Analysis mostly used inbred
lines of tropical species and dent corn hybrids. The experiments and their configuration are listed by
table 3.4. Tropical corn is a short day plant therefore the long summer days in Europe or North America
cause it to grow taller delaying or completely blocking its flowering. This results in a higher sugar content
making it especially suitable for the production of bio-fuel [Bant, 2007]. Dent corn is a variety of corn
with a high soft starch content used as base in the food production. It is one of the most grown varieties
in the United States [University of Missouri, 2013].

In order to improve statistical power of the analysis, there are 5 to 6 repetitions for each genotype.
A repetition means a plant with an identical genotype. Thus depending on the experiment the data
contains measurements for up to 1679 plants, meaning 1679 time series. Time Series are available for
Biomass and Leaf Area measured as described in Section 3.2. The here presented analysis mainly used
the ZB 2012 dataset, which contains about 250 different corn genotypes. Experiments in the PhenoArch
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Pot Analysis.Time.Stamp Genotype Scenario Manip Day Hour TT Manip.RatioPHPW Manip.LeafArea Manip.Biomass
1 05/06/2012 06:17 F98902H WW ARCH2012-05-14 2012-05-25 15:29:31 17.51166016 2.53164556962025 0.0141519751692189 0.91164564746026
1 25/05/2012 15:34 F98902H WW ARCH2012-05-14 2012-05-25 15:29:31 17.51166016 2.53164556962025 NA NA
1 27/05/2012 19:41 F98902H WW ARCH2012-05-14 2012-05-27 19:36:42 20.76672389 1.41114982578397 0.0192612130944422 NA
1 05/06/2012 06:18 F98902H WW ARCH2012-05-14 2012-05-27 19:36:42 20.76672389 1.41114982578397 0.0192612130944422 NA
1 05/06/2012 06:16 F98902H WW ARCH2012-05-14 2012-06-02 20:03:47 30.75733846 0.915492957746479 0.0464625033820251 21.5517678164719
1 02/06/2012 20:08 F98902H WW ARCH2012-05-14 2012-06-02 20:03:47 30.75733846 0.915492957746479 0.0315316333832821 NA
1 05/06/2012 06:16 F98902H WW ARCH2012-05-14 2012-06-04 20:59:31 34.07325002 1.10897435897436 NA NA
1 06/06/2012 21:52 F98902H WW ARCH2012-05-14 2012-06-06 21:47:54 37.62373219 0.983067729083665 NA NA
1 09/06/2012 19:51 F98902H WW ARCH2012-05-14 2012-06-09 19:46:54 42.68614203 0.959967974379504 0.121457165557066 91.3964570945188
1 13/06/2012 20:37 F98902H WW ARCH2012-05-14 2012-06-13 20:32:13 49.31769013 1.09633357296909 0.202595138769 185.941826481552
1 15/06/2012 19:34 F98902H WW ARCH2012-05-14 2012-06-15 19:29:31 52.57734602 1.10164141414141 0.276142734010348 244.456926936159
1 25/06/2012 16:26 F98902H WW ARCH2012-05-14 2012-06-17 21:46:30 56.06656592 1.10641989589358 0.32219205744672 315.12355613503
1 25/06/2012 21:08 F98902H WW ARCH2012-05-14 2012-06-19 22:04:11 59.43565629 1.09155645981689 0.378155445133032 376.985246584148
1 26/06/2012 01:12 F98902H WW ARCH2012-05-14 2012-06-22 13:53:03 64.71139101 1.37075718015666 0.468423778797991 471

Figure 3.5: This figure shows data for a F98902H genotype time series of the ZB 2012 experiment. The scenario denotes the

water conditions, where WW stands for well-watered, TT is the thermal time and RatioPHPW the ratio of plant hight

and plant width.

platform focus on plant responses to different environmental stimuli. In this case, drought. Therefore
in the ZB 2012 dataset each genotype has 3-4 well-watered repetitions and 2-3 repetitions, which grew
under water deficit. Time series are represented as Biomass or Leaf-Area per Thermal Time as described
in section 3.2.4. An example of the relevant data for one plant is shown by Figure 3.5.

3.4 Previous Work

There was a previous different attempt to analyse the data and group it automatically. In order to
overcome the problem of unequally sampled data, the time series where interpolated. From a predefined
set of functions each series was mapped to a function which represents best its behaviour. The clustering
was then performed not on the time series but on their function representation.
This approach was abandoned as the distance between two functions did not sufficiently represent the
real difference of the two underlying time series. Therefore this work avoids the use of further abstraction
layers and focuses on methods operating on the raw data.
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4 Outlier Detection
This chapter serves as introduction to the domain of outlier detection. We discuss the different notions

of outlier and the corresponding detection methods. Further we present the task at hand of detecting
outlier in plant time series as well as our approach and the final evaluation.

The outlier detection task has many names such as anomaly detection, novelty detection, noise detec-
tion, deviation discovery and exception mining, despite the diverse naming they share the same basic
approaches to tackle the common problem. While highlighting techniques used by all those categories,
we will refer to this task as “outlier detection”. But before we can detect outliers, we need to know what
outliers are. We will follow the suggestion of Hodge and Austin [2004] to use the definition of Grubbs
[1974], who introduced statistical rules for the detection of outliers.

Definition Outlier: “An outlying observation, or "outlier", is one that appears to deviate markedly from
other members of the sample in which it occurs. ”. . .

a “An outlying observation may be merely an extreme manifestation of the random variability inherent in
the data. ”

b “On the other hand, an outlying observation may be the result of gross deviation from prescribed exper-
imental procedure or an error in calculating or recording the numerical value. ”[Grubbs, 1974]

[John, 1995] introduce another notion to the outlier nature. They suggest that a data point located
in a “surprising” location can be considered as outlier. Surprising means here for example the detection
of a point of class A in between of a cloud of class B instances. Another notion considered by [Aggarwal
and Yu, 2001] is the distinction of noise and outliers, where outliers behave differently from the norm
and lie outside the noise region.

The detection of outliers can be of high importance in many contexts. Especially in safety critical
environments, outliers are anomalous events which might cause significant performance degradation or
lead to an accident. As for example, an engine rotation defect in an aircraft or a flow problem in a
pipeline [Hodge and Austin, 2004]. The domains and purposes of outlier detection are versatile:

– Network performance monitoring is a vast field where outliers can indicate bottlenecks or detect ab-
normal behaviour helping to identify network intruders or hostile traffic, see Meratnia and Havinga
[2010]

– Fault diagnosis aims to detect faulty products on manufacturing lines or can be used in critical envi-
ronments such as the analysis of behavioural patterns in motors, pipelines or air space instruments.

– Image analysis offers many applications for outliers, in satellite images they can represent novel
features, in surveillance systems they indicate critical events and in a series of images they may be
used to distinguish moving objects from their background

– In the medical domain, outlier detection can be used to monitor heart beats and detect unusual
events. Or to analyse cells and detect abnormal features in order to identify malicious behaviour.

– Further detection of novelty in text can be used to filter spam mails or undesirable topics.
And this is by far no exhaustive listing, note we haven’t even mentioned the economic sector. Some of
the common sources of outliers are: human error, error of sensors and instruments, faults in systems,
abrupt change in behaviour or just natural deviation. The handling of outliers completely depends on
the context. While faulty measurements can be pruned automatically, suspicious network events should
raise an alarm and cells with unusual behaviour should be retained for further analysis.
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Figure 4.1: Influence of outliers on the placement of
a regression line on the wine dataset by
Hodge and Austin [2004]. The black line
shows a regression line fitted to the data
without outlier removal and the grey line
represents the same procedure after re-
moval of the outlier points A and B.

4.1 Outliers in phenotyping

The context of this thesis is the domain of agronomy, more precisely the domain of phenotyping. Thus
the considered data is issued from the PhenoArch phenotyping platform described in Section 3.2. The
data obtained are measurements of plant traits during their development. Despite the attempt to control
as many variables as possible in the experiment, such as temperature, daily amount of water, air humidity
and so forth (in order to be able to compare the measured characteristics of different genotypes) this does
not prevent the occurrence of outliers. As many sensors are involved into the measurement procedure,
a great part of outliers can be introduced by sensor errors, faults in the watering or imaging system, or
during post processing. Measures like plant biomass are estimated upon three images of a plant. Wrong
lighting conditions or a camera dropout will cause a faulty biomass estimation. While there exist more
robust approaches, methods such as regression are highly influenced by outliers as shown by Figure 4.1.
In this dataset the presence of only two outlier points causes a remarkable shift in the placement of the
regression line.

