Statistical Models of
Semantics using Structured

Topics

Statistisches Modellieren von Semantik mit Strukturierten Topics
Master-Thesis von Simon Dif aus Grenoble, Frankreich
Tag der Einreichung:

1. Gutachten: Dr. Alexander Panchenko
2. Gutachten: Prof. Dr. Chris Biemann

/) TECHNISCHE
UNIVERSITAT
DARMSTADT

Tec]
Fachbereich Informatik

Language Technology Group

Statistical Models of Semantics using Structured Topics
Statistisches Modellieren von Semantik mit Strukturierten Topics

Vorgelegte Master-Thesis von Simon Dif aus Grenoble, Frankreich

1. Gutachten: Dr. Alexander Panchenko
2. Gutachten: Prof. Dr. Chris Biemann

Tag der Einreichung:

Erklarung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus
Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in
gleicher oder dhnlicher Form noch keiner Priifungsbehdrde vorgelegen.

Darmstadt, den 20. Juli 2016

(S. Dif)

Contents

Introduction and related work

. Introduction

Related work

Background and resources
Introduction

Disambiguated Distributional Thesaurus (DDT)

4.1. Construction of thethesaurus.,
4.2. IS-Arelationships i i it i e e e e e e e e e
4.3. DDTs used in oUr eXperimentsv v vuin e eenneenn..

I1l. Extraction of the structured topics

5.

6.

Presentation of the pipeline
Preprocessing of the DDTs

Graph clustering of the DDTs

7.1, Introduction e e e

7.2. Markov Chain Clustering vttt et et et

7.3. Louvain Method e e

7.4. Chinese Whispers e

7.5. Resultsof the clusteringt
7.5.1. Conclusion. i e

Topic annotation with hypernyms

8.1. Hypernyms from WordNet ittt e e e
8.1.1. Searching only the first hypernym in the hierarchy
8.1.2. Searching all hypernyms in the hierarchy and assigning weights
8.1.3. Evaluation of WordNet hypernym annotation methods

8.2. Hypernyms from IS-A relation databases
8.2.1. Counting hypernyms with and without considering weights
8.2.2. Adapting TF-IDF scheme to discard noisy hypernyms

11
12

13
13
17
18

19
20
21

24
24
24
25
26
27
31

8.2.3. Evaluation of methods to find relevant hypernyms from the IS-A database . 36

IV. Intrinsic evaluation of the structured topics 37
9. Introduction 38
10.Interpretability of topics 39
10.1.Experimental Settings v v v vt it e e e e e e 39
10.2.Discussion of results e e 39
11.Hypernym graph analysis 43
11.1.Experimental settings. ot v it e e e e e 43
11.2.Discussion of results e 44
12.Mapping to BabelNet topics 48
12.1.Experimental Settings o v v vttt e e e e e e e 48
12.2.Discussion of results e 50
13.Conclusion 53
V. Application of the structured topics to text categorization 55
14.Visualization of topics 56
14.1.IntrodUCtion o v i e e e e e e e e e e e 56
14.2.N0odes POSItiONS o vt it e e e e e 56
14.2.1.Positioning algorithm 57
14.2.2.5t0ring POSItIONS v o v it e e e e 57
14.3.ImMages o o e e e e e e e e e e e e e e e e e e e 57
14.3.1.IMageS SOUICES v v v vt ittt et e e e e e e e e 57
14.3.2.IMages SiZ€ o v v i e e e e e e e e e e e e e e e e 58
15.Topics exploration 59
15.1.General presentation vt it e e e e e e e e 59
15.2.Sorting topics by quality L. e 59
16.Text categorization 61
16.1.Front-end oot e e e e e e 61
16.2.Back-end: asearchengine 61
16.2.1.Introduction e e e e 61
16.2.2.0DCG e e e e e e e e 63
16.2.3.Baseline results with naive random ranking 63
16.2.4.Simple TF-IDF QUETY o ot et e e e e e e e 64
16.2.5.Exact term matching. i e 67
16.2.6.Combining bothmethods 69

16.3.ConCIUSION v v o e e e e 72
VI. Conclusion and future work 73
17.Conclusion 74
18.Future work 75

Abstract

Topic modeling is a field of computer science which aims to extract topics out of a document or
a corpus of documents. With the exponentially growing World Wide Web and all the literature
it contains, topic models are meant to help to relevantly classify these texts and facilitate their
exploration.

In this thesis we explore a new methodology to build topics that is different from the conventional
unsupervised topic models based such as LDA. We base our approach on a Disambiguated Distri-
butional Thesaurus computed in an unsupervised fashion from texts corpora, on which we apply a
clustering method. We explore several parameters for our system and compare the resulting topic
models. Additionally, we present a user interface to visualize topics and interact with them.

Acknowledgements

Here I first want to thank Alexander, for advising me all along this thesis, answering all my ques-
tions and reviewing my work.

I also thank Chris for the previous advices he gave me, always full of sense.

Finally, I will thank my friends and everybody who supported me during the time of the thesis!

Part |.

Introduction and related
work

1 Introduction

During the past decades, we have witnessed the emergence of the World Wide Web. Its size has
grown exponentially since, reaching an astonishing 50 billion webpages today.! In the same time,
a lot of text resources have found their place on the web, including global literature with Google
Books or scientific papers.

Today, the amount of text information available on the web is such that reading only a small part
of it would already take more than a lifetime. The need has emerged for ways to automatically
extract information out of texts, in order to save user’s time.

Topic models aim to address this issue. They try to automatically find the topics of a text. This
allows people to grasp the gist of a text without having to read it. This way, they can read only
texts that are relevant with respect to what they are looking for and discard others.

Topic models have been the focus of a lot of work in the last years. Two categories can be found,
that answer the following questions:

* How to build topics?
* How to find topics in a text given this text and a set of topics?

Also, several formats of topics have been proposed. A topic can be a distribution of terms of a
vocabulary, like in [Blei et al., 2003]. In this case, each topic contains every word of a vocabulary
and these words get different probabilities and are sorted differently in each topic. Alternatively,
a topic can also be a bag of words. In this case, a topic contains only a division of the whole
vocabulary, but on the other hand, the words are not necessarily sorted.

In this master thesis, we explore a new way to build topics. Beyond words, we actually work with
word senses: for instance, the word jaguar could belong to both a topic about animals and another
about cars. Our fully unsupervised system is based on a Disambiguated Distributional Thesaurus,
on which we apply a clustering method. We explore several variations in our system parameters
and obtain a set of topic models that we compare by conducting three different experiments.
We also elaborate methods to annotate topics with hypernyms, that we find either in WordNet
[Miller et al., 1990] or in a automatically built IS-A relationships database.

Finally, we introduce a user interface allowing to explore and interact with topics, including their
visualization as graphs.

! http://worldwidewebsize.com

2 Related work

Several directions of work are explored in the field of NLP focusing on topics and plenty of topic
models have been proposed. Among them, one of the most famous is the Latent Dirichlet Allocation
model (LDA) [Blei et al., 2003]. The general idea behind LDA is the following. Given a text for
which we want to find the latent topics, LDA assumes that this text was created following a specific
generative model, which contains several parameters. Given this hypothesis, LDA tries to estimate
the parameters that were used during the text generation. The topics present in the text are found
during this parameter estimation, since one parameter is precisely the distribution over all topics
that was used to generate the texts. More precisely, the parameters for the generative model
are the number of words in the text and a multinomial distribution over all topics (a Dirichlet
distribution, hence the name of LDA). LDA then assumes that each word in the text was generated
by first picking a topic, according to the topics distribution and then a word in this topic. In LDA, a
topic is defined as a distribution of words over the whole vocabulary. Each vocabulary word has a
given probability in each topic. The word is picked in the topic according to the vocabulary words
distribution.

