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Zusammenfassung

Computersprachtechnologie ist heutzutage weitestgehend durch überwachtes Lernen geprägt. Die bei-
den prominentesten Computersprachtechnologien, Automated Speech Recognition (ASR) und Text-to-
Speech (TTS) Systeme, benötigen erheblichen manuellen Aufwand, um Trainingsdaten zu erstellen und
Phonemwörterbücher zu pflegen. Die Anpassung bestehender Systeme auf neue Sprachen und die Ver-
besserung der Daten, um die Erkennungsgenauigkeit zu erhöhen, ist ein zeitaufwendiger und fehler-
anfälliger Prozess. So entstanden in den letzten Jahren Ideen, um auch unüberwachtes Lernen in der
Sprachtechnologie zu nutzen.

In dieser Arbeit stellen wir eine Methode vor, um mit Hilfe des unüberwachten Lernens phonemähn-
liche Einheiten allein aus Sprachdaten zu lernen, die unabhängig der verwendeten Sprache funktioniert
und nicht auf vorherige Kenntnis setzt. Unser Algorithmus arbeitet in zwei Schritten: Das Sprachsi-
gnal wird zunächst an markanten Stellen segmentiert, die so entstandenen Sprachsegmente werden
dann durch eine akustische Ähnlichkeitsfunktion in n Einheiten geclustert. Die so gewonnen Einhei-
ten werden zunächst manuell mit einem deutschen Nachrichtenkorpus ausgewertet und dann automa-
tisch mit bereits bekannten Transkripten aliniert. Für unsere automatische Alinierung verwenden wir ein
Erwartungsmaximierungs-Verfahren (EM), das wiederholte Anwendungen von Dynamic Time Warping
(DTW) beinhaltet. In dem Verfahren wird auch eine Korrelation zwischen Einheiten und Buchstaben aus
den Transkripten der Sprache automatisch festgestellt, die manuelle Beobachtungen an unserem deut-
schen Korpus bestätigt. Wir haben unsere Methode anhand von Wortsegmentierungen eines deutschen,
englischen, polnischen und ungarischen Referenzkorpus verglichen. Die Qualität der Alignierung hängt
einerseits von der Menge der verfügbaren Sprachdaten ab, anderseits an der Anzahl der Einheiten die
verwendet werden. Auch die verwendete Sprache hat Einfluss auf die Ergebnisse, mit besseren Ergeb-
nissen in Deutsch und Ungarisch verglichen mit Englisch und Polnisch. Wir haben auch versucht, unsere
Einheiten anstatt linguistischer Phoneme in einem ASR-System zu verwenden. Erste Ergebnisse in dieser
Richtung geben Anlass zur weiteren Forschung.



Abstract

Current speech technology is largely characterized as being a supervised learning task. The two most
prominent computer speech technologies, automated speech recognition (ASR) and text to speech (TTS),
rely on considerable manual effort to generate and maintain training data, phoneme sets and phoneme
dictionaries. Furthermore, adapting existing systems to new languages and maintain the data to increase
accuracy is a time consuming and error prone process. Thus, ideas to also leverage unsupervised learning
in speech technology are emerging in recent years.

In this thesis, we present a way to induce an unsupervised phoneme-like unit representation, which
works independent of language and does not rely on prior knowledge. Our algorithm works in two steps:
we first determine distinctive segmentation boundaries in speech and propose an acoustic similarity
function, which we use to cluster all segments into a set of k units. These units are first manually
evaluated with a German news corpus and then automatically aligned to known transcriptions of the
utterances in which they occur. For our automatic alignment we use an expectation-maximization (EM)
process that involves repeated applications of dynamic time warping (DTW). In the process, a letter to
unit correlation is established, which also confirms manually made observations on our German corpus.
We also evaluated our alignment process on German, English, Polish and Hungarian segmented reference
corpora and compared them to the word segmentation produced by our unsupervised method. The
quality of the alignment depends on the amount of available speech data, how many units are used and
the target language, with better alignments in German and Hungarian than in English and Polish. We
also tried to use our unit representation in lieu of linguistic phonemes in an actual ASR system. First
results in this direction are encouraging further research.
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1 Introduction

With speech being so ubiquitous and natural to us humans, it does not come as a surprise that researchers
were interested in building speech processing systems very early in the history of computing. First
electronic machines appeared as early as in the 1930ies for a simple vocalization task and 1950ies for a
simple spoken number recognizer [18].

Ever since, humans dreamed of speech technology that is able to understand and transcribe fluently
spoken speech as good as themselves and of computer systems that are able to produce natural and
realistic sounding language, undistinguishable from human speech. This holy grail of speech technology
would be a breakthrough and would change the way we interact with computers. With the proliferation
of smart phones and commercial systems like Siri1, this dream seems to come closer to be fulfilled and
yet, a sense of disappointment comes easily as we recognize first-hand that this technology is still in
its infancy. After all, it might still take a while until speech technology is on par with human speech
capabilities.

Automated speech recognition (ASR) and text to speech (TTS) are the two prominent speech technolo-
gies that emerged over the decades. Statistical methods dominate in ASR, notably the hidden Markov
model (HMM) framework that was introduced in the 1980’s [17,23]. Modern ASR systems are still build
using the same mathematical framework at its core.

As of today, ASR and TTS both work on subunits of words called phonemes, the linguistic building
blocks of spoken languages. In the current approach, a lexicon is required to map words to a series of
phonemes. The set of phonemes a speech system operates on, is usually static and lists of valid phonemes
are compiled by linguistic experts for a target language. Both ASR and TTS have in common that usually
a large corpus of aligned speech and text is required to build and train them. This means that current
ASR and TTS is a supervised learning task and considerable expert knowledge is needed to train such a
system. Another problem is that accurate transcribed training material is expensive to generate: In the
U.S.A., the resulting cost is $90–$150 per hour of speech [42].

This is contrasted by human speech recognition (HSR): We grow up and learn a language by processing
large amounts of unannotated speech and we still manage to learn word inventories and boundaries and
can use these abilities to acquire new words [12]. Why shouldn’t we try to build systems that imitate
these learning abilities?

This would equate to a paradigm change, turning speech processing into an unsupervised learning
task, where less expert knowledge is needed. This could prove to be beneficial for ASR and TTS in
several ways:

We might need to look for radically different ways of doing speech processing to progress further in the
long run. Unsupervised speech processing is promising, because unannotated speech data is much easier
to acquire than transcribed speech data. This also means that bigger corpora could be build and used
than currently possible, simply because more data can be acquired with less cost. Research in this area
could also potentially yield to ASR and TTS systems that outperform current technology significantly one
day, even if they perform worse at first.

Promising could also be the field of multi-lingual speech processing: English is arguably the most
researched language in speech processing and the same techniques that were developed for English have
been applied and adapted to other languages with varying success. Still, there are many languages
that lack these technologies, or only have very primitive ASR and TTS systems. The cost and expert
knowledge needed to produce speech technology with a supervised system for a new language can be a

1 http://www.apple.com/de/ios/siri/
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barrier of entry, particularly for languages of poorer countries. That barrier could be lowered with less
needed expert knowledge in the target language, if unsupervised learning can replace that knowledge.

The fundamental question is, how much can be learned from the available data alone, without expert
knowledge of the target language? Do we really need linguistic phonemes and pronunciation lexica, or
could that be learned purely from data?

In this thesis, we focus on fundamental issues of unsupervised speech processing: A way to mine an
unsupervised phoneme-like unit representation is presented and we evaluate its usefulness on a speech-
to-text alignment task. We segment the speech in an unsupervised fashion and use acoustic similarity to
cluster those segments. Using parallel corpora in several European languages, namely German, English,
Polish and Hungarian we create the alignment by inducing a simple letter to sound model using this unit
representation with an Expectation-Maximization (EM) process and DTW alignments. Unsupervised
alignment of speech and text can possibly help to build speech corpora in an automated fashion and
could allow to build pronunciation dictionaries automatically. One hope is also that such unsupervised
knowledge could replace traditional linguistic phonemes and static phoneme dictionaries. In the long
run, both TTS and ASR systems could benefit from such additional knowledge with better performance
and it makes it possible to adapt existing systems faster to new languages.

