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ABSTRACT

KEYWORDS: Feature Selection, Multi-Objective Optimization, Relation Extrac-

tion

The growing use of internet and social media all over the world has resulted in huge

mine of information over the internet in different forms. There is a wealth of valuable

knowledge hidden in this information which, if used wisely, can be helpful towards var-

ious research fields. Therefore, to make sense of this information on the internet, all

over the world, the industrialists and researchers are striving. Similar efforts are being

carried out in bio-medical domain. MedLine, the primary research database serving

the bio-medical community, currently contains over 19 million abstracts, with 60,000

new abstracts appearing each month. All of these resources are largely annotated man-

ually, and the costs involved are huge. So, researchers now need an automated system

to process this wealth of information to gain useful insights which will be helpful for

the health care. In this thesis, we put forth our attempt to create such an automated

system. We tried to effectively combine the key concepts viz. “unsupervised lexical

expansion”, “feature selection”, and “multi-objective optimization” for the effective

and efficient solution to particular problems in bio-medical domain. To be specific,

we discuss the approaches we have used to solve the issues of relation extraction from

the bio-medical textual data. We extracted various lexical, semantic and dependency

features from the bio-medical texts and tried to find an optimal feature subset using fea-

ture selection and muli-objective optimization. We have developed Conditional Random

Field (CRF) based event detection and classification system with basic feature sets and

also investigated the impact of adding unsupervised lexical acquisition features to the

performance of our system which is mentioned in this thesis. The system performed con-

siderably well for Simple and Binding types of events compared to the best performing

systems at BioNLP’09, but suffered on relatively Complex events.
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Chapter 1

Introduction

The growing number of internet users and increasing use of social media websites,

Internet of Things (IOT) in day-to-day life has necessitated the researchers and indus-

tries all over the world to ponder upon how to use this huge amount of internet data

generated everyday to their advantage. On one side, industrialists are competing to

gauze the behavioral pattern of their customers to increase the revenue of their compa-

nies. On the other side, researchers are striving to find meaning out of this big digital

data to solve few problems for the welfare of humanity and to make a smarter planet.

One such effort is being carried out in the field of bio-medicine.

There is a huge amount of bio-medical literature available on the internet and is in-

creasing on day to day basis. There is a wealth of information available hidden inside

this magnanimous ocean of information. For example, this information can help cap-

ture important clues about various bio-medical phenomenon, bio-medical entities like

protein, cell types, genes etc and relations between them. But, to make this information

available to researchers in bio-medical community, this information needs to be repre-

sented in a specific, easy to understand and easy to use format. So, one way to achieve

this is to annotate these resources manually. But, this process is very time-consuming,

costly and sometimes error prone due to its large size. Also, for the same reasons, it is

very hard to maintain and update previously annotated material to conform to changing

annotation guidelines because of the high rate at which this information is increasing.

This situation has naturally created an interest in automated systems for problems such

as topic classification, entity extraction, event extraction, word sense disambiguation,

and tokenization in the bio-medical domain [ARAW00]. In this report, we discuss one

such automated system we have developed to address one of the problems of bio-text

mining, i.e., event extraction.

Text to Knowledge: Before beginning to understand our system in detail, let us first

look at what are the general processes involved in any text mining problem. Figure 1.1



depicts the typical workflow involved in a text mining system. As shown in Figure 1.1,

Figure 1.1: Text to Knowledge flow. Source: [bdt]

there exists wealth of unstructured information stored in the form of text books, news

paper articles, journals and online libraries. The relevant information required by an

application will be extracted using some of the information retrieval mechanisms. Now,

to make it comprehensive and easy to use, this information needs to be annotated either

manually or automatically using semantic metadata. Then, some advanced information

retrieval methods on this annotated data are applied to derive the structured content from

it which is actually the knowledge that is useful. So, once this structured knowledge

is available to researchers, they are able to make new discoveries from it which can be

useful for future.

Challenges of Bio-Text Mining To mine the wealth of information from medi-

cal texts various global initiatives have been undertaken like the BioCreative1, which

aims to support curation of PPI (Protein-Protein Interaction) databases such as MINT

[ACaC07]. One important finding of such evaluation campaigns is that bio-text mining

is comparatively a challenging task for the following reasons:

1. It makes use of un-structured or un-grammatical language than a general lan-

guage usage. So, while processing bio-texts it becomes difficult to understand the struc-

ture of sentence.

2. It uses many tele-graphical phrases, i.e. the phrases which convey a very straight-

forward action and which do not contain any exaggerated meaning or adjectives. So, it

1http://biocreative.sourceforge.net/bc2ws/index.html
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becomes hard to comprehend such phrases.

3. It uses too many acronyms for proteins, genes, cell types etc. So, while processing

such text, one should either have a mapping from these acronyms to their extensions or

one should create a dictionary for these acronyms.

4. Named entity recognition, i.e. how can we make our system or computer program

understand that certain tokens in bio-texts are protein names, gene names, cell types etc.

This is in itself a separate research problem but for the scope of our project, we need

not have to address this problem because we are working on datasets already annotated

with the proteins in the bio-texts. The details about these annotations will be explained

later in this thesis.

1.1 Bio-Molecular Event Extraction

Earlier in this section we explained the need for bio-text mining. In this section, we

explain one problem of bio-text mining which is bio-molecular event extraction. So, to

begin with let us first understand what one means by an ’event’. The definition of an

event as given by the organizers of BioNLP’09 [KJDJ09] is, "change on the state of

a bio-molecule or bio-molecules due to other bio-molecule or bio-molecules". For

example consider a sample text from one of the given datasets,

"Leukotriene B4 stimulates c-fos and c-jun gene transcription and AP-1 binding

activity in human monocytes ."

In this sentence, the tokens in bold are called triggers, i.e. the tokens which indicate

events or activities performed and the tokens in italics are called proteins or participants

in the events (or Themes in the context of BioNLP’09 shared task) as given in the

protein annotations file. Tokens ’AP-1’ and ’B4’ are also proteins but in this context,

they are not considered as proteins because, we only consider proteins given in the

protein annotation file. So, in this example, there is a change in the state of bio-molecule

’human monocytes’ by another bio-molecule ’Leukotriene B4’ and the transformation

is ’c-fos and c-jun gene transcription and AP-1 binding activity’. Therefore, the goal

of the BioNLP’09 is to identity the transformations on bio-molecules and the factors

causing these transformations.

3



In the BioNLP’09 shared task, the events are broadly classified as Simple events

and Complex events. Simple events consist of binary relations between proteins and

their textual triggers. So, they are reported by simply detecting the trigger and theme

from the text. Complex events consist of multiple relations among proteins, events, and

their textual triggers. So, for some complex events, they are reported by identifying

multiple related themes and corresponding trigger, some are reported by identifying

trigger, associated theme and the cause for this event, some are reported by identifying

trigger and the dependent event which itself is reported by its own theme and trigger.

The examples of these types of events will be explained later in this thesis.

The initial part of the thesis focuses on building a framework for optimal feature

subset selection for event extraction from bio-medical texts. For this, we are referring

the BioNLP’09 (Bio-Medical Natural Language Processing) shared task [KJDJ09]. It

concerns the recognition of bio-molecular events (bio-events) that appear in bio-medical

literature. The shared task focuses on extraction of bio-events, particularly on proteins

or genes. For these tasks, proteins and genes are not considered to be different.

To streamline the efforts of researchers to gain valuable insights from data, in this

shared task it is assumed that the bio-medical entity recognition is already done. The

researchers are provided with the gold standard protein annotations in the data set. The

shared task is divided into three sub-tasks to allow separate evaluation of the perfor-

mance for different aspects of the problem.

Task 1. Core event extraction

The aim of this task is to identify events concerning the given proteins. It involves event

trigger detection, event typing, and primary argument recognition.

e.g. CD2 signalling induces phosphorylation of CREB in primary lymphocytes.

(Type: Phosphorylation (phosphorylation), Theme: CREB)

In this example, the trigger is phosphorylation of type Phosphorylation and its theme

is the protein CREB.

Task 2. Event enrichment (optional)

The aim of this task is to find secondary arguments of events that give more details

about the event extracted by Task 1. It involves the recognition of entities (other than

4



proteins) and the assignment of these entities as event arguments.

e.g. We demonstrate that a fusion protein composed of a C-terminal Hsp70 peptide

and the p50 subunit of NF-kappaB was directed into the nucleus of cells, could bind

DNA specifically, and activated Igkappa expression and TNFalpha production.

(Type: Localization (directed), Theme: p50, ToLoc: nucleus)

In this example, the trigger is directed of type Localization and its theme is p50. The

token ’nucleus’ gives information about the location of the event.

Task 3. Negation and speculation recognition (optional)

The aim of this task is to find negations and speculations (tokens indicating evidence

about events) regarding events extracted by Task 1.

e.g. The repetitive activation of T cells (priming) enhances the expression of many

cytokines, such as IL-4, but not others, such as IL-2.

(Negation (Type: Positive_regulation (enhances), Theme: Gene_expression (expres-

sion), Theme: IL-2)) In this example, there are two nested events indicated by triggers

enhances and expression with theme as IL-2

For our specific goal of unsupervised lexical acquisition we only consider Task 1. In

all the examples discussed here on wards, the format of the protein and event annotation

files is as follows.

