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Abstract

Learning to detect and distinguish semantic relations is an important building block in the
formalization of natural language, in tandem with entity recognition. Distributional seman-
tics has taken us a big step in that direction by providing a methodological and theoretical
framework in which we can distill synsets, which are sets of words that share attributional or
relational similarity, although under a variety of different semantic respects. In this thesis I
examine an approach to further discriminate among different types of relational similarity found
in such synsets. Therefore, pairs of distributionally similar nouns are represented by their shared
contexts within sentences from a gigaword-sized corpus. That is, words which are commonly
examined in a paradigmatic manner are now investigated in terms of their syntagmatic prop-
erties. From the contexts extracted when such words co-occur, three sets of features and their
set-theoretic combinations are derived: context features, similarity features, and features from
topic modeling. A logistic regression model and the Chinese Whispers clustering algorithm are
trained to distinguish hypernyms, co-hyponyms, and meronyms. The resulting models are eval-
uated with the bless and sat data sets. The feature sets are analyzed in an ablation test, which
shows that subtree patterns along dependency parses containing both nouns in a pair are the
single most predictive feature. Predictions are best for co-hypernyms with an F -score of 0.90,
slightly less reliable but still fairly good for meronyms with 0.79, and most difficult for hyper-
nyms with 0.56. The clustering returns largely pure clusters for hypernymy and co-hyponymy,
while it fails to form meronymy clusters. Thorough analysis of the bless data set shows that
de-lexicalization before stratification is essential to prevent overfitting. Overall, the approach
achieves good results, which might be improved further in future work by integrating multiword
expressions.
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Zusammenfassung

Das Erkennen und Unterscheiden von semantischen Relationen ist ein elementarer Baustein
der Formalisierung von natürlicher Sprache, in Kombination mit der Eigennamenerkennung.
Die distributionale Semantik bringt uns diesem Ziel einen großen Schritt näher, indem sie eine
methodische und theoretische Einbettung zur Verfügung stellt, um semantisch ähnliche Worte
zu finden und zu gruppieren. In dieser Arbeit untersuche ich einen Ansatz diese Mengen von
ähnlichen Worten genauer dem Typ ihrer semantischen Relation nach zu unterscheiden. Zu
diesem Zwecke werden Paare von distributional ähnlichen Worten durch ihren gemeinsamen
Kontext in Sätzen eines gigawort-großen Korpus repräsentiert. Es werden also Worte, die
üblicherweise in einem paradigmatischen Verhältnis zueinander stehen, bezüglich ihrer syntag-
matischen Eigenschaften untersucht. Aus den extrahierten Kontexten werden dreierlei Merk-
malsmengen und deren mengentheoretische Kombinationen gewonnen: Kontextmerkmale, Ähn-
lichkeitsmerkmale und thematische Merkmale. Ein logarithmisches Regressionsmodell und der
Chinese Whispers Clustering-Algorithmus werden darauf trainiert Hypernyme, Co-Hyponyme
und Meronyme zu unterscheiden. Die trainierten Modelle werden anhand der bless- und sat-
Daten evaluiert. Eine Analyse der Merkmalsmengen zeigt, dass das Merkmal, welches auf Teil-
bäumen von dependenzgrammatikalischen Syntaxbäumen basiert, die Klasse des Nomenpaares
am zuverlässigsten vorhersagt. Insgesamt sind die Vorhersagen am besten für Co-Hyponyme mit
einem F-Maß-Wert von 0.90, etwas weniger zuverlässig aber immer noch gut für Meronyme mit
0.79 und am schwierigsten für Hypernyme mit 0.59. Der Clustering-Algorithmus findet reine
Gruppen von Hypernymen und Co-Hyponymen, allerdings keine guten Meronymgruppen. Eine
gründliche Analyse der bless-Daten zeigt, dass es essentiell ist die Trainings- und Testsdaten
zu delexikalisieren, um Überanpassung zu vermeiden. Insgesamt ergibt der untersuchte Ansatz
gute Ergebnisse, denen die Betrachtung von Mehrwortbegriffen noch zuträglich sein könnte.
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1 Introduction

1.1 Motivation

Bootstrapping semantics from text is as challenging as it would be scientifically rewarding.
Early attempts at computer programs that would understand natural language were published
within a decade of the first international conference on natural language processing in 1952;
which was also the time when John McCarthy first coined the term artificial intelligence. These
programs included student by Daniel Bobrow, which solved algebra word problems, and eliza
by Joseph Weizenbaum, an interactive program simulating a Rogerian psychotherapist. They
were followed shortly after by Terry Winograd’s shrdlu and many more. While these early
programs were very encouraging and impressive at the time, they were also restricted in terms
of possible input and domain of conversation.

Since the early days of natural language processing, huge advances have been made in formal
theories, the quantities of data available, performance and disposability of computing resources,
and by combining methods from diverse disciplines. Big successes have be registered from ma-
chine translation, which is on hand now in many smartphone applications, to natural language
user interfaces that answer (some of) your questions and semantic web technologies and re-
sources.

Machine reading, as Oren Etzioni termed the interdisciplinary take on autonomous understand-
ing of text by machines recently (Etzioni et al. [2006]), could soon bring about a natural
language interface to all digitally stored textual knowledge and with it a whole series of imme-
diate applications: automatic lexical inference and remedies to data sparseness being just two
of the more obvious ones.

One of the prevalent semantic theories1 in this context is distributional semantics, which com-
bines linguistic methods with statistics. It aims at approximating semantics with the distribu-
tions of terms in text collections on the assumption that words with similar distributions have
similar meanings. Distributional semantics is a good match for machine reading as they’re both
based on inherently unsupervised methodology. Statistical semantics, as it is also known, caught
on because it provides both large-scale coverage and “quantitative predictions about degrees of
similarity (or relatedness)” while requiring little manual supervision (Baroni [2013]). Statistical
semantics has shown promise in various problem fields of linguistic, with its models outperform-
ing formal lexical representations, like semantic networks, in a variety of applications from word
sense discrimination to selectional preferences and synonym detection (Schütze [1998], Erk
et al. [2010], Padó and Lapata [2007]).

Assertions about degrees of relatedness, however, do not suffice to make text palatable to infer-
ence and reasoning, which are integral building blocks of semantic machines (Etzioni et al.

1 Semantic theories are theories that deal with assigning meaning to linguistic expressions.

Learning Distributional Semantics
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[2006]). Much rather our models need to be able to discriminate among different types of
semantic relations that display similar distributional behavior but under a variety of different
semantic respects; for instance, near-synonymy, co-hyponymy, meronymy, holonymy, hypernymy,
and antonymy. Learning and predicting such relations reliably, would form an important build-
ing block on the path to machine reading, in that components like entity resolution and textual
entailment would benefit greatly.

1.2 Hypothesis

The aim of this work is to examine whether information derived from distributional similarity is
sufficient to learn specific semantic relations. This is no start from scratch – many approaches
already provide mechanisms to obtain groups of distributionally similar words (e.g., Lin [1998b],
Rapp [2004]). A distributional thesaurus is but one (prominent) example here (cf. Biemann
and Riedl [2013]). I build on their work to examine whether it is possible to further separate
the sets of distributionally similar words provided by such a mechanism into more refined groups
that share a specific semantic relation using more distributional similarity. One could think of
it as higher-level distributional similarity.

The basic idea is as follows: In distributional semantics, the meaning of a word is derived from
its distributional properties in a corpus compared to those of other words in that corpus. This
means that we look at what other words a word co-occurs with (its syntagmatic relations) and
what words occur with the same other words but not usually with each other (its paradigmatic
relations). Table 1.1 illustrates the setting. In the given examples coffee and drink or they and
gulp are in a syntagmatic relation, whereas coffee and cocoa are in a paradigmatic relation.

I drink coffee
you sip tea
they gulp cocoa

I drink coffee
you sip tea
they gulp cocoa

Table 1.1: Syntagmatic (left) versus paradigmatic relations; from Sahlgren [2012].

Words that are in a paradigmatic relation, i.e. co-occur with the same other words but usu-
ally not with each other, are considered distributionally similar and hence similar in meaning.
Their meaning, however, is often similar along a broad definition of similarity which includes
various relations like near-synonymy, hypernymy, or even antonymy. Every so often though,
such paradigmatic words, like tea and coffee, co-occur in the same sentences, for instance, in
enumerations and definitions.

If we now represent such pairs of distributionally similar words only by information extracted
from sentences in which they co-occur, and reapply methods of distributional semantics, will
pairs with high similarity in the resulting model share the same semantic relation? Put dif-
ferently: If we examine both paradigmatic and syntagmatic relations between pairs of words,
might that suffice to turn up the information required to distinguish the semantic relations that
exist between these words?

Priska Herger
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1.3 Terminology

The terminology used in this thesis is generally in line with the terminology outlined inMedelyan
et al. [2013], which corresponds to common practice in linguistics. Since usage is less consis-
tent across related fields like data mining, natural language processing (NLP), or knowledge-
engineering, I will take a moment to review some basic terms.

The smallest unit of language that carries semantic meaning is called a morpheme. There are
free and bound morphemes, and free morphemes are words. Words undergo morphological pro-
cesses that may lead to variation in meaning, word class, tense, number, plurality etc. – s.
Manning and Schütze [1999] for a detailed account. One such process is inflection which
yields forms like makes or made from the root make. The inflectional forms of a word are often
subsumed into a lexeme. Inversely, one could say, that a lexeme is the result of applying stem-
ming or lemmatization to an inflected word. According to Manning et al. [2008], stemming
and lemmatization differ in that stemming is more of “a crude heuristic process that chops off
the ends of words” while lemmatization uses vocabulary and morphological analysis “aiming to
remove inflectional endings only and to return the base or dictionary form of a word, which is
known as the lemma”.

Another morphological process is compounding : Words can be joined into new words (e.g., home
+ school → homeschooling) or multiword expressions (e.g. ham radio but also idioms, like to
break the news) and are then called compound words. Further terms to consider are concept
and term. Medelyan et al. [2013] define concepts as representing “classes of things, entities,
or ideas, whose individual members are called instances” and terms as “words or phrases that
denote, or name, concepts”. Further terminology, like semantic relations, will be explained when
used in text.

1.4 Outline

With the hypothesis pinned down and some basic terminology untangled, the next chapter gives
a review of the theoretical underpinnings of this work. There I trace distributional semantics
back to its beginnings and motivate its relevance to present-day research; I delineate the many
shades of semantic similarity, the second pillar of this work, and give an overview of related
research. Chapter 3 contains detailed descriptions of the applied methods, while at the same
time placing them in the bigger picture of the fields they are taken from. Evaluation sets and
procedures are depicted in that chapter as well. The results reached are presented and discussed
in Chapter 5. Finally, the last chapter gives conclusions drawn and an outlook on future work.

Learning Distributional Semantics
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2 Background

This chapter contains the theoretical background of distributional similarity and provides an
overview of research related to this study. I begin with the big picture, briefly considering the
prevalent semantic theories of the last century up until now, to then focus on distributional
semantics, the distributional hypothesis, and distributional semantic models including their
applications and challenges. In the second part I inquire into semantic similarity and delineate
different levels of analysis together with respective experiments found in the literature. I conclude
with further related research that fits none of the above categories but is no less relevant to this
work.

2.1 Distributional semantics

There are three long-standing schools of theorizing the science of linguistics: the Externalists,
the Emergentists and the Essentialists, Scholz et al. [2014]. It would by far exceed the scope
of this thesis to discuss them in any detail, but I want to quickly mention their main tendencies
to highlight the backdrop distributional semantics arises from. The Externalists might as well
have been called ‘structural descriptivists’ or ‘empiricists’ as they are especially concerned with
building models able to predict the structure of natural language expressions in accord with em-
pirical data collected from language use. The Emergentists, on the other hand, “aim to explain
the capacity for language in terms of non-linguistic human capacities: thinking, communicating,
and interacting”, Scholz et al. [2014]. One field of study close to the essence of this view is
the impact of social status on linguistic structure. Thirdly, the Essentialists, who are sometimes
referred to as ‘formalists’, center on abstract universal principles of language from which to de-
rive properties of specific languages. Noam Chomsky’s universal grammar (Chomsky [1965])
is the most prominent example here1. Distributional semantics with its focus on predicting sim-
ilarity in meaning from distributions of terms in corpora and its proximity to corpus linguistics
mainly rests upon the Externalists’ empirical outlook.

In order to understand and analyze the essence of language, the question about the nature of
meaning and reference of linguistics expressions is as important as the one about the subject of
linguistics touched upon above. Philosophy of language is the branch of philosophy traditionally
concerned with the topics of meaning and reference. Similarly to the philosophy of linguistics,
it can only be nodded to in passing here. There are two sorts of theories of meaning: semantic
theories, or semantics for short2, and foundational theories of meaning, Speaks [2014]. We will
only deal with the former sort here, which is concerned with assigning semantic contents to the
expressions of a language. In contrast, foundational theories of meaning describe the psycholog-
ical and sociological givens that lead to linguistic expressions carrying the meaning they do for
a particular person or population.

1 Refer to Scholz et al. [2014] and the sources cited therein for a more comprehensive account.
2 Remember, the etymological derivation of semantics includes the Greek σηµαντικóς :: significant, and
σηµαινειν :: to show by sign, to signify, to point out.

Priska Herger
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Following Lenci [2008], there are three prevalent semantic theories in the last century: the con-
ceptualist view, formal model-theoretic semantics, and squeezed in between, more of a method-
ological approach, distributional semantics. The conceptualist or cognitive stance views the
meaning of linguistic expressions as that which is evoked by cognitive principles or mental ex-
periences. In Lenci [2008]’s words: “the emphasis of cognitive semantics is on an intrinsically
embodied conceptual representation of aspects of the world, grounded in action and perception
systems.”. Formal model-theoretic semantics, on the other hand, takes a denotational stance
which conceives of linguistic expressions as references to propositions and objects in the world
which can be mapped to truth values. This approach is often formalized using the λ-calculus,
cf. Heim and Kratzer [1998].

Lastly, distributional semantics argues for a usage-based account of meaning in agreement with
the late Wittgenstein who said that “the meaning of a word is its use in the language” (Wittgen-
stein [1953]), and “if we had to name anything which is the life of the sign [term], we should
have to say that it was its use”, Wittgenstein [1958]. Or as the psychologists Miller and
Charles [1991] would later formulate: “What people know when they know a word is [...] how
to use it (when to produce it and how to understand it) in everyday discourse”. Distributional se-
mantics operationalizes this notion by approximating semantic similarity with the distributional
properties of words and phrases in corpora.

2.1.1 Distributional hypothesis

Distributional semantics is based on the Distributional Hypothesis (DH) which is often stated
in one of the following ways (see, e.g., Turney et al. [2010], Lenci [2008]):

“Words that occur in similar contexts tend to have similar meanings.”, attrib. Z. Harris
“You shall know a word by the company it keeps.”, attrib. J.R. Firth

Baroni and Lenci [2010] are a bit more specific: “[T]he degree of semantic similarity between
two words (or other linguistic units) can be modeled as a function of the degree of overlap
among their linguistic contexts.”. Sahlgren [2008] turns the wording around saying that
“differences of meaning correlate with differences of distribution”. All of the above formulations
share two crucial aspects: there are differences /similarities in meaning between terms and they
can be captured by comparing the linguistic contexts in which these words occur. However, as
Sahlgren [2008] points out as well, none of these statements specify “what kind of distributional
information we should look for, nor what kind of meaning differences it mediates.”. I will come
back to these issues in Sections 2.1.2 and 2.2 when taking a closer look at distributional semantic
models and semantic relations in general. For now, may the following example further illustrate
the general idea. Consider the sentences:

“He filled the wampimuk with the substance, passed it around and we all drunk some.”
“We found a little, hairy wampimuk sleeping behind the trees.”3

The linguistic structures, in which the fictional word wampimuk appears, give important clues
about its meaning. In the first example, wampimuk seems to refer to a container that one can
fill liquid into. In the second case, more likely a kind of animal. The point being that language

3 Unfortunately, I could not trace down the original source of these sentences, but I first found them at http:
//parles.upf.edu/llocs/glif/htm/activ/baroni1.pdf.