However, not only outliers caused by sensor errors might influence the analysis, but wrong labelled
plants showing completely different characteristics in comparison to their repetitions or broken leafs
resulting in a sudden decrease of biomass should get our attention. This leads to a distinction of the
following three outlier categories:

– Point outliers - outliers within a time series, aberrant points often caused by measurement faults.
– Plant outliers - an entire time series is considered as outlier if it differs significantly from the be-

haviour from further repetitions of the same genotype.
– Genotype outliers - an entire genotype is considered as outlier if no common traits can be detected

within its repetitions.

The dataset at hand has been already cleaned from the most outlier points using a model-based ap-
proach. Thus the main focus lies on the detection of plant-outliers . The outlier definition of Grubbs does
fit really well to this case. The sample consists of the repetitions of one single genotype. Thus we deal
with four to six time series. A plant outlier is a series differing from the most sample members, often
caused by wrong labelling of the pots, an error during planting, accidental damage of parts of the plant
or just natural variation. Figure 4.2a shows an example of a normal-behaving genotype while Figure
4.2b demonstrates a genotype containing an outlier, which is highlighted in red. Note that experts are
more lenient with plants differing from the other sample members by their exceptionally fast biomass
accumulation than with bad performing outliers [F. Tardieu, 2013].

The third category, a genotype outlier, can be considered as a special case of the plant outlier. A
genotype is considered as outlier when none of the sample members show similar growing patterns.
As the plant outlier, this kind of outlier is due to planting or labelling errors, natural variation or an
unfortunate combination of all three. The handling of outliers in the given context is their removal
from further analysis. We have seen on the example of regression (Fig. 4.1) that two point outliers can
cause an impressive shift in the estimation. Similar to this effect once we analyse growth performance
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(a) (b)

Figure 4.2: The left figure (a) shows the genotype 11430H of the ZB 2012 dataset, all of its repetitions show similar growing

pattern. On the other side figure (b) shows the genotype Lo1180H containing at least one outlier plant, highlighted

in red. The greyed out sequences in the background illustrate the distribution of a large part of the remaining

dataset.

on genotype level, plant outliers will bias the comparison. Therefore it is necessary to remove such
sequences.

4.2 Outlier detection methods

Considering the outlier definition of Grubbs in Section 5, where an outlier is an observation deviating
from the samples it appears with, the task seems to be simple. We need to define a range of normal
observations and each data point not falling into this range is labelled as outlier. But this approach
includes some tiny details which can turn the apparently obvious proceeding into a challenge.

– It is difficult to define a precise range so that it includes all possible normal observations. Further
the boundary between outliers and normal behaviour is often fuzzy [Hodge and Austin, 2004], thus
an observation close to the boundary but outside the range could be actually a normal observation.

– In many domains, the notion of normal behaviour can change over time, for example in the year
2000 gas prices in France had an upper limit of 1EUR/litres everything above was an exception, and
since the year 2010 the normal price is 1.50EUR or above [France-Inflation.com], thus a defined
range or model of normal behaviour for the year 2000 will be suboptimal for records since 2010.

– Further the definition of an outlier is highly domain dependent. While peaks in a seismogram
represent, outliers and stand for high seismic activity and probably for an earthquake, the same
peaks in voice records are completely normal.

Thus it is difficult to find a general outlier detection method fitting to every context. In addition, outliers
can have different natures, as we have seen in the previous section for the case of phenotyping, we
consider point outliers, plant outliers or genotype outliers. Hodge and Austin [2004], Chandola [2007],
Chandola et al. [2009] distinguish the following types based on the nature of outliers:

Point Outlier This category of outliers is similar to our definition for the context of phenotyping. It is an
aberrant point in comparison to the rest of the data. The majority of outlier and anomaly detection
research focuses on this basic kind of outliers Chandola et al. [2009]

Contextual Outlier A contextual outlier is similar to a point outlier as it is a single aberrant data point, but
the difference is that it is considered within its proper context. Regarding the entire dataset this
data point might appear in the normal range but restraining the data to its context will reveal the
deviation. This outlier category has often been investigated in the context of time-series [Salvador
et al., 2004, Kou et al., 2006]. Indeed, we can find a high similarity to the here defined class of
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plant outliers. If we put aside the multidimensionality of a time series and consider it as a feature
vector, we can treat it as single data point. Restraining the context to the repetitions of a genotype
the given time series appeared in, we obtain the problem of contextual outliers.

Collective outliers Collective outliers are collections of related data points which are anomalous with re-
spect to the rest of the data. The individual data points might not be anomalous by their own,
but their collective appearance is exceptional. This includes cases like surprising subsequences of a
long sequence or a sequence of abnormal structure in a set of sequences, like an aberrant genotype
repetition.

Note that while point outlier can appear in any dataset, collective outlier require a relation between data
points and contextual outlier need a specific context. Chandola et al. [2009] underline that any point
or collective outlier can be regarded as contextual outlier by including the given context in the analysis.
An important requirement for the successful retrieval of outliers is the knowledge of what an outlier
actually looks like in out dataset, preferably in the form of annotated outlier and non-outlier instances.
It is of highly importance for the evaluation of a method or can be useful for the creation of a model.
Unfortunately this kind of data is very expensive as it has to be human made. Based on the amount of
labelled data instances, approaches to outlier detection can operate in the following modes:

Supervised outlier detection Supervised approaches require pre-labelled data for the normal behaviour, and
the outlier instances. This data is used to generate a model for each label. If the annotations
only have labels for outliers and normal data points, the obtained classifier will only differentiate
between these two classes. Each new observation is compared against the models in order to
decide where it belongs to. The labelled data has to provide sufficient samples for both classes,
the normal but also the outlier class, and cover as many notions of the data as possible in order to
obtain a truthful model. Otherwise new observations with previously unseen characteristics might
get an incorrect class assignment [Hodge and Austin, 2004]. Chawla et al. [2004] discuss the
issues resulting from unbalanced classes.

Semi-supervised outlier detection Semi-supervised approaches model only one class, often the normal be-
haviour and flag all new observations not corresponding to the obtained model as outlier. This
results from the fact that outlier data is often hard to obtain, for example in the fault detection
domain, it would require to introduce a system fault to obtain the outliers we are interested in.
Whereas in the case of spam detection there are approaches creating a spam model [Mishne et al.,
2005], as normal mails can be by far more versatile and therefore hard to represent. However,
even if we need labelled data for only one class, we require the full distribution of the class to be
modelled in order to permit generalisation [Chandola et al., 2009]. The advantage of this approach
is that even a new unseen kind of outlier, as for example a new network intrusion technique, is still
handled as outlier as long as it does not completely resemble the normal behaviour (assuming we
modelled the normal behaviour). This implies also that a shift in normal behaviour requires the
re-learning or shifting of the model [Hodge and Austin, 2004].

Unsupervised outlier detection Unsupervised techniques are widely applicable as they do not require any
pre-labelled data. The main approach is to process the data as a static distribution and to flag the
most deviant points as outliers, which is similar to unsupervised clustering [Chandola, 2007]. Thus
they implicitly make the important assumption that normal data instances are more frequent in the
dataset than outliers.

While the aforementioned categories represent modes an outlier detection algorithm can operate in, the
subsequent sections will introduce the fundamental techniques.