For proteins and triggers,

〈 entity id, entity type, start index, end index, entity 〉

where, entity id - unique id for the protein/trigger/event (indicated later as trigger id,

protein id, event id),

entity type - the type of entity Protein/one of the nine types of triggers (Gene_expression,

Transcription, Protein_catabolism, Phosphorylation, Localization, Binding, Regula-

tion, Positive_regulation, Negative_regulation),

start index - the start index of the entity in the raw text file,

end index - the end index of the entity in the raw text file,

5



entity - the actual entity token, i.e. either protein/trigger and it can be a multi-word

token also.

and for events,

〈 event id, event type, trigger id, protein id/event id 〉

Example 1.1.1: Consider the following sample text from a PUBMED abstract.

Leukotriene B4 stimulates c-fos and c-jun gene transcription and AP-1 binding

activity in human monocytes.

Protein annotation file of the above text:

T1 Protein 26 31 c-fos

T2 Protein 36 41 c-jun

T3 Protein 244 249 c-jun

From the text and protein annotation files given in Example 1.1.1 above, we have to

generate the following event annotation file corresponding to Task-1 as given below.

T14 Positive_regulation 15 25 stimulates

T15 Transcription 47 60 transcription

T16 Regulation 129 135 effect

E1 Positive_regulation:T14 Theme:T1

1.2 Feature Selection and Ensemble Learning Using Multi-

Objective Optimization

As given on [Deb01], the formal definition of Multi-objective optimization is that it is an

area of multiple criteria decision making, that is concerned with mathematical optimiza-

tion problems involving more than one objective function to be optimized simultane-

ously. In [ES12], the problem of feature selection for only one classifier, namely Max-

imum Entropy (ME) [KM03] is formulated as a Multi-Objective Optimization (MOO)
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problem. A MOO algorithm attempts to optimize more than one objective functions at

the same time, which may or may not be related to each other. For example, in case of

event extraction task, recall and precision, which are biased towards specific classes and

hence not a correct measure, are our objective functions. The increase of one’s value

may degrade the other’s value.

In [ES13], some Simulated Annealing [BT93] based classifier ensemble techniques

were developed and those were applied for solving the Part-of-Speech (PoS) tagging

problem for different Indian languages. Since, in PoS tagging, each token is assigned a

label from a set of predefined PoS tags/classes, and in entity extraction task the problem

is to distinguish proper names from others and to classify them into some predefined

set of entities, the methodologies are likely to be transferable.

It was shown in [Bie09] that different NE classes as well as different classes of

proteins, diseases and genes are distinguished in general and medical sense respectively.

But, for our task these entities viz. proteins, diseases and genes are not considered to be

different. Therefore, we had to determine a set of features which can cover all of these

entities together.

1.3 Unsupervised Lexical Acquisition

In any natural language processing (NLP) problem, knowing the PoS tags of tokens

being processed is a very important task. Many times, these tags are achieved by using

readily available PoS taggers or a database such as WordNet [Fel98]. But, these systems

require huge amount of annotated corpus which is hard to be available especially for

bio-medical domain. Also, these systems do not perform well on any text from new

domain or any resource poor language. So, there is a need for an automated system

which does not require large labeled corpus for processing and instead it learns the

patterns in the text on its own and classifies the tokens into different categories based

on their semantic similarity similar to PoS tags. Such a system is called unsupervised

lexical acquisition system.

Unsupervised PoS induction [Bie09, CC10] is a technique that induces lexical-

syntactic categories through the statistical analysis of large, raw text corpora. The

derived classes have semantic information like days of the week, professions, mass

7



nouns etc. along with general PoS tags. In [CBG07], the authors tried to investigate

whether using unsupervised PoS tags along with supervised PoS tags helps in named

entity recognition and word sense disambiguation. And they observed that performance

of unsupervised PoS tagging was very similar to that of supervised PoS tagging for

these two tasks. Along with the graph-based method of [Bie09] using word cluster-

ing approach described in [Cla03a] may help for PoS induction, as it has been shown

in [Bie09].

There is another unsupervised technique for lexical acquisition called ’lexical ex-

pansion’ [TMG12]. It requires a large corpus for the induction and is based on the

computation of a Distributional thesaurus (DT) [Lin98]. On a broader sense, we can

use lexical expansion to replace or to suggest similar words to a given word based on

the similar contexts in which these words appear in the whole corpus. So, words are

given their similarity scores based on the extent of their contextual similarity and are

stored in DT.

Since the induction of PoS is entirely language independent as shown in [Bie09],

and DT in [Lin98] uses the contextual similarity concept, we use these features along

with our baseline features as they are proved to be effective in different NLP tasks.

1.4 Research Questions

With the above mentioned theoretical background in mind, we started the project with

following research questions which we seek to answer:

1. Will the extraction of relevant features for event extraction create a system which is

comparable to systems at BioNLP’09?

2. Will the addition of unsupervised features to the baseline features improve the per-

formance of event extraction system?

3. Will the use of MOO algorithms help in finding best feature subset and in turn the

best performing system?

4. Will MOO select different set of optimal features if evaluation mode is changed?

How we progressed to answer these questions and did we actually get the answers, will

be explained in the further chapters.

8



1.5 Organization of the Thesis

The rest of the chapters are organized as follows: In Chapter 2, we provide a literature

survey of prior works in this domain. In Chapter 3, we discuss our research meth-

ods and approaches. In Chapter 4, we present the results we obtained through various

experiments. In the end, we conclude with few takeaways for future work.
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Chapter 2

Literature Review

Most of the research in bio-medical domain, few years back was mainly focused on

bio-medical entity extraction. It is only recently that the research focus in bio-medical

domain has shifted to event extraction from bio-medical texts. The reason for this shift

is mainly the improved performance of named entity recognition systems in practical

applications.

Since then, a lot of initiatives have been taken internationally through competitions

and shared tasks to encourage researchers all over the world to address the challenges

of event extraction with various approaches. Examples include the TREC (Text RE-

trieval Conference) Genomics track [WHR07], JNLPBA (Joint Workshop on Natural

Language Processing in Biomedicine and its Applications) [JDKC04], LLL (Learning

Language in Logic Workshop) [Nt’e05], and BioCreative [LHV07]. While the first

two addressed bio-IR (information retrieval) and bio-NER (named entity recognition),

respectively, the last two focused on bio-IE (information extraction), finding relations

between bio-molecules. BioNLP’09 shared task [KJDJ09], on the other hand, unlike

LLL and BioCreative, tried to address the problem of information extraction with com-

plex details.

2.1 Related Work

The problem of entity recognition (viz. proteins, cell types, genes, disease names etc.)

was of major focus in bio-medical text mining research community [MKV08], the inter-

est has now grown about the problem of complex event extraction. One of the reasons

for this is the availability of annotated corpora from Message Understanding Confer-

ences (MUCs), the Automatic Content Extraction (ACE) evaluations, and the BioNLP

shared tasks on event extraction.

Early work on event extraction focused on finding local sentence-level features such

as token and syntactic features [RGM05]. However, these features were not enough for



complex events. So, many new approaches were proposed. For example, in [JG08] the

authors used global information (considering all documents together rather than con-

sidering them individually) from related documents. The idea behind their approach is

that an event can appear many times and in different forms, in the same document or

in many other similar documents and this fact can be used for event extraction from

original document. In another approach [LG10], document-level cross-event informa-

tion and topic-based features were leveraged while Huang and Riloff explored discourse

properties [HR12b]. They argue that, to accurately identify events and their arguments,

one has to consider a larger context, i.e. effect of an event across sentence boundaries.

They use this information and CRF classifier for event extraction. However, in our

system we only consider the events within a sentence boundary, so the cases in which

events/themes are present across boundaries our system fails. But, our system can be

easily extended to multiple sentence or document level approach to detect such events.

In BioCreative-II challenge [LHV07], one of the task was to extract protein-protein

interactions (PPI) from full text articles. One of the reason to include this task was the

lack of Gold Standard training data sets due to which it was hard to compare existing

automated extraction methods, as most results are reported using author-specific evalua-

tion data sets. Also, some systems have only been evaluated using article abstracts. An-

other reason was, even though PPI databases were present, it was becoming difficult for

the PPI database administrators to keep up with the literature by manually detecting and

curating protein interaction information due to discovery of new proteins and growing

bio-medical literature. So, the goal of this task was to determine state of the art in PPI.

The best performing system got F-measure value of 41% on test set [JH07]. The system

uses the concept of inexact pattern matching in which the patterns are actually the struc-

ture of the PPIs in the text. This structure is described by the PoS tags, word lemmas,

words etc. Due to this strategy, this system does not require pre-annotated corpora or

pre-defined patterns. Similarly Learning Language in Logic challenge (LLL) [Nt’e05]

was aimed at learning rules to extract protein/gene interactions in the form of relations

from biology abstracts. Six teams participated in the challenge and two teams achieved

highest F-measure value of around 50%. The system was based on the representation

of the examples as sequences.

It is a well known fact that for supervised systems to perform well one needs a large

amount of annotated corpora. However, it is often very costly and time consuming to

11



produce such corpus. So, many semi-supervised and unsupervised approaches were

proposed. As proposed in [HR12a], a bootstrapping method is used to extract event

arguments using only a small amount of annotated data. Also, in [LR12] a novel un-

supervised sequence labeling model was developed. In our system also, we use two

unsupervised features viz. unsupervised PoS tag and distributional thesaurus words

(explained in further sections). However, unlike the approach used in [HR12a], we use

the complete tokenized texts from train, test and development dataset of BioNLP’09 to

prepare our unsupervised models.