Learning Distributional Semantics
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14 Background

itself captures important aspects of the meaning of terms which the distributional hypothesis
and respective models take advantage of when modeling meaning.

Lenci [2008] distinguishes two versions of the distributional hypothesis. The weak DH as a
quantitative method for semantic analysis and lexical resource induction useful for identifying
semantically similar terms through inspection of their distributional contexts. And the strong
DH which is a cognitive hypothesis about the form and origin of semantic representations and
the constitutive role of word distributions therein. In this study I will deal only with the
weak distributional hypothesis, leaving out aspects about possible representations of meaning
in cognitive systems.

2.1.2 Distributional semantic models

According to Baroni et al. [2014], Distributional Semantic Models (DSMs) are the most
straightforward implementation of the distributional hypothesis in computational linguistics. In
DSMs each term – word, word pair, or phrase – is represented as a collection of context features.
Vectors and matrices are frequently used as mathematical objects for handling such collections;
not least because efficient computational tools exist to calculate similarities on them. DSMs
using vectors are also known as Vector Space Models (VSMs), where each vector represents a
term in the vector space.

The kind of matrix used varies with the type of similarity to discover: among the most com-
mon ones are document similarity, word similarity – which is also called attributional similarity,
and relational similarity, cf. Turney et al. [2010]. The respective matrices are called term–
document matrix, word–context matrix, and pair–pattern matrix. However, these three kinds
of matrices do not exhaust the possibilities. Various researchers have used higher-order ten-
sors4; for instance, term–document–language tensors to model multilingual document similarity
(Chew et al. [2007]) and verb–subject–object tensors to induce selectional preferences of verbs
(Van de Cruys [2010]).

Recent work in the machine learning community has brought forth a different mechanism, where
word representations embedded in neural networks are used to capture relational similarities,
which can then be recovered using vector arithmetic, e.g., Bengio et al. [2006], Mikolov
et al. [2013]. Levy and Goldberg [2014] subsequently showed that these embedded word
representations are functionally equivalent to the sparse representations of distributional seman-
tic models.

DSMs differ by the terms examined (words, multiword expressions, pairs etc.), the contexts con-
sidered (context type, context window), the interpretation of co-occurrence (frequency weighing),
the measure of dimensionality reduction, and the measure of similarity employed. They can be
formalized as tuples < T,C,R,W,M, d, S > of target words T represented with contexts C, a re-
lation R between words and contexts, a weighing scheme for contextsW , a distributional matrix
M : T ×C, a dimensionality reduction function d :M →M ′, and a distance measure S between
the vectors inM ′ – see the tutorial Stefan Evert gave at the NAACL-HLT 20105. Typical repre-

4 “An nth-rank tensor in m-dimensional space is a mathematical object that has n indices and mn components
and obeys certain transformation rules” like the dot product, cross product, and linear maps; cf. http:
//mathworld.wolfram.com/Tensor.html.

5 http://wordspace.collocations.de/doku.php/course:acl2010:start
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sentatives of distributional semantic models include Latent Semantic Analysis (Landauer and
Dumais [1997]) and Hyperspace Analogue to Language (Lund and Burgess [1996]), which
are defined by a specific choice for the above mentioned parameters. In case of LSA and HAL it
is the use of word regions (e.g., documents) and word windows of immediately adjacent words
as contexts, respectively.

The imprecise formulation of the distributional hypothesis has led to great variation in the de-
sign choices for each of the model parameters mentioned above. Exemplarily, find the coarse
categories for the parameters context and weighing scheme in the following, and refer to Sec-
tions 3.2.1 and 3.2.2 for more details. The more widely used contexts can be grouped in the
following way:

· linear contexts, in particular word windows or windows of larger linguistic units; for ex-
ample, in Rapp [2003]
· syntactic dependencies with various types of dependencies and lengths of paths; see, e.g.,
Lin [1998b], Padó and Lapata [2007]
· lexico-syntactic patterns; for instance, Hearst [1992]

Weighing schemes transform term representations from raw counts to log-frequency space such
as to smoothen high frequency differences and /or give more weight to contexts that significantly
associate with a target word. Popular measures include mutual information, log-likelihood ratio,
and term frequency-inverse document frequency (tf-idf) (see, e.g., Church and Hanks [1990],
Dunning [1993], Salton and Buckley [1988]). Even from these brief enumerations, it
becomes obvious that variation abounds when talking about DSMs. We will see in the next
paragraphs that work is underway towards a more unified model.

2.1.3 Applications and Challenges

A wide selection of linguistic as well as cognitive phenomena have successfully been modeled
with distributional similarity and distributional semantic models. On the side of computational
linguistics these include word sense discrimination (Schütze [1998]), single-word translation
(Sahlgren and Karlgren [2005]), phrase similarity (Clark [2012]), synonym detection
(Padó and Lapata [2007]), and selectional preferences (Erk et al. [2010]). Simulations of
cognitive phenomena range from semantic priming (Lund and Burgess [1996]) and word asso-
ciation norms (Griffiths et al. [2007]) to vocabulary acquisition (Landauer and Dumais
[1997]).

Despite these successes, “no single distributional semantic model meets all requirements posed
by formal semantics or linguistic theory, nor do they cater for all the aspects of meaning that
are important to philosophers or cognitive scientists.” – as the motivational text of a recent
seminar on “Computational Models of Language Meaning in Context” at the Leibniz-Zentrum
für Informatik6 ascertained. According to these researchers, which include Alessandro Lenci,
these requirements encompass at least the following:

· an account for linguistic compositionality
· robust first-order models of inference, and
· integrating DSMs into a broader model theoretic framework

6 cf. http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=13462
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Further shortcomings include the symbol grounding problem, a general proposition by Harnad
[1990] which stresses that purely symbolic models are disconnected from the referents of their
symbols which reside in the world outside the model – a limitation one could, for instance,
overcome by integrating perceptions. In other words, according to this objection, distributional
semantics can only ever provide relative or model-internal assertions of similarity since it defines
the meaning of a word entirely in terms of its relations to other words. Or as Lenci [2008] put
it: “both cognitive approaches and model-theoretic ones agree on refusing distributional seman-
tics because meaning can not be explained in terms of language-internal word distributions, but
needs to be anchored onto extra-linguistic entities, being them either conceptual representations
in the speakers’ mind or objects in the world.” See Bruni et al. [2014] for a comprehensive
account of this objection.

Despite these seemingly fierce limitations, it would be too early to dismiss distributional se-
mantics as a semantic theory altogether. Recent research is tackling most of the submitted
contentions with promising results. Turney [2008] started working towards a unified model
in which a range of semantic phenomena like synonymy, antonymy, associations, and analogies
are consolidated in a semantic model of relational similarity. Baroni et al. [2009] proposed a
general semantic model, called semantic memory, from which task-specific semantic spaces can
be extracted on demand. Baroni et al. [2014] use function application from formal seman-
tics to capture compositionality in terms of a syntax-driven calculus. Mitchell and Lapata
[2010], in turn, suggest pairwise additive and multiplicative vector mixtures as compositional
operations. Bruni et al. [2012] and Bruni et al. [2014] combine standard DSMs with image
analysis to form multimodal distributional semantic models in which semantic word representa-
tions are enriched with low-level visual features. Last but not least, Turney and Mohammad
[2013] showed that lexical entailment can be conceived of as a relation modeled in terms of
similarity differences over word-context matrices.

This short overview gave an impression of the open challenges in the field of distributional
semantics and pointed to some of the manifold approaches to resolving them currently on the
anvil. In the following section I will take a closer look at the semantic relations being modeled
in DSMs and will show how the ones used in this study fit in.

2.2 Semantic similarity

As explained in Section 2.1, distributional semantic models interpret distributional similarity as
semantic similarity. If two vector representations ~a and~b of words a and b are closer to each other
than the vectors ~a and ~c, then, it is presumed, word a is semantically more similar to b than to
c. The types of semantic similarity, however, that exist between distributionally similar words
vary widely and so do the attempts at categorizing them. Semantic similarity and semantic
similarity measurement is a broad field researched in disciplines as diverse as linguistics, com-
putational linguistics, artificial intelligence, computer science, psychology, philosophy, cognitive
neuroscience, psycholinguistics, and mathematics. Measures of semantic similarity reach from
geometric conceptual spaces (Gärdenfors [2004]) to set-theoretic feature matching models
(Tversky [1977]), from distance measurement on graphs (Rada et al. [1989]) to informa-
tion content-based similarity (Resnik [1995]), and from similarity as analogy (Gentner and
Markman [1997]) to transformational similarity (Hahn et al. [2003]); just to name a few.
It is impossible to cover all of these approaches here and I will not attempt to. Please refer to
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the papers mentioned and for a more general discussion from a linguistic viewpoint to Murphy
[2003] as starting points for further investigation. Instead I present two coarse classifications
of semantic similarity: the one put forward by Turney [2006] and another which goes back to
de Saussure [1916], as found in a survey by Khoo and Na [2006]. Subsequently, I present
the semantic relations most relevant to this study and discuss various related research with a
focus on relation discovery.

Turney [2006] distinguishes two types of semantic similarity:

· attributional similarity
· relational similarity

He uses the terms attributional and relational as defined in Medin et al. [1990]: “Attributes
are predicates taking one argument (e.g., X is red, X is large), whereas relations are predicates
taking two or more arguments (e.g., X collides with Y, X is larger than Y ). Attributes are
used to state properties of objects; relations express relations between objects or propositions.”.
Therefore, the degree of attributional similarity between two words depends on the correspon-
dence of attributes between the words and the degree of relational similarity between two pairs
of words depends on the correspondence of relations between the word pairs. Mapping this to
DSMs would mean that models representing single words are useful for measuring attributional
similarity and those representing pairs of words quantify relational similarity.

But what are the concrete relations that fall into one category or the other? Attributional simi-
larity, sometimes also called semantic relatedness (cf. Budanitsky and Hirst [2001]) includes
relations such as synonymy (eye doctor, oculist), antonymy (odd, even) as well as functional re-
lationships (candle, match) or frequent associations (quokka, cuteness). Relational similarity, on
the other hand, comprises relations like meronymy (the part–of relation), hypernymy (the is–a
relation), and co-hyponymy (the shared–hypernym relation).

In contrast, Khoo and Na [2006] – referring to de Saussure [1916] – group semantic relations
into syntagmatic and paradigmatic relations. Syntagmatic relations are relations between words
that co-occur in the same sentence whereas paradigmatic relations are relations between words
that can occur in the same position in a sentence. Referring back to Table 1.1, coffee and cocoa
are in paradigmatic relation while sip and tea are in a syntagmatic relation with each other.
Examples of paradigmatic relations include hypernymy and hyponymy (its inverse), meronymy
and holonymy (the whole-of relation), synonymy, antonymy, and troponymy (the relation of
manner between verbs, e.g., drink – gulp). Examples of syntagmatic relations are case relations
(agent vs. patient, e.g., in Aino lost face, Aino is the agent, face the patient), and associations
(kick the bucket), Khoo and Na [2006].

Distributional semantic models often span several of these kinds of semantic relations or are
continuous models which can be applied to tasks involving specific relations using different
similarity measures. In the following paragraphs I describe related work dealing with semantic
relations on various levels including

· automatic pattern extraction
· pattern-based and cluster-based relation discovery
· DSMs using bless for evaluation.
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Automatic discovery of semantic relations The automatic discovery of semantic relations was
pioneered by Marti A. Hearst, who used hand-crafted patterns to automatically extract hyponym
relations from text, Hearst [1992]. Although more recent research additionally automates the
pattern generation process, these now-called Hearst patterns are still frequently used as a litmus
test to such generators; cf., e.g., Snow et al. [2004]. See Table 2.1 for examples of Hearst
patterns including text excerpts to which they apply. Much research has been done on relation
harvesting in the wake of Hearst [1992]. The following overview groups them by the kinds
of relations considered with a particular focus on publications dealing with relations between
nominals as these are the most relevant to this thesis.

Relation Example

NP0 such as {NP1, NP2 ..., (and | or)} NPn “The bow lute, such as the Bambara
ndang, ...”

such NP as {NP ,}* {(or | and)} NP “... works by such authors as Herrick,
Goldsmith, and Shakespeare.”

NP {, NP}* {,} or other NP “Bruises, wounds, broken bones or other
injuries ...”

NP {, NP}* {,} and other NP “... temples, treasuries, and other impor-
tant civic buildings.”

NP {,} including {NP ,}* {or | and} NP “All common-law countries, including
Canada and England ...”

NP {,} especially {NP ,}* {or | and} NP “... most European countries, especially
France, England, and Spain.”

Table 2.1: Hearst patterns with text snippets; from Hearst [1992].

There are the studies that extract a single broad semantic relation at a time – most frequently
hypernymy. Snow et al. [2004], for instance, classify unseen noun pairs with a pre-computed
list of dependency patterns that they tested to be good predictors of hypernymy and reach an
F -score of 0.36. Ritter et al. [2009] built a hypernym finder for arbitrary proper nouns based
on the frequency with which noun pairs were seen in one of a range of Hearst patterns. They
approximate recall by the percentage of nouns they can predict one or more good hypernyms
for, and produce a precision value of about 0.63 for 0.65 percentage coverage (numbers read out
from figure).

Another branch of investigation deals with extracting the seven relations specified in Task 4
of SemEval-2007, a workshop on semantic evaluations. Table 2.2 enumerates these relations
including example instances. Girju et al. [2007] describes the task setting and gives a sum-
mary of the competition results. F -scores between 0.68 and 0.82 were measured depending
on the relation, with content–container scoring the highest precision at 0.93. Unfortunately,
original papers of the different groups are not cited, making it hard to capture the details of
their respective systems. According to Girju et al. [2007], the team that generally reached
the highest scores extracted lexico-syntactic patterns from semantic parses and used WordNet7

sense labels in the data sets.

7 http://wordnet.princeton.edu/
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Relation Example

cause - effect laugh - wrinkles
instrument - agency laser - printer
product - producer honey - bee

origin - entity message - from outer space
theme - tool news - conference
part - whole the door - of the car

content - container the apples - in the basket

Table 2.2: Relations from Task 4, SemEval 2007; examples from Girju et al. [2007].

Further work considers narrow relations like acquirer–acquiree, person–birthplace, company–
headquarters. Bollegala et al. [2009], for instance, automatically extract shallow lexical
patterns for word pairs, cluster these patterns into groups considered representative of semantic
relations, and measure the similarity between these clusters with an information theoretic met-
ric. Their system is evaluated with a classification task and using the sat analogy data set8.
They report an average precision of 0.74 and accuracy of 0.93 averaged over all five relations
used. Thereby values vary between 0.37 for person–birthplace and 0.96 for CEO–company. Their
sat score peaks at 51.1 percent which compares favorably to the human score of 57 percent but
is still topped by Turney [2006] with 56.1 percent. The core idea behind Turney [2006]’s
system, which he calls latent relational analysis, is to extract patterns between word pairs and
near-synonym variants of these word pairs collected from a thesaurus of synonyms. The observed
patterns are enhanced by producing variants in which some words are replaced with wild cards.
The resulting pair–pattern matrix is condensed using singular value decomposition. To solve the
analogy questions, the relational similarity between any two word pairs can be calculated as
the average Cosine between the word pairs in question and their near-synonym alternate pairs.
Subsequently, the pair most similar to the question pair is chosen for the answer. Note that
Turney [2006] does not group word pairs into semantic relations but works on the level of
semantic similarity without discretization.