4.2.1 Classification-based methods

Classification approaches operate in a two-phase mode, training and application. For training, those
techniques require data which is already labelled with its corresponding classes in order to learn a model.
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In the subsequent application phase new unlabelled data instances can be labelled based on the learnt
class characteristics. The classification-based outlier detection makes the assumption that the provided
features are sufficient to distinguish between normal and outlier instances.
Chandola et al. [2009] groups classification-based approaches into multi-class and one-class outlier de-
tection techniques. Multi-class techniques learn to discern multiple normal data classes and a new data
instance is classified as outlier if it does not fit to any of the available classes. One-class-based approaches
learn a discriminating boundary between normal instances and outliers.
There are different classification algorithms which can be used for this task. For example Ryan et al.
[1998] used a neural network to detect unusual activity in a computer system. Neural networks can be
applied in the multi-class and one-class setting. Further they perform well on unseen data and can learn
complex boundaries [Hodge and Austin, 2004].
Another class of classification algorithms are Bayesian networks. The basic idea of the naive Bayes clas-
sifier is to use the training data in order to estimate the prior class probabilities and the likelihood of an
observation given a class. For the label prediction of a test instance, it estimates the posterior probability
of seeing this instance and observing a class label from the set of labels. The label with the highest
posterior becomes the predicted instance label. Several variants of this approach have been used for net-
work intrusion detection [Kruegel and Mutz, 2003, García-Teodoro et al., 2009] and Das and Schneider
[2007] used a more complex Bayesian network in order to include the conditional dependency between
attributes, which is ignored in the classic version.
Classification approaches are a powerful tool, especially when used in the multi-class setting. Once we
have obtained the learned model, the classification of new data is considerably fast [Chandola et al.,
2009]. But this comes at a relatively high cost. In order to create a truthful data model we need labelled
training data for each class, which in most cases has to be labelled manually and therefore is often not
available.

4.2.2 Nearest-neighbour-based methods

Nearest-neighbour-based outlier detection approaches make the assumption that normal data in-
stances appear in dense groups while outliers are further away from the others [Chandola et al., 2009].
Those approaches require a distance or similarity measure, one of the popular choices is the euclidean
distance, see Section 2.3 for further measures. Nearest-neighbour-based techniques can be grouped into
two categories:

1. Techniques defining the outlier score by the kth nearest neighbour.

2. Techniques using the relative density of each data instance as outlier score.

The first category is the k-nearest-neighbour classifier (kNN) which classifies points to the class that
appears most often among the k-nearest neighbours. Thus the euclidean distance of a point p to its kth

neighbour dk(p) is the outlier degree of p. In order to get the top-n outliers this approach chooses the n
greatest dk(p) scores. While this approach is robust to noise, the parameter k is often difficult to choose
in practice [Patcha and Park, 2007]. Liao and Vemuri [2002], Hautamäki et al. [2004] used kNN for
outlier detection. Various modifications and improvements have been proposed for the basic technique
of kNN, mostly targeting the definition of the anomaly score, the similarity measure or the efficiency
[Chandola et al., 2009]. One such modification is to sum over the k-nearest neighbours [Eskin et al.,
2002, Zhang and Wang, 2006]. A possible modification of the notion of the outlier score is to count the
neighbours n which are within a neighbour boundary defined by the distance d.
An attempt to speed up kNN outlier detection, which has a computationally complexity of O(N2) in the
classical case, was undertaken by Bay and Schwabacher [2003] who noticed that a great part of the time
is spend by processing the non-outliers. Thus they use a pruning approach. When calculating the nearest
neighbours for a data point p the anomaly threshold is set for any data point to the weakest outlier
found so far. They show that it leads to a nearly linear-time complexity in the average case on randomly

33



(a) (b) (c)

Figure 4.3: Figure a illustrates an one-class classifier which creates a boundary for normal behaviour. Image b depicts an

multi-class classifier, which not only detects outliers (data points in red) but distinguishes between normal classes.

And figure c is a representation of a dataset containing two groups, depicted in red and blue, of different densities.

This example underlines that a classic nearest-neighbour outlier detection approach will not be able to detect the

outlier p2, due to the high distance between the blue points. These illustrations have been adopted from [Chandola

et al., 2009]

ordered datasets.

The second category of nearest-neighbour algorithms uses a neighbourhood density estimation to
identify outliers. Instances in a neighbourhood with high density are assumed to be normal, while data
instances in a low density region are flagged as outliers. The previously described basic kth nearest-
neighbour approach can also be regarded as a density-based outlier detection approach when we take
into account the following points. The kth-nearest-neighbour distance of point p, dk(p) corresponds to a
hypersphere centred at p and containing k further data points. Thus, dk(p) can be seen as the estimated
inverse density of p in its dataset. Unfortunately, density-based techniques perform bad on datasets with
variable density as in Figure 4.3c. In this example, the distance of p2 to its nearest neighbour from the
green cluster is lower than the nearest-neighbour distance of points within the blue cloud. Thus, p2
won’t be considered as an outlier.

In order to overcome the difficulties arising with variable density datasets, Breunig et al. [2000] as-
signed a local outlier score to any data point, known as Local Outlier Factor (LOF). LOF represents the
extent to which a point p will be considered as outlier. LOF is the average local density of the k nearest
neighbours of p and its local density itself Chandola et al. [2009]. To compute the local density of p, we
need to find the radius of the smallest hypersphere, centred at p and containing its k nearest neighbours.
The local density is than k divided by the volume of the hypersphere. It follows that if p is one of the
green points in Figure 4.3c, it will have the same local density as its neighbours, but if we consider p2,
its local density is higher than that of its neighbours, it results in a higher LOF.
Several variants have been proposed to improve certain characteristics. Tang et al. [2002] propose a
variation, called Connectivity-based Outlier Factor (COF), which computes the neighbourhood of a node
in an incremental manner. It is designed to better caption certain regions, such as straight lines. Further
work has been done to handle different data types such as streams [Pokrajac, 2007] and to reduce com-
putational complexity [Chiu et al., 2003] which is O(N2) for the classical case.

The main advantage of nearest-neighbour outlier detection approaches is that they are unsupervised
and purely data driven. They can also be adapted to different data types just by picking the appropriate
distance measure. However they rely on the fact that normal instances lie in dense regions. If this is
not always the case, this will result in false outliers. And a very important point to recall is that this
technique relies heavily on the truthful representation of distance between data instances by the chosen
distance measure.
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4.2.3 Clustering-based methods

Clustering aims at grouping similar data instances into clusters. As for the case of nearest-neighbour
approaches, the similarity of objects is defined by a context and data dependent distance measure. Out-
lier detection via clustering is mainly a unsupervised approach, but can be also performed in a semi-
supervised manner, for example by using labelled data to obtain an outlier threshold [Chandola et al.,
2009]. While we will introduce here the main ideas used for clustering-based outlier detection we won’t
go into detail of general clustering. A more detailed discussion on this topic and the presentation of basic
clustering techniques is covered by Section 5. There are basically three assumptions a clustering-based
outlier detection approach may make use of:

1. Normal data instances appear in groups forming clusters while outliers do not belong to any group

2. Normal data instances are close to a cluster centroid and the closest cluster centroid of an outlier
is far away.

3. Normal data instances are part of a large and dense cluster while outliers are in clusters which are
small and/or sparse.

The first category of approaches applies a well known clustering algorithm and declares all data instances
as outliers that were not assigned to a cluster. This requires an algorithm which does not necessarily as-
sign all data instances to a cluster, such as DBSCAN [Ester et al., 1996] or SNN [Ertoz et al., 2002], a
nearest-neighbour clustering approach. A concern of these approaches is that they are optimised to find
meaningful clusters and not to pick out outliers.
The second category calculates an outlier degree based on the distance to the nearest cluster of a data
instance p. For this purpose k-means and in particular Self-Organizing Maps (SOM) [Kohonen, 1997] are
widely applied, see Hodge and Austin [2004], Chandola [2007]. These techniques assume that outliers
do not form clusters by themselves, and do not work for cases where outliers appear in small groups.
Approaches of the third category overcome this issue by defining that normal instances have to come in
dense and large groups. He et al. [2003] incorporate this notion and introduce the Cluster-Based Outlier
Factor, which is assigned to each data instance in order to represent the outlier degree. This factor cap-
tures the size of the cluster an instance p belongs to and its distance to the centroid.
Several cluster-based approaches appear to be similar to the nearest-neighbour techniques discussed in
the previous subsection. Both approaches rely heavily on the performance of a distance measure between
data instance and incorporate the notion of density. However the main difference of these approaches
is that while nearest-neighbour outlier detection techniques determine the outlier degree of instance p
based on the k-nearest neighbours, clustering approaches operate on the cluster the instance p is as-
signed to.