LDA therefore presupposes a set of topics, that are distributions over the vocabulary words. The
most famous method to compute these distributions is the Gibbs sampling. Gibbs sampling is a
relatively old statistical method to approximate distributions [Geman and Geman, 1984] and was
first used with LDA in [Griffiths, 2002]. Given a number of topics K, the Gibbs sampling algorithm
tries to correctly assign to each vocabulary word a probability for each topic. Starting from random
distributions, it iteratively improves them until reaching a steady state.

Since its introduction, LDA has been used as a basis for new topic models extending it. For instance,
a new topic model is proposed in [Wallach, 2006]. Contrary to the original LDA model, where
each text is generated as a bag of words, i.e. the generated words are not sorted, in this topic
model a new word is generated by additionally taking into account the previous generated word.
After taking into account the words order of a document, work has also been done to consider
the documents ordering inside a corpus [Blei and Lafferty, 2006]. This model allows to visualize
topics predominance over time. Another example of topic model extending LDA is presented in
[Rosen-Zvi et al., 2004]. In this work, additional information about authors is included. Each
author is associated with a distribution over topics, modeling its interests.

Introduced before LDA, another major topic model is the Latent Semantic Analysis (LSA)
[Deerwester et al., 1990] and its probabilitic variant pLSA (probabilitic Latent Semantic Analy-
sis) [Hofmann, 1999]. In LSA, when considering a corpus of N documents and a vocabulary of M
words, a N x M matrix is built based on words occurrences in the documents. This matrix is then
factorized using Singular Value Decomposition [Klema and Laub, 1980]. Documents are then rep-
resented as vectors whose similarity can be compared by computing their cosine similarity. While
topics are orthogonal in LSA, they are distributions over the whole vocabulary in pLSA, like in LDA.
The matrix is factorized using non-negative matrix factorization, which implies a non-orthogonal

9

decomposition. Additionally, this decomposition enables the identification of topics by grouping
similar words together [Donoho and Stodden, 2004].

In many techniques such as LSA, vectors are used to represent text documents. This is called
the Vector Space Model [Salton et al., 1975]. In this space, each dimension corresponds to a cor-
pus term. A term is generally a word, but other definitions are possible, such as a term being a
sentence. Documents, as lists of terms, are represented as vectors in the Vector Space. The sim-
ilarity between two documents can then be computed as the cosine similarity of the two vectors
[Gabrilovich and Markovitch, 2007].

Topic models are one way to find topics hidden in a text, text categorization is another one. Con-
trary to topic models, which are unsupervised, text categorization models involve supervised learn-
ing. This means that in text categorization, a model is trained using a set of texts that are already
annotated with topics. Only after being trained, a text categorization model can be used to find
topics. Several machine learning algorithms have been proposed [Sebastiani, 2002], such as using
support vector machines [Ferraresi et al., 2008].

10

Part Il.
Background and resources

1"

3 Introduction

In this section, we describe the resources that we use in this thesis. Our system takes as input a
Disambiguated Distributional Thesaurus (DDT), presented in [Faralli et al., 2016]. This DDT can
be seen as an undirected graph, whose nodes are word senses. For example, a word like jaguar
will be represented by several nodes in this graph, whether if it means the animal or the car. Two
nodes are connected if they have a similar meaning: for example there should be an edge between
the node jaguar (animal sense) and the node lion.

Our system performs a clustering of this graph of word senses, each cluster should contain highly
connected nodes. It is therefore likely that these clusters contain highly semantically related words,
denoting a topic. For instance, a topic could contain the words jaguar lion tiger cat etc. whereas
another one could contain the words Mercedes, Audi, Jaguar, BMW.

In a next step, we want to be able to easily guess which topic the word senses contained in the
cluster denote. In order to enable this, we find accurate hypernyms for each topic. For example,
the topic containing the word senses cat, tiger, lion, jaguar etc. could have as hypernyms words
like feline or animal.

12

4 Disambiguated Distributional Thesaurus
(DDT)

4.1 Construction of the thesaurus

The system that we developed to build structured topics takes as input a distributional thesaurus.
A thesaurus is a linguistic resource meant to link the natural language of users to the one used in
lexical resources and is useful to address potential issues of natural language understanding such
as synonymy or homonymy.

A thesaurus is composed of lists of words. Each of these lists represents one concept: that is to say,
the words present in each list are similar in terms of meaning. They can be of course synonyms but
an entry in the thesaurus is not bounded to a list of synonyms: it is more general than that, such
that antonyms can also be part of the list. Words in a list can also be linked in a hierarchical way:
there can be hypernyms and hyponyms, meronyms and holonym:s.

A hyponym-hypernym relationship between two terms A and B happens when we can say that "A
is a B". For instance, with the two words cat and animal, animal is a hypernym of cat because a cat
is an animal. The other way around, we say that cat is a hyponym of animal. A meronym-holonym
relationship between two terms A and B happens when we can say that "A is a part of B". For
example, with the two words room and house, house is a holonym of room and room is a meronym
of house, since a house contains rooms.

Thesauri are widely used by linguists but are also available publicly, there are indeed several
thesauri on the Web. As an example, Figure 4.1 shows the results for the word car in the website
thesaurus.com.

There are 33 words returned as synonyms of car. As we can easily notice, the term synonym is
not really appropriate here, as only the two first words in the list auto and automobile are actually
synonyms of car, but this is not our concern. We can notice that the list contains indeed some
synonyms of car (auto, automobile), some words with a similar meaning but not synonyms (bus,
truck), some hypernyms (machine), some hyponyms (limousine, touring car) and some meronyms
(wheels). Together, these words form a concept.

The thesaurus we use in this thesis is a distributional thesaurus i.e. it is based on distributional
semantics. Distributional semantics is a research area aiming at measuring semantic similarity
between terms based on their distributions in text in large corpora, following the Distributional
hypothesis that linguistic items with similar distributions have similar meanings. Indeed, two
similar words should be statistically distributionally similar, that is to say, they should have a
similar context. The other way around, by measuring the similarity of contexts for two words, we
can elaborate an hypothesis on their semantic similarity. This is precisely the Strong Contextual

13

Synonyms [] Common [_| Informal n =
auto motor bucket heap wheels
automobile pickup buggy jalopy wreck
bus ride compact junker clunker
convertible station wagon conveyance motorcar gas guzzler
jeep truck coupe roadster touring car
limousine van hardtop sedan
machine wagon hatchback subcompact

Figure 4.1.: Results page for the word "car" in thesaurus.com.

Hypothesis introduced in [Miller and Charles, 1991]. The more often two words appear within the
same context, the more likely they are to be semantically similar.

