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Zusammenfassung

In Information-Retrieval-Systemen (IR) drückt der Benutzer sein Informationsbedürfnis durch eine Such-
anfrage (engl. query) aus. Diese Anfrage wird dann mit einer Sammlung von Dokumenten abgeglichen,
um für den Benutzer relevante Informationen zu finden. Die Dokumente sind von dem IR-System vorver-
arbeitet worden. Sie sind für gewöhnlich sehr groß und repräsentieren Informationen, die von anderen
Menschen zum Ausdruck gebracht worden sind. Das IR-System gleicht diese beiden Repräsentationen
der Texte miteinander ab, die möglicherweise sehr verschieden formuliert sind. An dieser Stelle ist oft
die Vokabularlücke (engl. vocabulary gap) ein Problem, die daraus resultiert, dass die gleichen Konzep-
te auf verschiedene Art und Weise zum Ausdruck gebracht werden können. Das heißt, die Dokumente
können vom gleichen Thema wie die Suchanfrage handeln, werden aber aufgrund einer geringen lexi-
kalischen Überschneidung vom System nicht gefunden. Synonymie (einzelne Wörter haben die gleiche
oder ähnliche Bedeutung) und Polysemie (einzelne Wörter haben mehrere Bedeutungen) sind zwei wei-
tere Probleme dabei, herauszufinden, was der Benutzer meint. Um diese Probleme anzugehen, werden
in der vorliegenden Arbeit drei lexikalische Expansionsquellen angewandt, um diese lexikalische Lücke
durch Erweiterung der lexikalischen Repräsentationen zu überbrücken und dadurch das Suchergebnis
zu verbessern. Die Ergebnisse werden auf zwei Korpora evaluiert, um jegliche Änderung zu messen.
Die Quellen reichen von distributionellen Ressourcen für jede Wortart bis hin zu kontextuellen, die sich
auf eine beschränken. Die lexikalischen Expansionen (oder Ersetzungen) werden auf Seite der Anfrage
und auf Seite der Indexdokumente angewandt und unterschieden nach der Wortart (soweit möglich),
pro Wort und Satzkontext, nach verschiedenen Gewichtungen und der Anzahl an hinzugefügten Ex-
pansionen. Die Ergebnisse zeigen insgesamt nur kleine Verbesserungen, lassen aber vielversprechende
Möglichkeiten für künftige Forschung erkennen.

Abstract

In Information Retrieval (IR) systems, a user expresses an information need by a so called query. This
query is then matched against a collection of documents to retrieve information relevant to the user’s
request. The documents have been pre-processed by the system. They usually are very large and rep-
resent information expressed by many other people. The IR system matches both the representations,
expressed by possibly many different words and phrases. It is here, where the vocabulary gap often is
a problem, resulting from the fact that concepts have several ways to be expressed in terms. That is,
both the query and a document might be about the same issue, but due to a low lexical overlap are not
discovered by the IR system. Synonymy (single words having the same or similar meaning) and poly-
semy (single words having multiple meanings) are two more problems when identifying what the user
meant. To address these problems, in this thesis three lexical expansion resources were applied to bridge
that gap by enhancing each of those lexical representations and thereby to improve the system’s retrieval
performance. The results are evaluated on two corpora to assess any changes. The resources vary from
distributional all-words to contextual ones limited to a certain part-of-speech (POS). The lexical expan-
sions (or substitutions) provided are applied at the query and the index documents, distinguished by POS
(as far as possible), per term and sentence context, by different weights and the amount of expansion
terms added. The results show only small overall improvements, but reveal promising avenues for future
investigation.
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1 Introduction

Knowledge is of two kinds. We know a subject ourselves, or we know where we can

find information upon it.

(Samuel Johnson)

Looking for information on the world wide web today (be it news, about people or of encyclopedic
nature) is usually starts with navigating to a search engine. That is seen as a convenient way which
doesn’t require much manual effort, compared to browsing an encyclopedia for instance. The search
engine offers a small input field to the user in what several keywords or sentences can be entered. The
system then returns a list of results, which is presented to the user page by page. Additionally, the
results are expected to be ordered by importance as to the input. Of course, the results are based on the
terms the user has supplied in the first place. Entering different terms is supposed to result in different
answers from the system. The underlying search engine seems to know what the user is looking for, but
internally it compares the user’s terms with the information it “knows”. That is, it tries to compare the
user’s request representation (expressed by its query) with the representations of all the documents and
resources it has pre-processed. There are multiple ways this matching can be done by the system. But
all of them are representing the concepts (the user has in mind, the documents) in terms and words.
That is, in its simplest form they try to match the exact same words in both the representations. This is
a source of many problems. The reason is the nature of words itself.

First, a language may offer many closely related terms to express the same or similar issue (e.g.
buy and purchase, big and large). On the other hand, each word in turn may have multiple meanings
(polysemy, e.g. bank can either be a financial institution or the edge of a river). Thirdly, even if there
should be no complexity in verbally expressing an issue, a user might not have any experience in doing so.
In the following section, some mechanism (“models”) are introduced to perform that matching between
the query and the documents. Many of the models often have problems dealing with synonymy (words
having the same or similar meaning) and related terms. For example, one would expect a search for
the term aircraft also match the terms airplane and plane. This is called the vocabulary problem [Furnas
et al., 1987], also called lexical gap, and is caused by concepts having several ways to be expressed in
words. Additionally, words can have multiple meanings (ambiguity) and different words can have the
same meaning (synonymy, e.g. “tv” and “television”). Polysemy may cause erroneous retrieval results in
terms of irrelevant documents, and synonymy may in effect lead to a decrease of relevant documents.
Several approaches have been proposed to address this problem, including word sense disambiguation
(WSD), interactive query refinement or even the possibility of the user giving feedback on the search
for the system to re-calculate a better representation of what the user meant. But since the users tend
to avoid putting in extra work, the goal is to do this automatically, i.e. with as little user interaction
required as possible. That is why we want to explore the possibilities of what is called lexical expansion,
that is enhancing the textual basis on what to work with, in our case on the query and document side.
The idea of lexical expansion is to add extra terms to the original words that are considered to be related,
associated or even equivalent (synonymous). For example, consider the term meeting. Associated terms
might be hearing, session, conference, summit or workshop. The purpose of finding related terms is
to better capture the actual intent behind the given words. In the search domain (called Information

Retrieval in science), the expectation is to engage the vocabulary problem and therefore to cover more
results more accurately, since they may be phrased in distinct words. So, the overall goal from the
viewpoint of the user is to improve the retrieval in quantity (number) or quality (order). Still, to come
up with extra terms (expansions) some kind of resource is needed to tell which terms are related (and
how much). Usually, “handmade” lexical-semantic resources are employed for such a purpose. Such a
resource may group and connect terms and provide additional information (e.g. definitions or examples).

5



To address these problems, this thesis applies three complex lexical expansion resources that are com-
posed in very different ways. In particular, this includes resources from the statistical semantics domain.
The research question of this thesis is to examine the hypothesis, if lexical expansion can bridge the
lexical gap in Information Retrieval and measurably improve the retrieval performance. To achieve this,
experiments with and without lexical expansions are conducted and evaluated on two different data sets.
As pointed out, the search process roughly has to starting points, that is on the one hand the documents
to be searched against and second the user entered search string. Two problems arise from that. The
first is the collection of the documents being large, and the second the queries being short. According to
Hitwise1, the average query length in 2009 was 2.3 terms. [Taghavi et al., 2012] analysed about 40 mil-
lion queries in the period from June 2010 to February 2011, collected by web proxy logs and directed to
over 50 search engines. They make up a slight increase in average query term length, resulting in about
three terms. A study by Chitika Insights2 from January 2012 considers the most popular search engines
in the United States (Google, Bing, Yahoo, Ask, AOL) and constitutes an increase to 4-5 words per query
over the years before. With that, the query still is relatively short (e.g. compared to whole sentences).
Adding extra terms to a short query may increase the matching between query and documents, implicitly
disambiguate the terms within the query or move the search towards the most popular or representative
meaning of the query. With the query becoming slightly more verbose, there will be less confusion about
pinpointing different senses of a term within the query and contextual query expansion methods may
become more accurate.

1.1 Information Retrieval

Information retrieval (IR) is a computer science research area with highly practical applications. It
is concerned with the storage, search and retrieval of information. A widely recognized definition is
provided by [Manning et al., 2008, p. 1]:

Information retrieval (IR) is finding material (usually documents) of an unstructured nature

(usually text) that satisfies an information need from within large collections (usually stored on

computers).

Usually dealing with digitally available texts makes it a sub area in the wide field of natural language
processing (NLP). As the definition points out, a user with an information need serves as the initiation of
the IR process. The user information need in textual IR is expressed in a so called query. The documents
are computationally pre-processed and stored in efficient data structures. Given the query on the one
hand and the documents on the other, the IR system has to perform a matching between them and
return a list of ranked documents to the user. Figure 1.1 gives overview over this process [Broder,
2002], incorporating the basic concepts in IR. Optionally, the user can give some sort of feedback to
the retrieval results. This could either include global methods such as query reformulation or spelling
correction, or local methods such as relevance feedback. That is, after the system has returned an initial
set of retrieval results, the user marks some returned documents as relevant or non-relevant. Based on
the user feedback, the system then computes a better representation of the user’s information need.

The returned documents may either be relevant to the query or they may be non-relevant. The goal of
an IR system is to retrieve all the documents relevant to a user’s query and keeping the retrieved non-
relevant ones to a minimum [Baeza-Yates and Ribeiro-Neto, 1999]. Evaluation and assessing relevance
will be explored in Chapter 4.3. The matching between the documents representation and the query
representation is done by an IR model. In the following, some popular models and paradigms are
described exemplarily.

1 http://www.hitwise.com/us/press-center/press/releases/2009/google-searches-oct-09/
2 http://chitika.com/insights/2011/ask-com-users-are-the-most-verbose-internet-searchers
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Figure 1.1: The classic model for IR (after [Broder, 2002, p. 2]).

1.1.1 Vector Space Model

One of the oldest and most well known methods for text similarity is the Vector Space Model (VSM)
[Salton et al., 1975]. In the VSM documents are represented as vectors in a high-dimensional space. In
that space each vector corresponds to a separate term and each vector entry is non-zero with the term
occurring in the document. These entries are called term weights and there are several ways to compute
them. One of the most known is the tf-idf term weighting scheme which is even widely used outside of
the vector space model. The tf-idf weighting takes into account the term frequency (tf) and the inverse
document frequency (idf) as explained in the following. The term frequency is defined as in Equation
1.1 and denotes the number of times a certain term t appears in a certain document d. To prevent a bias
towards longer documents, the term count is usually normalized.

t fd(t) = term frequency of term t in document d (1.1)

In addition, the document frequency counts the number of documents the term t appears in and is
defined as shown in 1.2.

d f (t) = document frequency of the term t in the entire corpus (1.2)

The inverse document frequency (idf) on the other hand measures the general importance of the
term within the document collection. It is inversed, because terms occurring in many documents (e.g.
determiners) tend not to be as meaningful as rare terms are [Luhn, 1958]. It is computed as show in
Equation 1.3.

id f (t j) = log(
N

d f (t j)
) (1.3)

Since it is computed over the entire collection of documents (its size is denoted as N), it can be
regarded as a global weighting of a term, while the term frequency by definition is a local (i.e., document
based) weighting factor. Usually, this value is logarithmized to deal with small values. Putting the two
parts together, we get the combined tf-idf weighting as shown in Equation 1.4.

wT F-I DF(t j ,di)
= t fd i(t) · log(

N

d f (t j)
) (1.4)

So, overall tf-idf defines a vector representation for all documents with a document di being repre-
sented as a vector ~di as exemplified in formulation 1.5.

~di = (wT F-I DF(t1,di)
, wT F-I DF(t2,di)

, wT F-I DF(t3,di)
, ...) (1.5)
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Obviously, the VSM has some drawbacks. Since it relies on lexical overlapping, the terms must pre-
cisely match the documents. This is problematic especially for short texts. Furthermore, the word order
is lost in the representation and it assumes that the terms are statistically independent. This is exactly
where other methods are applied, using lexical-semantic resources.

1.1.2 BM25

Due to the vagueness and ambiguity of language within the documents and the query, there is no guar-
antee that a retrieval document is relevant to a query. Probabilistic approaches now model relevance
probabilities. There are several probabilistic retrieval models in information retrieval. One of the more
successful systems was developed for the Okapi system by the London City University [Robertson et al.,
1996]. They tried different weighting models prefixed with BM (short for Best-match weighting function

implemented in Okapi). The BM25 setting turned out to be best and now represents state-of-the-art re-
trieval functions used in document retrieval, such as in web search engines. BM25 is the name of the
ranking function, but it is usually referred to as Okapi BM25. Since BM25 and one of its variations are
used throughout this thesis, we will now explain it. Following the notations of Section 1.1.1, BM25 uses
the length l of a document d, as defined as follows.

l(d) = number of words in document d (1.6)

Additionally, lav g is the average length over all documents of the collection. Two more parameters
are k1 and b with k1 ≥ 0 and b ∈ [0,1]. The entire retrieval function is all about weighting the terms
and can be seen in Equation 1.7 [Gottron, 2010]. The sum iterates over all terms appearing in both the
document and the query.

ρBM25(d,q) =
∑

i∈T(q)∩T(d)

log(
N

d f (t j)
) ·

(k1+ 1) · t fd(t i)

k1 ·

�

(1− b) + b · (
l(d)

lav g
)

�

+ t fd(t i)

(1.7)

The first part is the global weight as introduced in the vector space model (see Definition 1.3). The
second factor combines the term frequencies with the document lengths, with k1 controlling the impact
of the term frequencies. Setting k1 = 0 results in them not having any influence at all. The parameter
b however is the normalization factor of the weighting in relation to the document length. According
to [Manning et al., 2008, p. 233], experimental best-practice results were setting k1 between 1.2 and 2,
and b = 0.75.

1.1.3 Divergence From Randomness

The Divergence from Randomness (DFR) paradigm [Amati, 2003] is based on the hypothesis that the
level of treatment of the words considered to be informative is witnessed by a small set of documents (the
“elite set”), in which these words occur much more often than in the rest of the documents. Other terms
not possessing an elite set are assumed to follow a random frequency distribution. The DFR models are
based on the idea, that the more the frequency of a term within a document diverges from its frequency
within the document collection, the more informative the word t is in the document d. As formalized
in Equation 1.8, the weight of a term t is inversely proportional to the probability of its term frequency
within the document d obtained by a model of randomness M .

weight(t |d) ∝ −log P robM(t ∈ d|Collect ion) (1.8)

8



Whereat ProbM is a basic IR randomness model, which is the first out of three steps of obtaining
a DRF model: Selecting a basic randomness model (e.g. BM25), applying the first normalization and
normalizing the term frequencies. The first normalization simulates a risk component in the DFR models.
If a rare term (in the collection) has a high frequency in a document, then it is almost certain to be
informative for the content described by the document. That would be reflected by formula 1.8 in such
in case. In return, such a minimal risk may also reflect in a minimal information gain. That is why
a smoothing factor Pr isk is applied to the weight. The amount of information gained with the term is
shown in 1.9.

gain(t |d) = Pr isk · (−log P robM(t ∈ d|Collect ion)) (1.9)

The smaller the probability Pr isk, the more frequent the term t is in the elite set of its documents, that
is, the more the terms frequency diverges from randomness.

Pr isk = 1 − Prob(t ∈ d|d ∈ Eli te set) (1.10)

For computing the information gain of a term within a document, the search engine framework used in
this thesis (see Chapter 3) uses two models, the Laplace succession model and a binomial model. Thirdly,
the term frequencies are normalized. Before using the generating formula (such as in 1.9), the document
length dl is normalized to a standard length sl and the term frequencies t f are also recomputed with
regard to the standard document length. The normalized term frequencies result as shown in formula
1.11.

t f n = t f · log(1 +
sl

dl
) (1.11)

Since version 2, Terrier also provides a more flexible formula called Normalisation2, enabling a hyper-
parameter factor value in front of the fraction. Overall, Terrier includes many DFR models, among them
Bernoulli-Einstein, Inverse Term Frequency and a Poisson model.

1.2 Natural Language Processing and Statistical Semantics

Since this work is an application of the computer science research field of natural language processing

(NLP) with parts of the statistical semantics domain, both areas are introduced in this section.

1.2.1 Natural Language Processing

Natural (human) language is a result of the co-evolution between the innate facility for language that
is possessed by the human intellect and of the development of the language itself. Compared to vision
and speech however, which merely requires the appropriate physical configuration, reading and writing
language is a rather unnatural process that has to be learned by any human being. In contrast, the idea
behind Natural Language Processing (NLP) is the ability of computers to process and understand human
language [Jurafsky and Martin, 2009]. Since the research about language is called linguistics and NLP
presupposes the use of computers, it is also called computer linguistics, indicating the employment of
linguistic methods and approaches. Although, NLP is a broader term, including other related computer
science fields such as artificial intelligence and machine learning. There are many ways of language
being available (speech or written, analogue or digital), but NLP usually focuses on processing digitally
available texts. To process language or even derive meaning from it, many intermediate steps are nec-
essary. Starting from “low-level” tasks like sentence boundary detection (to distinguish sentences) and
tokenization (splitting the sentence strings into single words) to lemmatization (identifying the lemma
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form of a token), part-of-speech assignment and shallow parsing to identify phrases from the part-of-
speech tagged tokens [Nadkarni et al., 2011]. Higher-level tasks build on the low-level ones and go on
with spelling and grammatical error identification, named entity recognition (NER), word sense disam-
biguation (WSD) or relation extraction. On top of these building blocks, more complex NLP applications
can be built. Areas of NLP application include, but are not limited to:

• automatic summarization

• automated essay scoring

• machine translation (MT)

• information retrieval (IR)

• computer-assisted language learning

• sentiment analysis

A software framework for natural language processing and chaining NLP tasks is depicted in Section
3.1. A visual example is given, too. After [Jurafsky and Martin, 2009], the following linguistic analysis
levels can be distinguished in language understanding. The levels are given in order of implementation
and build upon the previous one.