The remainder of the thesis is organized as follows: Chapter gives a short overview over how typical
ASR and TTS systems work, followed by a discussion if current ASR technology has reached a perfor-
mance ceiling. Chapter 3 discusses related work in the field of unsupervised speech processing, while
Chapter 4 discusses all speech corpora used in this thesis. We show a method to segment and cluster
speech units in an unsupervised fashion in Chapter 5. Our unit representation is then used in Chapter 6 to
induce a text-to-speech alignment. In that chapter, we also evaluated how useful our unit representation
is in an actual ASR system.

7



2 Overview of core speech processing technologies

Automated speech recognition (ASR) is a major speech processing technology with the objective to tran-
scribe spoken words into text. Text-to-speech (TTS) has the opposite goal, it is the process of synthesizing
speech from written text. A brief overview over how both technologies work is given in this chapter.

2.1 ASR systems

Speech Signal Feature vector
representation

Decoder

Acoustic
Model

Lexicon

Language
Model

Decoded Text 
(Transcription)

Training data

Search
space

Figure 2.1: Overview of typical components in an ASR system. Figure adapted from the 2012 lecture on
ASR of the University of Edinburgh [32].

Figure 2.1 shows the typical components of a traditional ASR system. The signal is first transformed
into a feature representation of acoustic observations, e.g. the most popular choice is Mel-Frequency
Cepstral Coefficients (MFCC) [6]. Given a sequence of acoustic observations, the role of the decoder
is to find the most probable word combination in the search space of all possible word combinations.
An intermediate unit representation is used to describe the pronunciation of words, current ASR system
typically use linguistically motivated phonemes.

The decoder uses several sub-components: trained acoustic models provide evidence to the likelihood
of a unit sequence given the acoustic observations. A lexicon maps phonemes, the intermediate unit
representation, to words of a target language. The language model incorporates a prior knowledge
about the target language, i.e. it provides evidence for likely and unlikely sequences of words in the
target language, independent from acoustic observations. Popular methods to train acoustic models are
Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM) [29], while e.g. N-gram language
models are used to model the target language. Both acoustic models and language models are trained
from transcribed corpora, where parallel speech and text is available. On the other hand, the lexicon
component that maps words to phonemes is usually static and is often created and maintained by hand.

The search for the most likely word sequence given the acoustic observations is guided by all of these
components. A form of Viterbi decoding [28] is usually used to select the most probable word sequences
out of all possible word sequences, which is the output text transcription of the ASR system.
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2.2 TTS systems

Front-end Back-end

Text
Text normalization
Text-to-phoneme conversion
Add prosodic information

Phoneme lexicon

Speech synthesis
e.g. Unit Selection Synthesis
 

Speech

Figure 2.2: A typical TTS system is composed of a front-end and a back-end. The front-end converts the
data into an immediate phoneme representation with prosodic information, while the back-end
synthesis speech.

A typical TTS system is usually divided into front-end and back-end [36]. The front-end translates
raw text into phonetic transcriptions and prosody information. In a first step, the text is normalized, e.g.
numbers, abbreviations are converted to words. The normalized text is then converted into an immediate
form consisting of phonetic transcriptions and prosodic information. The former is generated in the
text-to-phoneme conversation process, which usually uses a phoneme dictionary and incorporates also
models to predict the pronunciation of unknown words and proper names. The phonetic transcriptions
are augmented with prosodic information, which can mark e.g. prosodic units, like phrases, accentuated
word, pitch modulation and many other additional speech features besides pronunciation.

The back-end turns the immediate representation of phonemes and prosodic information into synthe-
sized speech. A popular method in current TTS systems is Unit Selection Synthesis [15]. A large database
of recorded sound examples of phones, diphones, syllables, and sometimes even larger units is needed.
Speech is then constructed, given phonetic transcription and prosodic information, by concatenating the
best matching units from the database. Minimal digital signal processing (DSP) is applied to concatenate
the units, but the goal is to reduce artificial DSP as much as possible so that speech sounds as natural as
possible.

Since segmenting speech into appropriate units takes considerable manual effort, forced alignment
is often used to create an alignment automatically [24], from which unit segments can be extracted.
A trained ASR model in the target language is needed for force alignment and is modified to use a
known transcription of speech utterances instead of searching for most likely transcription. The accuracy
of segmentation boundaries is very important, otherwise incorrect speech fragments are used in the
synthesis of speech. Thus, automatic alignments are often manually corrected in the generation of a
TTS corpus for Unit Selection Synthesis [10]. Having a larger database is advantageous, since more
units from which a TTS can chose from, means also that finding better matching units is more likely
when speech is synthesized. This directly improves the quality of synthesized speech because less DSP is
needed.

2.3 Performance ceiling in ASR technology?

While the performance of TTS systems is more difficult to measure systematically due to the subjective
nature of what constitutes to natural speech, word-error-rate (WER) has been established in ASR to
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Figure 2.3: Improvements of word-error-rates on various NIST ASR-tasks over the years. Taken from the
nist.gov website on ASR history.

measure performance objectively. The national institute of standards and technology (NIST) has been
tracking the performance of mainly English ASR technology for the past decades in regular time inter-
vals. Figure 2.3 shows the improvements of word-error-rates on various NIST ASR-tasks over the years.
Advancements were quickly made on more isolated and simpler tasks, where the vocabulary is limited
and speech quality is good (air-travel kiosk, read speech and broadband speech), with 10% WER being
an acceptable goal for a task. A word error rate of 2-4% is considered usual for human transcribers.

In recent years, the attention of NIST has shifted to ASR tasks with an open vocabulary and potentially
multiple speakers. These increasingly more challenging tasks, like conversational and meeting speech,
show according to NIST diminishing returns of improvements. It might be, that with the current tech-
nology and learning paradigm a performance ceiling has been reached. This underlines the necessity to
investigate alternate form of doing ASR. Exploring unsupervised learning in the context of TTS and ASR
gives rise to the promise to overcome this performance ceiling one day. In the next chapter, we give an
overview over the current progress in unsupervised speech processing.
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3 Related Work

In the previous years, there is a growing interest in unsupervised speech computing among the speech
community. The problem of acoustic speech pattern discovery has received most interest. Park et al.
developed a method called segmented dynamic time warping (S-DTW) to find acoustic keywords in
speech [26, 44]. S-DTW extends the idea of dynamic time warping (DTW), so that the strict require-
ment of DTW to match sequences of full length (see also Section 6.3) is lifted and the best matching
sub-sequence to a sequence can be found. This makes it possible to use S-DTW for acoustic informa-
tion retrieval, i.e. acoustic search of a query word, topic analysis, or to discover motifs in speech. This
is very different from traditional speech processing, since no transcriptions are needed. The employed
algorithms work entirely on the speech signal itself and work on any language. S-DTW has been con-
tinuously refined, to also allow discovery of larger patterns [16]. Muscariello et al. used this for word
discovery of unannotated speech [25], with the aim of producing audio summaries by keyword extrac-
tion. The method produced good preliminary results but needs further adaptation to handle multiple
speakers. Jansen et al. showed that term discovery can be used to model phoneme-like speech units
across speakers, but notes that the corpus size is limited given the inherent O (n2) nature of the term
discovery algorithm with S-DTW.

Research has been carried out in identifying linguistic phoneme boundaries in an unsupervised fashion,
also called blind segmentation of speech. Aversano et al. [3] used spectral instability detection to achieve
this text-independent segmentation of speech. Their algorithm uses spectral analysis of the FFT-signal
directly, instead of relying on more common speech feature representations like MFCC. Estevan et al.
used maximum margin clustering within a window function over the signal [9]. Both methods segment
speech locally with limited context. Also common to these approaches are similar performance scores,
despite drastically different methods [30].

Wang et al. [40] uses unsupervised acoustic unit mining to mine phoneme-like units automatically.
They improved segment clustering with Gaussian posteriorgram representations and evaluated their
work on several languages with various cluster methods.