The BioNLP’09 shared task contains simple events and complex events. The simple

events consist of binary relations between proteins and their textual triggers, while the

complex events consist of multiple relations among proteins, events, and their textual

triggers viz. binding and regulation events. As for our specific goal of unsupervised

lexical acquisition, we mainly focused on simple events, i.e. task 1. Among all teams

who submitted their predictions in BioNLP’09 our system ranked 6th. Also, for binding

events, our system surpassed the performance of the best system. The detailed results

of our system and all the teams in BioNLP’09 are given in Chapter 4.

2.2 Feature Selection

As in any other text mining task, feature selection is an important step in the analysis

of high-dimensional bio-medical data. Feature selection is the technique of selecting a

subset of features for building a model for classification. The reason for selecting a sub-

set is because there can be too many features obtained by analyzing dataset but only a

few of them are actually useful for better classification. Apart from identifying relevant

features, there are four more reasons for feature selection as explained in [Nav06]:

1. The computational complexity of machine learning algorithms is reduced. As the

number of features are reduced, the time to build the prediction model is reduced due

to the reduction in processing time.

2. It makes the machine learning system economical because as we get a subset of best

features, we need not check the system performance on the rest not selected features.

3. In many cases it increases the accuracy of the machine learning system. Because,

presence of non-relevant or weakly relevant features affect the performance of machine
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learning system. So, once we know the good features, the accuracy of the system is

increased.

4. It provides valuable insights into the problem to be solved and these insights are

much more important than the prediction problem. For example, to identify whether

a patient is sick we are building a model based on the symptoms of sick patients. So,

in this case, the sickness of the patient can be determined by many other ways but the

features that we would extract related to symptoms will be very helpful in determining

the health status of patients.

Instead of trying to tune model parameters for the full feature subset, we now try to

derive required model parameters for the optimal feature subset, as there is no guarantee

that the optimal parameters for the full feature set are equally optimal for the optimal

feature subset as explained in [WD03].

If the feature selection is conducted independent of the classifier as in the t-test

[Le03], it is normally referred to as the filter method. If feature selection uses the

classifier to evaluate the performance of each subset as in sequential floating forward

selection (SFFS) [PP94], it is normally referred to as the wrapper method. Feature se-

lection can also be a combination of both like the generalized wrapper method. In some

cases, feature selection is strongly coupled with the classifier design, as in boosting or

recursive ridge regression [FL05], which is referred to as the embedded method. For

our project, we will use the MOO approach for optimal feature selection which will be

explained in later sections.

2.3 Ensemble Learning

A single machine learning classifier may not always be sufficient for a problem. One

classifier may not perform well on a dataset with less features while another classifier

may perform well on a same dataset but with more features. One classifier may give a

better precision while another classifier may give better recall on the same dataset and

features. So, we need to find best possible combination of classifiers with optimal pa-

rameters to achieve greater accuracy. This is where ensemble learning is used. Various

Ensemble Learning approaches have been studied in the past such as Bagging [Bre96],

Boosting [Sch99], ensemble of features and so on.
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Bagging proposed in [Bre96] is based on Bootstrap sampling [ET93]. In a Bagging

ensemble, each base learner is trained on a set of n training samples, which are drawn

uniformly at random with replacement from the original training set of size n. And the

final prediction is made by simple averaging.

AdaBoost is one of the best known variations of Boosting [Sch99]. Its main idea

is to introduce weights on the training set D and pay more attention to those training

samples that are mis-classified by former classifier in the training of next classifier.

In the approach used in [LM99], all input variables are first grouped based on their

mutual information. Statistically similar variables are assigned to the same group.

Each base learner’s input set is then formed by input variables extracted from dif-

ferent groups. The designed ensembles have been successfully applied to drug de-

sign [Mam03] and medical diagnosis [ATP03].

2.4 Evolutionary Optimization for Feature Selection and

Ensemble Learning

As explained in previous sections, we incorporated evolutionary MOO algorithm and

ensemble learning for optimal feature subset selection. Evolutionary MOO algorithm

is often used to search the optimal trade-off between different objectives using a popu-

lation (a group of candidate solutions) of chromosomes (a candidate solution in case of

Genetic Algorithms) and biasing toward the Pareto front (a set of non-dominating can-

didate solutions explained later) in parallel and at the same time maintaining population

diversity to obtain as many diverse optimal solutions as possible [CY06]. These proper-

ties are very useful in ensemble design. From [Opt99], [Ho98], it can be observed that

varying the feature subsets used by each member of the ensemble can help achieve this

necessary diversity.

Traditional feature selection algorithms aim at finding the best trade-off between

features and generalization. In addition to this, ensemble feature selection tries to

find a set of feature sets that will make the component members of the ensemble di-

verse [LSOS06]. The Random Subspace Method (RMS) proposed by Ho in [Ho98]

was one early algorithm that constructs an ensemble by varying the subset of features.
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More recently, some strategies based on Genetic Algorithms (GAs- a type of evolution-

ary algorithm which uses techniques inspired by natural evolution, such as inheritance,

mutation, selection, and crossover to generate solutions to optimization problems) have

been proposed [Opt99]. All these strategies claim better results than those produced by

traditional methods for creating ensembles such as Bagging and Boosting.

It has been demonstrated that feature selection through Multi-Objective Genetic

Algorithm (MOGA) is a very powerful tool to find a set of good classifiers, since GA is

quite effective in rapid global search of large, non-linear and poorly understood spaces

[LSOS03]. Besides, it can overcome problems such as scaling and sensitivity towards

the weights. Also in [KS00], it has been concluded that GAs are suitable when dealing

with large-scale feature selection (number of features is over 50) after comparing it with

other feature selection algorithms.

2.5 Conclusion

This chapter explained the previous work carried out in bio-text mining and the various

initiatives undertaken. It also provided the details of the some of the existing techniques

and tools for event extraction in bio-medical texts. We also discussed the rationale

behind feature selection and evolutionary optimization for feature selection. In next

chapter, we discuss our approach and tools to address this issue.
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Chapter 3

Research Methods and Approach

In this section, we describe in detail the methods used to address issues in event ex-

traction from bio-medical texts and the various approaches we followed to answer our

research questions.

3.1 Unsupervised PoS Tagging

As we know that for any NLP problem, knowing PoS tags of words to be processed

is an important task. An obvious solution to automate this task is, using a supervised

approach as proposed in [Cha93], in which the authors use statistical methods. But,

again, this approach isn’t feasible because it needs a huge amount of labeled data which

is costly and time-consuming to produce. Also, it does not work well on unstructured

texts (like Tweets) and texts from different domains. This paved the way for a domain

agnostic system which can categorize texts as accurately as a supervised system would

do. And one such system is the unsupervised PoS tagging.

Unsupervised PoS tagging is a technique that requires no pre-existing manually

tagged corpus to build a tagging model. Thus, the problems associated with super-

vised system as mentioned above are largely alleviated. Various techniques have been

proposed for unsupervised PoS tagging in the past. For example, in [PFBM92], a class-

based n-gram model is proposed, which is the oldest and simplest unsupervised PoS

tagging system. It uses a bi-gram model in which each word is assigned a probabil-

ity of corpus and the system tries to optimize the probability of the corpus under this

model. Quite similar approach was followed in [Cla03b], in which class based n-gram

model and clusters of word types were formed. The only difference is that in this

case the system augments the probabilistic model with a prior that prefers clustering

where morphologically similar words are clustered together. A comparative evaluation

of seven unsupervised PoS systems was performed in [CC10] using the Wall Street



Journal (WSJ) corpus. The authors concluded that incorporating morphological fea-

tures is generally helpful for PoS induction because two of the seven systems that used

morphological information for PoS induction performed better than the other five.

3.1.1 A Use Case

The system implemented in [Bie09], takes as input, a considerable amount of unlabeled

and tokenized text without any POS information mentioned in it and then induces the

number of word clusters. A graph clustering algorithm called Chinese Whispers which

is based on contextual similarity is used in two stages. The principle parameters of

the algorithm are the number of target words, feature words, and window size. The

most frequent target words, based on their context statistics, within a context of the

most frequent feature words which appear either to the left or right of a target word, are

clustered in first stage. In the second stage, pairwise similarity scores calculated by the

number of shared neighbors between two words in a four-word context window is used.

The clusters obtained in these two stages are then combined to form the final clustering.

The pseudocode for this algorithm is shown below:

Algorithm 1 Graph clustering based Chinese Whispers
for all vi ∈ V do

class(vi) = i
end for
for it = 1 to number-of-iterations do

for all v ∈ V, randomized order do
class(v) = predominant class in neigh(v)

end for
end for
return partition P induced by class labels

In simple words, using the contextual similarity of words the system tries to cate-

gorize words in different iterations. For e.g. words like activates, stimulates, prevents

will fall in same category while words like transcription, prescription, description will

fall in different category. Eventually, after certain number of iterations each word is

assigned to a cluster, i.e. the PoS tag of the word. Using unsupervised PoS approach,

the author in [Bie06] claimed language-independence by creating and evaluating a un-

supervised PoS tagging system and evaluating it against three languages. Even though

unsupervised PoS system yields results which are little bit different from a linguisti-
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cally motivated POS-tagger, they are found to be comparable to the widely used PoS

taggers [Bie09]. Therefore, in our experiments, we use this system to provide one of

the features for event extraction.

An Example: To generate unsupervised PoS tags, we have to first convert a raw

text into tokenized text and then apply a script1 to get the required output. For example,

consider the following raw sentence from one of the abstracts.