Pantel and Pennacchiotti [2006] present a generic system capable of extracting various
(binary) relations, including hypernymy and meronymy but also more specific relations such as
reaction and succession. They use seed terms to extract patterns from the World Wide Web.
For instance, given the seed pair wheat and crop for the relation hypernymy, they search for
sentences containing these seed terms and extract as pattern the tokens between the two terms.
The retrieved patterns are generalized, ranked, and pruned with a custom measure of association
based on point-wise mutual information (PMI). The top k ranked patterns are retained and used
to find new pattern instances9 which are in turn ranked with that same PMI-based measure,
keeping only the top ranked instances. The system was evaluated on the TREC and CHEM
data sets and achieved fairly good precision values, however general performance, in terms of
F -scores, is hard to compare since recall was given relative to one of the variants of their system.

Similar to Pantel’s espresso system described above, Bollegala et al. [2010] presents a sys-
tem that is capable of extracting both patterns and pattern instances. In contrast to espresso,

8 cf. http://www.aclweb.org/aclwiki/index.php?title=SAT_Analogy_Questions
9 A pattern instance is a pair of words that has been observed with the respective pattern in text.
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Bollegala et al. proceed in a single-pass fashion using even less supervision. They simultane-
ously extract noun phrases from a corpus, using shallow linguistics processing tools like a chunk
annotator, and patterns as the tokens between noun pairs with skips allowed. Both surface
forms and part-of-speech tag sequences are retained as patterns. They then apply co-clustering
to simultaneously find the relations between nouns and the best patterns representing those
relations, in what Bollegala et al. [2010] call relational duality. The system scores well in a
relational similarity task using the ENT data set – which is similar to the sat used in this thesis
but specializes in named entities rather than common nouns – and gains promising F -scores in
a relation classification task, cf. Figure 2.1.

Figure 2.1: F -scores in Bollegala et al. [2010]

Moldovan et al. [2004] define 35 different semantic relations between noun phrases at various
semantic levels, manually annotate sentences and short syntactic patterns with these relations,
and use the data to train a classification algorithm they call semantic scattering. They dis-
tinguish F -scores for different classes of nominals and attain scores between 0.33 for adjective
phrases and 0.75 for genitives with of. Even though their approach lacks scalability due to
the extensive manual labor involved, it provides interesting results since such a wide variety of
semantic relations between nominals is predicted. Unfortunately, their annotated data seems
unavailable for comparative evaluation.

Finally, Snow et al. [2006] propose a probabilistic framework for taxonomy induction over
word senses and demonstrate their method for a taxonomy comprising hypernymy and co-
hyponymy. They train separate classifiers for each semantic relation using the shortest path
connecting two words along a dependency parse as feature and logistic regression as learning
algorithm. The predictions from the classifiers are used to generate candidate relation instances.
Subsequently, Snow et al. [2006] jointly infer which pairs and relations to insert into the tax-
onomy such that the likelihood of the taxonomy given the evidence is maximized. Basically,
from all possible taxonomies, they select the one that maximizes the conditional probability of
the evidence. To avoid an explosion of the search space they define an add-relation operator
which allows them to incrementally build up the optimal taxonomy. The reported (averaged?)
F -score for a randomly sampled, hand-labeled test set10 is 0.31, with a precision of 0.58 and a
recall of 0.21.

At long last, there is a very recent publication by Weeds et al. [2014], where the authors train
a linear support vector machine (SVM) to distinguish lexical entailment /hypernymy and co-
hyponymy. In the process they show that different combinations of noun vector representations

10 see Snow et al. [2004]
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lend themselves to predicting different semantic relations between nominals. In particular they
find that taking the vector difference between two noun representations is conducive to predict-
ing entailment while co-hyponymy becomes more salient when summing up the noun vectors.
Extracted patterns were based on grammatical dependencies involving open class parts-of-speech
(POS). These patterns were weighted with the positive point-wise mutual information. Weeds
et al. [2014] report their results in terms of the average accuracy for a variety of similarity
measures. Scores for hypernymy oscillate between 0.37 and 0.75 and peak when using vector
difference. Co-hyponymy behaves similarly with accuracy values between 0.37 and 0.79 but it
seems that best results are reached when using the Cosine similarity or Lin’s similarity measure
(Lin [1998a]).

2.3 Further related research

In this last section of the chapter on related work I examine research that used the bless evalua-
tion data to assess the quality of distributional semantic models and semantic relation predictors.
Scientific articles published to date that cite Baroni and Lenci [2011] and actually use the
evaluation set, fall into three categories: those that evaluate semantic similarity measures, those
that identify semantic relations, and the ones that use multimodal distributional semantics to
improve semantic representations of word meaning. I distinguish the latter two because their
focus is slightly different, with multimodal distributional semantics, being a rather recent de-
velopment, still working out how to best combine textual and image representations of word
meanings.

Both Panchenko and Morozova [2012] and Panchenko et al. [2012] are of the first group
and therefore do not compare to the work at hand. Bruni et al. [2012] and Bruni et al.
[2014] work on multimodal distributional semantics and report their results as distributions of
z-normalized cosines as suggested by Baroni and Lenci [2011] (see Figure 2.2 for an exam-
ple). While these boxplots are useful when exploring a word space, the measure is too lenient
and incomparable to other state-of-the-art work when identifying semantic relations and scoring
the output of a particular predictor.

Figure 2.2: Distribution of z-normalized cosines; from Bruni et al. [2014]
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This leaves Santus et al. [2014] and Lenci and Benotto [2012] who actually identify se-
mantic relations and provide average precision in addition to distributions of cosine distances.
Lenci and Benotto [2012] evaluate several directional, asymmetric similarity measures with
hypernym prediction. These measures are based on including features of a term a, which is se-
mantically narrower than term b, in the feature vector of term b;
a procedure based on the distributional inclusion hypothesis. Lenci and Benotto’s own sug-
gested measure additionally excludes features of hypernym b from the vector of hyponym a.
As features they use “direct and inverse links formed by (partially lexicalized) syntactic depen-
dencies and patterns” weighted with local mutual information (LMI)11. Figure 2.3 shows their
average precision values in comparison to several other measures from the field.

Figure 2.3: Average precision values computed over the bless data for several similarity mea-
sures; from Lenci and Benotto [2012].

Santus et al. [2014] define an entropy-based measure for estimating the informativeness of
contexts and use differences in informativeness of contexts to distinguish relations.
If distributional similarity of two vector representations (measured in Cosine similarity) comes
paired with considerable difference in informativeness, Santus’ measure will predict hypernymy
as the given relation rather than co-hyponymy which tends to be symmetric. Contexts are com-
puted using a window-based pattern scheme between a target word and its two nearest content
words neighboring on the left and right side. Again, observations are weighed using the LMI.
Like Lenci and Benotto [2012], they evaluate their measure in terms of average precision,
borrowing from methodology developed by Kotlerman et al. [2010]. See Figure 2.4 for how
their entropy-based measure compares to other prevalent approaches.

Figure 2.4: Average precision values computed over the bless data for several similarity mea-
sures; from Santus et al. [2014].

11 also known as Lexicographer’s mutual information
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3 Methods

3.1 Overview

As detailed in Section 1.2, the basic idea underlying this work is to build noun pair represen-
tations from sentences containing pairs of distributionally similar nouns, and use these repre-
sentations to learn the semantic relation that holds between the nouns in such a pair. This
chapter describes the specifics of how these two aspects, representation and learning, were im-
plemented and unrolls the design choices made. There are two parts to each topic: The first two
parts deal with representing the input: initially in terms of a pair-pattern matrix in feature space
(Section 3.2.1), which is then further transformed into a pair-pair matrix in similarity space (Sec-
tion 3.2.3). The ensuing two sections are all about learning to predict relations between nouns
in a pair – in a supervised manner (Section 3.3.1) and without supervision (Section 3.3.2). The
final section describes the evaluation procedures applied. Figure 3.1 gives a high-level overview
of the whole system1.

Sentences 
with distrib. 

similar nouns 

Segmentation

Part-of-speech tagging

Dependency parsing

Feature extraction
context

similarity
topic modeling

Feature spaceSimilarity space

Text
corpus

Classification
logistic regression

Clustering
Chinese Whispers

Evaluation
BLESS

SAT

Figure 3.1: Data flow diagram of the system used in this work.

1 See https://github.com/policecar/sensim and https://github.com/policecar/simsets for the code.
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3.2 Representation

3.2.1 Feature extraction

Data acquisition and preprocessing Two corpora served as interchangeable input: a corpus of
English news text from the years 2005 to 2010, henceforth called News120M, and the PukWaC
corpus from the collection of WaCky corpora (Baroni et al. [2009]). Both are gigaword-
sized corpora in the English language built from web crawls and contain more than 80 million
sentences. While News120M comes in plain text, the PukWaC corpus is annotated with part-of-
speech tags and lemmata using the TreeTagger (see Schmid [1994] and Baroni et al. [2009])
and with dependency parses generated by the MaltParser (Nivre et al. [2006]). Accordingly,
PukWaC was used as is while News120M was annotated using software for segmentation, part-
of-speech tagging, lemmatizing, and parsing provided by Stanford’s natural language processing
group (cf. Toutanova et al. [2003], Klein and Manning [2003], and De Marneffe
et al. [2006]). These particular corpora were chosen because they are sizeable, single-language,
and freely available. In case of PukWaC, the recommendation by the authors of the evaluation set
bless (see Section 3.4.1) weighed in additionally. bless having been constructed from PukWaC
gave reason to expect maximal data overlap, thereby substantiating classification results.

Subcorpus selection For this work only sentences containing pairs of semantically similar
nouns are of interest. Therefore a selection mechanism was required to produce the relevant
subcorpus. Established techniques from lexical semantics used to measure semantic similarity
can be grouped into two categories:

· knowledge-based and
· knowledge-free

Knowledge-based approaches include thesauri, semantic networks, taxonomies and encyclopedias
manually built by human experts. Knowledge-free strategies try to induce sets of near-synonyms
(synsets) from distributional properties of words in a corpus in an unsupervised manner.

WordNet2 is one of the better known and more widely used knowledge-based resources. It is
a large English lexical database of synsets “interlinked by means of conceptual-semantic and
lexical relations”2. Figure 3.2 shows some of the semantically related terms for the word brain,
taken from their online demo. One of the problems with WordNet in the context of automatic
use is that it is difficult to determine a useful number of hops to follow along a specific relation;
for example to retrieve indirect hypernyms or hyponyms of a word. The hypernym animal, e.g.,
can be found six hops away from the word alligator but only one hop away from the word pet.
This is to be attributed to the divergent degrees of specificity in the database across different
topics.

An alternative, knowledge-free approach to building distributional thesauri (DT) is described
in Biemann and Riedl [2013] and implemented in the freely available JoBimText software3.
It facilitates automatic thesaurus generation for a given corpus thereby supporting flexibility
regarding the input corpus and language used. With the default settings the distributional
thesaurus comprises the 200 most distributionally similar words (expansions) for each of the

2 WordNet. Princeton University. 2010. http://wordnet.princeton.edu
3 cf. http://maggie.lt.informatik.tu-darmstadt.de/jobimtext/
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Figure 3.2: Excerpt from WordNet’s synset for the term brain.
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100 000 most frequently observed words (targets). Every target-expansion pair also receives a
within-target ranking. Table 3.1 shows examples of target-expansion pairs including rank, with
part-of-speech tags removed, which are part of the original DT. For News120M a DT can be
downloaded from the JoBimText website4, for PukWaC a fresh one was computed. These were
filtered for the specific needs of this study: common nouns (nn and nns) were selected and some
words including email addresses and words consisting only of digits were filtered out. The exact
Pig Latin5 regular expression for this filter reads:

filtered = filter target_expansions by
(regex_extract_all(target , ’.*[0 -9\\.\\+@].*’) is NULL) and
(regex_extract_all(expansion , ’.*[0 -9\\.\\+@].*’) is NULL) ;

These target-expansion pairs were then pruned to match the available computational resources,
keeping only the top 50 most similar expansions per target word. The resulting pairs were
used to filter the corpora. For this purpose, all common nouns in the annotated sentences were
marked. A word was considered a common noun, if it was tagged with one of the POS tags nn
or nns. Subsequently, only those sentences were selected that contained at least two distribu-
tionally similar common nouns.

News120M PukWaC
Target Expansion Similarity Expansion Similarity

brain lung 200.0 liver 128.0
brain liver 158.0 kidney 120.0
brain pancreas 131.0 lung 106.0
brain kidney 131.0 heart 103.0
brain stomach 117.0 mind 99.0
brain retina 115.0 tissue 97.0
brain intestine 111.0 bowel 95.0
brain tissue 110.0 organ 90.0
brain nerve 104.0 skin 90.0
brain heart 101.0 gland 89.0
brain ovary 101.0 pancreas 88.0
brain abdomen 99.0 marrow 84.0
brain organ 99.0 bladder 83.0
brain spleen 98.0 prostate 83.0
brain gland 95.0 intestine 81.0
brain bladder 95.0 cortex 80.0
brain marrow 95.0 muscle 74.0
brain cortex 94.0 spleen 74.0
brain spine 92.0 tract 73.0
brain skin 92.0 bone 71.0
brain muscle 90.0 stomach 69.0
brain uterus 88.0 nerve 67.0

Table 3.1: Expansions for the target word brain for PukWaC and News120M.

4 Download similarities-news120M_stanford_lemma_np.tar.gz_1-3 from http://sourceforge.net/
projects/jobimtext/files/data/models

5 https://pig.apache.org
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Word representations As briefly introduced in Section 2.1.2, when talking about different
kinds of contexts used in the literature, there are ample possibilities to represent words or word
pairs in distributional semantic models. The most common options are: bag-of-words, n-gram
models, skip-gram models, and dependency paths. Bag-of-words models collect words adja-
cent to the target word within a chosen word window and arrange them in no particular order,
for instance, alphabetically. N -gram models take the n words preceding the target word and
collect them preserving the original word order. Skip-gram models are analogous to n-gram
models except that they permit skipping some of the collected words in the final representation.
Dependency paths do not rely on the linear or surface word order as the previous models but
rather consider words that are connected to the target word with grammatical dependencies and
thereof a particular number of hops. Figure 3.3 displays a dependency parse for an example sen-
tence6. Dependency paths can be combined with skip-gram models in that dependency paths are
used for pattern extraction but also some of the retrieved tokens can be omitted from the pattern.

Figure 3.3: Visualization of a dependency parse; generated with DependenSee.

To yield more general patterns and to capture the linguistic structure of sentences better, de-
pendency parses were used as the basis of pattern extraction in this study. As Figure 3.4 shows,
dependency parses can capture long-range relations with a smaller window than a linear view of
the sentence would permit7. For example, the words electronencephalography and medical tool
are connected with 4 dependency arcs, which would take a word window of at least 10 hops.
A larger word or arc window is not necessarily a disadvantage in itself, but it introduces more
noise into the patterns.