More precisely, our distributional thesaurus is an output of the JoBimText project pipeline
[Faralli et al., 2016]. The JoBimText project is a distributional semantics project developed and
maintained by IBM Research and the Language Technology Group at the TU Darmstadt.! It aims
to build a framework for computational semantics to address multiple problems encountered in
the computational linguistics research area: word sense disambiguation, lexical ambiguity, lexical
substitutability, parsing. The JoBimText framework is fully unsupervised, meaning that it can self
adapt to multiple amounts of data or different languages. [Gliozzo et al., 2013].

The figure 4.2 represents the semantic similarity computation pipeline. It takes raw text as input
and outputs semantic similarity values between words in this text.

The first step in the pipeline is the holing operation introduced in [Biemann and Riedl, 2013]. This
step takes as input the corpus text and extracts distributional features from structural observations.
These observations can be of several types: n-grams, dependency parses, positional co-occurrences
etc. Let’s consider an example in which the holing operation is used with dependency parses and
the toy sentence I suffered from a cold and took aspirin, the output of the dependency parsing is
represented in Figure 4.3.

For each relationship in output, we perform the holing operation: we transform each relation
A(B,C) into two word-feature pairs: B - A(@@,C) and C - A(B,@@). The @@ represents a "hole"
and is used as a generic for any word. With our toy sentence, we get the pairs suffered - nsubj(@@,
D), I - nsubj(suffered, @@), took-nsubj(@@, I), I-nsubj(took, @@) and so on.

The holing operation is performed on the whole corpus and the features are grouped by word and
counted. Language elements and context features are also counted individually, the count values
are used to adapt each word-feature pair count value. Indeed, words that come often would be
advantaged compared to rare ones if only the word-feature pair count value was used. Instead
of the raw count, we get a frequency significance measure for each word-feature pair. A pruning

! http://It.informatik.tu-darmstadt.de/de/software/jobimtext/

14

D Sentence
Context Feature Extractor

‘2| Similiarity of words ... Language Element Context Feature DociD LEID CFID
cheese#n | (adj mod; Goudalike#2:@) 1521 | 1014

Language Element Language Element -
Context Feature Count Context Feature Count

Laﬂguag‘-‘ Language Context Feature Context Feature

Element Element

Chard#n |40 | (adj_mod; Gouda-like#a;@) |10 | (adj_mod; hard#a;@) 30

Language Context Feature Sign. Language Context Feature Sign.
Element Element

ehecsean | (oo moo; yetowsan; @ | 173 (i o Godm-kes;)

Aggregate Per . . e
Feature Similarity Count Similarity Sort

Context Language Language Language Score Language Language Score
Feature Elements Element1l Element 2 Element 1 Element 2

hees hard #:
hard# .@ stone#n

Figure 4.2.: Pipeline for the computation of semantic similarity values. Source:
[Biemann and Riedl, 2013]

nsubj(suffered, I)
nsubj(took, I)
root(ROOT, suffered)
det(cold, a)
prep_from(suffered, cold)
conj_and(suffered, took)
dobj(took, aspirin)

Figure 4.3.: Dependency parsing output for the sentence I suffered from a cold and took aspirin.

15

entry similar terms

mouse:NN rat:NN, rodent:NN, monkey:NN, animal:NN ...

mouse:NN keyboard:NN, computer:NN, printer:NN, laptop:NN, device:NN ...
keyboard:NN piano:NN, synthesizer:NN, organ:NN, instrument:NN ...
keyboard:NN keypad:NN, mouse:NN, screen:NN, touchpad:NN ...

Table 4.1.: Sample from a thesaurus in which none of the words are disambiguated.

operation is then performed to keep only the most significant word-feature pairs. Then, words are
grouped by feature: for each feature E all words W having a word-feature pair W-F are grouped
together. In the next step, all pairs of words get a similarity measure which is the number of
groups in which they co-occur. The more features they share, the more similar we assume them
to be, according to the Strong Contextual Hypothesis. The triplets (word w1, word w2, sim(w1,
w2)) are finally sorted by similarity.

This induces a distributional thesaurus: for each word, we know which words are semantically
similar to it. But this is not yet the thesaurus we use as input for our system. The thesaurus we use
is a Disambiguated Distributional Thesaurus (DDT), that is to say: it is a distributional thesaurus
in which the word senses are disambiguated: for example the word tablet should have at least two
different senses: the animal and the device used along a computer. To disambiguate words in the
distributional thesaurus we have so far, a few more steps are required.

The distributional thesaurus that we get looks like the Table 4.1, it is a list and each item is
composed of one word (the entry) and the most similar words to this one. None of these words

are disambiguated.
Y
medallion

.@
sarcophagus

tablet
headstone
\ plaque
gravestone

Figure 4.4.: Neighborhood graph of the word tablet. Source: [Simon, 2015]

First, we find the different senses of the entry word. We do this using its most similar words. In
Table 4.1 we have the entry word mouse and its most similar words rat, keyboard, rodent, computer
etc. These words belong either to the animal sense of mouse, or to the computer device one. To
detect the different senses of the word mouse, we will try to split the list of the most similar words
into several groups. To do this, we build the graph of the word mouse and its most similar words:

16

the nodes of this graph are words and we draw an edge between two nodes if the two words have
their semantic similarity measure above a certain threshold. This graph is represented in Figure
4.4. We then remove the entry node (tablet) and all its edges to obtain the neighborhood graph
of the entry node. In Figure 4.4, we can clearly see the 3 communities in this graph; we apply a
clustering method which automatically finds these communities. The method is unsupervised and
determines the number of communities by its own.

Once we identified the different senses that each word in our distributional thesaurus can have,
we can split each list of most similar words into several ones according to the senses of the entry
word. At this moment, we get the thesaurus represented in Table 4.2. But this thesaurus is not
fully disambiguated yet, because the similar words are not.

entry similar terms
mouse:NN:0 rat:NN, rodent:NN, monkey:NN, animal:NN ...
mouse:NN:1 keyboard:NN, computer:NN, printer:NN, laptop:NN, device:NN ...

keyboard:NN:0 piano:NN, synthesizer:NN, organ:NN, instrument:NN ...

keyboard:NN:1 keypad:NN, mouse:NN, screen:NN, touchpad:NN ...

Table 4.2.: Sample from a thesaurus in which only the entry word is disambiguated.

The last step in the building of our Disambiguated Distributional Thesaurus (DDT) is the sense
disambiguation of the most similar words for each word entry. We note that, since each word in
the thesaurus has its own most similar words, we already know the different senses that each most
similar word has, we just need to map each occurrence of this word in a list of most similar words
to one of its senses. To achieve this, we use the contexts of this word: the other most similar
words and for each of its senses, the list of most similar words to these senses. For each sense, we
compute the cosine similarity between the other similar words and the similar words for this word
and we assign the sense that gives the highest similarity value. The result is a fully disambiguated
distributional thesaurus, such as the example showed in Table 4.3. We notice that among the
similar terms of keyboard:NN:1, the word mouse:NN is successfully disambiguated into the word
sense mouse:NN:1 and it is the same for the word keyboard:NN disambiguated into keyboard:NN:1
when the word appears among the similar terms of mouse:NN:1.

entry similar terms
mouse:NN:0 rat:NN:1, rodent:NN:0, monkey:NN:0, animal:NN:O ...
mouse:NN:1 keyboard:NN:1, computer:NN:0, printer:NN:2, laptop:NN:1, device:NN:O ...

keyboard:NN:0 piano:NN:1, synthesizer:NN:1, organ:NN:0, instrument:NN:2 ...

keyboard:NN:1 keypad:NN:2, mouse:NN:1, screen:NN:1, touchpad:NN:O ...

