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Abstract
Word Sense Disambiguation (WSD) has been shown to improve performance in Information Retrieval
and Machine Translation systems, among others. While there are many WSD systems that perform well,
most of them depend on either pre-defined sense inventories or on hand-labeled training data. Since
such data is often only available for few languages such as English, Spanish or German, it is impossible
to apply these systems other languages without significant manual efforts in creating the required data.
Also, this data often lacks domain-specific word senses.

In this thesis, we investigate possibilities to apply Distributional Semantics to perform WSD in an unsu-
pervised, knowledge-free fashion, also known as Word Sense Induction (WSI). In contrast to most other
WSI systems, we put emphasis on creating a fixed, re-usable word-sense inventory that allows for sense
labeling of previously unseen instances. To tune parameters involved in the process, we elaborate on a
method to automatically assess the quality of induced senses by extracting a sense-labeled, large-scale
evaluation dataset from Wikipedia, utilizing its link structure. We compare our results to other state-of-
the-art WSI systems and show that our system performs competitively. Additionally, an outlook is given
of a possible alignment of our induced sense inventory to other lexical resources to foster re-use of WSI
systems.
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Zusammenfassung
Word Sense Disambiguation (WSD), d.h. die Disambiguierung von Wortbedeutungen, kann maßgeblich
dazu beitragen, bestehende Information-Retrieval-Systeme sowie Systeme für Machine Translation zu
verbessern. Die meisten solcher WSD-Systeme benötigen allerdings entweder eine vordefinierte Liste an
Wortbedeutungen oder von Hand annotierte Trainingsdaten, aus denen diese gelernt werden können.
Da solche Ressourcen und Daten oft nur für wenige, weit-verbreitete Sprachen verfügbar sind, ist es
unmöglich, solche Systeme auf andere Sprachen anzuwenden. Zudem fehlen vielen manuell erstellten
Ressourcen bzw. Trainingsdaten domänenspezifische Wortbedeutungen.

In dieser Arbeit stellen wir einen Ansatz vor, der mittels Distributioneller Semantik Wortbedeutungen
automatisch induziert, basierend auf unstrukturierten Textkorpora. Das Induzieren von Wortbedeutun-
gen, insbesondere ohne Trainingsdaten, ist auch bekannt als Word Sense Induction (WSI). Im Gegensatz
zu den meisten anderen WSI-Systemen legen wir unseren Fokus auf das Induzieren eines festen Word
Sense Inventories, mit dem auch neue (”unseen”) Instanzen eines Wortes disambiguiert werden können.
Um die involvierten Parameter unseres Systems zu optimieren, stellen wir einen Ansatz vor, um automa-
tisch große Datensätze für die Evaluation von WSD-Systemen aus Wikipedia zu extrahieren. Zusätzlich
vergleichen wir unser System mit anderen State-of-the-Art-WSI-Systemen im Rahmen einer weiteren
Evaluation, und zeigen, dass unser System hier konkurrenzfähig ist. Abschließend geben wir einen Aus-
blick auf weitere Anwendungsmöglichkeiten unseres Systems, bei denen das induzierte Sense Inventory
zu bestehenden Ontologien verlinkt wird.
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1 Introduction
A central challenge in Artificial Intelligence (AI) is the ambiguity of human language. The task of iden-
tifying the appropriate sense of ambiguous word mentions, called Word Sense Disambiguation (WSD),
is non-trivial for computer programs. Some go as far as saying that WSD is AI-complete, meaning that
solving it is at least as hard as solving the most difficult problems in AI. [Mallery, 1988]

On the first glance this might come as a surprise: Internet search engines like Google can deal quite
well with different meanings of entered key words. If you enter the search query "where to buy a
jaguar", it correctly presents results of car sellers, not of nearby pet shops. Here individual key words
disambiguate each other, as there are many more webpages about buying sports cars than about buying
exotic animals.

The complexity of WSD becomes more apparent when we look at other AI tasks like Machine Translation
(MT): Consider the following sentence (in the following called a disambiguation instance):

He decided to have grilled bass for dinner.

Here Google’s translation service1 will incorrectly produce the German translation

Er entschloss sich, Bass zum Abendessen vom Grill haben.

Here bass is mistakenly identified as referring to sound or music, not to a fish species. This is either
because Google’s database does not link bass to Barsch or because it does not include necessary world
knowledge. This would include the fact that Barsch is the German translation of the sense referring to
fish, and that grilling usually refers to this sense and not to others.

But also Information Retrieval (IR) may benefit from the use of WSD: While most disambiguation is
already performed by ranking of results, an accurate WSD step may improve performance further. For
example, the query "Bank of America" may return documents referring to river banks, but usually below
documents referring to financial institutions. However, a WSD component that accurately identifies the
sense of bank in the query and in all documents would allow to rule out other senses and reduce pre-
sented results, and therefore increase precision while pertaining the same recall. That this improvement
is difficult to achieve in practice was shown by Sanderson [Sanderson, 1994], who concluded that, for
his experiments, WSD does not improve IR performance. However, Schütze and Pedersen later showed
that a WSD component with 90% accuracy results in an improvement of IR accuracy from 29.9% to
34.2% in a standard IR test collection [Schütze and Pedersen, 1995].

1 https://translate.google.com
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1.1 Motivation

It is possible to manually build high-quality lexical resources that model this world knowledge. A
prominent example is WordNet [Fellbaum, 1998], or its inter-lingual counterpart BabelNet [Navigli
and Ponzetto, 2012], which builds upon WordNet, among others. However human-built lexica like
these have several drawbacks:

• Hiring linguists to do manual annotations or lexicon-writing is expensive.

• Language changes rapidly, new words are born and other words become outdated: for example,
the word tablet is nowadays also used to refer to hand-held computers. Similarly, dialog nowadays
specifically refers to dialogs in a graphical user interface (GUI) when referred to in computer-
science domains. This meaning is, however, relatively new and e.g. not listed in WordNet, which
was written before this use became popular.

• The number of word senses is often inconsistent and not "reproducible" for other linguists or com-
puters.

• Contextual information for word senses, e.g. example sentences, is sparse. Without clues like these
it is hard for WSD systems to choose an appropriate sense in context.

• They are domain-dependent and hardly adaptable to other domains, reversely they do not contain
certain domain-specific senses.

• They contain rare senses that are irrelevant for most uses and therefore rather confuse WSD sys-
tems (such as the word computer in WordNet: contains a sense referring to a person performing
computations).

As a consequence of the high cost of manually building such resources, there exist only a handful of
them for English and other popular languages like Spanish or German. Therefore, languages of mi-
norities ("under-resourced languages") often completely lack these resources. Moreover, due to the
hand-written nature of these resources and the complexity of language, they often lack important con-
textual information.

Another way to perform WSD, without the use of pre-determined lexical resources, is the use of Word
Sense Induction (WSI). Here, information necessary for distinction of word senses are automatically
induced, usually from raw text corpora. This is specifically done without human intervention. Instead,
WSI systems extract statistical information about word contexts from such corpora, and based on this
information either project words or word instances into a high-dimensional vector space or build a
graph in which related words are connected. Clustering methods are then used to group related words
(or instances of these) into word senses. Obviously, this has the advantage that sense inventories can be
computed in a relatively short period of time, at relatively little cost. Also, results are sensitive to domain
changes, i.e. using a text corpus from a different domain will be reflected in the induced word senses.
This is especially useful for narrow domains, e.g. the medical domain, that make use of a well-defined
language. The goal of this thesis is to develop an unsupervised, integrated WSI and WSD system that
can automatically construct such word-sense inventories from large amounts of text and use them for
disambiguation in context. The challenge in this task is to produce sense inventories that do not only
provide a raw sense list, but also clues for disambiguation (which we call context clues) with both broad
coverage, as well as high accuracy.

To foster re-use of the developed methods, we also provide a short outlook on possible integration with
existing lexical and ontological resources, such as WordNet, OpenCyc [Lenat, 1995; Matuszek et al.,
2006] or FreeBase [Bollacker et al., 2008].
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1.2 Hypothesis

The goal of this thesis is to develop an unsupervised, integrated WSI and WSD system (in the following
referred to as WSID system) that can automatically construct word-sense inventories from large amounts
of text and use them for disambiguation in context. Most top-performing WSI systems today notably
differ from this approach: they induce senses for a specific, relatively low number of word instances (as
opposed to words), by clustering these instances into groups. This is often called sense discrimination,
as these systems do not identify specific senses from a given or induced sense inventory in context, but
only group word instances into clusters with similar senses. Therefore, these systems are incapable of
sense-labeling isolated instances. Also, as they do not draw senses from a fixed sense inventory, this
makes it hard to link induced senses to existing sense inventories. This, however, could foster re-use of
WSI systems and build a bridge between supervised and unsupervised disambiguation methods.

A crucial difference of our goal to many previous systems is hence the use of a fixed, pre-computed
word sense inventory. However, when such an inventory is computed beforehand, this requires relevant
ambiguous words to be known upfront. Since this is often not the case, we target to support an all-
words setting, which comes with the inherent need for scalable, efficient WSI system. We formulate the
following question that will guide us through the work of this thesis:

HOW CAN WE CONSTRUCT A WSID SYSTEM, WHICH DISAMBIGUATES UNSEEN INSTANCES BASED

ON AN INDUCED SENSE INVENTORY WITH HIGH RELIABILITY AND COVERAGE?

This question can be further split into two subordinate questions:

1. HOW CAN WE RELIABLY AND EFFECTIVELY INDUCE A SENSE INVENTORY FOR A LARGE PART OF

THE VOCABULARY FROM LARGE CORPORA?

2. HOW CAN WE RELIABLY DISAMBIGUATE WORD INSTANCES IN CONTEXT, USING EITHER AN

INDUCED OR A PREDEFINED SENSE INVENTORY?

1.3 Outlook

The structure of this thesis is briefly outlined in the following. In Chapter 2, we summarize current
possibilities to approach the general problem of Word Sense Disambiguation. Namely, we provide an
overview over several supervised and knowledge-based approaches, as well as their performance in
established WSD evaluations.

Before elaborating on unsupervised WSD methods, we in Chapter 3 introduce the concept of Distribu-
tional Similarity, a way to model and to compute semantic similarity of language elements such as words
or multi-word expressions. This concept will later be used as the foundation for inducing word senses.

Chapter 4 discusses current approaches to unsupervised, knowledge-free WSD, which, opposed to super-
vised and knowledge-based WSD methodologies, do not directly depend on any human-crafted resources
or training data. We again briefly summarize the performance, strengths and weaknesses of existing ap-
proaches. Following this discussion, we introduce a new method of WSI that utilizes Distributional
Semantics. We in detail show how this method produces sense clusters by building a word-similarity
graph and clustering this graph using the Markov Chain Clustering (MCL) algorithm. To provide means
for disambiguation of the induced senses in context, a probabilistically motivated approach is discussed
in detail that allows for extraction of contextualization clues in a fully unsupervised manner.

To support our selection process of an optimal distributional thesaurus setting, the foundation of our
sense induction algorithm, Chapter 6 presents the results of two different evaluation scenarios: First,

9



the impact of choosing different frequency thresholds to cut off features is analyzed, in order to reduce
noise. Additionally, to avoid cutting off or penalizing less frequent word senses in the induction process,
we analyze the effect of the number of features used to compute word similarities on the resulting
similarities between rare and frequent words.

To verify the hypothesis of this work, Chapter 7 contains two evaluations of the performance of the
implemented WSI system. First, we introduce a large-scale WSI evaluation dataset, extracted from
Wikipedia in a fully unsupervised manner, utilizing its link structure. This evaluation is then used to
both assess the performance of our system, as well as to tune parameters without relying on manually
sense-labeled data. Secondly, we tested settings of our system that were optimized with regard to the
first, unsupervised evaluation, against a part of the SemEval-2013 WSI subtask dataset.

In Chapter 8, we briefly outline a novel approach that attempts to bridge the gap between unstructured
(e.g. text corpora) and structured knowledge resources (e.g. complex ontologies) by adding a new,
intermediate layer based on induced sense inventories. Specifically, we demonstrate a possible benefit of
joining induced word-sense inventories and ontological resources at the example of Entity Linking (EL),
a task highly intertwined with WSD.

Implementation details of our system are given in Chapter 9. Finally, Chapter 10 summarizes the results
of this work and discusses the validity of the hypothesis and limitations of our method. Also, an outlook
is given over possible future work that we believe can further improve the performance of the developed
system.
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2 Word Sense Disambiguation: A State of the
Art

Both instances He decided to have grilled bass for dinner, and He turned up the volume to feel the bass
of his sound system contain the same lexical entity bass. However, both mentions of this term repre-
sent two distinct semantic entities: a sense meaning a fish and a sense meaning a low frequency sound,
resp. A word-sense inventory is a lexical resource that contains information about word-sense distinc-
tions. It additionally may have contextual information that allows the disambiguation of word senses in
context.

According to a survey of Navigli, WSD is the ”ability to identify the meaning of words in context in a
computational manner” [Navigli, 2009]1. While the goal of all such methods is the same, there are
substantial differences in their implementation. A lot of the systems that exist today use knowledge-
based approaches that work on handcrafted sense inventories, like the aforementioned WordNet, while
others use supervised approaches that learn from hand-labeled training data.

However, hand-crafted lexical resources and hand-labeled training data are expensive to create, often
inconsistent and domain-dependent. The alternative to these are unsupervised2, knowledge-free ap-
proaches, which are referred to as WSI techniques.

Generally speaking, there exist two scopes for WSD: Some tasks require only disambiguation of one or
few words in every piece of text (called lexical-sample WSD). Other tasks require the WSD algorithms
to disambiguate all word mentions in the specified piece of text, which is called all-words WSD. In this
thesis we concentrate on the former, specifically on WSD for nouns. The reasons for this are twofold:
First, most research on supervised methods has been concentrated on this field. In order to show that
unsupervised approaches are competitive in performance, while bringing many advantages, we decided
to reduce our efforts on lexical entities that were studied most, i.e. nouns. The other reason is that
the focus on nouns opens up the possibility to use Wikipedia as a rich, free resource for evaluation by
utilizing its link structure, as we will show in Section 7.3.

The oldest approach to WSD used existing, human-readable dictionaries: In the 80s, Lesk used the
Oxford Advanced Learner’s Dictionary of Current English to look for overlaps between the definition of
a target word (i.e. the word to be disambiguated) and definitions of nearby words [Lesk, 1986] in
order to find the most appropriate word sense in a computational manner. Since then, many more
advanced techniques have been presented, most of them outperforming the original Lesk algorithm by
far [Navigli, 2009]. While some of them use dictionaries specifically designed for computational use,
such as WordNet, others have concentrated more on the sole use of Machine Learning (ML) by training
classifiers on hand-annotated samples. This chapter provides a brief overview over current state-of-the-
art techniques, how they perform, and in which cases one may be preferred over the other.

2.1 Knowledge-Based WSD

Any WSD method that uses pre-defined dictionaries, lexical resources or semantic ontologies can consid-
ered to be knowledge-based. Most of the resources that exist today are of shallow nature, which means

1 For another survey on the topic of WSD, see [Agirre and Edmonds, 2007].
2 Note that historically speaking, unsupervised may also refer to knowledge-based approaches that required no specific

training. WSI techniques, in contrast, are knowledge-free.
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that they mostly use or provide only lexical information on the word senses. For example, the fact that a
bank may be related to finance, that it is a noun and that the financial sense often appears in the form of
Bank of . . . is shallow knowledge: it does not encode complex world knowledge such as that banks have
customers that have accounts from which they can withdraw money, etc. This, on the other hand, is usually
called deep knowledge. The border between shallow and deep knowledge is not clear-cut: For example,
WordNet provides the information that bank is a type of banking company; however the information that
it is a company is merely lexically encoded in the name of this entity.

WordNet Search - 3.1
- WordNet home page - Glossary - Help

Word to search for: bass Search WordNet

Display Options: (Select option to change)  Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

S: (n) bass (the lowest part of the musical range)
S: (n) bass, bass part (the lowest part in polyphonic music)
S: (n) bass, basso (an adult male singer with the lowest voice)
S: (n) sea bass, bass (the lean flesh of a saltwater fish of the family
Serranidae)
S: (n) freshwater bass, bass (any of various North American freshwater fish
with lean flesh (especially of the genus Micropterus))
S: (n) bass, bass voice, basso (the lowest adult male singing voice)
S: (n) bass (the member with the lowest range of a family of musical
instruments)
S: (n) bass (nontechnical name for any of numerous edible marine and
freshwater spiny-finned fishes)

Adjective

S: (adj) bass, deep (having or denoting a low vocal or instrumental range) "a
deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"

WordNet Search - 3.1 http://wordnetweb.princeton.edu/perl/webwn?s=bass&sub=Se...

1 von 1 10.04.15 16:24

Figure 2.1: Entry for word bass in WordNet 3.1.

Simplified Lesk Algorithm

The Simplified Lesk (SL) Algorithm [Kilgarriff et al., 2000] is one of the simplest disambiguation algo-
rithms based on word lexica. Due to the requirement of a lexicon, it is a knowledge-based WSD algorithm.
Its idea is the following: Given an ordinary, human-readable dictionary, and a word in context to be dis-
ambiguated, the Simplified Lesk algorithm takes the sense that, given its gloss (description) and example
sentences, has the highest overlap with the context. It is therefore a similarity-based method. See Fig-
ure 2.1 for an example from WordNet for the word bass. See Algorithm 1 for an exact definition.

Vasilescu et al. performed an evaluation of Lesk-based algorithms (including SL) on the SENSEVAL2
task [Vasilescu et al., 2004]. Here they tried different settings: They used all context provided for
disambiguation or only context in a window of e.g. 2 or 8 words left or right of the word. While their
baseline, which always assigned a word’s most frequent sense (MSF), scored a precision3 of 57.99%
and recall4 of 57.62%, the best-scoring window was ± 2 words with a precision of 58.18% and recall
of 57.66%. They also attempted using sense probabilities computed from a the WordNet-sense-tagged
SEMCOR corpus, based on a Naive Bayes classifier using the word’s context, but this approach did not
bring any improvement.

3 Precision = correctly assigned senses over total assigned senses
4 Recall = correctly assigned senses over total number of senses to be assigned (not all contexts can be assigned to a sense,

e.g. due to missing gloss overlap or ties between two or more senses)

12



They also found that, unless using a Naive Bayes classifier, (a) increasing the context window size al-
ways decreases WSD performance and (b) filtering certain stop words from the context increases WSD
performance. This makes only sense, as the appearance or absence of a stop word like the, to or from
usually provides little evidence for preferring one sense over another (b). Also, this means that words
further away from the word to be disambiguated tend to provide less useful clues about the appropriate
sense (a).

Algorithm 1: Simplified Lesk algorithm. OVERLAP computes the overlap between two sets of words,
excluding stop words.

input : word, sentence
output: best-sense

1 best-sense← most frequent sense for word;
2 max-overlap← 0;
3 context← sentence as bag of words (BOW);

4 for each sense in senses of word do
5 signature← set of words in the gloss and examples of sense;
6 overlap← OVERLAP(signature, context);
7 if overlap > max-overlap then
8 max-overlap← overlap;
9 best-sense← sense;

10 end
11 end

Other similarity-based approaches maximize the similarity among all senses to be chosen in a piece of
text, instead of maximizing similarity between individual senses and sense definitions. More precisely,
they minimize the total distance of the shortest paths connecting all individual word senses. Take for
instance the sentence He withdrew money from his bank account. The correct sense of bank, referring
to a financial institution, will have a shorter distance to money, withdraw and account than the sense
referring to a park bank. Rada et. al [Rada et al., 1989] performed WSD based on hypernymy relations
within WordNet.

2.2 Supervised Approaches
Word Sense Disambiguation: A Survey 10:17

Fig. 9. An example of a decision tree.

Yarowsky [2000], cf. Section 8). Agirre and Martinez [2000] applied them in an attempt
to relieve the knowledge acquisition bottleneck caused by the lack of manually tagged
corpora.

3.2. Decision Trees

A decision tree is a predictive model used to represent classification rules with a tree
structure that recursively partitions the training data set. Each internal node of a de-
cision tree represents a test on a feature value, and each branch represents an outcome
of the test. A prediction is made when a terminal node (i.e., a leaf) is reached.

In the last decades, decision trees have been rarely applied to WSD (in spite of some
relatively old studies by, e.g., Kelly and Stone [1975] and Black [1988]). A popular
algorithm for learning decision trees is the C4.5 algorithm [Quinlan 1993], an extension
of the ID3 algorithm [Quinlan 1986]. In a comparative experiment with several machine
learning algorithms for WSD, Mooney [1996] concluded that decision trees obtained
with the C4.5 algorithm are outperformed by other supervised approaches. In fact,
even though they represent the predictive model in a compact and human-readable
way, they suffer from several issues, such as data sparseness due to features with a
large number of values, unreliability of the predictions due to small training sets, etc.

An example of a decision tree for WSD is reported in Figure 9. For instance, if the
noun bank must be classified in the sentence “we sat on a bank of sand,” the tree is
traversed and, after following the no-yes-no path, the choice of sense bank/RIVER is made.
The leaf with empty value (-) indicates that no choice can be made based on specific
feature values.

3.3. Naive Bayes

A Naive Bayes classifier is a simple probabilistic classifier based on the application of
Bayes’ theorem. It relies on the calculation of the conditional probability of each sense
Si of a word w given the features f j in the context. The sense Ŝ which maximizes the
following formula is chosen as the most appropriate sense in context:

Ŝ = argmax
Si∈SensesD(w)

P (Si | f1, . . . , fm) = argmax
Si∈SensesD(w)

P ( f1, . . . , fm | Si)P (Si)
P ( f1, . . . , fm)

= argmax
Si∈SensesD(w)

P (Si)
m∏

j=1

P ( f j | Si),

ACM Computing Surveys, Vol. 41, No. 2, Article 10, Publication date: February 2009.

Figure 2.2: Decision tree for disambiguation of word bank, with the two possible senses bank/RIVER and
bank/FINANCE
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Decision trees are one of the simplest methods for object classification. Each edge connecting two nodes
represents a decision, leaf nodes represent classes (i.e. the final “decisions”). In the context of WSD,
each non-leaf (internal) node is usually a context feature, and outgoing edges from these nodes are
their values. This may be just "yes" or "no", as illustrated in Figure 2.2. The actual observed features
in context then determine the path to be taken. Decision trees have several advantages: often, they are
relatively compact in size, and due to their logarithmic time complexity much faster than other WSD
algorithms. Also, they are human-readable and intuitive to understand. However, other supervised
WSD algorithms consistently outperform decision trees [Navigli, 2009, p. 17]. Experiments by Wee et
al. [Wee, 2010] show that decision trees using bag-of-word features are unable to outperform a simple
Most frequent sense (MFS) baseline. The experiments they conducted used the SensEval-2, SensEval-3
and SensEval-2007 tasks, their baseline picked the most frequent WordNet sense.

Neural networks, when applied to WSD, attempt to model the associative nature of human language: A
bank may be associated with money, rivers or with blood (as in blood bank). A possible neural network
can directly leverage this observation for the use of disambiguation, and link each of these (but not
exclusively these) words, or other features (such as POS tags), to a corresponding sense or to other
associated words. Relevant words or features that are useful for disambiguation are represented as
nodes in the neural network, called neurons. Every neuron has a number of associated other neurons.
For disambiguation, when a certain word or feature is observed in a context, this neuron is activated.
Other neurons (of which their corresponding word or feature is not observed) are activated once a
certain threshold of associated neurons is activated. Activation therefore spreads through the neural
network until it reaches a stable level. The word sense with the highest activation level then indicates
the most “fitting” sense according to this model. While this model is intuitive to understand, the training
process to optimize parameters such as connection weights and activation thresholds is complex. Several
experiments have been conducted on neural network performance for WSD, e.g. Leacock et al. 1993
[Leacock et al., 1993], Towell and Voorhees [Towell and Voorhees, 1998], Mooney [Mooney, 1996].
However, there are few to no recent studies taking current state-of-the-art insights about WSD into
account. Therefore, we at this point make no assumptions about the performance of neural networks
compared to other more recently studies approaches.

Support Vector Machines (SVMs) provide another supervised approach to object classification. SVMs
generally decide on a “yes-or-no” basis, i.e. they can only be trained on a certain class: Given a feature
vector, a SVM will determine whether this vector fits to a certain class or not, and how confident it is
about this statement. This confidence is not to be confused with a conditional probability, but can indeed
be used as an indicator of the same. Internally, a SVM projects the feature vector into an appropriate
multi-dimensional space, in which a pre-determined hyperplane indicates whether the SVM’s class is a fit
for the feature vector (the projected data point is below the hyperplane) or not (the data point is above
the hyperplane). A confidence can be determined by taking the distance of the projected feature vector
to the hyperplane into account. SVMs have shown to be the most successful mechanism for supervised
WSD to date [Lee and Ng, 2002].

A probabilistic classifier that is relatively easy to use and implement, but also fast in processing speed
is the Naive Bayes classifier. The “naive” in its name refers to its assumption that all features used for
classification must be statistically independent. Using this assumption, the classifier approximates a
conditional probability P(sk|C) for a sense sk and a context feature vector C by simple multiplication
of the individual conditional probabilities P(ci|sk), together with multiplication of further factors. Since
all these probabilities can be computed by mere counting of sense-feature frequencies, a Naive Bayes
classifier does not require iterative training. While Naive Bayes classifiers are outperformed by more
powerful methods such as SVMs and Maximum-entropy (MaxEnt) classifiers, they generally compare
well despite their independence assumption for feature vectors [Mooney, 1996; Ng, 1997b; Leacock
et al., 1998; Pedersen, 2007; Bruce and Wiebe, 1999].
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Another classifier that can be trained on word-feature frequencies is the MaxEnt classifier. In contrast to
Naive Bayes classifiers, it does not require individual features do be statistically independent. Its basic
idea is that of maximum entropy: As long as we have no information regarding a specific probability
distribution, assume all class probabilities are distributed evenly. For example, if we know that for a
certain feature vector, sense s2 appears 40% of the time, and sense s5 appears 10% of the time (and there
are 5 senses in total), then assume that the remaining 3 senses (s1, s3 and s4) appear (100−40−10)/3=
50/3 ≈ 16.6% of the time each. Information encoded in the model is therefore minimized and its
entropy is maximized. In other words, among the models that fit the training data, a MaxEnt classifier
chooses the model with the least assumptions. Intuitively, this avoids overfitting of models to the training
data, leading to better performance on unseen (i.e. held-out) data. That MaxEnt models indeed perform
competitively when applied to WSD was shown by Tratz et al. [Tratz et al., 2007]. His WSD system
using a MaxEnt model received the highest F-score for the fine-grained all-words English subtask of the
Senseval 3 challenge.

Other supervised classifiers used for WSD include instance-based learning methods, e.g. k-Nearest Neigh-
bor (kNN) classifiers. These methods compute the similarity of new instances to other, previously classi-
fied instances, and choose the class of the instance(s) with the highest similarity. They have been found
to be among the highest-performing methods in WSD [Ng, 1997a; Daelemans et al., 1998]. Further-
more, ensemble methods [Klein et al., 2002; Florian et al., 2002] intend to combine the strengths of
multiple different classifiers. Experiments have shown that the performance of such a compositional
system, applied to WSD, can surpass the performance of each of the individual classifiers [Florian et al.,
2002].

Lastly, semi-supervised methods employ unsupervised disambiguation techniques, but require a seed of
sense-labeled training instances to start with, which is usually referred to as bootstrapping. For exam-
ple, [Yarowsky, 1995] manually sense-tagged a small number of seed instances. They then applied a
disambiguation technique based on two properties of natural language to sense-tag the remainder of
the corpus: one sense per collocation [Yarowsky, 1993] and one sense per discourse [Gale et al., 1992].
They tested their system on 10 nouns with two coarse-grained senses each and reported a high accuracy
of 96%. Notably, their system surpassed the performance of two previous supervised and unsupervised
systems by [Schütze, 1992] when applied to the same subset of 4 nouns (tank, space, motion, plant)

2.3 Annotated Corpora for Training and Evaluation

Supervised approaches highly depend on training data in the form of hand-annotated disambiguation
instances. Due to the need for comparability of evaluation results, as well as high cost of producing such
data, there today exist a handful of resources that are repeatedly re-used.