"Functional interaction between the two zinc finger domains of the v-erb A oncopro-

tein." After applying tokenization and unsupervised PoS script, we get,

" Functional|316 interaction|2 between|491 the|463 two|378 zinc|2 finger|14 domains|2

of|391 the|463 v-erb|3* A|489 oncoprotein|3* .|485"

So, the number besides each token is the category to which it belongs,

e.g. all proteins in this sentence belong to cluster 3* (v-erb|3*, oncoprotein|3*).

3.2 Distributional Thesaurus (DT)

Similar to a normal thesaurus, which lists words grouped together according to simi-

larity of meaning (like synonyms and sometimes antonyms), DT groups the words to-

gether according to the distribution similarity index. For certain high-frequency words,

DT finds the most similar words to the given word from the whole text which appear in

similar contexts as explained in [Har09]. The problem in which the goal is to assign a

sense or meaning to a word in a given sentence by comparing its context with its dic-

tionary definitions, is called word sense disambiguation (WSD) problem. In [TMG12],

the authors tried to test the assistance of DT words for WSD problem. Lexical gap

problem is one hurdle that is faced by techniques which try to match sense definitions

from dictionaries with contexts of ambiguous terms to assign the correct sense. The

’lexical gap problem’ arises when we do not have sufficient words to express a certain

concept or meaning. To counter this problem, the concept of lexical expansion was used

in [TMG12] with the help of DT words. So, each word was then lexically expanded by

using similar words obtained from a DT which was constructed from extracting the con-

textual information from the unlabeled corpora. In this way, the authors in [TMG12]

demonstrated that the approach of using DT words for WSD task performs better than

1Chinese Whispers http://wortschatz.uni-leipzig.de/%7Ecbiemann/software/
jUnsupos1.0.zip
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Tokens from bio-medical abstracts Similar DT words
elevation elevations increase rise
interact interfere associated associate

synergistically cooperatively directly additively
found observed detected seen

Table 3.1: An example of DT features

other traditional approaches. An example of lexically expanded words can be found in

Table 3.1.

3.2.1 An Example

For our project, we constructed a DT [BR13] from the unlabeled, tokenized training,

development and test datasets. And in our experiments, we use the DT as a feature for

a token. Specifically, we use the three most similar words obtained from DT (ranked by

their distributional similarity score) as the features of a given token. So, if a token is a

trigger, then its DT feature will indicate the similar words and in turn similar contexts

in which this event can occur and will help in event classification.

As shown in Table 3.1, the first column contains the words from bio-texts, the sec-

ond column contains the first most similar DT word, the third column contains the

second most similar DT word and so on. In our project, one of these three DT words’

feature became a part of the best performing feature combination for event extraction

system. The details are discussed in the next section.

3.3 Sequence Labeling Machine Learning Model

We use Conditional random field (CRF) [JDLP01] which is a statistical modeling method

for building probabilistic models to segment and label sequence data. CRF models have

the ability to relax strong independence assumptions made in Hidden Markov Models

(HMM) and stochastic grammar models which gives CRF models an edge over them.

Maximum Entropy Markov models (MEMMs) and other discriminative Markov models

can sometimes be biased towards states with fewer successor states is one shortcoming

when it comes to sequence labeling problem. But, this is not the case with CRFs.
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Model PoS tagging chunking Named entity recognition
CRF 94.00 92.96 92.88

HMM 91.70 89.23 85.48
MEMM 56.03 48.21 49.09

Table 3.2: CRF vs HMM vs MEMM (accuracy in %). Source: [MA11]

For PoS tagging, chunking and named entity recognition tasks, a comparative study

was performed by authors in [MA11]. They created and tested the CRF, HMM and

MEMM models on a morphologically rich Hindi language. They observed that in

all three tasks mentioned earlier, CRFs performed consistently better than HMMs and

MEMMs. The observed results are shown in Table 3.2.

Now, we explain the technical difference between CRFs and HMMs. The graph-

ical model of simple hidden Markov models, maximum entropy Markov models and

conditional random fields is shown in Figure 3.1. The circles identified by Y are called

the states and the circles identified by X are called observations. An indication that the

observation is not generated by the model is given in this Figure by a hollow circle.

Figure 3.1: Representation of simple HMMs (left), MEMMs (center), and the chain-
structured case of CRFs (right) for sequences in graphical manner. Source:
[JDLP01]

As we can see in Figure 3.1, the model for CRF is an undirected acyclic graph

and given the observation sequence CRF has a single exponential model for the joint

probability of the entire sequence of labels. In case of HMMs, we need to enumerate all

possible observation sequences but it is not practical to represent multiple interacting

features or long-range dependencies of the observations especially in case of bio-texts.

MEMM uses per-state exponential models for the conditional probabilities of next states

given the current state.

Definition 1 describes the formal definition of CRF in which X is a random variable

over data sequences (i.e. word sequences) to be labeled and Y is another random vari-

able over corresponding label (i.e. tag) sequences. In other cases, X might range over

language sentences and Y range over named-entity taggings of those sentences with γ
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be the set of all possible named-entity tags. This is the scenario in a NLP sequence

tagging problem.

Definition 1 LetG = (V,E) be a graph such that Y = (Yv)v∈V , so that Y is indexed by

the vertices of G. Then (X, Y ) is a conditional random field in case, when conditioned

on X , the random variables Yv obey the Markov property with respect to the graph:

p(Yv|X, Yw, w 6= v) = p(Yv|X, Y w,w ∼ v), where w ∼ v means that w and v are

neighbours in G.

We have earlier explained the better performance of CRFs over other techniques for

performing various sequence labeling tasks. CRF is used to calculate the conditional

probability of values on designated output nodes given values on other designated input

nodes. Given an observation sequence o = (o1, o2, ..., oT ), the conditional probability

of a state sequence = (s1, s2, ..., sT ) is calculated as:

Pv(s|o) =
1

Z0

exp
T∑
t=1

K∑
k=1

λk ∗ fk(st−1, st, o, t)

where, fk(st−1, st, o, t) is a feature function whose weight λk is to be learned via train-

ing. Typically the values of the feature functions are binary but in some cases, they may

range between −∞, ...+∞. We must calculate the normalization factor,

Zo =
∑
s

exp
T∑
t=1

K∑
k=1

λk ∗ fk(st−1, st, o, t)

, which as in HMMs, can be obtained efficiently by dynamic programming, to make all

conditional probabilities sum up to 1. The objective function to be maximized is the

penalized log-likelihood of the state sequences given the observation sequences to train

a CRF model:

Lv =
N∑
i=1

log(Pv(s
(i)|o(i)))−

K∑
k=1

λ2k
2σ2

where (o(i), s(i)) is the labeled training data. The optimization if facilitated by mak-

ing the likelihood surface strictly convex through the second sum which corresponds

to a zero-mean,σ2-variance Gaussian prior over parameters. To maximize the penal-

ized log-likelihood using limited-memory BFGS [SP03], a quasi-Newton method that

is significantly more efficient, which results in only minor changes in accuracy due to
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changes in λ we set parameters λ. A feature function fk(st−1, st, o, t) is set to be 1,

when st−1, st are certain states and the observation has certain properties, otherwise,

for most cases, it has a value of 0.

We have used an open source C++ based CRF++2 [JDLP01] tool kit for building

probabilistic models. CRF++ requires the training and test data in a specific format for

its commands to work correctly. The training and test data has to be in CoNLL3 format

in which columns represent different features and rows indicate the instances of tokens

(from which these features are extracted) and their different feature values. The Figure

3.2 shows an example of part of a training file in this format. It can be seen that the

last column in each row viz. NULL, B-NP, I-NP are the labels assigned to the tokens

which occupy the first column. All other columns contain the features extracted from

these tokens. In our training files, the first column is the token itself, last column is the

event type (one of the ten classes including the Other class) while rest are the feature

columns.

Figure 3.2: A part of training file in CoNLL format

Each line contains information about single token in a sentence while sentences are

separated by a blank line between them. The feature columns are separated by either

space or tabular characters. It is obvious that the training and test files should have same

number of features for each token, i.e. same number of feature columns except that test

file does not have a class label column.

CRF Feature Template: While creating the CRF model, we have to specify the

template file along with training file. A template corresponds to each line in the template

file. A special macro %x[row number, column number] is to be used to specify a

feature in the input data for each template. Here, row number - the relative position of a

token from the current token (current token is assumed at position 0), column number -

the absolute position of the column in a row. Table 3.3 shows a sample template which

can be used to build a CRF model. From the Table 3.3, it can be seen that there are

three features specified for each token viz. current token itself, previous token and third

feature of current token. So, even if training file has more than four columns, CRF++
2CRF++: http://taku910.github.io/crfpp/
3CoNLL-X Shared Task http://ilk.uvt.nl/conll/
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#Unigram ’U’ to specify unigram features
U1:%x[0,0] current token itself
U2:%x[-1,0] previous token as feature of current token
U4:%x[0,3] third feature of current token

Table 3.3: Sample feature template for CRF++

will only consider the features specified at the positions mentioned in feature template

file to create a model.

3.4 Multi-Objective Optimization (MOO)

Before starting to understand MOO algorithms let us first understand the difference

between single objective optimization problems (SOOP) and MOO problems. When

the task of optimization problem involves only one objective function, it is called SOOP.