1. Phonetics and phonology

Phonetics deals with the physical production, transmission and perception of speech sounds, phonol-
ogy describes the way sounds encode meaning within or across languages [Carr, 1999].

2. Segmentation

Segmentation is concerned with segmenting input streams (given as strings) in sentences, words
and tokens (tokenization). Problems of tokenization are punctuation ambiguities and languages
without spaces between words (e.g. Chinese).

3. Morphology

In morphology, morphemes are identified. A morpheme is the smallest meaning-bearing unit in a
language, e.g. unbreakable is composed of three morphemes: un- (meaning “not”), -break- (the
root), and -able (signifying “can be done”).

4. Syntax

Syntax is “the study of the regularities and constraints of word order and phrase structure” [Man-
ning and Schütze, 1999, p. 99], that is how the words are arranged together to form sentences.
A description of the valid structures in a language is called a grammar, by which sentences can be
grammatical or ungrammatical.

5. Semantics

Semantics is the study of the meaning of words, phrases or sentences, that is their denotation.
Ambiguity (a word having multiple meanings) is a common problem in semantics.

6. Pragmatics and discourse

Pragmatics deals with the purpose (intention) of an utterance, while discourse considers coherent
groups of sentences.

However, the approaches to NLP can be quite different. One way of categorizing NLP by the intensity
of knowledge used (e.g. in terms of lexical-semantic resources) is given as follows (based on [Biemann,
2012a, p. 7]).

NLP

knowledge-intensive

rule-based statistics

knowledge-free

structure discovery
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Traditional NLP incorporates explicit knowledge (how to process language) and implicit knowledge
(how to solve a task). Sources of knowledge can be lexical-semantic resources, machine-readable dic-
tionaries, encyclopedias, Wikis, (hand-written) rules or annotations. Rule-based NLP tries to implement
and apply linguistic theories by computational means. Those rules are derived by manual human work,
not by data analysis. However, the vastly large size of available natural language gave rise to the field
of statistical NLP, using statistics and machine learning approaches. The structure discovery paradigm
works on “raw” texts and completely knowledge-free. While statistical and rule-based NLP may work su-
pervised (annotated training examples are used) or not, structure discovery always works unsupervised.
Statistical NLP can include any NLP task, such as syntactic parsing, but deriving meaning from text is
associated with statistical semantics. In practice however, both approaches often are combined to achieve
better results.

1.2.2 Statistical semantics

Statistical semantics as a sub area of statistical NLP is the “statistical study of meanings of words and
their frequency and order of recurrence” [Delavenay, 1960, p. 133]. The term was first mentioned
by [Weaver, 1955], arguing that WSD for MT should be based on co-occurrence frequencies of the target
words context words. [Firth, 1957] supports the underlying assumption that “a word is characterized by
the company it keeps”. An early contribution to the field was done by [Furnas et al., 1983], in which
he had people describing objects and (due to low correlation between them) for each word a system to
make one or more guesses as to what the user meant. One statistical semantics application is measuring
the similarity in word meanings, as applied in the distributional resource in Chapter 1.3.1. In particular,
this is called distributional semantics and is illustrated there.

1.3 Lexical Expansion

In this chapter, the three lexical expansion resources are introduced. It is explained how they are de-
signed and how they work to provide lexical expansions. In this section, only the theoretical aspects will
be explained.

1.3.1 Distributional Thesaurus

A thesaurus is a scientific resource that lists words grouped together according to their similarity of
meaning. Usually, thesauri are put together manually by human knowledge. Since this is costly and time-
consuming, it leads to extensive thesauri not being available for specific domains or small languages.
[Lin, 1998] proposed a mechanism to build a thesaurus automatically. It is called distributional due to
the fact that the words it contains have a similar distribution over contexts. The distributional hypothesis

states that two words are similar if they appear in similar contexts [Harris, 1954]. This allows computing
a distributional thesaurus automatically. After [Lin, 1998], one context for words that can be extracted
within a sentence are so called dependency triples, that is the syntactic relationships within the sentence.
For example in the sentence “I have a brown dog.”, triples are (have subj I), (I subj-of have), (dog obj-of

have), and so on. The similarities are assumed to be the more correct, the more contexts are taken
into account. When applying large corpora, it is a natural step to scale the computation to a parallel
architecture (i.e., to make use of distributed computing). That was done by [Biemann and Riedl, 2013]
and me. We used Apache Hadoop as a software framework for distributed applications, since it supports
data-intensive computing on large clusters and implements Google’s MapReduce [Lin and Dyer, 2010].
MapReduce is a programming paradigm for efficient distributed computing, operating on< ke y, v alue >

pairs exclusively and working on the map (applying a given function to each element of a list) and reduce

(combining operation) functions known from functional programming languages. Figure 1.2 illustrates
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Figure 1.2:MapReduce word count example

this process with an example of counting the words in two sentences. While the mappers output a
one (for one sighting) for each word, they are summed up by word in the reducing step. To build
a Distributional Thesaurus with a series of MapReduce steps, [Biemann and Riedl, 2013] explain the
following steps.

Context extraction

The first important stage is to extract a context (in which words co-occur) out of the raw text. We’ve
implemented different versions of this step. The most successful one is done by using the Stanford
Parser [Marneffe et al., 2006] to regard the grammatical relations of the words within the sentence.
Remember that we try to apply the distributional hypothesis by this step. The dependency parser from
the Stanford NLP group can look into all relations of the words within the sentence and indicate the
relation name, the governor and the dependent. For example in the string ”The cat”, ”the” is the governor,
”cat” the dependent and ”det” (for determiner) is the relation name. We output the dependent as the
word and the governor, together with the relation, as the feature of the word. The final result of the first
steps then looks like depicted in extracts in listing 1.1.

Listing 1.1: DT: context extraction

politics the#det 1276

politics american#amod 379

politics playing#-dobj 144

politics national#amod 143

politics local#amod 141

politics party#nn 135

politics his#poss 124

That is, that the word ”politics” has ”the” as determiner or ”national” as adjectival modifier as features3.
Additionally, the occurrences of the word feature pairs are counted.

Frequency and significance

By virtue of optimizing and pruning the data, we like to indicate a significance to each of those word
feature pairs. Therefore, in preparation to this step the words and the features by itself are counted. We
then continue to assign a significance value to each word-feature pair. This is accomplished according
to the Lexicographer’s Mutual Information (LMI) measure as in [Bordag, 2007, p. 77]. For each pair,
the frequency of the word, the feature and the pair itself is included. The output of this step looks like
depicted in extracts in listing 1.2.

3 A complete list of the Stanford Parser relation names can be found here: http://nlp.stanford.edu/software/
dependencies_manual.pdf
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Listing 1.2: DT: frequency and significance

politics american#amod 1556.9131

politics involved#-prep_in 655.3890

politics national#amod 440.7464

politics british#amod 398.1417

politics local#amod 374.0130

politics interested#-prep_in 294.8649

politics business#conj_and 204.2767

This is followed by a pruning step with experimentally obtained parameters. The format doesn’t
change, the data is just reduced.

Aggregate per feature

To come closer to the similarity of two words, we first want to cumulate all the words that share the
same feature(s). To do so, this MapReduce step aggregates all the words that have a certain feature. The
result then looks like depicted in extracts in listing 1.3.

Listing 1.3: DT: frequency and significance

caring#amod volunteers everyone person ...

caring#appos superdome

caring#ccomp feels

caring#conj_and feeding trustworthiness ...

caring#dep person

caring#dobj stopped

caring#pcomp between

Read it this way: ”caring” occurs as an adjectival modifier for ”volunteers”, ”person” etc. (Note that
the list of shared features can become pretty long. That’s why some very simple examples are chosen
here.) They all share a feature (in this case ”caring#amod”). This is a first clue for similarity: If two
words share a feature, they have something in common.

Similarity

Finally, the last step of the MapReduce chain is calculating the similarity. For every pair of two words
we want to assign a weighting (representing their similarity). The first simple approach is to ask: How
many features do two words have in common? The more they do, the more similar are they.

To answer this question, each list is processed quadratically whereby a one (for one sighting) is emit-
ted. We implemented and tested multiple possibilities, including the word list length and logarithmic
normalization. But emitting the simple one (in combination with parameters from other steps) turned
out to achieve the best results. (Additionally, the list had to be cut to avoid data explosion to a point
beyond what even parallel architectures can handle.) So here’s what the final similarity lists look like
depicted in extracts in listing 1.4.

Listing 1.4: DT: similarity count

politics politics 590.0

politics government 36.0

politics journalism 36.0

politics affairs 35.0

politics economics 33.0

politics politicians 32.0

politics philosophy 31.0
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By reason of comparison the arrangement with itself is kept in the pipeline. The number declaring the
similarity is exactly the number of features the words share.

The distributional thesaurus contains such lists of similar words for each word enclosed in it.

Variants

Since each step is replaceable other contexts can be applied (provided that they comply with the output
format). The first context we were experimenting with is the immediate vicinity of words. That is, that
both the left and right neighbour of a word is a feature. This is a context (and hence a DT variant) I used
in the experiments. It is named RL, short for right-left context.

For the dependency parser context there are variants of the distributional thesaurus incorporating the
part-of-speech (POS) tag for each word. Furthermore there are variants carrying along the features the
words have in common. This allows answering the question, why they are similar.

1.3.2 TWSI Sense Substituter

As presented by [Biemann, 2012b], the Turk Bootstrap Word Sense Inventory (TWSI) is a lexical resource
created by a crowdsourcing process. Crowdsourcing is a portmanteau word4 of crowd and outsourcing.
For TWSI, Amazon Mechanical Turk (MTurk) was used. The workers were given a sentence at which
a target word is marked. Their first task was to come up with substitutions for the given word in its
context. Please find an example in the following listing (the target word is capital).

The company manages over 10 million dollars in capital assets.

The development of TWSI was driven by substitutability and cites lexical substitution tasks and seman-
tic search as example application scenarios. It supplies lexical substitutions for a given target word in
its sentence-wide context. Lexical substitutions are provided for 1012 highly frequent English common
nouns in Wikipedia. The 1012 nouns are grouped into 2443 senses with one target having 2,41 senses
on average. Here is an example output for the sentence above (containing a polysemous target term):

The company manages over 10 million dollars in <target="capital"
lemma="capital" sense="capital@@3" confidence="0.98863536" substitu-
tions="[money,27][asset,14][fund,14][investment,14][cash,13] [financial as-
set,10][finance,8][stock,8][wealth,6][property,5]"> assets.

The target retrieved substitutions with respect to its sense, the numbers denote how many people
supplied the substitution for the given target word in that context. But in addition to being a lexical
resource for substitution, TWSI at the same time built a sense inventory. The very fine-grained sense
structures of resources like WordNet are considered a hampering issue in practice, that is the reason
for a rebuild of a sense inventory from scratch. So, TWSI draws those sense distinctions according to
common substitutions. That is meant by driven by substitutability: The sense distinctions are formed by
the target words substitutions overlap. If two usages have the same or very similar substitution lists,
they probably belong to the same sense. In the previous listing, the target term capital was used in sense
number three (capital@@3). In the resulting sense inventory of TWSI, a sense is characterized by a

4 That is a new word combination artificially created out of two words, e.g. brunch (breakfast and lunch).
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gloss5 and a list of substitutions. With an average of 2,41 senses per target term and a declining sense
distribution, the majority of the targets are used in one or two senses. The target capital is one of the few
terms with actually five senses (e.g. as in capital letters, capital of Chedi, capital punishment and social

capital). The full five senses can be viewed in the following listing.

capital@@1: The city called Suktimati is mentioned as the capital of Chedi . (capi-
tal++34554464)
capital@@2: This is because they build social capital , trust and shared values , which are trans-

ferred into the political sphere and help to hold society together , facilitating an understanding of

the interconnectedness of society and interests within it . (capital++50057722)
capital@@3: Member Economic Participation : All members democratically control the capital of

their cooperative . (capital++1165690)
capital@@4: S & P and other rating agencies have slightly different systems using capital letters

and + - qualifiers . (capital++15646388)
capital@@5: He has attracted international attention through a disturbing video music theatre

work , Those Who Speak In A Faint Voice , a project about capital punishment , and later through

the multimedia music theatre projects CREDO and WINNERS . (capital++19374025)

To make that clear, what [Biemann, 2012b] describe is twofold:

Lexical Resource

The Turk Bootstrap Word Sense Inventory was presented as a large electronic resource containing
a collection of sense annotations.

Lexical Substitution System

Furthermore, a lexical substitution system trained on that resource is described. It uses a supervised
word sense disambiguation techniques to provide lexical substitutions in context.

Applying the substitution system, the following steps are performed:

1. The text is split into tokens.

2. Substitutions are produced for all tokens (of a predefined list).

a) For monosemous target words, the list of substitutions is provided.

b) For polysemous words, the feature representation is computed and classified.

i. The classifier returns a sense label classification and a confidence score.

ii. Substitutions are retrieved for that sense label.

1.3.3 Delex Substituter

As described by [Szarvas et al., 2013], the Delex Substituter is a supervised all-words lexical substitution
system using delexicalized (i.e., non-lexical) features. Instead of using a separate classifier per word, a
global model is trained on delexicalized features. Features from lexical resources (WordNet) are used as
well as features from large corpora (e.g. n-gram counts). Following previous research results, they use

5 In the WordNet notation, glosses are brief definitions of a sense and/or example sentences. In TWSI, it is just an example
sentence.
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WordNet as a source for synonyms (as candidate substitutions) and n-gram frequencies for ranking as
their baseline.

First, they train their model on two freely available data sets. The first is the LexSub data set, which
consists of 2002 sentences with native speaker annotations of paraphrases or substitutions for the word in
context. The paraphrases are assigned the frequency of how many suggested the substitute. The second
data set is the larger TWSI, which contains 24.647 sentences with substitutions for nouns collected
through a crowdsourcing process.

In the paper they focus on producing better ranking models by using more advanced features. As
possible paraphrases, candidate substitutions are extracted from WordNet. (WordNet is organized in
synsets, i.e. synonym sets, a group of synonymous words or collocations like car pool. So if you look up
a word in WordNet, you find it in synsets.) Therefore, all the synonyms from all the word’s synsets are
taken as candidate synonyms, as well as the ones from the synsets being in a similar to, entailment or
also see relation to one of these synsets. Then they used a Maximum Entropy (MaxEnt) classifier model
from the Mallet package and trained a binary classifier to judge the validity of a given substitution in
a particular context. In a lexical substitution task, generation and ranking of substitutions are the two
prominent tasks. Here is the overview of that structure in the Delex system:

Generation

The generation of substitution candidates is not provided, instead synonyms are extracted from
WordNet as candidates for the substitution task.

Ranking

The goal is to construct better ranking methods based on supervised machine learning and an
advanced selection of features (delexcicalized features).

The ranking is based on various features, which are described as follows.

Lexical Resource Features

As a source for lexical resource features, WordNet 3.0 is used as well. In particular, it is used
how many senses the target word and all the substitutions have. And since the sense numbers are
ordered by corpus frequency, it is informative from which sense number of the target word the
substitution candidate came from.

Corpus-based Features

Features from several steps of the Distributional Thesaurus’ (DT) creation process (cf. Section
1.3.1) are used. For the DT, the source sentences are parsed with the Stanford Parser to extract
features6 for words. From the syntactic dependencies within the sentence a dependency triple
(w1, r, w2) is formed denoting the relation r between the two words w1 and w2. For characterizing
w1, (r, w2) serves as a feature and (w1, r) for w2 respectively. After a significance and pruning step
to reduce the data, only the 1000 most salient features per word are kept. From that intermediate
result, the first ML feature is extracted: The percentage of the shared salient features among the top
k entries for various k. In addition, a measure is applied on the substitutions (from the substitution
candidates) features lists (from the DT) to determine to what extent the context (as elements from
those features list) characterizes the substitution. Similarly to the features overlap, the percentage
of shared words among the top k similar words for various k is compared. The more similar words
the target word and the substitution candidate share (especially for lower k), the more they might
be synonymous. Lastly, the Boolean feature is applied whether the substitution candidate is in the
target words top 100 similar words list or not.

6 In this sense, feature is not used as a machine learning (ML) feature, but rather in the sense of a property, an attribute or
a characteristic.
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Local n-gram Features

To assess the syntagmatic coherence of the substitutions in context, n-gram frequencies7 are used
in the best Semeval 2007 system. [Szarvas et al., 2013] use it as their baseline as well and use
the same n-grams a features in their supervised model. They use 1-5-gram frequencies in a sliding
window around the target word, once normalized with regard to the target word and once to the
substitution candidates set. Additionally, the 3-5-gram frequencies are used of how often the target
and a candidate are part of a comma-separated list or conjunctive phrase with and or or.

Shallow Syntactic Features

For the model to learn POS-specific patterns, part-of-speech information is also used (from the
TreeTagger). Specifically, 1-3-grams of the main POS categories are used in a window around
the target word. For the LexSub data set containing targets from all major part-of-speech, that is
particularly useful.