Recently, there is also growing interest in learning unit representations and pronunciation lexica auto-
matically from data, targeted for use in ASR systems. Glass et al. [12] gives an overview over progress
and future in this domain. The ultimate goal is to incorporate more unsupervised knowledge into ASR
systems to improve performance significantly one day and to reduce human intervention in training
models and creating appropriate corpora. He also introduced different data scenarios, where different
degrees of potential unsupervised learning scenarios are explored. In the data-based approach, speech
units and words are discovered from parallel text and speech. A more extreme learning approach is the
decipher-based approach, where separate and non-parallel text and speech corpora are available and the
goal is to decipher the relationship between acoustic words and text.

Lee et al. [21] developed a method to jointly learn phonetic units and word pronunciations with
hierarchical Bayesian models and used it to train speech recognizers. The method had been tested on
an English corpus. While this method does not outperform traditional ASR system, it can outperform
grapheme based recognizers (in English), paving the way for future improvements.

The task of aligning speech and text automatically helps to build larger speech corpora. Traditionally,
this can be done with forced alignment, when a trained HMM acoustic model is available for the target
language [24]. When the goal is to align speech and text at the phoneme level, for example to train TTS
systems, then manual segmentations are usually of better quality then automatic ones [5]. They are,
however, very impractical for larger corpora due to their high cost of manual annotation at the phoneme
level.
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Related is the alignment of ’found speech’ with imperfect transcriptions. This is readily available for
many languages in the form of audio books, news transcriptions and so on; and thus particularly useful.
Hazen [14] developed a supervised technique to align long audio segments in this context. A particular
challenge is that ’found speech’ can often contain small errors in the corresponding transcriptions. Af-
ter obtaining anchor points with traditional force alignment, Hazen used finite-state transducers (FST)
networks that account for insertions, deletions, and substitutions of words to pseudo-align the transcrip-
tions, which greatly improves the alignment in the presence of errors.

The MAUS-Framework [20] is a ongoing research effort to use forced alignment for constructing
automatically aligned corpora. A web version, called WebMAUS [20] is available to the public and
produces TextGrid word and phoneme alignments. TextGrid is a popular annotation format for speech,
which can be edited with the open-source Praat-Software 1.

Stan et al. [37] developed a lightly supervised grapheme based method for the alignment of unsyn-
chronised and imperfect transcripts, considering that no initial acoustic models and no phoneme lexicon
is available. The TUNDRA corpus is a European speech corpus of 14 languages and is a result of using
this method on free audio books. It contains approx. 100 hours of total speech, aligned at the sentence
level. There is also growing interest to build complete TTS systems with unsupervised or semi-supervised
techniques. Watts et al. [41] build automatic TTS systems for these 14 languages with minimal expert
knowledge, relying on letters as acoustic units instead of phonemes.

1 http://www.fon.hum.uva.nl/praat/
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4 Speech corpora used in this work

Several speech corpora have been used in this thesis to evaluate the proposed algorithms. All corpora
are divided into multiple files, which are either sentence transcriptions and their corresponding recorded
speech, or are divided by pauses in the audio signal and the corresponding transcriptions. Table 4.1 gives
an overview over all speech corpora.

Corpus Language Hours Alignment Avg. words per file
Timit English 1h phonetic alignment by linguistic experts 8.68

DW-News German 3.5h automatic, WebMAUS 6.84

Simple4All

English 2.6h automatic, semi-supervised 19.2
Polish 2.3h automatic, semi-supervised 12.82

Hungarian 5h automatic, semi-supervised 14.39

Table 4.1: Speech corpora used in this thesis.

4.1 Timit corpus

The TIMIT corpus is designed for acoustic-phonetic studies in English [11]. While this corpus is over 20
years old, it is an invaluable resource for several reasons. It contains reliable hand annotated transcrip-
tions on the phoneme level for over 6000 sentences, which is a tedious annotation task. Almost all work
on phoneme recognition and boundary prediction for English in the past 20 years has been evaluated
using this corpus, which makes results comparable. A smaller part of this corpus is also publicly available
and used in this thesis: 160 sentences, consisting of 6185 hand-made phoneme segmentations.

4.2 DW-news corpus

We have harvested 36 hours of speech from dw.de, which has German spoken daily news with its corre-
sponding transcriptions. Typically, a daily news item is 5 minutes long. A total of three and a half hours
of speech belonging to one particular speaker have been cleaned from radio jingles by hand and were
then aligned with WebMAUS [20]. WebMAUS divided the corpus into files belonging to speech segments
separated by audible pauses in the speech signal. It produced Textgrid files (which can be viewed with
the popular speech analysing software Praat 1). Subjectively, the automatic segmentation on word level
is of good quality.

4.3 Simple4all corpora

The simple4all corpora consists of automatically aligned audio books to their imperfect transcripts. They
have been aligned by using the semi-supervised approach described in [37]. All data can be freely
downloaded, which consists of sentences and the corresponding speech. Each corpus is a single audio
book read by a single speaker and all utterances are recorded under the same circumstances.

1 http://www.fon.hum.uva.nl/praat/
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5 Unsupervised speech units

The goal of finding unsupervised speech units is to find units that are representative of the basic building
blocks of a language. This is traditionally done by segmenting the speech into pieces, which are then
clustered [4]. A simply method would be to find appropriate and distinctive boundaries locally in the
speech signal, which are then boundaries between units. We can then use an acoustic distance measure
to compare and cluster these unlabelled units.

Recorded speech is a continuous signal in the time domain, which makes finding distinctive boundaries
difficult. A common approach in speech technology is to transform the signal into the frequency domain
first, where changes in spectral energies can be identified.

It can be observed that maximum spectral transition positions correlate with phone boundaries in
speech signals and that mid-signal phonemes are often stationary [8, 9]. A simple algorithm to identify
these maximum spectral transition positions is shown in Section 5.2. An acoustic similarity function is
build in Section 5.2.6, that can be applied to any speech signal.

5.1 Blind segmentation

There have been a few attempts to find the boundaries between phonemes in speech signals, without
using any additional information than the speech signal itself. This is generally called a blind segmen-
tation of speech. Most previous work in this area has focused on comparing an automatic segmentation
to a human made one (indicating phoneme boundaries). A high correlation to the existing phoneme
inventory is good, however not the ultimately goal for a data-driven inventory. In fact, an unsupervised
method could potentially find a better representation than traditional phonemes, thus comparing the
exact boundaries of both methods gives only a vague performance indicator.

5.1.1 Results from related work

Algorithm HR (%) OS (%)
Räsänen et al. (2009) [30] 71.9 -6.90

Almpanidis and Kotropoulos (2008) 80.72 11.31
Aversano et al. (2001) 73.58 0.00

Esposito and Aversano (2005) 79.30 9.00
Estevan et al. (2007) 76.00 0.00

This thesis 74.86 3.87

Table 5.1: Results on blind segmentation from different authors. Taken from [30].

Räsänen et al. did a comparative study on such local blind segmentation algorithms, which compares
them in terms of over segmentation rate OS (%) and hit rate HR (%), see Table 5.1. ’Hit rate’ is the
percentage of correctly identified segmentation boundaries, which lie within 20 ms of a reference seg-
mentation. ’Over segmentation’ refers to whether the algorithm produces more segmentation boundaries
compared to a reference segmentation, or less, i.e. over-segments or under-segments the speech signal.

The authors employ radically different strategies to identify maximum spectral transition positions
and yet they have achieved similar results compared to the phoneme segmentation of the TIMIT corpus
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at 70-80% hit rate with 0% over-segmentation, i.e. no over or under-segmentation. Thus, Räsänen
et al. [30] argues that this indicates that there might be no significantly better method using a pure
bottom-up blind segmentation technique and that 70-80% is the performance ceiling for it.

With this in mind, any approach to blind segmentation that lies within the 70-80% hit rate range is
viable approach. Based on the comparative study, we decided to use and reimplement the approach
proposed by Estevan et al. However it soon turned out that maximum margin clustering [43] (MMC)
is difficult to implement or come by and does place a burden on runtime. In the proposed method, it is
needed for every window computation. Zhang et al. [43] notes that even for small data sets (100 data
points, with 64 features each), the original MMC formulation takes considerate time for computation in
the range of minutes. We tried to use the faster SVR based method proposed by Zhang et al., but we could
not reproduce the same results as with MMC-clustering. However, we found out that we could drop the
MMC requirement altogether with just a slight loss in performance compared to traditional phonemes,
using a slightly different method to blind segmentation. Since our main goal is not necessarily to segment
speech into linguistic phonemes, but to induce unsupervised units, a slight performance drop in respect
to linguistic phonemes is not of great concern for us.