For example, buying a car with the best mileage. In this case, we can easily list out the

mileage values of all cars available and select the one with maximum value. However,

many a time, in day to day life, we come across situations where we have to deal with

more than one objective function, each having its own constraint. At such a time, we

have to find a way out of this situation such that all the objectives are achieved and also

all the constraints are satisfied. In a technical jargon, this scenario is called as Multi-

Objective Optimization problem (MOOP). As an example, consider the same problem

of buying a car. But this time, we can set various criteria for the car to meet like

affordable price, large interior space, large luggage cabin, minimum maintenance cost,

maximum mileage etc. Also, we can add few constraints like the car should have 6 seats

for adults and a good stereo system. In this case, our decision variables are all available

cars. If we look at these criteria, some are aimed at maximizing certain value, some

are within some range of values while others are aimed at minimizing certain values.

So, the car has to satisfy all of these criteria equally and at the same time satisfying

the constraints. For example, we can not buy a car which has large interior space for 6

adults but very small cabin space or a car which has affordable price but very low on

mileage and poor stereo system. So, as per the definition mentioned earlier, the problem

of buying a car now becomes a MOOP.
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A general MOOP is shown in Equation (3.1).

Minimize/Maximize fm(x),m = 1, 2 . . . ,M ;

subject to gj(x) ≥ 0, j = 1, . . . , J ; ( inequality constraints)

hk(x) = 0, k = 1, . . . , K; ( equality constraints)

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , n.

(3.1)

A vector (x1, x2, . . . , xn)T of size n is the solution x, where xi; i = 1, . . . , n in-

dicate decision variables. Each decision variable xi mentioned in the last set of con-

straints is restricted to take a value within a lower x(L)i and upper x(U)
i bound and is

called a bounded variable. As shown in the equation (3.1) above, there are J number

of inequality constraints and K number of equality constraints for this optimization

problem. Constraint functions are defined by the terms gi(x) and hk(x). A solution x

that does not satisfy all of the (J + K) number of constraints and all of the 2N (total

population size including the parent and offsprings) variable bounds is called an Infea-

sible solution while on the contrary, a solution y which satisfies all variable bounds and

constraints is called a feasible solution.

The variable m in the expression fm(x) as shown in equation (3.1), can take any

value from 1 to M. This means one can define more than one objective function as

minimization or maximization corresponding to each value of m. One more impor-

tant point to note here is that the objective functions form a multi-dimensional space

in MOO problems unlike single-objective optimization problems, in addition to the

usual decision variable space that is common in both types of optimizations. Also,

in MOO problems mapping takes place between an n-dimensional solution vector and

M-dimensional objective vector while on the other side, in single-objective optimiza-

tion problems mapping takes place between an n-dimensional solution vector and one-

dimensional objective vector.

3.4.1 The MOO Algorithms

Equation (3.1) depicts the general form of MOOP. Following illustration is another way

to represent the same problem:

For the given M objective functions f1(x), f2(x), ..., fM(x), find the vectors x of deci-
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sion variables that simultaneously optimize them while satisfying the necessary objec-

tive constraints, if any.

’Domination’ plays an important role in the context of MOOPs. If ∀k ∈ 1, 2, . . . ,M, fk(xi) ≤

fk(xj) and ∃k ∈ 1, 2, . . . ,M, such that fk(xi) < fk(xj), if we are considering mini-

mization problem, then the solution xi is said to dominate xj . This candidate solution

xi is called pareto optimal solution. In other words, a pareto optimal candidate solution

is the one which is,

1. At least as good as all other candidates for all objectives, and

2. better than all other candidates for at least one objective.

The set of solutions in which no solution is dominated by any other solution in the

same set is called non-dominated set and the globally pareto optimal set is the non-

dominated set of the entire search space S. Figure 3.3 shows the pareto optimal front

of solutions for two maximization objective functions f1 and f2. It can be seen that

solutions A and B are non-dominating to each other as f1(A) > f1(B) while f2(A) <

f2(B).

Figure 3.3: Dominance and Pareto-Optimality. Source: [wik]

Similarly, a curve is fit (pareto optimal front) passing through all such solution

points which are non-dominating to each other. All points which are above this curve

are feasible solutions for this MOOP.
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A large number of approaches exist in the literature to solve MOOPs [Deb01]. These

are aggregating, population based non-Pareto and Pareto based techniques. We now

discuss one such approach we have used in our project to find the best possible set of

solutions for event extraction.

3.4.2 Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

As explained in [KDM02], many disadvantages of MOO algorithms using non-dominated

sorting were revealed like 1) high computational complexity of O(MN3)(where is M

the number of objectives and N is the population size), 2) lack of elitism, i.e. the ap-

proach in which best performing solutions are kept and carried forwards for further

generations, 3) need to specify sharing parameter to ensure diversity in population.

These problems were overcome through a new algorithm in [KDM02] and is proved to

be effective for MOO problems. The advantages of the new NSGA–II algorithm are:

1. Low computational complexity of O(MN2)(where M is the number of objectives

and N is the population size) for non-dominated sorting,

2. High elitism,

3. No need to specify sharing parameter to ensure diversity in population,

4. Easy to use - NSGA is written in C-Programming language and it provides an inter-

face where we have to specify the objective functions to be maximized or minimized.

Due to these reasons we are using NSGA–II [KDM02] for the purpose of MOO in our

experiments. We now discuss the actual algorithm in detail.

NSGA-II Algorithm: The algorithm begins by creating initial random population

P0. This population is then sorted on the basis of non-domination (as explained earlier)

and for each candidate, the fitness (objective function value) is assigned a level, the

lower the level, the higher the fitness value. This is because this algorithm, by default,

tries to minimize objective functions. Thus, while using the NSGA-II software we have

to make necessary changes if we are maximizing a objective function. After this, binary

tournament selection (a method of randomly selecting a solution with best fitness value

from a population in genetic algorithm) is performed on P0 and a copy of winner is kept

in mating pool. Child population Q0 is then formed through crossover and mutation of

parents from the mating pool. Once, the parent and child population are created series

of steps are performed in a loop until specified number of generations are reached as
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shown in NSGA-II algorithm 2.

Algorithm 2 NSGA-II algorithm
Rt = Pt ∪Qt

F = fast− non− dominated− sort(Rt)
Pt+1 = φ and i = 1
while |Pt+1|+ |Fi| ≤ N do

crowding − distance− assignment(Fi)
Pt+1 = Pt+1 ∪ Fi

i = i+ 1
end while
Sort(Fi, <n)
Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
Qt+1 = make− new − pop(Pt+1)
t = t+ 1

Step 1: At any generation t, Pt is the parent population selected,Qt is the child/offspring

population generated from Pt and Rt is a combination of parent and child populations.

As Pt andQt are of same size N,Rt has size 2N. Non-dominated sorting is then applied

to Rt population. All the non-dominated fronts of Pt + Qt are copied to the parent

population one by one as shown in Figure 3.4 to prepare parent population Pt + 1 for

next generation.

Figure 3.4: Working of NSGA-II. Source: [CV12]

Step 2: When the size of parent population Pt + 1 gets larger than the population

size N, the algorithm stops adding individuals to it. The individuals that make the parent

population size larger than N in the last accepted rank (it is shown in Figure 3.4 by F3),
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are sorted by crowded distance sorting [KDM02]. Crowding distance is a method to re-

move unwanted individuals from a population. To fit the required number of individuals

for Pt+1, the algorithm first sorts them in each objective domain. A crowding distance

of infinity is assigned to the first and last individual in the sorted ranks while for others,

the difference of objective values of neighbors is set as crowding distance. If there is tie

of non-dominated rank between two solutions, then the solution with lower crowding

distance is selected. In all other cases, the solutions with better non-dominated ranks

are selected. After this, again selection, crossover (a genetic algorithm operator which

is used to generate a new individual by combining two parent individuals from existing

population and this extent of re-combination is governed by probability of crossover),

mutation (a genetic algorithm operator which is used to alter some parts of newly gen-

erated individual and this extent of alteration is governed by probability of mutation) is

performed on the new population Pt + 1 to create child population Qt + 1 of size N.

This process then repeats until the specified number of generations are reached.

3.5 Performance Measures

The evaluations scripts provided by BioNLP’09 shared task for evaluation of our event

extraction system reports the results in the standard measures recall, precision and F-

measure. To understand this, let us look at an example. Consider a search engine which

returns 20 web pages for a search query for which there are actually 30 relevant pages.

Out of 20 web pages only 10 are found to be relevant. So, the recall of this search engine

is 10/30 and precision is 10/20. In terms of mathematical equations these definitions

can be given as follows:

Recall

Recall =
relevant elements

⋂
retrieved elements

relevant elements
(3.2)

Recall is defined as the fraction of the relevant elements/items that are retrieved. Thus,

recall is actually a measure of completeness of a retrieval system.

Precision

Precision =
relevant elements

⋂
retrieved elements

retrieved elements
(3.3)
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Precision is defined as the fraction of the retrieved elements/items that are relevant.

Thus, precision is actually a measure of correctness of a retrieval system.

F-measure

F-measure = 2 ∗ Recall ∗ Precision
Recall + Precision

(3.4)

F-measure is the harmonic mean of recall and precision.

3.6 Result and Analysis

The classifiers are trained mostly with the domain independent features that can be

generated automatically from the available training data. For event extraction, the clas-

sifiers are trained with the set of lexical, syntactic and semantic features as reported

in [AES11b]. Then explored the unsupervised lexical acquisition possibilities.

The system for event extraction is evaluated in terms of the standard metrics, namely

recall, precision and F-measure.