The benefit of the clustering approach to outlier detection is that these technique can operate in the
unsupervised mode and the outlier detection phase is fast, since new data points have to be compared
against a relatively small number of clusters. Nevertheless, the initial clustering of the data appears often
to be the bottleneck [Chandola et al., 2009]. Further the detection performance depends on whether the
clustering algorithm in use is adapted to capture the notion of ’normality’ in the data.

4.2.4 Complex outliers

At the beginning of Section 4.2, we introduced that outlier detection can be divided into groups to
handle best the three different kinds of outliers: Point outlier, contextual outlier and collective outlier. The
methods presented above mainly focus on the simple case of point outliers but there also methods to
handle complex outliers such as contextual or collective outliers.
Contextual outliers are data instances which are only outliers within their context, they might be consid-
ered as normal when regarding the whole data. The context of such data can be of a completely different
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nature, such as spatial, where the location of an instance is of high relevance, sequential, where the con-
text is a sequence of points or it might be of a completely different nature such as a category derived
from the attributes of a data instance. There are mainly two approaches to handle those outliers, either
by reducing them to point outliers or by making use of the given data structure. As these outliers are only
anomalous in their context, the reduction to point outliers is achieved by applying the aforementioned
techniques only within a given context. The second option is to model the data structure and to use
the model for outlier detection. This is used in cases where it is difficult to define the actual context.
The model is learned on training data and used to predict the normal behaviour. If the encountered
behaviour differs significantly from the prediction, it is considered as outlier. A simple example for this
technique is regression where contextual data is used to fit a regression line [Chandola, 2007, Chandola
et al., 2009]

Another kind of complex outliers are collective outliers, which are not exceptional by themselves, it
is their co-occurrence that makes them exceptional. These outliers can be grouped by the type of their
relationships: sequential, spatial, graph-based. Given the context of this work, we are mostly interested
in sequential outliers. Further information on spatial and graph-based collective outliers, and their de-
tection methods are provided by Chandola et al. [2009], Chandola [2007].
Dealing with sequential collective outliers one application is to detect outlier sequences from a set of
sequences. This implies two challenges. The sequences are not necessarily of equal length and they are
not necessarily properly aligned. This means that the first point in sequence T might correspond to the
third data instance in sequence S. This is a major challenge when dealing with biological sequences
[Gusfield, 1997]. As for the case of contextual outliers one of the classical approaches is to reduce the
problem to a point outlier detection task. Provided that the series are of equal length, we can transform
the sequence into finite feature space. This means that a time series T of length N can be regarded as
a single data instance with N attributes. Then the usual outlier detection techniques can be applied.
Blender et al. [1997] used this approach to detect cyclone regimes in North Atlantic weather data. In
order to deal with the variable length of sequences and the misalignment the easiest way is to use an ap-
propriate distance measure capable of serving these conditions [Chandola et al., 2009]. For a discussion
on distance measures see Section 2.3. There are also model-based approaches to this task using Finite
State Automatons [Sekar et al., 2002], Marcov Chains [Ye and Li, 2000] and Hidden Markov Models
(HMM) [Warrender et al.].

A variation of the here described task can be the detection of outlier subsequences within a long se-
quence, such as the detection of anomalous patterns in an EEG. This version entails a different challenge,
the length of outlier subsequences is not defined and can vary within a single sequence. This makes it
difficult to create a model for normal behaviour [Chandola et al., 2009]. Chakrabarti et al. [1998] re-
gard this problem from the information theoretic perspective. They create subsequences of the sequence
which minimises entropy. The sequences with highest entropy are considered as outliers. Further Keogh
et al. [2004] use a sliding window to detect outliers. The outlier score is obtained by comparing each
resulting subsequence against the original sequence.

4.3 Outlier detection for alarm generation

In subsection 4.1 we introduced three outlier notions appearing in the context of phenotyping: point,
plant and genotype outlier. The literature differentiates between point outliers, like in our case, and
complex outliers as contextual and collective outliers. We are mostly interested in the detection of plant
outliers. Regarding the categorisation proposed in the literature, we can assign them definitively to the
class of complex outliers as plant outliers are more than just an anomalous data point. Plant outliers
are entire time series, which differ significantly from their genotype equivalents, making it a collective
outlier. Further we are not interested in outliers of the entire dataset but rather on aberrant series of
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(a) (b) (c)

Figure 4.4: These figures show the performance of biomass accumulation for three genotypes, 11430H , A554H , Lo1180H .

The genotypes are represented by their repetitions which grew in the well-watered condition. 11430H , in figure

(a) serves as an example for a good performing genotype where all repetitions follow the same course. A554H in

(b), follows about the same course but contains one outlier, highlighted in red. Figure (c) represents the genotype

Lo1180H showing very variable performances.

(a) (b) (c) (d)

Figure 4.5: This figure represents the averaged performance of the genotypes depicted by 4.4. (a) is the averaged performance

of 11430H , (d) is the averaged performance of Lo1180H and the images (b) and (c) represent A554H ,

whereas (b) is the average of all its repetitions, including the outlier and (c) was obtained after the outlier removal.

We can see that only after outlier removal we get a more appropriate performance representation.

a genotype repetition. This means that they have to be retrieved in the context of their genotype and
therefore can be considered as contextual outliers. To put it briefly, the goal is to detect contextual collec-
tive outliers.

The importance of their retrieval can be illustrated by their effect on further analysis of the data. As
already shown in Figure 4.1 the presence of outliers in a dataset can have a remarkable effect on analysis
such as regression. In the given context further analysis aim to study plant characteristics based on the
genotype variety. In order to ease this work genotypes will be grouped into categories of similar growing
patterns. A genotype is represented by its four to six repetitions. If we do not remove any aberrant
repetitions they will influence the estimated average performance of the genotype which might lead to
a wrong group assignment. Figure 4.4 shows three genotypes represented by their repetitions. Figure
4.4a is a well-performing genotype with its repetitions following the main course, Figure 4.4b is similar
to (a) but contains an outlier and Figure 4.4c shows a large variability in its performance. In Figure 4.5
we illustrate the average performance of the genotypes in Figure 4.4(a), (b) and (c). We can see that
if we do not remove the aberrant series as depicted by Figure 4.5b, its performance appears to be more
similar to the variable genotype than to the more appropriate good performing genotype. This illustrates
the necessity to remove plant outliers.

More specific requirements for an outlier detection solution are defined by two experts, who work
with the PhenoArch platform and are familiar with the data. The outlier detection should be able to be
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integrated into the current workflow in an ’expert-agreement’ mode. The outlier detection component
will propose genotypes containing possible plant outliers which will be reviewed and if appropriate
removed by the expert. Therefore we have to focus on the recall, see Equation 4.2. This means that
the algorithm has to retrieve preferably all outliers available in the dataset (high recall), and in order
to reduce the amount of instances, to be checked by the expert, it should avoid false matches (keep
precision high). Further it has been noted that low performing outliers are more crucial and we can be
more lenient with well-performing anomalies. Keeping these aspects in mind, the following subsections
discuss the similarity distance which has been used and three approaches. The performance of these
approaches is then presented in Section 4.4.

4.3.1 Similarity distance

We refer to the statement that most data mining tasks require a notion of similarity, this is especially
the case for the task of outlier detection. In order to declare a data instance p as outlier, it is necessary
to define by which means p is less similar to the rest of the considered data. In Section 2.3 we have
reviewed different distance measures and seen that the classic approach is to use the Euclidean distance
which is fast, easy to implement and meets most requirements. Further we want to recall the observation
of Ding et al. [2008], stating that the performance of simple methods approaches the performance of
more sophisticated elastic measures in big datasets. Therefore we will reconsider the available amount
of data.
The available data consists of several phenotyping experiments, which will be analysed separately as
the experiments where performed under different conditions. An experiment can contain about 1690
plants resulting in about 300 genotypes if we count four to six repetitions. As we are mostly interested
in the contextual plant outliers, we will regard them in their context which is the genotype. Thus we are
targeting the detection of outliers in a very small set of four to six time series. This small amount of time
series induces the use of a more sophisticated measure as Dynamic Time Warping (DTW). We use DTW
with the Euclidean distance as local distance measure. DTW has shown to be more accurate and more
robust in many applications in comparison to the Euclidean distance, see Section 2.3.