One of the oldest, largest, and most widely used [Navigli, 2009] collection of training data is the Seman-
tic Concordance (SemCor) corpus5 [Miller et al., 1993]. It contains 352 English text documents, with in
total around 234,000 sense annotations. MultiSemCor [Pianta et al., 2002], in contrast, contains both
English as well as parallel Italian texts, each annotated with corresponding WordNet senses. Leacock et
al. [Leacock et al., 1993] presented a corpus containing 4000 sense-tagged instances, each with a sense-
annotated occurrences of one of the three words line (noun), serve (verb) and hard (adjective). Bruce
and Wiebe [Bruce and Wiebe, 1994] manually annotated Longman Dictionary of Contemporary English
(LDOCE) senses for 2369 occurrences of the word interest in their interest corpus. Ng and Lee [Ng
and Lee, 1996] introduced a notably larger collection, the DSO corpus with a total of 192,800 sense-
annotated occurrences of 191 words. Here, texts were taken from the Wall Street Journal as well as the
Brown corpus [Kučera and Francis, 1967]. Also, Chklovski and Mihalcea [Chklovski and Mihalcea, 2002]
presented a collaboratively created corpus, the Open Mind Word Expert data set, containing sentences

5 http://web.eecs.umich.edu/~mihalcea/downloads.html (last accessed: 2015/04/30)
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for 288 semantically annotated nouns. Biemann introduced TWSI, the Turk Bootstrap Word Sense In-
ventory [Biemann, 2012], which contains lexical substitutions for 1012 highly frequent English nouns in
more than 118,000 contexts. Here, lexical substitutions of these words were collected for each of these
contexts using a crowd-sourcing platform and word occurrences were clustered into senses by using their
lexical substitution overlap, with an additional manual cluster verification step.

2.4 Unsupervised Approaches

Unsupervised approaches generally neither make use of handcrafted lexical resources, nor of hand-
annotated training data. Their challenge is therefore to induce such sense inventories automatically from
raw, unstructured text corpora, for which reason they are called Word Sense Induction (WSI) methods.
Conceptually, two types of induction methods can be distinguished: methods using vector space models
and methods using graph clustering techniques. Chapter 4 will introduce both approaches generally,
and present popular implementations. However, before we turn to induction of word senses, we will
introduce the concept of Distributional Similarity, a method for the computation of word similarities,
which we need for WSI.
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3 Distributional Similarity
You shall know a word by the company it keeps (J.R. Firth, 1957)

Word Sense Induction, the main topic of this thesis, is by definition the computation of different senses
of words from unstructured text (i.e. a reference corpus), mostly without prior knowledge about the
language used, and equally importantly, without prior knowledge about the target domain. Before we
can induce different senses of a word in a computational manner, we therefore need a notion of inducing
structure in the reference corpus, which we can in turn use to infer structure in the use of words, i.e. the
word senses themselves. For this, we will in this chapter introduce a way to compute similarities among
words. Based on these similarities, we will in Chapter 4 introduce a method to compute word clusters,
which are ultimately nothing but the word senses were are looking for.

The foundation for computing word similarities is an implication of the Distributional Hypothesis [Harris,
1954], which can be summarized by the popular phrase of J. R. Firth ”You shall know a word by the
company it keeps” [Firth, 1957]. The Strong Contextual Hypothesis [Miller and Charles, 1991] that ”two
words are semantically similar to the extent that their contextual representations are similar” is a direct
implication of this hypothesis. We can directly use this observation to compute word similarities: The
more often two words appear in the same contexts, the more they are similar. A context can generally be
anything from an entire surrounding paragraph to only a word’s right neighbor. However, when referred
to in this work, is is rather a small part of the surrounding sentence that, preferably, is in direct relation
to the word in question. Consider the following sentence from the introduction:

He decided to have grilled bass for dinner.

The idea of the distributional hypothesis is that, if we could observe other words in the same context, e.g.
He decided to have grilled fish for dinner, we would know that these two words are semantically similar.
However, observations of this kind are very unlikely (rare, at least) due to the heterogenous nature of
human language. Therefore, we need some way of observing when two words appear in partially equal
contexts.

Without parsing of the text, with the exception of tokenization, we can already say several things: bass
appears in conjunction with another word as grilled bass. This is usually referred to as a bigram (more
generally: n-gram), or as collocation if the n-gram appears more often than expected by chance. Also,
bass appears in the same sentence as dinner. The same observation can be made for the remaining
words. This is called co-occurrence. For a more in-depth introduction of the features involved, refer to
Section 3.2.

Having these context features, computing distributional similarity between two words is straightforward.
In principle, it is a matter of counting how many of these (partial) contexts they share. For an exact
definition, refer to the following section.

3.1 Definition

For our work, we used the definition proposed by Biemann et al. [Biemann and Riedl, 2013]. Given two
words (or terms) t1 and t2 and their respective set of context features f eature(t1) and f eature(t2),
distributional similarity can be defined as

17



sim(t1, t2) =
�

� f eatures(t1)∩ f eatures(t2)
�

� (3.1)

To speed up processing, and to reduce noise, the actual definition we use is the following:

sim(t1, t2) =
�

�ranked f eatures(t1, p)∩ ranked f eatures(t2, p)
�

� (3.2)

where ranked f eatures(t, p) returns only the p most significant features per term, based on a given
significance measure such as LMI or LL (for an overview of significance measures, see Table 3.3). The
simplicity of this definition might surprise, however this approach to computing distributional similarity
is not only scalable, but also superior to other known approaches in many cases, which will be briefly
discussed in Section 3.4.

3.2 Distributional Features

Since we want to use distributional similarities to induce and also disambiguate different senses of a
word, the similar terms produced by our algorithm is essential to us. Depending on the context features
used to compute similarities, the resulting similar words differ: for example, using direct neighbors of
a word as features will produce mostly syntactic similarities, while using sentence co-occurrences as
features produces mostly semantic similarities [Bordag, 2006], [Curran, 2003]. We use this insight espe-
cially for unsupervised learning of a disambiguation model, which builds upon grammatical compatibility
of similar words. Section 5.1 discusses this in detail.

For comparison of context representations, clustering methods and similarity measures, see [Purandare
and Pedersen, 2004].

Stanford CoreNLP

Output format: Visualise

Please enter your text here:

He decided to have grilled bass for dinner.

Daten absenden  Clear

Part-of-Speech:

He decided to have grilled bass for dinner.1

Named Entity Recognition:

He decided to have grilled bass for dinner.1

Coreference:

He decided to have grilled bass for dinner.1

Basic dependencies:

He decided to have grilled bass for dinner.1

Collapsed dependencies:

He decided to have grilled bass for dinner.1

Collapsed CC-processed dependencies:

He decided to have grilled bass for dinner.1

PRP VBD TO VB JJ NN IN NN .

PRP VBD TO VB JJ NN IN NN .aux prepnsubj pobjamod
xcomp dobj

PRP VBD TO VB JJ NN IN NN .auxnsubj amod
xcomp prep_fordobj

PRP VBD TO VB JJ NN IN NN .auxnsubj amod
xcomp prep_fordobj

Visualisation provided using the brat visualisation/annotation software.
Copyright © 2011, Stanford University, All Rights Reserved.

Stanford CoreNLP http://nlp.stanford.edu:8080/corenlp/process

1 von 1 24.04.15 12:15

Figure 3.1: Dependency parse of example sentence from Stanford CoreNLP. Image taken from web visu-
alizer at http://nlp.stanford.edu:8080/corenlp/process (last accessed: 2015/04/30).

Jo Bim

bass
amod(•, grilled)
prep_for(•, dinner)
dobj(have, •)

He nsubj(decided, •)
decided nsubj(•, He)

xcomp(•, have)

Table 3.1: Dependency context features for bass, He and decided from the parsed example sentence
above. Note how an arbitrary character or symbol such as ’•’ acts as a placeholder for the head
word (jo). This operation, called holing operation is the foundation for creating distributional
features, i.e. features that can be shared by different words.

Co-occurrences are among the most studied features used for computing word similarities. They corre-
spond to a simple bag-of-words (BOW) model of context representations: A word co-occurs with another
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word if they appear anywhere within the same context. Due to the insensitivity to local structure around
a target word, this distributional features yields word similarities that are rather topical: For example,
bass might be similar to fishing rod or singing. These are not synonyms of any sort, but rather topically
related words.

Stanford dependencies are a way to represent grammatical relations among words in a sentence. Consider
the example sentence from Figure 3.1: Here, He is the subject (nsubj) of the first clause around the verb
decided, while bass is the direct object (dobj) of the second clause around the verb have. An excerpt
of distributional features that can be extracted from this example are listed in Table 3.1. Distributional
similarities based on such dependencies are oriented more the local context: Using dependency features,
fishing rod will likely receive a much lower similarity score relative to bass than e.g. eel, even though
they are both highly related to bass. For example, a fishing rod may significantly often appear within the
same context as the verb to grill, but it will never (or very rarely) have a direct dependency relation to
this verb (in contrast to bass, which makes them less similar with respect to dependency features).

3.3 Distributional Similarity Algorithm

To compute distributional similarities, we used a pipeline as implemented in the JoBimText frame-
work1 [Biemann and Riedl, 2013]. Figure 3.2 illustrates this pipeline, which can be summarized as
follows: First, distributional features are extracted on a per-word basis from a text corpus. In a second
step, frequencies of words, features and word-feature co-occurrences are counted. Words, features and
word-feature co-occurrences below a frequency of tw, t f and twf , resp., are discarded (for a listing of
parameters, refer to Table 3.2). Based on these frequencies, significance scores for every word-feature
co-occurrence are computed using the significance measure determined by si g. By ranking features us-
ing this significance score, only the p most significant features are chosen for every word. Using these
features, word similarities are computed as described in Section 3.1. This is again followed by a pruning
step in which only the l most similar terms are kept for every word. Finally, the thesaurus entry of every
word is sorted to list most similar terms first. For details on the implementation, refer to Chapter 9.

MapReduce

To support massively parallel processing of this pipeline, JoBimText is implemented using MapReduce
[Dean and Ghemawat, 2004]. The MapReduce programming model, in a nutshell, allows the speci-
fication of operations on splits of data that can be executed entirely independently from each other.
Specifically for our implementation, this means that we, as a first step, created a data split for every sen-
tence in the text corpus. This also means that context beyond the sentence boundary is not available for
the induction or the disambiguation algorithm, however we assumed that this does not negatively impact
performance. The first operation, performed on these sentence splits, yielded a new data split for every
extracted context feature such as word dependencies in the key-value form of (word, feature), which
resembles the map step in the MapReduce paradigm. The MapReduce implementation then internally
assigns a new cluster node to further process each key (here, the word) and sends all splits belonging
to this key to the same node. This is usually referred to as shuffling. When splits belonging to the same
key are received by the assigned cluster node, they can be processed in the complementary reduce step
to, in this case, sum up the frequencies for each extracted feature for a specific word. For the remaining
pipeline steps, we proceeded similarly, sticking to operations allowed in the MapReduce model.

1 http://maggie.lt.informatik.tu-darmstadt.de/jobimtext/ (last accessed: 2015/04/30)
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3.4 Differences to vector-space models

Traditionally, distributional similarity is computed using vector-space models (Schütze, 1993; Erk and
Pado, 2008; Baroni and Zamparelli,2010) (for an introduction, see Section 4.1).2 While vector-space
models have the advantage of being widely known and well-researched, they lack the possibility of
being scaled to very large datasets, due to their computational complexity [Gliozzo et al., 2013].

The major advantage of the JoBimText approach is that it has been found superior to others when
applied to very large datasets in semantic relatedness evaluations [Biemann and Riedl, 2013, p. 78].
Specifically, Biemann et. al. compared the results of the JoBimText approach using LMI and LL scores
with the results of [Lin, 1998] and [Curran, 2002], with the average WordNet Path Similarity as quality
measure. For the 10 most frequent words in a corpus of 120M words, Lin’s DT received a score of 0.279,
Curran’s DT a score of 0.254 and a DT produced by JoBimText a score of 0.283. JoBimText also produced
results superior to the other systems for 10 infrequent nouns from the same corpus. This shows that,
despite the simplicity of the JoBimText approach to computing distributional similarities, it compares
very well to vector-spaced approaches, and even surpasses quality of vector-space-based DTs in many
cases. Especially when applied to large corpora, this approach produces superior results, while scaling
well due to its MapReduce-friendly computation of word similarities.

As potential reasons for the improvement of JoBimText over Lin’s and Curran’s system, Biemann et. al.
discussed several possible reasons: Firstly, Lin’s measure used for similarity computation likely puts too
much emphasis on frequent relations. This tends to reduce noise, however may overly prefer frequent
relations in larger corpora. Secondly, they used a different parser and other test words than Curran
did, which could explain the comparably better performance at least to some degree. Lastly, they point
out that Curran used a different evaluation method to test his system, which he likely also used for
optimization of his method.

Parameter Description
tw Minimum frequency of included words
t f Minimum frequency of included features
twf Minimum word-feature frequency of included features
w Maximum number of unique words a feature is allowed to co-occur with
p Maximum number of features to use per word (remaining features are dropped on a

per-word basis)
l Number of similar words to compute for every word

si g Significance measure used to score and rank features for every word. Can be either LMI,
LL or PMI.

Table 3.2: Parameters involved in computing distributional similarities using either the JoBimText frame-
work or our Spark implementation.

2 For comparison of distributional similarity computations, see [Lin, 1998], [Lin and Dyer, 2010]
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Figure 3.2: Processing pipeline of the JoBimText framework [Biemann and Riedl, 2013] used to compute
Distributional Similarities. While the original version is implemented on Hadoop’s MapReduce
architecture, we in this thesis used a functionally nearly identical Spark implementation to
allow for faster prototyping of additional components.

3.5 Feature Selection

Intuitively, certain context features of a word are more representative than others. For example, the
context grilled bass is fairly descriptive, while pale bass is not, though definitely not impossible to appear
within a corpus of larger size. With this intuition in mind, we are able to reduce the amount of features
used to represent every word, by simply discarding unrepresentative contexts. This, in turn, facilitates
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scalable computation of distributional similarities, by reducing data complexity. In fact, previous experi-
ments have shown that up to a certain number, adding distributional features does not increase quality
of the computed thesaurus [Biemann and Riedl, 2013], when compared to WordNet-based similarity
scores. Choosing the number too high in some cases even decreases quality slightly. In the same vein,
we in Chapter 6 show that using too many features produces an unfair bias in similarity scores towards
more frequent words. Therefore, feature selection is not only a technique that allows for more scalable
thesaurus computation, but is crucial to achieving high thesaurus quality.

First of all, as already mentioned earlier, reducing the number of features per word directly is done using
the parameter p: For every word-feature pair, we calculate a significance score and keep only the p most
significant features per word. For an overview of the used significance scores, see Table 3.3. Also, we
cut off features with a word co-occurrence frequency below a certain threshold twf , which is usually set
to relatively low values such as 2 or 3. This already significantly reduces noise; most context features
co-occur only 1 time with a given word, a co-occurrence that is trivially insignificant.

Frequent words have more features

As briefly mentioned above, thesauri with a high number of features per word tend to have an unfair
bias towards more frequent words. This is simply due to the fact that the more frequent a word is, the
higher is the chance of it co-occurring with any given feature. Higher frequent words hence come with
an inherent larger number of features. If p features are used to compute the similarity between a highly
frequent word w1 and an infrequent word w2, and w2 has p2 < p features in total, then the similarity
between w1 and w2 is bounded by p2

p < 1. For example, if word w2 has 234 features, the similarity
computation uses p = 1000 features, and w2 shares all its features with w1, then the similarity between
these two is only 0.234, not 1. Yet, a higher frequent word with more than 1000 features that shares only
a third of these features with w1 will receive a higher similarity score. It is therefore crucial to find an
optimal number of features that provides ”enough” contextual information, and at the same time does
not overly prefer higher frequent words.

This frequency discrepancy between two words is in fact very common in a corpus of natural language.
According to Zipf’s law, a few words of natural language text usually make up a substantial part of the
corpus. For example, within the Brown corpus, the word the makes up 7% of the entire corpus [Gençay
and Fagan, 2011]. Similarly, other common words (be, a, etc.) also make up a large part of the corpus.
Conclusively, the remaining part of the corpus is split up among the other words (~1 mio.), which yields
a very broad distribution of word frequencies. This is an example of a power-law distribution: given
words from a natural language text, sorted by their frequency, the frequency of two following words in
this list drops significantly.

While for some applications, it is acceptable that words are more similar to words of equal frequency,
this is not the case for the application of WSI. Since the sense clustering is only performed on n most
similar words, this would lead to uncommon senses being cut off. Conclusively, p should be chosen low
enough to be "fair" to less frequent words, without sacrificing too much accuracy by cutoffs.

Computation complexity

Another reason to reduce quantity of features is the complexity of the distributional similarity computa-
tion algorithm. For every feature that two words share, the algorithm must "emit" (as in the MapReduce
paradigm) and later increment a word similarity count (for an in-depth introduction into the implemen-
tation employed, see Chapter 9). Given the number of words w f that share a specific feature f , and
assuming that wmax is maximum of this value among all features appearing in the corpus, the memory
and time complexity of the computation algorithm is therefore O(wmax

2). The most straightforward way
to control wmax is to specify a threshold above which features are cut off. However, this potentially
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cuts off important features that are necessary to indicate similarity between two terms that are indeed
related. Another way to control wmax , that circumvents this problem, is to cut off unrepresentative (i.e.
”unimportant”) features for every word as previously mentioned. This is usually done by ranking fea-
tures according to their significance for a specific word, using one of the significance measures listed in
Table 3.3. This leads to fewer shared features among words, reducing the overall time complexity of the
similarity computation.

Significance Measures

As previously pointed out, selecting representative context features is crucial to obtaining meaningful
word similarities using a Distributional Semantics model. To rank distributional features according to
their significance for a specific word, several measures have been proposed in the literature:

Pointwise Mutual Information (PMI) is based on probability ratios: Given two events A and B, it states
whether the likelihood of A increases with the incidence of B. Since the actual value of PMI is the
logarithm of this ratio, it equals 0 when the events are statistically independent, i.e. have no mutual
information. It is positive when they co-occur more often than by mere chance, and negative if they
co-occur less often than by chance. In the latter case, the incidence of A could be interpreted as a ”contra
indicator” of B. PMI was first introduced to NLP applications by [Church and Hanks, 1990].

Since PMI is known to have a strong bias towards scoring low-frequency items higher than more common
items, it has a major in the application for our purposes: Since features selected by the PMI measure
tend to have a low frequency, they are shared by fewer words and are less suitable for computing word
similarities. Lexicographer’s Mutual Information (LMI) [Kilgarriff et al., 2004], also known as Local Mu-
tual Information [Evert, 2005], tries to compensate the problem of this observation by multiplying the
score by an co-occurrence frequency. This effectively mitigates the bias towards less frequent features,
while still assigning a low score to insignificantly co-occurring features.

The Log-likelihood ratio (LL) [Dunning, 1993] is a significance measure that, when applied to ranking
features for computing distributional similarities, performs almost equally to LMI [Biemann and Riedl,
2013]. Due to its lengthy definition, we simply point the reader to [Bordag, 2008].

Significance Measure Definition

Pointwise Mutual Information PMI(A, B) = log2

�n nA,B
nA nB

�

Lexicographer’s Mutual Information LMI(A, B) = nA,B PMI(A, B)

Table 3.3: Significance measures used to rank features per word. nA and nB denote the frequencies of
event A and B, resp. nA,B denote their joint frequencies, and n is the total number of observa-
tions.

In this chapter, we outlined a method to compute Distributional Similarities among words using depen-
dency features. To reduce noise, and to make the computation highly scalable, we kept only the most
significant features per word based on the Lexicographer’s Mutual Information (LMI) measure. Chap-
ter 4 discusses a possible approach to induce word senses based on these word similarities, and compares
this approach to other WSI techniques.
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4 Word Sense Induction
As outlined in the previous chapter, two popular approaches for WSD are the use of either knowledge-
based disambiguation methods or of supervised methods. Both of these methods suffer from a Knowledge
Acquisition Bottleneck [Wagner, 2006]: They both assume that a tremendous amount of background
knowledge (i.e., sense inventories or sense-labeled corpora) is readily available, which is only the case
for popular languages such as English, Spanish or German, and only for narrow domains. In this chapter
we discuss another possibility for WSD, which is fundamentally different from other approaches in that it
does not require any manually annotated training data or hand-crafted resources: Word Sense Induction
(WSI). In the literature, this method has also seen other names, including Word Sense Induction and
Discrimination systems or corpus-based unsupervised systems [Agirre and Soroa, 2007].

Instead of relying on pre-defined sense inventories, these approaches induce word senses from a raw,
unstructured text corpus. This is done using some form of clustering of words, either on vector space
models or on graphs. Both models are somewhat similar, in the sense that vector space models can be
represented as graphs by connecting nodes (the words) with edges weighted with the word’s similarities
in the vector space and cutting off edges below a certain threshold. In fact, graph representations are
often created in exactly this way, as will be shown later.

In addition to WSI methods that induce word senses from word similarities, others cluster contexts or
instances of words. In essence, these methods merely discriminate word senses rather than identifying
specific senses from a sense inventory [Schütze, 1998]. In other words, they group instances with a
similar meaning, without labeling this group in any way. Hence, no explicit word sense inventory is
computed. Some of these approaches, however, induce an implicit (or hidden) sense inventory from a
fixed, large background corpus. These can come in the form of prototypical vectors in a vector space
representing each sense cluster, or also in the form of discovered latent topics in an underlying theoretical
topic model. Some approaches, on the other hand, induce a clustering specific to a set of instances, i.e.
these have no explicit or implicit set of fixed word senses. Such word-sense discriminations are hard to
interpret, and a missing reference sense inventory often hinders re-use of such systems [Navigli, 2009].

One of the goals of our work is therefore to implement a WSI system that induces a fixed, explicit word
sense inventory. We achieve this by clustering word-similarity graphs constructed from a Distributional
Thesaurus. Before we describe this approach in detail, we briefly introduce other current state-of-the-art
methods for computing word-sense clusters.

4.1 Vector Space Models

Vector space models are among the most studied models used for WSI. They represent a word or word
instance by a high-dimensional vector of contexts, where the definition of ’context’ can vary greatly. In
the following we list a small portion of algorithms that can compute sense clusters in such a vector-space
model.

Single-link clustering, complete-link clustering and average-link clustering are related forms of a hierarchi-
cal clustering. All of these have in common that they construct an initial set of trivial clusters from the
individual elements in the vector space (here, words or instances) and iteratively merge similar clus-
ters. Each iteration therefore creates a new level in a cluster hierarchy. In parlance of these clustering
methods, cluster similarity is called cluster cohesion. The difference among these implementations lies
in the way clusters to be merged are chosen: single-link clustering chooses the two clusters with the
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Fig. 15. (a) An example of two word vectors restaurant = (210, 80) and money = (100, 250). (b) A context
vector for stock, calculated as the centroid (or the sum) of the vectors of words occurring in the same context.

where m is the number of features in each vector. A vector is computed for each word in
a corpus. This kind of representation conflates senses: a vector includes all the senses of
the word it represents (e.g., the senses stock as a supply and as capital are all summed
in its word vector).

If we put together the set of vectors for each word in the corpus, we obtain a cooc-
currence matrix. As we might deal with a large number of dimensions, latent semantic
analysis (LSA) can be applied to reduce the dimensionality of the resulting multidimen-
sional space via singular value decomposition (SVD) [Golub and van Loan 1989]. SVD
finds the major axes of variation in the word space. The dimensionality reduction has
the effect of taking the set of word vectors in the high-dimensional space and represent
them in a lower-dimensional space: as a result, the dimensions associated with terms
that have similar meanings are expected to be merged. After the reduction, contextual
similarity between two words can be measured again in terms of the cosine between
the corresponding vectors.

Now, our aim is to cluster context vectors, that is, vectors which represent the context
of specific occurrences of a target word. A context vector is built as the centroid (i.e., the
normalized average) of the vectors of the words occurring in the target context, which
can be seen as an approximation of its semantic context [Schütze 1992, 1998]. An
example of context vector is shown in Figure 15(b), where the word stock cooccurs with
deposit, money, and account. These context vectors are second-order vectors, in that
they do not directly represent the context at hand. In contrast to this representation,
Pedersen and Bruce [1997] model the target context directly as a first-order vector of
several features (similar to those presented in Section 2.3).

Finally, sense discrimination can be performed by grouping the context vectors of a
target word using a clustering algorithm. Schütze [1998] proposed an algorithm, called
context-group discrimination, which groups the occurrences of an ambiguous word into
clusters of senses, based on the contextual similarity between occurrences. Contextual
similarity is calculated as described above, whereas clustering is performed with the
Expectation Maximization algorithm, an iterative maximum likelihood estimation pro-
cedure of a probabilistic model [Dempster et al. 1977]. A different clustering approach
consists of agglomerative clustering [Pedersen and Bruce 1997]. Initially, each instance
constitutes a singleton cluster. Next, agglomerative clustering merges the most simi-
lar pair of clusters, and continues with successively less similar pairs until a stopping
threshold is reached. The performance of the agglomerative clustering of context vec-
tors was assessed in an unconstrained setting [Pedersen and Bruce 1997] and in the
biomedical domain [Savova et al. 2005].

A problem in the construction of context vectors is that a large amount of (unlabeled)
training data is required to determine a significant distribution of word cooccurrences.

ACM Computing Surveys, Vol. 41, No. 2, Article 10, Publication date: February 2009.

Figure 4.1: (a) One of many ways to represent words as vectors: money and restaurant are represented
in two dimensions, each quantifying the co-occurrence frequency with the words bank and
food, resp. (b) Shows a context vector for stock, represented as the centroid of the vectors of
words appearing in the context. Illustration taken from [Navigli, 2009, p. 27].

minimum pair-wise distance of elements and complete-link clustering the two clusters with maximum
pair-wise distance. Average-link clustering in contrast to these takes all elements of two clusters into
account to compute cluster cohesion, by aggregating all of their element’s pair-wise distances. Gen-
erally speaking, hierarchical clustering approaches like the aforementioned are considered to produce
high quality clusters, however their application on large datasets is limited due to their quadratic time
complexity [Steinbach et al., 2000].

Clustering by committee (CBC) [Pantel and Lin, 2002] is a two-staged clustering algorithm. In a first
stage, it uses average-link clustering to find small and tight (i.e. fine-grained) sense clusters of highly
similar words. These clusters are then input to a second stage, which iteratively identifies committees
from these clusters: This is done by marking a small number of these clusters as committees until the
remaining clusters are above a certain similarity threshold to one of these committees. The committee
identification step is repeated until for every word, there is a committee with mean vector ”close enough”
to the word’s average context vector (i.e. the similarity between mean vector and word vector is under a
certain threshold). The result is therefore a minimal number of committees (senses) so that every word is
represented well by one of these, determined by similarity threshold parameters. In a manual evaluation,
Pantel and Lin found CBC to outperform other clustering methods when applied to WSI, including k-
means and average-link clustering. In this evaluation, WordNet synsets served as gold senses.

argmin
s

k
∑

i=1

∑

x∈Si

||x −µi||
2 (4.1)

k-means clustering uses prototype vectors to represent clusters. The underlying assumption of this method
is that an optimal clustering (i.e. the k prototype vectors) minimizes the squared distance of all elements
in the vector space to their closest prototype vector. This measure is called the within-cluster sum of
squares (WCSS). For a definition, see equation 4.1; here Si and µi denote sense clusters and correspond-
ing prototype vectors, resp. A common algorithm implementing k-means is Lloyd’s algorithm, which is
a variant of an expectation-maximization (EM) algorithm. A common variant of this implementation
starts by first picking k random elements in the vector space as initial prototype vectors1 and then in
an assignment step assigns each element to a cluster so that the WCSS is minimized. An additional

1 This initialization is called the Forgy method. Strictly speaking, there are also other initialization methods like a random
partitioning of all elements into k initial clusters. Lloyd’s algorithm itself does not specify which initialization to use.
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update step chooses new prototype vectors to be the mean of these updates clusters. These two steps
are repeated until the clustering has stabilized. Often, k-means is considered to produce clusters inferior
compared to hierarchical clustering approaches (like average-link clustering), although its time complex-
ity that is linear in the number of elements in the vector space makes it applicable to larger clustering
problems [Steinbach et al., 2000].