3.7 Event Extraction

We have developed a supervised event extraction system that performs event detection

and classification together (Joint approach). However, as explained in [AES11a], it is

observed that if event detection and event classification is performed in separate phases

with different combination of features, then there is an improvement in the performance

of the system.

So, in the stepwise approach, we separated these phases and carried out various

experiments with different combination of features.

3.7.1 Features for Event Extraction

Below are the baseline features we used for event extraction task:

1) Surface form of the word is used as the feature.

2) Lemma: Root form of the word is used as feature.
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3) Part-of-Speech (PoS) information: It is a syntactic feature which tells whether the

token is noun, pronoun, verb etc. We use the PoS information of the current and/or the

surrounding tokens as the feature. We obtain these values from the Genia Dependency

files given by the organizers.

4) Fixed length word prefix and suffix: We have considered words of length 4 to find

prefixes and suffixes. These play important role in event detection.

5) Surrounding tokens: In bio-medical domain, we often come across a pattern of a

bunch of tokens which many times occur together in bio-texts. So, it offers a good hint

to extracting any bio-medical phenomenon. So, we use four of the preceding and suc-

ceeding tokens of the current token as feature.

6) Lexical Features: We derive various lexical features for the token such as Capital-

ization, Hyphenization, Alphanumeric etc. This is an important feature because many

bio-medical entities like proteins, cell types etc. possess these characteristics.

7) Is Protein: This is a binary feature which is set to one if the token is a protein else it

is set to 0. We use the protein annotation files to derive this feature.

8) Distance from nearest protein: We analyzed the gold annotation for events and

found that for most of the events, the theme is the nearest protein which is given in

protein annotation file. So, we determined three protein related features viz. distance

of current token from nearest protein, nearest protein and its PoS tag. The distance is

defined in terms of the number of words between the current token and the nearest pro-

tein and used it as a feature. Lesser the value of this feature, greater is the probability

of this or nearby token to be an event.

9) Nearest Protein/POS: We find the nearest protein and use it and its POS tag as a

feature.

10) Number of named entities in surrounding context: Presence of many named

entities around a token increases the probability of event in the given sentence. So, a

context window of five is considered. So, within this, a word is considered as named

entity if it’s NE tag is anything except ’O’ (other). A non-zero value of this feature

increases the chances of occurrence of an event nearby current token. (Named entity

tag information is obtained from the Genia Dependency files provided by BioNLP’09

shared task).

11) 2nd nearest protein, distance to current token, its PoS: It has been observed that

for certain events like Binding more than one protein act as a theme. So, we use this
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feature along with the nearest protein.

12) Character Category Pattern Function4 : A string representing the type of char-

acters present in the given token, e.g. for string Traf-2 which is a protein this feature

will have a value like UuLlLlLlCcNn where U-uppercase, L-lowercase, C-character,

N-number.

Apart from these, we incorporated three more advanced features into the system

which are as follows:

1. Dependency relation feature: For each token, we find the dependency relation of

the token with the nearest protein in the given sentence. For this, we use the McClosky

Charniak parser [MC08] outputs which are converted to Stanford dependency format.

2. Unsupervised PoS tag: As explained earlier, we use the unsupervised tag of the

word obtained from the taggermodel built on unlabeled BioNLP’09 dataset.

3. Distributional Thesaurus: We use the top three most similar words to the current

token obtained from the DT created using the BioNLP’09 dataset.

The impact of separately adding these new features to the baseline is explained in

the next chapter.

To see how these features look like in actual. Consider a sentence from an abstract

in the development dataset

"Activation of protein kinase C and elevation of cAMP interact synergistically to

raise c-Fos and AP-1 activity in Jurkat cells."

For token ’raise’ 26 of the total 49 feature values are as shown in Table 3.4

3.7.2 Observed Issues During Feature Extraction

While investigating the reason for low scores during initial evaluation, we came across

many issues. Following are few of those,

1. Many to one mapping: In many abstracts, the proteins given in .a1 file had

separate entries with separate spans however, in the tokenized text (which was used for
4CharacterCategoryPatternFunction class from Cleartk https://code.google.com/p/

cleartk/
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Value Feature
raise lemma
I-VP PoS Tag
VB chunking Tag
O NE Tag
to previous token
c-Fos next token
0 isProtein
0 distance to nearest protein
c-Fos nearest protein
B-NP nearest protein PoS
100 distance to second nearest protein
null second nearest protein
null second nearest protein PoS
aise, ise, se, e suffixes
rais, rai, ra, r prefixes
amod.dobj dependency relation
8 unsupervised PoS tag
raise, have, raises Distributional thesaurus words

Table 3.4: An example of features extracted

feature extraction), all these proteins belonged to a single token.

For e.g., consider one of the protein annotation (.a1) file entry,

T6 Protein 553 557 DCoH

T7 Protein 558 569 HNF-1 alpha

This entry indicates 3 proteins but in the corresponding tokenized file these tokens

appear together as ’DCoH-HNF-1-alpha’.

2. One to many mapping: In many abstracts, the proteins given in .a1 file had

single entry however, in the tokenized text, these proteins appeared as separate tokens

delimited by some character like ’(’ and ’)’.

For e.g., consider one of the protein annotation (.a1) file entry,

T1 Protein 37 51 p70(S6)-kinase

This entry indicates a single protein but in the corresponding tokenized file these

tokens appear separately as ’p70 -LRB- S6 -RRB- -kinase’.

3. Protein/Trigger as a substring of a token: In many abstracts, the proteins/triggers

had their own separate entry however, in the corresponding tokenized file these pro-
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teins/triggers were found to be a substring of a non-protein/non-trigger token.

For e.g., consider one of the protein annotation (.a1) file entry,

T1 Protein 24 29 gp-41

and corresponding event annotation (.a2) file,

T1 Protein_catabolism 31 38 induced

These two tokens seem to have separate entries in the corresponding tokenized file

however, they appeared as a single token as ’gp41-induced’. Also, in this case the same

token ’gp41-induced’ is protein as well as trigger.

4. Wrong span for proteins: In many abstracts, it was observed that the spans given

for proteins were not correct,

For e.g., consider one of the protein annotation (.a1) file entry,

T3 Protein 598 602 CD44

T4 Protein 603 607 CD25

From the above entries, it appears that both these proteins occur one after another

however, in the corresponding tokenized file, the token appeared as ’CD44-CD25+’

which clearly indicates that the span for ’CD25’ was wrong.

So, these tokenization issues were addressed during feature extraction as and when

they appeared. Due to this, we saw an increase in the evaluation results’ score which

were very low initially. We were unaware of these tokenization issues prior to beginning

our task. We hope that this information will be helpful for anyone who would like to

work on BioNLP’09 datasets in future.

3.8 Conclusion

In this chapter, we described the technical approach we followed in this project and

the various tools and algorithms that were used. We explained the reason behind using

unsupervised features and how we have used these in our thesis. We explained the

33



setup required for machine learning classifier and multi-objective optimization. We

also described the features used for event extraction and issues observed during this

process. In the next chapter, we report the results obtained for the various experiments

we performed using different parameter sets.
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Chapter 4

Experiments and Results

As explained in the previous chapter, we address the event extraction problem using two

approaches. This chapter depicts the experiments carried out in that context and results

obtained. For all result tables, the values reported for recall, precision and F-measure

are in (%) percentages.

4.1 Datasets

For our experiments, we use the benchmark setups of BioNLP’09 shared task datasets.

Following Table 4.1 illustrates the summary of the BioNLP’09 shared task datasets:

There are various types of resources provided for training, development and test

data sets. They are as follows:

1. protein annotation file - These files contain the annotations for proteins in the ab-

stract.

2. event annotation file - These are the annotations for the triggers into one of the nine

event types.

3. raw text file - This is the file in which first line indicates title of the abstract and

second line indicates the actual abstract.

Along with these files various analyses were provided. These include the original

Item Train Development Test
Abstracts 800 150 260
Sentences 7,449 1,450 2,447
Words 1,76,146 33,937 57,367
Events 8,597 1,809 3,182

Table 4.1: Summary of BioNLP’09 datasets



outputs of various parsers like Bikel1, McClosky-Charniak2, GDep3 and CCG4 and also

their conversion to Stanford Dependency format.

We are using McClosky-Charniak and GDep parser outputs to extract few features.

Because using self-training of McClosky-Charniak parser on unlabeled Bio-Medical

abstracts, the authors in [MC08] achieved good performance and GDep parser is the

most widely used parser in bio-medical domain. The events were selected from the

GENIA ontology based on their significance and the amount of annotated instances in

the GENIA corpus. The event types are related to protein biology which means that

they take protein as their theme.

As the gold data for test set was not available, we divided our training data into

two parts. 440 abstracts were randomly selected for training purpose, 360 for devel-

opment and 150 abstracts which were previously used for development purpose were

later used as a test set. There is a very little difference of approximately +/- 3% be-

tween performance measures of best performing systems at BioNLP’09 shared task for

test and development sets [RS11]. Therefore, even though the final teams’ scores pro-

vided in Figure 4.1 are on test sets, we can compare them with our system’s scores on

development set.

For unsupervised lexical acquisition, we used the benchmark datasets, namely JNLPBA

2004 shared task5 and AIMed. The JNLPBA datasets were extracted from the GENIA

Version 3.02 corpus of the GENIA project. This was constructed by a controlled search

on Medline using MeSH terms such as human, blood cells and transcription factors.