Figure 3.4: Visualization of a dependency parse with collapsed dependencies; generated with
JoBimText

6 The DependenSee code can be found at https://github.com/awaisathar/dependensee.
7 Figure 3.4 was generated with http://maggie.lt.informatik.tu-darmstadt.de:10080/jobim/.
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Dependency paths From each annotated and selected sentence, all subtrees along the de-
pendency parse containing at least one target-expansion pair were extracted, yielding patterns
as depicted in Table 3.2. The length of these subtrees was restricted to 6 or less dependency arcs
in a trade-off between computational feasibility and semantic requirements. One of the reasons
to choose all subtrees over the shortest path was to include patterns like 〈include X and Y〉 –
where this specific one might be indicative of co-hyponymy. While the all subtrees approach at
first produces much more patterns, the infrequent ones thin out during frequency pruning later
on.

Additionally, nouns were lemmatized for further processing – a useful generalization at the ex-
pense of dismissing some information. The advantage gained in terms of reduced data sparseness,
achieved by merging singular and plural versions of many regular nouns, outweighed the loss in
semantic distinction in cases like glass and glasses. Target and expansion words were replaced
with X and Y, respectively, to facilitate generalization of patterns across pairs while marking
the position of nouns in the pattern. Finally, all tokens were converted to lower case. Due to the
graph library used for pattern extraction8, only sentences of a maximum number of 30 tokens
could be considered.

Noun Noun Pattern

alligator crocodile include X and Y
alligator crocodile be an X or a Y
alligator crocodile not just X – Y ,
alligator crocodile X Y forms such as
snake crocodile X and Y
snake crocodile animals include X , tortoises Y
snake crocodile showed us a X a Y
snake crocodile of creatures including X and Y
animal alligator X such as Y are
animal alligator X including Y and
animal alligator X as Y are raised and
animal alligator other X such as Y ,
alligator mouth head inside an X Y
alligator mouth head inside X ’s Y
alligator mouth head inside X Y

Table 3.2: Raw features as extracted from parsed and annotated text.

Pair-pattern matrix For each noun pair the extracted patterns were collected, co-occurrences
counted, and the result stored in a table as well as in vector representation for further processing.
The combination of all these row vectors equals a pair–pattern matrix as they are commonly
used in distributional semantic models.

8 http://jgrapht.org

Priska Herger

http://jgrapht.org


Representation 29

3.2.2 Measures of association

In the previous section, co-occurrences of patterns and noun pairs were extracted from a corpus
and used to span a word space into which to place these noun pairs. Thereby their frequency
counts were taken to be the value or weight of the observation. Such raw co-occurrence data,
however, have serious shortcomings. The first is that the observed raw counts only provide
information about the particular excerpt of text they were derived from, i.e. the specific corpus.
They, therefore, directly mirror the contingency of the evidence. A second shortcoming is that
the plain frequencies do not necessarily capture statistically significant associations of pairs and
patterns. If a pattern and a pair occur sufficiently frequent in the corpus, their co-occurrence
might be merely coincidental.

According to Evert [2005], the most common method for distinguishing random co-occurrences
from true statistical associations are association measures. Association measures compute a
score for each raw co-occurrence datum, here pair and pattern, which can be used to rank all
associations of a pair or select the best associations based on a threshold. Among the most
widely used association measures are mutual information (Church and Hanks [1990]), the
t-score measure (Church et al. [1991]), the log-likelihood ratio (Dunning [1993]), and the
χ2 statistic (Agresti [1990])9. Which measure to use, varies with the assumptions that can be
made about the data or one is willing to make. The t-test, for example, presupposes a normal
distribution of the data – an assumption that oftentimes does not hold for word frequencies,
which tend to follow a Zipfian distribution. The χ2 test, on the other hand, can be problematic
for sparse data and small sample sizes. While the log-likelihood measure works well with sparse
data and is more easily interpretable than the χ2 test, we decided to use derivatives of mutual
information as they have been shown to work fairly well in the context of relation extraction,
see, e.g., Pantel and Pennacchiotti [2006], Weeds et al. [2014].

Mutual information Mutual information (MI) is originally a measure from information theory
which describes the information overlap between two events or distributions. More formally
speaking, MI measures the average reduction in uncertainty in one variable that results from
learning the value of the other. It is based on the concepts of (Shannon) entropy, marginal en-
tropy, and conditional entropy10. Thereby, the entropy of a random variable X with distribution
p is a measure of its uncertainty and is denoted by H(X). The mutual information between two
random variables X and Y is then defined as

I(X;Y ) ≡ H(X)−H(X|Y ) (3.1)

and satisfies

I(X;Y ) = I(Y ;X) (3.2)
I(X;Y ) ≥ 0 (3.3)

– see MacKay [2003]. For discrete random variables, the entropy is defined as

H(X) ≡ −
∑
x

p(x) · log2 p(x) (3.4)

9 Citations refer to publications that introduced or prominently applied the respective measure to research in
computational linguistics.

10 For an introduction to information theory read Shannon [1948] and MacKay [2003] and for the foundations
of probability theory, refer to Papoulis [1965], Jaynes [2003] or Murphy [2012].

Learning Distributional Semantics



30 Methods

and the conditional entropy of two discrete random variables is

H(X|Y ) = −
∑
x,y

p(x|y) · log2 p(x|y) (3.5)

Substituting H in Equation 3.1 with Equations 3.4 and 3.5 and considering that the joint
probability distribution is p(x, y) = p(y|x) · p(x) = p(x|y) · p(y) gives us

I(X;Y ) =
∑
x,y

p(x, y) · log2
p(x, y)

p(x) · p(y)
(3.6)

The formulation of the mutual information above is the expected value over all possible outcomes
or values of two random variables. In order to compute the measure for two specific values of the
random variables, that is for a particular pair and pattern, we need to compute the point-wise
mutual information (PMI) which is just

PMI(x; y) = log2
p(x, y)

p(x) · p(y)
(3.7)

It computes the logarithmic ratio of the actual joint probability of a pair and a pattern to their
expected joint probability assuming they are independent events. Since both the marginal prob-
abilities and the joint probability are usually unknown, it is common practice to approximate
them with the normalized frequency counts from the observed data.

However, the PMI has a preference for low-frequent words and lacks a fixed upper bound,
which is the reason several variants of it are used in computational linguistics and natural
language processing. Most popular are the normalized point-wise mutual information,
Bouma [2009], and the Lexicographer’s or local mutual information, Bordag [2008].
The normalized point-wise mutual information (NPMI) gives the PMI a fixed upper (and lower)
bound by normalizing the measure with the logarithm of the joint probability log2 1

p(x,y) such that
the maximum value is 1.0 (highest association) and the minimum value is 0.0 (no association).
Meanwhile, the Lexicographer’s mutual information (LMI) compensates for the high significance
scores assigned to low-frequent pair-pattern combinations by weighing the PMI score with the
pair-pattern frequency. Equation 3.9 shows the resulting formula.

NPMI(x; y) =
PMI(x; y)

−log2 p(x, y)
(3.8)

LMI(x; y) = p(x, y) · PMI(x; y) (3.9)

In this work, the LMI was used as a measure of association since it performs as good as the
log-likelihood on the task while being cheaper to compute (Biemann and Riedl [2013]), and
yields better results than the PMI (Riedl and Biemann [2013]). The LMI was preferred
over the NPMI because scoring pair-pattern associations proportionate to their joint frequency
carried more weight than normalization and the used algorithms did not depend on the latter.
Table 3.3 shows the top ranked patterns for the pair plum::@::cherry produced by the raw
frequency counts and the LMI, respectively.
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pattern frequency pattern lmi score
X and Y 405 spicy X Y 5823.70
of X Y 390 of X Y 3562.79

spicy X Y 378 X and Y 3089.95
X , Y 126 of spicy X Y 1417.72

X Y and 109 spicy X and Y 1412.13
of X and Y 102 intense X Y 1340.86
with X Y 95 of X and Y 900.61

intense X Y 93 with X Y 765.89
spicy X and Y 92 X , Y 760.23
of spicy X Y 92 X Y and 731.37

X , Y and 52 intense X Y and 570.75
with X Y and 37 with intense X Y 533.75

with X , Y 37 intense X , Y 533.75
with intense X Y 37 dark with X Y 533.03
intense X Y and 37 with X Y and 313.50

intense X , Y 37 X , Y and 299.83

Table 3.3: Top ranked patterns for plum::@::cherry – frequency counts versus LMI.

3.2.3 Similarity measures

In order to make similar pairs available as an extra feature in classification and for later cluster-
ing of the distance matrix, a similarity space was constructed in addition to the feature space
described in Sections 3.2.1 and 3.2.2. This was done in a twofold manner, both times using the
JoBimText software and workflow as depicted in Figure 3.5 – see Biemann and Riedl [2013]
for a more detailed description of the component parts. For one, the existing feature space was
transformed into similarity space. On that account the number of matching non-zero entries
between any two pair vectors was added up and used as similarity count. From the result the
200 most similar noun pairs per pair were retained.

Moreover, a second similarity space was constructed based on subject-verb-object features. Again,
the 200 most similar pairs per pair were computed, this time based on their 1000 most signif-
icant features in terms of the Lexicographer’s mutual information. Similarity was calculated
using pattern overlap count as above. The resulting similarity space constitutes a second,
separate representation space of the noun pairs, which was used as an additional feature group
during classification.

The similarity measure used here is one of the most basic ones, often used as a baseline, cf., e.g.,
Bordag [2008]. It was chosen at long last after the available computational resources could
not compute the Cosine similarity, not even on ten percent of the data.

The Cosine similarity is a measure commonly used in studies of distributional semantics because
it spans a space that produces good results in many tasks. But the variety of similarity measures
out there is vast and “it is difficult to reach a conclusion from the literature regarding which
similarity measure is best; again this appears to depend on the application and which relations
one hopes to extract.”, Clark [2012].
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Figure 3.5: JoBimText workflow as implemented in MapReduce; image from Biemann and
Riedl [2013].

No less, two coarse groups of (dis)similarity measures can be distinguished in the context of
DSMs: those that are specific to distributional semantics and aim to incorporate linguistic
knowledge in the measure and, secondly, generic measures that are deployed in a wide variety
of fields. The former include WeedsPrec (Weeds et al. [2004]), ClarkeDE (Clarke [2009]),
and invCL (Lenci and Benotto [2012]). These are directional, asymmetric similarity mea-
sures that take into account differences in the generality or informativeness of features. The
underlying assumption is that hypernyms (e.g., vehicle) tend to occur in more contexts than
their hyponyms (e.g., motor cycle) – a piece of information that can be exploited for predicting
semantic relations with distributional similarity.
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Among the more widely used (dis)similarity measures that consider general mathematical prop-
erties are:

· Euclidean distance
· Cosine similarity
· Jaccard index

Depending on the measure used the given feature representations are conceptualized differently.
The Euclidean distance measures distance in terms of the length of the path connecting two
points in space. Accordingly, feature representations are construed as points in a Euclidean
space with as many dimensions as overall features observed. Meanwhile the Cosine similarity
calculates similarity as the cosine of the angle between two vectors11; i.e. features are repre-
sented as vectors in a space spanned by all features. Conversely, the Jaccard index is an
index or coefficient of the similarity of sets. Correspondingly, a term is represented as the set of
features it was observed with – rather than the highly sparse objects used in Euclidean distance
or Cosine similarity.

While some measures compute the distance between objects and others the similarity, this is
primarily a different way of looking at the same thing and conversion between values of similarity
and distance is typically straight forward. Given a similarity measure s(x, y) and a distance
measure d(x, y), their conversion could take the following form:

d(x, y) = 1− s(x, y) (3.10)

s(x, y) =
1

d(x, y)
(3.11)

Both similarity and distance measures are considered metrics if they satisfy the following con-
ditions (given for the case of a distance measure):

· Non-negativity: d(x, y) ≥ 0

· Reflexivity: d(x, y) = 0 if and only if x = y

· Symmetry: d(x, y) = d(y, x)

· Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z)

The equivalent of non-negativity for similarity measures is the so-called limited range with
s(x, y) ≤ s0 for some arbitrarily large number s0 and the triangle inequality becomes s(x, y) ·
s(y, z) ≤ [s(x, y) + s(y, z)] · s(x, z), Goshtasby and Le Moign [2012].

After this brief digression on similarity measures, let us now see how the representations acquired
can be utilized to learn semantic relations using algorithms from machine learning.

11 I use the terms distance measure and similarity measure almost interchangeable here – bear with me for a
moment, I will explain why in the next paragraph.
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3.3 Learning

In the preceding sections I explained and described how the raw textual data were transformed
into numeric noun pair representations amenable to applying machine learning algorithms to. I
will now give a brief introduction to different learning paradigms, and in particular to classifi-
cation and clustering, each time followed by a detailed account of the specific algorithm used in
this work.

Three learning paradigms dominate the field of machine learning:

· supervised learning
· unsupervised learning
· reinforcement learning

These paradigms differ primarily in the amount and kind of feedback or error correction they
provide during learning. In supervised learning the model receives labeled training data where
the label is the correct class of a sample or data point. Unsupervised learning omits labels
altogether and instead aims at deducing statistical regularities inherent in the data. Lastly,
reinforcement learning provides delayed reward signals instead of direct feedback on each data
point.

There are other paradigms in the wild and in the literature – for instance, active learning or
semi-supervised learning which is a mixture of supervised and unsupervised learning, as well as
the recently emerging field of probabilistic programming – but the three listed above are the
mostly widely spread so far.

In the following supervised and unsupervised learning will be considered further: unsupervised
learning because it is knowledge-free thereby matching the constraints imposed upon this work.
And supervised learning to assess whether the setting at hand does in principle represent a
learnable problem and to facilitate comparison with related work which is much harder with
cluster evaluation because measures of evaluation vary widely. The following sections provide a
closer look at these paradigms and their concrete implementation in this thesis.

3.3.1 Classification

Algorithms for supervised learning fall into one of two categories: they are regressors or clas-
sifiers. Both rely on labeled data for training but regressors predict continuous target values,
while classifiers make predictions about discrete classes. Among the classifiers are algorithms
which can handle multiclass and /or multi-label classification12 and others that specialize in
binary classification. For either of these options different strategies are available which include
cost-sensitive one-against-all or weighted-all-pairs for multiclass and one-against-all or error cor-
recting tournament for binary classification. Additional design choices to keep in mind are the
type of algorithm used, regularization methods, loss functions, optimization strategies, sampling
procedures, etc.

Learning algorithms consist of and differ along three dimensions, Domingos [2012]:
12 Multiclass means that the classification task has more than two classes; e.g., distinguishing cat, squirrel, skunk,

and quokka images. Multi-label means that any sample can have more than a single label; as might be the
case if the training data contains images of quokkas and squirrels together.
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· the representation used, also known as the hypothesis space
· their evaluation function, also known as objective function or scoring function, and
· the optimization technique used to find the optimal classifier

The representation or hypothesis space determines the set of classifiers that can be learned and is
basically a restriction upon the space of all functions. Table 3.4 shows some kinds of hypothesis
spaces together with examples of models that implement them.

Type of representation Exemplary model(s)

Instances k -nearest neighbors
Hyperplanes Naive Bayes, Logistic regression
Sets of rules Inductive logic programming
Decision trees Decision trees, random forests
Artificial neural networks Perceptron
Graphical models Conditional random fields

Table 3.4: Common hypothesis spaces for learning algorithms.

Learning algorithms can further be distinguished with regard to the objective function they
use to separate good from bad classifiers. The objective function is also known as loss or cost
function since it maps an event, e.g., a prediction made, to the loss or cost associated with that
event. Table 3.5 presents a range of common objective functions:

Objective functions

Precision, recall, F -score
Squared error, zero-one loss
Maximum Likelihood
Posterior probability
Kullback-Leibler divergence
Backpropagation

Table 3.5: Objective functions used in learning algorithms; see also Domingos [2012].