As an example of the delexicalized features, the following sentence is illustrated (with the target word
underlined):

He was bright and independent and proud.

Using WordNet as the source for substitutions candidates results in 75 potential paraphrases (11 from
the synsets of bright and 64 from related synsets). The human annotators listed intelligent and clever

as suitable substitutions, from which just one (intelligent) is found in the WordNet candidate set (i.e.,
clever was not found in WordNet). The remaining candidate intelligent was characterized by 178 active
features in that context, which are composed of the following items:

• 112 features based on n-gram features (different n, variations and normalizations)

• 48 active distributional features (different POS and normalizations)

• 12 shallow syntactic features (contextual POS patterns)

• 6 resource based features (number of senses of target and candidates)

The Delex systems received its best results on the LexSub data set outperforming the baseline signif-
icantly. In a feature exploration done in their paper, all their features contribution is complementary.
Still, leaving out the n-gram features results in the biggest negative effect.

7 The n-grams are extracted from the Google Web1T corpus, which contains up to 5-grams collected from one trillion
sentences.
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2 Related work

There has been much work on word sense disambiguation systems in IR trying to disambiguate a terms
sense before expanding. That’s why we want to divide the related work into three parts. The first part
covers the contribution of Word Sense Disambiguation (WSD) to IR. The second one is about query
expansion, which is one fragment of the more general concept of lexical expansion. That is what we will
be looking at in the third section. The last section subsumes all other related work not fitting into any
of the previous categories. Alongside, the related work will illustrate further concepts associated with IR
systems.

2.1 Word Sense Disambiguation

’When I use a word,’ Humpty Dumpty said, in rather a scornful tone, ’it means just

what I choose it to mean — neither more nor less.’

(Through the Looking-Glass, Lewis Carroll)

Word Sense Disambiguation (WSD) is the task of computationally determining the correct meaning
(represented and distinguished by a particular sense) of a word in its context, see [Navigli, 2009] for a
survey. If a computer processes natural language, ambiguity becomes a problems. WSD is a well-known
approach to the lexical mismatch problem is IR [Krovetz and Croft, 1992]. There is much related work
for that, but conflicting conclusions about the contribution of WSD system to Information Retrieval per-
formance. First of all, [Sanderson, 1994] points out the belief that if all the ambiguous words used in IR
texts can be disambiguated correctly, IR performance will increase in the same way. The completely auto-
matic technique of pseudo-words was used to introduce sense ambiguity into and evaluate on a collection
and to control its degree of quality. Pseudo-words (loosely based on [Yarowsky, 1993]) are artificial terms
created by the combination of two words (e.g. banana and kalashnikov become banana/kalashnikov.)
Since knowing the correct sense at each occurrence, evaluation becomes trivial. They reason that word
sense ambiguity only is problematic to a probabilistic IR system when retrieving from very short queries.
As they go on, they conclude that the disambiguation system has to have a high degree of accuracy
to be of any use to an IR system. [Sanderson, 2000] goes on to outline the previous research in word
sense disambiguation and presents attempts explicitly using disambiguation in IR. Lastly, a review of the
efforts in information retrieval without identifying senses is given. First, the overview of disambiguation
research is divided into two basic classes on which disambiguation can be based on: Manually created
rules and evidence from large corpora. Manually generated rules can either be general context rules (dis-
ambiguate a sense in a certain words context), template rules (word appears in a specific location), using
the grammatical category (e.g. the train or to train) or having “word experts” (which are programs) for
each ambiguous word. All the approaches however require tremendous effort, causing [Kelly and Stone,
1975] to state that “... such a strategy cannot succeed on a broad scale.“ Using existing corpora on the
other hand include textual definitions of a dictionary, whereas the sense definitions are regarded as a
small collection of documents and the ambiguous words as queries to perform a ranked retrieval on
co-occurring words or words overlap. Further applications include extending the dictionary definitions
with commonly co-occurring words or disambiguating the whole sentence simultaneously. Another ap-
proach is to manually part-of-speech tag a corpus and train a statistical classifier to learn disambiguation
features. However, the machine learning method did improve much against the already low baseline
(always select the most common sense). Whereas those sense were taken from WordNet, a number of
researchers used thesauri (e.g. Roget’s thesaurus) in disambiguation research. Based on the semantic
categories provided by those resources, they attempted to resolve an ambiguous word into one of those
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categories based on a set of clue words. Although the limited set of senses resulted in generally coarser
senses, a high accuracy in a stand-alone WSD tasks could be achieved, but did not greatly improve IR
performance. [Sanderson, 2000] summarizes a relatively small impact of ambiguity on retrieval effec-
tiveness and terms the skewed distribution of senses of many words along with word collocation effects
to account for that. Furthermore, all attempts at automatic disambiguation have failed to improve IR
effectiveness.

The practical part of this thesis is motivated by the experiments of [Wolf et al., 2010]. First, they
tried to increase the precision of WSD by combining the annotations of two WSD systems. Second, they
intended to combine the widely used DFR_BM25 probabilistic IR model with a monolingual translation-
based model (trained on different lexical-semantic resources). Although their systems with and without
word senses performed best in the monolingual RobustWSD track at CLEF 2009, not any improvements
of utilizing the word sense annotations could be observed. Yet, they were successful at the second goal
by showing that the combination approach always achieves better performance than the stand-alone
models. [Zhong and Ng, 2012] on the other hand experimentally demonstrated significant improvements
of WSD to IR. They could show a performance improvement of a supervised WSD method compared to
two WSD baseline systems. Their proposed method annotates senses to terms in short queries. Therefore,
a method for estimating the distribution of senses for short queries is proposed. Together with the senses
predicted for words in documents, the senses and synonym relations are incorporated into the language
modeling approach to IR. Evaluated on four TREC query collections, their utilization of the supervised
WSD tagged word senses led to significant improvements over a state-of-the-art IR system. Lastly, as a
summarization of their related work they also point out that errors in WSD (erroneous disambiguations)
can easily neutralize its positive effects. This coincides with the observations gained by [Sanderson,
1994, p. 149] and [Sanderson, 2000, p. 11].

[Na and Ng, 2011] also consider word disambiguity and the lexical gap as critical problems in infor-
mation retrieval. Most work so far dealt with those problems by monolingual approaches, that is enriching
and disambiguating the queries and documents in the original source language. The authors propose a
novel approach in that matter by enriching the documents by a translation representation of the docu-
ment. Each original document is automatically translated into an auxiliary language using a simplified
form of machine translation (MT). The translated document then serves as an enhanced representation
of the original bag of words. By connecting the original and translated words in a many-to-many relation,
the ambiguity problem is supposed to be addressed during the process of selecting the correct transla-
tion in context. Additionally, by using the auxiliary language the word mismatch problem (of the source
language) is extenuated by mapping to the translated words. Instead of full-fledged MT, monotonic

translation is applied, that is the word order of the source language does not change after translation.
One part of the simplified translation method is the estimation of the expected term frequencies for words
of the translated documents, taking the average term frequency over all possible translated documents.
After producing the multilingual representations, multiple evidences of them are combined and the rele-
vance score of a document is calculated. On standard TREC collections, the approach showed significant
improvements by using English-to-Chinese translations over baseline monolingual retrieval methods.

2.2 Query expansion

The idea behind query expansion is the fact that the user of an information retrieval system has to express
his information need into a textual representation of an actual query. Doing so, a great deal of informa-
tion could be lost during that translation. By enhancing the query terms entered, it is aimed to address
the underlying information need more accurately. There has been lots of work on query expansion in the
last years. As [Carpineto and Romano, 2012] give an overview over automatic query expansion (AQE),
applying various data sources, different principles and techniques. They also emphasize the importance
of AQE for search effectiveness, followed by a design and implementation analysis of AQE components,
concluding by a comparison of state-of-the-art and reasoning about future work. However, giving of
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review of recent techniques of AQE was not the only objective of their work, but also to assess the per-
formance limitations of those techniques. For though AQE is seen as an extremely promising approach,
achieving very positive experimental findings in laboratory settings, it is not yet employed in operational
Web IR systems such as search engines. The reasons for that are the fast response times search engines
are required to provide, the technique’s instability and the emphasis of AQE to improve recall, which is
less important to the users as they only look at the first page of results. They authors first point out,
that with the query being expanded there is more chance for relevant documents not containing the
original terms. That results in an obvious increase in recall, which is important for many professional
applications (legal, medical, scientific). But improper expansion could also cause a topic drift, causing
a loss of precision. The suggested taxonomy for AQE divides all the approaches into five main groups:
linguistic methods, corpus-specific statistical approaches, query-specific statistical approaches, search log
analysis and Web data. Linguistic analysis methods aim at providing additional linguistic information to
the original query. That can either be by lexical or semantic word relationships (based on knowledge
representation sources) or ontology browsing. But also a syntactic analysis between the query terms is
an approach for linguistic information, e.g. learning from the relation paths induced by a parse tree.
Corpus-specific global techniques are based on frequencies in the collection, two examples are concept
terms and term clustering. Whereas query-specific local techniques try to take advantage of the local
context provided by the query. Common methods are the analysis of feature distribution difference and
model-based AQE. The idea behind analysing search logs on the other hand is to mine query associations
already made by the user (i.e., extracting associated terms from past queries). In addition to those im-
plicit measures thought to be any relatively accurate, the availability of large-scale search logs is an issue.
Lastly, the approach of using web data is to exploit anchor texts as a source for AQE. Since an anchor text
is a succinct description of the destination page, the authors consider them to be similar to user search
queries. Finding appropriate anchor texts for a query is done by ranking the text similarity. However,
that is not supposed to work well on short queries. Other types of web data can be employed, including
Wikipedia documents and hyperlinks, or FAQs. Regarding computational efficiency, the authors point out
that there are additional costs of generating the expansion features and costs of evaluating the expanded
query. AQE runs are found to be much slower than those with the original queries, because the execution
time linearly depends on the number of query terms. The cost of generating expansion features however
does not affect runtime, because they usually are generated in advance and what is left at query time is
just the selection of those features. In summary, the authors consider linguistic techniques less effective
compared to those based on statistical analysis, because the latter ones require exact word sense disam-
biguation. Even if statistical analysis can not always be applied (e.g. due to the absence of co-occurrence
frequencies with good expansion terms). Furthermore, local analysis seems to perform better than global
corpus analysis due to the extracted features being more query-specific. The query-specific techniques
however need a double run at query time. But all in all, research caters towards different requirements
and hybrid methods to achieve best results, since there is no single silver bullet to solve all aspects of
the vocabulary problem in IR. In general though, the advances of AQE have been proven in benchmarks
and experimental tests, with gains not only in recall, but also in precision. What AQE still suffers most
to become a standard component in search systems is its robustness of retrieval performance and its
usability in IR systems implementing AQE.

[Metzler and Croft, 2007] proposed a query expansion technique based on the Markov random field
(MRF) model, called latent concept expansion (LCE), aiming at combining term dependence with query
expansion. Given the original query it aims at discovering the latent concept, that is the concept the user
has in mind while expressing that query. Those can consist of single or multiple terms or some combi-
nation. This is done by defining the MRF by a graph G and a set of potential functions over the cliques
in G. Then, the expanded graph H (with e.g. single term concepts) is constructed and a probability dis-
tribution over latent concepts is computed (approximated). To use this for query expansion, the k latent
concepts with the highest likelihood are selected and finally the documents are ranked according to the
top k expansion concepts. Applying single term concepts the authors showed significant improvements
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over relevance models across all five TREC data sets tested, expansion with multi-term concepts only led
to negligible increases in mean average precision. Still, the authors suggest other tasks those concepts
may be useful for, such as query suggestion/reformulation, summarization and concept mining.

2.3 Lexical expansion

As explained in section 1.3.1, [Biemann and Riedl, 2013] produced a high-quality and knowledge-free
lexical resource in an unsupervised way. First, they introduce their new metaphor of two-dimensional
text, outlining two major shortcomings of prevalent vector space representation of text: The first is the
high dimensionality, i.e., size issues have to be handled with “necessarily lossy dimensionality reduction
techniques”. Second, that vector space models are not generative, that is the model presupposes a list
of alternatives to rank, instead of originating them from the model itself. the After, they carry out the
development from distributional to contextual similarity. The evaluation of the Distributional Thesaurus
(DT) is performed against WordNet. Additionally, the approach is evaluated on the official test data of
the Lexical Substitution Task 2007 data set (LexSub). The LexSub data set consists of 2010 sentences
with a total of 201 target words (i.e., ten sentences for each word). For each target in its sentence
context, five native speaker annotators were asked to provide substitutions or paraphrases for the target
in its context. It is then calculated how substitutions have been detected correctly out of ten guesses
(out of ten precision). Using the DT performance as a baseline to evaluate the contextualization, the
Contextual Thesaurus (CT) outperforms it in most cases. However, compared to the original lexical
substitution task at Semeval 2007 [McCarthy and Navigli, 2009], they could not come close to the best-
performing participating systems in any configuration. Still, their framework for lexical expansion did
not use any (manually composed) lexical resources, but just a large amount of unlabeled text. [Miller
et al., 2012] used that two-dimensional method and the lexical expansions from the DT as well in want
to explore its contribution to purely knowledge-based word sense disambiguation. In their experiments,
they explore the contribution of lexical expansion to the simplified and simplified extended variants
of the Lesk algorithm. Using a new method based on word overlap between sense descriptions and
the target word context, such an approach inherently suffers from the lexical gap problem, since the
sense descriptions and the context might not have much vocabulary in common. Enriching the textual
information (definitions are provided by WordNet) with expansions produced by the DT, they were
able to successfully bridge that word mismatch by increasing the number of overlapping word pairs.
Employing this resource led to a significant improvement, beating even the best-performing system of the
SemEval-2007 all-words disambiguation task in both the fine-grained and coarse-grained evaluation. All
in all, the authors reason about the concept of lexical expansions as a “promising avenue”. Additionally,
[Bär et al., 2012] applied the DT (among other resources) for text similarity and were able to come up
with the best participating system in the Semantic Textual Similarity (STS) task at SemEval-2012 in two
out of three metrics by combining several text similarity measures, both simple string-based and semantic
ones. The goal of the STS task is to measure the semantic similarity between pairs of sentences, with
graded notions of similarity. First, various text similarity measures are outlined, from string-based and
semantic similarity ones to text expansion mechanisms. It is stated, that using them in separation exhibits
a major limitation, since no single measure could capture all text characteristics necessary for computing
similarity. Thus, multiple text similarity measures of all kinds are combined using a supervised machine
learning approach. Among the features selected is the distributional resource, although only the feature
based on cardinal numbers (CD) was selected in the final models. Moreover, the authors used the lexical
substitution system by [Biemann, 2013] to provide substitutions to the text.

Recently, [St. Charles, 2012] provided an extensive study on various lexical expansion methodologies
in the medical domain. The goal was to improve the MiPACQ (Multi-source Integrated Platform for
Answering Clinical Questions) system’s retrieval performance, evaluated using the Medpedia corpus and
the MiPACQ queries. Medpedia is a collaborative encyclopedia maintained by medical professionals
and contains about 8.000 articles and 600.000 paragraphs (a document is split into 79 paragraphs on
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average). The MiPACQ however only re-ranks the top N documents returned by the baseline IR system.
Since the baseline IR system used in MiPACQ had a poor performance in terms of recall, the re-ranker’s
overall performance again was limited. With the purpose of increasing recall, three term expansion
approaches are explored. First, co-occurrence based expansion methods are examined, in particular
automatic thesaurus generation based on co-occurrences. The author’s idea behind using co-occurrences
is that the more often two words co-occur, the more likely they are semantically related. Two terms co-
occur if they appear in the same document or paragraph. A global thesaurus is then constructed out of
these co-occurrences (which are weighted by a tf-idf weight) and used for automatic document expansion
and query expansion. It is aimed to provided closely related terms in the context of the corpus. These
methods universally improved recall (i.e., they returned more relevant documents than the baseline
system), while causing insignificant drops in precision. Second, a resource based approach for query
expansion using the UMLS (Unified Medical Language System) Metathesaurus as an external resource
is explored. The UMLS Metathesaurus is a collection of medical ontologies and serves as the most
complete thesaurus and ontology of medical terms. Additionally, it includes tools to map free text (from
the queries) to its medical concept entities, returning additional terms for query expansion. The top N
mappings were used and evaluated, whereas N = 1 exhibited the best retrieval performance. However,
the best resource based methods still performed worse than the best co-occurrence based ones. Finally,
latent semantic indexing (LSI) as an alternative to the baseline vector space retrieval model is evaluated,
since the VSM relies on term overlap to determine document relevance and ranking. LSI is a patented
indexing and retrieval method first mentioned by [Deerwester et al., 1990]. Its goal is to group terms
together that are semantically related. This is accomplished by constructing a term-document matrix
(1 if the term exists in the document, or else 0), similar to the vector space model (section 1.1.1).
Then a mathematical technique called singular value decomposition (SVD) is applied to the (large)
matrix, resulting in a smaller dimensional space (down to a few hundred dimensions). The grouping of
semantically related terms into these semantic vectors is supposed to help with synonymy and polysemy.
As with the term-document-matrix, the query needs to be transformed into the semantic space before
being compare to the document representations in the latent semantic index. Once it is transformed,
it can be compared to the documents using standard cosine similarity. The author conducted several
retrieval experiments with different dimensions from the SVD decomposition, observing indices created
with fewer ones performing worse than indices based on a higher dimensional space. In summary,
he states that in addition to the more resource intensive and slower computation of LSI, even high
dimensional indices result in a poor retrieval performance compared to the two other methods, especially
co-occurrence based methods. In theory though, it shall be possible to create an index with enough
dimensions to obtain precision gains without loosing too much of recall. In any case, such a system
would be significantly slower. So, all in all, all the three expansion approaches examined by [St. Charles,
2012] could show an improved recall performance, gaining from 8% to 15% on average. The automatic
thesaurus generation could gain up to 27% more recall, while giving in significant points in precision.