In the next sections, a slightly simpler method is proposed for blind segmentation of speech. It is
inspired by the window approach used by Estevan et al., but does not need maximum margin clustering.
Thus, an advantage of our method is that it is very fast and can potentially be used on 1000’s of hours
of speech, see also Section 6.6.3.

5.2 Blind segmentation of speech

Figure 5.1: Blind segmentation of speech. From top to bottom: audio source as logarithmic spectrogram
with manually marked phoneme boundaries from the TIMIT corpus, jump function with high-
lighted maxima, blind boundaries in RPCA-6 feature space, MFCC features of the signal.

Figure 5.1 shows segmentation results on the phrase "she had your dark suit in greasy wash water all
year" from the Timit corpus. The source audio signal is displayed as spectrogram with manually marked
phoneme boundaries from human annotators in the second row. The spectrogram shows the intensity
of frequencies in audio signal. In the third row of the diagram is a function whose maxima are used to
predict boundaries, see Section 5.2.5. RPCA-6 feature space and MFCC feature, shown in the last two
rows are explained in Section 5.2.3 and Section 5.2.1.
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5.2.1 Classical MFCC feature representation

Mel Frequency Cepstral Coefficients (MFCC) [29] are the most widely used feature representation in
speech processing. They have been modelled after how humans perceive speech, with the goal to ade-
quately capture phonetically important characteristics of speech.

5.2.2 Feature representation signal processing steps

Signal Preemphasis FFT windows Bank �lter Log

RPCA-6

DCT

MFCC

Di�erent feature representation

Figure 5.2: Signal pipeline to generate MFCC features and experimental (R)PCA features as an alternative.

Figure 5.2 shows the typical processing steps to transform a sampled audio signal into a sequence of
feature vectors. In a first step, called preemphasis, higher frequency energy in the signal is emphasized.
This is done so that the characteristics of lower frequency energy is not overrepresented in the speech
signal. Then, a window is shifted over the samples of the audio signal, which is multiplied with a window
function (e.g. a hanning function), to minimize signal discontinuities in the beginning and end of the
windows. In this work we use 25 ms large windows which are shifted by 5 ms. Fourier transformations
are then applied successively to the windows, which convert the samples of the window from the time
domain into the frequency domain and yield the spectrum of the signal. Studies show that humans
perceive audio not linearly and the mel-scale [38] has been invented to model perceived pitch better
than at a linear scale. In a next step triangular bank filters are used, those bandwidths occupies constant
intervals on the mel-scale, to imitate how humans would perceive sound. The power outputs of the
bank filter produce the mel-spectrum, which can also be expressed logarithmically. When MFCC features
are computed, a discrete cosine transformation (DCT) is performed as a last step to decorrelate the
dimensions.

5.2.3 RPCA feature representation

Instead of using DCT to decorrelate the feature space, PCA can also be used. It projects the output of
the bank filters into a smaller feature space with linearly uncorrelated dimensions, which showed to be
beneficial for our segmentation algorithm. A disadvantage is that the feature representation must be
learned from data and that it is unique to the corpora it is trained on. However, after training, new
signals can also be transformed. We use a randomized version of PCA, called RPCA [33], which has a
much better asymptotic runtime of O (n) instead of PCA’s O (n3).
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5.2.4 Delta-features

The rate of change in a spectral feature space gives additional cues to identify sub-word units (like
phonemes). For speech recognition, the feature vector is usually augmented by delta features. These es-
timate first and higher-order derivatives of each feature dimension by using discrete derivatives. Usually,
the first two derivatives of each feature dimension are used, these additional features are called delta
and double-delta features.

5.2.5 Sliding window jumpfunction

PCA-6 frames

i

wkwj

wkwj

Figure 5.3: Jumpfunction: difference of averages of w̄ j and w̄k in i.

We use a jump function to detect changes in the feature space over time, to find candidates of unit
boundaries. We move a window w = (w j, wk) successively over all frames of a feature vector represen-
tation and calculate the average window halves w̄ j and w̄k. Figure 5.3 illustrates this. The difference
between w̄ j and w̄k can be interpreted as a jump function f (i) that measures the averaged change in
position i. Maxima of f (i) can be interpreted as points of highest change in the feature space between
w j and wk, which we use as potential unit boundaries. A larger window size will lead to smoothing of
the jump function, resulting in less maxima and less potential boundaries. Likewise, a smaller window
size produces more potential boundaries, since smaller fluctuations in the feature space are picked up as
maxima of the jump function.

5.2.6 Clustering units

We can interpret signal fragments between boundaries as units and these units can be clustered to obtain
a labelled unit inventory. In order to cluster in a meaningful way, an acoustic distance function needs
to be defined. One problem is that the units will have different lengths. Thus, dynamic time warping
(DTW) over the feature vectors of units would be a natural choice to compare the units. DTW is a
distance-like measure commonly used to compare series of data of different length. It can also be used
to find a non-linear warping path, which best matches both data series. DTW can be used to compare
speech, where different speeds of pronunciation need to be taken into account.

However, simpler and faster cluster algorithms, like K-means, require an euclidean distance function
that compares vectors of fixed length. It is not possible to use K-means with DTW directly since there
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(currently) is no approach to meaningfully average signals of varying lengths, so that K-means still
convergences without an euclidean distance measure [31]. Other cluster algorithms can work with
different distance functions, but would require a full cost matrix between all units to be calculated,
which will quickly become impractical for larger data sets, due to the quadratic runtime and memory
requirement.

5.2.6.1 Euclidean acoustic similarity function

There are several lower bounds for DTW in regard to one dimensional sequences. E.g., the lower bound-
ing function LB_Kim introduced by Kim et al. [19] works by extracting a four-tuple feature vector from
each sequence. The features are the first and last elements of the sequence, maximum and minimum
values. These feature vectors can than be compared with an euclidean distance measure. In a simi-
lar fashion, we extend the idea to approximate DTW on multi-dimensional sequences, by constructing
fixed-dimensional feature vectors.

Let n be the length of one vector from the sequence. We use the feature representation shown in
Table 5.2. This fixed-dimensional feature representation can be used with an euclidean distance function
and thus it can be used to cluster the units with fast clustering algorithms like Kmeans.

Feature Dimension
average vector (across sequence) 1...n

averaged delta vector n+1 ... 2n
averaged double delta vector 2n+1 ... 3n

first vector in sequence 3n+1 ... 4n
last vector in sequence 4n+1 ... 5n

vector where first dimension is max 5n+1 ... 6n
vector where first dimension is min 6n+1 ... 7n

length of sequence 7n+1

Table 5.2: Feature vector to compare similarity of acoustic units.

5.2.7 Implementation details

We implemented our proposed blind segmentation and unit clustering in Python 2.7, with a Numpy/Scipy
stack1 and Sci-Sklearn2 as add-on. We used the K-means++ implementation of Sci-Sklearn and also its
implementation of RPCA, which are used for the unit generation. Sci-Sklearn’s implementation of K-
means++ does several runs on the data to avoid local minima. It returns the best run, as determined by
’inertia’, the main criterion that K-means minimizes. These runs are independent from each other and
run in parallel if multiple cores are available. K-means++ improves K-means by selecting initial cluster
centers in a more advantageous way, which usually results in a significant improvement in cluster quality
and runtime. [2]

Furthermore, we use the Python MFCC implementation of Sphinxtrain3 to generate MFCC feature
vectors. Sphinxtrain is part of CMU Sphinx, a well tested open source ASR framework. Its Python
implementation is used for research purposes and the MFCC features that are generated with it are
compatible to the ones that the more popular Java/C++ versions use.

1 http://www.numpy.org/
2 http://scikit-learn.org/stable/
3 http://sourceforge.net/projects/cmusphinx/files/sphinxtrain/
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5.2.8 Evaluation

We can evaluate the segmentation results by comparing it to a phoneme segmentation. The TIMIT
corpus is a good choice for this task, since it is annotated and segmented on the phoneme level. But,
as discussed earlier, this gives only a vague performance indicator and only shows how similar the
segmentation is to a phonetic one. The segmentation and labelling used in Chapter 6 to align speech
to text and the evaluation in Section 6.6 gives better performance estimates, because no comparisons to
linguistic phonemes are made.