As stated by Gusfield [1997], time series in the domain of biology often have the inherent properties
of non-aligned sequences and differences in sequence length. The data at hand is no exception. Even
though DTW is able to deal with sequences of different lengths, we observe that shorter sequences get a
higher dissimilarity estimation as equal length sequences, see Figure 4.6. This might be a valid behaviour
for the general case, but considering the given context this is not desirable. A time series starting at later
point in time does not necessarily mean that the measured plant started growing at this time point but
that the conditions were favourable for its detection by the camera system. This might be due to the
plant architecture like a small size, very thin structure, difficult growing angle for detection or just a
camera fault. We can also find earlier ending time series in the dataset, which could be caused by an
accident requiring earlier harvesting or a difficulty in the imaging system. Therefore a low similarity
score should not only be based on the length difference of two series.
To overcome these problems, one option is to use interpolation to obtain series of equal length, this
would avoid the kind of alignment shown by Figure 4.6b. We have chosen to work only on the available
data and therefore, when calculating the DTW distance for a long series T and a short series S, we
remove the elements of T which are missing at the beginning or end of S.

4.3.2 Lower bound approach

The first approach bases on the fact that bad performing outliers are considered more crucial than
good performing ones and on the observation that those outliers have a high distance from the rest of
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(a) (b) (c)

Figure 4.6: Figure (a) illustrates the repetitions of the EP10H genotype. We will have a closer look on the cyan, blue and red

graph repetition and their distance estimation using DTW. Figure (b) shows the DTW alignment between the short

cyan coloured and blue coloured series. As DTW requires every point to be aligned, this results in the alignment

of the first cyan point with every preceding point of the blue time series, resulting in a high distance measure of

538,43. Whereas the DTW distance of a same length series of subjectively equal similarity, illustrated by (c), is

much lower (220,65)

the repetition. Thus, given a genotype G and a distance threshold d, we retrieve its worst performing
repetition. If its closest neighbour has a higher distance than d, the repetition is flagged as outlier. In
order to cover cases with two bad performing outliers, we apply the same procedure to the second worst
performing repetition and flag both series as outliers if the neighbour of the second series is further
away than d. This is illustrated by Algorithm 1. Note that this approach does completely ignore good
performing outliers.

Algorithm detect_lower_bound_outlier(repetitions, dist)
01. sorted_reps = repetitions.sort(order=’avg’);
02. outlier_list = [];
03. if dtw_distance(sorted_reps[0], sorted_reps[1])>dist then
04 outlier_list.append(sorted_reps[0])
05. else, if sorted_reps[2] != null & dtw_distance(sorted_reps[1], sorted_reps[2]) then
06 outlier_list.append(sorted_reps[0], sorted_reps[1])
07. return outlier_list;

Algorithm 1: Lower bound outlier detection

4.3.3 Neighbourhood approach

This approach belongs to the nearest-neighbour approach family as described in Subsection 4.2.2. The
idea is not to directly detect outlying time series but rather to find ’normal’ similar sequences and define
the rest as outliers. This assumes that normal time series appear in groups and outliers are isolated
sequences. Thus we consider every given time series T as ’normal’ if it has at least k neighbours at a
predefined distance d. This approach is illustrated by Algorithm 2. It is a costly procedure as we need to
determine the nearest neighbours for each time series.

4.3.4 Combined approach

The combination of several approaches is often referred to as “Ensemble Method”, Dietterich [2000]
discusses ensemble methods in the domain of machine learning and claims that ensemble classifier yield
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Algorithm detect_outlying_neighbours(repetitions, dist, k)
01. outlier_list = [];
02. for rep in repetitions do
03 for neighbour in get_nearest_neighbours(k, rep) do
04 if dtw_distance(rep, neighbour)>dist then
05 outlier_list.append(rep)

end
06 return outlier_list;

end
Algorithm 2: Neighbourhood-based outlier detection

Figure 4.7: User interface for the annotation of aberrant repetitions.

better performance than a single classifier. Depending on the number of available approaches, their
combination can be organised in different ways. If there are more than three techniques available, they
can be arranged as a majority voting. Otherwise, in case of an outlier detection application, one can
either use only the results where all participants agree or set a flag where at least one approach detects
an anomaly. In order to be sure to get the low performance outliers and not to miss extreme high
performing anomalies, we combined the two approaches defined in Algorithm 1 and 2. Considering that
we have only two approaches, the majority voting does not make any sense. Thus we realised the two
latter combinations. The first one was to mark those genotypes, where both algorithms detect an outlier.
The other version marks the genotypes where one or both of the algorithms raised an alarm. In order
to get the best performance, the combined approach was executed with various distance parameters for
both underlying algorithms. The final performance is reported in Section 4.4.2.

4.4 Evaluation and results

Section 4.2 shows that many outlier detection methods require pre-labelled data for training and
testing. Even though we do not require training data we need to fix the free distance parameters and
labelled data is indispensable for evaluation. Therefore we started a venture to annotate outlying plant
time series, which is discussed in the following section. The resulting data was used to measure and
compare the performance of the here proposed approaches, see Section 4.4.2.
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4.4.1 Annotation

The aforementioned approaches both require the definition of a distance parameter that has to be
adapted to the kind of data at hand. This is best done with annotated data, where we can evaluate
which settings generate too many false dismissals or false matches. Further and most importantly only
labelled data can provide an objective measure on the performance of our approaches and their suitabil-
ity for this task. At this point we have to admit that ’objective’ is a big word and we will mention certain
concerns on the objectivity of this measure, considering the given situation, in the course of this section.

Often, labelled data is not available and has to be obtained via a manual data annotation by domain
experts, making it very expensive. This also corresponds to our situation. In order to facilitate and speed
up this procedure, we developed a web interface representing the genotypes which had to be marked in
case of an outlier. Figure 4.7 shows a screen shot of this interface. The genotype representation has been
realised as in Figure 4.2b. The experts had to choose between three different representations, shown in
Figure 4.8. Next to each figure is a checkbox which has to be checked in order to report an outlier.

Two domain experts familiar with the data at hand annotated all genotypes of the ZB2012 phenotyp-
ing experiment, resulting in 300 annotated images. The instructions were to mark images containing
aberrant time series which should be removed from further analysis. This seems like an obvious task but
it turns out that it is not as straightforward as expected. In order to get more insight into the difficulties
of the outlier detection task and to obtain an upper bound we can reach with automatic methods we
computed the annotator agreement on the annotated series using recall, precision and the F1 score. The
F1 score is the harmonic mean between recall and precision defined as, e.g., [D, 2000],

F1 = 2×
precision× recal l

precision+ recal l
. (4.1)

There are two possibilities how we can look at precision and recall. In the classical case, precision is the
fraction of correctly classified data instances, whereas recall measures the percentage of outliers present
in the data which were actually retrieved by our system. Another version is to divide the data into two
classes, a positive and a negative one, and to constrain the precision to the positive class. This means
that precision will measure the percentage of the correctly classified positive instances [D, 2000], see
Equation 4.2. This can also be applied in the given case as we have two classes: outliers and non-outliers,
and we are mostly interested in the performance of the retrieval of outlier instances.

Precision=
posret r iev ed

posret r iev ed + negret r iev ed
Recal l =

posret r iev ed

posret r iev ed + posre jec ted
(4.2)

While the annotations shows a high overall annotator agreement with a F1 score of 0.918 (prec =
0.962 rec = 0.879), the comparison of the outlier class reveals a substantial disagreement: F1 = 0.262
(rec = 0.26, prec = 0.44), which was masked by the comparably large number of non-outlier instances.

The low F1 score hints at the high subjectivity of this task and illustrates the difficulty to obtain an
objective evaluation measure. In order to assure accurate outlier annotations, we conducted another
annotation iteration, this time based on alarm confirmations. We fine-tuned the free parameters of
our combined approach on one of the annotations and asked the annotators to confirm or reject the
automatically detected outliers. Then we merged the annotation from the first annotation round with
the alarm confirmations for each annotator. This approach leads to a small increase of overall agreement
to F1 0.934 (prec = 0.932, rec = 0.935) but results in a considerably improved outlier agreement of F1
= 0.62 (rec = 0.64, prec = 0.62). Remember, as our focus lies on outliers, we are especially interested
in a high outlier agreement.
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(a) (b) (c)

Figure 4.8: Three different genotype representations. Figure (a) is a simple multicoloured plot of the repetitions. Figure (b)
and (c) additionally show a large part of the rest of the dataset in light grey, enabling to see the repetitions in relation

to the general sequence distribution. Note that (b) is uni coloured and (c) multicoloured as (a) .