2.4 Other

Because it is not feasible to calculate, most probabilistic IR models assume some kind of independence
between the terms occurring in queries and documents. Most work in the past on modeling term de-
pendencies dealt with phrases/proximity or term co-occurrences and had poor and inconsistent results.
According to [Metzler and Croft, 2005], this is caused by two reasons. The first one is the fact that most
dependence models are based on the BIM (Binary Independence Model), in which documents are repre-
sented as binary vectors (presence/absence of a term) and terms are independently distributed among
the documents. That is, term dependencies must be estimated from the (often very small) available set
of relevant and non-relevant documents. Second, the document collections used for the experiments
in the past predominantly consisted of short documents. Thus, modeling term dependencies with only
little (co-)occurrences of terms is considered not sufficient. So, despite of using larger collections, [Met-
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zler and Croft, 2005] incorporated several arbitrary text features (types of evidence). They developed
a general framework for modeling term dependencies via Markov random fields (undirected graphical
models). They explore three variants of the model: Full independence (query terms are independent),
sequential dependence (certain dependencies between adjacent query terms) and full dependence (cap-
ture dependencies between every subset of query terms). As a result, modeling term dependencies could
show a significantly improved retrieval effectiveness across a range of collections in both the dependency
variants.
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3 Software

In this chapter, we will describe the software setup that has been used and developed during this work.

3.1 UIMA

The underlying framework around all the components is UIMA, the Unstructured Information Manage-
ment Architecture [Ferrucci et al., 2006]. Originally developed by IBM, it is now an Apache open source
project and used in commercial as well as educational contexts. The single most known application using
UIMA is the IBM Watson1, an artificial intelligence computer system designed to take part in the quiz
show Jeopardy! and answering questions posed in natural language. The following description of UIMA
is partly based on the UIMA User Manual [UIMA Development Community, 2006] and the slides from
the lecture Natural Language Processing and the Web2.

The idea and motivation behind UIMA is the amount of unstructured information available. Informa-
tion as data or knowledge comes in various forms (e.g. texts, images, tables, speech, databases) and
from many different sources. Most textual information available on the World Wide Web, in books or
newspapers in of unstructured nature. It is unstructured in the sense of not being machine-readable
or automatically processable by a computer system. An unstructured information management (UIM)
software is used to extract structured information and discover relevant knowledge with well-defined,
computer-understandable semantics from unstructured sources. UIMA as a general UIM architecture
wants to help the user to bridge that gap between unstructured and structured data and to build UIM
applications with the ability to apply various related technologies as well (statistical and rule-based NLP,
Information Retrieval, Machine learning, Knowledge Sources). To do so, the entire framework is based
on the concept of annotations, which are created by the basic building blocks of UIMA, called Analy-
sis Engines (AEs). An Analysis Engine (simply called annotator) receives the the unstructured text of
a document and enriches it with structured information by performing annotations. Each annotator
encapsulates a specific functionality (e.g. tokenization, sentence splitting, part-of-speech-tagging) and
reads from and writes to the Common Analysis Structure (CAS), in which the document text is stored
in. A CAS represents a document and serves as a container for storing the annotations. Next to the
views (text, image, video, etc.) and the annotation index, the CAS also contains the type system, which
forms the communication contract between the components. In addition to primitive types (e.g. inte-
ger, float, string), the type system contains some built-in complex types (e.g. arrays, lists), based on
which the UIMA users can create their own annotation types with. The modularization provided by an
annotator (encapsulating a specific functionality) is important for re-usability. But a too fine-grained
modularization makes the whole set of annotators (called pipeline) complicated. The UIMA solution for
this problem is the introduction of so called Aggregate Analysis Engines (AAEs). An AAE behaves like an
atomic component, but combines several regular Analysis Engines. The annotations itself are based on
their offsets in the text, covering an absolute begin and end position. In figure 3.1, three example types
of annotations for a given sentence are visualized (sentence, token and POS). For the part-of-speech, its
value instead of the covered text is given. Since the annotations are stored at a different layer and do not
manipulate the original text in any way, multiple annotations at the same offsets or even offset overlaps
do not pose a problem at all.

Although UIMA is available for Java and C++, the Java branch is much more widely used. If we
talk about UIMA, we are referring to the Java version of it. Configuring UIMA components (types,
annotators) is generally done by creating XML descriptor files which are tightly coupled with their Java

1 http://www.ibmwatson.com/
2 http://www.ukp.tu-darmstadt.de/teaching/courses/ws-1213/natural-language-processing-and-the-web/
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Figure 3.1: Visualization of UIMA annotations

implementations. To make that process simpler and to keep it more consistent, UimaFit is commonly
used with UIMA as well. UimaFit [Ogren and Bethard, 2009] is a library that provides factories, injection
and testing utilities for UIMA. Based on UIMA we additionally use DKPro [Gurevych et al., 2007], which
builds on UimaFit and is a collection of natural language processing (NLP) software components based on
the Apache UIMA framework. Having the goal of providing standard NLP components, the scope ranges
from stemming, lemmatization and part-of-speech tagging over morphological analysis and syntactic and
dependency parsing to spelling correction, grammar checking and working with n-grams.

3.1.1 Annotators

In this section, I will describe some non-trivial UIMA annotators worth mentioning that have been de-
veloped and/or used during the thesis.

Sentence annotation

In the data set that we chose the text is pre-processed and available as tokens (single word forms),
i.e. it is tokenized. For our contextual resources we need to know the sentences, though. That is
why we have to use a so called sentence annotator, also called sentence splitter, that performs sentence
annotations out of free (token) text. There are several built-in ones available in DKPro (or made available
by an interface) for at least English and German. In this thesis, the sentence segmenter of the Stanford
CoreNLP3 components is used due to its high quality and robustness. However, sentence splitting is not
a straightforward, simple task and hence there will be erroneous splits (such as after abbreviations and
initials). Tokenization and sentence splitting is a research field on its own. Since the contextual resources
rely on the quality of the sentence annotations, that has to be mentioned because it may influence the
performance of those lexical expansions resources.

WordNetRelationAnnotator

During experimentation, we were exploring if there are any particular word relations (like synonymy
or co-hyponymy) that have special use for lexical expansion. For that purpose, we were using WordNet
[Miller, 1995] and the Java WordNet Interface by Mark A. Finlayson [Finlayson, 2013]. Using that
WordNet accessing tool, our annotator is able to denote a relation (if any is available), given two word
forms, i.e. the original term appearing in a query or index document on the one hand and the expansion
term retrieved on that term on the other hand. Since WordNet does not operate on words, but rather
word senses, that is done by going through all possible senses of a surface word form and checking
whether or not there is a connection between the two sense combinations.
3 http://nlp.stanford.edu/software/corenlp.shtml
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ExpansionsTerrierTagnamesIndexAnnotator

At the same time we transform the RobustWSD index documents into the tagged format of Terrier (see
Section 3.2), the index-side expansions are added. Depending on the given resource, different combina-
tions of expansions are retrieved (e.g. the top10 per term) and assigned different tag names, so that they
can be allocated different expansion modes later (see Listing 5.1.1 on page 37 for a visual). Exemplarily
for the DT, the tag name combinations consist of the part-of-speech, the topN limitation (top5, top10,
etc.) and the per term and per sentence distinction. The goal of this annotator is to retrieve and assign
expansions to different categories to build a huge index out of them, so index creation is done once and
retrieval retains flexibility.

ExpansionsTerrierTagnamesQueryAnnotator

Since all the different conditions for expansion can be applied to the queries as well (with the sentence
context being the whole query), such an annotator is needed for the topics in the same way. It annotates
all the combinations likewise, but those in turn are used in the pipeline to output single line queries for
Terrier (i.e., one query in one line of a file).

3.2 Terrier

To perform experiments in the field of Information retrieval, some kind of search engine software is
needed. Among the most popular ones is Lucene, an Apache open source software project. Since our
scientific work was based on [Wolf et al., 2010] and the framework they used, we as well use Terrier
(TERabyte RetrIEverR) [Ounis et al., 2006] (now version 3.5) for indexing the documents and perform-
ing the search. Terrier is an open source search engine developed at the school of computing science
at the University of Glasgow. It is used for research and experimentation in text retrieval and can be
used for local and web retrieval. It supports a variety of retrieval models (including TF-IDF and BM25)
and built-in query expansion. What is more, it allows manual setting of query term weights before re-
trieving. That will be explored in chapter 5.4. Furthermore, Terrier can even be combined with Hadoop
MapReduce for indexing. Especially experiments with large collections could benefit from that in terms
of saving time.

3.2.1 Fields

In Lucene and in Terrier, index terms are associated with/assigned to index fields. A field is an abstract
categorization for terms – like a column in a database. Fields can be used to divide documents into vivid
fragments like title, body and footer. But fields can also be used for rather conceptual fragmentations
like word forms, e.g. the surface token and the lemmatization form. While query terms are combined by
the OR operator, fields on the index side are combined by the AND operator by default4. Furthermore,
DKPro IR applies all query terms on all given fields by default, whereat individual weights can be given
for each index field. However, it is also possible to devise a more complex query with different query
terms in different fields, as shown in formula 3.1. If the user does not utilise fields explicitly, the default
field is used by Terrier, wherein all terms are put into.

( f ield1 : t erm1 t erm4 ...) AN D/OR ( f ield2 : t erm2 t erm3 t erm5 ...) (3.1)

One use case of such an elaborate formulation could be the division into title terms only matching title
terms of the documents texts and so on. In summary, Terrier offers the following search possibilities:

4 http://ir.dcs.gla.ac.uk/wiki/Terrier/QueryLanguage
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1. Don’t use (multiple) fields on index side (and thus, not on query side as well).
2. Use multiple fields on index side.

a) query for all terms in all index fields likewise

b) query for different terms in different fields

The use of all these possibilities will be explored in chapter 5.5.

3.3 Lexical Expansion

For all the lexical expansion resources mentioned in chapter 1.3 there either was an UIMA annotator or
database available from which to retrieve the terms.

3.4 Evaluation comparison

To determine the retrieval performance of our system, the trec_eval tool is used5. Since the entire cycle
(index, search, evaluation) is command-line based, there is no visual breakdown which one could use
to inspect the results in a fast and easy way or even conduct comparisons between two approaches.
There is a possibility to use Terrier for Web-based search6, but that addresses a slightly different use.
Since the regular indices cannot be used with the Web-based interface (because by default Terrier does
not store document snippets, abstracts and meta-data) the document collections needed to be indexed
from scratch, which would cause a practical overhead. That’s why we developed a web browser based
representation of the search result output, incorporating the trec_eval results. For the sake of clarity, the
visualization is split into one page per query. The search results can be browsed per query and each page
includes the following information:

• the recall7 and the number of relevant and non-relevant documents for that query

• the search results (cut to the first 1000 entries, displaying the document ID and the rank)

• the full trec_eval output for that query

• the textual representation of the query and its parts

• the query term frequencies in the document collection

• the actual query that was used (after pre-processing, filtering, etc.)

In addition, the rank search output list contains links to all the index documents. In figure 3.2 you can
see a cropped screenshot of it containing all the information mentioned. All coloured index document
names are ones being manually evaluated (dark = relevant, red = irrelevant).

5 See Chapter 4.3 for the evaluation methodology.
6 http://terrier.org/docs/v3.5/terrier_http.html
7 See chapter 4.3.2 for the definition of recall.
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Figure 3.2: Screenshot of our web-based evaluation tool
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4 Dataset and evaluation methodology

In this chapter, I’ll give a detailed description of the evaluation data sets and the evaluation that I used.

4.1 Dataset 1: RobustWSD

In order to gain a comparable and approved experiment setup we chose the Robust-WSD corpus from
the CLEF1 2008 and 2009 Robust-WSD Task [Agirre et al., 2009], which is based on the widely used Los
Angeles Times 1994 (LA94) and Glasgow Herald 1995 (GH95) news collections. Although the corpus
originally was used to explore the contribution of Word Sense Disambiguation (WSD) to monolingual
and multilingual IR, there are reference values for stand-alone retrieval on this corpus. Furthermore,
it has some built-in advantages: It is already tagged with part-of-speech (POS), indicating the lemma
and word form, and it comes with automatically tagged senses from WordNet (version 1.6) using two
different state-of-the-art WSD systems. The POS tags stem from the Penn Treebank tagset [Marcus et al.,
1993]. Making all that information available in XML format, there is much less need of individual (and
error-prone) pre-processing. In listing 4.1 you can see an example how a query looks like (excerpt).

Listing 4.1: Excerpt of a query from the Robust-WSD corpus

1 <?xml version="1.0" encoding="ISO-8859-15"?>

2 <top>

3 <num>C041</num>

4 <EN-title>

5 <TERM ID="C041-1" LEMA="pesticide" POS="NNS">

6 <WF>Pesticides</WF>

7 <SYNSET SCORE="1" CODE="10749669-n"/>

8 </TERM>

9 <TERM ID="C041-2" LEMA="in" POS="IN">

10 <WF>in</WF>

11 </TERM>

12 <TERM ID="C041-3" LEMA="baby" POS="NNP">

13 <WF>Baby</WF>

14 <SYNSET SCORE="0.260057371688911" CODE="07093842-n"/>

15 <SYNSET SCORE="0.739942628311089" CODE="07094006-n"/>

16 </TERM>

17 <TERM ID="C041-4" LEMA="food" POS="NNP">

18 <WF>Food</WF>

19 <SYNSET SCORE="1" CODE="00011575-n"/>

20 </TERM>

21 </EN-title>

There are two problems with this data set, especially affecting the short title part of the query. First,
due to the shortness of the title there are parser errors over and over again, declaring commons nouns
(NN) as proper nouns (NNP), as can be seen in lines 12 and 17. Refer to Table 4.2 for a reinforcement
of that argument. Since we are relying on those parts-of-speech in our experiments and in particular

1 The Cross Language Evaluation Forum (CLEF) was launched as a European counterpart to the Text REtrieval Conference
(TREC), which is driven by the US government’s National Institute of Standards and Technology (NIST).
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disregarding proper nouns (because it doesen’t make sense to expand them), only taking the title into
account might have an influence on the results. Because there are actual proper nouns in some query
titles, there is no simple solution to that. Second, the data set include the part-of-speech of the token
(word form) and the token’s lemma, but it doesen’t explicitly denote the lemma’s part-of-speech. That
simply requires a mapping of the two notations, which is done in chapter 5.3.1.

4.1.1 Index documents

The corpus consists of 56,472 index documents from the GH95 and 110,245 from LA94, making 166,717
documents in total. Each document consists of two parts, a headline (few terms) and a text (most of the
terms). In our experiments, we do not distinguish between these two tags, but just take all the terms
into account equally.

In Table 4.1 you can find some statistics about the number of terms in each of the collections to get an
impression of the document base.

Table 4.1: The index documents collection

Collection #documents #terms Av. #terms/doc
GH95 56,472 27,716,878 490.81
LA94 110.245 72.027.926 653.34
both 166,717 99,744,804 598.29

If you assume to comprise 400 to 700 words on a page printed on paper, you could recognize these
documents as rather short ones (one page).

4.1.2 Queries

To test and evaluate an IR system, we also need given information needs, so called topics. The corpus
provides a training dataset, consisting of 150 queries (IDs range: C041-C140, C201-C250), and a testing
dataset with 160 queries (ranging from C141-C200 and C251-C350). Each query consists of three parts:
title (T), description (D) and narrative (N). An example looks like this (dumped text form):

EN-title: Pesticides in Baby Food
EN-desc: Find reports on pesticides in baby food .
EN-narr: Relevant documents give information on the discovery of pesticides in
baby food . They report on different brands , supermarkets , and companies selling
baby food which contains pesticides . They also discuss measures against the
contamination of baby food by pesticides .

The topic above is the first one from the training set (C041). As you can see, the more parts are taken,
the more expressive the topic gets. Since more (or less) terms have a critical impact on the retrieval, this
is a crucial part for the evaluation of the retrieval performance. Furthermore, since the part-of-speech
distribution within the queries will have an impact on the query-side experiments, it is displayed in
Table 4.2 (given in %). The table includes a distinction between common nouns (NN) and proper nouns
(NNP).

The short title of the query hardly contains any verbs. As it gets more descriptive, whole phrases
are formed using verbs. While the amount of adjectives (JJ) stays on a similar (low) level, the (often
erroneous) distribution of proper nouns turns in favour of the common nouns. That statistics support
our observation of many NN/NNP tagging errors in the data set.
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Table 4.2: Query set POS distribution in % (RobustWSD, train)

T TD TDN
JJ 7.52 7.62 11.27
NN 18.50 29.20 41.41
NNP 51.22 21.53 16.90
VB 2.85 13.49 19.07
OTHER 19.92 48.76 45.45

4.2 Dataset 2: Tipster disks 4 & 5

As a second data set, we use the Tipster2 disks 4 & 5 since it has much more relevance judgements
per query. It was used as a dataset for the ad hoc retrieval tasks at TREC 7 and 8. The details of the
assessments will be looked at in Section 4.3.1.