Table 4.3.: Sample from a fully disambiguated thesaurus.

4.2 IS-A relationships

A IS-A relationship between two objects A and B happens when "A is a B". Applied to linguistics,
it has the same meaning as the hyponym-hypernym relationship, but can be used more generally
than the hyponym-hypernym terms, which are bounded to natural language processing.

17

In parallel with the computation of the DDT, IS-A relationships are also searched in the corpus.
To find them, Hearst patterns [Hearst, 1992] are run over the corpus. Hearst patterns are lexico-
syntactic patterns to find IS-A relationships in text, some examples (to find that "X is a Y") are
"Y,suchas X","X isa Y", "Y, including X", "X and other Y". By running Hearst patterns over the
corpus, a IS-A relationships database is built. IS-A databases are used later in this thesis.

4.3 DDTs used in our experiments

In this thesis, four DDTs were used, they were built on two distinct corpora: a news cor-
pus of 100 million sentence news corpus from Gigaword [Graff and Cieri, 2003] and LCC
[Biemann et al., 2007] and a wiki corpus with 35 million sentences from Wikipedia. In addi-
tion, a parameter for the sense induction algorithm was tuned to give several average sense
granularities. Finally, we have two DDTs based on Wikipedia and two based on the news cor-
pus. Their characteristics can be shown in Table 4.4. We notice that the DDT ddt-wiki-n30 contains
way more word senses per word than the other DDTs, due to the sense clustering parameter value
n. There are about 6 word senses per word in average, which seems to be a lot. The other DDTs
have a lower average polysemy, around 2.

dataset # words # word senses average average #
polysemy sim. terms
ddt-wiki-n30 258k 1.5M 6.0 16.9
ddt-wiki-n200 206k 368k 1.8 59.3
ddt-news-n50 200k 461k 2.3 44.3
ddt-news-n200 207k 332k 1.6 63.9

Table 4.4.: Statistics of the datasets used in our experiments.

18

Part lll.

Extraction of the structured
topics

5 Presentation of the pipeline

In this part, we describe our system which builds the topics, using a Disambiguated Distributional
Thesaurus (DDT) as input. The system can be represented as a pipeline composed of three blocks.
The pipeline is represented in Figure 5.1.

DDT Preprocessing = Clustering

Hypernyms
Annotation

Annotated
Topics

Figure 5.1.: Dataflow diagram of our system for building topics.

In the first block, the DDT is filtered. We keep only nouns and proper nouns and we also discard
very rare words. It is in the second block of the pipeline that we create the topics. We isolate
clusters of word senses by applying a clustering method on the filtered DDT. Each cluster is a po-
tential topic. The third step of the pipeline is dedicated to annotate each topic with representative
hypernyms. The topics often contain several hundreds of word senses and we try to make it easy
to grasp the gist of each of them.

20

6 Preprocessing of the DDTs

The disambiguated distributional thesauri that we use in this thesis were constructed automatically
and contain erroneous word senses that need to be filtered out before we apply a graph clustering
method to find the topics. In the following we explore several ways to filter the word senses in the
DDT.

First, every word sense in the DDT has a Part Of Speech tag attached to it. The possible tags are the
ones of the Penn Treebank. Most of the time, topic modeling deals only with nouns. In our case,
we decide to follow this and keep only nouns and proper nouns and we discard all word senses
with other tags. In Table 6.1, we show the results of this first filtering on the different datasets.
Compared to the original metrics shown in Table 4.4, we can see that by keeping only nouns and
proper nouns and discarding other word senses, we remove almost half of them. The second value
is the average of the number of similar word senses. This value does not vary much in this case.

dataset # words # word senses average average #
polysemy sim. terms
ddt-wiki-n30 195k 1.2M 5.7 15.5
ddt-wiki-n200 154k 292k 1.9 50.2
ddt-news-n50 125k 310k 2.5 39.6
ddt-news-n200 131k 229k 1.8 57.3

Table 6.1.: Datasets metrics after removing all word senses with non noun tags.

Second, word senses in the DDT can be filtered out if these word senses are non frequent. We
use a file containing about 8 million words. Each of them has a frequency value. This value
was obtained by counting word occurrences within a 100 million words from the LCC corpus
[Biemann et al., 2007]. Here we have to note that this file contains words and not word senses.
Therefore, for each word sense, the value we use is the global frequency for this word.

Using this file, we can first discard potential misspellings. Indeed, there are word senses that are
in the DDT even though they are misspelled or contain extra characters like in ??They??? which
is present in the DDT. If a word sense in the DDT in not present in the frequency file, we remove
it. Secondly, we can also discard word senses below a certain frequency threshold. The average
frequency in the file is 242. Here, it is important to note that the values vary a lot, from 0 to around
10 000 000. We take this into account and try several frequency threshold values: 0, 500, 1200
and 2000 for the different datasets: ddt-news-n200 , ddt-news-n50, ddt-wiki-n200 and ddt-wiki-
n30. We filter all word senses according to this threshold: the entry word and the similar terms. If
an entry word does not have any similar word after the filtering, we also discard this entry word.
The results are respectively shown in Tables 6.2, 6.3, 6.4 and 6.5.

We obtain similar results with the four DDTs. The number of words and of word senses logically
decreases when the threshold increases, since we filter out more terms. The average polysemy

21

slightly increases with the threshold. This is due to the fact that the most frequent words are also
the most general ones and thus they generally have more word senses than less frequent words
that are more specific. The average number of similar terms does not vary significantly. Based only
on these numbers, it is difficult to know which threshold is the best one for our system, we will
have to wait until we extract the topics such that we can analyze them and decide which threshold
gives the best ones.

frequency threshold # words # word senses avg. polysemy avg. # sim. terms

0 130891 228375 1.8 57.3
500 47543 111960 2.4 66.6
1200 28115 68927 2.5 66.1
2000 20374 48982 2.4 62.4

Table 6.2.: ddt-news-n200 filtered with different frequency thresholds.

frequency threshold # words # word senses avg. polysemy avg. # sim. terms

0 110776 272150 2.4 39.6
500 46209 172377 3.7 40.0
1200 27321 110228 4.0 38.0
2000 19799 79816 4.1 35.2

Table 6.3.: ddt-news-n50 filtered with different frequency thresholds.

frequency threshold # words # word senses avg. polysemy avg. # sim. terms

0 128040 243882 1.9 49.2
500 41623 102378 2.5 50.7
1200 26359 66493 2.6 49.4
2000 19540 49168 2.6 47.5

Table 6.4.: ddt-wiki-n200 filtered with different frequency thresholds.

frequency threshold # words # word senses avg. polysemy avg. # sim. terms

0 161631 1002166 5.8 14.9
500 44782 426303 8.9 13.1
1200 27631 277236 9.5 12.3
2000 20298 206178 9.8 11.6

Table 6.5.: ddt-wiki-n30 filtered with different frequency thresholds.