Finally, there are a number of optimization techniques to search for the highest-scoring classifier
among all classifiers in the hypothesis space. They differ in terms of the properties of the op-
timization function (linear, quadratic, non-linear, non-smooth) and the constraints imposed on
this function (unconstrained, bound, linear, smooth, discrete). Table 3.6 gives several examples
of different algorithms for optimization13.

13 Note: convex optimization is merely a special case of optimization with continuous domain. Also, combinatorial
is synonymous with discrete here.
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Kind of optimization Example algorithms

Convex optimization
Least-squares
Linear programming

Continuous optimization
Gradient descent
Quadratic programming

Combinatorial optimization
Greedy search
Beam search

Table 3.6: Optimization techniques for finding the optimal classifier in the space of possible
classifiers.

3.3.1.1 Logistic regression

In this thesis logistic regression, as implemented in scikit-learn.org, Pedregosa et al. [2011],
was used for classification. Reasons for choosing it were:

· It is a standard linear classifier to begin with, before moving on to more complex models
that might not be necessary to explain and separate the data at hand.
· It can be trained comparatively quickly and does not take long for classification even in
the face of a large feature space as is the case here.
· It comes with free feature ranking as a treat.

Despite its name, logistic regression is a statistical model that can be used for classification.
It is part of a group of models called generalized linear models in which the target value, also
known as class, is expected to be a linear combination of the input values. Mathematically they
generally solve a problem of the form:

ŷ(β, x) = β0 + β1x1 + ...+ βnxn (3.12)

The dependent variable, i.e. the prediction ŷ, is usually dichotomous or binary, meaning it can
take one of two values, 0 or 1; though multinomial versions exist. This type of variable is called
a Bernoulli variable, which has the property that if the target variable takes the value 1 with a
probability p, the probability of value 0 is 1− p. The independent variables, on the other hand,
can take any form – no assumptions about the distribution of the input variables are made. In
the case of logistic regression, the function solving for the relationship between input and target
variables is not a linear function as in Equation 3.12 but the logistic regression function14:

log
( p(x)

1− p(x)

)
= β0 + β1x1 + ...+ βnxn (3.13)

= β0 + x · β

Solving this for p, the predicted probability that the input values belong to class 1, gives:

p(x;β0, β) =
eβ0+x·β

1 + eβ0+x·β
(3.14)

14 Matrix notation included in bold face. I will omit the bold face in the following and presume that variables
without indices are vectors or matrices where appropriated by context.
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which is equivalent to

p(x;β0, β) =
1

1 + e−(β0+x·β)
(3.15)

This means, logistic regression can be used as a linear classifier with the decision boundary
β0 + x · β = 0 separating the two predicted classes. In terms of the categorization set forth
in the previous section this means logistic regression operates in a hyperplane-based hypothesis
space. Its objective function is maximum likelihood as it tries to maximize the likelihood of the
data for a predicted class. It requires solving a convex optimization problem, for which efficient
algorithms exist, see for instance Lee et al. [2006].

3.3.2 Clustering

Clustering is probably the most widely used technique in unsupervised learning, but it is not the
only one: self-organizing maps, hidden Markov models, and blind source separation are among
other methods that populate the paradigm. Alas, the most popular approach is the one I shall
stick to here as it lends itself formidably to separating a heap of word pair representations into
smaller heaps of more similar pairs.

The goal of clustering is to find intrinsic categories in data. This is achieved by dividing a data
set into subsets (clusters) such that objects in the same subset are more similar to each other
than to objects in other subsets with respect to a given similarity measure, Kriegel et al.
[2009]. Conversely, one could say that clustering aims at grouping objects such that intra-cluster
distance deceeds inter-cluster distance – for some definition of distance.

Figure 3.6, taken from Kerdels and Peters [2014], exemplifies the situation. Depicted are
several data sets, some of which typically serve as benchmarks for testing the suitability and
generality of clustering algorithms. For the majority of them the underlying intrinsic structure
of the data is apparent to the human eye and the algorithm used concurs. Its clusterings are
shown in color15. Moreover, subplot (c), a 2-D projection of the high-dimensional Swiss Roll
data set, illustrates the crucial role of the distance measure used to the quality of a clustering:
“points far apart on the underlying manifold, as measured by their geodesic, or shortest path,
distances, may appear deceptively close in the high-dimensional input space, as measured by
their straight-line Euclidean distance.” Tenenbaum et al. [2000].

One way to categorize clustering algorithms is by the type of input and output they take, see,
e.g., Murphy [2012]. In feature-based clustering the input is a N × D feature matrix and in
(dis)similarity-based clustering the input is a N × N distance or similarity matrix – where N
is the number of samples and D the number of features16. Apart from these different inputs,
there are also two possible types of output:

· flat clustering, also called partitional clustering
· hierarchical clustering

A flat clustering is a partition of the input space into disjoint sets. A hierarchical cluster-
ing, on the other hands, is a nested tree of partitions. See Figure 3.7 for a visualization of the
15 The algorithm used was a growing neural gas with local input space histograms.
16 See sections 3.2.1 and 3.2.3 for how these matrices were constructed.
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Figure 3.6: Various data sets with different intrinsic structures; figure from Kerdels and Pe-
ters [2014].

difference. Hierarchical clustering basically allows the user to pick the level of resolution from the
completed clustering whereas in partitional clustering the number of clusters usually has to be
decided upon ahead of computation time. Respectively, flat clusterings are often computation-
ally cheaper to compute (O(ND)) than hierarchical clusterings (O(N2 logN)), Murphy [2012].

Figure 3.7: Hierachical (left) versus flat clustering of a data set; figure from Jain [2010].
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Clusterings can furthermore be distinguished in terms of how cluster membership is enforced.
A complete clustering assigns every object to a cluster, whereas a partial clustering may leave
objects unassigned. Moreover, cluster membership can be assigned in exclusive, overlapping, or
fuzzy manner. This means that every object is assigned either to a single cluster (exclusive), to
one or more clusters (overlapping), or to every cluster with a membership weight between 0.0
(does not belong) and 1.0 (fully belongs)(fuzzy), Pang-Ning et al. [2006].

Since there is no clear-cut definition of the notion of a cluster (see Estivill-Castro [2002]),
there exist a variety of cluster models. I will give a brief overview of the most prominent ones
in Table 3.7 before describing the model used in this work in more detail.

Cluster model Example algorithm

Connectivity-based clustering agglomerative clustering
Prototype-based clustering k -means
Density-based clustering DBSCAN
Distribution-based clustering Latent Dirichlet Allocation (LDA)
Graph-based clustering Chinese Whispers

Table 3.7: Cluster models and implementations thereof.

K -means, agglomerative clustering and DBSCAN are probably the most commonly used and
implemented algorithms. K -means finds linearly separated clusters and prefers compact and
isolated clusters because the similarity measure is based on the Euclidean distance. Furthermore
the number of clusters has to be specified as a parameter to the algorithm. This lead to dismissing
it as a feasible option in this thesis because the Euclidean distance is not very useful in high-
dimensional and highly sparse spaces and compactness can not be guaranteed or even assumed
when dealing with natural language. Agglomerative clustering, on the other hand, while
highly useful in NLP, has a complexity of O(N3) in the general case, making it too slow for
large data sets. DBSCAN is a density-based algorithm with a runtime “slightly higher than
linear in the number of points”, Ester et al. [1996]. Even though this makes it a promising
candidate for a large data set like the one at hand, I decided in favor of Chinese Whispers
for three reasons:

· DBSCAN requires a global density parameter which is used as a threshold to determine
the reachability distance between data points. However, different regions in the data may
have different densities and as a result a single density parameter might make it difficult
to effectively find the clusters, cf. Aggarwal and Reddy [2013], page 459.
· Density-based methods are naturally defined on data points in a continuous Euclidean
space, which means they often cannot be used meaningfully in a discrete or non-Euclidean
space, unless the data are embedded first, cf. Aggarwal and Reddy [2013], page 7.
· Chinese Whispers has been shown to yield good results on various problems from natural
language processing like word sense disambiguation, language separation, and acquisition
of syntactic word classes, cf. Biemann [2006].

All of the above make Chinese Whispers appear like the more suitable algorithm for the discrete
data with unknown density behavior that I am dealing with. But let me present the algorithm
in more detail.
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3.3.2.1 Chinese Whispers

Chinese Whispers (CW) is a randomized graph-clustering algorithm which can be considered a
special case of Markov-Chain Clustering, Biemann [2006]. Its runtime complexity is linear in
the number of entries in the similarity matrix. Data points are represented as vertices in a graph
and relations, here: similarity, as edges between data points. The degree of similarity is applied
as weight to the edges; think a numeric label. Such a graph can be formalized as an ordered
pair G = (V,E) comprising a set V of vertices together with a set E of edges. If the graph is
undirected, as is the case in Version 1.0.1 of CW used17, then a weighted edge (vi, vj , wij) ∈ E
between vertices vi and vj implies that there is also a symmetric edge (vj , vi, wij) ∈ E.

The basic idea behind Chinese Whispers is to assign each vertex its own cluster ID at first, and
then, iteratively, make them adopt the cluster ID that is prevalent in the local neighborhood.
Prevalence is computed as the sum of weights of the edges connecting to a vertex, optionally
downgraded by the degree of these edges. This leads to a stabilization of regions which expand
over iterations until they encounter other regions, Biemann [2006]. Note that while convergence
is not guaranteed and hence the number of iterations has to be preset, clusters stop changing
after a few tens of iterations, unless there is a tie. A disadvantage of CW is that its output is
non-deterministic which is the result of the randomized and continuous manner in which cluster
membership is determined per iteration. However, its favorable runtime complexity and hence
ability to handle large amounts of data as well the produced clusterings make it a good choice
for clustering natural language data. For further details, please refer to Biemann [2006].

3.3.2.2 Cluster evaluation

Two main approaches to measuring the quality of a clustering exist: If ground truth is available,
extrinsic methods can be used, which compare a clustering against the ground truth and assign
a score to the clustering. Ground truth, also known as gold standard, is an ideal clustering,
usually designed by human experts. If ground truth is unavailable, intrinsic methods can be
used, which evaluate the quality of a clustering by how well the clusters are separated, cf. Han
and Kamber [2006], Chapter 10.

Extrinsic methods can be distinguished by which and how many of the following criteria they
satisfy, Amigó et al. [2009]:

· cluster homogeneity
· cluster completeness
· rag bag
· small cluster preservation

Cluster homogeneity deals with cluster purity: the purer the clusters in a clustering, the better
the clustering. Cluster completeness assigns a better score to a clustering, if objects that belong
to the same category according to ground truth are assigned to the same cluster. The rag bag
criterion penalizes putting an object of a different category into an otherwise pure cluster and
requires that it rather be added to a cluster of miscellaneous, left over objects. Small cluster
preservation promotes the preservation of small clusters at the expense of splitting large clusters,
where the choice arises. Examples of extrinsic measures for cluster evaluation are the v-measure,

17 see http://wortschatz.informatik.uni-leipzig.de/~cbiemann/software/CW.html
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which is the harmonic mean of homogeneity and completeness, the adjusted rand index and the
Jaccard coefficient, which also satisfy the first two criteria, and BCubed, which satisfies all four
criteria.

More precisely, homogeneity is a score between 0.0 and 1.0, where a value of 1.0 means a
perfectly homogeneous labeling and 0.0 indicates complete lack of homogeneity. It is a measure
of entropy that computes the mutual information of true and predicted labels scaled by the
entropy of the true labels.

The BCubed measure is based on the following definition of correctness:

Correctness(e, e′) =

{
1 iff Le = Le′ ⇐⇒ Ce = Ce′

0 otherwise (3.16)

That is, two data points e and e′ that share the same label L are correctly related if and only
if they appear in the same cluster C. Given complete, exclusive clustering and single labels,
precision and recall for a single data point are:

Precisione =
|ClassLe ∩ ClusterCe |

|ClusterCe |
(3.17)

Recalle =
|ClassLe ∩ ClusterCe |

|ClassLe |
(3.18)

Over all data points this can be formulated as follows, Amigó et al. [2009]:

PrecisionBC = Avge [Avge′.Ce=Ce′
[Correctness(e, e′) ]] (3.19)

RecallBC = Avge [Avge′.Le=Le′
[Correctness(e, e′) ]] (3.20)

Plugging precisionBC and recallBC in the harmonic mean F -score, we get

F1 = 2 ∗ PrecisionBC ∗RecallBC / (PrecisionBC +RecallBC) (3.21)

Clusterings in this work will be evaluated with BCubed and homogeneity using bless labels as
ground truth; see Section 4.2.2 for reasoning and results.

Intrinsic methods If, on the other hand, reference to ground truth is unavailable, intrinsic
methods can be used to evaluate a clustering. These evaluate a clustering by determining how
well separated and how compact its clusters are. In particular, the inter-cluster and intra-
cluster distances play a crucial role here. The probably most well-known intrinsic measure is
the silhouette coefficient, but there are others, e.g., the Dunn index. The silhouette coefficient
is defined as

s(o) ≡ b(o)− a(o)
max { a(o), b(o) }

(3.22)

where a(o) is the average distance between an object o and all other objects in the same cluster,
which reflects the compactness of the cluster. And b(o) is the minimum average distance from
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o to all clusters o does not belong to, which reflects the degree of separation of o from other
clusters. Formally that amounts to

a(o) =

∑
o′∈Ci,o′ 6=o dist(o, o

′)

|Ci| − 1
(3.23)

b(o) = min Cj :1≤j≤k,j 6=i

{ ∑
o′∈Cj

dist(o, o′)

|Cj |

}
(3.24)

where Ci is the cluster that object o belongs to, Cj any of the other clusters, and k the total
number of clusters. To score a whole clustering with the silhouette coefficient, we take the av-
erage over the silhouette coefficient as computed for every clustered object.

After having taken a look at the various options of cluster evaluation, in the next section I take
a step back and suggest several ways to evaluate the distributional semantic model, that has
been presented in this chapter, as a whole.

3.4 Evaluation

It is good practice in computational linguistics to validate a system both in terms of intrinsic and
extrinsic evaluation (Baroni and Lenci [2011])18. Intrinsic evaluation refers to the process of
testing a system in itself, often with respect to some gold standard; for instance, when evaluating
the word space spanned by a distributional model or computing the overall loss of a predictor.
Extrinsic evaluation is about measuring a system’s performance in a specific task or embedded
application; e.g. how well a distributional predictor performs on the multiple-choice questions
of the Scholastic Aptitude Test (sat), a standardized test commonly used for college admission
in the United States of America. In the following I describe the data sets used for intrinsic and
extrinsic evaluation in this work, namely the bless data by Baroni and Lenci [2011] and the
sat data set as provided by Turney [2011].

3.4.1 Intrinsic evaluation

To counteract the advancing fragmentation of data sets and evaluation metrics used for intrinsic
evaluation in distributional semantics, Baroni and Lenci [2011] devised a data set specifically
designed for evaluating distributional models, including compositional distributional models.
Their intention was to promote comparability of studies and advance scientific progress19. The
bless data set consists of 200 nouns, both animate and inanimate, from different categories
including tools, vehicles, animals, etc. For each noun there is a set of other words that are
associated in one of the following relations:

· hypernymy
· co-hyponymy
· meronymy
· typical attribute
· typical related event

18 The terms intrinsic and extrinsic have slightly different meanings in this section than the previous one. Yet,
both refer to the original senses of internally, in itself and externally, from the outside.