4.2.1 Index documents

Disk 4 is comprised of material from the Financial Times Limited (1991, 1992, 1993, 1994), the Congres-
sional Record of the 103rd Congress (1993), and the Federal Register (1994). Disk 5 includes material
from the Foreign Broadcast Information Service (1996) and the Los Angeles Times (1989, 1990). In
Table 4.3 the collection statistics can be found [Voorhees and Harman, 2000]. We explicitly exclude the
Congressional Record (CR) documents, since they come from a different domain and hence can hurt
peformance [He and Ounis, 2006].

Table 4.3: Tipster document collection statistics

Collection #documents Mean #Words/Doc
Disk 4: Financial Times (ft) 210,158 412.7
Disk 4: Federal Register (fr94) 55,630 644.7
Disk 5: Foreign Broadcast (fbis) 130,471 543.6
Disk 5: LA Times (latimes) 131,896 526.5
total 528,155 -

What is similar to the RobustWSD collection is the mean size of the documents, resulting in about one
page sized documents. As with the RobustWSD collection, the relevance judgements will be explored in
section 4.3.1. The documents collection is structured in a slightly different way as the four different col-
lections do not use the exact same set of tags and as one collection includes markup language comments.
Following the official Terrier Wiki3, five specific tags are to be indexed for that particular collection set.
Table 4.4 shows a coverage of the tags availability in the four document collections.

As you can see, a text title is called differently in nearly each of the collections. The TTL tag could
not be found in any of the collections. Next, the doctitle and h3 tags contents are single-lined, while the
headline tags contain multi-line text.

4.2.2 Data pre-processing

In contrast to the RobustWSD collection, neither the Tipster index documents nor the topics come pre-
processed. Furthermore, it does not come in a separated, one-document/topic-per-file format, but rather

2 Tipster was the name of the US government’s funding program.
3 http://ir.dcs.gla.ac.uk/wiki/Terrier/Disks4&5
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Table 4.4: Index document tags coverage (Tipster)

fr94 ft fbis latimes
TEXT Ø Ø Ø Ø

DOCTITLE Ø - - -
HEADLINE - Ø - Ø

H3 - - Ø -
TTL - - - -

in an all-in-one-file format. That is, not the same UIMA reader component can be used and pre-processing
(mainly tagging) and splitting has to be performed once in order to make that data available as input
for the same processing (and expanding) pipeline used throughout the thesis (like the format shown in
listing 4.1 on page 29). Additionally, individual tagging may result in different starting conditions for
comparison. Listing 4.2 shows an example excerpt of one of the two topic files (containing 50 queries
each) and visualizes its flaws (missing closing tags, inconsistent tag explanation verbosity).

Listing 4.2: Excerpt of a query from the Tipster disks

1 <top>

2

3 <num> Number: 351

4 <title> Falkland petroleum exploration

5

6 <desc> Description:

7 What information is available on petroleum exploration in the South Atlantic

near the Falkland Islands?

8

9 <narr> Narrative:

10 Any document discussing petroleum exploration in the South Atlantic near the

Falkland Islands is considered relevant. Documents discussing petroleum

exploration in continental South America are not relevant.

11

12 </top>

13

14 <top>

15

16 <num> Number: 352

17 <title> British Chunnel impact

18 [..]

The two alternatives to process that data format are described as follows.

Transform data into RobustWSD format

The first alternative is to transform the data (that is, to write a short additional pipeline) and output
it as the same format as referenced with the RobustWSD style (one topic per file, fine-grained topic
tag set, POS-tags and lemmas within the tags). Then continue with the expansion pipeline. The
advantage of that option is that afterwards just the same pipeline can be used as before. The
disadvantage is the outsourcing into another pipeline and the extra effort.

Write separate collection reader

The second option would be just to write another UIMA collection reader for the data and use the
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annotations as a processing layer and use the rest of the available pipeline as given. The advantage
is the integration into the complete framework by just having and switching the reader component.
The disadvantage is that the one-CAS-per-file logic may get confused, as it is cleaner to separate
the processing logically.

We implemented the first option (implement separate pipeline to transform the data once), since
it requires a one-time transition and afterwards allows to follow the one-CAS-per-file logic. The data
transformation of the Tipster topics was done in an UIMA annotation style annotating the different parts
of the query and afterwards creating tags out of it. For the POS-tagging (which is necessary to do either
way) the TreeTagger was used [Schmid, 1994]. The UIMA wrapper for the TreeTagger has been provided
by DKPro. In order to assess whether the same NN/NNP-tagging4 errors occur, Table 4.5 give the same
overview for the POS-tags distribution within the query parts as with the RobustWSD set on page 31.

Table 4.5: Query set POS distribution (Tipster)

T TD TDN
JJ 13.21 10.66 15.26
NN 56.43 37.56 41.99
NP 12.14 6.35 3.82
V 5.00 17.13 20.15
OTHER 13.21 46.07 45.11

As can be seen, not even half as much nouns are erroneously tagged as proper nouns as in the Robust-
WSD query set. The percentage of proper nouns stays on a low level, even in the title representations,
while the distribution of common nouns stays on an expected high level.

4.2.3 Topics

The query information needs are expressed in one hundred new topics, ranging from IDs 351-400 (TREC-
7) and 401-450 (TREC-8). As with the RobustWSD topics set, the Tipster queries consist of a title, a
description and a narrative. For an example, see the Listing 4.2 on page 32.

4.3 Evaluation

In order to compare our results and actually recognize improvements (or impairments), we need to
verify our retrieval results to a set of assumed relevant documents, a gold standard. This is called the
Cranfield paradigm [Cleverdon, 1997]. These judgements define for a given document and a given query
whether the document is relevant to that query. The judgements may either be binary (i.e., relevant or
not relevant) or graded (e.g., “excellent“/“good”/“poor”).

4.3.1 Assessing relevance

With the document collections being so large, it is not feasible (i.e., by humans) to manually judge every
single document for relevance. As further described by [Agirre et al., 2009], the pooling technique is
used to calculate approximate recall values. The technique of pooling means to perform runs of several
IR systems in the first place and afterwords collecting the top ranked documents from each system into a
so called pool, representing a small subset of the entire document collection. The documents in the pool

4 In contrast to the tag set used in RobustWSD, the TreeTagger uses NP for a proper noun since it builds on the Penn
Treebank Tagset [Marcus et al., 1993].
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set are then manually judged for relevance by human jurors [Manning et al., 2008]. [Büttcher et al.,
2007] even go as far as stating, that every IR evaluation based on the pooling method is inherently
biased against systems that did not contribute to the pool of judged documents. While pooling might
be suited to evaluate the top N search results by systems that contributed to the pool, reusing them for
other systems may be difficult. By using the existing relevance set they trained a classifier to predict the
relevance of documents not found in the pool of judged documents. After, they based their evaluation
on the new, extended set of judgements. They were able to produce highly reliable evaluation results
and even produce more accurate evaluation results than bpref5.

RobustWSD

In the Robust WSD collection, the total number of assessments was 66,440 documents in the test set
with 4.327 of them being relevant. Each topic has an average of about 28 relevant documents, seven
queries have no relevant documents at all (that is 4.375% of the test set). In the train set (which is used
for development) even 12,67% of the topics have zero relevant documents. Each document not judged
with regard to a query (neither as relevant nor as irrelevant) is regarded as not relevant by the metrics.
Table 4.6 gives an overview over the judgements available.

Table 4.6: Relevance statistics (RobustWSD)

Data set #queries #judgements #relevant
train 150 67,355 2,052
test 160 66,440 4,327
total 310 133,795 6,379

Considering the amount of documents (166,717), that makes 25,007,550 possible (query,document)
pairs for the train set, from which just 0,27% have been looked at.

Tipster disks 4 & 5

In the Tipster disks, the number of assessments is 167,175 with 9,402 of them being judged as relevant.
Table 4.7 gives a more detailed overview.

Table 4.7: Relevance statistics (Tipster disks 4 & 5)

Data set #queries #judgements #relevant
TREC-7 50 80,345 4,674
TREC-8 50 86,830 4,728
total 100 167,175 9,402

Each topic has at least 100 judgements (6 relevant), at the utmost 2992 (361 relevant) and on average
1671.75 assessments (94 relevant). So all in all, with on average three times as much relevant documents
per topic as with RobustWSD, the Tipster dataset and judgements suggest a greater deal of quality
assessment.

4.3.2 Metrics

In this section, I will present several IR evaluation measures used within this thesis and its evaluation
tool and discuss their relevance to our retrieval task. I will differentiate between binary classification
(i.e., relevant or not relevant) and ranking aware metrics, taking the order of the results into account.
5 See subsection 4.3.2 for a definition of bpref.
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Binary classification

In the field of Information Retrieval precision and recall are well-known metrics. By distinguishing be-
tween relevant documents (that are considered as a relevant result to a particular query) and retrieved

documents (the ones returned by the retrieval system) in a binary classification task, precision can be
given as in Equation 4.1.

Precision=
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents|
(4.1)

Precision basically is the number of relevant documents in relation to the retrieved documents. So,
precision tells us which fraction of the documents contained in the result set actually is relevant (and how
much noise is in the results set). In contrast to that, the fraction of the relevant documents contained in
the result set is called recall (see equation 4.2) and tells us how much is missing.

Recall=
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
(4.2)

Precision and recall are connected with each other, in fact they are opposed. Typically considered in
the range [0,1] with high values being better. While a recall of 1.0 can always be obtained (by having a
large result set), even high precision values can be influenced (by having a small results set with many of
them known as relevant). Known from other classification tasks (such as part-of-speech tagging) there
are measures to combine both of them, such as fall-out, accuracy and the F-measure, especially the F1-
measure. Since quality in IR is much more about ranked results than rather about result sets, they are of
little use in IR and hence we will neither consider those.

Ranking aware metrics

Precision accounts for all retrieved documents, but it can also be evaluated at a fixed cutoff rank, re-
garding only the top k results returned by the system. This measure is called precision at k or short
P@k. While p@k will yield interesting insights in web retrieval for low values of k, the case of having
less than k relevant documents is a general problem of that measure (i.e., it is considered unstable).
Having a flexible cutoff at the number of relevant documents for a given query is called R-precision. In
other words, it is precision at the R-th position in the ranking of the results for a query having exactly R
relevant documents (recall and precision are equal at the R-th position). [Kishida, 2005] formalize it as
given in equation 4.3.

R-precision=
1

R

R
∑

i=1

x i (4.3)

Let R be the total number of relevant documents and with x i being 1 if the ith document is relevant to
the current query and 0 otherwise. A measure correlated to that is Average Precision (AP), measuring the
system quality at all recall levels by averaging the precision for a single query. [Buckley and Voorhees,
2000] define it as ”the mean of the precision scores obtained after each relevant document is retrieved,

using zero as the precision for relevant documents that are not retrieved”. Following equation 4.3 it can be
formulated as follows:

Average precision (AP) =
1

R

n
∑

i=1

x i x̄ i (4.4)
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In equation 4.4, n is the number of documents included in the list (usually n = 1000) and by x̄ i the
average of values x1, ..., xn is denoted. While R-precision and average precision indicate values for single
queries, the mean for a set of queries is call Mean Average Precision (MAP) and simply divides the sum of
the AP for all queries by the number of queries.

Mean average precision (MAP) =

Q
∑

q=1

AP(q)

Q
(4.5)

With MAP being one of the most common measures in IR research it will also be the most important
one in our thesis.

All the metrics introduced so far assume to know the relevance of each and every document. As we
have seen in subsection 4.3.1, only a tiny fraction of all possible (query, document) pairs is actually
evaluated. One metric that doesen’t need this assumption is called bpref [Buckley and Voorhees, 2004],
short for binary preference. It is a preference-based measure considering how often (known) irrelevant
documents are ranked above (known) relevant ones, disregarding documents not judged. Similar to
R-precision R relevant documents are assumed. Then, all pairs of relevant and not relevant documents
are determined. As displayed in equation 4.6, it is then summed up over all relevant documents (r) how
often a not relevant (n) document is ranked above.

bpref =
1

R

∑

r

�

|n is ranked above r|

R

�

(4.6)

It could be shown that bpref correlates with MAP quite often, but is more stable on a small judgements
base. We will not focus on it here, but still keep that in the back of our mind.

4.3.3 Evaluation tool

The Terrier package incorporates a built-in evaluation tool, which is said to be compatible with the
commonly used trec_eval tool. However, while experimenting I found some inconsistencies which led
us to abandon that built-in tool. First, in their evaluation they only took into account so called effective

queries, i.e. queries that do have at least one relevant document assigned to it. With those topics being 19
in the train set and seven in the test set, retrieval results changed significantly (precision values usually
increase). Second, the built-in tool only outputs a fraction of the the measures that trec_eval is capable
of (the fraction does not include bpref).
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5 Experiments

In the following sections the experiments conducted will be described. Results of the approaches are
presented in each section separately. We tried to base our setup upon the one used by [Wolf et al.,
2010]. Due to older software library versions, that was not always possible.

Furthermore, note that it is crucial to explicitly state which parts of the query are used (as explained
in chapter 4.1.2). Therefore, that will always be mentioned along with every result shown.

5.1 Pipelines and pre-processing

Following the UIMA concept explained in chapter 3.1, we apply two separate pipelines. The first one
is used for indexing the document collection. The second one performs the search and outputs results
ready for evaluation. Despite the conditions the data set provides us with, we additionally apply some
pre-processing steps. For the sake of completeness, the whole pipelines are given in table 5.1.

Table 5.1: Both pipelines displaying the pre-processing steps

Indexing Searching
read the collection read the collection
AnnotationRemover AnnotationRemover
CharacterSplitReannotator CharacterSplitReannotator

SentenceSplitter
StopWordRemover StopWordRemover
SnowballStemmer SnowballStemmer
Lexical expansion (optional) Lexical expansion (optional)

AnnotationRemover
IndexTermAnnotator IndexTermWeightAnnotator
AnnotationRemover AnnotationRemover

TerrierQueryGenerator
TerrierSearcher
SearchResultConsumer

As can be seen, both procedures essentially are the same. Since the query pipeline incorporates em-
ploying the search and outputting the results, there are some extra steps needed. The SentenceSplitter
component, which performs sentence annotations, is required to make use of the contextualized lexical
expansion resources. All the AnnotationRemover calls basically are necessary cleanups to remove all
annotations from terms that could cause problems, including special characters for the Terrier search.
Those calls are necessary after each step producing unanticipated output (like the expansions).

5.1.1 Index documents pre-processing

For two out of the three methods involving index side expansions, the index documents need to be
enhanced before retrieval. Since indexing a large collection of documents is a very time-consuming
computational task, it is advisable to do it as less often as possible. That is why we try to include as
much information as possible within the index and only use certain parts for different experiments.
When expanding index-side, one can only weight using index fields (as discussed in section 3.2.1). That
is, once in the index, there is no more possibility to weight individual terms. That is why we need to
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take care of the manner and the number of terms to put into the expansions field. In conclusion, to save
indexing time and still keep flexibility using expansion terms, one could incorporate multiple expansions
fields into the index semantically displaying multiple expansions modes. Listing 5.1 shows an example
(excerpt) of how the expanded document representations look. In this example the DT is used since it is
the most comprehensive resource we utilized and thus will result in much more tag names.

Listing 5.1: Expanded document representation for indexing (DT)

1 <DOC>

2 <DOCID>...</DOCID>

3 <TOKEN>...</TOKEN>

4 <LEMMA>...</LEMMA>

5 <STEM>...</STEM>

6 <EXPANSION_DT_TOP1_PERTERM_ALL>...</EXPANSION_DT_TOP1_PERTERM_ALL>

7 <EXPANSION_DT_TOP3_PERTERM_ALL>...</EXPANSION_DT_TOP3_PERTERM_ALL>

8 <EXPANSION_DT_TOP5_PERTERM_ALL>...</EXPANSION_DT_TOP5_PERTERM_ALL>

9 <EXPANSION_DT_TOP10_PERTERM_ALL>...</EXPANSION_DT_TOP10_PERTERM_ALL>

10

11 <EXPANSION_DT_TOP1_PERTERM_NN>...</EXPANSION_DT_TOP1_PERTERM_NN>

12 <EXPANSION_DT_TOP3_PERTERM_NN>...</EXPANSION_DT_TOP3_PERTERM_NN>

13 <EXPANSION_DT_TOP5_PERTERM_NN>...</EXPANSION_DT_TOP5_PERTERM_NN>

14 <EXPANSION_DT_TOP10_PERTERM_NN>...</EXPANSION_DT_TOP10_PERTERM_NN>

15

16 [...]

17

18 <EXPANSION_DT_TOP10_PERDOC_ALL>...</EXPANSION_DT_TOP10_PERDOC_ALL>

19 <EXPANSION_DT_TOP50_PERDOC_ALL>...</EXPANSION_DT_TOP50_PERDOC_ALL>

20 <EXPANSION_DT_TOP100_PERDOC_ALL>...</EXPANSION_DT_TOP100_PERDOC_ALL>

21 <EXPANSION_DT_TOP500_PERDOC_ALL>...</EXPANSION_DT_TOP500_PERDOC_ALL>

22

23 [...]

24

25 </DOC>

All is short for all part-of-speech. Next to NN (common nouns), we included JJ (adjectives) and VB
(verbs). Similar holds for TWSI and Delex. Even though they are contextual resources and operate per

sentence instead of per term, the tag names will still be perterm. Second, as for the TWSI we only work
with nouns, so the part-of-speech adding to the tag name is not needed. Apart from that, we will use the
same quantitative limitations (top 1, 3, 5 and 10 per sentence, top 10, 50, 100 and 500 per document).
Listing 5.2 shows the entire structure of the TWSI expanded documents.