P(w|d) =
T
∑

z=1

P(w|t = z)P(t = z|d) (4.2)

Latent Dirichlet allocation (LDA) is a type of topic model. The conceptual idea of topic models is that
documents in a collection contain a number of latent (hidden) topics. The probability of seeing each
individual word in these documents varies depending on the topic. Therefore, a topic model contains a
probability distribution of each word over the different topics P(w|t = z). Also, it defines a probability
distribution P(t = z|d) of seeing a specific topic given a specific document. The assumption of using a
topic model is that the probability of seeing a specific word w, given a document d, is then modeled by
these probability distributions (see equation 4.2). LDA is a type of topic model that requires a specific
number of topics k to be specified. In contrast to this, the Hierarchical Dirichlet Process (HDP) [Teh et al.,
2006] is an extension of LDA that automatically induces the number of topics from the data.

4.2 Graph Clustering

For a given word, a list of the most similar words can contain useful information regarding the meaning of
this word and possibly reveal multiple senses. For example, consider the word tablet. Depending on the
meaning, top similar words may be notebook2, manuscript, headstone, smartphone or pill, forming at least
three distinct senses. When we put these words in a word graph and link words that are related, senses
can be regarded as a clustering of this word graph: words belonging to the same sense are connected
(related) to each other, while words from different senses are often unconnected. See Figure 4.2 for
an illustration of this example. This sense induction process using word graphs is specifically similar to
methods previously applied in [Dorow, 2007; Biemann, 2007; Hope and Keller, 2013a]. Also [Widdows
and Dorow, 2002] applied a similar clustering method on word-cooccurrence graphs to induce word
senses. The clustering process applied by our system is further explained in the following.

4.2.1 From Global Graphs to Local Neighborhood Graphs

To compute such a clustering, we started with a global word graph G = (W, E), where W is a specific set
of words from our text corpus, e.g. all nouns, and E a set of edges connecting related words. More specif-
ically, this relatedness is based on distributional similarities from a thesaurus T , computed as described
in Chapter 3.3: In G, we linked two words w1, w2 ∈ W if w2 is among the N most similar words to w1,
according to T . N and other parameters can be chosen by the user. Sense clusters are then determined
for every word separately. These words are in the following called the target word. The pseudocode of
the sense induction algorithm, including the following steps, is listed in Algorithm 2.

To compute these sense clusters, we did the following: for every target word wi ∈ W , a subgraph
G′ = (V, E′) is constructed that consists of all neighbors V of this word (i.e. its N most similar words,
therefore, |V | ≤ N). The target word itself is not part of this subgraph. Words in G′ are again connected

2 Note that notebook can here refer to both a portable computer as well as a note-taking book, therefore being ambiguous
itself.
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Figure 4.2: Illustrative, small neighborhood and possible clusters of tablet. Note that the word tablet
itself is not part of this neighborhood graph, and only shown to better illustrate the construc-
tion of the neighborhood graph.

to their n most similar words within G′ 3. In the ideal case, each sense of the target word, represented
by the similar words belonging to the sense, forms a highly connected cluster that shows only few
connections to other clusters (i.e. senses). Figure 4.2 shows an exemplary neighborhood graph for
the word tablet, constructed from the global graph G. If we remove the word tablet itself, such as in
Figure 4.4, we can see the strong tendency that words with similar senses tend to be connected among
each other, while having less connections to words from other senses, therefore forming clusters.

Before we come to the specific clustering algorithms, we can therefore observe that there are at least
two parameters for our WSI algorithm. First of all, the number of neighbors (similar words) to choose for
a target word w, which we refer to as parameter N . Second, the maximum number of connections one
of these neighbors v is allowed to have within this subgraph, which we refer to as n. The latter, n, is
bounded by N , as nodes in the subgraph cannot have connections to nodes that are not in the subgraph.
To be more specific, the subgraph operation first retrieves all outgoing edges of each v that point to
other nodes within the subgraph. Of these, only the top n similar words are kept. n is therefore only
an upper bound for the number of outgoing edges of a v ∈ V , e.g. for N = 200 and n = 100, there will
be many out of the 200 subgraph nodes that have less than 100 outgoing edges within the subgraph.
Figure 4.3 shows a neighborhood subgraph generated for N = 10 neighbors of tablet with a maximum of
n = 3 connections. Note that many nodes have less than 3 connections (and some have more, see next
paragraph for details).

The ”Random Walker” as Conceptual Foundation of Graph Clustering

To compute clusters in this graph, we (as shown later in detail) utilize the notion of a ”random walker”:
If a walker starts at an arbitrary node w, and randomly follows paths in the graph, at which node(s) is
it most likely to end up? If there is a high probability that this walker ends up at nodes v1, .., vk then
these nodes should, if possible, be part of the same cluster. More specifically, we in this thesis assume
that the word graph is undirected. If the graph contains directed edges, e.g. from w1 to w2, this would

3 This graph is a true subgraph of G, as an edge in G′ can only exist if there is such an edge in G.
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Algorithm 2: Pseudocode of our sense induction algorithm.
input : T // distributional thesaurus

W // set of terms in T to cluster
N // subgraph size
n // subgraph connectivity

output: for each term wi in W , a clusterings Si of its N most similar terms

1 G← graph with terms from T as nodes, initially no edges
2 foreach w ∈W do
3 K ← N most similar terms of w according to T
4 Add to G an edge from w to every k ∈ K , weighted by the resp. similarity
5 end

6 foreach wi ∈W do
7 V ← direct neighbors of wi in G
8 G′← graph with V as nodes, initially no edges

9 foreach v ∈ V do
10 Add to G′ the n highest-weighted edges in G between v and other terms in V
11 end
12 Si ← MCL(G′)
13 end

(a) Directed neighborhood graph
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Figure 4.3: Neighborhood graph of word tablet. Parameters for building the neighborhood subgraph
were N = 10 and n = 3. This neighborhood graph corresponds to the variable G′ in Algo-
rithm 2
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imply that a random walker can walk from w1 to w2, but not the other way around4. While this could
have beneficial effects on the resulting sense clusters, it is out of scope of this thesis to find this out. Also,
undirected edges are due to their symmetric nature more intuitive and thus easier to comprehend. We
will in the rest of this thesis therefore assume that all word graphs are undirected.

Directed vs. Undirected Subgraphs

If you look at Figure 4.3 (b) again, you will notice that inscription has more than 3 connections. Since
the graph connectivity parameter n chosen in this example is 3, this might come as a surprise. To explain
this, have a look at Figure 4.3 (a). This is the actual directed subgraph that is produced by the subgraph
operation as explained above. First we should note that the similarity measure employed by our system
is symmetric, i.e. if sim(a, b) = s then sim(b, a) = s and vice versa. However, since only the top n edges
per node are added to the subgraph, the following happens. Given n= 1, for each node there will be only
one outgoing edge. However, since nodes may appear as the most similar words in multiple other words
in the subgraph, this node will nonetheless have multiple ingoing edges. If we simply transform every
directed edge into an undirected edge, this will lead to some nodes having more than n (undirected)
connections.

Limitations

If a word sense has many substitutable words or synonyms, then this sense tends to dominate the list
of similar words. Since only the top (e.g. 200) similar words are taken into account to build a word
graph, this can effectively eliminate other word senses. An example is the word spring, which can have
at least three senses: a source of water, a device (e.g. made of spring steel) or the spring season. The
latter here dominates the thesaurus and makes up somewhere around 90- 95% of the thesaurus entries
for this word (mostly words representing some period of time, like 1970, afternoon, mid-september, or
even election). The result is that similar items of ”device” sense do not even appear in the constructed
word graph, and can therefore not be discovered by graph clustering methods.

4.2.2 Markov Chain Clustering

Markov Chain Clustering (MCL) [van Dongen, 2000] is a graph clustering algorithm based on Markov
Chains. Given is a graph of which its edge weights are considered to be transition probabilities between
two nodes. Its core idea is that of a “random walker”: Starting at a given node and following a random
path according to these probabilities, the algorithm stochastically determines in which part (cluster) of
the graph the walker is most likely to end up. The underlying principle of this is that nodes tend to have
more connections to nodes within its cluster than to other nodes. Algorithm 3 shows the pseudocode of
MCL.

The two central parts of the algorithm are the inflation and the expansion steps in each iteration. While
the expansion operation allows “flow to connect different graph regions” [van Dongen, 2000, p. 6],
the inflation operation emphasizes and deemphasizes current. The parameter γ belonging to these
operations therefore controls the granularity of the resulting clusters.

Another parameter that, according to van Dongen, has similar effects on the granularity, is the pruning
threshold p. Every edge with a transition probability below this value is removed. Like γ, this results
in stronger contrast between high and low edge weights, resulting in a different granularity of the
clusters.

4 In terms of the CW algorithm (see Section 4.2.3), this means that w2 can “receive” a label from w1, but not vice versa.
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Algorithm 3: Pseudocode of MCL algorithm. The pruning step in line 6 is merely optional to
speed up convergence.

input : A // adjacency matrix of graph
γ // inflation parameter
p // pruning parameter
r // maximum residual

output: list of clusters

1 add self-loops to A;
2 normalize rows in A;

3 while maximum residual in A> r do
4 expand A by power of 2;
5 inflate A by γ;
6 prune entries in A< p;
7 end
8 interpret A as clustering;

(a) N = 20, n= 20,γ= 1.4

gravestone

piece

smartphone

steletombstone

obelisk

manuscript

medallion

plaque

urn

vase

slab

notebook

inscription

scrollsarcophagus statue

coin

pill

headstone

(b) N = 20, n= 20,γ= 1.7

scroll

pillpiece

smartphone

stele
tombstone

obelisk

manuscript

medallion

plaque

urn

vase

slab

notebook

inscriptionsarcophagus

statue
coin

headstone gravestone

(c) N = 20, n= 20,γ= 2.0

piece

smartphone

manuscript

medallion
vase

slab

notebook

inscription

scroll

coin pill

gravestone

tombstone

plaque

sarcophagus statue
stele

obelisk
urn

headstone

Figure 4.4: Clustering of neighborhood graph of tablet using MCL. The clustering granularity parameter
(γ) is varied, other parameters are fixed. As a result, the number of clusters increases from 3
(γ= 1.4) to 9 (γ= 2.0).
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Figure 4.5: Clustering of neighborhood graph of tablet using MCL. The maximum number of neighbors
per word (n) is varied, other parameters are fixed. As a result, the number of clusters increases
from 4 (n= 3) to 9 (n= 1).

4.2.3 Chinese Whispers

Chinese Whispers (CW) [Biemann, 2006] is a special case of MCL. It takes a more drastic optimiza-
tion approach than pruning does for MCL: instead of pruning column values in A larger than a specific
threshold, it keeps only the largest column value after each iteration. This is equivalent to “labeling”
each node in every step with the label of the dominant node in its neighborhood. This is also the reason
why this algorithm is called “Chinese whispers”: It aims at finding groups of nodes that “broadcast the
same message to their neighbors” [Biemann, 2006].

The worst-case time complexity of CW (O(k ∗ |E|)) equals that of MCL (O(k ∗ n2)) if the graph is fully
connected, in which case |E|= n2. However, due to the sparsity of word graphs, this complexity is much
lower in practice. Also, the CW algorithm can be implemented more efficiently, as it does not need to
copy the transition matrix in every iteration: to propagate node labels, it is sufficient to keep the current
label per node stored separately from the transition matrix. Especially with a high number of iterations
with only a few operations each, this dramatically effects the run time.

In contrast to MCL, CW itself is parameter-free, making it well suited for the unsupervised discovery of
word senses, where the number of senses is not known in advance. However, it is indeterministic: as it
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randomizes the order in which it propagates class labels, it does not guarantee that the outcome of the
clustering is the same if CW is applied on the same graph a second time.

Algorithm 4: Pseudocode of CW algorithm.
input : A graph G(V, E)
output: A class assignment class(v ) for all v ∈ V

1 forall the vi ∈ V do
2 class(vi)=i
3 end

4 while changes in class labels do
5 forall the v ∈ V in randomized order do
6 class(v )=highest ranked class in neighborhood of v;
7 end
8 end

4.2.4 MaxMax: A Soft-Clustering Algorithm

MaxMax [Hope and Keller, 2013a] is a soft-clustering algorithm that is time-linear in the number of edges.
It is a two-stage algorithm in that it first transforms the weighted, undirected input graph (G) into an
unweighted, directed graph (G′). The resulting graph is then clustered by finding maximal quasi-strongly
connected (QSC) subgraphs.

MaxMax: A Graph-Based Soft Clustering Algorithm Applied to WSI 371

Algorithm 1. MaxMax

1: procedure MaxMax(G = (V, E))
2: construct a directed graph G′ = (V, E′) where:
3: (v, u) ∈ E′ iff (u, v) ∈ E and v is a maximal vertex for u
4: mark all vertices of G′ initially as root
5: for each vertex v of G′ do
6: if v is marked root then
7: mark any descendant u of v (u ̸= v) as ¬root
8: end if
9: end for

10: end procedure

MaxMax consists of two discrete stages:

Stage 1. Graph Transformation. In stage 1 (lines 2 and 3 of Algorithm 1)
MaxMax takes a weighted graph G and transforms it to an unweighted, directed
graph (digraph) G′. The maximal affinity relationships between vertices of G are
used to determine the direction of the edges in G′. An example of the way in
which a weighted undirected graph is transformed to an unweighted, directed
graph is shown in Fig. 3.
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Fig. 3. G and its transformation to an unweighted directed graph G′

Stage 2. Identifying Clusters. In a digraph G′, a vertex v is said to be a
descendant of a vertex u if there is a directed path from u to v. For example, in
Fig. 3 vertex v is a descendant of vertices s and r. In stage 2, clusters are found
by tracing directed paths in G′ to identify rooted subgraphs of a particular type
(lines 4 to 9 of Algorithm 1). The vertices of each subgraph define a distinct
cluster. This is made precise as follows.

A directed graph is said to be quasi-strongly connected (QSC) if for any ver-
tices vi and vj , there is a vertex vk (not necessarily distinct from vi and vj) such
that there is a directed path from vk to vi and a directed path from vk to vj .

Figure 4.6: Example of a word graph G and its transformation into an unweighted, directed graph G′ in
preparation for application of the MaxMax algorithm. The graphic is taken from [Hope and
Keller, 2013a]. This transformation can be regarded as a special case of our method of pruning
the local word neighborhood subgraph (see Section 4.2.1).

For the first stage, it uses the principle of maximal affinity to transform G into an unweighted, directed
graph G′: The word v with highest edge weight w(u, v ) to a word u is defined to have maximal affinity to
u. Consequently, v is considered the maximal vertex (with vertex being the generalization of a word) to
u. The resulting graph G′ contains an edge from v to u if v is a maximal vertex of u. Note that this trans-
formation is effectively equivalent to a special case of our pruning method for the local neighborhood
(see Section 4.2.3) of a word in the global word graph, with n set to 1. The only exception here is that
that directed edges are not transformed into undirected edges, as done by our clustering algorithm.

In a second step, the MaxMax algorithm identifies quasi-strongly connected subgraphs in G′, which are
the resulting sense clusters. A QSC is simply a subgraph that contains a node (the root) from which
every other node in the subgraph can be reached, i.e. there is a path from the root to every other node
in the subgraph. For example, identified roots in graph G′ (see Figure 4.6) are r and w, as every other
node in their respective subgraphs can be reached following a path starting at these roots. The clustering
algorithm performs a soft clustering, as nodes that are leafs of a resulting QSC subgraph can at the same
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time be leafs of multiple such subgraphs. An example of this is node t in Figure 4.7. Since these nodes
are by definition part of all such QSC subgraphs, they are assigned to all respective clusters.

372 D. Hope and B. Keller

It is not hard to show that a QSC digraph must contain at least one vertex vr

which is a root in the sense that every other vertex can be reached by following a
directed path from vr. Given a directed graph G′, a subgraph of G′ is a maximal
QSC subgraph if it is a QSC digraph and it is not possible to add any further
vertices or edges from G′ without rendering the subgraph non-QSC.

Clusters are identified by finding the root vertices of maximal QSC subgraphs
of G′. This is achieved simply by marking all descendants of a given vertex as
¬root . For example, consider vertex s in the directed graph G′ of Fig 4, which is
initially marked as a root . The descendant vertices of s are u and v thus marked
as ¬root . In turn, s, as a descendant of r, is marked ¬root3. At the end of stage
two, vertices that are still marked as root vertices uniquely identify clusters,
since they correspond to the roots of maximal QSC subgraphs of G′.

r

s t

u v w

x

Fig. 4. Two clusters in G′

As Fig. 4 shows, this process allows vertices to be soft clustered to more
than one cluster. In this particular example, vertex t is soft clustered to cluster
{r, s, t, u, v} and cluster {w, t, x}.

3.1 Time Complexity

It can be shown that for a connected graph G = (V, E), MaxMax runs in time
O(|E|), that is, linear in the number of edges of G. The transformation of an
edge weighted graph G to an unweighted directed graph G′ in the first stage
can be computed in O(|E|). In constructing G′ it is necessary to find maximal
vertices of each vertex in G. For a given vertex u, the set of maximal vertices can
be identified by scanning each of the edges from u to a vertex adjacent to u in
order to determine those of maximal weight. This is done for each vertex of G,
with each edge in G inspected just once4. Consequently, G′ can be constructed
in time linear in the number of edges of G.

3 In Fig. 3 vertex r or vertex s is a permissible root of the cluster {r, s, t, u, v}; similarly,
either x or w may be the root of the cluster {t, w, x}.

4 Connections u to v and v to u are considered to be two separate edges in undirected
graphs [13].

Figure 4.7: Clustering result of the above example graph G using the MaxMax algorithm. The graphic is
taken from [Hope and Keller, 2013a]. The node t is an example of a soft-clustered node: it is
part of both resulting clusters.

This algorithm is similar to the clustering method that we utilized for two reasons: First, as mentioned
above, its graph transformation step is essentially a special case of our graph pruning step. Secondly,
our notion of a random walker in the graph to be clustered can also be applied here: A walker that starts
in one of the resulting clusters and follows a random path will always end up in the same cluster, as
there is by definition no path from one QSC subgraph to another. However, we see one problem with
this approach: Since every node is only allowed to have a directed edge to the node with highest affinity,
this comes with an inherent loss of information. More specifically, in a word-clustering application, this
means that a word is only represented by a single other, most significantly related word. In contrast, we
represent every word by several related words, which avoids an early pruning of word senses represented
by other related words. However, the soft-clustering capability of MaxMax has the benefit that e.g. the
word notebook as similar word of tablet, as illustrated in Figure 4.2, can be assigned to both a computing
device sense (which would in this case be formed together with smartphone) as well as a sense referring
to a note-taking device.

4.3 State-of-the-Art Systems

There are various systems today that perform WSI in some form or another. A lot of them differ strongly:
Some are instance-based clustering systems, a few others induce a sense inventory on a word graph.
Almost all systems include a WSD component, with the exception of the system of Pantel and Lin.
Furthermore, both vector-space models as well as graph-based models were utilized. Some of these
systems participated in WSI evaluations, such as the SemEval challenge.

Schiitze Automatic Word Sense Discrimination 
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Figure 1 
The basic design of context-group discrimination. Contexts of the ambiguous word in the 
training set are mapped to context vectors in Word Space (upper dashed arrow) by summing 
the vectors of the words in the context. The context vectors are grouped into clusters (dotted 
lines) and represented by sense vectors, their centroids (squares). A context of the ambiguous 
word ("test context") is disambiguated by mapping it to a context vector in Word Space 
(lower dashed arrow ending in circle). The context is assigned to the sense with the closest 
sense vector (solid arrow). 

Even if the contextual distinctions captured by  generalized context-group discrimina- 
tion do not line up perfectly with finer distinctions made  in dictionaries, they still help 
characterize the contextual meaning in which the ambiguous word  is used in a partic- 
ular instance. Such a characterization is useful for the information-access applications 
described above, among others. 

The basic idea of context-group discrimination is to induce senses from contextual 
similarity. There is some evidence that contextual similarity also plays a crucial role in 
human  semantic categorization. Miller and Charles (1991) found evidence in several 
experiments that humans  determine the semantic similarity of words  from the similar- 
ity of the contexts they are used in. We hypothesize  that, by  extension, senses are also 
based on contextual similarity: a sense is a group of contextually similar occurrences 
of a word.  

The following sections describe the disambiguation algorithm, our  evaluation, and 
the results of the algori thm for a test set d rawn from the New York Times News Wire, 
and discuss the relevance of our  approach in the context of other work  on word  sense 
disambiguation. 

2. Context-Group Discriminat ion 

Context-group discrimination groups a set of contextually similar occurrences of an 
ambiguous word  into a cluster, which is then interpreted as a sense. The particular im- 
plementat ion of this idea described here makes use of a high-dimensional,  real-valued 
vector space. Context-group discrimination is a corpus-based method: all representa- 
tions are der ived from a large text corpus. 

The basic design of context-group discrimination is shown in Figure 1. Each oc- 
currence of the ambiguous word  in the training set is m ap p e d  to a point  in Word 
Space (shown for one example occurrence: see dashed line from training text to Word 
Space). The mapping  is based on word  vectors that are looked up in Word Space 
(to be described below). Once all training-text contexts have been map ped  to Word 
Space, the resulting point  cloud is clustered into groups of points such that points are 
close to each other in each group and that groups are as distant from each other as 

99 

Figure 4.8: Basic design of Schütze’s Word Sense Discrimination system.
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The oldest system presented here is that of [Schütze, 1998] (see Figure 4.8). They extracted word co-
occurrence frequencies from 17 months of New York Times news text, with roughly 435 megabytes or
60.5 million words of text. Based on these co-occurrence features, word vectors were constructed and
reduced to 100 dimensions using Singular Value Decomposition (SVD). This word vector space was then
used to compute word clusters using the k-means algorithm. These clusters represented their induced
word senses. Test instances were also drawn from the New York Times corpus and word senses were
discriminated by choosing the cluster with the mean that is closest to the test instance’s context vector.
Schütze specifically distinguished this approach, which he referred to as word-sense discrimination, to
WSD as the discovered word senses were merely abstract clusters in this word space, and never labeled
in any way. On an own evaluation dataset of 20 ambiguous words, they reported an accuracy of 94%,
beating a MFS baseline5.

Another more recent system is HyperLex by [Véronis, 2004]. They first selected 10 polysemous nouns that
were found to be hard to sense-tag for humans [Véronis, 1998]. Then, they compiled a sub-corpus for
each word from web pages using the meta-engine Copernic Agent6. From this corpus, co-occurrence fre-
quencies were extracted. A co-occurrence word graph was built by drawing edges between co-occurring
words, and weighting these with

�

1− P(w1|w2)
�

, where P(w1|w2) is the conditional probability of seeing
word w1 if we already observed word w2. Edges with weight below 0.9 are discarded, where a value of 0
means that two words are always associated; reversely, 1 indicates that two words are never associated.
Root ”hubs” in this graph are identified and interpreted as word senses. Disambiguation is performed by
computing the distance between context words and root hubs in this graph; the root hub with the lowest
average distance to the context words is then picked as the best-matching sense. In an own evaluation,
their system received 97% precision and 82% recall, compared to a 73% precision baseline. The test
dataset contained 100 contexts for each of the 10 words, i.e. 1000 contexts in total. These were manu-
ally checked by a single expert to receive the precision/recall values. 7 out of 10 words were tagged with
100% precision. A problem we see here is that no comparison to standardized evaluation testsets were
performed. Also, all evaluation was manually done by a single human expert, therefore no agreement to
other annotators was measured. Lastly, compiling a sub-corpus for every word would be impractical in
an all-word sense induction setting, which we aim to enable with the system described in this thesis.

[Pantel and Lin, 2002] introduced Clustering by Committee (CBC) as a new vector-space clustering
method. They represented each word by a feature vector of context features such as bigrams (for ex-
ample ”sip _” as context feature for wine). Pointwise Mutual Information (PMI) was used as value for
the individual features. To extract context features, they parsed about 144 million words (1 gigabyte) of
English newspaper text from the TREC collection7. Their system does not implement a sense disambigua-
tion or discrimination component. However, they evaluated the word clusters produced by their system
against WordNet: They first automatically mapped clusters to WordNet senses, and then determined
a precision as the ratio between the number of WordNet senses that were discovered and the actual
number of senses that are found in WordNet. Recall measured the ratio between the correct number of
discovered senses for a word, and the number of senses in WordNet. In this evaluation, their clustering
algorithm out-performed others like k-means and average-link clustering.

The AI-KU system [Baskaya et al., 2013] is based on lexical substitution and vector-space clustering: In a
first step, it for each instance identifies the 100 most probable lexical substitutes of the respective target
word. This is done using a probabilistic 4-gram model that is computed from the ukWaC background
corpus, which in turn is realized using Fastsubs [Yuret, 2012], an algorithm that finds the n most probable
lexical substitutes. The substitute word vector of each instance is considered to be a distributional
representation of the same in a 100-dimensional vector space. The values of the dimensions of this

5 Overall score of the baseline was not explicitly reported.
6 http://www.copernic.com (last accessed: 2015/04/30)
7 This collection consisted of a 1988 AP Newswire, a 1989-90 LA Times, and a 1991 San Jose Mercury.
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context vector are equivalent to the probabilities of the individual substitute words, normalized to sum
up to 1. All test instances, represented by these vectors, are finally clustered using k-means. The system
participated in the SemEval-2013 WSI task, and received the overall highest scores in the WSD setting of
the evaluation. Here Baskaya et al. picked 22 as value for k, knowing that the test set contained words
with 3 to 22 senses.

Unimelb [Lau et al., 2013] is a system based on the Hierarchical Dirichlet Process (HDP) [Teh et al.,
2006], a topic model. Except for the application it is entirely indifferent to the system already described
in [Lau et al., 2012]. Since Lau et al. participated in the SemEval-2013 WSI task, they also used the
ukWaC corpus to train their model. The HDP model they used is a parameter-free extension of LDA,
specifically not requiring a number of topics to be specified, and estimated using an implementation
of Gibbs sampling. To reduce the computational complexity of the topic model estimation, they lim-
ited the number of training instances to 5% and 50000, each of these limitations constituting a system
configuration. In contrast to many other topic models, their topic model is based on positional co-
occurrence features (3 words left, 3 words right, with positional information) additionally to ”ordinary”
co-occurrences (i.e. BOW context representations) previously used in such models. Latent topics discov-
ered in the training instances (specific to every target word) were interpreted as possible word senses.
To assign word senses for a specific word context, they conclusively also interpreted the probabilistic
assignments of these topics for this context as the respective sense probabilities. In the SemEval-2013
WSI task, their system’s performance was competitive, notably it produced the best Fuzzy B-Cubed score
in the cluster comparison setting of the evaluation.