Feature OS % Hit rate
MFCC 3.93 0.7246

RPCA-6 3.87 0.7487

Table 5.3: Segmentation results on the TIMIT corpus (subset) with a window of 20 speech frames.

Table 5.3 shows segmentation results on the TIMIT corpus. These numbers are based on a publicly
available subset of the TIMIT corpus, consisting of only 160 sentences. However, these 160 sentences
have 6185 phoneme segmentations, which should still give a good estimate. The rate of over segmenta-
tion (OS), in comparison to the TIMIT corpus, can be adjusted by varying the window size parameter in
the generation of the jump function. In Figure 5.4 hit rate (HR) and OS is compared with window size,
where a smaller window size results in a higher HR and higher OS.

That a higher OS means also a higher HR, is due to the effect that the probability of finding the right
segmentation boundaries is higher when more potential segmentation boundaries are proposed. See
Figure 5.5 which shows this relationship. A negative OS rate is also possible, which means that the
algorithm under-segments the data in comparison to the gold segmentation from the TIMIT-corpus. At a
window size of 20, OS is near zero, which means that a similar number of segmentations is proposed by
our Algorithm, compared to the number of gold segmentations in the TIMIT corpus.

Figure 5.4: The effect of varying window width in generation of the jump function on over segmentation
(OS) and hit rate (HR), as compared to phoneme boundaries in the TIMIT corpus.

The unit clusters can also be made audible, to give a subjective impression of them and to inspect them
by hand. We created audio files for each unit that contain each occurrence found in a corpus, followed
by a short silence signal. The occurrences are sorted by their distance to the cluster center, so that
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Figure 5.5: The effect of different window widths in generation of the jump function on over segmentation
(OS), as compared to phoneme boundaries in the TIMIT corpus. With a window width of 20, a
similar number of boundaries can be achieved.

the most characteristic sound examples of a unit are played first. To reduce clipping sounds by abrupt
changes between silence and active signal, we introduced a short fade in and fade out of the active
signal (3 msec). Some software players, like VLC, allow to lower the playback speed without changing
the frequency of the signal. Thus, we used VLC to listen to the audio at reduced speed, which helped
especially to better understand very short sound fragments. In the next section, we use this method of
manual introspection to analyse common n-grams of the signal.
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5.2.9 Unit n-grams

By clustering all previously identified segments of a corpus, a unit representation of the corpus can also
be derived. Each segment gets the cluster number it belongs to assigned as label. Then, we can look
through all unit labels and identify common recurrences of unit sequences in the form of unit n-grams.
Since our copy of the TIMIT-corpus contained only a 160 sentences, we used the German DW-corpus to
analyse common German unit n-grams. We used k = 30 to cluster and derive a unit representation and
looked for all unit n-grams where n ≥ 2 and n ≤ 20. We created audio files for the 100 most common
n-grams for each n, sorted by the number of occurrences in the corpus. Each audio file contains each
occurrence of the n-gram followed by a short silence signal.

Unit representation Occurences Words/sounds
15 15 15 6 74 an, am, ein
3 15 15 15 73 ba, wa, la
6 15 15 15 71 na, ma
12 5 2 12 69 erkl(ä), gek(l), eltw(ei), ...

6 8 1 1 63 long n sound, n(e)
18 12 5 23 61 setz, sitz, seit, selbs
2 29 15 15 56 fa, ta, kla
12 18 12 5 56 präsid, gese(tz)

Table 5.4: 8 most common 4-grams units from the German DW-corpus which are not repetitions of a single
unit. Transcriptions are made by listening to the 4-grams.

The most common 4-grams of the German DW-corpus are shown in Table 5.4, along with possible text
transcriptions that could by identified manually by listening to all 4-gram occurrences. An observation
is that a certain degree of variance occurs and that distinct sounds/transcriptions can get mapped to the
same cluster. However, this mapping between text transcriptions and unit appears to have a stable corre-
lation for most units. For example, the 4-grams "15 15 15 6" and "6 15 15 15" show that 15 correlates
highly to ’a’ and 6 to ’n’ and ’m’. Another observation is that especially vowels like ’a’, which usually
have longer sounds in the speech signal than consonants, get split into successive repeating unit labels of
the same unit. Some 4-grams, like "12 8 12 5" show some variance where a dominant representation
("präsid") is observed along side a less occurring but different sounding occurrence ("gese(tz)").

Table 5.5 shows the most common 8-grams of the German DW-corpus. Unsurprisingly, 8-grams units
occur a lot less often than 4-grams in the corpus. On one hand, transcription variance among all oc-
currences of a particular 8-gram is lower, with many 8-grams pointing to distinct words. E.g. The two
8-grams "12 23 1 15 15 15 15 15" and "23 1 15 15 15 15 15 15" point to 7 occurrences of the word
USA. On the other hand, the word USA appears 44 times in the German DW-corpus. Likewise ’Hisbollah’
appears 5 times in the corpus with 3 occurrences sharing the same 8-gram and ’verfassungs’ 10 times,
with 3 occurrences having the same 8-gram. This suggests that there is some variance in the exact unit
representation of a particular word. Noteworthy is also the unit 21, which is highly correlated to various
breathing and smacking noises.

Table 5.6 shows the most common 10-grams from the German DW-corpus. Naturally, some of 8-grams
reappear as part of a 10-gram (verfassungs→ sverfassungs, zwanzig men→ zwanzig mensch, spräsiden
→ spräsident, ...), since any 10-gram unit also contains 8-grams units. Both Table 5.5 and Table 5.6 do
not show all 8-grams and 10-grams with two or three occurrences of which there are of course many
more. There seems to be a strong correlation between the unit 23 and ’s’ and ’z’. Again, unit 21 models
noise.
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Unit representation Occurences Words/sounds
12 23 1 15 15 15 15 15 4 USA

2 29 2 29 23 3 14 23 3 verfassungs
23 3 14 23 16 25 14 12 3 zwanzig men
23 24 2 12 18 12 5 12 3 spräsiden

23 1 15 15 15 15 15 15 3 SA
21 29 15 15 15 15 15 15 3 ba, ta, pa
21 21 21 21 21 21 1 1 3 <breathing noises>

1 21 21 21 21 21 21 21 3 <smacking noises>
18 12 5 23 24 2 29 15 3 sechstau, selbstr, setz hab

16 25 24 29 15 15 15 29 3 die Staa
16 23 24 3 3 15 15 15 3 Hisbollah
16 23 23 12 8 2 12 18 3 isterpräsi

Table 5.5: 12 most common 8-grams units from the German DW-corpus which are not repetitions of a single
unit. Transcriptions are made by listening to the 8-grams.

Unit representation Occurences Words/sounds
21 21 21 21 21 21 21 21 21 1 4 <breathing and smacking noises>
29 14 14 25 16 18 12 10 16 11 2 antisemit
26 22 10 12 12 23 24 2 12 18 2 US-Präsid
25 29 2 24 16 25 14 20 19 14 2 schaftlichen Dien(s)

24 2 12 18 12 5 12 14 14 8 2 Präsident
24 12 23 24 16 25 16 25 12 8 2 Das griechische
23 3 14 23 16 25 14 12 20 25 2 zwanzig mensch

23 2 29 2 29 23 3 14 23 24 2 sverfassungsge
23 24 2 12 18 12 5 12 14 14 2 spräsident

23 24 16 25 16 25 12 8 29 29 2 s griechische Pa(r)
23 23 29 5 25 24 29 8 25 2 2 stag statt, zeit statt

22 10 12 12 23 24 2 12 18 12 2 US-Präsid

Table 5.6: 12 most common 10-grams units from the German DW-corpus which are not repetitions of a
single unit. Transcriptions are made by listening to the 10-grams.