Listing 5.2: Expanded document representation for indexing (TWSI)

1 <DOC>

2 <DOCNO>GH950102-000001</DOCNO>

3 <TOKEN>...</TOKEN>

4 <LEMMA>...</LEMMA>

5 <STEM>...</STEM>

6 <EXPANSION_TWSI_TOP1_PERTERM>...</EXPANSION_TWSI_TOP1_PERTERM>

7 <EXPANSION_TWSI_TOP3_PERTERM>...</EXPANSION_TWSI_TOP3_PERTERM>
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8 <EXPANSION_TWSI_TOP5_PERTERM>...</EXPANSION_TWSI_TOP5_PERTERM>

9 <EXPANSION_TWSI_TOP10_PERTERM>...</EXPANSION_TWSI_TOP10_PERTERM>

10 <EXPANSION_TWSI_10_PERDOC>...</EXPANSION_TWSI_10_PERDOC>

11 <EXPANSION_TWSI_50_PERDOC>...</EXPANSION_TWSI_50_PERDOC>

12 <EXPANSION_TWSI_100_PERDOC>...</EXPANSION_TWSI_100_PERDOC>

13 <EXPANSION_TWSI_500_PERDOC>...</EXPANSION_TWSI_500_PERDOC>

14 </DOC>

Since that resource focuses on a particular part-of-speech (nouns), the size of the resulting document
collection is about a third compared to the DT.

Listings 5.1 and 5.2 display the tagged format of the text data which is suitable for indexing with
Terrier. Both the baseline and all expansion experiments are represented in this way. Data set 1 was
available in the RobustWSD format, data set 2 (Tipster) had to be transformed into the same format to
follow the pipeline. Figure 5.1 gives an overview over the data transformations performed to be able to
index the collection using Terrier in our setting.

Figure 5.1: The data transformations (index side)

5.2 Baseline

In the paper by [Wolf et al., 2010], before their own experiments, they report a stand-alone retrieval
baseline of 0,4054 in MAP on the RobustWSD collection. They used the lemma for indexing and the
DFR_BM25 model for retrieval. From the query, they used TD (title and description). We tried to follow
their pre-processing steps and parameters, which led us to the baseline results in table 5.2. Additionally,
[Pérez-Agüera and Zaragoza, 2008] use the RobustWSD corpus and report a baseline retrieval value of
0,3614. (Still it is unclear, which parts of the query they used.)

To display a baseline and conduct improvements based upon that, you have to consider the following
questions: What types to use (Token, Lemma, Stem)? Which parts of the query to use (title, description,
narrative)? This is why we will first display a combination of all of them and thereby will argue for a
way to proceed. Table 5.2 shows our baseline values of all the combinations on the RobustWSD data set.
We used the DFR_BM25 retrieval model [Amati, 2003] as well, if not denoted otherwise.

First of all, one can see the impact between using concrete tokens and abstract forms (lemma, stem).
Since the lemma provides a clean abstract mapping for many word forms and the terms from the lexical
expansion resources come as lemma, we will use the lemma from now on. To compare against a baseline
in the following chapters, in which we will work with the train set, Table 5.3 will provide detailed
baseline results on the train set and serve as our final baseline to assess all expansion experiments.
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Table 5.2: Baseline for different word forms (test set, TD), RobustWSD

T1 L S T,L L,S
recall 0.8239 0.8756 0.8738 0.8167 0.8690
map 0.3351 0.3507 0.3571 0.3289 0.3440
r-prec 0.3259 0.3353 0.3426 0.3202 0.3343
bpref 0.3219 0.3303 0.3373 0.3183 0.3314
p@5 0.4225 0.4475 0.4450 0.4325 0.4300
p@10 0.3450 0.3644 0.3663 0.3463 0.3569

1 T = Token, L = Lemma, S = Stem

Table 5.3: RobustWSD baseline results (train set, Lemma, TD)

recall map r-prec bpref p@5 p@10 p@15 p@20
train set 0.8748 0.3146 0.2995 0.3747 0.3147 0.2487 0.2209 0.1950

As explained in section 4.3.3 on page 36, those baseline results on the train set were produced by the
trec_eval tool. The same holds for the experiments on the Tipster data set, for which the baseline results
are displayed in Table 5.4. While the overall mean average precision is at a relatively low level, the first
ranking-aware metrics are at remarkably high ones.

Table 5.4: Tipster baseline results (Lemma, TD)

recall map r-prec bpref p@5 p@10 p@15 p@20
Tipster baseline 0.4899 0.1876 0.2405 0.2073 0.4700 0.4200 0.3840 0.3520

[Zhai and Lafferty, 2001] used the data set in their experiments as well, although they once use the
title (T) of the topics only, and once the long version (title, description, narrative). They report MAP
values ranging from 0.167 to 0.186 (Trec-7, title), 0.239 to 0.256 (Trec-8, title), 0.204 to 0.224 (Trec-
7, long version) and 0.248 to 0.265 (Trec-8, long version) for different smoothing methods. That is,
our baseline MAP values (with the experiments including the topic description) join in well, as they are
placed between the lower and upper bound.

5.3 Lexical expansion sources

In this section it is explained in detail how the lexical expansion resources are applied. In addition to the
introduction of those resources in chapter 1.3, some practical aspects are highlighted.

5.3.1 Distributional Thesaurus

The basic concept of using the Distributional Thesaurus (DT) for lexical expansion is quite simple - one
enters a term and looks up all the similar terms associated with it. But there are several conditions to
consider: Expand by how many terms, which terms of the query (or index document) to expand (e.g.
filtered by their part-of-speech) and how to set their weights.

There are different version of the DT. We use the version abbreviated by DT_120M_NP_POS (which is
constructed out of 120 million sentences), which only uses the lemma form, but distinguishes between
NP and NN. The reason for the latter is not to get associated terms for proper names, which is not helpful
for IR. Here is an overview of the most frequent parts-of-speech contained in the DT we use:

Since our data set is based upon tokens and hence provides the token parts-of-speech, we had to carry
out a manual mapping between the token POS (which are available to us) to the DT POS (which we
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Table 5.5: Displaying the parts-of-speech within the DT

DT lemma POS Comment Documents/Topics token POS
NP proper nouns NNP, NNPS
NN all noun forms, except NP NN, NNS
VB all verb forms VB, VBD, VBG, VBN, VBP, VBZ
JJ adjectives JJ, JJR, JJS
IN prepositions IN
RB adverbs RB, RBR, RBS
... ... ...

just intend to use). In the third column of table 5.5 you can find the token POS that are mapped to the
lemma form in the first column.

Basically, there are two methods of retrieving and restricting DT terms for expansion. First, there is the
most simple and intuitive one of getting expansions per term. That is the basic concept of the DT, picking
a term and inspecting associated terms for that particular source token. Before doing so, of course we
select the candidate words which are considered for expansion. Consequently, the number of expansions
a document (which may be a topic or an index document) gets depends on the number of words the
document consists of in the first place. Since the index documents tend to have many terms (see chapter
4.1.1) they have a large lower boundary of extra terms. If the document is enhanced by one expansion
per term one effectively doubles the size of the document.

For this reason we implemented a second method to retrieve and restrict expansion terms per document

instead. This way, the document can be extended by only a fraction of its term quantity. Figure 5.2 shows
an example for the two procedures.

Figure 5.2: Displaying expansions per term and per document (here: query)

Since the DT can only return terms for a single word (that is, it is not contextual), narrowing terms per
document has to operate upon that. We do this by retrieving the top ten expansion per source term and
then apply a ranking between them before limiting their number. This ranking (or weighting) then again
can be done by several methods. First, the sorting and cutting can be performed based on the expansion
term weights set by the resource itself (relative to the source term). Furthermore, selecting source terms
to expand by their frequency (within the documents corpus) is an alternative. The idea behind the latter
is that more rare terms are more interesting than more general terms, e.g. in the phrase solar energy the
second term is too general and would result in just as general additional terms. Third, one could collect
the intersection of expansion terms (originated by different source words) and argue the following way.
If the same terms appear multiple times as expansions, then they are good descriptors for the document.

Both expansion terms limiting methods (per term and per document) were explored in the experiments
we present in this chapter.
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5.3.2 TWSI Sense Substituter

The TWSI Sense Substituter can be obtained as a UIMA annotator1. Since the TWSI provides substitu-
tions for words in a sentence-wide context, it is a contextual resource. Applying a contextual resource
presumes sentence annotations. Second, unlike the DT, which provides expansions for nearly any term or
part-of-speech, the sense substituter focuses on 1000 selected nouns. Hence, the expansion quantity will
be smaller. But still there are the same two ways of adding and limiting expansions terms to a document
using the TWSI resource. Although it is based on the sentence context, it may yield substitutions for
more than one target word in the sentence. That is why we will stick to the per term limiting. Further-
more, since each document is a collection of sentences, we can apply the same per document restrictions
as with the DT. In case of just using the title2 of the topics for retrieval, there is only one sentence at
most and both methods are the same. As sophisticated as this resource might be, for very short queries
(e.g. solar energy) application is problematic (it does not work on most of them). The TWSI substitutions
come with a score of how many people denoted that term, which functions as an internal ranking of the
substitution terms per target word.

However, there is no obvious ranking of TWSI substitutions by document. As we have seen in chapter
1.3.2, only the score (number of votes) per target term is given. One could either use that as a global
(i.e., per document) scoring, justified by the same thought as the per term scoring: If more people
voted for that substitution, it is probably a more reliable one. Second, one could collect all the terms
appearing in substitution lists of more than one term. Third, the substitution terms could be sorted by
their original (target) terms frequency as well. The more specific target terms would result in more
informative additional terms. But the worker’s scores are absolute and have no meaning in comparison
to substitutions from another target term. Since TWSI does not provide a score for the target term itself,
they all have to be correlated in another way. One could relate a substitution’s score to the sum of all
substitution scores. Please consider the following example:

[...] <target="capital" [...] substitutions="[money,27][asset,14][fund,14][investment,14]
[cash,13][financial asset,10][finance,8][stock,8][wealth,6][property,5]"> [...]

In this example, the target term features ten substitutions, with a total score sum of 109 (all substitu-
tion terms containing whitespaces are ignored, and so are their scores). Hence, the term money will be
given a weight of 27

109
= 0,2477, the terms asset and investment one of 14

109
= 0,1284 and so on.

5.3.3 Delex System

For the Delex system, a model has to be trained on a corpus first (either LexSub or TWSI). Making use
of machine learning algorithms as a foundation for decision making and annotation creation, the Delex
system uses ClearTK [Ogren et al., 2008] as it is a suitable natural language processing component.
ClearTK is built on top of UIMA. Then, the system can be applied to new data. But first of all, the
Delex system was available as a separate, complex system on its own, incorporating machine learning
methods and several resources. It had to be tailored to suit our purposes and made available as a single
ready-to-use package (ideally as an UIMA annotator) and integrated into the existing lexical expansion
pipeline.

Applying the Delex system is time-intensive, since it uses WordNet, the Web1t corpus (using up to
5-grams for each candidate word) and the DT at the same time to generate its features for candidate
ranking. So selecting the target terms to get paraphrases for is the major challenge using this resource.

1 http://www.ukp.tu-darmstadt.de/software/twsi-sense-substituter/
2 See chapter 4.1.2 on page 30 for a recap of the topics structure.
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But first, the system can only provide substitutions for terms having synonyms in WordNet (serving as
candidates to be ranked). To reduce computation time, it is useful to assess a word’s availability in
WordNet first. Therefore, we wrote an annotator to do just that: Mark the tokens of the text that are
available in WordNet and have at least one more lexeme (different from the target word) gathered by
its related synsets. The availability in WordNet is a tight restriction, which may eliminate the possibility
of expanding informative words. Figure 5.3 illustrates an example query title (RobustWSD, train set,
C041) with all Delex expansions available3 (after stopwords).

Figure 5.3: Displaying weighted Delex expansions for a query

In this particular query title, pesticides might well be the most informative term. However, it does
not feature any entries in WordNet (other than itself), Delex neither receives nor ranks any substitution
candidates for that term. But first of all, let us examine the coverage of terms ready to expand in the data
set. In table 5.6, the WordNet coverage is given for the RobustWSD topics set (in percent of all tokens
after stopwords).

Table 5.6: WordNet coverage RobustWSD topics

Train Test
T 69.90 70.38
TD 78.32 80.52
TDN 80.58 81.65

Looked up in WordNet is the lemma form of the token with its mapped WordNet entity part-of-speech
(n, v, adj, adv). Taken into account are only the terms having at least one synset collected (same lexeme
as target is skipped). So overall there is quite a good coverage on the tokens to have candidates in
WordNet. Interestingly, the coverage increases as the query gets more verbose. This is due to the title
being very succinct and containing more specific terms. As seen in the example above, expanding terms
with Delex in any case may not be appropriate. That is, in some cases (queries) it may be better not to
expand.

5.4 Query side

Query side expansion (short query expansion) means to expand queries at runtime. At the query side
there is the possibility of setting different weights to individual terms and thus experiments work as fol-
lows. Due to the possibility of setting individual weights for individual expansion terms, query expansion
is much more flexible than index-side ones (in which all additional terms have a common field weight).
Here is an example of how a weighted query expansion representation looks like (expansions retrieved
from the DT):

pesticides^1.00 insecticide^0.24 baby^1.00 infant^0.32 food^1.00 meat^0.22

3 Coincidentally, both the terms have four candidates in WordNet.
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All other (original) query terms not explicitly weighted get a custom weight of 1.0 by Terrier if manual
weights are applied. However, the flexibility of that individual weighting is why this method is in need
of a term-specific weighting method. First, as pointed out in section 5.3.1, there are several restriction
methods of adding terms to the query.

Since the query usually is short, it is hard to fully apply contextual benefits. In this section, all the
query expansion approaches are applied at non-expanded index documents. That is, only query-side
expansion is examined here.

5.4.1 Distributional Thesaurus

Since the DT is an all-words expansion system, it can even deal with queries of short length (as it may
contain word categories not covered by other resources). As depicted in figure 5.2 on page 41, there are
(at least) two methods of adding and restricting expansion terms to a query, namely per term and per

query. So for example, one could add five terms per query term (a three term query would end up with
15 expansions this way) or limit that to ten terms per entire query. But in doing so, a sorting method
for expansions is needed. For this, we take the following two approaches, which will be abbreviated by
byweight and leastfrequent and described as follows.

byweight

The DT provides similarity scores to rank its expansions terms among themselves. Since it comes
with self score for the target term, that can be used as a reference point for normalization. Then,
expansion terms of different target words can be compared against each other.

leastfrequent

Another way of approaching the selection of terms to expand is to look at the query terms first.
Filtering terms by their interestingness before expansion might lead to more interesting expansions
in return. One way of determine interestingness is the term’s frequency. The lower its frequency,
the more interesting it is.

We will start with the byweight method, since it is the obvious and "‘built-in"’ one. The per term and
per query approach will be examined, each differentiated by part-of-speech. The POS we distinguish are
ALL, N N , V B and JJ .

per term

Per query term, up to 5 expansion terms will be added in separate experiments. That is, the ranks
topNstops = {1,3,5} will be assessed.

per query

Since the query is very short, up to 20 expansions per query will be enough, so that topNstops =

{1,3,5,10,20} is set as check for expansions per query (representing an entire document).

As we have seen in the query example above, all expansion terms have a weight of w ∈ [0,1] and
all original terms get a weight of w = 1.0. Now, setting those weights to the expanded query terms is
crucial, since it is the only way of using a weighting query-side. Those weight values come from the
Distributional Thesaurus itself, since it contains similarity scores for its generated terms.4. To map them
into a range of [0,1] we divide a term’s score by its target words score. In the following experiments,
expanded queries are applied on the (non-expanded) document collection. The queries are prepared
by part-of-speech and by the number of expansion terms, further distinguished per term and per query.
Tables 5.7 and 5.8 show the results categorized by POS and number of expansions terms.

4 Please refer to Chapter 1.3.1 on page 13 on how they are calculated.

44



Table 5.7: RobustWSD: DT query expansion MAP

results (per term)

top1 top3 top5 top10
ALL 0.2847 0.2708 0.2622 0.2623
JJ 0.2869 0.2806 0.2782 0.2782
VB 0.2880 0.2878 0.2892 0.2892
NN 0.2865 0.2857 0.2860 0.2860

Table 5.8: RobustWSD: DT query expansion MAP

results (per doc)

top1 top3 top5 top10
ALL 0.2859 0.2868 0.2789 0.2677
JJ 0.2869 0.2854 0.2839 0.2784
VB 0.2880 0.2879 0.2879 0.2882
NN 0.2870 0.2865 0.2855 0.2804

Table 5.9: Tipster: DT query expansion MAP re-

sults (per term)

top1 top3 top5 top10
ALL 0.1787 0.1655 0.1581 0.1581
JJ 0.1827 0.1803 0.1793 0.1793
VB 0.1869 0.1863 0.1867 0.1867
NN 0.1854 0.1781 0.1738 0.1738

Table 5.10: Tipster: DT query expansion MAP re-

sults (per doc)

top1 top3 top5 top10
ALL 0.1826 0.1808 0.1797 0.1775
JJ 0.1840 0.1844 0.1844 0.1844
VB 0.1873 0.1872 0.1868 0.1866
NN 0.1867 0.1862 0.1849 0.1841

First, all DT query expansion experiments hurt the performance as compared to the baseline of 0.3146

in MAP. The more terms, the worse, especially for expansions per term. There is one exception with the
verbs, though. But according to Table 4.2 on page 31, they are one of the smallest group of parts-of-
speech examined.