Finally, we could think of filtering the DDT based on the semantic similarity measure between
a word sense and its similar word senses. The values lie between 0 and 1. By removing the
word senses with the lowest semantic similarity, we would keep the strongest links between word
senses. This would improve the global quality of our thesaurus. However, removing too many
links in our DDT would make it useless because too sparse. It is also difficult to determine which

22

weight threshold would give the best results. Moreover, one could argue that this filtering is not
very useful because the weights are taken into account by the clustering methods anyway. Indeed,
if two nodes are linked by an edge with a low weight, it is less likely that they end up in the same
cluster than if the weight is higher. Given these points, we decide not to use this filtering: we do
not discard any link between word senses based on a low semantic similarity.

23

7 Graph clustering of the DDTs

7.1 Introduction

The next step in our system pipeline is the graph clustering in order to identify the topics. The Dis-
ambiguated Distributional Thesaurus can be seen as a graph of word senses: each word sense is a
node of the graph and two nodes are connected by an edge if the two word senses are semantically
similar i.e. for two word senses A and B, if B belongs to the list of most similar word senses of A
or vice versa. The edges are undirected and their weight is equal to the semantic similarity value
between the two word senses A and B.

Graph clustering is the method meant to detect communities of nodes in a graph and split this
graph according to these communities. A graph clustering method takes therefore a graph as input
and outputs a set of clusters, each cluster being a set of nodes. All the nodes should be present in
one and only one cluster: there is no overlapping between nodes clusters.

Clustering the graph enables us to identify groups of nodes which are intensively connected to each
other. In our case of a graph of word senses linked regarding their similarity, each cluster should
contain words which are closely semantically related to each other. Each cluster could therefore
be a topic e.g. a cluster whose nodes are animals names would form a topic about animals.

There exist multiple algorithms to perform graph clustering. Among the most popular ones are
the Kerne K-means algorithm [Likas et al., 2003] and several different algorithms based on it or
the Markov Chain Clustering (MCL) algorithm. However, the problem with most of the popular
methods is that the number of expected clusters has to be given as input, along with the graph.
In our case, we do not know how many clusters the method should find, therefore we discard
algorithms with this parameter as input and focus our attention on the algorithms in which the
number of clusters is determined by the algorithm during the computation. More precisely, we
focus on three such methods: MCL, the Louvain Method and Chinese Whispers.

7.2 Markov Chain Clustering

The Markov Chain Clustering method (MCL) was introduced in 2001 in [Van Dongen, 2001]. It
is based on the concept of Markov Chains. A Markov Chain is a transition process in a state
space. Each transition from one state to another happens according to a certain probability, all the
probabilities for the transitions out of each node sum up to 1, there is also a probability to stay in
the current state. We can think of the concept of the random walker: a walker goes from state to
state and chooses the next state with the transitions probabilities.

The MCL method applies this concept on a graph, the states are the nodes and the probabilities
of transitions to other nodes are computed proportionally to the edges weights. The idea of MCL

24

is the one of the random walker: it starts with a node N and goes from node to node according
transition probabilities. If N is inside a cluster of nodes, the random walker has globally good
chances to stay in this cluster after several iterations, because the weights should be higher for
edges inside the cluster than for edges going out of the cluster, by definition.

The method uses the adjacency matrix of the graph. Its values are normalized such that for each
column, the values sum up to 1. Each value in row i and column j then corresponds to the
probability that a random walker has to move from the node j to the node i. The method is
divided into two steps that are iteratively performed: the expansion step and the inflation step.
During the expansion step, the matrix is squared. This tends to connect the graph and offer
more travel possibilities to the random walker. The inflation step has an opposite consequence:
it consists in bringing each value in the matrix to the power r (with r>1, usually r=2). This
operation increases the differences between the lowest values and the highest ones. A pruning is
then performed, such that each value below a certain threshold is assigned 0. The expansion and
the inflation steps are performed until the matrix converges, this means that the matrix M obtained
after the pruning is idempotent: M*M = M (because then M is no more modified by the method).
Once this state is reached, the clusters found by the method can be determined by analyzing the
output matrix: in each column where there is at least one non-zero value, the row index of the
non-zero values in this column correspond to the nodes in one cluster.

7.3 Louvain Method

The Louvain Method was introduced in 2008 in [Blondel et al., 2008]. It is based on the measure
of modularity. The modularity is a measure to evaluate the quality of a graph partition. It comes
from the intuitive observation that, given a graph and its clusters, if there are very few edges
between nodes in different clusters and most of the edges are between nodes inside a same cluster,
then the quality of the clustering of this graph is good. The modularity compares the number of
edges inside a cluster to the number of edges between the clusters. Its value lies between -1 and 1:
-1 means that all the edges are between clusters and 1 means that all the edges are inside a cluster
and as a consequence, that the clusters form disconnected subgraphs of the original graph, in this
case the clustering is ideal.

The method is composed of two phases, which can be performed several times if needed. Initially
in the first phase, each node of the graph is a community. Then, for each node, values of the
modularity are computed whether this node stays in its community or is moved to each of the
other communities. Finally, the node is moved to the community for which the modularity has a
maximal value. If the global modularity is not improved by moving the node to another community,
it stays in its original community. The first phase is complete after the iteration over each node in
the graph. In the second phase, each community is collapsed to only one node such that the graph
is transformed to a graph of communities. Edges are drawn between communities according to the
edges and nodes previously present in these communities. After the second phase, a new smaller
graph (the graph whose nodes are the communities) is obtained. The two phases can be applied
again on this graph, to build communities of communities. At the end of the method, the result is
a hierarchical clustering of the original graph.

25

(Node 1) oo D D
Node2
(Node 7
N @ Node 2
(Node3) Node 4 @odeD) oges —

 Node 1-2-3

Node 5-6-7

Node 4

Figure 7.1.: Example of the two steps of the Louvain Method.

A toy example is shown in Figure 7.1, no weight has been assigned to the edges and it is only
meant to demonstrate the two phases of the method. The communities are represented by the
different colors: initially each node has its own community. Then, nodes are moved from their
community to another one if this operation improves the global modularity of the graph partition.
In our example, the nodes 1,2,3 are grouped in the same community, the node 4 stays alone in
its initial community and the nodes 5,6,7 are also grouped into one community. In the second
phase, the communities are collapsed and a new graph with only three nodes is obtained. It is
then possible to apply the first phase again and so on.

7.4 Chinese Whispers

Chinese Whispers is a graph clustering method introduced in 2006 in [Biemann, 2006]. Chinese
Whispers finds communities of nodes in a bottom-up fashion like the Louvain Method, but does
not use the modularity of the graph partition to do it. Instead, it relies on the edges weights.

The method is outlined in Figure 7.2. It starts with an initialization of the graph partition in which,
like in the initialization for the Louvain Method, each node gets its own class (or community).
Then, all nodes are iteratively processed, in a randomized order: each node inherits the class
whose sum of edge weights to this node is maximal. If there are several classes with the same
maximal weight, one is chosen randomly. Once all nodes have been processed, one iteration of the
method is completed. New iterations are performed while the graph partition has been modified by
the last one. Once the partition is stabilized, the method stops and outputs the graph partition.

For instance, given the same graph as for the Louvain Method, the graph partition of each iteration
could be the one represented in Figure 7.2, if we assume that the order of the processing of nodes
is for example 1, 3, 2, 7, 4, 5, 6.