4.4.2 Performance

We have fine-tuned and evaluated all three approaches presented in the previous section on the man-
ually labelled data set. Each approach was run with different parameters in order to find an optimal
setting. For the evaluation we combined the annotations obtained from the two annotators in two dif-
ferent fashions. The first can be regarded as a conjunction of the two sets, we consider a data instance
as an outlier only if both annotators agree. The second version is a union, meaning that an instance
is considered as outlier if at least one of the annotators flagged it correspondingly. The evaluation was
performed using the F1 score as defined in equation 4.1 focusing on the outlier class, for reasons of
completeness we also computed the overall F1 score for certain experiments.

The results are reported by Table 4.1. The table shows multiple parameter settings for each approach
and the corresponding performance. We can observe that a very simple idea such as the lower bound
approach can lead to impressive performance as an F1 score of 0.676 on the union annotation set com-
parable to the more sophisticated neighbourhood approach which obtained an F1 score of 0.666 on this
test set. Apart from their similar performance on this dataset, we expect the two approaches to capture
different notions of outliers. Where the lower bound approach considers only isolated and bad perform-
ing time series as outliers, the neighbourhood approach finds isolated series regardless of the direction.
Indeed, our expectations are confirmed by an increase of the F1 score for the combination approach.

The two base approaches have also been combined in a union and conjunction manner, where
Ensemblecon j means that only data instances, where both approaches raise an alarm are flagged as
outlier and Ensembleunion raises an alarm if at least one of the approaches reports an outlier match.
Note that for the ensemble methods we also evaluated several settings and it is not necessarily the
best setting of the individual approach which achieves best results in a combined manner, as can be
seen for the case of Ensemblecon j and the individual performance of the single approaches with the
corresponding settings.
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Method Parameter
Dataset

Union Conjunction
Prec Rec Fpos Fall Prec Rec Fpos

Lower bound
dl : 285 0.657 0.695 0.676 0.916 0.410 0.937 0.571
dl : 250 0.486 0.768 0.595 0.293 1.0 0.453

Neighbourhood
d: 295 k:2 0.677 0.608 0.641 0.435 0.843 0.574
dn: 280 k:2 0.652 0.681 0.666 0.914 0.402 0.906 0.557
dn: 275 k:2 0.618 0.681 0.648 0.381 0.906 0.537

Ensemblecon j dn: 275, k:2, dl : 250 0.934 0.623 0.747 0.930 0.630 0.906 0.743
Ensembleunion dn: 365, k:1, dl : 285 0.64 0.695 0.666 0.912 - -

Table 4.1: Outlier detection performance table, the three different approaches have been evaluated on two variants
of the obtained annotation sets, union and conjunction. We present recall, precision and F1 score for both
cases. Fpos represents the F -measure for the outlier class, whereas Fall is the measure for all classes,
thus takes correctly classified non-outlier into account. Further dn is the distance for the neighbourhood
approach and dl the distance for the lower bound approach.
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5 Time series clustering
Clustering aims at finding the ’naturally’ appearing groups in a dataset. Unlike classification it does

not require the prior definition of classes and thus is considered as an unsupervised method. The groups
are chosen so that their elements are similar under a predefined similarity measure, meaning that they
should minimise intra cluster variance while maximising inter cluster variance. It is the most commonly
used method for pattern discovery [Fu, 2011] but this is not its only purpose, it can be used to get a
better overview of the data, to reduce high dimensionality or it can serve as a preprocessing step, which
structures the data and makes further analysis easier. The applications are manifold. For a more formal
definition we rely on the propositions in [Hansen and Jaumard, 1997]:
A clustering C is the division of dataset D into M clusters fulfilling the following constraints:

C = {c1, c2, . . . , cM}

c j 6= ; ci ∩ c j = ; |i, j = 1, 2, . . . M ∧ i 6= j ∪M
i=1 c j = D (5.1)

In the given context we use clustering to group similar genotype time series in order to ease further
analysis, like the investigation on the origin of certain growing patterns or a faster detection of genotypes
with a surprising behaviour.

As already discussed in Section 4.2.4 in the context of outlier detection, most techniques assume static
data and therefore time series need a special treatment. A common approach is to consider a time series
T of length N as a single data instance with N attributes and to apply the classical techniques. This
is also applicable in the case of clustering. Another approach is the modification of classical clustering
techniques by switching the similarity measure to a measure capable of handling time series data. Most
clustering algorithms require a measure of proximity between the data instances, for a discussion on
distance measures suitable for time series ,see Section 2.3.

5.1 Clustering methods

Classical clustering techniques can be separated into five categories: partitioning, hierarchical, density-
based, grid-based and model-based methods [J, 2006, Liao, 2005]:

– Partitioning cluster algorithms divide a dataset D with N data instances into k partitions where
k ≤ N and each partition contains at least one data instance. The partitions may be defined as hard,
meaning that an object can be part of only one partition, or fuzzy, where the partition membership
is defined by a degree of affiliation.

– Hierarchical clustering creates a tree of clusters from its data. The agglomerative version at first
considers every element as a single cluster and merges them consecutively based on a merging
criteria.

– Density-based approaches create clusters from data regions, which exceed a predefined density
threshold. An interesting characteristic is that data points not exceeding this threshold are consid-
ered as noise.

– Grid-based clustering performs the clustering routines on a grid structure which is obtained by
transforming the object space into the desired representation.

– And finally model-based approaches assume a model for each cluster and fit the model to the data.
This is just a listing of the prominent characteristics of the cluster categories. We will focus on hierarchical
and density-based approaches, refer to [Liao, 2005, Xu and Wunsch, 2005, Fu, 2011] for a more in-depth
discussion of the remaining categories.
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5.1.1 Hierarchical clustering

Hierarchical clustering is one of the oldest clustering methods, see survey of [Hansen and Jaumard,
1997], but its use is still well-established [Shumway, 2003, Rodrigues, 2008]. Hierarchical clustering
methods create a tree of clusters from the given data. We distinguish between two different versions of
this algorithm: a bottom-up approach, the agglomerative hierarchical clustering (HAC) and a top-down
procedure, named divisive hierarchical clustering (DHC). Divisive hierarchical clustering (DHC) starts
with one initial cluster containing all elements and proceeds by successively splitting the clusters in two
until a given criteria is reached (for example when each element has its own cluster). The bottom-up
version of this method, hierarchical agglomerative clustering (HAC), is used more frequently [Hansen
and Jaumard, 1997]. It initially assigns each data instance to its own cluster and successively merges
clusters until the reach of a predefined stop condition. The resulting data tree is shown in form of a den-
drogram in Figure 5.3. Hierarchical clustering is useful to visualise the inherent structure of a dataset
and it is a good method to subjectively evaluate the performance of a distance measure between data
instances [Maimon and Rokach, 2005].

The cluster selection for a merge or a division can be adapted to individual needs. Single linkage
measures the distance between clusters based on the closest elements belonging to different clusters.
Then the clusters with minimal distance are merged. Average linkage computes the average distance
between all elements of two clusters and the centroid linkage considers the cluster distance to be the
Euclidean distance between the cluster centroids. All three approaches choose clusters with minimal
distance for merging. A slightly different approach is the Ward’s method. In this case the two clusters
are selected for merging, whose combination will result in the smallest increase of the sum-of-squares
variance [Liao, 2005]. Therefore the resulting variance value is computed for every possible merge and
we finally execute the merge with a minimal increase of variance. This is very useful if a given context
defines a low sum-of-squares as a criteria for a good clustering, as Ward’s method will keep it as low
as possible with each merge. Unfortunately theses approaches are computationally expensive, O(N2)
complexity in time and space, and therefore are not suitable to handle high dimensional data [Xu and
Wunsch, 2005]. Hierarchical clustering is a greedy method, thus suffering from the fact that already
executed merges or splits can not be undone, therefore there is a trend to combine them with further
clustering methods [Liao, 2005].