19 see also https://sites.google.com/site/geometricalmodels/shared-evaluation
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· random

Those other words can be either nouns, verbs or adjectives. For instance, the noun alligator
could be paired with the adjective aquatic which is considered a typical attribute or with the
noun carnivore which is a hypernym of it, and so forth. A random pairing of alligator could be
with teenager or propel. Table 3.8 lists a few examples in the original data formatting, though
exclusively paired with nouns since these are the only considered kind of words here.

noun category relation other noun

lizard-n amphibian_reptile

coord chameleon-n
hyper animal-n
mero blood-n

random-n majesty-n

dishwasher-n appliance

coord freezer-n
hyper artifact-n
mero button-n

random-n dentist-n

sword-n weapon

coord missile-n
hyper device-n
mero pommel-n

random-n annihilation-n

Table 3.8: Data samples from the bless evaluation set.

The bless data set consists of a total of 26 554 labeled pairings, thereof 14 547 noun-noun pair-
ings. Of these 1 337 are in a hypernym relation, 3 565 are co-hyponyms, 2 943 meronyms, and
6 702 random pairings. There are 200 unique primary nouns, that would be the nouns in the first
column in Table 3.8, and 5 676 unique secondary nouns (the fourth column). Primary nouns
occur between 37 and 147 times as can be seen in the top left histogram in Figure 4.3 which
displays the distribution of overall occurrences of primary nouns. In total, 6 414 of 14 547 noun
pairs from bless were found in the data extracted from PukWaC.

The bless data was preferred over other candidates like the toefl data (Landauer and
Dumais [1997])20, SemEval 2012 Task 2 (Jurgens et al. [2012]) or SemEval 2014 Task 1
(Marelli et al. [2014]) data sets for various reasons: For one, they are a reasonable size,
whereas, for instance, the toefl data consist only of 80 multiple-choice synonym questions. In
contrast to SemEval 2012 Task 2, bless uses the type of semantic relations we were interested
in rather than deploying a whole taxonomy of semantic relations ranging from space–time to
agent–object and cause–effect. Lastly, SemEval 2014 Task 1 operates on a different level of
analysis, looking at the sentence level rather than single nouns or multi-word expressions.

3.4.2 Task-oriented evaluation

On the side of extrinsic evaluation, there have long been a variety of tasks and respective data
sets in use for testing distributional models. These include:
20 Note that the toefl data can be used both as a (mini) gold standard for synonyms as well as an extrinsic

evaluation task in which performance is measured in comparison to humans.
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Task Example(s)

Vocabulary tests ESL, SAT

Thesaurus comparison
correlation with graph distance in WordNet,
overlap of word space and thesaurus

Behavioral tests association norms, semantic priming

Table 3.9: Tasks for extrinsic evaluation in distributional models.

Among the more widely used ones is the sat data set, Turney [2011], which has been used in
more than 20 studies21. It consists of 374 multiple-choice analogy questions with 5 choices per
question. Sample data are shown in Table 3.10. The data was originally collected by Michael L.
Littman and is available on request from Peter Turney22 who started using them for measuring
relational similarity in 2003.

Question Answers

ostrich : bird

lion : cat
goose : flock
ewe : sheep
cub : bear

primate : monkey

tunnel : mine

conduit : fluid
corner : intersection

sign : detour
aisle : seat

corridor : building

Table 3.10: Data samples from the sat evaluation set.

The sat data is the evaluation set I used in this study as well, as it turned out that alternative
tasks were not as well suited. Thesaurus comparisons, in particular with WordNet, are com-
plicated in the given setting because the degree of detail and hence variance in graph distance
diverge considerably for different domains. Behavioral experiments were forbone due to the
organizational and financial efforts involved in inviting a significant number of human subjects
to participate.

21 cf. http://aclweb.org/aclwiki/index.php?title=SAT_Analogy_Questions
22 ibidem.
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4 Results and Discussion

In the previous chapter I described the methods used to learn semantic relations with distri-
butional similarity. In this chapter I present the results, illustrate how well semantic relations
could actually be learned, discuss issues encountered and analyze the errors. As before, the
topical order is: representation, then learning, and finally error analysis.

4.1 Features

Pipeline Table 4.1 shows the NLP pipeline – as depicted in Section 3.1, Figure 3.1 – viewed as
a combination of filters over incoming data points. The number of incoming sentences is reduced
by roughly 9 percent when removing duplicate sentences. Filtering these unique sentences with
a distributional thesaurus yielded 200 069 unique pairs; using bless instead yielded 6 414 and
6 718 unique pairs for PukWaC and News120M, respectively. Note that numbers for the DT
track are given for roughly ten percent of the total data, since the complete corpus exhausted
the available computational resources. This is also the reason the DT was applied to only one
corpus, namely PukWaC. The JoBimText records contain more unique pairs than the feature
records because inverted pairs were added1 with the respective pattern marked as 〈pattern〉−1.
For instance, if the pair (capitalism,war) was observed with the pattern 〈X requires Y〉, we added
the inverted pair (war,capitalism) with the pattern 〈X requires Y〉−1.

PukWac News120M
dt bless bless

Sentences in input corpus 88 214 600 88 942 335
Unique sentences in corpus 76 020 095 81 026 917
Pairs in DT resp. bless 36 070 044 14 547
Pairs in feature records 200 069 6 414 6 718
Pairs in JoBimText records 341 339 11 216 11 570
Patterns in feature records 19 389 359 3 275 482 4 383 134
Patterns in JoBimText records 38 778 750 6 550 964 8 766 266
Frequent patterns (> 5×) 470 798 65 148 41 572

Table 4.1: The pipeline viewed as a set of filters over incoming data points.

As the stark shrinkage of patterns with frequency shows, the majority of patterns occurs rarely
and might therefore not contribute to finding similarities between pairs for lack of overlap. This
will be explored further when looking at distributions of patterns and pairs, their intertwining,
and at pruning. It is worth noting that, although the bless data was generated from PukWaC,
it is not the case that more bless pairs were found in that source corpus than in News120M.

1 JoBimText records do not necessarily double counts because sometimes inverted pairs already existed.
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PukWaC

All target-expansion pairs 449 688 161
only nn and nns 137 859 295
target 6= expansion 136 130 697
skip words with [0-9.+@] 91 796 055
Top 100 expansions 61 703 722
Top 50 expansions 36 070 044
Top 25 expansions 19 934 687

Table 4.2: Target-expansion pairs in distribu-
tional thesaurus.

Distributional thesaurus Table 4.2 shows
how the final distributional thesaurus is ar-
rived at over several filtering steps. Thirty
percent of the original entries involve pairs of
common nouns and most of these are not the
same noun, i.e. not pairs like (year,year). A
considerable number of nouns contain num-
bers and shtrudels which might be an indi-
cator of boiler plate still present in the data.
After filtering these the DT still consisted of
about 90 million pairs. For further data re-
duction, three pruning factors were experi-
mented with. A cap of 50 expansions per
target word was finally chosen to maximize
distributional similarity of pairs while avoiding unnecessary data loss. Restricting expansions
to the top 25 per target word reduced the overlap with bless to a mere 395 training and test
pairs while using the top 50 yielded 6 414 pairs. Unfortunately, using more expansions per target
word would have exhausted the available computational resources.
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Figure 4.1: Histograms of pattern and pair fre-
quencies in feature records.

Patterns Extracted patterns followed a typ-
ical power law distribution with many pat-
terns occurring very rarely and few patterns
occurring very frequently, see top histogram
in Figure 4.1. Extremes were 17 572 379 pat-
terns observed a single time and the pattern
〈X and Y〉 observed 100 955 times. In com-
plement to Figure 4.1, Table 4.3 lists the 50
most frequent patterns across all pairs. The
selection of patterns shows that there is am-
ple repetition in patterns, particularly involv-
ing commas. For instance, one can find all of
〈X , Y〉, 〈X Y ,〉, 〈X , Y ,〉 and 〈X , , Y〉 in
these top patterns. This is mainly because all
subtrees along the dependency parse of length
6 or less were extracted as patterns thereby
fostering repetition with slight variance. This
study did not empirically test how the inclu-
sion of punctuation marks, and in particu-
lar commas, effected the results, which might
be worth examining in future work. How-
ever, some patterns including commas ended
up having high coefficients for predicting co-
hypernymy, cf. Table 4.25. It is interesting,
though not surprising, that the most frequent
patterns contain only determiners, preposi-
tions, and conjunctions besides X and Y , and no verbs, apart from the occasional inflected
form of to be.
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occurrence pattern occurrence pattern
100 955 X and Y 11 463 X of the Y
64 929 X , Y 10 984 X and Y of
50 429 the X Y 10 969 X Y , ,
46 539 X Y and 10 884 on X Y
44 528 of X Y 10 256 X Y is
35 418 X Y , 9 808 X , , Y and
33 485 X , Y and 9 558 with X and Y
33 202 X of Y 9 436 the X Y of
29 176 a X Y 9 428 X Y in
23 371 X or Y 9 248 X the Y
22 002 X , Y , 9 140 X in Y
21 999 X , and Y 8 755 for X and Y
21 154 the X and Y 8 653 X for Y
21 107 of X and Y 8 503 of the X Y
20 775 X , , Y 8 349 of X Y and
19 890 with X Y 8 297 as X Y
19 126 X Y of 8 162 X Y for
18 939 for X Y 8 069 is X Y
18 080 in X Y 8 005 X a Y
18 064 X Y , and 7 753 X and Y ,
17 772 the X of Y 7 735 X , Y , ,
16 616 to X Y 7 708 a X of Y
13 934 X , Y , and 7 578 the X of the Y
13 791 X Y are 7 576 X , , and Y
11 609 of X , Y 7 558 by X Y

Table 4.3: The 50 most frequent patterns in the feature records.

Pairs Pair occurrences behaved similar to those of patterns on a large scale, although the
mean was higher by a factor of 100, see the bottom histogram in Figure 4.1. The most fre-
quently observed pair was (web,site) with 58 645 counts and as many as 16 714 pairs were seen
only a single time. The 20 most frequent noun pairs in the feature records are listed in Table 4.4.

occurrence pair occurrence pair
58 645 ( web, site ) 20 543 ( web, page )
43 646 ( man, woman ) 19 046 ( click, link )
32 517 ( term, condition ) 19 043 ( search, engine )
28 666 ( application, form ) 18 620 ( anwer, question )
28 611 ( day, week ) 18 061 ( click, button )
25 041 ( name, address ) 17 777 ( research, project )
22 991 ( email, address ) 17 412 ( credit, card )
22 378 ( product, service ) 17 356 ( family, friend )
22 255 ( hour, day ) 17 219 ( group, people )
20 845 ( time, day ) 17 046 ( member, staff )

Table 4.4: The 20 most frequently observed pairs in the feature records.
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Pairs-per-pattern, patterns-per-pair Before applying machine learning algorithms to the data,
pairs-per-pattern and patterns-per-pair distributions were inspected to analyze whether the fea-
tures used produced enough overlap between data points for similarity measures to make sense.
The histograms in in Figure 4.2 show the bigger picture. Zooming in revealed that as many
as 107 patterns occurred only with a single noun pair but just 9 651 pairs occurred only with a
single pattern.
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Figure 4.2: Histograms of pairs per pattern and patterns per pair in feature records.
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4.2 Learning

4.2.1 Classification

A variety of parameters were tuned for classification, among them pattern pruning, different
ways of splitting training and test data, binary versus continuous values for the feature matrix,
varying subsets of bless for evaluation, and various combinations of feature sets. In the follow-
ing paragraphs I present the outcomes and discuss them one by one, the upshot though is the
following:

Predictions were best for co-hyponyms with an F -score of 0.90, slightly less reliable
but still fairly good for meronyms with 0.79, and most difficult for hypernyms with
0.56. The feature that proved most contributive was subtree patterns containing
both nouns, extracted from dependency parses.

Pruning Strong pruning did not produce positive effects on the classification results as mea-
sured by the F -score. Mild pruning, however, improved the results by some percentage points
for predictions regarding both hypernymy and meronymy. Thereby only context features were
pruned, choosing the n most informative contexts per noun pair measured with the Lexicogra-
pher’s mutual information as described in Section 3.2.2. Similarity and topic modeling features
were kept uncut. Table 4.5 shows the development of the F -score and one can observe how F -
scores decline once pruning reduces the data to 500 patterns per pair and below. For one of the
conditions a comparison was run with the same amount of patterns but randomly chosen from
all context patterns and it seems to be the case that selecting patterns by their LMI ranking
returns better results than just any patterns. To get an impression of the magnitudes, Table 4.6
shows the counts of (non-unique) patterns for different degrees of pruning.

coord hyper mero

No pruning 0.89 0.53 0.75
Top 1500 context patterns per pair 0.89 0.51 0.76
Top 1000 context patterns per pair 0.89 0.54 0.76
Top 500 context patterns per pair 0.87 0.53 0.76
Top 200 context patterns per pair 0.87 0.47 0.75
Some 200 context patterns per pair 0.80 0.31 0.70

Table 4.5: Comparison of F -scores for different amounts of pruning.

Non-unique patterns

All context patterns for bless 25 758 378
Top 1500 context patterns per pair 21 293 362
Top 1000 context patterns per pair 20 602 498
Top 500 context patterns per pair 19 554 526
Top 200 context patterns per pair 8 637 714

Table 4.6: Counts of context patterns with different amounts of pruning.
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De-lexicalizing As Table 4.7 distinctly marks, there is a considerable gap in classification re-
sults between lexicalized and de-lexicalized data. The difference between the two conditions is
that in the lexicalized case the data are split into training and test sets using a standard pro-
cedure like stratified folds, whereas in the de-lexicalized case additionally care is taken to avoid
vocabulary overlap in test and training sets. Overlap in vocabulary can lead to learning that a
particular word, for instance, animal, is a typical hypernym and subsequently make predictions
based on this information, which does not generalize very well.

lexicalized de-lexicalized

coord
Precision 0.96 0.95
Recall 0.96 0.83
F-score 0.96 0.89
Support 518 633
Avg. precision 0.97 0.92
Accuracy 0.97 0.92

hyper
Precision 0.99 0.85
Recall 0.88 0.40
F-score 0.93 0.54
Support 153 160
Avg. precision 0.94 0.66
Accuracy 0.98 0.93

mero
Precision 0.93 0.82
Recall 0.90 0.70
F-score 0.91 0.76
Support 440 593
Avg. precision 0.93 0.82
Accuracy 0.94 0.84

Table 4.7: Comparing classification reports for lexicalized and de-lexicalized training and test
sets.

This seems to be a particular problem with the bless evaluation data, where the left nouns in a
pair occur in all four relations but most of the right nouns occur only in one of the four relations,
see the lower two histograms in Figure 4.3. 5 266 out of 5 676 unique right-hand nouns occur
only in one relation, 410 in more than one relation. The word artifact, for instance, occurs in a
hypernym relation 91 times. All in all, 1746 nouns are seen in the same relation more than once,
163 more than ten times, 37 more than twenty times, and 6 more than 50 times. The number of
occurrences per left-hand and right-hand noun are shown in the upper histograms in Figure 4.3.