26

&
==
&= Node 7
@ode3) Nodes @oded) Nodes

Node 1) ' Node5

Node 7
Node 2

ooy Node 4 Node 6

Figure 7.2.: Example of the steps during the Chinese Whispers clustering method.

7.5 Results of the clustering

Each of the three clustering methods introduced before were applied on our filtered DDTs. Al-
though it is not possible to establish for sure which method and which parameters give the best
results only with these elements, they already provide some insight about the respective outcome

quality.

More precisely, we take a look at 5 different measures for each result: the number of clusters found
by the method (# clusters), the average number of word senses per cluster (avg. size clusters), the
standard deviation for those cluster sizes (size stand. deviation), the minimum cluster size (min.
size) and the maximum cluster size (max. size).

Regarding the number of clusters, there is no target value, as this depends largely on the corpus.
Ideally, we should have the same number of clusters with the different methods and also with
different frequency threshold values, since increasing the threshold is unlikely to remove all words
from a topic but rather to remove some words from each one.

In the case of the cluster size, it is also difficult to say what is the ideal size. Nevertheless, we can
state that the topics must not be too small (less than 100) or too big (more than a few thousands)
or they might contain not enough or respectively too much information. The standard deviation
should be as low as possible, although a few extreme topics (very small or very big) might have
a great impact on the standard deviation and since these clusters are meant to be discarded after
further evaluation, the value might not be very representative of the global topics quality.

The two last values, the minimum cluster size and the maximum cluster size allow us to grasp the
presence of the extreme topics that we evoke before.

In order to have a formal evaluation of the results given by each clustering method, we compute
the Davies-Bouldin index for each set of clusters. Introduced in [Davies and Bouldin, 1979], the
index is an internal measure of the clusters separation. It involves two measures about the clusters
partition of the graph which are:

1) the average distance between nodes within a cluster and the centroid of this cluster. The centroid
is the most central node in the cluster. We find it by computing a simple centrality measure of each

27

node within the cluster. There exist a large variety of centrality measures that were developed to
quantify importance of nodes within a network. In our case, the measure that we use is defined
as follows: for each neighbour n’ of a node n, we count how many neighbours n” this neighbour
n’ has. The centrality of the node n is the sum of the number of neighbours n” of each of its
neighbours n’. The distance is the inverse of the weight of an edge in the graph. For each node in
the cluster, the distance to the centroid is the shortest path computed with the Dijkstra algorithm
[Dijkstra, 1959].

2) the distance d between clusters, which is the minimal distance between each couple of clus-
ters.

The Davies-Bouldin metric DB is computed as follows:

1 I 01+0]

DB = > (max(——=)).

i=1

For each cluster i, we compute the maximum over all clusters j of the sum of the average distances
of nodes to their centroid for the cluster i and the cluster j, divided by the distance between the
clusters i o; and j o ;. The result is the average of these maxima.

The numerator in the fraction represents the intra cluster similarity. The highest the value is, the
closest the nodes are to their centroid. The denominator represents the inter cluster similarity: the
further the two clusters are from each other, the least similar they are. By taking the maximum
over the values for each cluster j, we select the most similar cluster to the cluster i. We then want
this closest and most similar cluster to be the least similar to the cluster i, leading to a good clusters
separation. Therefore, we want the overall Davies-Bouldin index to be as small as possible. We
can note that since all distances are strictly positive, the result is also positive.

Additionally, we also discuss the computation time of each method. We indeed aim to keep the
total computation time of our system as short as possible.

Results can be seen in Tables 7.1, 7.2, 7.3, 7.4 and 7.5. We observe the same tendencies for
Chinese Whispers and Louvain Method: the number of clusters, their average size and the standard
deviation for the clusters sizes decrease when we increase the frequency threshold. This can be
explained by noticing that when we remove more word senses from the graph by increasing the
frequency threshold, first the graph gets of course smaller but it also tends to be more scattered.
Clusters obtained with Chinese Whispers are globally bigger than those obtained with the Louvain
Method. As a consequence, the Louvain Method produces more clusters than Chinese Whispers.

Regarding the Davies-Bouldin index, we can notice that the value decreases when the frequency
threshold is increased, meaning that the quality of the clusters is better. Chinese Whispers and the
Louvain Method give globally similar indices, Chinese Whispers gives more often greater indices
but the difference is too small to be meaningful.

28

DDT frequency # clusters avg. cluster size size stand. deviation min. size max .size
news-n200 0 595 382.7 1170.2 1 14054
news-n200 500 359 311.4 975.6 1 9309
news-n200 1200 330 208.5 570.5 1 6452
news-n200 2000 286 170.8 506.3 1 5971
news-n50 0 835 325.9 866.7 1 10726
news-n50 500 668 258.0 583.7 1 7709
news-n50 1200 596 184.9 396.0 1 3557
news-n50 2000 547 145.8 289.2 1 2082
wiki-n200 0 838 291.0 879.1 1 10501
wiki-n200 500 539 189.9 665.7 1 9066
wiki-n200 1200 467 142.3 591.5 1 9530
wiki-n200 2000 433 113.5 479.8 1 7580
wiki-n30 0 14599 68.6 579.7 1 36222
wiki-n30 500 8503 50.1 372.1 1 21786
wiki-n30 1200 6857 40.4 249.9 1 11445
wiki-n30 2000 5914 34.8 187.5 1 7040

Table 7.1.: Clustering results for Chinese Whispers applied to the different models.

DDT

freq. threshold Davies-Bouldin index

ddt-news-n200 O 754.7
ddt-news-n200 500 9.2
ddt-news-n200 1200 4.8
ddt-news-n200 2000 4.6
ddt-news-n50 0 563.2
ddt-news-n50 500 776.9
ddt-news-n50 1200 96.5
ddt-news-n50 2000 15.7
ddt-wiki-n200 0 124.3
ddt-wiki-n200 500 32.2
ddt-wiki-n200 1200 17.0
ddt-wiki-n200 2000 10.3
ddt-wiki-n30 0 81.2
ddt-wiki-n30 500 37.2
ddt-wiki-n30 1200 19.5
ddt-wiki-n30 2000 18.3

Table 7.2.: Davies-Bouldin indices for Chinese Whispers applied to the different models, lower val-

ues mean better clustering.

29

DDT frequency # clusters avg. cluster size size stand. deviation min. size max .size
news-n200 O 773 295.0 1099.1 1 15761
news-n200 500 440 254.4 633.9 1 5455
news-n200 1200 375 183.8 456.4 1 5023
news-n200 2000 343 142.8 327.5 1 3158
news-n50 0 929 292.9 786.2 1 10703
news-n50 500 711 242.4 558.6 1 5893
news-n50 1200 619 178.0 375.9 1 3049
news-n50 2000 557 143.2 274.6 1 2003
wiki-n200 0 998 244.3 830.0 1 12516
wiki-n200 500 662 154.6 448.9 1 5888
wiki-n200 1200 559 118.9 346.5 1 3569
wiki-n200 2000 529 92.9 249.3 1 2550
wiki-n30 0 17651 56.7 483.6 1 26854
wiki-n30 500 9665 44.1 331.3 1 17922
wiki-n30 1200 7676 36.1 225.1 1 10078
wiki-n30 2000 6714 30.7 171.5 1 5509

Table 7.3.: Clustering results for the Louvain Method applied to the different models.