The University of Sussex (UoS) [Hope and Keller, 2013b] presented a system that is based on dependency-
parse features and the MaxMax graph clustering algorithm (see Section 4.2.4). WSI was performed on
the dataset provided by the SemEval-2013 WSI task. Based on the dependency-parsed ukWaC corpus,
they for each target word constructed a graph consisting of the 300 highest-ranked words found in a
dependency relation with this target word. To compute a similarity-like score between two words w1
and w2, and to determine such a ranking, they counted the number of times these words co-occurred in
a dependency relation. The actual score is then the Normalized Pointwise Mutual Information (NPMI)
measure of these co-occurrence frequencies. The same score is used to weight edges in this word graph.
This graph is then clustered using the MaxMax algorithm. In a post-processing step, the resulting fine-
grained clusters are merged based on a degree of cohesion8 and separation9, with the intuition that two
clusters are merged if they have a high semantic similarity. Disambiguation of instances is performed by
assigning the sense with the lowest separation score between the instance’s context words (minus the
head word) and the words of the sense cluster. The performance of this system in the SemEval-2013 WSI
task was competitive, however it was outperformed by other systems in all 6 evaluation settings (namely
by AI-KU and by Unimelb).

Differences to our system

Arguably the system presented here that is most similar to ours is UoS: Their clustering method is graph-
based, and their step for constructing a word graph for each target word is similar to ours (cf. Sec-
tion 4.2.4). They also used dependencies as context features for each target word, however there are
many subtle differences: First, they only counted the number of times two words co-occurred in any
dependency relation, ignoring the type of this relation (i.e. subject vs. object of a clause, etc.). Also,
edges in the word graph were weighted by the NPMI of these co-occurrence frequencies, whereas our
system uses similar significance measures to select various word-characteristic features (i.e. dependency
relations) that serve as comparison between two words. Edges in our word graph are therefore the

8 Cohesion of a set of words is here defined as the average NPMI score between all words in this set.
9 In essence, their separation score is a dissimilarity measure between two sets of words: It is the inverse of the weighted

overlap, where this weight is the NPMI of the two respective words.
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number of shared features, not the significance of co-occurrences. Also, their disambiguation compo-
nent selects word senses based on an overlap between context and a sense’s cluster words, whereas we
perform disambiguation by using a probabilistic model.

A system presented here that does implement sense assignments based on a probabilistic model is
Unimelb: For each context feature of a target word, it estimated a probability distribution of the dis-
covered latent topics over this feature. These distributions over context features are aggregated to
determine the most likely topic of an instance of the target word (which is not included in the in-
stance’s context). However, the way topic models are computed poses a fundamental difference to
concepts utilized in our system, i.e. Distributional Similarity and graph clustering.

Furthermore, one of the questions that guided us through this thesis is whether we can induce a fixed
word-sense inventory, to enable linking this inventory to other, pre-defined lexical or ontological re-
sources like WordNet or FreeBase. We found that some of these presented systems may be adapted to
facilitate such a linking step, however not all of them. For example the Unimelb system discovered latent
topics for each target word from a fixed set of training instances that were extracted from a background
corpus. In their approach, these topics were equivalent to the words’s senses. Here, it would be interest-
ing to assess whether the words most representative of each latent topic may be used to label this topic
and to link it (i.e. the respective word sense) to other sense inventories. However, such a linking step is
infeasible for some other presented systems. The AI-KU system can here be used as a counter-example:
It induces word senses from a vector space that is constructed individually for a specific set of instances.
Since these found clusters therefore change every time the system is applied to another set of instances,
it would be of little benefit to link these clusters to other sense inventories.

To summarize, we in this chapter presented a method to automatically induce word senses based on a
word similarity graph. This word similarity graph was constructed by using Distributional Similarities
computed as described in Chapter 3. Since we also need means to assign induced senses in context, the
next chapter discusses a novel approach for Word Sense Disambiguation on induced sense inventories.
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5 Word Sense Disambiguation for Induced
Sense Inventories

A key challenge in the construction of a fully-unsupervised WSI system is the disambiguation of induced
senses in context. To pick up the example from the introduction, Table 5.1, lists induced senses for the
word bass as produced by our system.

Sense Top cluster words
bass.0 funk, jazz, music, blues, reggae
bass.1 guitar, drum, saxophone, percussion, piano
bass.2 trout, catfish, perch, pike, eel
bass.3 tenor, baritone, alto, soprano, orchestra
bass.4 vocal, accompaniment, chorus, riff, rhythm

Table 5.1: Induced senses of word bass. These can be interpreted as referring to bass
musica, an instrument, a fish species, an adult singer with low voice, and a low
voice itself, resp. (cf. WordNet senses listed in Figure 2.1)

a http://en.wikipedia.org/wiki/Bass_music (last accessed: 2015/04/30)

Now also reconsider the following example context, for which the disambiguation step of our system has
to choose an appropriate sense from the list above:

He decided to have grilled bass for dinner.

While to the human reader, it is obvious that this context refers to sense bass.2, this is impossible to
deduce for a disambiguation algorithm, given only the information from Table 5.1. Specifically, there
is no overlap between the context and any of the sets of cluster words from the individual senses.
Therefore, simple disambiguation methods like Lesk-based algorithms will have no success when applied
to this context. However, this example is objectively unambiguous, given common-sense knowledge like
people grill fish, but (usually) not instruments.

Other approaches that exploit information that is available in the underlying Distributional Thesaurus
include the utilization of similarities among sense clusters and other context words [Rada et al., 1989;
Véronis, 2004; Hope and Keller, 2013a]. More specifically, Hope and Keller utilize a so-called separation
score to grade induced senses based on context words and words from the individual sense’s clusters.1

Also, for a simpler notion of this separation score, see [Biemann, 2010]: they induced sense clusters on
a graph constructed from sentence-based co-occurrences of a target word and used the resulting clusters
directly to compute an overlap between context words and sense cluster words. The sense cluster with
the highest overlap is then assigned in this context.

These systems therefore utilize the similarity of context words to the target word for disambiguation.
While this works well with word similarity scores that express some form of semantic relatedness (such
as fish being closely related to dinner), they would produce inferior results for similarity scores that
are based on syntactic similarity: grilled as an adjective, due to its inherent syntactic difference to the

1 Hope and Keller used the same score to merge fine-grained sense clusters produced by the MaxMax algorithm. Their UoS
system participated in the SemEval-2013 WSI task, with mixed results (see Chapter 7).
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noun fish, would likely receive a score lower than any unrelated noun in the context, confusing a purely
similarity-based disambiguation algorithm. Since our dependency-parse features, due to their local and
grammatically motivated nature, yield rather syntactically similar items, this disambiguation method is
therefore unsuited for use with our Distributional Thesaurus.

5.1 Obtaining Sense-Tagged Training Instances for Learning a Disambiguation Model

The same observation however motivated us to a new disambiguation approach that exploits the nature
of syntactically similar items: First, we formulated the assumption that syntactically similar words are, to
some extent, grammatically substitutable. This assumption is undermined by a few illustrative examples
in the following. Based on this assumption, it is possible to extract a wealth of contextual instances
sensitive to a specific word sense, by using the context instances of the syntactically most similar cluster
words from each sense cluster and (virtually) replacing the cluster words with the target word (i.e. bass
in our case) itself.

Cluster word Context
trout Most • such as lake • live in freshwater lakes and/or rivers exclusively.

catfish • have inhabited all continents at one time or another.
perch The general body type of a • is somewhat long and rounded.

eel There are two styles of grilled •, the topic of which is covered more
precisely under kabayaki.

Table 5.2: Actual contexts of words belonging to sense cluster bass.2, as found in Wikipedia, which
served as text corpus for our computations. Cluster words are replaced by ’•’ to indicate
their position and for visual evidence of a certain substitutability of the cluster words and
the target word bass.

From a standpoint of judging semantic correctness of the extracted contexts, these are obviously inac-
curate to some extent, e.g. it is untrue that most bass appear exclusively in freshwater environments.
However, the merely partial validity of the extracted contexts is sufficient for our purpose of sense dis-
ambiguation. In effect, these instances provide a large amount of sense-tagged training instances we may
use for learning a disambiguation model.

For example, as can be seen in Table 5.3 we can extract several properties applicable to the sense referring
to a fish species that are perfectly valid. Notably, these properties can be extracted in the same manner
that we previously used to extract distributional features for computing the thesaurus. For example, the
properties from the table may all be deduced by extracting corresponding dependency features as listed
in the right-hand column of the same table.

Property Context feature
bass.2 can live nsubj(live, •)
bass.2 may inhabitate places nsubj(inhabitate, •)
bass.2 may have a (body) type prep_of(type, •)
bass.2 may be grilled amod(•, grilled)

Table 5.3: Properties characterizing bass in the sense of a fish species, extracted from contexts of words
from the sense cluster bass.2. Cluster words are replaced by ’•’. Note how the observed prop-
erties can be represented using the same distributional context features that were previously
used to compute distributional similarities.

Note that these properties are much more accurate then their corresponding word co-occurrences:
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The hammering sounds of his drum and bass music literally grilled the speakers.

This context means bass as a type of music, i.e. bass.0, however it mentions the adjective grilled, which
makes it difficult for a purely co-occurrence based WSD approach to choose the appropriate sense.

A disadvantage of using only dependency-based context features for disambiguation is their sparsity. On
average, every context contains only 1-3 dependency features for a given word, e.g. the single feature
nn(music, •) for the example above. These few features may provide strong clues for disambiguation,
but fail to provide such clues for certain contexts, such as Bass is a type of fish. The latter example
contains only the dependency feature nsubj(type, •) for the word bass, therefore providing no clear
hint towards the fish species, though the context does contain the word fish. To mitigate this problem,
and to leverage the strengths of both dependency-based, as well as co-occurrence-based disambiguation,
we decided to use co-occurrences as complementary, wide-coverage features to the low-coverage, but
high-precision dependency features we outlined above.

5.2 Scalable Aggregation of Context Clues

By explicitly generating sense-tagged training instances for every ambiguous word (by replacing the
cluster word, e.g. eel with the ambiguous word itself, e.g. bass), it is possible to train classifiers for a
small number of ambiguous words. However, it is impractical to do so in an all-words disambiguation
setting in which the goal is to induce a sense inventory and disambiguation model for all relevant nouns,
verbs, adjectives and adverbs found in a specific text corpus. The run time of this approach is high: For
every unique word, it requires scanning though all similar terms in each sense cluster, i.e. 100 words
in our setting, retrieving all sentences containing these words, replacing their occurrences with the
ambiguous target word.

While this approach could prove to be useful for providing additional training data to existing, supervised
WSD systems such as SVM-based disambiguation models, it is not necessary for our purposes. In fact,
we can directly utilize the word-feature co-occurrences that we previously extracted for the computation
of a distributional thesaurus. Obtaining a list of context features specific to a sense cluster of, e.g. bass,
is then a matter of collecting all context features across all words belonging to this sense cluster.

5.3 Scoring Sense Clusters

Given a context C , there are various possibilities to compute a score for each sense cluster si, based on
these context features (Fi). Notable implementations of a scoring function w(si) include:

1. Counting the context overlap: w(si) =
�

�Fi ∩ C
�

�

2. Weighting every overlapping feature individually: w(si) =
∑

f ∈(Fi∩C)π f

3. Approximating the conditional probability of si in the context: w(si) = P(si|C)

While the first is easiest to implement, it suffers from the inability to distinguish between highly descrip-
tive and less descriptive features. For example, the adjective quite may be used to describe fish, however
it is much less of a clue for this sense than the adjectives wet or streamlined when a classifier has to decide
between sense bass.0 (bass music) and bass.2 (fish species). The second scoring function attempts to
overcome this problem, however it still lacks the notion of modeling what we are actually looking for:
the conditional probability of seeing a sense si, given a context C .
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5.4 Naive Bayes Classifier

It is infeasible to directly capture this probability, by counting how often a sense appeared with exactly
this context C . Therefore this probability may in practice only be estimated. Namely, the Naive Bayes
assumption allows a critical simplification: Assuming all features are statistically independent, the prob-
ability of a class (i.e., sense) may be computed using only individual probabilities that depend on single
features.

More formally, assume that we are given a given a word w with K induced senses. Each induced sense sk
with k = 1 . . . K has Ik number of cluster words. Also, every cluster word vk,i with i = 1 . . . Ik has a word
frequency f(vk,i). The total number of word occurrences in the text corpus is N. Lastly, we are given a
context C= c1 . . .cJ of size J.

Using the chain rule and independence assumption that every context feature c j is independent from the
others, we can simplify the joint probability P(sk, C) = P(sk, c1, . . . , cJ) in order to compute P(sk|C):

P(sk|C) =
1

P(C)
P(sk, C) (5.1)

=
1

P(C)
P(sk, c1, . . . , cJ) (5.2)

=
1

P(C)
P(sk) P(c1|sk) P(c2|sk, c1) . . . P(cJ |sk, c1, . . . , cJ−1) (5.3)

=
1

P(C)
P(sk) P(c1|sk) P(c2|sk) . . . P(cJ |sk) (5.4)

=
1

P(C)
P(sk)

J
∏

j=1

P(c j|sk) (5.5)

(5.6)

The WSD task is then equivalent to a word-specific function assigning a sense index to every context:

sensew(c1, . . . , cJ) = argmax
k∈K

P(sk)
J
∏

j=1

P(c j|sk) (5.7)

(5.8)

Estimation of Sense Frequencies And Joint Sense-Feature Frequencies

Since we cannot directly count any sense frequencies f (sk) or joint sense-feature frequencies f (sk, c) for
a context feature c from our text corpus (there are no explicit sense tags), we have to estimate these
frequencies using the information available to us. As outline above, we can utilize an implication of
our syntactic similarities: since two similar words are assumed to be substitutable, we can assume any
occurrence of a cluster word vk,i to be interchangeable with an occurrence of sk. The result is a (merely
theoretical) parallel corpus where any occurrence of vk,i is replaced by a new word sk

∗. This word can
be considered a “distributional extension” of sense sk, and vice versa. The frequency of sk

∗ is then given
by f (sk

∗) =
∑IK

i f (vk,i). The same principle can be applied analogously to determine a joint frequency
f (sk

∗, c).

The probability of sk
∗ is then given by
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P(c|sk
∗) =

P(sk
∗, c)

P(sk
∗)

(5.9)

=
f (sk

∗, c)
f (sk

∗)
(5.10)

=

∑IK
i f (vk,i, c)
∑IK

i f (vk,i)
(5.11)

This relatively simple formulation has a major drawback: It weighs cluster words proportionally to their
frequency, and therefore overly ”prefers” more frequent words. To elaborate, consider this example:
Given a word w with a sense cluster s consisting of exactly two other words v1 and v2. Their frequencies
are f (v1) = 10,000 and f (v2) = 1,000,000.2 Also, they both co-occur with a certain feature c 5000
times, therefore f (v1, c) = f (v2, c) = 5000. Their conditional probabilities, given the feature c are
therefore P(v1|c) = 0.5 and P(v1|c) = 0.005. The resulting cond. probability of s∗, given the feature c,
is therefore P(s∗|c) = (5000+ 5000)/(10,000+ 1,000,000) = 10,000/1,010,000 ≈ 0.01, which is much
closer to P(v2|c) than to P(v1|c). Hence, v2 had a much stronger influence on the probability than v1.

A solution is to normalize the joint frequencies with respect to the word’s frequency, i.e. divide the joint
frequency by the word frequency. This is effectively equal to averaging the conditional probabilities

P(c|vk,i) =
f (vk,i, c)

f (vk,i)
(5.12)

over all cluster words vk,i. Therefore, an alternative is to compute a probability-like score that is based
on the sum of individual probabilities:

P̂(c|sk
∗) = Ik

−1
IK
∑

i

f (vk,i, c)

f (vk,i)
(5.13)

The multiplication with the inverse of Ik is effectively the previous division by the sum of all cluster
word frequencies (equation 5.11): Since they were normalized, all words appear with a theoretical
frequency of 1. The sum of these is therefore equal to Ik, the number of cluster words. Again, note
that this definition is not a true probability anymore (due to the frequency normalization), but rather a
probability-like score. We will therefore in the following be speaking of scores, instead of probabilities,
and denote this by the additional ’hat’ above the score function P̂(·).

This solves the problem of dominating higher frequency cluster words. However, we made another
observation: As we cluster a large number of similar words (we found l = 100 to be a good setting in
this task), there often is a high discrepancy among the similarities of these words to w. Conclusively,
some words are more suited as substitutes for w than others. To capture this in our score function, we
introduced an additional weighting coefficient ωk,i that is equal to the similarity between vk,i and w.
The factor Ik

−1 is therefore replaced by the division of the sum of all these weights:

2 To be mathematically exact, these frequencies must be set relative to the total number of word and word-feature obser-
vations Nw and Nwc , resp. (cf. equations 5.19 and 5.20). However, for simplification purposes of this illustrative example,
we drop this constant factor here, which does not effect the illustrated problem.
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P̂(c|sk
∗) = Ωk

−1
IK
∑

i

ωk,i

f (vk,i, c)

f (vk,i)
(5.14)

= Ωk
−1

IK
∑

i

ωk,i P(c|vk,i) (5.15)

Ωk =
IK
∑

i

ωk,i (5.16)

The score resembling the prior probability of each sense is computed in a similar manner, again taking
into account the weighting coefficient ωk,i. The actual probability of each word vk,i is simply equal to its
frequency in the corpus:

P̂(sk
∗) = Ωk

−1
IK
∑

i

ωk,i P(vk,i) (5.17)

= Ωk
−1

IK
∑

i

ωk,i f (vk,i) (5.18)

Finally, frequencies can be computed by counting the number of word occurrences, and word-feature
co-occurrences, and dividing these by the total number of such observations (Nw and Nwc, resp.):

f (vk,i) =
count(vk,i)

Nw
(5.19)

f (vk,i, c) =
count(vk,i, c)

Nwc
(5.20)

The Zero-Count Problem

According to Zipf’s law, most words in a corpus appear very rarely. Conclusively, the chance of seeing
new words in before unseen text is high. Unseen context words will, however, result in f (sk, c j) = 0,
which would effectively out-rule every word sense with which it wasn’t seen in the training corpus.
Since a word sense may always appear in partly new contexts, without its meaning changed, this is not
an adequate way to deal with unseen words to disambiguate word senses.

A possible solution is to add smoothing to P̂(c|sk
∗). We will refer to this value as α, which results in an

alternative definition our score function:

P̂α(c|sk
∗) = P̂(c|sk

∗) +α (5.21)

= Ωk
−1

IK
∑

i

ωk,i

f (vk,i, c)

f (vk,i)
+α (5.22)
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P̂(sk
∗|C)

Naives Bayes
P̂(sk

∗)
P(C)

∏J
j=1 P̂α(c j|sk

∗)

Maximum probability 1
P(C) max

j=1...J
P̂(sk

∗|c j)

Average probability 1
P(C) J

∑J
j=1 P̂(sk

∗|c j)

Table 5.4: Functions imitating the conditional probability of the distributional extension of sense sk. All
three functions resemble a joint probability (given the context C) based on individual proba-
bilities (given a context word c j).

5.5 Merging of “fuzzy” Clusters

A fine-grained clustering is often beneficial as it allows to distinct between more different senses. In
some cases these finer-grained senses are relatively easy to distinguish using their context clues, and thus
increase WSD performance. However, in individual cases, sense distinctions might become too vague,
even if they are correct. For example, in a specific fine-grained clustering setting, the word magazine
is distinguished into the magazine as a company (the abstract sense), a journalist (the magazine as
an individual actor) and a newspaper/journal (the magazine’s publication). While with high-precision
context clues such as dependencies, a distinction in context might be possible, it will be relatively difficult
to do so with only co-occurrences as context clues. The result is a decrease in WSD performance.

A possible solution is to optimize a clustering for a specific type of context features, e.g. co-occurrences
in a bag-of-words model. Similar to features characterizing individual words, aggregated co-occurrences
can characterize a whole cluster as well. Analogously to computing distributional similarities between
words, this can be used to compute similarities between clusters. Clusters that are too similar, with
respect to e.g. their co-occurrences, may be merged. This comes at a cost of sense recall (due to fewer
sense distinctions) in a WSD task, but usually showed to have a more positive influence on WSD preci-
sion. Notably, the coarse-grained result of merging a fine-grained clustering often differs from a “raw”
coarse-grained clustering with a similar number of senses per word.

Word s Cluster words

magazine 0 label:0.123 program:0.122 company:0.122 . . .

magazine 1 publisher:0.119 critic:0.098 blogger:0.097 . . .

magazine 2 newspaper:0.323 publication:0.285 journal:0.264 . . .

Table 5.5: Example fine-grained MCL clustering of magazine. Numbers denote similarity of cluster words
to magazine.

5.6 Pseudocode & Example

Algorithm 5 lists the pseudocode of an implementation of the context clue aggregation phase. Note that
for better readability, we simplified the mathematically exact notation used in Section 5.4. Input to this
algorithm are a target word w, sense clusters for this specific word, counts extracted from a background
corpus, and word similarities from a Distributional Thesaurus. The resulting output is a list of scored
context clues.
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For each sense k of w, and for each context clue c, the algorithm determines a score resembling a
likelihood of seeing sense k given the context c. These are exactly the context clue scores used for
disambiguation. To compute them, it iterates over all cluster words and determines a weighted average
of all conditional probabilities P(c|s) for each cluster word s. P(c|s) here is the conditional probability of
seeing context feature c given word s, according to a background corpus.

Algorithm 5: Algorithm performing context clue aggregation and scoring.
input : w // target word

S1, ..., SK // sense clusters of a specific target word
C // set of all context features
f (w) // word frequencies
f (c) // context feature frequencies
f (w, c) // word-context joint frequencies
sim(w1, w2) // word similarities

output: sets D1, ..., DK of scored context clues

1 for k = 1...K do
2 foreach c ∈ C with f (s, c)> 0 do
3 Pk,c ← 0 // score of sense k for context clue c
4 simtotal← 0
5 foreach s ∈ Sk do

6 Pk,c ← Pk,c + sim(w, s) f (s, c)
f (s) // add weighted P(c|s)

7 simtotal← simtotal + sim(w, s)
8 end
9 Pk,c ← Pk,c/simtotal // weighted average of all P(c|s)

10 Add (c, Pk,c) to Dk

11 end
12 end

To illustrate the aggregation and scoring of context clues using an example, consider Table 5.6 which
lists two possible, simplified sense clusters of the word bass. In the following, we want to disambiguate
bass in the (illustrative) context grilled bass. In this case, the cluster words in Table 5.6 alone do not
provide any useful disambiguation hints. Hence, we need to extract meaningful hints, i.e. context
clues, from somewhere else. In our system, this is done using word-feature counts of the cluster words
extracted from a background corpus3. These features may themselves be other words appearing in the
context (i.e. word co-occurrences) or dependency features. However, this simplified example uses word
co-occurrences for disambiguation only. Exemplary word counts and word-feature counts are listed in
Table 5.7.

Sense Cluster words
bass.0 fish:0.7, eel:0.4
bass.1 music:0.5, jazz:0.3

Table 5.6: Simplified example sense clusters for word bass.

Using these counts, and assuming that our background corpus consisted of a total of N = 1000000
words, we can compute prior scores for each sense and conditional scores for each sense given a specific
feature4:

3 In fact, the relevant counts are the same that are used in the sense induction step.
4 For a detailed explanation of the involved equations, refer to Section 5.4
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Word Context Count
fish grill 210
eel grill 90

music grill 20
jazz grill 48

Word Count
fish 3210
eel 603

music 8903
jazz 5329

Table 5.7: Exemplary word and word-feature counts for cluster words from Table 5.6

Pbass.0 =

�

0.7 ∗
count(fish)

N
+ 0.4 ∗

count(eel)
N

�

/(0.7+ 0.4)

=
�

0.7 ∗
3210

1000000
+ 0.4 ∗

603
1000000

�

/1.1

= 0.002

Pbass.1 =

�

0.5 ∗
count(music)

N
+ 0.3 ∗

count(jazz)
N

�

/(0.5+ 0.3)

=
�

0.5 ∗
8903

1000000
+ 0.3 ∗

5329
1000000

�

/0.8

= 0.007

Pbass.0, grill =
�

0.7 ∗ P(grill|fish) + 0.4 ∗ P(grill|eel)
�

/(0.7+ 0.4)

=
�

0.7 ∗
210

3210
+ 0.4 ∗

14
603

�

/1.1

= 0.050

Pbass.1, grill =
�

0.5 ∗ P(grill|music) + 0.3 ∗ P(grill|jazz)
�

/(0.5+ 0.3)

=
�

0.5 ∗
20

8903
+ 0.3 ∗

48
5329

�

/0.8

= 0.005

With these scores, we can proceed to compute an overall context score for each sense. This is done by
multiplying the prior sense score and the conditional sense scores for each feature, in the style of a Naive
Bayes classifier. In essence, this assumes the computed scores to be approximations of the respective
prior probabilities and conditional probabilities5. The overall scores of each sense for this context are
thus given by

scorebass.0(”grilled bass”) = Pbass.0 ∗ (Pbass.0, grill +α)
= 0.002 ∗ (0.050+ 0.00001) = 0.000100

scorebass.1(”grilled bass”) = Pbass.1 ∗ (Pbass.1, grill +α)
= 0.007 ∗ (0.005+ 0.00001) = 0.000035

where α is a smoothing added to avoid context clue scores of 0 causing an overall sense score of 0.
According to these scores, bass.1 is therefore the best match for the context grilled bass.

5 Mathematically speaking, this is in fact not a valid way to estimate the joint conditional probability of a sense given a
context. However, it is entirely sufficient for our purposes of scoring senses according to their appropriateness in a given
context.
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To sum up, we in this chapter described a novel approach to assign senses from an induced sense inven-
tory in context. For this we used context features of cluster words, extracted from a large text corpus.
A scoring method was proposed that computes an overall score for a sense cluster and a given context
using these context features.
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6 Evaluation of Word Similarities
Quality of the Distributional Thesaurus (DT) has a direct influence on the quality of the WSI outcome.
For this reason, several simple evaluations were performed to assess the quality of the computed thesauri.
The most essential questions with a high impact on the thesaurus quality are the following:

1. How many features should be used per word?

2. Which feature significance measure should be chosen?

3. Which cutoff parameters reduce noise "well enough" without sacrificing too much data?

6.1 Pseudo-Sense Injection

One of multiple possible criteria for a high-quality DT is the reduction of “noise” to a minimum. We
will here refer to “noise”, in a strict sense, as errors in word-feature frequencies that are produced
by inaccurate pre-processing results during tokenization, POS-tagging, lemmatization, or parsing. In
a wider sense, also word-feature frequencies that are relatively low can be considered noisy as they
are equivalent to only a few random samples from the underlying theoretical probability distribution. A
possible solution that we will follow here is to use cut-off (threshold) parameters that allow to select only
a subset of, ideally less noisy, features based on different criteria. Intuitively, we should be able to achieve
a certain amount of noise reduction just by using thresholds for a minimum word-feature frequency. Also,
since it was shown earlier that a high number of features per word overly prefers frequent words over
less frequent words, we are interested in quantifying the effect of using fewer features on noise in word
similarities. In fact, using less features per word also dramatically improves the processing speed of our
similarity computation (cf. Section 3.5).

To be able to measure noise in a specific DT parameter setting, we performed a simple test that splits
every word into two pseudo-senses.1 To do so, every word occurrence in the reference corpus is randomly
replaced by a placeholder for either one or the other “pseudo” sense. This is comparable to splitting the
reference corpus into two equally large parts, and comparing the resulting thesauri. Given two similar
words, the difference between the resulting similarities (two instead of one) allows quantification of
specific types of errors.

The assumption here is the following: If there is a high difference between thesauri computed from
both halves of the reference corpus, then the computed similarity scores do not capture qualities that
are representative to these words well enough. The main objective of the evaluation is to minimize this
error.