Binary features Comparing binary feature matrices to continuous ones showed that the crucial
piece of information is whether or not a feature was observed significantly with a particular noun
pair rather than the exact LMI value. Table 4.8 illustrates this conclusively.
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Figure 4.3: Histograms of the distributions of nouns in the bless data.

coord hyper mero
P R F P R F P R F

binary 0.95 0.83 0.89 0.85 0.40 0.54 0.82 0.70 0.76
continuous 0.94 0.63 0.75 0.77 0.39 0.52 0.83 0.45 0.58

Table 4.8: Comparison of F -scores for binary versus continuous feature matrix.
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PukWaC versus News120M To compare the two data sources PukWaC and News120M, F -
scores were computed for both in a basic setting with a pruning of 1000 patterns per pair,
de-lexicalized training and test sets, and binary feature matrices. Since similarity and topic
modeling features were not available for News120M, the comparison was run with context fea-
tures only. The bless data without random pairs was used for training and testing to make the
comparison as fair as possible – see the next paragraph for details on the different evaluation
sets. Support was the same for both corpora with 1 004 co-hyponyms, 454 hypernyms, and 764
meronyms. The results for co-hyponymy and hypernymy are in the same ball park, but for
meronymy the F -score is noticeably better with representations derived from News120M. This
is probably because many more patterns were found for meronyms in the News120M corpus than
in PukWaC, making predictions more reliable: for 2943 meronym pairs, on average 269 more
patterns per pair were found in News120M; i.e. an average of 882 patterns per pair instead of 614.

coord hyper mero
P R F P R F P R F

PukWaC 0.93 0.65 0.77 0.95 0.24 0.38 0.73 0.56 0.63
News120M 0.86 0.66 0.75 0.91 0.28 0.42 0.60 0.82 0.70

Table 4.9: Comparing F -scores for PukWaC and News120M; context features only.

Evaluation sets When training and testing the logistic regressor with different subsets of the
bless data, F -scores varied considerably with differences of up to 27 percentage points. This
effect occurs because various features are combined for learning and, if for a particular data
point some features have been observed but not others, a prediction will still be made unless no
feature at all has been seen. In particular, features involving only single nouns are much more
abundant than features requiring the presence of both nouns in a pair. At the same time the
subtree feature, which is a pair feature, was the best tested predictor of the relation between two
nouns, see the ablation test in Table 4.13. The significant decrease in recall and slight increase
in precision, which were observed for larger evaluation sets and smaller overlap with PuKWaC
pairs, can therefore be explained in terms of the contribution of the subtree feature to the model:
In its presence, the number of correctly predicted from the relevant class, TP

TP+FN , is expected to
grow, while in its absence but with generally higher support the number of correctly predicted
from retrieved items, TP

TP+FP , can still be expected to remain stable2.

The three different evaluation sets tested were: “all bless pairs” comprising all noun pairs from
the bless data, “bless exc. random” skipping random pairs from that original set, following
the logic that non-distributionally similar pairs rarely occur in the data set of this study. Lastly,
“bless ∩ PukWaC” explicitly filtered out any noun pairs that had not been observed in the
data. As Table 4.10 shows, the decrease in F -scores is mostly due to a decrease in recall.

2 Slightly higher support in some conditions with generally less data are artifacts of de-lexicalization.
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all bless pairs bless exc. random bless ∩ pukwac

all ctx features

coord
Precision 0.97 0.93 0.93
Recall 0.50 0.65 0.76
F-score 0.66 0.77 0.84
Support 1021 1004 663

hyper
Precision 0.94 0.94 0.83
Recall 0.12 0.24 0.34
F-score 0.22 0.38 0.49
Support 394 454 160

mero
Precision 0.89 0.73 0.82
Recall 0.28 0.56 0.56
F-score 0.43 0.63 0.67
Support 769 764 593

subtree feature only

coord
Precision 0.94 0.90 0.93
Recall 0.74 0.84 0.78
F-score 0.83 0.87 0.85
Support 702 802 633

hyper
Precision 0.80 0.89 0.78
Recall 0.43 0.45 0.40
F-score 0.56 0.60 0.53
Support 199 280 160

mero
Precision 0.83 0.69 0.82
Recall 0.37 0.89 0.59
F-score 0.51 0.78 0.68
Support 577 548 593

Table 4.10: Comparing precision, recall, and F -score for different evaluation sets.

random pairs

( jet, jam )
( mug, ward )
( fridge, test )
( trout, hour )
( shirt, legend )
( cod, bed )
( fighter, piece )
( truck, visitor )
( truck, counterpart )
( gorilla, cash )
( cannon, platform )
( beetle, being )
( hat, meal )
( washer, tab )
( toaster, show )

Table 4.11: Selection of random pairs seen in
DT.

Class priors The prior distributions of
classes in the evaluation data are given
in Table 4.12, where hypernyms were
clearly the least represented, while co-
hyponyms were on a par with meronyms
for all evaluation sets. It is surpris-
ing that 1 034 random pairings were seen
in the noun pairs from the distribu-
tional thesaurus and should be exam-
ined further in future work. Table 4.11
gives some examples of such random pair-
ings.
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coord hyper mero random

all bless pairs 3 565 1 337 2 943 6 702
bless exc. random 3 565 1 337 2 943 –
bless ∩ PukWaC 2 589 762 2 199 1 034

Table 4.12: Prior distributions of the different classes for the different evaluation sets.

Combinations of features Three diverse sets of features were used: context features, similar-
ity features, and features from topic modeling. Furthermore, for each set various set-algebraic
combinations were computed. To measure the contribution of each feature set to the final result
of the learner, an ablation test was conducted. Table 4.13 shows the results. It becomes clear
that the context features contribute most to the total F -score, and notably the subtree feature
is most indicative of the existing relation. The subtree features comprises all subtree patterns
up to length 6 along the dependency parse that contain both nouns.

coord hyper mero
P R F P R F P R F

all 0.95 0.83 0.89 0.85 0.40 0.54 0.82 0.70 0.76
excl. sim 0.92 0.80 0.86 0.86 0.34 0.49 0.80 0.70 0.75
excl. ctx 0.88 0.60 0.71 0.46 0.17 0.25 0.74 0.55 0.63
excl. lda 0.96 0.79 0.87 0.85 0.40 0.54 0.82 0.61 0.70

ctx all 0.93 0.76 0.84 0.83 0.34 0.49 0.82 0.56 0.67
excl. X 0.93 0.76 0.84 0.83 0.34 0.49 0.82 0.58 0.68
excl. Y 0.93 0.76 0.84 0.85 0.34 0.49 0.82 0.58 0.68
excl. X 〈...〉 Y 0.78 0.14 0.24 0.00 0.00 0.00 0.65 0.16 0.26
excl. X ∨ Y 0.94 0.76 0.84 0.83 0.34 0.49 0.83 0.57 0.68
excl. X ∧ Y 0.93 0.76 0.84 0.86 0.34 0.49 0.82 0.58 0.68
excl. diff X Y 0.93 0.76 0.84 0.83 0.34 0.49 0.83 0.58 0.68
excl. X ¬ Y 0.93 0.76 0.84 0.86 0.34 0.49 0.83 0.58 0.68
excl. Y ¬ X 0.93 0.76 0.84 0.86 0.34 0.49 0.82 0.58 0.68

Table 4.13: Ablation test of the various sets of features used. X and Y are the left and right
noun in a pair and 〈...〉 represents the subtree feature.

Multiclass Finally, after all the results were in, I computed a multiclass variant of logistic
regression and it turned out that the scores improved when training all classes simultaneously.
Table 4.14 shows the results attained with the “bless ∩ PukWaC” evaluation set.

coord hyper mero
P R F P R F P R F

binary – ctx feats .93 .76 .84 .83 .34 .49 .82 .56 .67
multiclass – ctx feats .89 .84 .86 .83 .39 .53 .77 .71 .74
binary – all feats .95 .83 .89 .85 .40 .54 .82 .70 .76
multiclass – all feats .91 .89 .90 .78 .44 .56 .78 .79 .79

Table 4.14: Precision, recall, and F -scores using multiclass logistic regression.
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SAT multiple-choice analogy questions In order to evaluate the quality of the generated dis-
tributional space in a practical application, I used it to answer the SAT multiple-choice analogy
questions, cf. e.g. Turney [2011]. For every question, I counted the feature overlap between
question and possible answer, and picked the answer with the highest score. Making a prediction
for every question, for which at least one of the possible answers was observed in the data, gave
44 percent correct replies, which is significantly better than random choice but worse than the
performance of an average U.S. college applicant (57 percent3) and than the state of the art (56
percent, Turney [2006]).

Hereby, the greatest issue was data sparseness: only 2 out of 192 questions involving nouns were
observed in the data with all five possible answers. 4 answers were observed for 7 questions, 3 for
9, 2 for 18, 1 for 18, and for 138 questions none of the answers was found. For two of the ques-
tions found with answers, no feature overlap was present, reducing the total number of questions
answered to 34. One way to reduce such data sparseness, was used by Turney [2006], likewise
in the context of answering SAT questions: For each noun pair A:B he constructed similar pairs
by retrieving alternates for both A and B from Lin [1998b]’s thesaurus, as A’:B and A:B’, and
filtered these alternate pairs by co-occurrence frequency in phrases in a corpus, keeping only
the most frequent ones. When answering a question, he then chose the answer pair with the
highest average cosine similarity for all combinations of {question pair and alternate pairs} and
{answer pair and alternate pairs}. With this approach, which I will consider for future work,
Turney could answer 370 out of the 374 total SAT questions (nouns and other).

correctness 0-1 loss samples predicted

random 0.21 0.79 185
results 0.44 0.56 34
average human 0.57 0.43 185

Table 4.15: Predicting sat mutliple-choice analogy questions.

4.2.2 Clustering

Clustering was performed using the Chinese Whispers algorithm with a minimum edge weight
threshold of 10, constant mutation, continuous update mode, and 30 iterations. All available
strategies for updating a node’s cluster ID were evaluated, whereby top, dist log, and dist nolog
returned quite similar results. I finally settled for dist log, which performed just slightly better
than the other two. Dist log computes a node’s new cluster ID by downgrading the edge weight
of neighboring nodes with the logarithm of their degree, i.e. the number of edges they have, and
picking the cluster ID with the highest computed value.

For evaluation, all clustered noun pairs that also occurred in the bless data were selected and
various cluster evaluation scores computed. At first, I considered using B-Cubed as primary
score, but baseline scores showed that it values recall over precision with a single cluster of all
data points producing an F -score of 0.7. For use cases of this work, however, the purity of
clusters is by far more important than whether these clusters are also complete, i.e. contain
all instances of a relation. Therefore, homogeneity, a measure of cluster purity, was chosen as

3 cf. http://www.aclweb.org/aclwiki/index.php?title=SAT_Analogy_Questions
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primary score for evaluating different clusterings.

Figure 4.4: Distribution of cluster sizes

Cluster sizes of the best clustering are shown in Figure 4.4. A total of 103 363 clusters were
found for 114 615 data points, the bulk of which (102 028) were single-item clusters. Of the
remaining 1335 clusters, 178 were of cardinality greater than 5, 74 greater than 20, 32 greater
than 100, and 14 contained more than 200 items. Of these 114 615 data points, 1 156 were eval-
uated – 832 co-hyponyms, 184 hypernyms, 137 meronyms, and 3 random pairs. Unfortunately,
the distribution of classes was not very balanced in the evaluation data, even though I tried to
keep a balance in the original cluster data by restricting pairs to the 50 most similar ones per
pair. While meronyms were spread all over the clusters, there was at least one pure hypernym
cluster and several good co-hyponym clusters. Table 4.17 shows various evaluation clusters: one
hypernym cluster and three of the co-hyponym clusters; respective evaluation scores are given
in Table 4.16. Finally, Table 4.18 shows that same hypernym cluster as it was found in the
clustering, that is the complete cluster rather than just the evaluated part of it.

Homogen. Precision Recall B-Cubed

baseline
a single cluster 0.00 53.44 100.00 69.95
each in own cluster 1.00 100.00 0.26 0.53
4 random clusters 0.01 53.51 20.11 29.24

results
sim > 10 0.86 98.93 0.62 1.23
sim > 20 0.90 99.36 1.02 2.01

Table 4.16: Homogeneity scores for different clusterings.
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Cluster 134 Cluster 573
robin::@::sparrow birch::@::tree
bomber::@::fighter broccoli::@::vegetable
carrot::@::parsley carrot::@::vegetable
squirrel::@::rabbit fox::@::carnivore

deer::@::fox fox::@::mammal
screwdriver::@::plier fridge::@::appliance
donkey::@::goat glove::@::accessory
mackerel::@::tuna hat::@::apparel
grenade::@::missile mackerel::@::fish
television::@::fridge oven::@::appliance
hotel::@::restaurant rabbit::@::pet
spinach::@::broccoli salmon::@::fish
knife::@::scissors tiger::@::creature
tiger::@::leopard tuna::@::fish

( coord ) ( hyper )

Cluster 249 Cluster 172
beetle::@::butterfly carrot::@::bean

birch::@::pine cow::@::deer
carrot::@::broccoli fox::@::deer

cauliflower::@::broccoli fridge::@::television
fox::@::pig goat::@::donkey

giraffe::@::elephant herring::@::mackerel
goat::@::dog knife::@::scalpel
horse::@::dog lemon::@::orange
sheep::@::dog missile::@::grenade

toaster::@::refrigerator pistol::@::grenade
wasp::@::butterfly rabbit::@::squirrel
willow::@::pine tiger::@::lion

( coord ) ( coord )

Table 4.17: Examples of evaluation clusters.
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Cluster 573

salmon::@::fish heart::@::organ
bread::@::food mackerel::@::fish

carrot::@::vegetable rabbit::@::pet
milk::@::product monoxide::@::vapour
belief::@::concept vegetable::@::wholefood
hawthorn::@::scrub adjective::@::modifier
sausage::@::meat worm::@::nasties

scientist::@::professional observation::@::source
bacterium::@::organism fox::@::mammal
investor::@::stakeholder pea::@::legume
wedding::@::occasion management::@::issue

otter::@::specie skin::@::tissue
petrol::@::fuel vegetable::@::food

religion::@::history drum::@::instrument
meaning::@::abbreviation polythene::@::plastic

language::@::subject glove::@::accessory
oven::@::appliance fatigue::@::symptom

windsurfing::@::sport manager::@::stakeholder
furniture::@::object acupuncture::@::therapy

tiredness::@::symptom dizziness::@::symptom
problem::@::issue doctor::@::professional
mouth::@::mucosa math::@::subject

acupuncture::@::treatment caffeine::@::stimulant
technician::@::worker meat::@::dip
supply::@::consumable daffodil::@::bulb
apple::@::vegetable simulation::@::computation
gold::@::commodity video::@::extra
invoice::@::form pasture::@::habitat

aerospace::@::sector presentation::@::coursework
diet::@::remedy flood::@::hazard

asthma::@::disorder sociology::@::subject
carbohydrate::@::nutrition ammonia::@::poison

analyst::@::expert constipation::@::discomfort
anxiety::@::difficulty anxiety::@::seizure

hat::@::apparel mite::@::irritant
cyanide::@::poison racism::@::crime
copper::@::mineral nurse::@::profession

painkiller::@::medication cinnamon::@::spice
wool::@::fibre skill::@::topic

violence::@::behaviour bag::@::essential
resident::@::objector cocaine::@::drug

tuna::@::fish orange::@::citrus
birch::@::tree zinc::@::metal

insect::@::organism frustration::@::emotion
crisp::@::snack hypertension::@::complication

sprout::@::brassica rice::@::cereal
broccoli::@::vegetable vanilla::@::flavour
brochure::@::collateral liberalism::@::ideology

kite::@::raptor dirt::@::contaminant
catalyst::@::solid switch::@::modulator

ceramic::@::antiquity nurse::@::ahps
clown::@::entertainer oppression::@::evil
food::@::essential microprocessor::@::ics

corticosteroid::@::immunosuppressants louse::@::arthropod
steak::@::speciality fox::@::carnivore

therapist::@::facilitator professional::@::other
paste::@::bait duck::@::waterfowl

pepper::@::vegetable plate::@::tableware
fridge::@::appliance golf::@::hobby
theatre::@::nightlife rock::@::debris

helicopter::@::artillery sand::@::aggregate
zinc::@::micronutrient inflammation::@::lupus

ivy::@::evergreen lawyer::@::intermediary
metal::@::recyclables sponsor::@::guest

pharmaceuticals::@::product physiotherapist::@::profession
picture::@::message tiger::@::creature
taxi::@::transport substance::@::hazard

Table 4.18: A hypernym cluster.
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4.3 Error analysis

The previous two sections, Sections 4.1 and 4.2, present and analyze the results obtained from
classification and clustering of noun pair representations. The best scores attained were:

precision recall F -score
logistic regression 0.79 0.78 0.78

chinese whispers 0.86
homogeneity

Table 4.19: Best average scores for classification and clustering

While the results are fairly good, there is room for improvement and in the following I will
analyze the errors made by the classifier in order to be able to optimize feature representations
in future work.