Like GENIA, AIMed also focuses on the human domain, and exhaustively collects sen-

tences from the abstracts of PubMed. But, it selects the different text spans for protein

annotation. Unlike GENIA, protein families are not annotated in AIMed. Unlike GE-

NIA and AIMed, GENETAG covers a more general domain of PubMed. We will first of

all, use the techniques for induction of PoS and DT with various parameters. Then we

will also generate models from the possible space of unsupervised lexical acquisition

models.
1http://people.csail.mit.edu/mcollins/code.html
2http://nlp.stanford.edu/~mcclosky/selftraining.html
3http://people.ict.usc.edu/~sagae/parser/gdep/index.html
4http://svn.ask.it.usyd.edu.au/trac/candc/wiki
5http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html
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4.2 Evaluation

The event annotations are provided for training and development data while for test data,

the event annotations had to be created for evaluation. We started with the development

dataset for evaluating and tuning our system.

We first create a model on training data (800 abstracts) using CRF classifier and we

test this model on development data (150 abstracts). We store this output in separate 150

files and convert it to event annotations file format (explained in previous chapter) for

evaluation. The evaluation scripts are taken from the BioNLP’09 Shared Task website.

There are 3 modes of evaluation:

1. Strict Span match mode (SMM): In this mode, the spans for triggers must match

exactly, the event types must be correct and the event themes must be correct too.

For example, consider one trigger entry in gold data,

T9 Binding 34 39 binds

E1 Binding:T9 Theme:T1

and in the predicted file it appears as,

T9 Binding 34 39 binds

E1 Binding:T9 Theme:T1

Then, as per SMM evaluation, 34 = 34 and 39 = 39, so this trigger entry will be

considered as a match to the gold entry.

2. Approximate Span match mode (ASM): In this mode, there is a relaxation for

span match. For e.g., if (beg1, end1) is the given span and (ebeg2, eend2) is the gold

span, then the spans are considered to match if beg1 >= ebeg2 and end1 >= eend2

(Here- beg, end are the beginning index and ending index of the entity respectively).

The other two constraints remain same.

For example, consider one trigger entry in gold data,

T9 Binding 34 39 binds

E1 Binding:T9 Theme:T1
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and in the predicted file it appears as,

T9 Binding 36 41 binds

E1 Binding:T9 Theme:T1

Then, as per ASM evaluation, 34 <= 36 and 39 <= 41, so this trigger entry, even

though not exactly correct, will be considered as a match to the gold entry.

3. Approximate and Recursive Span match (ASRM): In this mode, there is a re-

laxation on the requirement for recursive event matching (in case of Regulation events

where an event act as a theme for another event), so that an event can match even if the

events it refers to are only partially correct.

For example, consider one trigger entry in gold data,

T9 Positive_regulation 34 42 increases

T10 Gene_expression 50 60 expression

E1 Positive_regulation:T9 Theme:E2

E2 Gene_expression:T10 Theme:T2

and in the predicted file it appears as,

T9 Regulation 36 44 increases

T10 Gene_expression 52 62 expression

E1 Regulation:T9 Theme:E2

E2 Gene_expression:T10 Theme:T2

In this case, as per ASRM evaluation, event though the spans are not exactly correct

( 34 <= 36, 42 <= 44, 50 <= 52 and 60 <= 62) and the referred event of E2 is

Regulation and not the actual Positive_regulation, this is considered as a match to the

gold entry.

Once event annotation files are produced from CRF output, we evaluate them using

the evaluation scripts provided. The output of the scripts specify the standard mea-

sures recall, precision and F-measure for individual events, groups of event together

viz. Simple, Binding and Regulation events and overall measures.
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Label Recall Precision F-measure
Event 27.87 53.27 36.59

Table 4.2: Stepwise approach-without protein related features

Label Recall Precision F-measure
Event 39.15 62.82 48.24

Table 4.3: Stepwise approach-with protein related features

4.3 Results of Event Extraction

4.3.1 Stepwise Approach

In this approach, we perform event detection and classification in separate steps to see

if there is any change in performance. In this case, the problem becomes a binary clas-

sification task contrary to the nine-class classification task as in the previous approach.

So, we just classify the tokens as event or not-event.

Table 4.2 illustrates the preliminary results using the same set of features mentioned

above except without protein related features:

When we added three new features viz. distance from nearest protein, nearest

protein and nearest protein PoS, we saw significant change in precision, recall and F-

measure values. These are as shown in following Table 4.3:

For event classification and argument extraction, we also need non-trigger words

along with trigger words, as some of them act as the Theme for events. So, we con-

cluded that only using triggers detected in first phase for event classification in second

phase is not a promising approach. So, we did not investigate this approach further.

4.3.2 Joint Approach

In this approach, we perform both event detection and classification together.

Table 4.4 shows the results obtained using the baseline features mentioned in the

previous chapter along with some new features.

Error Analysis - When we analyzed the gold-data of event annotations to under-

stand the reason for low recall, we came across two observations which may have af-
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Features Recall Precision F-measure
Baseline 20.46 39.40 26.93
Baseline + unsupervised PoS feature 20.46 39.31 26.91
Baseline + unsupervised POS feature +
Dependency relation feature

20.57 39.32 27.01

Baseline + unsupervised POS feature +
Dependency relation feature + Distribu-
tional thesaurus feature

19.90 39.51 26.47

Table 4.4: Strict span match-with complete dataset

fected the recall:

1. Multi-theme events: For many events, even though they are correctly predicted

but are unreported due the way event annotations file is being created. For example,

The active nuclear form of the NF-kappa B transcription factor complex is composed

of two DNA binding subunits, NF-kappa B p65 and NF-kappa B p50, both of which

share extensive N-terminal sequence homology with the v-rel oncogene product.

Events in gold data,

E5 Binding:T32 (binding) Theme:T4 (p65)

E6 Binding:T32 (binding) Theme:T5 (p50)

and events in the generated event annotations file,

E5 Binding:T32 (binding) Theme:T4 (p65)

Currently we are only considering the nearest protein as the Theme for a predicted

event. Even though it is correct in some cases, but in other cases the nearest protein is

not the Theme for an event. And in other cases, as in the example above, along with

nearest protein, other proteins are also the Themes for the same event.

2. Nested (Regulation) events: Similarly, for many nested events (Regulation

events), they were partially predicted correctly but went unreported due to the same

reason of event annotations file creation. For example,

The binding of I kappa B/MAD-3 to NF-kappa B p65 is sufficient to retarget

NF-kappa B p65 from the nucleus to the cytoplasm.
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Features Recall Precision F-measure
Baseline 33.49 39.40 36.20
Baseline + unsupervised POS feature 33.49 39.31 36.17
Baseline + unsupervised POS feature +
Dependency relation feature

33.67 39.32 36.27

Baseline + unsupervised POS feature +
Dependency relation feature + Distribu-
tional thesaurus feature

32.57 39.51 35.71

Table 4.5: Strict span match-without complex events in the dataset

Events in gold data,

E10 Positive_Regulation:T36 (sufficient) Theme:E11

E11 Localization:T37 (retarget) Theme:T16 (p65)

and events in the generated event annotations file,

E10 Positive_Regulation:T36 (sufficient) Theme:T16 (p65)

So here, Theme of E1 which is indirectly T2, is reported, but not through nested

event E2.

So, to check how the system performs in case of simple events in the evaluation

dataset, we removed the multi-theme events and nested/dependent events from the gold-

data for evaluation and again evaluated our system using the similar feature combina-

tions. Results are shown in Table 4.5

As we can see from this Table, there is a significant increase in the recall and F-

measure values. This means that the system works well on simple and binding events

and suffers on complex regulation events.

Another important observation is that in the results above there was restriction on the

perfect match of triggers (strict match mode). So, when we relaxed this constraint and

evaluated our system again in approximate span match mode, we observed an increase

in recall and F-measure values on both datasets as shown in Table 4.6 and 4.7 (Here

we show detailed results for individual events also). The reason behind this increase

in performance measure values is that the spans given in the gold-data for proteins and

triggers are based on the raw, non-tokenized texts, while the various parser outputs

provided and which are used for feature extraction are based on the tokenized texts.
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Event Class Gold (match) Answer (match) Recall Precision F-measure
Gene_expression 356 (164) 219 (164) 46.07 74.89 57.04

Transcription 82 (28) 48 (28) 34.15 58.33 43.08
Protein_catabolism 21 (14) 17 (14) 66.67 82.35 73.68

Phosphorylation 47 (30) 35 (30) 63.83 85.71 73.17
Localization 53 (21) 25 (21) 39.62 84.00 53.85

=[SVT-TOTAL]= 559 (257) 344 (257) 45.97 74.71 56.92
Binding 312 (73) 102 (73) 23.40 71.57 35.27

==[EVT-TOTAL]== 871 (330) 446 (330) 37.89 73.99 50.11
Regulation 199 (16) 69 (16) 8.04 23.19 11.94

Positive_regulation 717 (64) 294 (64) 8.93 21.77 12.66
Negative_regulation 227 (10) 92 (10) 4.41 10.87 6.27
==[REG-TOTAL]== 1143 (90) 455 (90) 7.87 19.78 11.26
==[ALL-TOTAL]== 2014 (420) 901 (420) 20.85 46.61 28.82

Table 4.6: Approx. span match-with complete dataset

Event Class Gold (match) Answer (match) Recall Precision F-measure
Gene_expression 356 (164) 219 (164) 46.07 74.89 57.04

Transcription 82 (28) 48 (28) 34.15 58.33 43.08
Protein_catabolism 21 (14) 17 (14) 66.67 82.35 73.68

Phosphorylation 47 (30) 35 (30) 63.83 85.71 73.17
Localization 53 (21) 25 (21) 39.62 84.00 53.85

=[SVT-TOTAL]= 559 (257) 344 (257) 45.97 74.71 56.92
Binding 312 (73) 102 (73) 23.40 71.57 35.27

==[EVT-TOTAL]== 871 (330) 446 (330) 37.89 73.99 50.11
Regulation 66 (16) 69 (16) 24.24 23.19 23.70

Positive_regulation 191 (64) 294 (64) 33.51 21.77 26.39
Negative_regulation 69 (10) 92 (10) 14.49 10.87 12.42
==[REG-TOTAL]== 326 (90) 455 (90) 27.61 19.78 23.05
==[ALL-TOTAL]== 1197 (420) 901 (420) 35.09 46.61 40.04

Table 4.7: Approx. span match-without complex events in the dataset

And as we are using the tokenized texts for feature extraction, we have to manually

maintain the alignment of tokenized text with the raw text which may not be 100%

accurate due to few of the tokenization issues mentioned in section 3.6.2. Therefore,

we see an increase in recall, precision and F-measure values in ASM evaluation.