This can be compared to experiments of Jurgens et. al. in Measuring the Impact of Sense Similarity on
Word Sense Induction [Jurgens and Stevens, 2011]. To assess the word sense discrimination capabilities
of their system, they formed pseudo words by joining two different words into one and replacing all
their occurrences with this pseudo word. The word sense induction and disambiguation model then
had to determine which word was originally meant in a specific context. In our evaluation, instead of

1 This can be compared to the pseudo words that Gale et. al. created by combining two semantically unrelated words into
one, e.g. ability/mining [Gale et al., 1992]. They used these as unsupervised means to evaluate the capability of WSD
systems to correctly split instances of these pseudo word into the two original subsets. In essence, we here perform the
inverse of this operation: We create two pseudo senses from one single word, and evaluate the ability of our system to
group these into one sense cluster.
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joining two words into one, we split one word into two. As opposed to the latter evaluation, here the
word sense similarity model has to determine that two words are equal, instead of determining that they
are distinct. It should be noted that these two evaluations share similar ideas, but are fundamentally
different. One such difference is that our evaluation is independent of the WSD process, and therefore
allows to evaluate the WSI process in an isolated manner.

To compute this similarity error between a word v and a similar word w, with pseudo senses w1 and w2,
we can use the absolute error

eabs =
�

�sim(v , w1)− sim(v , w2)
�

� (6.1)

or a relative error

erel =

�

�sim(v , w1)− sim(v , w2)
�

�

max
�

sim(v , w1), sim(v , w2)
� (6.2)

The result is the total error eabs and erel , resp., averaged over all words in the thesaurus. A “perfect” DT
will have e{abs,rel} = 0. For example, tablet1 (the first pseudo sense of “tablet”) may have the similar
words (phone1, 0.35) and (phone2, 0.39), which yields an absolute error of eabs = 0.39 − 0.35 = 0.04
or a relative error of erel = (0.39− 0.35)/max(0.39,0.35) = 0.04/0.39 ≈ 0.1 for this particular similar
word.

However, there is one problem with using solely this measure: It is trivial to construct a DT that receives a
perfect eav g , yet is completely useless: This is e.g. possible by defining sim(w1, w2) for every combination
of all words to be 1, or any other value. Similar effects will be achieved by thesauri that assign only
relatively low similarity scores (e.g. due to too many cutoffs) to decrease the absolute error, or only high
similarity scores to decrease the relative error. To compensate this, we added a second measure that
signals how well the computed DT is able to discriminate between different similar words: Given a word
and a list of N similar words w1..wN , sorted in descending order by their similarity score, this measure
is defined to be

dav g =
∑N

i=2(wi−1 −wi)/wi−1,

which essentially is the average relative difference between any two terms appearing as “neighbors” in
the word similarity list. A higher score means that the DT discriminates more between individual similar
words. The aforementioned trivial similarity scoring functions that would “fool” our error measure and
result in a perfect eav g ≈ 0 will receive a penalty in the form of a low discriminative score dav g ≈ 0. An
ideal parameter setting therefore yields a DT with a low average error and a high average discriminative
score.

Tables 6.1a and 6.1b show that:

1. A smaller value of twf in almost all tested cases outperforms larger values of twf .

2. The differences between twf = 10 and twf = 20 are negligible

3. For p >= 500, increasing tw from 10,000 to 100,000 has a negligible effect on eav g but signifi-
cantly increases the DT’s discriminative capabilities
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(a) w=10,000
twf p erel drel

2 200 0.3956 0.0753
2 500 0.3446 0.0806
2 1000 0.3069 0.0776
5 200 0.4083 0.0808
5 500 0.3577 0.0726
5 1000 0.3273 0.0629

10 200 0.4247 0.0730
10 500 0.3780 0.0591
10 1000 0.3459 0.0468
20 200 0.4245 0.0730
20 500 0.3778 0.0591
20 1000 0.3459 0.0468

(b) w=100,000
twf p erel drel

2 200
2 500
2 1000
5 200 0.4459 0.1259
5 500 0.3692 0.0983
5 1000 0.3279 0.0781

10 200 0.4370 0.1111
10 500 0.3798 0.0770
10 1000 0.3443 0.0564
20 200
20 500
20 1000

Table 6.1: Table showing influence of different parameters on eav g and dav g

4. A higher p decreases the relative error eav g , but also decreases the discriminative score dav g . Since
a higher p was earlier shown to prefer higher-frequency words over lower-frequency words, a good
trade-off must be found especially for this parameter.

While these numbers allow conclusions on the impact of different cut-off parameters on the DT quality,
there is no proof that higher or lower values for dav g or eav g , resp., do in fact yield a “better” DT.
Therefore, these values are only one of many quality indicators, and DTs that performed worse in this
test might still perform better in specific application scenarios.

6.2 Previous Evaluations on Quality of Distributional Thesauri

The effect of different parameter settings on the quality of distributional thesauri has been studied before.
Biemann et. al. [Biemann and Riedl, 2013, p. 22] analyzed the effect of the chosen significance measure
and the value of p in respect to the WordNet Path Similarity of 1000 infrequent nouns from the computed
thesaurus. They concluded that p = 100 produces best for 1M sentences, p = 300 for 10M sentences and
p = 1000 for 120M sentences. Differences are small though, so they recommend p = 500 to p = 1000
for “very large corpora”. Also, they found that LMI produces best results when the thesaurus is compared
to WordNet-based similarities. Noticeably, PMI showed to rank infrequent similar words higher, allowing
for better discovery of infrequent senses. However, overall DT quality with LMI as significance measure
was better.

In this chapter, we evaluated the effect of two different cut-off parameters for distributional features
on noise in a Distributional Thesaurus. By splitting words up into two pseudo-senses, we were able to
measure noise as a discrepancy of similarities received for these two (identical) senses. Surprisingly, we
found that a low word-feature count threshold twf = 2 yields the lowest overall noise when only the
most significant features are kept per word. We also found that in our setting, the maximum number
of features p per word should be between 500 and 1000, as less features increase noise significantly.
More features, on the other hand, reduce the ability of the Distributional Thesaurus to discriminate
word similarities. Since we are also interested in evaluating the quality of the actual induced senses,
Chapter 7 will discuss two different evaluations for WSID systems.
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(a) p = 200
word sim. freq.

football 1.0 412441
soccer 0.495 51527
hockey 0.48 72730

basketball 0.455 108596
rugby 0.415 44181

baseball 0.39 91575
lacrosse 0.365 8199
cricket 0.35 63244
tennis 0.34 48840

volleyball 0.32 20794

(b) p = 1000
word sim. freq.

football 1.0 412441
basketball 0.43 108596

hockey 0.405 72730
soccer 0.394 51527

baseball 0.361 91575
rugby 0.327 44181

volleyball 0.306 20794
athletics 0.292 20278
cricket 0.29 63244
lacrosse 0.285 8199

Table 6.2: Similar words to football. Clearly visible is the stronger correlation of word frequency to word
similarity with p = 1000 vs. p = 200. In this case, this leads to soccer receiving an (intuitively
unfair) penalty due to its relatively low frequency.
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(a) Freq. distribution of similar words of cityFreq. distribution of similar words of "city"
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Similarity score sim(''city'', w)
0.000 0.150 0.300 0.450 0.600

p = 1000 p = 100

p = 1000 (LMI) p = 100 (LMI)