DDT

freq. threshold Davies-Bouldin index

ddt-news-n200 O 62.5
ddt-news-n200 500 12.8
ddt-news-n200 1200 3.9
ddt-news-n200 2000 3.9
ddt-news-n50 0 405.1
ddt-news-n50 500 458.1
ddt-news-n50 1200 68.8
ddt-news-n50 2000 12.4
ddt-wiki-n200 0 81.3
ddt-wiki-n200 500 30.9
ddt-wiki-n200 1200 12.5
ddt-wiki-n200 2000 11.3
ddt-wiki-n30 0 63.9
ddt-wiki-n30 500 30.3
ddt-wiki-n30 1200 19.6
ddt-wiki-n30 2000 12.1

Table 7.4.: Davies-Bouldin indices for the Louvain Method applied to the different models, lower
values mean better clustering.

30

frequency # clusters avg. size clusters size stand. deviation min. size max .size
2000 1799 27.1 88.1 1 1663

Table 7.5.: Clustering results with MCL, the DDT ddt-news-n200 and 2000 as word frequency
threshold.

Compared to the two other methods, Chinese Whispers and the Louvain Method, the Markov Chain
Clustering method gives disappointing results. First, it is not as efficient as the other methods. The
complexity of MCL is indeed O(k x|n?|) with n the number of nodes and k the number of iterations.
The results can be seen in Table 7.5. With 2000 as the frequency threshold, it took around 100
times longer than the Louvain Method, which was slightly faster than Chinese Whispers. This is a
major drawback, since we want our pipeline to complete running in a reasonable amount of time.
The Davies-Bouldin index equals to 4.5, which are comparable to those obtained with Chinese
Whispers (4.6) and the Louvain Method (3.9). Furthermore, by inspecting the results for the
frequency 2000, we noticed multiple uninterpretable topics. In Table 7.5, we can notice that MCL
gives more and smaller clusters than CW and LM. This could be corrected by tuning the method
parameters, but the clusters quality could only get worse than this, because several clusters would
be merged to give less and bigger clusters in the end.

7.5.1 Conclusion

After inspecting results for each method, we decide to keep Chinese Whispers and the Louvain
Method and to proceed further with them. On the other hand, we discard Markov Chain Clustering
from consideration in our approach, since the two other methods are both better in terms of quality
of clustering and faster.

31

8 Topic annotation with hypernyms

We want to find a few words that represent a topic well, so that it becomes easier to grasp what
this topic is about. To do this, we can use hypernyms. A word A is an hypernym of a word B if we
can say that B is a kind of A. For instance, feline is the hypernym of cat because a cat is a feline.
If we manage to find words that are hypernyms of all words in one topic then this hypernym is
a relevant word to represent this topic e.g. the word feline for a topic which would contain the
words cat, lion, tiger, jaguar, etc.

In order to find these hypernyms, we use two kinds of lexical resources: a manually built lexical
database, WordNet and a IS-A relationships database built with unsupervised methods.

8.1 Hypernyms from WordNet

WordNet [Miller et al., 1990] is a lexical database for the English language developed and main-
tained at Princeton University. It contains synsets, which are groups of synonyms and relationships
between these synsets or the words senses they contain. Among these relationships, the hyponym-
hypernym relationship is available for nouns.

WordNet hyponym-hypernym relationships form a hierarchical structure. In Figure 8.1, we can
see the hypernym hierarchy of the word cat (with the feline sense). The word cat belongs to the
synset (cat, true cat) which has the synset (feline, felid) as hypernym, this synset has the synset
(carnivore) as hypernym and so on until the final synset (entity). Finally, the different synsets
form a tree structure whose root is the synset (entity). Sometimes, a synset has several distinct
hypernyms, contrary to the example in Figure 8.1. For instance, the synset (man, adult male)
has two hypernym synsets: (male, male person) and (adult, grownup). In this case, the hypernym
hierarchy contains several branches which eventually converge to the root synset (entity).

32

depth from the root synset synset

entity

physical entity

object, physical object

whole, unit

living thing, animate thing

organism, being

animal, animate being, beast, brute, creature, fauna
chordate

vertebrate, craniate

mammal, mammalian

placental, placental mammal, eutherian, eutherian mammal
carnivore

feline, felid

cat, true cat

OO J| || R[W|N|—|O

[
(e}

—_
—

—_
N

[
w

Figure 8.1.: Hypernym hierarchy of the word cat (feline sense).

With the example of the hypernym tree for the word cat in Figure 8.1, we can already notice some
particularities implied by the hierarchical structure: if we only consider the first hypernym in the
tree — the synset (feline, felid) in this case — we can miss a lot of relevant information. In the case
of cat, the only hypernym retrieved would be the synset (feline, felid) but we might also want to
retrieve the information that a cat is an animal. Binding cat and animal in a hyponym-hypernym
relationship would be possible but it would require to consider not only the first hypernym in the
hierarchy but at least the first seven ones. This lets some questions naturally come up: how many
hypernyms should we consider in the hierarchy? How should we proceed to figure it out? Is it
relevant to fix a depth for the hypernyms search?

depth from the root synset synset

entity

physical entity

object, physical object

whole, unit

artifact, artefact

instrumentality, instrumentation

furnishing

furniture, piece of furniture, article of furniture
table

R[N BR[W|N|—O

Figure 8.2.: Hypernym hierarchy of the word table (furniture sense).

Let us presume that, based on the previously seen cat-animal relationship, we decide to look at
the seven first hypernyms in the hierarchy. Figure 8.2 represents the hypernym hierarchy for the
word table as a furniture. In this case, we see that the most relevant hypernym is likely to be the
synset (furniture, piece of furniture, article of furniture), the first one in the hierarchy. Moreover,

33

the seventh hypernym in the hierarchy is the synset (physical entity). We are touching the problem
of our method taking the seven first hypernyms in the WordNet tree: depending on the words for
which we look for the hypernyms, the optimal depth to search in the tree varies a lot. We therefore
cannot use this naive approach.

In order to fix the problem mentioned above, we explore two different strategies: the first one is to
consider only the first hypernym in the hierarchy while in the second method we search hypernyms
in the whole hierarchy but assign weights depending on their depth in the tree.

8.1.1 Searching only the first hypernym in the hierarchy

This strategy is quite simple: for each word in the topic, we get its direct hypernyms in the hier-
archy and update the counts for these hypernyms. We do not search for hypernyms higher in the
hierarchy. This insures us not to end up with hypernyms being too general because they are close
to the root synset (entity). On the other hand, considering only the first hypernym in the hierarchy
might make us miss hypernyms which are a little bit higher in the hypernyms tree.

8.1.2 Searching all hypernyms in the hierarchy and assigning weights

Contrary to the method described above, here we consider the whole hypernym hierarchy. In order
not to get always the most general hypernyms as output, we need to penalize the hypernyms which
are higher in the hierarchy, we decide to assign a weight w to each hypernym h that we encounter
in the hierarchy: for a hypernym located n levels above the base word, we assign the weight %
With this weighting strategy, a hypernym from the second level (carnivore in Figure 8.1) needs
to come up twice more than a first level (feline in Figure 8.1) to get the same score in the end,
assuming that hypernyms occur at the same levels of the hierarchy.