5.1.2 Density-based clustering

Density-based clustering methods assume that clusters appear as dense regions in a metric space.
These methods search for highly dense regions in the dataset and consider them as separate clusters.
This is similar to the single linkage method but cope with the phenomenon of chaining, where a chain
of points can extend the cluster for a long distance, by avoiding the addition of data instances causing a
notable drop in average cluster similarity [Everitt et al., 2011].

A relatively well-known density-based clustering algorithm was introduced by Ester et al. [1996], DB-
SCAN, which assumes that clusters appear in dense and concentrated regions and is designed to find
clusters of arbitrary shape. An interesting property of this algorithm is that it inherently copes with noise
in the dataset, by declaring dense regions as clusters and regions of low-density as noise. This approach
requires the user to define two parameters: a minimum distance d and a minimum number of neigh-
bours n. Correspondingly a point p requires at least n neighbours in the radius of d in order to form a
cluster. We distinguish between core and non-core objects of a cluster. A core object is, as explained for
point p, an object with at least n elements in its neighbourhood. When the neighbourhoods of two core
objects overlap they are simply merged to one cluster, enabling the detection of clusters with arbitrary
shapes. Further objects are considered as ’direct density reachable’ from point p if they are within the
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(a) (b)

Figure 5.1: Clustering results for DBSCAN (a) with the parameters d 145, n 1 and HAC Ward cluster result in (b) with the

stop condition at a cluster distance of 15 000.

distance d and they are just ’density reachable’ if we can establish a chain of core objects to the object in
question. The border of a cluster contains the ’border objects’ which do not have the necessary number
of neighbours in their neighbourhood but are part of the cluster if they are density reachable. Elements
not assigned to any cluster are considered as noise. Further, it finds the number of clusters automatically,
which distinguishes it from for example k-means.

DBSCAN is not only useful as a pure clustering algorithm but also for the detection of noise. Unfortu-
nately it does not perform well on sets of varying density and in high-dimensional space where the data
is often sparse [Everitt et al., 2011]. Birant and Kut [2007] adapted the algorithm to handle spatial and
temporal data and to cope with variable density by using a spatial information as an additional clustering
criterion. The acceptable radius for a cluster is then adjusted based on the spatial information.

5.2 Genotype clustering

The goal of genotype clustering is to find similar behaving genotypes in order speed up further pheno-
typic analysis and to ease the study of genotype-phenotype interaction. In more detail we cluster average
biomass accumulation time series for each genotype, but the here presented approaches can be applied
to any other phenotypic time series, like the evolution of leaf area or the plants transpiration rate. As the
clustering results will be the base for further analysis, the expert’s expectation of an optimal clustering
outcome is: 4 to 6 more or less balanced clusters, some clusters representing the mediocre performing
plants and two for the really good and really bad performers. The following subsections present the
actual approach of biomass time series clustering and the evaluation of our results.

5.2.1 Clustering approach

The clustering of genotype time series is the next step after the removal of outliers discussed in Section
4.1. So far a genotype has been represented by its repetitions, as we are mostly interested in the perfor-
mance of an entire genotype and not in individual plants. We derive an average genotype performance
based on its repetitions. Recall that the time series at hand are not uniformly sampled, therefore we can
not simply iterate through the time steps and average the time series values for each point. Thus in or-
der to obtain the average time series we slightly adapted the basic proceeding using a nearest-neighbour
approach to determine the corresponding time steps within the repetitions. This is illustrated by the
Algorithm 3.

47



Algorithm calc_avg_time_series(repetitions)
01. longest_rep = get_longest_rep(repetitions);
02. avg_rep = [], to_avg=[];
03. for time_step in longest_rep.time do
04 for rep in repetitions do
05 time_match = get_nearest_neighbour(time_step, rep.time);
06 to_avg.add(rep.valueAt(time_match)) ;

end
07 avg_rep.append(avg(to_avg), time_step) ;
08 to_avg.clear();

end
09. return avg_rep;

Algorithm 3: Calculation of average genotype performance

Keeping in mind the expectation of four to six balanced clusters, we clustered the 300 average geno-
type time series using the density-based algorithm DBSCAN and four versions of the HAC approach,
Single Linkage, Average Linkage, Centroid Linkage and Ward. Each clustering algorithm was run several
times with varying parameters in order to approximate the expected clustering results. Both types of
algorithms require a time series similarity measure to decide on cluster affiliation. In Section 2.3 we
reviewed commonly used similarity measures for time series and in Chapter 4 we showed that Dynamic
Time Warping proves to be suitable to represent the similarity of the given time series. Therefore we
used DTW for all further approaches requiring time series similarity.

Due to the very high density of the entire dataset, the best clustering we could achieve using DBSCAN
is shown in Figure 5.1a. When the distance parameter d was too high, almost all time series were
assigned to a single cluster and a lower d value caused too many time series to be classified as noise.
Therefore DBSCAN was not retained for further investigations.
Some notable observations in the results of HAC are that Single Linkage and Average Linkage show
results comparable to DBSCAN. Beside the fact that they do not classify any time series as noise, they
show difficulties to create balanced clusters. Unlike Single Linkage the Ward algorithm manages to create
surprisingly balanced data clusters. This striking difference is depicted in Figure 5.3. We can see that the
Average Linkage dendrogram is drawn to the right whereas the Ward dendrogram shows a comparably
balanced cluster tree.

(a) (b) (c)

Figure 5.2: Three cluster pairs of the Ward clustering result in Figure 5.1b. For each clustering result we created such cluster

pair plots which were judged by the experts on their meaningfulness.
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Algorithm Parameter Clusters Agreement

ward
15k 4 0.93
10k 6 0.83
7k 8 0.75

centroid
7k 3 1
5k 2 -
4k 4 0.66

average
4k 4 0.83
3k 4 0.75
2k 7 0.66

Table 5.1: Expert evaluation of clustering results

5.2.2 Evaluation

Clustering evaluation can be divided into two fields, intrinsic and extrinsic evaluation. Intrinsic evalu-
ation evaluates the cluster based on internal criteria, like inter and intra cluster variance assuming that
objects within a cluster should be highly similar and objects of different clusters should not. The problem
with this kind of evaluation is that while a clustering might be intrinsically optimal it is not necessarily
meaningful in a given context. Regarding the clustering results we obtained with DBSCAN (in Figure
5.1a), as the data is very dense it puts a large part of the sequences into one single cluster, this cluster
might be intrinsically optimal, but does not help us separate the rather good and rather bad growing
genotypes. Therefore this method is not necessarily meaningful in our context.
Extrinsic evaluation uses additional information, not used for the clustering itself, for evaluation, often
in the form of labelled data or expert judgement. Based on the vantage of clustering, not requiring any
training data, it is used in fields where almost no or only few labelled data is available. As a result
extrinsic evaluation of clustering turns out to be difficult.
Despite the lack of available labelled clustering data, we want to decide on the best performing clustering
algorithm in the given context. Considering that a purely intrinsic evaluation will not give any insight of
the utility of our result, we conducted an expert interview in order to obtain the best clustering outcome.

Two experts, familiar with the data, who will use the clustering outcome as base for future analysis,
were presented several clustering results of the different clustering algorithms. The results were rep-
resented by a plot for each cluster. Additionally we provided a further plot for each pair of clusters to
highlight the cluster difference and to ease the expert decision whether this data separation is mean-
ingful or not, as shown in Figure 5.2. Thus, for a clustering with four clusters we obtained six expert
judgments, stating to which degree they agree on this data separation. The average expert agreement on
each clustering result is shown in Table 5.1. Note that the centroid linkage clustering outcome earned
full expert agreement. This is due to a special case, it created reasonable clusters by providing one
large cluster for the average performers a cluster for the above average performers and a cluster for the
few badly performing genotypes. The expert opinion at this point is that while the cluster separation
is entirely reasonable these clusters do not necessarily offer the best basis for future analysis. Further
analysis will focus not only on the exceptionally good and bad performers but is also interested in the
above average performing genotypes; a higher granularity is desirable in the average performers cluster.
The desired granularity is achieved by the clustering result using Ward’s method, which splits the mod-
erate performing plants in two while maintaining separate clusters for outstanding genotypes. Thus this
clustering is considered as being suitable to serve further analysis.
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5.3 Subspace clustering

especially When performing classical clustering in high dimensional data, it appears that certain ele-
ments have uncorrelated features. This can impede the effective cluster detection[Madeira and Oliveira,
2004]. Therefore clustering algorithms simultaneously clustering the rows and columns of a data matrix
have been proposed. The obtained clusters consist of a subset of the rows and columns of the original
data matrix. These algorithms are called Biclustering and are often applied to gene expression data.
Similar algorithms can be found in the field of document clustering referred to as Co-clustering. Tanay
et al. [2005], Madeira and Oliveira [2004] introduce the challenges addressed by biclustering and dis-
cuss different approaches. Subspace clustering is another extension to the normal clustering approach.
It addresses the issue of uncorrelated features in high dimensional data by the localisation of the cluster
search to only relevant dimensions [Parsons et al., 2004].