1 1629994 1 1629994

0.495 884232 0.51 884232

0.308 74224 0.32 769733

0.301 769733 0.23 175464

0.287 80405 0.22 80405

0.262 92130 0.2 603699

0.243 175464 0.2 38703

0.238 26100 0.2 7594

0.231 1372961 0.19 980707

0.212 527377 0.18 10407

0.21 603699 0.17 1810

0.209 766792 0.17 271613

0.208 369309 0.17 26100

0.208 165716 0.16 92130

0.197 95806 0.16 4417

0.194 173745 0.15 3900

0.193 317278 0.15 87723

0.193 63356 0.15 1024367

0.193 190466 0.15 5746

0.192 33827 0.15 12648

0.192 100619 0.15 33827

0.192 170708 0.15 170708

0.19 35304 0.15 610284

0.188 87723 0.15 165716

0.188 38703 0.15 74224

0.186 173590 0.14 2352

0.186 980707 0.14 173590

0.184 271613 0.14 317278

0.182 65084 0.14 766792

0.179 56219 0.14 8961

0.176 54407 0.14 611470

0.176 25257 0.14 65084

0.172 1024367 0.14 197383

0.171 611470 0.13 206021

0.171 197383 0.13 69564

0.17 206021 0.13 4708

0.166 2708671 0.13 5880

0.165 610284 0.13 35304

0.164 77996 0.13 355077

0.162 60941 0.13 26231

0.162 51553 0.13 5487

0.162 268737 0.13 25472

0.161 266772 0.13 4538

0.158 137192 0.13 27603

0.154 31665 0.12 3649

0.147 34803 0.12 1372961

0.146 96949 0.12 8598

0.141 69564 0.12 7683

0.141 77755 0.12 3705

0.137 47993 0.12 4920

0.137 61422 0.12 19296

0.136 753026 0.12 13917

0.136 181150 0.12 6135

0.136 36789 0.12 3721

0.136 33419 0.12 51553

0.133 544029 0.12 5569

0.133 42296 0.12 7996

0.133 179444 0.12 3469

0.132 156539 0.12 100619

0.132 1316183 0.12 9313

0.128 259708 0.12 164905

0.128 243186 0.12 19755

0.128 132646 0.12 20027

0.127 41227 0.11 3383

0.126 70154 0.11 3732

0.125 876740 0.11 60941

0.124 200711 0.11 5301

0.124 355077 0.11 9660

0.123 262841 0.11 4998

0.123 105389 0.11 24927

0.122 81880 0.11 6368

0.122 483684 0.11 173745

0.122 1030758 0.11 42296

0.121 2024187 0.11 12277

0.12 76678 0.11 239924

0.12 239924 0.11 12988

0.12 50657 0.11 15466

0.12 23261 0.11 5132

0.119 27567 0.11 12074

0.119 1433477 0.11 291224

0.118 948605 0.11 5820

0.118 164905 0.11 10389

0.117 18961 0.11 6416

0.117 29352 0.11 23261

0.116 73229 0.11 72908

0.116 167573 0.1 3263

0.116 13867 0.1 11506

0.116 63323 0.1 10040

0.114 25238 0.1 7176

0.113 92164 0.1 6657

0.113 18948 0.1 32601

0.113 125545 0.1 266772

0.113 111382 0.1 10161

0.112 26927 0.1 17841

0.112 291224 0.1 81880

0.112 22669 0.1 63356

0.111 311184 0.1 3710

0.111 64742 0.1 33705

0.11 373273 0.1 6349

0.109 56614 0.1 140627

0.109 1096112 0.1 4104

0.109 248123 0.1 2486

0.108 1294175 0.1 25257

0.108 32315 0.1 167573

0.108 155267 0.1 4764

0.108 29603 0.1 5691

0.107 1129345 0.1 55214

0.107 19755 0.1 36789

0.106 200767 0.1 3001

0.106 42397 0.1 6480

0.106 1102543 0.1 41227

0.106 88496 0.1 56219

0.106 127923 0.1 6723

0.106 53002 0.1 7486

0.106 114675 0.1 2831

0.105 67566 0.1 6283

0.104 28412 0.1 13521

0.104 213868 0.1 8022

0.104 13058 0.1 4974

0.103 55716 0.09 3179

0.103 180506 0.09 4716

0.103 150867 0.09 7174

0.103 64988 0.09 8711

0.103 104259 0.09 20768

0.103 39425 0.09 7164

0.102 159963 0.09 544029

0.102 26279 0.09 1633

0.102 393531 0.09 95806

0.102 501885 0.09 3020

0.1 46868 0.09 180506

0.099 229297 0.09 9796

0.099 35556 0.09 47993

0.099 158182 0.09 6084

0.099 25480 0.09 3984

0.099 227999 0.09 10882

0.099 72908 0.09 4387

0.098 45997 0.09 1219249

0.098 296914 0.09 3763

0.097 263868 0.09 16558

0.097 294070 0.09 2694

0.097 81027 0.09 1999

0.097 20027 0.09 3116

0.096 227056 0.09 3495

0.096 56717 0.09 5372

0.096 91765 0.09 5331

0.096 32636 0.09 5290

0.095 754277 0.09 10058

0.095 97014 0.09 2024187

0.095 35508 0.09 15193

0.095 75061 0.09 29352

0.095 55214 0.09 483684

0.095 23583 0.09 5081

0.094 22305 0.09 876740

0.094 306907 0.09 3370

0.094 130338 0.09 179444

0.094 66298 0.09 43843

0.094 27603 0.09 11691

0.093 20768 0.09 1316183

0.093 28389 0.09 100625

0.093 89258 0.09 14958

0.093 223519 0.09 11368

0.092 145800 0.08 34803

0.092 29530 0.08 5352

0.092 51203 0.08 8032

0.092 23838 0.08 3855

0.092 43027 0.08 2588

0.092 70258 0.08 3519

0.092 30874 0.08 374287

0.092 127352 0.08 1294175

0.092 25472 0.08 4571

0.092 73689 0.08 7833

0.092 57942 0.08 96949

0.092 739485 0.08 93679

0.091 38229 0.08 3740

0.091 320911 0.08 4724

0.09 32601 0.08 1096112

0.09 36659 0.08 18948

0.09 55456 0.08 16078

0.09 34187 0.08 8867

0.09 23316 0.08 79486

0.09 104119 0.08 26247

0.089 66185 0.08 22305

0.089 72032 0.08 8436

0.089 34140 0.08 15245

0.089 56865 0.08 12442

0.089 356170 0.08 3522

0.088 83842 0.08 6480

0.088 77629 0.08 7662

0.088 190276 0.08 4958

0.088 84837 0.08 158182

0.088 100625 0.08 3338

0.087 172083 0.08 5992

0.087 30019 0.08 4625

0.087 32058 0.08 1309

0.087 33705 0.08 1467

0.087 186773 0.08 5090

0.087 140627 0.08 56865

0.087 34666 0.08 268737

0.086 132901 0.08 3900

0.086 418899 0.08 28315

0.086 229002 0.08 356170

0.086 43847 0.08 5302

0.085 45765 0.08 17869

0.085 44950 0.08 748547

0.085 233705 0.08 61422

0.085 28985 0.08 1129345

0.085 105248 0.08 3168

0.085 26141 0.08 31435

0.085 69929 0.08 30874

0.084 24927 0.08 125545

0.084 223463 0.08 3988

0.084 336202 0.08 5164

0.084 96169 0.08 166851

0.084 9490 0.08 18998

0.084 96743 0.08 3641

0.083 48752 0.08 418899

0.083 826012 0.08 3171

0.083 525026 0.08 2717

0.083 20701 0.08 28761

0.083 50284 0.08 2708671

0.083 39060 0.08 301240

0.083 272836 0.08 2954

0.082 62479 0.08 3258

0.082 200968 0.08 77996

0.082 100565 0.08 14669

0.082 36758 0.08 6973

0.082 105682 0.07 53453

0.082 443794 0.07 6059

0.082 129073 0.07 163024

0.082 106449 0.07 73229

0.082 25594 0.07 4149

0.082 30992 0.07 7368

0.082 18998 0.07 45765

0.081 53453 0.07 4012

0.081 18077 0.07 22166

0.081 216482 0.07 6153

0.081 1219249 0.07 4388

0.081 39052 0.07 6599

0.081 638231 0.07 14918

0.081 1466559 0.07 25548

0.081 146800 0.07 5607

0.08 477311 0.07 28389

0.08 41181 0.07 21896

0.08 111954 0.07 200711

0.08 173414 0.07 156539

0.08 216735 0.07 31623

0.08 46428 0.07 3991

0.08 476123 0.07 3992

0.08 30828 0.07 5994

0.08 236722 0.07 826012

0.079 163024 0.07 2752

0.079 22166 0.07 13038

0.079 26023 0.07 42018

0.079 43723 0.07 4641

0.079 185779 0.07 7303

0.079 21055 0.07 21283

0.079 190363 0.07 31665

0.079 26503 0.07 150867

0.079 81097 0.07 46868

0.079 748547 0.07 3292

0.079 44120 0.07 13957

0.079 166851 0.07 1780

0.079 40963 0.07 4394

0.079 75877 0.07 7934

0.079 427320 0.07 2044

0.079 13521 0.07 6714

0.078 72890 0.07 229297

0.078 51341 0.07 36673

0.078 168988 0.07 3597

0.077 24997 0.07 18961

0.077 56022 0.07 8625

0.077 87995 0.07 29530

0.077 195205 0.07 6761

0.077 502758 0.07 13749

0.077 741606 0.07 3889

0.077 72448 0.07 5401

0.076 93679 0.07 2026

0.076 29685 0.07 5919

0.076 17841 0.07 216735

0.076 88910 0.07 3076

0.076 40715 0.07 2555

0.076 542377 0.07 38229

0.076 23313 0.07 4265

0.076 22408 0.07 4930

0.076 43843 0.07 6253

0.075 46379 0.07 45997

0.075 12667 0.07 3533

0.075 40197 0.07 213868

0.075 276954 0.07 23838

0.075 18047 0.07 259708

0.074 185159 0.07 11922

0.074 374287 0.07 5870

0.074 13420 0.07 6338

0.074 42561 0.07 72890

0.074 36042 0.07 2494

0.074 47076 0.07 7772

0.074 27348 0.07 6766

0.074 57367 0.07 3961

0.074 18449 0.07 185779

0.074 29085 0.07 70258

0.073 19432 0.07 6570

0.073 18435 0.07 21055

0.073 55299 0.07 296914

0.073 282617 0.07 2729

0.072 338015 0.07 96169

0.072 878644 0.07 4226

0.072 70122 0.07 320911

0.072 28693 0.07 33419

0.072 31368 0.07 5494

0.072 781679 0.07 127923

0.072 59038 0.07 40197

0.072 295460 0.07 369309

0.072 35040 0.07 3637

0.072 82455 0.07 23313

0.072 24003 0.07 4393

0.072 14669 0.07 30828

0.071 138811 0.07 3991

0.071 51653 0.07 5463

0.071 18413 0.07 11135

0.071 33273 0.07 527377

0.071 22165 0.07 3373

0.071 89955 0.07 741606

0.071 35481 0.07 8914

0.071 57112 0.07 7154

0.071 23498 0.07 4876

0.071 15466 0.07 3527

0.071 32085 0.07 5455

0.071 39039 0.07 2668

0.071 53287 0.07 1208

0.071 41202 0.07 3215

0.071 16256 0.07 14948

0.07 25548 0.07 25480

0.07 90249 0.07 248123

0.07 58374 0.07 2372

0.07 13917 0.07 1239

0.07 68357 0.07 2258

0.07 18739 0.07 1941

0.07 62751 0.07 1860

0.07 177082 0.07 3788

0.07 1121333 0.07 2791

0.07 597399 0.07 15701

0.069 709493 0.07 168988

0.069 79847 0.07 3253

0.069 93875 0.07 22669

0.069 12083 0.07 2133

0.069 26247 0.07 17293

0.069 6349 0.07 2224

0.069 36673 0.07 4295

0.069 34581 0.07 1433477

0.069 30104 0.07 132646

0.069 288787 0.06 8608

0.069 21521 0.06 7198

0.069 136608 0.06 5947

0.069 27011 0.06 6826

0.069 17599 0.06 62479

0.069 44707 0.06 7858

0.068 42018 0.06 3974

0.068 36508 0.06 14529

0.068 34986 0.06 4968

0.068 25850 0.06 4298

0.068 16362 0.06 789593

0.068 10882 0.06 5877

0.068 129383 0.06 9189

0.068 23301 0.06 18077

0.068 254729 0.06 14038

0.068 57902 0.06 5823

0.068 48858 0.06 6474

0.068 351314 0.06 3922

0.068 21501 0.06 3577

0.068 26016 0.06 1849

0.068 468469 0.06 477311

0.068 42592 0.06 5450

0.068 56378 0.06 4364

0.068 19096 0.06 2909

0.068 29270 0.06 8674

0.068 60220 0.06 2314

0.067 268581 0.06 2167

0.067 37366 0.06 26023

0.067 34427 0.06 59390

0.067 41185 0.06 77755

0.067 789593 0.06 6743

0.067 31623 0.06 7490

0.067 59390 0.06 479046

0.067 22074 0.06 7382

0.067 30667 0.06 753026

0.067 79735 0.06 90249

0.067 54523 0.06 28161

0.067 269534 0.06 3488

0.067 86559 0.06 7520

0.067 87824 0.06 61579

0.067 46745 0.06 251635

0.067 35104 0.06 754277

0.067 358871 0.06 21745

0.067 40673 0.06 4355

0.067 391616 0.06 27650

0.067 20660 0.06 26927

0.067 301240 0.06 8480

0.067 15169 0.06 3643

0.067 632319 0.06 33412

0.066 559657 0.06 27078

0.066 63838 0.06 25850

0.066 36596 0.06 6686

0.066 62926 0.06 31168

0.066 50664 0.06 50664

0.066 51332 0.06 32058

0.066 305160 0.06 16569

0.066 851164 0.06 5831

0.066 19186 0.06 20024

0.066 59408 0.06 9430

0.066 31435 0.06 4802

0.066 99946 0.06 5960

0.066 178977 0.06 3672

0.066 1440652 0.06 8344

0.066 25538 0.06 41181

0.066 197069 0.06 3100

0.066 205996 0.06 82097

0.066 17293 0.06 186773

0.065 234411 0.06 305160

0.065 339291 0.06 1692

0.065 133207 0.06 4017

0.065 92227 0.06 2097

0.065 243532 0.06 4792

0.065 424303 0.06 3321

0.065 50845 0.06 3236

0.065 45812 0.06 4179

0.065 79254 0.06 10763

0.065 50879 0.06 27899

0.065 242387 0.06 58578

0.065 39628 0.06 4119

0.065 73575 0.06 5097

0.065 949973 0.06 15406

0.065 38741 0.06 2565

0.065 23669 0.06 4549

0.065 33183 0.06 4324

0.064 139397 0.06 20701

0.064 26140 0.06 1102543

0.064 33254 0.06 3585

0.064 176072 0.06 294070

0.064 43575 0.06 2721

0.064 251635 0.06 282617

0.064 19134 0.06 51203

0.064 57795 0.06 4931

0.064 222967 0.06 2122

0.064 84437 0.06 12094

0.064 83078 0.06 75061

0.064 79802 0.06 37566

0.064 102591 0.06 11192

0.064 70076 0.06 4504

0.064 36756 0.06 5682

0.064 13422 0.06 3628

0.064 154614 0.06 28039

0.064 311545 0.06 46428

0.064 42589 0.06 6866

0.064 34237 0.06 43027

0.064 52073 0.06 373273

0.063 95588 0.06 4346

0.063 432481 0.06 2130

0.063 64077 0.06 3443

0.063 47551 0.06 6970

0.063 16569 0.06 55456

0.063 23453 0.06 6058

0.063 67914 0.06 1968

0.063 68546 0.06 3767

0.063 49922 0.06 351314

0.063 31430 0.06 3248

0.063 47899 0.06 190363

0.063 29568 0.06 3889

0.063 29306 0.06 71711

0.063 83568 0.06 3650

0.062 375167 0.06 28985

0.062 32042 0.06 9490

0.062 67920 0.06 4174

0.062 757235 0.06 7694

0.062 10407 0.06 37991

0.062 35556 0.06 177082

0.062 54345 0.06 4217

0.062 44914 0.06 270259

0.062 163186 0.06 7621

0.062 23632 0.06 2699

0.062 20224 0.06 13839

0.062 25730 0.06 70154

0.062 36291 0.06 88496

0.062 71711 0.06 6103

0.062 38788 0.06 34187

0.062 729853 0.06 22389

0.062 70654 0.06 14065

0.062 107092 0.06 3481

0.062 37803 0.06 502758

0.062 66167 0.06 70076

0.062 28512 0.06 9011

0.061 183900 0.06 5368

0.061 63874 0.06 4841

0.061 36081 0.06 27504

0.061 79486 0.06 26141

0.061 27248 0.06 5110

0.061 26629 0.06 2947

0.061 141584 0.06 16491

0.061 12442 0.06 19291

0.061 49361 0.06 11325

0.061 80289 0.06 18449

0.061 19016 0.06 1036

0.061 849711 0.06 4994

0.061 541189 0.06 13058

0.061 14595 0.06 6773

0.061 12988 0.06 3370

0.061 25535 0.06 6833

0.061 68577 0.06 4891

0.061 18996 0.06 20524

0.061 56664 0.06 12098

0.061 198320 0.06 20677

0.061 27766 0.06 20393

0.061 21945 0.06 2806

0.061 81903 0.06 190466

0.061 61290 0.06 5113

0.061 38001 0.06 4806

0.06 71440 0.06 3035

0.06 24051 0.06 2517

0.06 101098 0.06 2530

0.06 448090 0.06 4531

0.06 28672 0.06 15197

0.06 88454 0.06 6272

0.06 915872 0.06 104119

0.06 46580 0.06 1574

0.06 35558 0.06 427320

0.06 813124 0.06 6643

0.06 24633 0.06 2273

0.06 57185 0.06 4978

0.06 26027 0.06 23583

0.06 33099 0.06 18047

0.06 10058 0.05 1267

0.06 213665 0.05 6770

0.06 349316 0.05 6599

0.06 147428 0.05 13543

0.059 18624 0.05 11925

0.059 61579 0.05 2195

0.059 87378 0.05 183900

0.059 599684 0.05 6975

0.059 89263 0.05 3433

0.059 72464 0.05 4440

0.059 19799 0.05 15780

0.059 33383 0.05 3159

0.059 23852 0.05 15881

0.059 14052 0.05 3257

0.059 35884 0.05 3471

0.059 39370 0.05 3798

0.059 36241 0.05 29344

0.059 8987 0.05 2612

0.059 228896 0.05 17315

0.059 53255 0.05 17578

0.058 29344 0.05 7932

0.058 102135 0.05 9089

0.058 65692 0.05 54407

0.058 290469 0.05 13814

0.058 62383 0.05 20605

0.058 27558 0.05 145800

0.058 34060 0.05 4065

0.058 40374 0.05 3601

0.058 149987 0.05 150021

0.058 32599 0.05 5726

0.058 582658 0.05 7457

0.058 80734 0.05 19568

0.058 178419 0.05 4207

0.058 49047 0.05 8580

0.058 38434 0.05 1859

0.058 496501 0.05 70122

0.057 22857 0.05 83842

0.057 232283 0.05 45016

0.057 18051 0.05 7971

0.057 53198 0.05 24051

0.057 33412 0.05 12348

0.057 50268 0.05 17898

0.057 38694 0.05 3933

0.057 83706 0.05 12219

0.057 41585 0.05 7882

0.057 55509 0.05 6228

0.057 29665 0.05 3517

0.057 139721 0.05 4958

0.057 23245 0.05 5264

0.057 22876 0.05 78096

0.057 44352 0.05 8577

0.057 451874 0.05 65692

0.057 29304 0.05 6368

0.057 73994 0.05 11016

0.057 15895 0.05 4504

0.057 46396 0.05 56717

0.057 523025 0.05 7459

0.057 16118 0.05 42397

0.057 37334 0.05 58374

0.056 14529 0.05 6054

0.056 122257 0.05 4488

0.056 31242 0.05 106807

0.056 23631 0.05 4335

0.056 28111 0.05 4054

0.056 22582 0.05 17453

0.056 20024 0.05 6318

0.056 40337 0.05 4784

0.056 27863 0.05 22074

0.056 31591 0.05 5159

0.056 35233 0.05 4091

0.056 270259 0.05 4030

0.056 24495 0.05 19134

0.056 17610 0.05 4252

0.056 346985 0.05 41602

0.056 10823 0.05 2147

0.056 150584 0.05 8187

0.056 21062 0.05 3279

0.056 46660 0.05 2270

0.056 57920 0.05 3954

0.056 26725 0.05 3017

0.056 54579 0.05 38815

0.056 18670 0.05 32315

0.056 8022 0.05 4432

0.055 128283 0.05 70358

0.055 59131 0.05 127181

0.055 28971 0.05 18691

0.055 17578 0.05 10464

0.055 10040 0.05 108916

0.055 20605 0.05 2972

0.055 483909 0.05 15792

0.055 53269 0.05 6816

0.055 86222 0.05 4293

0.055 26159 0.05 113630

0.055 138833 0.05 2541

0.055 30193 0.05 2454

0.055 132098 0.05 10807

0.055 175734 0.05 2631

0.055 110968 0.05 3297

0.055 157001 0.05 79254

0.055 25489 0.05 155267

0.055 35398 0.05 26205

0.055 408716 0.05 4090

0.055 39560 0.05 2483

0.055 18362 0.05 2550

0.055 85356 0.05 6408

0.055 21695 0.05 4765

0.055 21737 0.05 4529

0.055 28519 0.05 7681

0.055 69347 0.05 104259

0.055 81011 0.05 2201

0.055 44233 0.05 7311

0.055 361559 0.05 12137

0.055 36780 0.05 6593

0.055 20677 0.05 219165

0.055 108355 0.05 1745

0.055 404133 0.05 25614

0.055 39197 0.05 5794

0.055 54938 0.05 3077

0.054 171906 0.05 2417

0.054 8032 0.05 19016

0.054 34059 0.05 9642

0.054 16833 0.05 4488

0.054 479046 0.05 159963

0.054 33422 0.05 6490

0.054 42365 0.05 2060

0.054 64663 0.05 3696

0.054 99039 0.05 34581

0.054 1267225 0.05 3252

0.054 25614 0.05 2666

0.054 1418613 0.05 6159

0.054 15319 0.05 8845

0.054 18529 0.05 6450

0.054 20134 0.05 55299

0.054 31681 0.05 21512

0.054 111261 0.05 34424

0.054 99645 0.05 2525

0.054 17558 0.05 9073

0.054 14935 0.05 3576

0.054 17142 0.05 306907

0.054 51119 0.05 8568

0.054 841360 0.05 7411

0.054 23449 0.05 28412

0.054 50112 0.05 14595

0.054 57183 0.05 2253

0.054 11745 0.05 2346

0.054 565002 0.05 69539

0.054 19953 0.05 2495

0.054 15701 0.05 12623

0.054 23727 0.05 18613

0.054 65031 0.05 4331

0.053 19718 0.05 43723

0.053 412624 0.05 35508

0.053 37965 0.05 2954

0.053 40260 0.05 2076

0.053 357073 0.05 4664

0.053 253633 0.05 97651

0.053 43875 0.05 4052

0.053 11899 0.05 5348

0.053 27078 0.05 1737

0.053 56343 0.05 3251

0.053 51610 0.05 18739

0.053 7311 0.05 20136

0.053 1387488 0.05 34666

0.053 61827 0.05 24633

0.053 47670 0.05 9779

0.053 233883 0.05 4141

0.053 83275 0.05 1823

0.053 146007 0.05 16141

0.053 16836 0.05 1972

0.053 736463 0.05 3495

0.053 125237 0.05 16368

0.053 47280 0.05 10502

0.053 58329 0.05 3702

0.053 37921 0.05 4025

0.053 329205 0.05 3147

0.053 42598 0.05 34140

0.053 9313 0.05 5237

0.053 46896 0.05 17391

0.053 34200 0.05 2954

0.053 191651 0.05 2523

0.053 21532 0.05 56664

0.053 228343 0.05 476123

0.053 28597 0.05 8074

0.053 36967 0.05 8512

0.052 102387 0.05 7599

0.052 63449 0.05 3156

0.052 17898 0.05 4567

0.052 182481 0.05 5543

0.052 40103 0.05 62173

0.052 7303 0.05 1416

0.052 26435 0.05 1121333

0.052 41602 0.05 63771

0.052 51614 0.05 2690

0.052 65471 0.05 4774

0.052 19738 0.05 32599

0.052 51807 0.05 6567

0.052 36258 0.05 729853

0.052 222246 0.05 1652

0.052 64990 0.05 4375

0.052 326036 0.05 841360

0.052 59826 0.05 21695

0.052 26056 0.05 21737

0.052 31393 0.05 2234

0.052 233502 0.05 4558

0.052 46319 0.05 95693

0.052 189126 0.05 3961

0.052 22662 0.05 26576

0.052 141883 0.05 2974

0.052 130029 0.05 12667

0.052 28860 0.05 1734

0.052 59130 0.05 12348

0.052 41202 0.05 20580

0.052 60844 0.05 3169

0.052 35479 0.05 3712

0.052 200394 0.05 22662

0.052 20393 0.05 1445

0.052 44480 0.05 3721

0.052 59287 0.05 2265

0.051 241441 0.05 17610

0.051 22576 0.05 4230

0.051 105163 0.05 17052

0.051 32361 0.05 3113

0.051 11884 0.05 4499

0.051 14268 0.05 3287

0.051 22307 0.05 4303

0.051 42368 0.05 27567

0.051 37641 0.05 200744

0.051 118243 0.05 36241

0.051 25683 0.05 5212

0.051 23190 0.05 5694

0.051 219165 0.05 3502

0.051 17570 0.05 3342

0.051 22444 0.05 81027

0.051 38008 0.05 190276

0.051 27141 0.05 6878

0.051 7594 0.05 3561

0.051 18580 0.05 2984

0.051 239940 0.05 57183

0.051 15393 0.05 6976

0.051 20886 0.05 236722

0.051 20520 0.05 4789

0.051 177067 0.05 56378

0.051 85702 0.05 2700

0.051 39441 0.05 2362

0.051 27504 0.05 15530

0.051 4417 0.05 1873

0.051 39566 0.05 33932

0.051 302480 0.05 8670

0.051 295309 0.05 46957

0.051 33998 0.05 4977

0.051 148689 0.05 1287

0.051 23343 0.05 5795

0.051 30972 0.05 2248

0.051 12528 0.05 3164

0.051 21901 0.05 3882

0.051 162893 0.05 5595

0.051 168000 0.05 302480

0.05 18039 0.05 3875

0.05 22449 0.05 39039

0.05 18380 0.05 2383

0.05 20133 0.05 4963

0.05 37045 0.05 5134

0.05 130659 0.05 10523

0.05 28161 0.05 7777

0.05 71501 0.05 82455

0.05 104418 0.05 703092

0.05 17798 0.05 3523

0.05 82415 0.05 2825

0.05 27650 0.05 4905

0.05 29151 0.05 3831

0.05 9430 0.05 1969

0.05 388766 0.05 2357

0.05 83505 0.05 53002

0.05 18654 0.05 15169

0.05 18884 0.05 4696

0.05 58593 0.05 4513

0.05 358240 0.05 17599

0.05 50506 0.05 117533

0.05 58992 0.05 6017

0.05 292453 0.05 64742

0.05 283473 0.05 2307

0.05 697474 0.05 7132

0.05 154827 0.05 39425

0.05 31706 0.05 5552

0.05 24164 0.05 1860

0.05 74692 0.05 14650

0.05 29011 0.05 13157

0.05 33215 0.05 16118

0.05 39797 0.05 26725

0.05 56006 0.05 3855

0.05 49724 0.05 6482

0.05 15197 0.05 3258

0.05 22103 0.05 4899

0.05 26346 0.05 9570

0.05 24888 0.05 404133

0.05 196052 0.05 63323

0.05 330353 0.05 27958

0.049 295869 0.05 2532

0.049 16240 0.05 243186

0.049 38255 0.05 15414

0.049 131173 0.05 2487

0.049 12348 0.05 1055

0.049 45519 0.05 17738

0.049 44737 0.05 77926

0.049 29895 0.05 1877

0.049 42506 0.05 5460

0.049 72174 0.05 1644

0.049 125206 0.05 5735

0.049 525603 0.05 3600

0.049 143211 0.05 1949

0.049 44295 0.05 1961

0.049 95155 0.05 13310

0.049 113630 0.04 5380

0.049 102323 0.04 4244

0.049 28659 0.04 5135

0.049 9035 0.04 14758

0.049 15490 0.04 68622

0.049 87425 0.04 1808

0.049 37248 0.04 292552

0.049 34867 0.04 205223

0.049 34316 0.04 7927

0.049 57136 0.04 8992

0.049 30758 0.04 6318

0.049 130420 0.04 4283

0.049 208228 0.04 4277

0.049 28315 0.04 12384

0.049 137588 0.04 4256

0.049 163672 0.04 34427

0.049 51016 0.04 2892

0.049 50176 0.04 22942

0.049 19088 0.04 3785

0.049 25548 0.04 1812

0.049 87568 0.04 15302

0.049 19291 0.04 8959

0.049 132913 0.04 7067

0.049 31670 0.04 3798

0.049 19731 0.04 3190

0.049 30555 0.04 104806

0.049 455728 0.04 559657

0.049 177218 0.04 5673

0.049 52750 0.04 12858

0.049 33383 0.04 375167

0.049 252822 0.04 3329

0.048 29209 0.04 34059

0.048 59055 0.04 4416

0.048 150021 0.04 12479

0.048 22713 0.04 63449

0.048 45791 0.04 79130

0.048 100922 0.04 122257

0.048 45420 0.04 256082

0.048 18230 0.04 3853

0.048 46496 0.04 8389

0.048 53842 0.04 4711

0.048 453811 0.04 3024

0.048 22848 0.04 8014

0.048 913322 0.04 3287

0.048 253529 0.04 338015

0.048 39996 0.04 19432

0.048 48392 0.04 29209

0.048 29122 0.04 10627

0.048 37991 0.04 2904

0.048 470627 0.04 9846

0.048 107814 0.04 3714

0.048 964762 0.04 16240

0.048 10389 0.04 1517

0.048 29085 0.04 11289

0.048 46449 0.04 1830

0.048 490406 0.04 6794

0.048 76530 0.04 3763

0.048 21358 0.04 1265

0.048 15414 0.04 7813

0.047 36048 0.04 11498

0.047 256082 0.04 176072

0.047 811157 0.04 2660

0.047 41457 0.04 7033

0.047 38601 0.04 2558

0.047 33658 0.04 14079

0.047 3705 0.04 5097

0.047 43614 0.04 3123

0.047 41006 0.04 2051

0.047 43210 0.04 2646

0.047 37354 0.04 21739

0.047 10807 0.04 2684

0.047 23041 0.04 216482

0.047 16202 0.04 13388

0.047 120557 0.04 2449

0.047 41401 0.04 232493

0.047 39561 0.04 133207

0.047 18613 0.04 2202

0.047 406465 0.04 2683

0.047 40179 0.04 263868

0.047 60805 0.04 2833

0.047 504780 0.04 6421

0.047 52434 0.04 13958

0.047 70494 0.04 200767

0.047 7486 0.04 10819

0.047 479324 0.04 4330

0.047 349022 0.04 2691

0.047 16469 0.04 6086

0.047 629064 0.04 5088

0.047 4538 0.04 3301

0.047 21826 0.04 7671

0.046 205223 0.04 1521

0.046 253701 0.04 4256

0.046 56943 0.04 3134

0.046 20841 0.04 3054

0.046 34533 0.04 17474

0.046 34784 0.04 357073

0.046 34264 0.04 2008

0.046 22417 0.04 3272

0.046 65965 0.04 61342

0.046 28375 0.04 8558

0.046 12718 0.04 3915

0.046 132141 0.04 3461

0.046 35053 0.04 1832

0.046 133094 0.04 16833

0.046 36176 0.04 12024

0.046 70358 0.04 3586

0.046 148630 0.04 130659

0.046 214500 0.04 6253

0.046 1043747 0.04 3434

0.046 248889 0.04 182481

0.046 27418 0.04 4029

0.046 265704 0.04 15970

0.046 31154 0.04 100565

0.046 91310 0.04 3117

0.046 31117 0.04 2383

0.046 20415 0.04 77629

0.046 17495 0.04 7019

0.046 45964 0.04 3570

0.046 30660 0.04 2125

0.046 135686 0.04 2193

0.046 103089 0.04 2176

0.046 62688 0.04 132901

0.046 90762 0.04 6215

0.046 25996 0.04 36081

0.046 220180 0.04 3405

0.046 38853 0.04 6018

0.046 31350 0.04 6527

0.046 34280 0.04 11884

0.046 44088 0.04 11770

0.046 45695 0.04 8181

0.046 107366 0.04 2595

0.046 130171 0.04 37275

0.046 8869 0.04 13191

0.046 37064 0.04 7537

0.046 32538 0.04 16166

0.046 43410 0.04 2379

0.046 82912 0.04 11899

0.046 50018 0.04 104418

0.046 19643 0.04 64077

0.046 155410 0.04 55962

0.046 135347 0.04 196778

0.046 76194 0.04 47933

0.045 12858 0.04 245343

0.045 64716 0.04 2740

0.045 14038 0.04 22450

0.045 14563 0.04 2681

0.045 126362 0.04 32202

0.045 24098 0.04 79847

0.045 247966 0.04 13003

0.045 106807 0.04 42365

0.045 151519 0.04 64663

0.045 20290 0.04 12718

0.045 27720 0.04 102025

0.045 48561 0.04 34986

0.045 16231 0.04 10358

0.045 14823 0.04 4395

0.045 9936 0.04 2378

0.045 35936 0.04 24997

0.045 34424 0.04 3301

freq("city") = 1629994

freq("tablet") = 18579

(b) Freq. distribution of similar words of tablet
p = 100 (LMI) p = 1000 (LMI)

1 18579 0.55 18579

0.28 19328 0.215 38008

0.22 5552 0.21 33383

0.21 3370 0.198 23852

0.18 2666 0.191 177067

0.17 70258 0.184 39425

0.15 2521 0.181 39797

0.15 8828 0.18 72174

0.15 7002 0.179 19328

0.14 2947 0.178 26140

0.14 57920 0.177 31117

0.14 3872 0.175 37064

0.13 23852 0.175 39039

0.13 111261 0.17 57185

0.13 6010 0.169 31468

0.13 3469 0.168 53723

0.13 8350 0.167 42506

0.13 5489 0.164 148630

0.12 4401 0.163 25243

0.12 38008 0.163 32646

0.11 22857 0.163 33099

0.11 7882 0.163 22936

0.11 3651 0.161 29151

0.11 5543 0.161 52750

0.11 68865 0.16 39441

0.11 59130 0.16 57920

0.1 10710 0.16 147428

0.1 3461 0.158 144619

0.1 33383 0.158 19088

0.1 5183 0.158 53255

0.1 19088 0.157 34132

0.1 13373 0.156 59130

0.1 1706 0.155 31591

0.1 39425 0.154 32042

0.09 26140 0.154 30935

0.09 12372 0.154 93866

0.09 5340 0.154 38434

0.09 12047 0.153 23501

0.09 57185 0.153 70258

0.09 12540 0.151 29804

0.09 29352 0.151 97486

0.08 5345 0.151 61444

0.08 6743 0.151 23407

0.08 1369 0.151 29085

0.08 13038 0.15 29209

0.08 2503 0.15 55938

0.08 3655 0.15 26812

0.08 4017 0.149 811157

0.08 3888 0.149 34264

0.08 2533 0.149 25846

0.08 8318 0.149 20444

0.08 7772 0.149 24495

0.08 21055 0.148 28369

0.08 5237 0.148 51016

0.08 8664 0.147 27766

0.08 2039 0.146 27078

0.08 14143 0.145 42397

0.08 2831 0.145 39370

0.08 22936 0.145 20000

0.08 3742 0.144 133612

0.08 2451 0.144 32058

0.08 3948 0.144 46428

0.07 2970 0.144 62688

0.07 2948 0.144 68865

0.07 10627 0.144 74439

0.07 13388 0.144 29363

0.07 4330 0.143 26435

0.07 77629 0.143 27248

0.07 72174 0.143 222254

0.07 6368 0.143 46449

0.07 133612 0.143 39257

0.07 4394 0.142 19828

0.07 3984 0.142 36291

0.07 5681 0.142 36780

0.07 3580 0.142 23343

0.07 3504 0.141 42561

0.07 10956 0.141 22444

0.07 18961 0.141 63607

0.07 23301 0.141 49922

0.07 4324 0.141 21062

0.07 14595 0.141 38001

0.07 8933 0.14 54523

0.07 11711 0.14 106556

0.07 63607 0.139 41185

0.07 73596 0.139 53198

0.07 4217 0.139 28368

0.07 3729 0.139 62210

0.07 3695 0.139 455728

0.07 5653 0.138 17028

0.07 45695 0.138 44737

0.07 1066 0.138 496501

0.07 2700 0.137 14792

0.07 3205 0.137 18588

0.07 2904 0.137 23498

0.07 13328 0.137 54579

0.07 5462 0.136 357073

0.07 3126 0.136 29011

0.07 147428 0.135 26503

0.06 3497 0.135 32636

0.06 2796 0.134 35053

0.06 3818 0.134 138498

0.06 14137 0.134 34200

0.06 3963 0.134 31665

0.06 199484 0.133 22857

0.06 8882 0.133 36241

0.06 1934 0.132 34666

0.06 2320 0.132 24098

0.06 176072 0.132 46496

0.06 4817 0.132 149987

0.06 6277 0.132 29352

0.06 4129 0.131 28971

0.06 9570 0.131 25075

0.06 2462 0.131 62446

0.06 1676 0.131 22408

0.06 3410 0.131 75652

0.06 4504 0.131 23753

0.06 3140 0.13 33254

0.06 11328 0.13 21278

0.06 193961 0.13 35346

0.06 2607 0.13 406465

0.06 3772 0.129 25503

0.06 2631 0.129 24595

0.06 19727 0.129 29568

0.06 10882 0.129 145255

0.06 3191 0.128 37045

0.06 4291 0.128 28389

0.06 5886 0.128 19799

0.06 2757 0.128 278033

0.06 1733 0.128 34246

0.06 4702 0.128 42589

0.06 14792 0.128 19522

0.06 11625 0.128 23669

0.06 7662 0.127 200767

0.06 1520 0.127 60941

0.06 2866 0.127 30223

0.06 3712 0.127 44233

0.06 108313 0.126 30526

0.06 4851 0.126 32430

0.06 3362 0.126 219165

0.06 4930 0.126 47516

0.06 1393 0.126 67089

0.06 3960 0.126 45102

0.06 222254 0.125 17937

0.06 4328 0.125 22305

0.06 1942 0.125 388766

0.06 6626 0.125 35936

0.06 1050 0.125 37318

0.06 3443 0.125 30660

0.06 81350 0.125 18580

0.06 33099 0.125 956518

0.06 2457 0.125 479324

0.06 7622 0.125 23316

0.06 16350 0.125 330353

0.06 2694 0.124 59390

0.06 4361 0.124 86735

0.06 2352 0.124 22307

0.06 51016 0.124 42365

0.06 5487 0.124 35529

0.06 5846 0.124 59404

0.06 1693 0.124 34490

0.06 4361 0.124 110968

0.06 177067 0.124 263524

0.06 3520 0.124 22730

0.06 136608 0.124 38853

0.06 19377 0.124 37803

0.06 4064 0.124 177218

0.06 3508 0.123 28452

0.06 23313 0.123 37641

0.06 3727 0.123 51653

0.06 4393 0.123 21055

0.06 3413 0.122 36659

0.06 44233 0.122 33422

0.06 2465 0.122 26247

0.06 5843 0.122 56823

0.06 4240 0.122 66276

0.06 11355 0.122 72448

0.06 4205 0.122 21532

0.06 134126 0.122 25480

0.06 276954 0.122 30972

0.06 3788 0.122 100625

0.06 5690 0.121 48752

0.06 10176 0.121 38863

0.06 54579 0.121 46720

0.06 496501 0.121 311184

0.06 2420 0.121 29306

0.05 1669 0.121 21826

0.05 5135 0.12 38255

0.05 2210 0.12 27141

0.05 4283 0.12 25535

0.05 4513 0.12 25730

0.05 4905 0.12 17773

0.05 6262 0.12 36756

0.05 3433 0.12 46789

0.05 2892 0.119 176072

0.05 2902 0.119 29065

0.05 3732 0.119 24997

0.05 2871 0.119 30465

0.05 6600 0.119 198756

0.05 8959 0.119 37235

0.05 177642 0.119 145346

0.05 9801 0.119 31430

0.05 3649 0.119 18047

0.05 2007 0.118 36946

0.05 3798 0.118 26005

0.05 34059 0.118 68365

0.05 2205 0.118 26056

0.05 19432 0.118 31693

0.05 8478 0.118 52434

0.05 3519 0.118 31670

0.05 1560 0.118 20677

0.05 811157 0.118 33183

0.05 1514 0.117 32666

0.05 7241 0.117 104418

0.05 3838 0.117 18961

0.05 3085 0.117 153580

0.05 152252 0.117 19096

0.05 28452 0.117 100120

0.05 34264 0.117 276954

0.05 4703 0.116 22417

0.05 13221 0.116 23301

0.05 96949 0.116 20956

0.05 20075 0.116 36612

0.05 1750 0.116 28985

0.05 14308 0.116 73596

0.05 2595 0.116 24807

0.05 3698 0.116 34324

0.05 11899 0.116 21872

0.05 104418 0.116 24121

0.05 4054 0.116 31485

0.05 2656 0.116 427320

0.05 2387 0.116 26346

0.05 2270 0.116 24149

0.05 2975 0.115 250597

0.05 60463 0.115 20075

0.05 15056 0.115 18737

0.05 148630 0.115 85692

0.05 21278 0.115 27418

0.05 66185 0.115 24734

0.05 104989 0.115 16350

0.05 6816 0.115 18931

0.05 3159 0.115 33603

0.05 10807 0.115 159652

0.05 3596 0.114 37040

0.05 28530 0.114 479046

0.05 9616 0.114 40103

0.05 53219 0.114 57118

0.05 2388 0.114 29603

0.05 28939 0.114 39533

0.05 7681 0.114 83568

0.05 29047 0.114 15197

0.05 51807 0.113 60463

0.05 4793 0.113 38694

0.05 5038 0.113 25297

0.05 3795 0.113 35304

0.05 132098 0.113 34456

0.05 35304 0.113 32477

0.05 35936 0.113 16682

0.05 3579 0.113 61369

0.05 2610 0.113 32085

0.05 3950 0.113 38704

0.05 3696 0.113 30801

0.05 3018 0.113 26725

0.05 2492 0.113 28488

0.05 1761 0.113 76194

0.05 7255 0.112 177642

0.05 54523 0.112 34059

0.05 4033 0.112 101098

0.05 2968 0.112 214500

0.05 5887 0.112 195511

0.05 4532 0.112 18613

0.05 2248 0.112 76287

0.05 1577 0.112 93084

0.05 4971 0.112 20520

0.05 9530 0.112 44120

0.05 80281 0.112 136608

0.05 2286 0.112 19746

0.05 26263 0.112 483684

0.05 4034 0.112 62045

0.05 4697 0.112 23261

0.05 5318 0.112 32927

0.05 4309 0.111 22942

0.05 2915 0.111 50845

0.05 120769 0.111 102342

0.05 3657 0.111 27863

0.05 18739 0.111 13760

0.05 4204 0.111 25397

0.05 92437 0.111 135347

0.05 1733 0.11 26238

0.05 5359 0.11 144887

0.05 5337 0.11 20488

0.05 10411 0.11 25874

0.05 1290 0.11 46319

0.05 1862 0.11 20566

0.05 406465 0.11 20886

0.05 2178 0.11 13373

0.05 35398 0.11 40963

0.05 1968 0.11 16469

0.05 4833 0.11 55562

0.05 18580 0.109 43575

0.05 4245 0.109 62356

0.05 5339 0.109 34153

0.05 12793 0.109 26927

0.05 8074 0.109 30667

0.05 1187 0.109 16399

0.05 88139 0.109 43100

0.05 5665 0.109 26279

0.05 5223 0.109 14143

0.05 62446 0.109 19605

0.05 12931 0.109 49064

0.05 2416 0.109 15327

0.05 3186 0.109 523025

0.05 2339 0.109 96138

0.05 21521 0.109 61637

0.05 37235 0.109 36446

0.05 6567 0.108 29585

0.05 1803 0.108 16540

0.05 74439 0.108 79309

0.05 12193 0.108 251635

0.05 3432 0.108 15936

0.05 4555 0.108 36042

0.05 10494 0.108 127453

0.05 6867 0.108 20389

0.05 2227 0.108 46660

0.05 2061 0.108 629064

0.05 18931 0.107 1101733

0.05 2234 0.107 36745

0.05 4402 0.107 92575

0.05 17773 0.107 17494

0.05 4036 0.107 30019

0.05 3113 0.107 18404

0.05 3287 0.107 29047

0.05 15308 0.107 89258

0.05 6569 0.107 28659

0.05 3991 0.107 24446

0.05 9690 0.107 913322

0.05 3342 0.107 57902

0.05 14362 0.107 64752

0.05 2590 0.107 37458

0.05 34200 0.106 42018

0.05 95630 0.106 18230

0.05 391616 0.106 18739

0.05 50657 0.106 40954

0.05 5110 0.106 127146

0.05 8181 0.106 40531

0.05 7056 0.106 41227

0.05 2185 0.106 125144

0.05 7133 0.106 30555

0.05 81986 0.106 98815

0.05 3442 0.106 353976

0.05 3204 0.105 29344

0.05 4876 0.105 17758

0.05 3527 0.105 28672

0.05 8670 0.105 34600

0.05 7072 0.105 35481

0.05 6067 0.105 61646

0.05 3164 0.105 16836

0.05 2324 0.105 38229

0.05 103884 0.105 36789

0.05 523025 0.105 111261

0.05 39039 0.105 266425

0.05 8588 0.105 14362

0.05 5124 0.104 253701

0.05 6721 0.104 18380

0.05 6926 0.104 16463

0.05 2868 0.104 32729

0.05 1787 0.104 46756

0.05 3087 0.104 33416

0.05 19953 0.104 20419

0.05 30801 0.104 52144

0.05 1849 0.104 17466

0.05 4398 0.104 79802

0.05 6152 0.104 33827

0.05 3142 0.104 38605

0.05 4686 0.104 14694

0.05 157240 0.104 39996

0.05 19522 0.104 45695

0.05 4152 0.104 29055

0.05 168988 0.104 79139

0.05 3253 0.104 28597

0.05 28597 0.104 66904

0.05 18317 0.103 21585

0.05 88916 0.103 41602

0.05 3000 0.103 25381

0.05 1402 0.103 28111

0.05 353976 0.103 25341

0.05 66904 0.103 41181

0.05 3425 0.103 27592

0.05 52750 0.103 1418613

0.05 2802 0.103 20540

0.05 1847 0.103 31222

0.05 6272 0.103 40337

0.05 2272 0.103 35508

0.05 8972 0.103 27170

0.05 6973 0.103 59826

0.05 4439 0.103 81350

0.04 10911 0.103 34187

0.04 14781 0.103 16129

0.04 4880 0.103 81986

0.04 2872 0.103 35479

0.04 84426 0.103 103884

0.04 4272 0.103 204106

0.04 253701 0.103 35040

0.04 38607 0.103 63424

0.04 2919 0.103 34237

0.04 3790 0.103 24888

0.04 6826 0.102 18624

0.04 5198 0.102 60215

0.04 3133 0.102 25957

0.04 9958 0.102 39737

0.04 2485 0.102 29685

0.04 16540 0.102 47993

0.04 3159 0.102 27558

0.04 59988 0.102 17103

0.04 7067 0.102 19793

0.04 3190 0.102 10956

0.04 4416 0.102 491374

0.04 4716 0.102 272836

0.04 40969 0.102 30751

0.04 4570 0.102 20660

0.04 3853 0.102 22003

0.04 4012 0.102 43347

0.04 23501 0.101 25739

0.04 4708 0.101 149260

0.04 11019 0.101 33658

0.04 4231 0.101 64077

0.04 33254 0.101 36508

0.04 9846 0.101 17798

0.04 3714 0.101 20554

0.04 11557 0.101 21440

0.04 4882 0.101 25081

0.04 92575 0.101 34414

0.04 31471 0.101 35398

0.04 2689 0.101 239940

0.04 17028 0.101 88139

0.04 4434 0.101 25956

0.04 1858 0.101 59287

0.04 4629 0.1 49893

0.04 3123 0.1 25841

0.04 131173 0.1 34408

0.04 9775 0.1 253633
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Figure 6.1: Two plots showing the correlation between word frequency and word similarity for the top
1000 similar words of a common word (city) and a less common word (tablet). The bottom
graph clearly shows the bias towards more frequent words with a high (maximum) number of
features p (here 1000 vs. 100). This is visible as a right-shift of the blue data points (p = 1000)
compared to the red data points (p = 100), which means that frequent words are generally
more similar to tablet than infrequent words.
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7 Evaluation of Word Senses
The central theme in this work is the hypothesis that we can perform WSD on an induced sense inventory
with performance comparable to that of existing instance-clustering WSI systems. This necessarily re-
quires a standardized evaluation that has previously been used to assess the quality of such existing WSI
systems. We therefore chose to evaluate our system against the dataset provided by the SemEval-2013
WSI task, which will be introduced in section 7.2.