Table 5.9 and table 5.10 display the results of the same experiments applied on the Tipster data set.
With a baseline value of 0.1876 in terms of MAP, all DT query expansion experiments with that data set
hurt the performance likewise.

5.4.2 TWSI

In contrast to the Distributional Thesaurus, the experiments with the TWSI substitutions do not need to
be prepared for by different part-of-speech (since it solely contains substitutions for nouns). Anyhow, we
can apply the same two expansion modes for the query, i.e. adding and limiting them per term and per
document. In Tables 5.11 and 5.12 you will find the results for those experiments on the RobustWSD
data set. Compared to the baseline of 0.3146, using one expanded noun per query resulted in a slight
performance gain.

In Table 5.13 and 5.14 the results for the same experiments on the Tipster data is shown. Compared
to the baseline value of 0.1876, the tiny improvement from the equivalent RobustWSD experiment could
not be confirmed. Even more, the Tipster results have its highest value at three expansions per query.

5.4.3 Delex

As pointed out in the general description of applying the Delex substitutions (see section 5.3.3), selecting
terms to expand in the first place is crucial. This is not only important because of performance issues due
to all the resources used. Also, expanding less interesting terms may harm retrieval performance. That is

Table 5.11: RobustWSD: TWSI query expansion

MAP results (per term)

top1 top3 top5 top10
NN 0.3116 0.3108 0.3118 0.3118

Table 5.12: RobustWSD: TWSI query expansion

MAP results (per doc)

top1 top3 top5 top10 top20
NN 0.3153 0.3124 0.3090 0.3136 0.3098
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Table 5.13: Tipster: TWSI query expansion MAP

results (per term)

top1 top3 top5 top10
NN 0.1841 0.1842 0.1839 0.1839

Table 5.14: Tipster: TWSI query expansion MAP

results (per doc)

top1 top3 top5 top10 top20
NN 0.1848 0.1855 0.1839 0.1849 0.1840

why we implemented two term selecting methods for the query tokens to be marked for expansion. Both
are based on the idea that less frequent terms are more expressive and thus more interesting to expand.
The first one is based on the number of lexemes found in the original and related synsets of the target
terms. For example, the narrative of the query example shown above (see figure 5.3 on page 43) is find

reports on pesticides in baby food. In this sentence, find adds up to 32 lexemes and report to 11, whereas
baby and food both result in four. Since pesticide is not even found in more than its original synset, that
number might serve as an indicator to select tokens.

However, as mentioned earlier, selecting candidates can only be done among terms that WordNet can
provide candidates for. And it is possible that all those terms are not interesting to receive expansions
for. That is why our second approach is based on the lemma frequency of all terms in the query with the
option of not expanding any terms in the query at all. The lemma frequency is taken from the Google n-
gram corpus and annotated at every token in the query (after stopwords). The lowest n frequent lemmas
are then selected as candidates for expansion. However, if in turn those lemmas have no candidates in
WordNet (as with the pesticides in baby food query, at which pesticide has the lowest frequency count),
no terms are expanded in this method. The following description is a summary of the two methods
introduced.

lowest WordNet candidates

Query terms are sorted by their number of WordNet candidates and the lowest ones are selected.

lowest frequency count

First, all the tokens get an underlying lemma frequency annotation, afterwards they are sorted
before expansion. If these terms don’t have candidates in WordNet, no term at all will be selected
for expansion.

Using the described second method in a first experiment, only 39,33% (59 out of 150) of the train
topics of RobustWSD get expansions at all. But even though only a few expansion terms are added to the
original set of query terms, the mean average precision slightly worsened. Table 5.15 gives a detailed
overview compared to the baseline.

Table 5.15: RobustWSD: Delex and baseline results (train set, Lemma, TD)

recall map r-prec bpref p@5 p@10 p@15 p@20
baseline 0.8748 0.3146 0.2995 0.3747 0.3147 0.2487 0.2209 0.1950
Delex top1 0.8611 0.3114 0.2974 0.3699 0.3093 0.2487 0.2196 0.1947

The top 1 expansion was added per term (if the two conditions overlap: has WordNet candidates and
is the lowest frequent lemma in the sentence). Table 5.16 shows the results for the same experiments on
the Tipster data set. The continuous decrease of the RobustWSD run cannot be confirmed. In contrast,
while there is a small raise in MAP and p@10, the overall effect is negligible.

5.5 Index side

Expanding documents at index time means pre-processing the document before indexing to include ad-
ditional terms to index along with the original text. Because document expansion is done once at index
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Table 5.16: Tipster: Delex and baseline results (Lemma, TD)

recall map r-prec bpref p@5 p@10 p@15 p@20
Tipster baseline 0.4899 0.1876 0.2405 0.2073 0.4700 0.4200 0.3840 0.3520
Delex top1 0.4929 0.1877 0.2398 0.2077 0.4680 0.4220 0.3827 0.3515

Table 5.17: DT expansions per term

tag name ~#tokens / doc
TOP1_PERTERM_JJ 29.32
TOP1_PERTERM_VB 45.82
TOP1_PERTERM_NN 105.73
TOP1_PERTERM_ALL 257.80
TOP3_PERTERM_JJ 87.97
TOP3_PERTERM_VB 137.46
TOP3_PERTERM_NN 317.18
TOP3_PERTERM_ALL 773.36
TOP5_PERTERM_JJ 146.62
TOP5_PERTERM_VB 229.10
TOP5_PERTERM_NN 528.63
TOP5_PERTERM_ALL 1288.89
TOP10_PERTERM_JJ 293.21
TOP10_PERTERM_VB 458.19
TOP10_PERTERM_NN 1057.23
TOP10_PERTERM_ALL 2577.56

Table 5.18: DT expansions per document

tag name ~#tokens / doc
TOP10_PERDOC_NN 1.74
TOP10_PERDOC_JJ 0.85
TOP10_PERDOC_VB 0.31
TOP10_PERDOC_ALL 9.99
TOP50_PERDOC_ALL 49.99
TOP50_PERDOC_VB 3.49
TOP50_PERDOC_NN 10.04
TOP50_PERDOC_JJ 3.25
TOP100_PERDOC_ALL 99.99
TOP100_PERDOC_VB 10.73
TOP100_PERDOC_NN 23.53
TOP100_PERDOC_JJ 6.95
TOP500_PERDOC_VB 94.45
TOP500_PERDOC_NN 167.19
TOP500_PERDOC_JJ 49.14
TOP500_PERDOC_ALL 483.34

time, it has a runtime overhead advantage for the user of an IR system, compared to query expansion
methods (which are performed at query time). Basically, there are two ways of exercising lexical ex-
pansion at index side. First, one could simply add all the extended terms to the one default (token)
field. This way, there is no chance of weighting the extra words (or even distinguishing them from the
original document terms). That is where the use of index fields come into play. As explained in chapter
3.2.1, there are several ways of using multiple index fields in Terrier. An intuitive idea is to list all the
original documents words in one field (as done with the default one) and all terms gathered by lexical
expansion resources into another (separated) one. This way, there is total control on whether and how
to apply expansion terms. In all the indexing experiments, the retrieval model BM25F of Terrier is used,
which is a variation of the BM25 model for fields. The Terrier team implemented BM25F as described
by [Zaragoza et al., 2004].

5.5.1 Distributional Thesaurus

At first, we will look at the distribution of the expansion terms in the enhanced index. Tables 5.17 and
5.18 give an overview of how many expansion terms can be found in the enhanced index by category
(tag names are abbreviated).

Following the distinctions drawn in section 5.3.1, we will first start by examining the use of expansions
per term. Tables 5.19, 5.20, 5.21 and 5.22 show the experimentation results for the topN (N = 1, 3, 5,
10) results for the selected part-of-speech (POS) and given several expansion field weights (the lemma
fields weight remains 1.0). The results that improve both the zero field weight value as well as the
general baseline of 0.3146 are highlighted.
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Table 5.19: RobustWSD: DT index per term MAP results (top1)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.3178 0.3191 0.3197 0.3194 0.3172 0.3178 0.3164 0.3148 0.3129
JJ 0.3135 0.3136 0.3132 0.3134 0.3134 0.3137 0.3132 0.3129 0.3126
VB 0.3171 0.3173 0.3176 0.3166 0.3168 0.3165 0.3160 0.3159 0.3155
NN 0.3189 0.3180 0.3185 0.3162 0.3159 0.3159 0.3142 0.3131 0.3125

Table 5.20: RobustWSD: DT index per term MAP results (top3)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.3106 0.3138 0.3145 0.3125 0.3078 0.3047 0.3023 0.2979 0.2949
JJ 0.3116 0.3113 0.3109 0.3102 0.3100 0.3088 0.3084 0.3079 0.3078
VB 0.3147 0.3156 0.3155 0.3157 0.3157 0.3153 0.3152 0.3152 0.3133
NN 0.3135 0.3171 0.3159 0.3167 0.3171 0.3156 0.3133 0.3119 0.3129

Table 5.21: RobustWSD: DT index per term MAP results (top5)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.3076 0.3128 0.3091 0.3008 0.2965 0.2938 0.2887 0.2833 0.2792
JJ 0.3125 0.3115 0.3088 0.3044 0.3040 0.3033 0.3009 0.3004 0.2990
VB 0.3165 0.3183 0.3184 0.3185 0.3183 0.3181 0.3170 0.3158 0.3137
NN 0.3157 0.3148 0.3132 0.3126 0.3108 0.3079 0.3050 0.3006 0.2986

Table 5.22: RobustWSD: DT index per term MAP results (top10)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.2990 0.2961 0.2873 0.2732 0.2605 0.2532 0.2464 0.2397 0.2301
JJ 0.3126 0.3094 0.3051 0.3036 0.3014 0.3009 0.2975 0.2967 0.2958
VB 0.3114 0.3138 0.3137 0.3140 0.3139 0.3133 0.3129 0.3130 0.3127
NN 0.3072 0.3068 0.3035 0.2993 0.2967 0.2934 0.2905 0.2875 0.2859

As can be seen, setting the expansion fields weight to zero does not result in a value equal to the one
obtained with the lemma field only in the baseline. This may be due to the different retrieval model
that is applied with using index fields (BM25F). What is more, not even all the results are exactly equal
having set the expansions field weight to zero. Theoretically, just the original terms of the document are
considered dismissing the expansions field entirely.

Despite of that, there are small improvements in MAP using top1 to top5 expansions per term. Using
even the top10 expansions per term, just VB experiments show a small increase. In general, setting the
expansion fields weight to 0.2 performs best consistently. Additionally, using all part-of-speech (ALL)
results in the biggest impact in the same way. That is due to the higher set of terms. Using a particular
part-of-speech does not exhibit any advantages in the same manner. Only the verbs show a resembling
improvement, despite of their words base small size. The results for the same experiments on the Tipster
data set follow in Table 5.23, 5.24, 5.25 and 5.26. Again, the results that improve both the zero field
weight value as well as the general baseline of 0.1876 are highlighted. For up to five expansions per
term, small improvements in average precision could be observed.
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Table 5.23: Tipster: DT index per term MAP results (top1)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.1869 0.1915 0.1934 0.1928 0.1920 0.1900 0.1881 0.1861 0.1842
JJ 0.1874 0.1874 0.1874 0.1871 0.1868 0.1865 0.1861 0.1858 0.1853
VB 0.1893 0.1893 0.1892 0.1891 0.1888 0.1886 0.1883 0.1881 0.1876
NN 0.1858 0.1888 0.1906 0.1912 0.1903 0.1902 0.1892 0.1886 0.1882

Table 5.24: Tipster: DT index per term MAP results (top3)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.1987 0.2045 0.2033 0.1992 0.1938 0.1890 0.1852 0.1810 0.1777
JJ 0.1875 0.1877 0.1874 0.1867 0.1852 0.1843 0.1836 0.1825 0.1815
VB 0.1976 0.1982 0.1984 0.1984 0.1985 0.1986 0.1984 0.1984 0.1979
NN 0.1834 0.1877 0.1888 0.1871 0.1854 0.1833 0.1818 0.1800 0.1787

Table 5.25: Tipster: DT index per term MAP results (top5)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.1968 0.2017 0.1957 0.1888 0.1829 0.1777 0.1720 0.1677 0.1636
JJ 0.1872 0.1869 0.1858 0.1846 0.1829 0.1817 0.1807 0.1799 0.1793
VB 0.1994 0.2005 0.2008 0.2004 0.2001 0.1996 0.1992 0.1986 0.1981
NN 0.1790 0.1839 0.1836 0.1808 0.1785 0.1764 0.1740 0.1714 0.1693

Table 5.26: Tipster: DT index per term MAP results (top10)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.1926 0.1986 0.1880 0.1761 0.1654 0.1570 0.1497 0.1434 0.1372
JJ 0.1871 0.1860 0.1845 0.1828 0.1815 0.1798 0.1783 0.1768 0.1756
VB 0.2008 0.2018 0.2020 0.2016 0.2008 0.1999 0.1989 0.1980 0.1970
NN 0.1720 0.1776 0.1755 0.1724 0.1696 0.1669 0.1643 0.1623 0.1594

Now, in Tables 5.27, 5.28, 5.29 and 5.30 the results of the same experiments with expansions added
per document are displayed. There is practically no effect with less than 100 expansion terms per
document. The reason for that is the documents size of about 500 words itself (refer to Table 4.1 on
page 30 for a detailed overview). There is an insignificant positive effect on verbs and nouns, applying
several hundred expansions per documents. Both effects can be confirmed with the second data set, as
shown in tables 5.31, 5.32, 5.33 and 5.34.

5.5.2 TWSI

In this section the results are shown for applying the TWSI to the index documents. Before that, let us
examine the quantity of the terms added by expansion to put the expansions impact into perspective.
Table 5.35 shows the average number of tokens for each tag name in the entire collection. In average,
about every fourth token in a document is expanded by the TWSI sense substituter.
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Table 5.27: RobustWSD: DT index per doc MAP results (top10)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.3172 0.3172 0.3173 0.3171 0.3172 0.3172 0.3170 0.3172 0.3171
JJ 0.3146 0.3146 0.3146 0.3146 0.3146 0.3146 0.3146 0.3146 0.3146
VB 0.3146 0.3146 0.3146 0.3146 0.3146 0.3146 0.3146 0.3146 0.3146
NN 0.3146 0.3145 0.3146 0.3145 0.3145 0.3144 0.3145 0.3146 0.3146

Table 5.28: RobustWSD: DT index per doc MAP results (top50)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.3174 0.3175 0.3157 0.3135 0.3134 0.3114 0.3114 0.3111 0.3107
JJ 0.3145 0.3145 0.3144 0.3144 0.3144 0.3144 0.3144 0.3144 0.3144
VB 0.3148 0.3147 0.3147 0.3146 0.3144 0.3144 0.3144 0.3144 0.3143
NN 0.3151 0.3151 0.3150 0.3150 0.3149 0.3132 0.3131 0.3130 0.3133

Table 5.29: RobustWSD: DT index per doc MAP results (top100)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.3159 0.3150 0.3146 0.3120 0.3094 0.3065 0.3053 0.3039 0.3033
JJ 0.3138 0.3137 0.3137 0.3136 0.3136 0.3134 0.3133 0.3132 0.3132
VB 0.3150 0.3150 0.3150 0.3149 0.3148 0.3148 0.3151 0.3151 0.3150
NN 0.3146 0.3147 0.3139 0.3138 0.3120 0.3116 0.3110 0.3108 0.3100

Table 5.30: RobustWSD: DT index per doc MAP results (top500)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.3088 0.3080 0.3049 0.3001 0.2954 0.2918 0.2856 0.2788 0.2752
JJ 0.3105 0.3102 0.3098 0.3093 0.3064 0.3061 0.3056 0.3050 0.3044
VB 0.3163 0.3170 0.3166 0.3161 0.3159 0.3160 0.3159 0.3156 0.3160
NN 0.3152 0.3140 0.3132 0.3101 0.3085 0.3063 0.3048 0.3030 0.3015

Table 5.31: Tipster: DT index per doc MAP results (top10)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.1863 0.1865 0.1865 0.1865 0.1864 0.1863 0.1861 0.1859 0.1859
JJ 0.1862 0.1862 0.1862 0.1862 0.1861 0.1862 0.1862 0.1862 0.1862
VB 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863
NN 0.1864 0.1865 0.1864 0.1864 0.1864 0.1864 0.1864 0.1864 0.1864

We apply the same field weights to the TWSI expanded terms. Table 5.36 shows the results for the
topN (N = 1, 3, 5, 10) ranked expansions terms applied per term (i.e., per target term).