In Chapter 6, these units are automatically correlated to letters from speech transcriptions. The obser-
vations made here through manual introspection are also supported by this data, see Section 6.5.
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6 Unsupervised speech to text alignment

Usually a phoneme lexicon, phoneme inventory and a trained speech recognizer is needed to do phoneme-
level automatic alignment of speech and corresponding transcripts (see also Chapter 2.1). Normally,
a speech recognizer searches for the most likely phrase matching to a sound recording. With forced
alignment, a speech recognizers model can be used to align speech with an already known speech tran-
scription. This is very helpful for generating aligned corpora automatically. The MAUS-system uses this
approach successfully for a number of languages.

However, a trained acoustic model might not be available for every language. In the following sections
we evaluate an unsupervised method which does not need a pre-trained speech model in the target
language. The method can be used to establish a correlation between single letters and our unsupervised
speech units and to align the speech units to text transcripts.

6.1 Character-to-unit correlation

In many languages, there is a correlation of its alphabet’s characters to perceived speech sounds of the
language. This hidden structure can be exploited to align speech and its transcriptions in an unsupervised
fashion. The correlation is stronger in some languages than in others, and thus the approach shown in
the next sections has different outcomes for different languages. Of course, there are also languages
which do not have a written form which correlates to its pronunciation, like Mandarin or Japanese, for
which the approach would need to be adapted in order to work. In the following sections we present
a procedure to correlate single transcription letters to speech sounds by using our unsupervised unit
inventory. While many languages have more complex pronunciation rules that also depend on multiple
letters, a correlation between single letters and sounds can still be established. We combined two well
known algorithms, the EM-algorithm and dynamic time warping (DTW) to estimate this correlation. A
short introduction is given to both algorithms in the two following sections.

6.2 EM algorithm

The EM-algorithm [7] is an iterative method to the find the maximum-likelihood parameters of a (sta-
tistical) model. It is often used when missing or hidden data is involved which makes it impossible to
calculate the maximum-likelihood equations directly. Often two interlocked equations can describe the
problem, with two sets of unknown parameters. Each set can be estimated when the parameters of the
other set are known. The EM-algorithm is based on the idea, that there is an iterative way to solve this
problem: In an initialization step, arbitrary values can be chosen for the first set of unknowns. Then the
second set of unknowns can be estimated from the first set. A better estimate than the initially chosen
arbitrary values for the first set can be calculated from second set. This process is repeated until both
sets of unknowns converge. In Section 6.4, such an iterative method is used to find the hidden structure
between unsupervised speech units and corresponding text transcripts.

6.3 Dynamic time warping

Dynamic time warping (DTW) is commonly used to align and compare sequences of different length.
Its originates from the problem of comparing short speech utterances, which can vary in length and
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pronunciation speed [39]. DTW uses dynamic programming to solve this problem. Its objective is to
compare two sequences X := (x1, x2, ..., xn) and Y = (y1, y2, ..., ym). The sequences can have discrete
values or they can also be sequences of vectors. A local cost measure c(x , y) needs to be defined, that
calculates the cost of matching two entities from the sequences. Computing DTW requires O (n2) steps.
The algorithm returns a warping path, which indicates how the elements of X are mapped to the elements
of Y and the cost of matching the sequence X to Y.

6.4 Iterative method to align and correlate units with DTW-paths

Data: Sequences of unsupervised units si, Corresponding text transcriptions t i

Result: Costs[units][characters], alignment paths pi

Init:
costs[][]← normalize(ones(no. units, no. characters))
repeat

E-step:
forall the Segments si and transcriptions t i do

pi = alignpath from DTW(si,t i,c(x , y) = costs[x][y])
end
M-step:
costs← zeros(no. units, no. characters)
forall the Alignpaths pi do

costs[unit(pi)][char(pi)] += 1
end
costs← normalize(1-(cost/len(s)))

until convergence of costs

Algorithm 1: Inducing an alignment of sequences of speech units to corresponding text transcrip-
tions.

If a correlation cost matrix between a single letter of a language and its unsupervised speech units
were available, we could find an alignment path directly by applying DTW once. A problem is that we do
not know the correlation costs directly. But we could calculate correlation costs out of alignment paths
from DTW, if they are available: We use the paths between speech units and transcription letters and
count how often a particular unit gets assigned to a particular transcription letter in an alignment path.
From these counts, a correlation cost matrix can trivially by computed. However, we also do not have
any alignment paths without applying DTW first.

This is a problem of interlocked equations, neither of two needed sets is directly available, but once
one of the two is available, the other can be estimated. Thus, it is a good use case for an expectation-
maximization (EM) type algorithm. In Algorithm 1 we use this iterative method to align and correlate
unsupervised units with single transcription letters. Specifically, we define a local cost function c(x , y) =
costs[x][y] that uses a cost matrix costs to store matching costs between all possible letters and units.
Alternating steps of DTW-alignment of all segments and alignment cost estimation from aligned paths
are used, until the cost matrix used to calculate DTW-paths converges. The initialization-step is a DTW-
alignment were we assume that all units have the same matching cost to all letters, so that c(x , y) is
constant for every x and y. While being a terrible assumption for virtually every language, it is sufficient
as an initialization point that can be iteratively refined until a cost matrix is found that better reflects the
hidden structure between speech units and transcription letters.

As with many iterative methods, if the algorithm converges, it indicates that a (local) maximum has
been found. It is also possible that the algorithm never converges and that no result can be obtained.
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Our iterative algorithm is stopped if the cost matrix convergences or a certain number of iterations is
reached.

If convergence is reached, a final alignment with DTW can be used to assign unit positions to letters
of the utterance’s transcription. Also, the final cost matrix reflects the correlation between letters and
unsupervised speech units in the target language. Furthermore, we can also derive the position of words
in the unit representation, by using the DTW path segments that get assigned to words from the text
transcriptions. The endpoints of a path segment that contains a word points to distinct units in the
unit representation. By using positional information of the units we can also establish temporal start
and end positions of words in the audio source and segment the original audio source into words. We
use a word segmentation obtained in this way in Section 6.6 to evaluate the quality of alignment in
several languages. In the next section we show results of our iterative process and how our EM-process
converges.
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6.5 Results

Iteration:      0 1 2 3

4 5 6 7

8 9 10 11

12 13

Figure 6.1: Changes in the cost matrix after each iteration of the EM-alignment on the German DW-corpus.
The algorithm starts with a cost matrix that assumes the same correlation for all units and
letters and converges after 13 iterations.
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Figure 6.2: Total difference of all entries in the cost matrix after each iteration for the different corpora.
For all corpora, it took at most 30 iterations to reach convergence.

Figure 6.1 shows the progression of the cost matrix from EM-alignment on the German DW-corpus in
different iterations. The cost matrix shown here correlates single German letters to speech units. For
the purpose of better visibility the cost colors are inverted, i.e. dark spots indicate low matching cost
and thus high correlation and lighter or white spots indicate high matching cost and low correlation. In
the first iteration, all letters and units are assigned to the same correlation costs. The cost matrices are
subsequently recalculated in each iteration and convergence usually occurs quickly. In each iteration,
all speech utterances of a corpus are aligned at once, so that as many DTW alignments are calculated
as there are utterances. Since one iteration then means the realignment of many DTW-paths at once, it
might explain why convergence of cost matrix is reached after just a few iterations, see Figure 6.2.

Figure 6.3 shows the correlation cost matrices for all corpora used in the work, namely for the lan-
guages German, English, Polish and Hungarian. For the German corpus, some correlations between
letters and units have already been identified by listening to and analysing common n-grams in Sec-
tion 5.2.9. The automatic correlation supports these findings: E.g. 15 correlates highly with the letter
’a’, ’n’ and ’m’ correlate highly with 6. Some short comings can also be seen in all four final cost
matrices and not all correlations are meaningful or clearly assign some sound to a specific letter. Also,
very common letters like ’e’ correlate with many units. Some of these correlations are probably due to
misalignments or segmentation inaccuracies. Also, in many languages a simple letter to sound does not
model pronunciation rules very well.