Additionally, to allow for optimization of the various parameters of our WSI algorithm, we extracted a
large-scale WSD dataset from Wikipedia by utilizing its link structure. This specifically allowed us to
evaluate on context instances from the same corpus that we used to both induce our sense inventory and
learn a disambiguation model.

7.1 Two Methods for Evaluating WSI Systems

Often, two complementary types of WSI evaluation methods are used (e.g. [Agirre and Soroa, 2007;
Manandhar, 2010]): a mapping-based method that maps induced senses to gold senses and then pro-
ceeds to evaluate in a traditional WSD setting, and a clustering-based method that compares the instance
clusters formed by sense labels to a gold clustering.

Evaluation in a WSD setting

To compare sense labels of an induced sense inventory with manually-tagged sense labels from a refer-
ence lexical resources (such as WordNet), it is necessary to map each induced sense to a corresponding
reference sense. This supervised evaluation framework has e.g. been described in [Agirre et al., 2006].
The mapping is usually done by splitting the WSD instances into two sets as e.g. done in [Manand-
har, 2010]. The first split is sense-tagged by the WSI system, and a mapping between induced senses
and reference senses is chosen that maximizes the labeling accuracy on this split when compared to
the reference sense-tags. The accuracy of the sense labels on the second split, when converted to sense
labels from the reference resource according to this mapping, is then used to measure the performance
of the WSI system. The actual performance is then measured according to various different scores. The
following three are specifically used in the SemEval-2013 WSI subtask.

The Jaccard Index measures the degree of agreement between two sets of sense labels X and Y for an
instance. It is defined as

�

�

X∩Y
X∪Y

�

�.

Given two rankings of sense labels for an instance, the positionally-weighted Kendall’s τ measures the
correlation between these rankings. Notably, this correlation coefficient weights correctness of higher
ranks more than that of lower ranks. It is denoted by Ksim

δ
and defined as

Ksim
δ = 1−

Kδ(x , y)
Kmax
δ (x)

(7.1)

Here, Kδ(x , y) is the number of item swaps required to make two sequences x and y identical, where
each rank is weighted by variable penalty function δ. Therefore, it resembles a distance function. Kmax

δ
(x)
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is the maximum possible distance between x and any other sequence, therefore normalizing the subtra-
hend of the equation to be between 0 and 1. To convert this distance measure to a similarity measure, it
is subtracted from 1.

The weighted variant of Discounted Cumulative Gain (WDCG) is another way to compare an applicability
rating of senses against a baseline. Given a gold standard applicability rating wi of k senses and another
rating ŵi that is to be compared, it is defined as

W DCG =
k
∑

i=1

min(wi ,ŵi)
max(wi ,ŵi)

�

2wi+1 − 1
�

log2(i)
(7.2)

where i is the index of the sense in descending order of applicability according to ŵi. It is based on
the Discounted Cumulative Gain (DCG) [Järvelin and Kekäläinen, 2002], which is defined as DCG =
∑k

i=1
2wi+1−1
log2(i+1) . The Ideal DCG (IDCG) is its maximum value and achieved by an identical applicability

ranking, irrespective of the specific rating ŵi. Every deviation in this ranking is penalized by a lower
score, where higher ranks are weighted less due to the denominator log2(i + 1). The crucial difference
of the WDCG to the DCG is that additionally to penalizing a deviating rank of a specific sense, an
additional factor min(wi ,ŵi)

max(wi ,ŵi)
is added that also penalize a discrepancy between the respective applicability

ratings wi and ŵi. To normalize the WDCG, it is divided by the Ideal WDCG, which is defined analogously
to the IDCG. The result is therefore called the weighted variant of Normalized Discounted Cumulative Gain
(WNDCG).

Comparing Clusterings

Alternatively, sense labels may be considered to be a clustering of instances into groups, where each
group is formed by instances with the same sense label (also referred to as class, for an illustration see
Figure 7.1). Since both the sense tags of the WSI system, as well as the gold sense tags can be considered
to be such clusterings, the performance of the WSI system can be measured by comparison of these two
clusterings. Conclusively, we need means to compare two clusterings. The following is a list of cluster-
comparison measures that have been used in previous WSI evaluations. For each sense label forming
one cluster, we will use the term class, to conform to definitions in the literature.

s1 s2 s3 s4

t1 t2 t3

{1, 3, 4} {2, 6, 10} {9} {5, 7, 8}

{1, 3, 4, 5} {2, 6, 9} {7, 8, 10}

Figure 7.1: Two example clusterings T = {t1, t2, t3, t4} and S = {s1, s2, s3} of the same 10 instances. Circles
indicate clusters along with their cluster label (s1, s2, ..), numbers indicate instances. Clusters
in T are colored to visually distinguish them from S.

Purity [Zhao and Karypis, 2001] and Inverse Purity: As the name already says, this measure quantifies
the purity of a clustering, with respect to a reference clustering, of which the latter specifies the element’s
classes: For each cluster, it is equal to the number of elements with the pre-dominant class in this cluster,
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t1

t1
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t3

t2

t2

s1

s2

s3

t1

t3

t3

s4

Figure 7.2: Same clusterings as in Figure 7.1, visualized from the perspective of a mapping of classes from
S to classes from T : For example, in the cluster formed by class s2 (bottom-left), two instances
are also labeled with t2, making this the dominating class from clustering T in class s2.

divided by the cluster size. For example, purity of the cluster s2 with respect to T in Figure 7.2 is 2/3.
The purity of a clustering is given by the average purity of all its clusters. Inverse purity then refers to
the purity of the other clustering, with the first clustering specifying the element’s classes. See Figure 7.6
for an illustrative example along with an explanation. An overall result is achieved by combining both
measures with the harmonic mean (i.e., F-measure) [Van Rijsbergen, 1979], as done in e.g. [Amigó et al.,
2009]. The advantage of this combination is that a baseline assigning all elements to one cluster is hard
to beat (see experiments below). Also, it is a relatively intuitive measure without any lengthy or complex
equations, making it easier to interpret. However, a drawback is that it is insensitive to cluster changes
that are not in the dominating class of a sense cluster. Figure 7.3 illustrates this problem: Clusters s1
and s2 contain elements with the same class and should therefore be merged to improve the clustering
S with respect to T . However, both purity as well as inverse purity are insensitive to this change: the
dominating class of t1 (which is s3) would not change, and neither would the dominating class of s1 or
s2.

P =
|F(S)∩ F(T )|
|F(S)|

(7.3)

R=
|F(S)∩ F(T )|
|F(T )|

(7.4)

Adaptations of Recall, Precision and F-measure were also suggested for cluster comparison [Zhao and
Karypis, 2002]. To compare a clusterings S with a gold standard clustering T , these can be applied by
first generating all possible pairs of elements in each cluster si and t i. Let F(S) be the set of such instance
pairs generated from S, and F(T ) the set of instance pairs generated from T . Precision is then defined
as the number of shared pairs between F(S) and F(T ), divided by the total number of pairs in F(S)
(eq. 7.3). Recall is analogously defined as the number of shared pairs in F(S) and F(T ), divided by the
total number of pairs of the gold clustering in F(T ) (eq. 7.4). The F-measure is as usual computed as the
harmonic mean of both recall and precision. This adaptation of the three measures has especially been
used in SemEval-2010 task 14.

54



t1

t1

t1

t1
t1

t1

s3
s1

s2

t2

t3

t3

s4

t1

Figure 7.3: Illustration of a problem with purity and inverse purity: Clusters s1 and s2 contain elements
with the same class and should therefore be merged to improve the clustering S with respect
to T . However, both purity as well as inverse purity are insensitive to this change: the domi-
nating class of t1 (which is s3) would not change, and neither would the dominating class of
s1 or s2.

B-Cubed Precision= avg
i

�

avg
j 6=i∈∪µt (i)

P(i, j)

�

(7.5)

B-Cubed Recall= avg
i

�

avg
j 6=i∈∪µs(i)

R(i, j)

�

(7.6)

C(i, j, S) =
∑

k∈µs(i)∪µs( j)

1− |wk(i)−wk( j)| (7.7)

P(i, j, S) =
min

�

C(i, j, S), C(i, j, T )
�

C(i, j, S)
(7.8)

R(i, j, S) =
min

�

C(i, j, S), C(i, j, T )
�

C(i, j, T )
(7.9)

Fuzzy B-Cubed [Jurgens and Klapaftis, 2013] is a measure that quantifies a similarity between two clus-
terings with fuzzy covers, i.e. clusterings with multiple, graded assignments of items to clusters. This
cluster comparison measure may especially be used in a sense clustering setting where multiple applying
senses may partially be assigned to instances. This was e.g. required in the SemEval-2013 WSI task,
where this measure was also first introduced. As suggested by its name, it is a generalization of the
B-Cubed measure [Baldwin et al., 1998] to fuzzy covers. B-Cubed precision and recall are defined in
equations 7.5 and 7.6, resp. Here, µs(i) denotes the set of cluster in S that i is member of. B-Cubed
precision is therefore the average item-based precision of item i respective to all other items j that share
at least one cluster with i. B-Cubed recall is defined analogously. Item-based recall and precision are
defined as follows. The extent of a cluster overlap between two items i and j with respect to a clustering
S is defined as C(i, j, S) in equation 7.7. Here, µs(i) again denotes the set of clusters in which i is a
member, and wk(i) denotes the membership weight of item i in cluster k. C(i, j, S) is therefore 1 when
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i and j are present in identical clusters and their membership weights are identical. Reversely, it is 0 if i
and j have no mutual clusters. Item-based precision and recall can then be defined as in equations 7.8
and 7.9, resp. They can be best explained using an example: Assume you want to compare two cluster
assignments of word instances i and j with multiple cluster assignments allowed per instance, and in
sense clustering S they are placed in the same clusters, i.e. C(i, j, S) = 1. Further suppose that in the
reference sense clustering T their cluster assignments overlap only to 50%, i.e. i and j share only 50% of
their multiple sense labels, and therefore C(i, j, T ) = 0.5. In other words, the word senses used in i and
j are semantically different according to T, yet have a certain semantic overlap. The resulting item-based
precision is then P(i, j, S) = 0.5, as the extent of their cluster overlap in S is twice their overlap in T .
In other words, S ”over-estimates” the semantic overlap of the senses of instances i and j. It however
correctly detects their senses’ semantic overlap to at least 50% (although it over-estimates it) , therefore
the respective recall R(i, j, S) is 1. Therefore, whenever S over-estimates the semantic overlap of the
senses of two instances, recall is 1 and precision below 1; reversely an under-estimation yields a recall
below 1 and a precision of 1.

t1

t3
t1

t2

s2

s3
t2

t1

P(e) = 3/4

t1

t1 t3

t1

t3
t1

t2

s1

s2

s3

t3

t2

t1

R(e) = 3/6

t1t1

t1 t3 s1

t3t1

e e

Figure 7.4: Illustration of B-Cubed measure for item e. If one were to look for items with the same class as
e in cluster s2, then this ”retrieval” operation would come with a precision of 3/4 and a recall
of 3/6.

A clustering of a set of instances can also be represented by a random variable Xk for each cluster
k that is defined over all instances and has 0 (not part of the cluster) and 1 (part of the cluster) as
possible outcomes. Mutual Information can be used to measure the dependency between two such
random variables X and Y , therefore resembling a similarity measure between two clusters. In a graded
sense assignment setting (such as found in the SemEval-2013 WSI task), these random variables can
be extended to take on any value in [0,1], representing a probability of each instance being assigned
to a certain sense cluster. Based on this assumption, Fuzzy Normalized Mutual Information [Jurgens
and Klapaftis, 2013] measures the dependency of two fuzzy clusters X and Y . Equation 7.10 defines the
mutual information I(X ; Y ) of two such random variables X and Y . Here, H(X ) denotes the entropy of X
and H(X |Y ) the entropy of X conditioned on Y. The Normalized Mutual Information may be determined
by dividing the mutual information by an upper bound, with max

�

H(X ), H(Y )
�

being recommended
in [Vinh et al., 2010].
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t1 t3

t1

t2

t2

P(e1, e2) = 1

t1 t3

e1

e2

e3

t1 t3e1

e4 t3

R(e1, e2) = 0.5

Figure 7.5: Illustration of extended B-Cubed precision and recall for the item pair {e1, e2}. The extended
version allows multiple cluster and class assignments for each element. Here, both e1 and
e2 are assigned to classes t1 and t3. Moreover, e2 is assigned to only one cluster, while e1 is
assigned to two clusters simultaneously. Precision for {e1, e2} is 1, as for every shared cluster,
there is a shared class. Recall is 0.5, as for only half of the shared classes, there is a shared
cluster.

I(X ; Y ) = H(X )−H(X |Y ) (7.10)

N M I(X ; Y ) =
I(X ; Y )

max
�

H(X ), H(Y )
� (7.11)

s1

s2

s3

s4

t1

t2

t3
1/3

2/3

s1

s2

s3

s4

t1

t2

t32/3

1/3

Figure 7.6: Possible mapping of the two example clusterings above. Since instances labeled with s4 ap-
pear in cluster t3 in 2/3 of the cases, and in cluster t1 in 1/3 of the cases, s4 is mapped to t3.
The purity of this mapping is therefore 2/3. The same can be done for the other direction
(mapping clusters from T to clusters from S), here t3 would receive an inverse purity of 2/3.
Purity values are then averaged over the clusters in S, while inverse purity values are averaged
over T. Computing the harmonic mean (F1 measure) of both allows to quantify the similarity
of both clusters: The higher the F1 score, the more similar both clusterings are.

57



7.2 WSI Evaluation Datasets

There have been various different evaluation tasks for WSI in the past, however we here list three
evaluations that we find most noteworthy.

SemEval-2007 task 2 [Agirre and Soroa, 2007]: This task re-used data from task 17, the English lexical
sample subtask [Pradhan et al., 2007a]. Disambiguation instances were taken from the Wall Street
Journal corpus, and were manually sense-tagged with OntoNotes [Pradhan et al., 2007b] senses. 6
teams participated, and were asked to cluster word instances into groups, each group representing a
distinct word sense. The manually tagged OntoNotes senses were notably coarser than senses found in
WordNet. The task contained both an unsupervised cluster-comparison setting, as well as a supervised
evaluation setting, in which induced senses were mapped to OntoNotes senses.

Training Phase

Induced 
Sense 1

Induced 
Sense n

Word Sense Induction 
& Disambiguation 

System

...

Training Instances

Testing Phase

Test Instances

Test Instance 
Tagging

Evaluation Phase

Evaluation 
Framework

Supervised 
Evaluation

Unsupervised 
Evaluation

Figure 7.7: Setup of SemEval-2007 task 14. The graphic has been adopted from [Manandhar, 2010].

SemEval-2010 task 14: Word Sense Induction & Disambiguation [Manandhar, 2010]. The main differ-
ence of this task compared to the SemEval-2007 WSI task (see above) is that Manandhar et. al. split
the dataset (i.e. word instances) into two parts, namely into a training set and a test set. Figure 7.7
shows the general setup of this task and the conceptual distinction between training and test phase. The
training set had to be used by the participating systems solely to induce word senses. Notably, no other
resources were allowed (neither structured nor unstructured), hence also no background corpus could
be used to extract additional statistics like n-gram frequencies. The test set was in turn only used for
sense disambiguation, and participants had to draw the set of word senses from the induction process
in the training phase. The term disambiguation is here therefore chosen deliberately in order to contrast
this second step to mere sense discrimination, i.e. grouping of instances with the same word sense. The
difficulty in this task therefore lies in the assignment of before unseen instances to previously induced
senses. The problem with many WSID systems that this tasks aims to uncover, i.e. that many systems are
unable to sense-label unseen instances, is exactly one of the problems the system described in this thesis
aims to address. Disambiguation instances used in this task were constructed using a semi-automatic
method. Target words were issued as query to the Yahoo! search engine and expanded by further terms
found in each of WordNet’s senses of this word1. The set of target words is comparatively large, contain-
ing 100 target words in total; namely 50 nouns and 50 verbs. For each of these target words, and for
each of WordNet’s senses of these, at most 1000 documents were downloaded. For each WordNet sense,
only text fragments were retained that contained the target word and matched the target word’s POS
tag. The remaining text fragments were the sense-tagged instances2.

1 Related words that were considered were hypernyms, hyponyms, synonyms, meronyms and holonyms of a specific synset.
2 Note that the sense tags were not visible to participants, and only used in the test phase to evaluate performance of the

systems
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Figure 7.8: Setup of SemEval-2013 task 13. Note how the first two phases of the SemEval-2007 WSI task
are here collapsed into one.

SemEval-2013 task 13: Word Sense Induction for Graded and Non-Graded Senses [Jurgens and Klapaftis,
2013]. This task provides 20 nouns, 20 verbs and 10 adjectives in WordNet-sense-tagged contexts. It
contains 20-100 contexts per word, and 4664 contexts in total, which were drawn from the Open Amer-
ican National Corpus3 [Ide and Suderman, 2004]. Participants were asked to cluster the 4664 instances
into groups, with each group corresponding to a distinct word sense. No specific training instances were
provided in this task. However, to support systems in the sense induction, participants were provided
with the ukWaC4 corpus. This corpus consisted of roughly 2 billion words from crawled web pages
and was POS-tagged and lemmatized using the TreeTagger5. In contrast to the SemEval-2007 WSI task,
systems were not required to perform sense disambiguation separately from sense induction. Instead,
this task focused on the ability of participating systems to discover the overlapping use of multiple word
senses in a specific instance. For example, the adjective dark may mean both deficient in light as well as
secret. Usages of the latter sense can therefore also be a mixture of both senses. For example, the instance
Bad guys always hide in dark places can in fact refer to a secret place, though at the same time subsuming
the absence of light. Goal in this task was therefore to detect instances in which multiple senses applied,
and if so score each sense according to its applicability (using a score between 0 and 1). To compare
performance of participating systems in both graded as well as non-graded sense discrimination settings,
instances with multiple applying senses were tested separately.

7.3 Semi-Automatic Evaluation Using Wikipedia’s Link Structure

Despite the availability of evaluation datasets for WSI, we decided to construct our own for three major
reasons: First, existing evaluations mostly concentrate on a relatively small number of words (e.g. 20
nouns in the SemEval-2013 challenge). Optimizing the various parameters of our system specifically
for these few words would likely yield an overfitting to this dataset, making the system less suited for
application on previously unseen words. This, however, is one of the fundamental goals of WSI systems.
Secondly, existing evaluations often included multi-word expressions and words from all word classes
(nouns, verbs, adjectives and adverbs). Since we chose to concentrate on nouns with a single token to
simplify the thesaurus computation, the number of remaining evaluation instances from existing datasets
was too low to be useful for optimizing parameters. Thirdly, the discrepancy between the domain of the
text corpus used by the system to induce senses, and the corpus used by the evaluation imply a certain
error that is hard to quantify. To avoid this, we extracted a disambiguation dataset from Wikipedia, i.e.
the same corpus that we used to induce our sense inventory from.

3 http://www.americannationalcorpus.org/OANC/index.html (last accessed: 2015/04/30)
4 http://wacky.sslmit.unibo.it/ (last accessed: 2015/04/30)
5 http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/ (last accessed: 2015/04/30)
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We did so by utilizing Wikipedia’s link structure: Ambiguous terms are often linked to their correspond-
ing page, e.g. vision is often linked to the page Visual_perception, but also to Vision_(spirituality), which
both represent two distinct word senses. Link frequencies give a hint at the frequency distribution of the
various word senses. In the following, we will refer to the word or text being linked as link text and to
the linked page as link target.

Link text Freq. Wikipedia senses (filtered link targets)

soul 9162 Soul_music:4892 Soul:3981

canon 3899 Canon_(priest):2047 Canon_(fiction):588

feud 2695 Feud_(professional_wrestling):2220 Feud:378

organ 6669 Organ_(music):3751 Organ_(anatomy):1311 Pipe_organ:1089

chain 2631 Chain_store:806 Chain:540

resistance 4259 Electrical_resistance_and_conductance:1483 Resistance_movement:426

rotation 2714 Rotation:1438 Rotation_(mathematics):899

type 3561 Data_type:1148 Type_(biology):686

chicken 4054 Chicken:2672 Chicken_(food):1137

head 3425 Head:812 Head_(linguistics):352

Table 7.1: Table showing 10 randomly selected words of the 100 polysemous nouns chosen for this eval-
uation. The right-most column shows the extracted Wikipedia senses (with uncommon senses
removed), the numbers denote their frequency.

To build the evaluation dataset, we first extracted sentences along with links from a Wikipedia dump6.
Sentences that are too long or too short are dropped. From this link-annotated text corpus, we picked
100 polysemous nouns with at least two different senses (link targets). To filter out link targets that do
not represent actual word senses, we used a simple heuristic: a link target is only accepted as distinct
word sense if it makes up at least 10% of all instances of its particular link text. This reduced the number
of word senses from several dozen per word to just a few. See Figure 7.1 for a list of extracted word
senses for 10 exemplary polysemous nouns. Mostly, the filtering step removed link targets that represent
conceptual instances (e.g. Brooklyn_Bridge) rather than concepts (e.g. Bridge_(music)) or sub-concepts
(e.g. Beam_bridge), due to their lower frequencies. Finally, for every of the 100 words, we compiled a
list of 100 sentences containing one of these filtered links, i.e. word senses. We chose this number so
that frequent words have the same number of evaluation instances as infrequent words, though there
are far more than 100 contexts for frequent words. The resulting dataset therefore contains 10,000
sense-tagged disambiguation instances. With manual filtering of undesirable links, the process to extract
this dataset from a specific Wikipedia dump took a few hours for a single person7.

Evaluation Process

The evaluation process is straightforward: The filtered targets of wiki-links served as gold senses, and
were considered to be a gold clustering of the disambiguation instances. The clustering implied by the
contextualized induced senses formed another clustering. For an exemplary contextualization of the
polysemous words vinyl and bond, see Table 7.2. We then performed a cluster comparison as described
in Section 7.1: both clusterings were compared using purity, inverse purity and their harmonic mean
(F-measure).

6 These are the same sentences we used to induce word senses, only with additional link annotations.
7 Some effort also went code for processing Wikipedia dumps and extracting relevant link structure, however this code

may be re-used without further effort to extract datasets from other versions of Wikipedia, including more recent dumps
and dumps from other languages.
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word gold sense s lemmatized context words (original order)

vinyl Gramophone_record 1 Barry Gray ’s score receive vinyl release . . .

vinyl Gramophone_record 1 the album be release on both compact disc and vinyl . . .

vinyl Gramophone_record 1 this be the first of two Pink Floyd album . . .

vinyl Gramophone_record 1 originally 5,000 vinyl triple LP ( 3xlp ) copy be press .

vinyl Gramophone_record 1 Shrimpton have release various singles on vinyl and cd . . .

vinyl Gramophone_record 1 Cosmos be available for pre-order . . .

vinyl Vinyl 0 Soap scum on vinyl shower curtain have be report . . .

vinyl Vinyl 1 Urban vinyl figure have become collectible item .

vinyl Vinyl 0 Lau be widely credit as the founder of the urban vinyl style . . .

bond Chemical_bond 1 for example oxygen can form very strong bond . . .

bond Chemical_bond 1 this process form strong au-sr bond and release h2 .

bond Chemical_bond 1 one major use of NMR be to determine the bond connectivity
within a organic molecule .

bond Chemical_bond 1 the " stretch frequency " of bond between fluorine . . .

bond Bond_(finance) 0 the major designer and promoter of the Formosa bond . . .

bond Bond_(finance) 0 if , today , $ 1,000 be "put into" some bond or stock . . .

bond Bond_(finance) 0 this perception of instability in United States monetary . . .

bond Bond_(finance) 0 in September 2011 , Caxton FX issue four year non-transferable
company bond . . .

bond Bond_(finance) 0 inflation-indexed bond pay a periodic coupon . . .

bond Bond_(finance) 0 the purchase price be equal to the bond ’s face value . . .

Table 7.2: Example contextualization subsets with gold labels where WSD performed well. Notably, all
100 instances of bond where correctly distinguished into the two gold senses.

We used several baselines to compare our system with. The first one assumes one sense per word, which
makes contextualization trivial. The others assign s ≥ 2 senses to each instance randomly. With s >> 100
(the number of instances per word), this baseline is effectively equivalent to one that assigns one sense
per instance. We therefore have several baselines that indicate performance between these two extremes
of trivial disambiguation methods (one sense per word and one sense per instance).

Results

First of all, we were able to directly observe the effects of the different parameters on the induced senses:
Higher values of n resulted in a more coarse-grained sense clustering, while higher values of N and γ
resulted in a more fine-grained sense clustering.

The results of our evaluation are listed in Table 7.3 (for the baselines) and Table 7.4. The first observation
from these results is that the baseline assigning one sense per word is quite competitive: only few
configurations of our system were able to surpass the score of this baseline.

However, there were two specific configurations that outperformed this baseline. The first is a coarse-
grained clustering (γ = 1.4, n = 100), with an improvement of 0.83% F-measure over the baseline.
The second is a rather fine-grained clustering with an additional cluster merging step that collapses this
fine-grained clustering to a coarse-grained clustering, with an improvement of 2.1% F-measure over the
baseline. We explain these results as follows: As the baseline with s = 1 performs well with regard to
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# senses Purity Inv. Purity F-1

1 0.6587 1.0 0.7942

2 0.6621 0.5544 0.6035

3 0.6622 0.4048 0.5025

10 0.6889 0.1772 0.2819

100 0.8549 0.0627 0.1168

Table 7.3: Evaluation results (Baseline)

the overall F-1 value, the best strategy for our WSI algorithm is to stick to a single sense per word unless
there is enough evidence to add a second or third sense. Therefore, the configurations with the lowest
average sense number perform highest. A notable exception are fine-grained clusters that are merged in
a second optimization step, which we briefly elaborate on in the following.