Since the documents are expanded by only a few terms (at least for top1), the results change very little.
However, performance decreases as expected when the weighting of those additional terms increase.
Adding the top10 substitutions per target term results in an expansions set being even bigger than the
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Table 5.32: Tipster: DT index per doc MAP results (top50)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.1868 0.1873 0.1873 0.1871 0.1867 0.1862 0.1855 0.1847 0.1836
JJ 0.1862 0.1863 0.1863 0.1862 0.1862 0.1862 0.1862 0.1862 0.1861
VB 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869
NN 0.1863 0.1864 0.1864 0.1864 0.1861 0.1858 0.1855 0.1851 0.1849

Table 5.33: Tipster: DT index per doc MAP results (top100)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.1887 0.1892 0.1890 0.1884 0.1874 0.1865 0.1854 0.1840 0.1821
JJ 0.1863 0.1864 0.1863 0.1863 0.1862 0.1861 0.1860 0.1859 0.1858
VB 0.1877 0.1878 0.1878 0.1879 0.1879 0.1879 0.1878 0.1878 0.1878
NN 0.1872 0.1873 0.1872 0.1869 0.1863 0.1859 0.1853 0.1847 0.1843

Table 5.34: Tipster: DT index per doc MAP results (top500)

POS
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ALL 0.1979 0.1991 0.1967 0.1931 0.1871 0.1814 0.1754 0.1703 0.1654
JJ 0.1874 0.1875 0.1873 0.1869 0.1864 0.1858 0.1851 0.1844 0.1836
VB 0.1939 0.1939 0.1937 0.1937 0.1932 0.1927 0.1922 0.1915 0.1911
NN 0.1872 0.1888 0.1879 0.1867 0.1849 0.1824 0.1801 0.1781 0.1762

original terms set. That is why expansions hurt the performance in any field weight setting and decreases
even faster when raising the field weight value. Compared to the in-line baseline (the weight of the
expansion field set to zero) however, there are (except for top10) tiny increases for the weights of 0.1

to 0.3. This corresponds to index side DT experiments (expansions per term) and encourages taking an
extra field weight (if any) of about 0.2.

Table 5.37 shows the results for the TWSI per doc expansions on the RobustWSD collection. Tables
5.38 and 5.39 show the results for the same experiments on the Tipster collection.

5.6 Data analysis

At this point, we want to conduct an analysis of the result displayed in the previous sections. The
changes in the results at index expansion are still overall tiny, but they exhibit some positive movements.
To explore these effects further, we have to take a deeper look at the ranks of two system runs. To do so,
the ranked results of the baseline run are explored and will be compared to the run of the DT top3 per
term index expansion results as an example expansion run (refer to table 5.20 on page 48). As the best
performing setting, the expansion field’s weight of 0.2 is chosen.

In statistics and visual analytics, different types of data are distinguished, e.g. nominal variables for
unordered sets like movie titles, quantitative variables for numerical data and ordinal data for ordered
sets. Since ranked document lists from information retrieval systems count as ordinal data, we can
apply some rank correlation metrics to compare those. We start with the Spearman’s rank correlation
coefficient [Spearman, 1904], since it is appropriate for discrete variables as well. Spearman’s correlation
coefficient is a statistical measure of the strength of a monotonic relationship between paired data. In a
sample it is denoted by rs and is by design constrained as shown in Equation 5.1.
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Table 5.35: Expansions quantities by tag name (TWSI)

tag name ~#tokens / doc
TOKEN 257.68
LEMMA 257.45
STEM 257.68
TWSI_TOP1_PERTERM 86.21
TWSI_TOP3_PERTERM 252.77
TWSI_TOP5_PERTERM 404.81
TWSI_TOP10_PERTERM 632.95
TWSI_10_PERDOC 9.99
TWSI_50_PERDOC 49.65
TWSI_100_PERDOC 97.13
TWSI_500_PERDOC 372.55

Table 5.36: RobustWSD: TWSI index per term MAP results

top
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

top1 0.3150 0.3135 0.3137 0.3132 0.3118 0.3126 0.3126 0.3121 0.3117
top3 0.3200 0.3218 0.3212 0.3164 0.3176 0.3169 0.3162 0.3144 0.3142
top5 0.3200 0.3222 0.3211 0.3199 0.3167 0.3163 0.3171 0.3172 0.3184
top10 0.3201 0.3205 0.3217 0.3181 0.3140 0.3128 0.3137 0.3132 0.3127

Table 5.37: RobustWSD: TWSI index per doc MAP results

top
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

top10 0.3140 0.3143 0.3141 0.3151 0.3154 0.3154 0.3157 0.3156 0.3158
top50 0.3143 0.3144 0.3147 0.3142 0.3145 0.3150 0.3150 0.3148 0.3145
top100 0.3157 0.3165 0.3160 0.3160 0.3157 0.3159 0.3160 0.3158 0.3153
top500 0.3195 0.3215 0.3190 0.3144 0.3121 0.3114 0.3104 0.3091 0.3081

Table 5.38: Tipster: TWSI index per term MAP results

top
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

top1 0.1864 0.1878 0.1888 0.1892 0.1894 0.1893 0.1893 0.1892 0.1891
top3 0.1832 0.1854 0.1862 0.1863 0.1866 0.1861 0.1854 0.1848 0.1841
top5 0.1840 0.1878 0.1898 0.1904 0.1900 0.1897 0.1894 0.1889 0.1877
top10 0.1848 0.1887 0.1900 0.1905 0.1907 0.1904 0.1895 0.1886 0.1879

−1 ≤ rs ≤ 1 (5.1)

To use the Spearman rank correlation coefficient, the data is converted into ranks and the difference
between the ranks of the two runs is calculated. Let rank(x i) be the rank of the first run, and rank(yi)

that of the second run, then di is the difference between them as given in 5.2.

di = rank(x i)− rank(yi) (5.2)
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Table 5.39: Tipster: TWSI index per doc MAP results

top
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

top10 0.1866 0.1867 0.1868 0.1867 0.1865 0.1866 0.1866 0.1867 0.1867
top50 0.1864 0.1880 0.1888 0.1893 0.1896 0.1899 0.1899 0.1900 0.1902
top100 0.1875 0.1896 0.1909 0.1923 0.1927 0.1931 0.1933 0.1932 0.1933
top500 0.1868 0.1895 0.1907 0.1907 0.1905 0.1903 0.1894 0.1888 0.1877

The Spearman rank correlation rs is then computed as shown in 5.3.

rs = 1−
6
∑

i di
2

n× (n2− 1)
(5.3)

Note that the formulation given in 5.3 is a simplification of the Spearman rank correlation coefficient
and only holds for the condition of all ranks being unique (i.e., there are no ties). This holds in practice
for IR rankings.

For each query, the ordered documents collection from the Terrier output needs to be extracted and can
then be given to the correlation function. Results are averaged over all queries. The result for the settings
explained above (Baseline vs. DT index top 3 per term) is rs = 0.49663. A value of 1.0 would be caused
from two rankings being exactly equal and a value of 0.0 could be caused by an empty intersection of the
two ranks document collection (i.e., no monotonic correlation). The correlation value our comparison
results in is considered to be a moderate one. In the setting of IR rankings however, it means that there
is a lot of change in ranks. That is, despite only tiny positive change in average precision, most of the
rankings in the lists change. From this it follows that the expansions provided in that setting have a high
impact on the retrieval.

To do the same with the Tipster data set, we chose to compare the baseline against the DT run with
top3 expansions per term (of any part-of-speech, denoted as ALL) and a field weight of 0.1, since that
configuration yielded the best relative improvement (refer to Table 5.24 on page 49) and hence seems
worth investigating. Comparing the ranks as explained above produces a Spearman rank correlation
coefficient of rs = 0.53276, that is about the same as with the RobustWSD experiments. Likewise, the
expansions have a high impact, even though a little bit less as the value is closer to 1.0. In order to get
a better understanding of the changes and the differences between the two settings, we want to take
a comparative look at the coverage of judgements in all the four rankings, namely the ones marked as
relevant and the ones marked as non-relevant to the given query. Table 5.40 shows the coverage of
judgments for both the baseline runs and the expansions experiments on both data sets, distinguished
by the first three to all thousand ranks.

Table 5.40: Coverage of assessments in rank correlation experiments

top3 top5 top10 top50 top100 top500 top1000
RobustWSD: Baseline 0.67 0.4 0.4 0.38 0.25 0.13 0.09
RobustWSD: Expansions 0.67 0.6 0.4 0.12 0.14 0.07 0.05
Tipster: Baseline 1.0 1.0 1.0 1.0 1.0 0.59 0.35
Tipster: Expansions 1.0 1.0 1.0 1.0 0.97 0.53 0.32

The clear discrepancy between the extent of assessments is noticeable, as is its decrease with dropping
ranks. Second, the results the expansions runs return nearly always contain a higher proportion of non-
judged documents (i.e., neither relevant nor irrelevant ones). Since those additional documents are of
unknown relevance to the topic, no qualitative statement can be made about that change. The difference
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in coverage between the two data sets is tremendous, especially beginning from rank 100. While in the
Tipster disks about every second document has an assessment up to the 500th rank, it is one out of
ten in the RobustWSD collection. The differences within the collection results are very similar, though.
From this follows that the extent of judgments a collection possesses is not a crucial feature for lexical
expansions to retrieve more relevant documents on average. To get a more visual understanding of
the changes between the two runs, Figures 5.4 and 5.5 show a query-by-query analysis of the changes
between the two runs of both the comparisons discussed (x-axis: topic, y-axis: change in MAP).
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Figure 5.4: By-Query Analysis (RobustWSD)
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Figure 5.5: By-Query Analysis (Tipster)

The changes in MAP are depicted in descending order, starting with the query having the highest
improvement. In general, about the same amount of topics show an increasing as a decreasing perfor-
mance, compensating its overall benefits. This suggests a normal distribution, not making it possible
to give a clear advise on the expansions used. In any case, the direct comparison of the two figures
confirms the previously noted effect that the extent of assessments does not reveal new findings by using
the second data set but rather reinforces those gained by the first one.

54



6 Discussion and future work

In this chapter, we will discuss the overall results shown so far throughout the paper. Furthermore, we
will point to some ideas for future investigation in theoretical as well as practical respects.

6.1 Results discussion

Overall, this work aimed at measurably improving Information Retrieval by lexical expansion. Another
popular approach is to analyze query logs to re-rank search results [Zhuang and Cucerzan, 2006], to
suggest related queries [Baeza-Yates et al., 2004], to perform query expansion [Cui et al., 2003] or to
get a better understanding of the user’s query reformulation [Huang and Efthimiadis, 2009]. This, how-
ever, requires extensive search log data collected over a period of time. In a smaller laboratory setting
we tried to improve IR on the lexical basis by enriching the user’s information need and the documents
representation. That lexical expansion was achieved by using three lexical resources that provide sub-
stitutions for words in context. Before going into any interpretation, we first want to summarize the
experimental results found by this work. Some of the experiments could exhibit small improvements
over the baseline in terms of average precision over all the queries. Table 6.1 gives an overview over the
improvements and which could be confirmed by the second data set.

Table 6.1: Experimental result improvements

RobustWSD Tipster disks
DT query X X

DT index Ø Ø

TWSI query Ø X

TWSI index Ø Ø

Delex query X X

The query expansion experiments with the DT had no positive effect on the first, and neither on the
second. By contrast, its positive effect on index-side experiments could be confirmed by the Tipster
experiments. In general, the effects are very small. There are some hints, however. Looking at all the
results of all experiments, the learning effect can be divided into the following categories.

Query vs. index expansion

The most remarkable result is the difference between query and index side expansion. Hardly
any positive results could be found and confirmed conducting query expansion experiments. Since
the query is very short and sensitive to changes, the more terms had been added, the worse the
precision got. While on the other hand all index side ones continuously featured improvements. It
is advised to further investigate this path in the future, i.e., to focus on index expansion research.

Part-of-speech

Whether and how to use parts-of-speech (POS) depends on the resource. The DT is able to provide
expansions for any POS contained in text. While the TWSI substitutions exclusively work for
nouns, the Delex system depends on the four WordNet parts-of-speech (nouns, verbs, adjectives
and adverbs). In most of the DT experiments divided by POS the ones using verbs and nouns
stand out. If and only if nouns or verbs returned positive results in one setting (represented by one
table in Chapter 5), then ALL (any POS) gained in terms of MAP as well, but never solely in that
category. From this it follows that the ALL improvements might result from the effects of the other
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POS categories. The ones using verbs or nouns continuously featured the greatest improvements.
Further work should focus on those two lexical classes.

Resource

Since the previous inspection suggests to expand nouns and verbs, TWSI seems to be an adequate
fit. This is confirmed by all index side experiments using TWSI. Each setting could display many
positive trends on both data sets. With the TWSI resource being limited to that particular lexical
category, it can be utilized without any danger. The DT on the other hand is quite capable of
covering the aspect of verbs. Since it even incorporates different tenses of verbs, it actually allows
a more fine-grained study of that direction. That is why we recommend using the DT for future
lexical expansion experiments as well.

Per term vs. per doc

We employed the distinction between producing expansions per term and per document/query be-
cause of providing a clear and flexible limit in terms of quantity. In the end it was worth it because
the results across all the experiments are quite indecisive about that distinction. Within the DT
experiments, expansions per term resulted in more improvements in terms of quantity as well as
quality. With the TWSI experiments however, it nearly is the other way around. The TWSI substi-
tutions could even spud in yielding improvements with less expansions per document (50 or 100),
while the DT experiments hardly produced any changes, and if so, used 100 or 500 expanded
terms. Looking at the extent of changes in MAP however, adding and limiting expansions per doc-
ument turned out to perform better continuously. Hence, it is suggested to follow that classification
and to analyze different approaches of selecting terms per document.

Number of expansions

Results on both the data sets are indecisive about the number of expansions per term, but there is
a mean of about 3 to 5 additional words per term. The same discrepancy holds with limitations
by document across both the collections. That is why we suggest to abandon the approach of
strict quantitative limitations, but rather pursue an approach of adding the enhanced terms by a
given similarity threshold of the resource itself. By that, only the associated terms of the strongest
semantic relationship (e.g. synonyms) should be taken into account.

Field weights

Applying expansions at index side experiments required using fields and setting field weights. Most
of the useful results turned out to use a field weight between 0.1 and 0.5. For future investigations,
field weights higher than that can be disregarded.

The experiments throughout this thesis incorporated several conditions (mentioned above). Overall,
the analysis pointed out several aspects on which conditions to restrict, abandon or augment in the
future. It is to be examined if the results improved once the signals are narrowed down and amplified.
So far, however, the results are not significant. We applied a Student’s t-test to the second comparison
(Tipster baseline vs. DT index top3 expansions per term), since it is one of our best performing settings.
The test results in a p-value of 0.52, that is, it is not nearly significant. That is why we recommend
not to explore this approach of improving IR by lexical expansion, because it comes with considerable
overhead.

6.2 Future work

In addition to the findings of the previous section, we want to divide the proposals for future work into
the following categories.

Resources

An avenue worth investigating might be the combined application of lexical expansion resources.
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First, one could agree on just using the expansions provided by all resources to a particular target
term, i.e. use the expansion term intersection. This way, a higher confidence about the expansions
is gained. Second, the resources can be combined in such way that e.g. the DT is used as a fallback,
if the most interesting lemma has no candidates in another resource.

Term selection

Before expanding however, we advise to put time and thought into selecting terms for expansion.
As pointed out in Chapter 5.4, there are target terms that are more interesting than others. We ad-
vise to apply measures of significance to the terms. At last, similarly to using the term intersection
of different resource, the intersection of all target words may be discovered and given a higher
weight.

Weighting

In this thesis, only little focus was put on expansion term weighting. The query languages of
modern search engine software allows for very flexible weighting schemes to be applied. Following
the findings of this thesis about query expansion however, there was no hint that this is a promising
avenue. At index side, using the different tags (headline, text) of the index documents can be
considered to be used as different index fields with different weightings for them. Placing emphasis
on the index documents, title can be considered as a small summary of its referring text and given
a higher weight when matching query terms.

Pre-processing

Another issue is the notion of so called multi-word expressions (mwe), which has been disregarded
in all our experiments. Interesting terms for motivating that aspect are not only named entities like
El Nino, but also expressions like baby food, multi-billionaire and car industry, which are one word
terms in other languages like German. The idea of multi-word expressions is that they are small
context units. Lexical expansion should be applied to those terms as a whole. Identifying those
and making use of them might prevent too general expansions to be included.

Query investigation

As Figures 5.4 and 5.5 on page 54 indicate, half of the queries are showing a slight increase in
MAP performance. It remains to investigate, if general features can be learned from these queries
that do. If the topics that do show an improvement could be identified and selected by a rule
before expansion, only those should be expanded. It is possible that the expanded topics hurting
performance exhibit characteristics by which their expansion could be prevented.

General

Another approach of utilizing lexical expansion is to remove terms from the original query/doc-
ument, if (by some methods discussed above) they don’t appear in any expansions of the other
ones, or reduce their term weights. Additionally, lexical expansion resources can be used for query
reformulation to reflect the user not knowing the document collection and to adapt to its word
distribution. The search engine could also passively suggest similar words or word nets for the
user to choose from.

6.3 Perspective

When a user enters a search string into the input field of a search engine on the web, the system returns
information it has pre-processed. In this work we tried to extend this information need (expressed by a
query) of the user and the index documents at the lexical level to bridge the lexical mismatch problem
between these two text representations. By doing so, working at the index side turned out to be a
little bit more promising than query side. But overall the system returned about the same amount of
relevant documents as it returned non-relevant ones. This indicates that the enhanced terms added by
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the resources are ambiguous and general as well, exhibiting the same language problems as the target
terms do. The approaches did bridge the lexical gap to some extent, but they did also open further word
relations that the user might not intend. What this achieved is a plus in quantity, but not necessarily in
quality. So, the approach of improving the search process by adding additional terms as conducted in
this thesis did not result in any significant changes. This indicates that the bottleneck in retrieval systems
is not at the level of language, or that this approach is maxed out already. Applying lexical expansions
or working at the language level in general comes with a considerable extent of work and testing to put
into. More promising approaches have to be investigated instead, e.g. re-rankings by query logs or some
kind of visual search.
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