6.5.1 Convergence issues

Especially the corpora with a higher number of average words per file, i.e. longer sequences that need
to be aligned, showed convergence problems occasionally. Figure 6.4 demonstrates such a case with
the Polish corpus. Here the iterative algorithm got stuck in a local maxima that trivially assigns all
correlations only to the most common unit (’14’) and most common letter (’a’) of the corpus. This
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Polish Hungarian

Figure 6.3: Final letter/unsupervised unit correlation matrix for the German DW-corpus and for the sim-
ple4all corpora in English, Polish and Hungarian.

did never happen with the German DW-corpus, which has a much lower number of average words per
sequence that has to be aligned, compared to the Polish simple4all corpus (see Chapter 4).

We solved this problem by giving shorter sequences more weight in the recalculation of the cost matrix.
Specifically, we used the length (number of characters) li of transcription t i to calculate weights wi for
all sequences. We used wi = k/li, where k is some constant that can be used to control the impact of
shorter sequences.

We modified the M-step in Algorithm 1 so that instead of the constant one, wi is added to the cost
matrix. Algorithm 2 shows the modified version. In the normalization step, the cost is divided by
∑len(s)

i=0 wi instead of len(s). By experimentation we found k = 200 to be a good value for our corpora,
which avoided the problem shown in Figure 6.4.
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Iteration:     1 4 8 32

Figure 6.4: Alignment problems with a trivial solution of assigns all correlations only to the most common
unit (’14’) and most common letter (’a’) of the corpus.

Data: Sequences of unsupervised units si, Corresponding text transcriptions t i, Lengths of
corresponding text transcriptions li

Result: Costs[units][characters], alignment paths pi

Init:
costs[][]← normalize(ones(no. units, no. characters))
repeat

E-step:
forall the Segments si and transcriptions t i do

pi = alignpath from DTW(si,t i,c(x , y) = costs[x][y])
end
M-step:
costs← zeros(no. units, no. characters)
forall the Alignpaths pi do

wi ← k / li

costs[unit(pi)][char(pi)] += wi

end

costs← normalize(1-(cost/
∑len(s)

i=0 wi ))
until convergence of costs

Algorithm 2: Inducing an alignment of sequences of speech units to corresponding text transcrip-
tions, improved with sequence cost reweighing.
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6.6 Evaluation

In order to objectively evaluate how good our word alignment is, we need a reference segmentation
and a metric to compare segmentations. A human made reference segmentation would be an optimal
solution, but only a small portion of the TIMIT was available for this thesis. Large corpora with good
hand-made reference segmentations are hard to obtain.

Thus, we use automatic word alignments produced by WebMAUS as reference segmentation, which
come quite close to the quality of a human made segmentation. Compared to a phoneme label agreement
between three trained phoneticians MAUS achieves a normalized performance of 96.99% [34]. Out
of all correctly identified phonemes, the segmentation accuracy of the boundaries follows a Gaussian
distribution [35], see Figure 6.5. Usually, the phoneme boundary lies within ±30 ms compared to
the reference segmentation of a phonetician. In our German corpus, words have an average duration of
500ms, thus we deemed the automatic segmentation of MAUS to be good enough to be used as reference
word segmentation.

By comparing the gold word segmentation with our unsupervised word segmentation, we can measure
the effects of parameters in the generation of unsupervised speech units and we see how they will affect
the alignment. Another important question is, if alignment quality is influenced by the amount available
data. Optimally, using a larger corpus should result in an improvement of alignment quality. Using word
alignments makes it possible to accurately measure how useful the unsupervised speech units are for an
alignment task, independent of how they compare to actual linguistic phonemes (which was evaluated
in Section 5.2.8). A good metric to compare word segmentations is described in the next section.

3500

3000

2500

2000

1500

1000

500

0
-50 -40 -30 -20 -10 0 10 20 30 40 50

[occ]

[ms]

Figure 6.5: Phoneme-boundary accuracy of the MAUS system, compared to a hand-made German refer-
ence segmentation. Taken from [35].

6.6.1 Window Diff

The Window Diff (WD) metric, proposed by Pevzner and Hearst [27], aims to be soft measure to compare
two segmentations. It uses a sliding window approach, there the window size is typically chosen as half

30



the average segment size. It is then shifted over both reference and hypothetical segmentations and a
counter is increased if the number of segmentations differs inside the window. This way, reference and
hypothetical segmentation boundaries that are not identical, but would fit inside the sliding window, are
penalized according to how far they are apart, instead of being counted as a missed boundary. Thus, an
absolutely identical segmentation would yield the best possible WD score of 0. This score gets bigger, as
reference and hypothetical segmentation are more dissimilar.

More formally, for a reference segmentation and hypothetical one, WindowDiff is defined as:

WindowDi f f (re f , hyp) = 1
1

N − k

N−k
∑

i=1

(|b(re fi, re fi+k)− b(hypi, hypi+k)|> 0)

where k is the length of the window and N the number of all window positions.

6.6.2 Evaluation of word alignments

We have evaluated the relationship of different parameters on WD scores comparing our word segmenta-
tion to the one from WebMAUS. After alignment, we calculated WD scores separately for each utterance
and averaged the results. A central question is if using more speech data and transcriptions improves
alignment scores. Since we are using a K-means algorithm to cluster data, another question is the effect
of choosing different cluster sizes (i.e. choosing different k). Lastly, another parameter, the window size
chosen in the generation of the jump function, affects the number of produced boundaries. This should
also have an effect on word segmentation, since it has an effect on unit size and unit accuracy. E.g.
too large units might have a negative impact on word segmentation accuracy, as larger units could span
across words. We also looked at the distribution of WD scores for all utterances in a corpus, to see how
useful it is to compare segmentation outcomes by the mean of all separate WD scores.
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Figure 6.6: WindowDiff (WD) scores for different amounts of available utterances used. Smaller WD indi-
cates better agreement.
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Figure 6.6 shows how using different amounts of data (as measured in the amount of utterances used)
to generate the unsupervised alignment affects WD scores. With all corpora, a positive effect on WD
scores can be observed. Most likely, an additional benefit could be observed for the shorter English,
German and Polish corpora if more data were available, while the benefit of adding more data seems
to slow down after 5000 utterances for the Hungarian corpus. It can be observed that with the same
amount of utterances, the German and Hungarian corpora tend to work better than the English and
Polish ones.
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Figure 6.7: WindowDiff (WD) scores for our corpora and different values of k, as chosen in the generation
of unit labels. Smaller WD indicates better agreement. For all languages, very small values for
k (<10-20) did not lead to a convergence of the EM algorithm.

Figure 6.7 shows the relationship of number of clusters chosen in the unit generation phase and
achieved WD score of our unsupervised method in the word alignment task compared to MAUS. For
German and Polish, the best WD is obtained for 20-35 clusters and for Hungarian and English 15-25
clusters are better. A similar pattern can be observed for nearly all languages: reducing the number of
clusters even further prevents convergence of the EM algorithm and yields worse WD scores. Also, using
more clusters than 25-35 results in slightly worse WD scores, with no change after more than 70 clusters.

Figure 6.8 shows the effect of different values of window width, as chosen in the generation of seg-
mentation boundaries. Smaller values for the window width lead to more boundaries and thus smaller
units, while larger values for the window width will produce less segmentation points and thus larger
units. A window size of 20 produces boundaries at a similar rate as linguistic phoneme boundaries, see
also Section 5.2.8. For all languages, very small values of the window width do not lead to convergence.
This creates a larger spike to higher WD values, similarly to the spikes in Figure 6.7.

Figure 6.9 shows the spectrogram and alignment of the German phrase "Betroffen sind vor allem die
Verwaltung und der Personenverkehr". The first row shows the segmentation from our unsupervised
method and the second row shows the reference segmentation produced by MAUS. This phrase has a
fairly typical WD score of 0.185 (average for all utterances: 0.175).
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Figure 6.8: WindowDiff (WD) scores for our corpora and different values for the window width, as chosen
in the generation of segmentation boundaries. Smaller WD indicates better agreement. For all
languages, very small values for the window width did not lead to a convergence of the EM
algorithm.
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Figure 6.9: Spectrogram and word alignment for the phrase "Betroffen sind vor allem die Verwaltung und
der Personenverkehr ". This alignment has a farily typical WD score of 0.185 (average for all
German utterances: 0.175). The first row shows the unsupervised segmentation, the second
row the reference segmentation from MAUS.
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Figure 6.10: Distribution of WindowDiff (WD) scores in the alignment of the German corpus, when the
alignment is computed with k=30 units. The mean WD value is 0.175.