DT
(p, twf )

MCL
(N , n,γ, g)

Cluster Opt.
(p∗, s)

Avg. #
senses Purity

Inv.
Purity F-1

(1000, 2) (100, 100,1.4, 0.0) − 1.28 0.6884 0.9620 0.8025
(1000, 2) (100,10, 1.4,0.0) − 1.58 0.7082 0.9069 0.7953
(1000, 2) (100,5, 1.4,0.0) − 2.36 0.7468 0.7980 0.7716
(1000, 2) (100,5, 1.4,0.0) (10000, 0.6) 1.09 0.6704 0.9947 0.8010
(1000, 2) (100,5, 1.4,0.0) (10000, 0.7) 1.48 0.7163 0.9457 0.8152
(1000, 2) (100, 100,1.7, 0.0) − 1.55 0.7054 0.9249 0.8004
(1000, 2) (100,50, 1.7,0.0) − 1.57 0.7064 0.9190 0.7988
(1000, 2) (100,5, 1.7,0.0) − 5.23 0.7931 0.6080 0.6883
(1000, 2) (100,5, 1.7,0.0) (10000, 0.6) 0.6790 0.9843 0.8036
(1000, 2) (100,5, 1.7,0.0) (10000, 0.7) 0.7321 0.8857 0.8016
(1000, 2) (200,5, 1.4,0.0) − 3.99 0.6919 0.7844 0.7353
(1000, 2) (200,5, 1.4,0.0) (10000, 0.7) 0.7332 0.9029 0.8093
(1000, 2) (200,5, 1.4,0.0) (10000, 0.6) 0.6788 0.9903 0.8055

Table 7.4: Evaluation results (Markov Chain Clustering). The average number of gold senses within this
set are 2.32.

Cluster Merging

As outlined previously, we tested whether merging of clusters with only subtle distinctness is beneficial
for WSD performance (see Section 5.5). For this, we merged clusters that shared a fraction greater
than s of their p most common co-occurrence features. Figures 7.9 and 7.10 show an exemplary cluster
merging of the words bay and bond, resp., and the results of this merging on the performance in our
evaluation. As the test results show, best results were achieved with merging of clusters, specifically with
s = 0.7. With this additional step, we were able to surpass the baseline by 2.1% F-measure, in contrast to
0.83% before. Notably, this setting produced a higher number of senses than the best-performing setting
without cluster merging. As this setting performed better nonetheless, this is a strong indicator that our
additional step of merging clusters indeed produces qualitatively better clusters.
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(a) Fine-grained cluster of bay with two
senses that are hard to distinguish for our
WSD.
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(b) Results in same evaluation after merging
similar clusters with s ≥ 0.7.
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Figure 7.9: Contextualization results of 100 gold-sense-annotated test instances for word bay.

(a) Fine-grained cluster of bond with two
senses that are hard to distinguish for our
WSD. The clustering induced 7 senses, of
which only the first 4 are shown here.
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(b) Results in same evaluation after merging
similar clusters with s ≥ 0.7.
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Figure 7.10: Contextualization results of 100 gold-sense-annotated test instances for word bond.

Limitations

Even though the automatically extracted evaluation dataset described in this section has the major ad-
vantage of offering a high number of contexts for a large number of words at little manual effort, it also
has its downsides.

First of all, gold senses extracted in this dataset tend to have distorted prior probability distributions:
Situations, in which the sense of a term is obvious are not specifically linked. For example, the word
capital may not necessarily be linked to Capital_city in a context such as The capital city of Germany
is Berlin. As another example, the term host is linked to Host_(biology) 5 times more often than
to Presenter, which intuitively does not represent the actual probability distribution within common
language. Therefore, this might distort the evaluation results with respect to how well a system is
capable of falling back to a meaningful MFS when only little contextual information is available.

Furthermore, Wikipedia comes with inherent inconsistencies due to its collaborative nature: For the term
chicken, there are two main Wikipedia articles: Chicken_(food) and Chicken. While the second refers
to the animal species, some mentions in food-specific contexts are also linked to the latter page. This,

63



however, is not a new problem: inter-annotator agreement has been a long-standing issue with manually
labeled data [Pradhan and Xue, 2009].

Summary

In this evaluation task, gold senses were relatively coarse-grained with an average number of 2.32 senses
per word. Here, the best strategy turned out to be to produce a lower number of high-quality clusters,
as opposed to producing an average number of clusters similar to the gold standard. Namely, a system
configuration that yielded an average of 2.36 clusters (n= 5,γ= 1.4) received a lower F-1 measure than
a system with only an average of 1.28 induced senses per word (n= 100,γ= 1.4). A possible explanation
is that all F-1 scores are relatively close to the baseline’s F-1 score with 79.42%. Many configurations
even yielded a lower score. Therefore, systems performed best if they used more than 1 sense cluster
only if there is strong evidence to do so. Without additional cluster merging, the best-performing system
was therefore the most coarse-grained clustering configuration with n= 100 and γ= 1.4.

Secondly, it turned out to make little difference whether a more fine-grained clustering is achieved by
increasing the inflation parameter γ or by decreasing the graph connectivity n. The performance (when
no cluster merging is performed) was mostly dependent on the average number of induced senses.

However, this changed when ”fuzzy” clusters were merged: we joined two clusters if their p∗ most
frequent co-occurrence features overlapped to a fraction of more than s. This was motivated by the
observation that two clusters were hard to distinguish for our disambiguation algorithm if their context
clues were similar. The evaluation results show that this improved results significantly. Best results were
notably achieved by choosing a fine-grained clustering with n= 5 and γ= 1.7 and merging clusters that
shared more than a fraction of s = 0.7 of their p∗ = 10,000 most frequent context clues.

Lastly, for sense disambiguation, we found a smoothing of α = 1× 10−5 for context clue scores8 to
produce best results in this evaluation, independent of other parameter settings.

7.4 SemEval-2013 Task 13

To assess the performance of our WSID system in comparison to other existing systems, we ran eval-
uations against the SemEval-2013 WSI subtask dataset. For this, we took the three best-performing
configurations according to our own evaluation, without performing any further modifications specific
to this task. This way, we aimed at receiving a fair comparison to previous participants, as these submit-
ted their system at a point when the test data was unknown.

Participating Systems

Participating teams in this task were AI-KU, Unimelb, UoS and La Sapienza9. Details of their respective
systems are described in section 4.3. Notably, only UoS uses a pre-computed sense inventory, while all
other participating teams performed sense clustering directly on the disambiguation instances.

8 This was necessary as during disambiguation, a context clue score of 0 for a single feature from a word context would
result in an overall score of 0 for this specific sense.

9 The La Sapienza system is in fact a WSD system, and relies on WordNet as sense inventory instead of inducing senses.
10 Baseline without mapping, senses directly from WordNet
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Participant/System F-1 NMI B-Cubed

F = {coocs}, p∗ = 1000, s = 0.7 61.24% 0.031 53.80%
F = {coocs, deps}, p∗ = 1000, s = 0.7 61.30% 0.024 54.43%
F = {coocs, deps}, no cluster-merging 61.12% 0.064 49.24%
AI-KU/Base 65.34% 0.047 34.53%
AI-KU/Add1000 60.09% 0.023 28.75%
AI-KU/Remove5-Add1000 62.90% 0.026 42.10%
Unimelb/50k 60.46% 0.039 44.08%
Unimelb/5p 59.61% 0.035 42.15%
Sapienza/System-1 54.97% 0.033 13.09%
Sapienza/System-2 55.05% 0.030 12.53%
UoS/Top-3 62.39% 0.030 42.31%
UoS/WN 60.52% 0.032 17.01%
All Instances, One Sense 60.28% 0 58.25%
One Instance, One Sense (1c1instance) 0 0.055 0%
Semcor MFS10 47.72% 0 57.00%

Table 7.5: Evaluation results in SemEval-2013 Task 13 for all 20 nouns in a single-sense setting. The first
row lists results of our system. Parameters of our system were N = 100, twf = 2. Best system
performances and best baselines are marked bold.

Results

Tables 7.5 and 7.6 list the results of our system compared to other participants. Surprisingly, our system
received the highest scores for both evaluation measures (Fuzzy NMI and B-Cubed) in the cluster com-
parison setting. Note, however, that we used Wikipedia as background corpus and not ukWaC like other
participants. Yet, we did not perform any optimization or adaptation of our system to this evaluation.
Furthermore, it was the only system to beat the Fuzzy NMI score of the 1c1instance baseline. However,
in the supervised setting of this evaluation11, performance was only 1.02% over the F-1 measure of the
all-instances-one-sense baseline, while the best-performing system with respect to this measure achieved
a 5.06% improvement over this baseline.

We see three possible reasons for these results: Most evidently, we used a different background corpus to
induce word senses. Due to the high quality of text found in Wikipedia compared to the ukWaC corpus
(which is extracted from web crawls), this might have a crucial impact on the quality of discovered word
senses. Secondly, we optimized our system to a cluster-comparison setting very similar to the one used in
this evaluation. This might explain the discrepancy of the performance of our system in the supervised
and the unsupervised evaluation setting. Thirdly, the setting that optimized performance in our own
evaluation produced a relatively low number of senses per word (1.48 on average). While this was
optimal for senses we extracted from Wikipedia links (2.32 per word on average), this is less suited in
a setting where induced senses are mapped to much more fine-grained WordNet senses (as done in this
WSI task): The average number of induced senses for other participating systems was between 5 and 9
senses per word, while WordNet contains an average of 8.66 senses for the test words.

7.5 Summary

We in this chapter evaluated the performance of our WSID system using two datasets, namely a
Wikipedia-based WSD dataset, and the SemEval-2013 WSI task. In the first evaluation, our system

11 For details on this setting, see Section 7.1.
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Participant/System
Jacc.
Index WNDCG

Fuzzy
NMI

Fuzzy
B-Cubed #S

F = {coocs}, p∗ = 1000, s = 0.7 17.15% 31.30% 0.037 58.55% 1.3
F = {coocs, deps}, p∗ = 1000, s = 0.7 17.19% 31.29% 0.033 59.16% 1.3
F = {coocs, deps}, no cluster-merging 17.22% 32.67% 0.076 52.93% 2.35
AI-KU/Base 17.64% 39.35% 0.066 38.18% 21.8
AI-KU/Add1000 17.64% 20.47% 0.033 31.65% 21.8
AI-KU/Remove5-Add1000 22.81% 33.07% 0.040 46.33% 20.45
Unimelb/50k 19.83% 38.39% 0.060 49.44% 10.35
Unimelb/5p 19.77% 37.36% 0.056 47.54%
Sapienza/System-1 16.39% 28.54% 0.049 14.84% 9.05
Sapienza/System-2 16.39% 20.41% 0.046 13.00% 9.05
UoS/Top-3 21.98% 36.98% 0.044 45.14% 21.9
UoS/WN 17.15% 29.83% 0.046 18.59% 9.05
All Instances, One Sense 17.15% 30.22% 0 63.09% 1
One Instance, One Sense (1c1instance) 0% 0% 0.072 0% 95.35
Semcor MFS 47.89% 35.65% - - 1
WordNet MFS 57.95% 43.14% - - 1

Table 7.6: Evaluation results in SemEval-2013 Task 13 for all 20 nouns with multiple (graded) sense as-
signments allowed. The first row lists results of our system. Parameters of our system were
N = 100, twf = 2. Best system performances and best baselines are marked bold.

was able to beat a simple baseline assigning one sense per word, and improved even further with merg-
ing of ”fuzzy” clusters. The best system configurations according to this first evaluation also performed
competitively in a subset of the SemEval-2013 WSI task. Since these are very promising results, the next
chapter discusses possible further use cases of our system that build on an alignment of the induced
sense inventory to ontologies.

66



8 An Outlook: From Word Senses to a
Proto-Ontology

To give an introductory example up-front, consider the following sentence in which multiple words are
to be disambiguated:

Thomas and Mario are strikers playing in Munich.1

There are several ambiguous words in this example: Thomas and Mario, as well as striker and to play.
While the first two are so-called entities, more specifically Named Entities (NE), the latter two are words
as found in an ordinary dictionary. In a specific context like this one, all four words are unambiguous:
Thomas refers to the soccer player Thomas Müller, Mario to Mario Gómez2, striker refers to a soccer player
and the verb to play to the specific sense of performing a sport.

Yet, most approaches to WSD will have problems disambiguating the word striker: While the former can
refer to an employee on strike (rather unlikely in this context), it can also refer to a hitter in a cricket
game, which is distinct from a striker in a soccer game. Since WSD systems rarely have access to world
knowledge, such as the fact that Bayern Munich is a soccer club and that Munich is a short form of the
same club, it is hard to know for such systems which sense applies here.

With ontological resources such as DBPedia [Bizer, 2014], FreeBase or YAGO [Suchanek et al., 2007]
having reached a critical mass of useful information [Auer et al., 2007], a possible solution is to link
word-sense inventories to such ontologies. This has, in fact, been discussed only recently in the literature,
as e.g. in [Moro et al., 2014]. They even go one step further and formulate the hypothesis that the
lexicographic knowledge as used in WSD can bring in useful information for Entity Linking (EL) systems
as well.

8.1 Bridging The Gap Between Unstructured And Structured Resources

Thinking beyond the combination of manually built dictionaries and ontologies, [Hovy et al., 2013]
discuss this from a more abstract point of view: They propose the complemental use of both structured
and unstructured resources. For this, they categorized knowledge resources in four categories following
their level of structure:

• Unstructured resources such as specific text corpora, or the entire web as a whole. These are the
resources that contain most knowledge, yet they are not directly accessible to machines.

• Thesauri: collections of related terms, often specifically focused on synonyms and antonyms.

• Taxonomies, which add a hierarchy level to thesauri, specifically is-a relations such as striker is-a
soccer player.

1 This example has been taken from [Moro et al., 2014].
2 Note that at the time this example was first mentioned, Gómez was indeed the only player named Mario playing for

Munich. In fact, this has since changed with the transfer of Mario Götze to Munich in 2013.
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• Ontologies, representing the highest level of structure and providing a ”fully-structured knowledge
model, including concepts, relations of various kinds, and possibly, rules and axioms”. Notably,
these often provide lexical forms of such concepts that linking them to terms that express it by
means of language.

While, according to them, ontologies provide information of the highest quality, they come with several
problems that can indeed be compared to the problems we mentioned as the very problems of hand-
crafted lexical resources: Creation and maintenance effort, coverage (i.e. the problem of covering too
few domains) and missing up-to-date information.

A current trend in the NLP research community motivated by this observation is to view structured and
unstructured resources as being complementary: fully-structured ontologies provide high-quality infor-
mation, but require manual creation and maintenance by linguistic experts. Thesauri, on the other hand,
can be computed in a fully automatic manner, as done by our system using the notion of Distributional
Semantics, and can therefore be easily adapted to various domains and be updated on a regular basis.
However, they lack the full depth of information found in ontologies.

A possible solution is therefore to bridge the gap between unstructured or semi-structured resources
such as thesauri, and fully structured resources, namely ontologies: With the possibility of automat-
ically inducing a word-sense inventory along with a full disambiguation model from a Distributional
Thesaurus, as described in this thesis, this would on one hand facilitate the unification of WSD and EL
systems. On the other hand, it could help overcoming the knowledge-acquisition bottleneck that fully-
structured ontologies are facing, and assist linguists in creating domain-adapted ontologies or indicate
when new concepts have developed and should be introduced to an explicit ontology3 (as e.g. suggested
in [Widdows and Dorow, 2002]).

In this chapter, we sketch a novel approach to building a hybrid aligned resource based on a thesaurus,
forming what we call a proto ontology.

8.2 From Thesauri to a Proto-Ontology

The path from unstructured resources to thesauri has already been anticipated by previous chapters: By
utilizing Distributional Semantics, it is possible to compute a Distributional Thesaurus in a fully automatic
manner. As a next step, we here briefly discuss the possibility of linking word-sense inventories induced
from such thesauri to ontological resources. Specifically, we show how EL systems can benefit from this
step.

To pick up the example from above, the word striker is by our system correctly disambiguated as striker.2
(see Table 8.3), which refers to the concept of a soccer player, as opposed to e.g. a cricket player. This
is done based on stochastic information that e.g. the words play, Munich or Mario significantly co-occur
with words from the cluster striker.2. This knowledge is extracted fully automatically in an unsupervised
manner, without relying on databases of any sort. In effect, this step is way to mitigate the Knowledge
Acquisition Bottleneck, and to bring in world knowledge in an automated manner.

In a previous step, striker.2 can be linked to the ontological concept forward4 from FreeBase. This
linking procedure would require two main steps: candidate generation and candidate scoring. In the first
step, candidate concepts that may correspond to an induced sense, such as striker.2, are gathered by e.g.
retrieving all concepts that have an equal name or alias (cf. Table 8.2 for aliases of the FreeBase concept
forward). In a second step, these may be scored according to various possible heuristics, including

3 Take, for example, the word tablet: As of version 3.1, WordNet does not mention a sense referring to a computing device,
though this sense has been in common use since 2010.

4 http://www.freebase.com/m/02sdk9v (last accessed: 2015/04/30)
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Proto concept Top cluster words Is-a labels
striker.0 shortstop, pitcher, infielder, outfielder, catcher position, fielder, player
striker.1 actor, actress, singer, journalist, musician artist, professional,

people, figure
striker.2 midfielder, defender, goalkeeper, footballer,

forward
sport, player, team,
member

Table 8.1: Induced proto concepts for striker. Note that the third sense clearly refers to soccer players,
while the first sense can rather be identified with a cricket player. Also, striker.2 specifically
names forward as similar item, providing a clear link to the equally-named FreeBase concept.
Is-a labels on the right may help to both generate as well as score possible candidate concepts
from the ontology.

matching of cluster words to name and aliases, and scoring of the concept description (as done in
Table 8.3). This linking procedure for an induced sense inventory and an ontology like FreeBase must
be performed only once.

Field Contents
title forward

notable type /soccer/football_position

description Forwards are the players on an association football team who play nearest
to the opposing team’s goal, and are therefore most responsible for scoring
goals. (. . . )

aliases ponta, striker, attacker

Table 8.2: Excerpt from FreeBase entry for concept forward. Note the alias striker, which can be used
to retrieve candidate concepts that may be linked to a specific induced word sense. Using
the description text, as well as the type information referring to football (as opposed to e.g.
cricket), the corresponding entry in the induced word sense inventory can be determined fairly
accurately.

Sense P(s|C f orward) P(s|Cexample)
striker.0 2.173× 10−11 3.364× 10−3

striker.1 4.348× 10−12 2.398× 10−8

striker.2 0.999... 0.997...

Table 8.3: Scores for induced senses of striker (denoted by s) for description of the FreeBase concept
forward and the example sentence from above (denoted by C f orward and Cexample, resp.).
While the alias striker of the FreeBase concept already provides a clear link to striker.2, these
scores could be used to verify linking of this candidate concept.

When this is done, and striker is (to use our own system as example) disambiguated correctly to striker.2,
this additional background knowledge is tremendously useful for further linking of the entities Thomas,
Mario and Munich: In FreeBase, there are 20,571 people with first name Thomas. However, there are
only 53 such people that are linked to the concept forward, which was identified by our exemplary WSD
system. While this would not fully disambiguate the entity Thomas, it severely cuts down the number of
alternatives to choose from and can provide useful hints for EL systems.
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9 Implementation Details
To process the large text corpus required by our WSI algorithm, a high parallelization level was necessary
in order to cut processing time to a minimum. Since many variables were unknown in the beginning,
especially number and type of distributional features that would facilitate a well-performing WSI system,
we incrementally improved our system step by step, using manual inspection and evaluation results. This
was only possible having a pipeline that can process all data in a relatively short period of time.

The foundation of our implementation was the JoBimText project1 [Biemann and Riedl, 2013], which
can be used to compute word similarities based on raw text. This project makes heavy use of Hadoop2,
a massively parallel computation framework based on the MapReduce programming model [Dean and
Ghemawat, 2004]. This programming model, in a nutshell, allows the specification of operations on
splits of data that can be executed entirely independently from each other. To allow for faster proto-
typing of new components, which were necessary to build a Word Sense Induction and Disambiguation
system on top of this pipeline, and for quick experimental adjustments in the thesaurus computations,
we realized a light-weight alternative implementation of the JoBimText pipeline in Spark3 (for an in-
troductory paper on Spark, see [Zaharia et al., 2010]). Though Spark does not directly implement the
MapReduce programming model itself, it allows a superset of the operations supported in MapReduce.
Notably, Spark provides a native Scala interface, allowing a higher-level programming than Java, which
is the standard programming interface for Hadoop. Additionally, Spark proved to be easier to set up and
run on local machines, which enabled a more test-driven incremental development using small-scale
datasets.

Our cluster in total consisted of 24 nodes, with around 20 virtual processor cores each. This cluster
setting led to a total memory amount of about 700 GB and 65 terabytes of Hadoop Distributed File
System (HDFS)4 disk storage. Average processing time to extract dependency features for all nouns in
a Wikipedia corpus using the MaltParser [Nivre et al., 2006] and to compute a distributional thesaurus
using these was under a day. Aggregating context clues over extracted sense clusters for 100 words (and
100 similar terms per word) took an average of one hour.

The WSI pipeline consisted of several steps (see Figure 9.1), which have already roughly been outlined in
Section 3.3. First, a large text corpus is extracted from a recent Wikipedia dump. Then, context features
are extracted using a Unstructured Information Management Architecture (UIMA) 5 pipeline executed
on Hadoop, consisting of DKPro6 analysis component wrappers for an OpenNLP7 tokenizer, segmentizer,
lemmatizer and a dependency parser from the MaltParser project. In a third step, word similarities are
computed using either JoBimText, or our Spark-based alternative implementation. An illustration of
this computation for a distributional thesaurus, see Figure 3.2, or the project’s documentation8. For an
in-depth explanation of the steps required to compute distributional similarities using a JoBimText-like
pipeline, see [Biemann and Riedl, 2013]. The result can be converted into a sparsely connected word
graph, by connecting only words with a similarity over a certain threshold, discarding all other edges,

1 https://sourceforge.net/projects/jobimtext/ (last accessed: 2015/04/30)
2 https://hadoop.apache.org/ (last accessed: 2015/04/30)
3 http://spark.apache.org/ (last accessed: 2015/04/30)
4 For an introductory paper on HDFS, see [Shafer et al., 2010]
5 http://uima.apache.org/ (last accessed: 2015/04/30)
6 https://www.ukp.tu-darmstadt.de/research/current-projects/dkpro/ (last accessed: 2015/04/30)
7 http://opennlp.apache.org/ (last accessed: 2015/04/30)
8 http://maggie.lt.informatik.tu-darmstadt.de/jobimtext/documentation/ (last accessed: 2015/04/30)
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Figure 9.1: Order and dependencies of several steps required in producing a word-sense inventory along
with a contextualization model (consisting of scored context clues)

and weighting every remaining edge with the respective (symmetric) word similarity. This graph is then,
in a fourth step, clustered using a custom, efficient MCL Java implementation internally using a sparse
matrix representation. Context clues are aggregated for each sense cluster as described in Section 5.2.
Lastly, ”fuzzy” clusters with similar context clues are merged to improve disambiguation precision. The
result is a fixed, yet domain-aware, word-sense inventory with an augmented, Bayesian disambiguation
model.

The disambiguation of words in context is relatively straightforward: Using the pre-computed sense
inventory, extracted features from the word context can be compared to the context clues found in the
respective sense clusters of the ambiguous word. The pre-computed scores for the extracted context
features, as found in each sense cluster, are then combined (usually by mere multiplication), and the
sense with the highest score is chosen. Alternatively, if several senses have an equally high score, multiple
senses can be assigned. For an illustration of this process, see Figure 9.2.
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Figure 9.2: Word Sense Disambiguation using the induced sense inventory augmented with context clues
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10 Conclusion and Future Work
10.1 Conclusion

We introduced a fully unsupervised Word Sense Induction and disambiguation (WSID) system that does
not rely on any existing sense inventories. Also, it does not require any training data for learning a model
for contextual disambiguation of induced senses; the underlying probabilistic model is constructed fully
automatically from the same text corpus that is used to induce senses. In contrast to most other state-
of-the-art WSI systems that merely cluster instances, it produces a fixed sense inventory that allows for
consistent sense-labeling for varying inputs. Also, our approach scales to very large text corpora in the
magnitude of terabytes, yet we showed that it compares competitively with other unsupervised systems.
In the SemEval-2013 Word Sense Induction for Graded and Non-Graded Senses subtask, the most recent
task in this line, it is the only system that outperforms the baseline’s Fuzzy NMI score in the cluster
comparison evaluation when applied only to nouns. Also, it receives the highest Fuzzy B-Cubed score
in the same evaluation, even though we did not perform any optimizations in our system specific to the
SemEval-2013 challenge.

Hence, to answer the first question of the hypothesis: To induce a word sense inventory for a large part
of the vocabulary, we used a scalable Distributional Similarity computation algorithm. To obtain word
senses, the resulting word similarity graph is clustered individually for each target word.

Reliable disambiguation of word instances in context (the second research question) is achieved by using
context clues of cluster words as representative clues for each word sense.

Limitations

Notable limitations of our system are the following: First, the results with respect to the WSD setting
of the SemEval-2013 WSI task, in which induced senses are mapped to WordNet senses, are only in the
midfield among other participants. A potential reason for this is that we did not cluster instance contexts
directly, as other higher-performing systems did. However, our induced senses are therefore not specific
to these instances, and can be re-used in other contexts.

Also, while our system performs the sense induction step in an unsupervised manner, it nonetheless
depends on supervised language processing components, namely a POS tagger, a lemmatizer and a
dependency parser. While it is possible to replace these components by their unsupervised counterparts
[Riedl et al., 2014], this was not conducted in the scope of this thesis.

10.2 Future Work

Building on the notion of having a fixed word-sense inventory produced by the WSI algorithm, future
work should primarily focus on mapping the induced sense inventory to existing lexical resources such
as WordNet or the SUMO ontology. This, for one, allows the re-use of unsupervised WSI systems in
scenarios where well-defined senses from such resources are required. Even more importantly, it would
also open up new possibilities to enhance existing sense inventories with useful statistical information
that can be extracted automatically from large text corpora.

73



Another interesting question would be whether other or additional distributional features could improve
performance of our WSI system. As both the Wikipedia-based, as well as the SemEval-2013 evaluation
showed, the addition of dependency features for contextualization consistently improved WSD perfor-
mance. This indicates that incorporating more distributional features may improve WSD further. There
are two major possible additions: N-grams of various window sizes may complement the high accuracy
of dependency features. Using larger values for n would also allow to add more disambiguation context
than dependency features could provide. But also using smaller windows for co-occurrence features,
which are the foundation of our contextualization algorithm, may improve accuracy due to the higher
sensitivity to local context. Notably, [Pedersen, 2000] reported an improved accuracy for their Bayesian
classifier using an ensemble of such co-occurrence features with windows of varying sizes.

Lastly, since the ultimate goal of WSI systems is to facilitate unsupervised means for WSD, a possible
setting of the proposed system should be evaluated that neither makes use of complex POS taggers,
nor of dependency parsers. Since these are usually trained on hand-labeled data, removing the need
for these would yield a true, fully unsupervised WSI system that could be applied even when no such
advanced components are available.

10.3 Summary

In this thesis, we introduced an unsupervised system for Word Sense Disambiguation (WSD) that utilizes
the notion of Distributional Semantics to induce senses from large text corpora. In contrast to most state-
of-the-art WSI systems, our system provides a fixed sense inventory that can be used to label previously
unseen instances. Disambiguation of words in context was done by using context features of words from
each sense cluster.

To optimize the quality of the Distributional Thesaurus (DT) used by our system, we introduced a
pseudoword-based evaluation to measure the contribution of noise in computed word similarities.

We also introduced a minimally supervised, large-scale evaluation method for WSID systems based on
Wikipedia’s link structure. The same evaluation was used to tune system parameters, without the need
for any hand-annotated test data or manual performance evaluation. This automatic evaluation method
is especially interesting as, in contrast to other recent WSI evaluations, it provides a large amount of
sense-labeled contexts (several hundreds in some cases) for a large amount of words. Namely, we
provided 100 sense-tagged, high-quality contexts for 100 nouns, which is nearly a magnitude larger
than e.g. compared to the SemEval-2013 WSI task, which provided 22-100 contexts for only 20 nouns.
Yet building our evaluation dataset involved only an hour of manual inspection.

Lastly, we showed that our system performs competitively with regard to task 13 of the SemEval-2013
challenge, a recent, well-known WSI evaluation.
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