Given a matrix with phenetic characteristics and the corresponding genetic asset, subspace clustering
can be of interest as it can contribute to the study of genotype-phenotype interaction. We would like
to answer the question of, apart from the environmental influences and the developmental variability,
which genetic elements are responsible for certain phenotypic behaviour.

5.3.1 Data

We obtained a genotype marker matrix containing marker for most of the genotypes used in the ZB
2012 experiment. The matrix contains 50 000 marker columns for each of its genotypes.
A genetic marker is a gene with two or more alternative forms, in our case just two. One version to
express this aspect is via probabilities that a marker develops in one or the other way. This has been
done in the format at hand. A “0” corresponds to the probability that a marker will be manifested as
one state and “2” as the other. A “1” means that the probability is about equal for both states. Thus the
marker representation of a genotype is a vector of length 50 000 consisting of {0,1, 2}.

5.3.2 Marker clustering

The main goal is to reveal genotypic elements most probably responsible for a certain phenotypic trait.
The genotype markers embody the gentotypic elements, where we need to find the most relevant ones
with regard to a phenotype trait. Therefore we need to create an association of phenotype traits and
markers. In the previous part of this section we revealed groups of genotypes showing similar charac-
teristics of biomass accumulation. The obtained clusters can be used to represent a phenotypic trait -
for example the cluster containing very high climbing biomass graph represent the trait of fast and well
growth. Thus the clusters can be used to divide the marker matrix into subspaces. This means that we
will have a part of the matrix corresponding to the well-growing genotypes, not so well-growing geno-
types and so forth.

Once obtained, the subdivided marker matrix use information theoretic analysis and clustering to
obtain the most relevant marker of a submatrix. For the evaluation of these results we need expert
judgement. Of course we can perform an intrinsic evaluation of the clusters, but an intrinsicly optimal
cluster is possibly not of interest for the phenotypic studies. Note that the initial marker matrix contains
50 000 columns, thus the resulting clusters may contain 10 000 columns or more, additionally com-
plicating the expert evaluation. Therefore, this part requires further effort and time for the adequate
visualisation and the evaluation of results, which goes beyond the scope.
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(a)

(b)

Figure 5.3: Dendrogram representation of HAC with Average Linkage (a) and Ward (b) on the ZB 2012 dataset. We can see

that Ward’s method manages to keep the clusters balanced, whereas the average linkage method is drawn to the

right and shows a bulk of time series, depicted in green, which will appear in one single cluster.
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6 Conclusion
The main asset of this work is its interdisciplinary nature. A cooperation between researchers of en-

tirely different fields is not always easy. Each domain has its own customs, an individual way to approach
problems and an appropriate set of tools. In the domain of phenotyping, a common practice and even a
basic procedure in order to make sense of one’s data is to apply pure Statistics and draw corresponding
conclusions. Therefore in domains where all proceedings are based on statistical analysis and results
of statistical models purely data driven data mining approaches might appear not sound and inappro-
priate. Therefore to make such a cooperation work, it requires a lot of patience and openness to new
approaches on both sides. This thesis is a result of such a cooperation and “makes proof” of the fact that
well-established techniques in one domain can be of great benefit even in distant fields.

Similar to the introduction of DTW to the data mining community by Berndt and Clifford [1994] which
caused it to become an integral part of this field, DTW appears to be also a great asset in the domain
of phenotyping. It shows good results as the similarity measure for phenomic time series in applica-
tions such as outlier detection and clustering. We observed that while DTW is able to deal with series
of different lengths, an approximate length adjustment improved the similarity performance. DTW was
originally designed to deal with acceleration and deceleration in time series but in our case the differ-
ence in time series lengths often result from the lack of measurements at the beginning or the end of an
experiment. Thus, as the classical DTW approach requires the alignment of the beginning and the end
of two series we obtained not necessarily meaningful similarity measures. This problem does not always
have to be solved by the cut off of some measurements but could also be approached via a relaxation of
DTW’s alignment criterion.

We cover the task of outlier detection in time series, essential for meaningful outcomes of further anal-
ysis. Note that we focus on complex contextual outliers, thus addressing aberrant genotype repetitions
instead of single points in time series. We show that with simple threshold and nearest-neighbour-based
approaches we achieve an F1 score of 0.93 for the classification of outliers and normal instances. For
now this is just an algorithm applied to a set of data. A very useful next step is based on engineering
work to expand this approach to an outlier detection system with a graphical user interface to facilitate
the configuration. Due to the lack of annotated data we evaluated the outlier detection approach only on
one dataset. Thus we do not know how well it generalises to other data. A key feature of such a platform
would be a slider to control the sensitivity of the outlier detection control by changing the thresholds,
enabling its adjustment to datasets of plants with different growing patterns.
A different approach to the task of outlier detection is to exploit the setup of the system usage. The
outliers detected by the system will be reviewed by an expert prior to their removal. The confirmation
or rejection of detected outliers can be used to train an online classifier. The classifier can be initially
trained on some labelled examples and fine tuned via user feedback during its usage. This might result
in a more precise adjustment to a dataset than just a change of threshold and enables self-improving of
the classifier over time.

Probably the most important part of this work is the grouping of similar growing patterns. To date, for
an analysis of best performing genotypes in a given environmental condition, it was necessary to verify
each repetition growing in this condition for every genotype. Based on the observed growing patterns,
the genotypes had to be manually sorted into appropriate performance groups. This proceeding can now
be automatised. We extract a genotype’s average performance based on its repetitions, and detect similar
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behaviour, present in the dataset using clustering. Four different hierarchical agglomerative clustering
methods were compared in order to find the best suited algorithm. We observed, that despite the high
density of the given dataset, Ward’s method manages best to keep the clusters balanced. A following
expert interview revealed as well, that the clusters obtained by Ward’s method are the most reasonable
and suit best for further analysis. Moreover, we noticed that the density-based approach DBSCAN has dif-
ficulties to obtain balanced clusters which led to its exclusion from following investigations. Therefore,
it is of interest if a density-based algorithm able to handle varying densities, such as OPTICS [Ankerst
et al., 1999], will yield any better results. Despite the good results of Ward’s method, we have to take
into account its high computational complexity which limits its usage to comparatively small datasets,
which has however not posed a problem in the scope of this work. Hence, a natural next step should
be the comparison of less computationally complex clustering algorithms such as Self-organizing maps
(SOM) [Kohonen, 1982].

Subspace clustering is another very promising subject of this thesis. Recall, that one of the goals of
phenotyping, is to study the genotype-phenotype interaction. For each previously obtained genotype
cluster, we clustered the corresponding genetic marker matrix with the goal to reveal the most relevant
marker groups responsible for a certain phenotypic behaviour. This seems to be a very promising track
to shed light on the interaction of genotypes and phenotypes. Due to the time frame of a thesis, the
presented approach could barely be touched upon and hence still requires an evaluation of the retrieved
marker clusters. Approaches considering this topic, may contain an information theoretic analysis of
the clusters to obtain the most relevant one, and the elaboration of an evaluation procedure to assure
the significance of our findings. An evaluation approach should especially consider knowledge from the
domain of plant genetics, such as common marker locations or marker families.

We have shown that DTW is a well-suited similarity measure for time series, that Hierarchical cluster-
ing can be applied on time series and that especially Ward’s method shows good performance on a dense
dataset. But this is not necessarily the main contribution of this thesis. This work highlights, that while
there are domains penetrated by techniques based on data mining, like the financial sector, elections,
genetics, there are still fields offering interesting challenges where the analysis of large amounts of data
can be of great benefit, but is still in its infancy.
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