Furthermore, Figure 6.10 shows the distribution of WindowDiff (WD) scores in the alignment of the
German corpus. It roughly follows a Gaussian distribution around the mean of WD score of 0.175.

6.6.3 Time measurements and scaling

While the corpora that we used for evaluation are only in the range of a few hours, all steps to generate
a unit set and to align to text have been build with scalability in mind. The first step, transforming
speech into a feature vector representation performs in linear time: each window of the speech signal
is processed separately. The runtime for one such window operation is constant for MFCC features, as
the runtime for the FFT to generate the spectrum and its subsequent DCT to decorrelate the features
is only dependent on the window size. For RPCA features, the RPCA representation must be learned
from the data, which needs an additional pass over all windows. The randomized version of the PCA
algorithm can be trained and used to transform data in linear time. That means that the feature vector
transformation performs also in linear time for RPCA features.

Our sliding window approach to blind segmentation will also take constant time per window, as it is a
local algorithm. For clustering, we have choosen K-means(++). While not many meaningful theoretical
lower bound exist for K-means, it performs approximately in linear time on most datasets [1, 13]. K-
means++ is even faster to some degree than K-means on most datasets [2].

The following timings have been measured on fairly typical mid-range server, with a i3-2130 CPU @
3.40GHz, 2 physical cores (4 logical due to hyperthreading) and 8GB of RAM. Figure 6.11 shows the
time needed to generate units and the time needed to align them. PCA-6 features have been already
precomputed and are not included in timing results. It takes 9m26s per hour of speech to generate
features, which is much more than the 75 seconds per hour of speech needed to cluster units and align
them. Both segmenting and clustering units, and also the EM-alignment, show a clear linear trend.
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Figure 6.11: Seconds needed to segment speech and cluster units (features precomputed) and time spend
in EM-alignment on the Hungarian corpus.

There is more variance with the EM-alignment, which can be explained by variance in different amounts
of iterations needed for convergence.

Assuming a continuing linear trend and interpolating from these numbers, a very large corpus, e.g.
1000 hours of transcribed speech, would take 173 hours or roughly one week of processing time on the
same machine. Since feature and unit generation are trivially parallelised and constitute to the majority
of processing time, this could be further improved with a better machine, particularly one with more
cores.
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6.6.4 ASR integration

The word alignments from Section 6.6.2 can also be used to generate a unit dictionary automatically. For
each word the units that have been aligned to the word have been used as dictionary entry for the word.
Note that in a typical corpus words a distributed according to Zipf’s Law [45], so that many words are
only seen once, especially in a smaller corpus. If such a word is wrongly segmented or aligned, it makes
errors in its unit transcription very likely.

Nonetheless, in a submitted, but not yet published paper with the same name as this thesis ("Unsu-
pervised Acquisition of Acoustic Models for Speech-To-Text alignment") we integrated our unsupervised
units as a drop-in replacement for standard linguistic phonemes. Dr. Dirk Schnelle-Walka did this exper-
iment, the following results are thus not part of my thesis:

We separated one hour of German speech into 732 utterances for training, with 10% spared out
for testing. The speech was segmented into a unit representation with k=30 clusters. We used CMU
Sphinx [22], an open source speech recognizer, to replace linguistically motivated phonemes with our
unit representation and our automatically generated word to unit dictionary.

Evaluating on our test set, we achieved a word error rate (WER) of 38.2%. By using letters as units,
which results in a grapheme based recognizer, a much better recognition result can be obtained with a
WER of 7.17%.

Most probably further improvements are needed in unit generation and especially dictionary gener-
ation to improve recognition results, since currently a simple grapheme based recognizer shows better
performance.

36



7 Conclusion

In this thesis, we showed that it is possible to find an unsupervised phoneme set solely from speech, i.e.
independent of the language. Our algorithm for blind speech segmentation is comparable to other ap-
proaches, while having a shorter runtime. Using our segmentation, we can build a phoneme set through
clustering and automatically transcribe speech in this unit representation. In our German corpus, we
analysed some common unit n-grams by listening manually to them and observed similar sounds and
words. Furthermore, we proposed an EM-algorithm with DTW to align our unit representation automat-
ically with text transcriptions, if they are available for the utterances. We evaluated our alignment based
on word alignments and compared it to a reference alignments in German, English, Polish and Hungar-
ian. Our evaluation suggests that German and Hungarian speech can be aligned with good quality with
our method, while Polish and English showed inferior segmentations. Using more speech data improves
alignments considerably. Different parameters, as chosen in the generation of units, have similar effect
profiles in all languages that were analysed.

Some of our processing steps still pose limitations. For instance, the segmentation accuracy is currently
limited to the sampling rate of speech features. Also, it operates locally and is not context sensitive,
which could be beneficial to segmentation quality. The ability to align longer utterances than currently
possible with our approach, e.g. a whole audio book, would also be very desirable. An obvious extension
is to also use letter n-grams instead of single letters in the EM-alignment, to model language specific
pronunciation rules beyond single letters. Using larger corpora with our method, e.g. using 1000+ hours
of speech would allow to have a better look at the effect that adding more data has to unit generation and
alignment quality. Measurements with our smaller corpora indicate that all our processing steps scale
linearly and that processing 1000+ hours of speech should be feasible in reasonable time. We have not
yet evaluated our approach on corpora with multiple speakers and it might be necessary to implement
speaker-adoption techniques in this case.

Promising are use cases for ASR systems and TTS systems. More work is needed to adapt our unsu-
pervised unit representation to ASR systems, so that they could replace phoneme based acoustic models.
Particularly the dictionary generation should be investigated further. If our alignment poses problems
due to inaccuracies, this could be investigated by using the reference word segmentation instead of
our own unsupervised method. Nonetheless, our first results are very promising and encourage further
research.

Our units could also potentially be useful for unit selection synthesis, a popular TTS approach. Simi-
lar to ASR, a unit-dictionary would be created from speech with available transcriptions. The database
containing units could be computed from the transcribed corpus and additionally a much larger corpus
of untranscriped speech recordings, which would vastly improve the amount of available data. Untran-
scriped speech is much easier to obtain and record than transcribed speech.

To prove feasibility of building a TTS in such a way, it might be possible to use our units representation
by modulating someone’s voice into a pre-recorded voice of someone else. We would identify units in
a new live-recording and would select the best matching units in our database of pre-recorded units to
best match the new recording and to minimize distortions. New speech would than be synthesized based
on the characteristics of the input recording. Conceptually, this would mean doing ASR and TTS at the
same time, but bypassing the transcription level. Not only could it be used to show feasibility of doing
TTS with our unit representation, but it could also be used in data gathering. A web-service that could
change someone’s voice into another voice could attract a wide audience. A lot of speech recordings
could be gathered this way, even with transcriptions, by requiring a text passage to be read before
usage. A large corpus, even if imperfect and with varying recording situations, could help enormously
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to facilitate further research. In this light, incorporating unsupervised learning into speech processing
could tremendously be of benefit to the speech community in one way or another.
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9 Appendix

In the course of this master thesis, audio files have been generated to inspect units and common unit
n-grams for all corpora. These sound files are on the attached DVD. The sound format is OGG.

The basic folder structure is the same for every corpus:

<corpus>/iter-figs

<corpus>/units

<corpus>/unit-n-grams

<corpus>/iter-figs contains correlation costs in pdf and python numpy matrix formats for all itera-
tions of the alignment process, matching the units in the units folder.

The file format in <corpus>/units is <cluster number>.ogg: These unit sound files in the units
folder contains all occurrences of a particular unit, with small pauses between them. All occurrences in
the corpus are sorted by distance to the cluster center, so that the most representative units are at the
beginning of each audio file.

The file format in <corpus>/unit-n-grams is
<n>gram-occs<no of occurences>-<unit1>_<unit2>_...<unit_n>: Similarly, these audo files con-

tain all occurrences of a particular unit n-gram. For example 4gram-occs69-12_5_2_12.ogg has all 69
occurrences, separated by a small pause, of the unit 4-gram 12 5 2 12.
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