MOO experiments

As shown in the tables 4.5 and 4.4, we were getting low recall compared to F-measure

values. So, to determine the best combination of features which will maximize F-

measure and recall, we used NSGA-II software [KDM02]. It is written in C-Programming
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language and it provides an interface where we have to specify the objective functions

to be maximized or minimized.

NSGA-II requires various parameters to be specified before the start of MOO viz.

initial population, number of generations, probability of crossover and mutation (it is

recommended that crossover probability should be very much greater than mutation

probability and mutation probability should be very low like reciprocal of number of

features as used in [KDM02]). We ran NSGA-II with different parameter sets to get

the optimal feature subset for two objective functions viz. maximize F-measure and

maximize recall. The different parameter values and obtained optimal fitness values

for objective functions are shown in the Table 4.8. The execution times seem very high

for a few runs, however, in general, there are a lot of factors on which it depends like

available CPU usage, the classifier algorithm used, i.e. the time to build and test a ma-

chine learning model, the time to obtain objective function values etc.

Note: For tables 4.8 and 4.10, the expansions of headers are as follows, Gen - number of

generations, pop - initial population, pcross - probability of Crossover, pmut - probabil-

ity of Mutation, rseed - initial random seed, feats - number of optimal features selected,

F - optimal F-measure, R - optimal recall, P - optimal precision, eTime - execution time.

Run Gen. pop pcross pmut rseed feats F R P eTime
(days)

1 1 24 0.89 0.02 0.5 28 26.82 20.29 39.55 2
2 4 48 0.95 0.002 0.8 25 27.95 20.91 42.13 4
3 6 36 0.96 0.001 0.6 23 27.18 20.29 41.16 7
4 8 164 0.92 0.019 0.65 27 28.42 21.35 42.49 18
5 15 52 0.9 0.002 0.7 27 28.13 19.7 49.17 10

Table 4.8: MOO with SMM evaluation

The F-measure and recall values without MOO were 26.47 and 19.90 respectively.

So, from the Table 4.8, we can observe that the F-measure and recall values are in-

creased by approximately 2% in Run 4 (F-measure: 28.42, recall: 21.35). Also, the

number of features providing best performance are decreased to 27 from 49 in this run.

These are as follows:

Lexical features (8 binary features plus the Token itself as a feature), PoS of sur-

rounding tokens (5), Genia dependency features (3), distance from nearest and sec-

ond nearest protein, suffixes/prefixes, distributional thesaurus word

These features are mainly lexical features, surrounding tokens’ features, genia de-
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Event Class Gold (match) Answer (match) Recall Precision F-measure
Gene_expression 356 (169) 224 (169) 47.47 75.45 58.28

Transcription 82 (25) 41 (25) 30.49 60.98 40.65
Protein_catabolism 21 (16) 19 (16) 76.19 84.21 80.00

Phosphorylation 47 (27) 34 (27) 57.45 79.41 66.67
Localization 53 (23) 28 (23) 43.40 82.14 56.79

=[SVT-TOTAL]= 559 (260) 346 (260) 46.51 75.14 57.46
Binding 312 (74) 95 (74) 23.72 77.89 36.36

==[EVT-TOTAL]== 871 (334) 441 (334) 38.35 75.74 50.91
Regulation 199 (19) 75 (19) 9.55 25.33 13.87

Positive_regulation 717 (57) 253 (57) 7.95 22.53 11.75
Negative_regulation 227 (9) 84 (9) 3.96 10.71 5.79
==[REG-TOTAL]== 1143 (85) 412 (85) 7.44 20.63 10.93
==[ALL-TOTAL]== 2014 (419) 853 (419) 21.35 42.49 28.42

Table 4.9: Strict span match-with complete dataset and optimal feature set

pendency features and one unsupervised feature, i.e. DT word. So, we can conclude that

these features are the dominant ones in the performance of bio-medical event extraction.

With these best performing feature combination we again ran the event extraction sys-

tem and observed the results for individual events as shown in Figure 4.9.

After comparing our systems optimal scores 4.9 with the scores of the teams in

BioNLP’09 shared tasks as shown in Figure 4.1, we observed that our system ranks

16th compared to all teams, 6th in simple events, 1st in binding events and 13th in

Regulation events and 3rd among the teams who made use of CRF.

Also, to check whether MOO selects same set of features if evaluation mode is

changed, we ran the experiments 2,3 again with same parameter set but with ASM

evaluation. The results are shown in Table 4.10.

Run Gen. pop pcross pmut rseed feats F R P eTime
(days)

2 4 48 0.95 0.002 0.8 26(25) 29.46 21.2 48.27 4
3 6 36 0.96 0.001 0.6 27(23) 29.88 21.4 49.49 7

Table 4.10: MOO with ASM evaluation

By comparing the number of optimal features selected for Run 2 and 3 from Table

4.8 and 4.10, it can be observed that MOO selects different optimal feature subsets

when the evaluation mode is changed.
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Figure 4.1: BioNLP’09 team scores for Task 1. Source: [KJDJ09]

4.4 Comparison to Other Approaches

As explained in previous section, our system outperforms the best system at BioNLP’09

in detecting and classifying Binding events and moderately performs well for Simple

events but suffers a lot for Complex events. Especially the recall for our system is low

compared to the higher precision, the reasons of which (multi-theme and nested events)

are also discussed in previous section. The main reason for this was that we were

unable to extract multiple candidate themes from CRF output for an event. Thus, we

only used the nearest protein as the theme for any event. But, even with this hypothesis,

our system did considerably well for Simple and Binding events than other CRF based

teams at BioNLP’09.

The best performing system for all events as described in [JBS], makes extensive

use of the graph based features and works in three stages viz. trigger recognition, argu-

ment detection and semantic post-processing. Event/trigger detection is approached as a

named entity recognition task while event classification is approached as trigger-trigger

or trigger-protein binary classification task. The best performing system using CRF,

was ranked 7th in BioNLP’09 shared task (F-measure 34.92). It used external sources
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like WordNet6 and MetaMap7 and a rule based approach for argument extraction. The

second ranked system in CRF based approach (F-measure 30.35) used MeSH8 and GO9

as the external sources. However, this system’s overall F-measure value was just 2%

(approx.) greater than our system (F-measure 28.42) which kept us at rank three in CRF

based systems.

6http://www.nltk.org/howto/wordnet.html
7http://metamap.nlm.nih.gov/
8http://www.ncbi.nlm.nih.gov/mesh
9http://geneontology.org/
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Chapter 5

Conclusion and Future Work

We tried to address the issues in event extraction and unsupervised lexical acquisition by

developing a CRF based event detection and classification system which has an overall

F-measure value of 28.42% on complete dataset and 36.79% on simple event dataset

using baseline and unsupervised features. The results of our system indicate that we

were able to answer the research questions we had proposed at the beginning of this

project. For example, we conclude that a few of the orthogonal and Genia dependency

features form one of the best lot for event extraction system. Unsupervised feature, DT

word, also helped improve the performance of our system as it was included in the best

feature combination. Thus, we can conclude that even though to a smaller extent, but

unsupervised features do help in bio-text mining. In the end, using MOO we were able

to optimize our feature set containing 49 features to the best performing 27 features.

This once again proved that NSGA-II plays a dominant role in MOO.

Our hypothesis of using nearest protein as the theme for all events did let our system

down for complex events. However, given the limitation of CRF classifier and taking

into account the performances of other CRF based systems, we can observe that our

system did considerably well for Simple and Complex events of BioNLP’09 shared

task.

In terms of F-measure, our system ranks 3rd compared to the teams using CRF

based approaches, 6th in Simple events, 1st in Binding events and 13th in Regulation

events and 16th compared to all teams that participated in BioNLP’09 shared task. An

interesting part of future research would be to identify the relation between event and

theme for complex events as these are the events which are difficult to detect and hence

make the recall less. Also, testing our system with different classifier algorithms and

using other relevant external resources for feature extraction like the other teams may

help improve the performance of our system.
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[Cla03a] A. Clark. Combining distributional and morphological information for part

of speech induction. Proceedings of European chapter of the Association

for Computational Linguistics, Budapest, Hungary, pages 59–66, 2003.

[Cla03b] A. Clark. Combining distributional and morphological information for part

of speech induction. In Proceedings of EACL 2003, Budapest, Hungary,
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