Confusion matrix Figure 4.5 gives two confusion matrices: one for the evaluation set “bless
∩ PukWaC” with four classes and another for the evaluation set “bless except random” with
three classes. The left matrix shows that random pairs are often mistaken for meronyms and vice
versa. Hypernyms are confused with all other classes, and co-hyponyms are not confused much
at all, but if they are, it is with meronyms and random pairs more than with hypernyms. As the
right confusion matrix depicts, in the second case co-hyponyms and meronyms are sometimes
mistaken for one another but rarely are they misclassified as hypernyms. Hypernyms, in turn,
are mistaken for all the other classes. Table 4.20 shows some examples of misclassified noun
pairs with true and predicted labels – taken from the four-class condition.
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Figure 4.5: Confusion matrices – all four classes (left) and excluding random.

A closer look at the four-class condition reveals that misclassified random pairs were frequently
represented by patterns with high coefficients for one of the other classes, cf. Table 4.25. For
instance, by patterns like 〈X or Y〉, 〈X and Y〉, 〈of X Y〉, 〈with X and Y〉, 〈X and its Y〉, and
〈X , Y〉 which are indicators of co-hyponymy, hypernymy, and meronymy – two patterns per
relation in that order. One way to try to minimize confusions with random pairs would be to
include truly random pairs during training rather than only random pairs that already display
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significant distributional similarity which is why they became part of the DT and therefore eval-
uation set in the first place.

misclassified pairs
pair label prediction

villa::@::house hyper coord
radio::@::music mero hyper

cockroach::@::animal hyper mero
scarf::@::garment hyper random
guitar::@::plastic mero random
jet::@::artefact hyper mero
bed::@::climate random mero
phone::@::dial mero coord

pig::@::counterpart random mero
car::@::reality random hyper
jar::@::jug coord mero

box::@::artefact hyper mero
guitar::@::top mero random

deer::@::composition random mero
alligator::@::eye mero random

lizard::@::supplement random mero
robe::@::stocking coord mero
bottle::@::gbp random mero

hotel::@::revenge random mero
guitar::@::arrangement random mero

missile::@::device hyper coord
oven::@::device hyper mero
horse::@::squirrel coord mero
truck::@::music random mero
bed::@::security random mero

Table 4.20: Selection of misclassified pairs with true and predicted labels.

Hypernym predictions might be improved by increasing the support for hypernymy which was
significantly lower than for co-hyponymy and meronymy with about 150 pairs compared to 600
for the other conditions.

Hypernyms Inspecting subtree patterns with high model coefficients for hypernymy (see Ta-
ble 4.25) reveals that these comprise Hearst patterns like 〈X and other Y〉, 〈X other Y〉, and
〈include X Y and〉 but not 〈X such as Y〉 and 〈X especially Y〉. However, a range of other highly
predictive patterns are found, among them 〈is X Y ?〉, 〈X is a Y〉, and 〈X , which is Y〉.

Table 4.21 lists sentences that the pattern 〈X is a Y〉 occurs in and shows that mostly hypernyms
are matched. Similarly, with 〈X, which is Y〉, the nouns extracted are mostly in a hypernym
relation. Exceptions include sentences like

Police are currently trying to trace the man, and his car, which is a black or dark blue left
hand drive VW Golf bearing Polish number plates.
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for the pair car::@::plate. This particular error can probably be attributed to incorrect parsing.
Figure 4.6 displays a correct dependency parse of the sentence, which would not yield the pat-
tern 〈car is a plate〉 but rather a pattern like 〈car golf bearing plate〉.

pair sentence
parsley::@::herb With a mild and agreeable , tangy sweet and rich flavour , parsley

is a popular kitchen herb .
rifle::@::weapon The M4 rifle is a great weapon but it is better at close-quarter

combat .
rat::@::beast A well-fed adult rat is a fearsome beast , almost the size of a

small cat .

Table 4.21: Examples sentences yielding the pattern 〈X is a Y〉.

Figure 4.6: Correct partial dependency parse of Police are currently [...].

The pattern 〈is X Y ?〉, which ranks 4th and at first intuitive look might seem a good predictor of
hypernymy, returns rather mixed results. Table 4.22 shows example sentences that this pattern
occurs in. From these examples, two sources of error catch one’s eye: 1. that the conjunction
or does not appear in the extracted pattern, which is due to the way it is annotated in the
dependency parse (cf. Figure 4.7). It therefore does not show up in the subtrees which walk the
shortest path. And 2. that multiword expressions are either split into several separate words or
only used partially, since multiword expressions are not considered in this work. Both problems
should be alleviated and examined in future work.

Figure 4.7: Dependency parse of the sentence Is there a chair or stool ?.

Co-hyponyms Similar problems occur with co-hypernym patterns. 〈of X or Y〉, the 4th most
significant pattern for co-hyponymy (cf. Table 4.25), extracts many different co-hypernyms but
some of the pairs it captures are hypernyms. These are included due to missed multiword expres-
sions or quantifiers and general adjectives that were omitted from the pattern. Table 4.23 gives
examples where either the pair or the pattern should be different – with adaptations suggested.
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pair sentence relation
cat::@::animal Is your cat a party animal? hyper
robin::@::bird Is a robin a bird of prey? hyper
coconut::@::fruit Is a Coconut a fruit, vegetable or a nut? hyper
cat::@::pet But is a cat the right pet for you? hyper
banana::@::fruit What is a banana if not a fruit? hyper
chair::@::stool Is there a chair or stool? coord
gun::@::bomb Is it a gun , a tank , or a bomb? coord
pub::@::restaurant Is there a pub or restaurant nearby? coord
cat::@::panther Is it a black cat or a dangerous panther? coord?
eagle::@::feather Where is the eagle’s feather you have? mero
phone::@::number What is my phone number? random /mwe
elm::@::tree How far away from you is the elm tree? hyper /mwe
cat::@::tiger Is a Bengal cat a tiger? coord /hypo /mwe

Table 4.22: Examples sentences yielding the pattern 〈is X Y ?〉.

pair sentence suggestion
cat::@::animal It is this devotion that makes a pet por-

trait of your cat , dog , horse or any an-
imal a perfect gift for any occasion.

of X or any Y

glove::@::material This can usually be overcome by the den-
tist using a low-allergy brand of gloves or
alternative materials.

of X or alterna-
tive Y

knife::@::weapon I dread to think what the consequences
could have been if the person had been
in possession of a knife or other lethal
weapon.

of X or other Y

apple::@juice Drink only pure water , or if you really
cannot do this , allow yourself a small
quantity of apple or grape juice.

apple juice and
grape juice

sheep::@::animal Finally , there is the sacrifice of a sheep
or other animal as the climax of the pil-
grim ’s task.

of X or other Y

pistol::@::weapon I told them to stop firing any kind of pis-
tol, gun, rifle or other weapon, or not
get dinner, and went back into the house.

of X or other Y

car::@::vehicle Leasing options for any make or model of
car or commercial vehicle.

car and com-
mercial vehicle

Table 4.23: Example pairs erroneously extracted with 〈of X or Y〉.
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Meronyms Patterns like 〈X have Y〉, 〈X with Y〉, and 〈X contains Y〉 very reliably retrieve
foremost meronyms. The pattern 〈X orange Y〉, which ranks 2nd, is very rare with 9 occurrences
but it returns almost only meronyms – if mostly for the wrong reasons. Table 4.24 shows these
pairs and their context and makes clear that most pairs, though meronyms in themselves, are
not represented as such in the text. Rather these sentences contain lists of co-hyponyms with the
exception of lion::@::mane, which is the only true meronym found. The reason for this confusion
seems to be missed multiword expressions and as a result, for instance, plum::@::peel is retrieved
instead of plum::@::orangePeel.

pair sentence
apple::@::peel Box of 75g 4.65 Fruit tea – pure natural tea, rich in apple,

orange peel, hibiscus.
lemon::@::juice Other common drinks include lemon, apple, and orange juice.
apple::@::apricot Vitamin B17 is found in all fruit seeds such as the apple, peach,

cherry, orange, nectarine and apricot.
plum::@::juice June 4th, Monday Breakfast this morning, stewed plums, or-

ange juice, and scrambled eggs.
lion::@::mane Do you know a lion’s orange bushy mane?
plum::@::peel Medium bodied and fragrant, showing notes of smoky plum,

orange peel and herbs, the refreshing aftertaste is in the style
of wines from the northern Rhine.

grapefruit::@::juice UGLY Pour equal amounts of grapefruit and orange juice over
plenty of ice and serve with straws.

apple::@::juice Drink was on the go too, but there was apple or orange juice
for the drivers ( promise, that’s what is photographed!

apricot::@::juice Place the apricots and orange juice in a bowl and set aside to
marinate overnight.

Table 4.24: Sentences extracted with 〈X orange Y〉.

Negative coefficients Notably, subtree patterns with negative coefficients were indicative of
the other classes. For instance, the patterns 〈X and Y〉 and 〈X, Y〉 predict co-hyponymy and
have a negative coefficient for hypernymy and meronymy, the patterns 〈X have Y〉 and 〈X on
Y〉 suggest meronymy and reduce the probability for predicting hypernymy and co-hyponymy,
and the patterns 〈X are Y〉 and 〈X and other Y〉 point towards hypernymy and downgrade
co-hyponymy and meronymy as prediction candidates, see Table 4.25.

In summary, it appears that multiword expressions are a crucial element when retrieving seman-
tic relations from sentences, and they should be taken into consideration in future refinements.
Additionally, it would be interesting to include conj dependencies together with their string
representation in patterns, even if they are one hop away from the shortest path, and see how
that improves retrieval.
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coord hyper mero

+

4.6 X and Y−1 3.0 X and other Y 2.8 X have Y
4.2 X , Y−1 2.9 X other Y 2.7 X orange Y
1.9 X Y and−1 2.4 X become Y 2.3 X for Y and
1.5 of X or Y 2.3 is X Y ? 1.9 X with Y
1.4 X Y : 2.2 X used in Y 1.9 her X Y
1.4 X or Y−1 2.2 X , etc. Y 1.7 put X Y
1.3 the X and the Y 2.1 X , and Y , and 1.7 X contains Y
1.3 of X Y made 1.9 X were Y 1.6 a X with a Y
1.2 X Y built 1.9 X are Y 1.5 their X , , Y
1.2 a X and a Y 1.8 X is a Y 1.3 that X Y
1.2 a X Y−1 1.6 X , Y may 1.2 is a X Y
1.1 X , Y , , 1.5 fitted X and Y 1.2 X has Y
1.1 a X or Y 1.5 X and soft Y 1.2 X use Y
1.1 X , Y and 1.5 , X Y would 1.2 X of Y
1.0 X , , , Y 1.4 some of the X Y 1.1 X had Y ,
1.0 about X Y 1.4 X - Y 1.1 the X from Y
1.0 X and Y 1.4 , the X Y 1.1 wears X with Y
1.0 includes X and Y 1.3 X another Y 1.1 X their Y
1.0 X and two Y 1.2 X waterproof Y 1.0 X including Y
0.9 X Y had 1.2 X over Y 1.0 two X Y ,
0.9 wearing a X Y 1.2 complete with X Y 1.0 than X , and Y
0.9 the X Y−1 1.2 of his X Y 0.9 the X ’s Y
0.9 for a X Y 1.1 X for Y 0.9 a X Y
0.8 of X Y−1 1.1 of X and Y 0.9 for X Y and
0.8 especially X and Y 1.1 X and are Y 0.8 X or , Y

−
3.4 X and other Y 2.1 X and Y−1 2.8 X and Y−1

2.5 X with Y 2.1 X , Y−1 2.6 X , Y−1

2.2 X are Y 1.3 X of Y 1.9 X is a Y
2.0 X is Y 1.3 X with Y 1.7 X Y and−1

1.8 X ’s Y 1.3 X has Y 1.6 X other Y
1.6 X has Y 1.1 X have Y 1.5 X and other Y
1.5 X , and Y and 1.1 X Y can 1.4 X for Y
1.3 X , a Y , 1.0 X on Y 1.2 X was a Y
1.3 X orange Y 0.9 X is Y from 1.1 X Y in
1.3 X on Y 0.9 X , Y , 1.1 X are Y of

Table 4.25: Subtree patterns with highest coefficients in the model.
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5 Conclusions

“Come on, say something conclusive!”
(Homer Simpson in “Sleeping with the Enemy”)1

To sum up, I will briefly revisit the hypothesis of this work, discuss to what degree it can be
dismissed or confirmed, and share the main insights derived in the process.

The hypothesis of this work was to test whether syntagmatic representations of paradigmatically
related pairs of nouns are sufficient and adequate to predict the semantic relation that holds
between them. Where paradigmatically related also means that these nouns are distributionally
similar, and syntagmatic representations implies that they are represented by patterns extracted
from sentences containing both of these nouns.

As the results evince, the semantic relations learned could be predicted fairly well, albeit to
varying degrees. Co-hyponymy was predicted most reliably with an F -score of 0.90. Thereby,
patterns like 〈X and Y〉−1 and 〈X , Y〉−1 sported the highest coefficients. Meronymy scored
with 0.79, and most difficult was hypernymy with 0.56. Although various Hearst patterns
ranked highly in the patterns predictable of hypernymy, the lower support and confusion with
multiword expressions contributed to the lower score.

Analysis of the contributions of different features to prediction results highlighted the subtree
feature, which comprised all subtrees of a certain length from the dependency parse, as the single
most predictive feature. Applying set operations to pair representations, on the other hand, did
not contribute much to successful prediction. However, it might be worth combining pair and
noun representations in future work, and applying SimDiff only to the latter, as this has already
been shown to work well, see Turney and Mohammad [2013].

The bless evaluation set, though carefully devised, showed to introduce bias unless the training
and test data were de-lexicalized before stratification, ensuring that the classifier did not merely
learn single words as good representatives of a relation. This is due to the distribution of left
and right nouns in the relations in bless, see Figure 4.3 in Section 4.2. Weeds et al. [2014],
who were very careful about the properties of the evaluation sets they use, noticed similar effects
with the bless data and addressed them in equal manner.

In task-oriented evaluation with the sat multiple-choice analogy questions, the data sparseness
added by representing pairs rather than single nouns became very noticeable: only 2 out of
192 questions involving nouns could be observed in the data including all answer choices. This
pertained despite mitigation attempts by searching both for questions as incoming and their
mirrored form with each pair inverted. Strategies analogous to Turney [2006] might be more
promising and could be applied in future evaluation.

1 h/t Sahlgren [2008]
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While first experiments with clustering gave good results, this should be explored further and
in more detail in future work.

All things considered, the examined approach produced good results which are worthwhile
building upon and refining in future work.
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6 Affirmation

Hereby I confirm that I wrote this thesis independently and that I have not made use of any
other resources or means than those indicated.

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie ohne
unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und
Hilfsmittel angefertigt habe.
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