8.1.3 Evaluation of WordNet hypernym annotation methods

In order to evaluate two methods introduced above, we first select 100 interpretable topics among
our results. These topics were randomly sampled from the set of topics annotated as interpretable
in Chapter 10 of this thesis. For each topic, we generate the three most relevant hypernyms
according to each method. Then, we manually evaluate the relevance of these hypernyms by
tagging them as relevant or not relevant. A relevant hypernym is defined as a hypernym that
describes the majority of the words in the topic, without being too general e.g. the hypernym
person is not relevant for a topic about tennis players. If at least one of the three hypernyms is
considered relevant, the set of hypernyms for this topic is tagged as relevant.

With the first method, considering only direct hypernyms, 39 sets of hypernyms were tagged as
relevant out of 100. In most of the cases where the hypernyms are not relevant, it has been
observed that the topic words were mostly proper nouns, often without an entry in WordNet.
With the second strategy, considering the whole hierarchy of hypernyms and assigning a weight
penalizing more hypernyms, only 21 sets of hypernyms were judged relevant. Following these
results, we decide to annotate our topics with hypernyms found with the first method.

34

8.2 Hypernyms from IS-A relation databases

As explained briefly in the section about the construction of the DDTs, IS-A relationships are com-
puted during this process and a IS-A relationships database! is output by the system. A sample of
this database is illustrated in Table 8.1. We can see that each IS-A relationship has a weight. This
weight is a occurrence frequency value. The higher this value is, the more relevant the IS-A rela-
tionship should be. In this section, we try to use these IS-A relationships instead of the hypernyms
coming from WordNet. Using this IS-A relationships database instead of WordNet permits us to be
free of any lexical resource: we only use resources that are part of the output of the JoBimText
pipeline. On the other hand, since this database is built with unsupervised methods, the relation-
ships that it contains were not verified by humans. Thus, we have to take care of possible errors
and adapt our methods to those.

hyponym hypernym freq.

ant habitat 2
ant health risk 2
ant here 1
ant hit 1
ant home 5
ant insect 41
ant insect bite 1
ant insect pest 1
ant invertebrate 5
ant java 1

Table 8.1.: Sample of the IS-A relationship database.

While the global idea is the same as with WordNet — for each topic, we look for hypernyms that
describe it best — there are some differences. The structure of the database is flat: while WordNet
hypernyms form a tree structure (hypernyms have hypernyms which also have hypernyms etc.) in
this database all words are on the same level. As a matter of fact, some hypernyms are also present
as hyponyms. Therefore, a tree structure is also present but abstracted. It would be possible to
extract it such that we deal with the same structure as with WordNet, but this is not explored
in this thesis. Instead, we decide to take the database as it is and adapt our methods to the flat
structure.

8.2.1 Counting hypernyms with and without considering weights

First, we try to apply the method used previously with WordNet: for each element in a topic,
we record its hypernyms and output the most frequent ones. We try two strategies: with the
frequency values present in the database and without them. Without the frequency values, the
method consists in counting how many times each hypernym appears within the whole topic word

1 http://panchenko.me/data/joint/taxi/res/en_ps59g.csv.gz

35

method used without weight with weight
relevant hypernyms (%) without TF-IDF 57 63
relevant hypernyms (%) with TF-IDF 76 79

Table 8.2.: Accuracy of methods with and without TF-IDF to annotate topics with hypernyms from
the IS-A database.

senses IS-A relationships, the output is the hypernyms which appear the most often. When we
use the frequency value, we add the value to the hypernym current count (instead of adding 1
in the previous case). For example, applying the first method without the frequency value on the
word ant of Table 8.1 would make all its hypernyms equal, whereas with the second method, the
hypernym insect would be considered as more relevant than the others.

8.2.2 Adapting TF-IDF scheme to discard noisy hypernyms

Furthermore, we notice that some hypernyms are very common in the IS-A database. The words
thing or product are two of the most recurrent hypernyms. In the third method, we try to penalize
these words. To do so, we apply the popular scheme TE-IDF [Salton and McGill, 1986]. TE-IDF
stands for Term Frequency - Inverse Document Frequency. In the context of information retrieval
in texts, TF-IDF allows to assess the importance of a term in a document of a corpus, relatively
to the whole corpus. The principle is the following: a word which comes up very often in all
documents in the corpus is less important than a word which comes up in only a few documents
of the corpus. For a given word w in a document d; of a corpus D, the term frequency is the count
of occurrences of w in d; and the inverse document frequency is defined as id f = log %

We apply the TF-IDF scheme to our case as follows: for each topic, we compute the most relevant
hypernyms according to the method without TF-IDF i.e. just by counting the hypernyms, adjusting
with their weight or not; we try both methods. For each topic, we keep the 100 hypernyms with
the best scores. Each topic is one document, we therefore compute a IDF score for each hypernym.
After that, we adapt the score of each hypernym for each topic by multiplying its frequency score
by its IDF score. We sort hypernyms for each topic by TF-IDF and keep hypernyms with the three
top scores.

8.2.3 Evaluation of methods to find relevant hypernyms from the IS-A database

As an evaluation for the several methods, we apply exactly the same procedure as for the hyper-
nyms from WordNet. We therefore refer the reader to Section 8.1.3. for details.

The results are shown in Table 8.2. As we can see, using weights improves the global relevance of
hypernyms, and so does the use of the TF-IDF scheme. As a consequence, we decide to annotate
topics using the method with both the weights and the TF-IDF scheme.

36

Part IV.

Intrinsic evaluation of the
structured topics

9 Introduction

One of the main challenges when building topics is the evaluation of their quality. Indeed, some
topics may contain words which are not highly semantically related. For instance, a topic with
words lion, tiger, cat, jaguar, lynx contains words that are all felines; we can say that the quality
of this topic is good. On the contrary, a topic with words window, computer, tree, Roma, Michael is
such that we cannot find coherence in the words it contains. Thus this topic would be a topic of
bad quality.

A method to evaluate topics quality is needed for two reasons. First, in this thesis, we tried several
models: several sources are used to build the DDT, filtered with four different frequency thresholds
and two different methods are used to cluster the graph of word senses. We therefore need to
evaluate each of those models. Then, inside each model, the topics quality is heterogeneous: we
need to evaluate each topic and discard the bad ones.

Evaluating topics quality is not a simple task. Since the topics are generated by our model, there
is no gold standard with which we could compare our results, each set of topics is unique. Several
methods have been proposed to evaluate topic models such as in [Wallach et al., 2009]. However,
these methods are in practice impossible to apply to our case, because of our specific topics. Indeed,
the evaluation methods mostly rely on the fact that topics are defined as distributions over the
whole vocabulary, which is not true for our topics.

In this master thesis, we utilize three different methods to assess the quality of our models. First,
we manually evaluate the topics to establish and use the results to train a formula aiming at eval-
uating the topics quality based on the graph metrics. Secondly, we analyze the IS-A relationships
for each word in a topic, following the idea that words in a good quality topic should share the
same IS-A relationships. Third, we try to map our topics to BabelNet topics and analyze the re-
sults. Based on the results of these three evaluation experiments, we select the best model for our
topics.

38

10 Interpretability of topics

In this first experiment, we manually annotate topics interpretability of a random sample of each
topic model. We then compare the obtained results and deduce some insights about topics qual-

ity.

10.1 Experimental settings

First, we use manual annotation for evaluating the topics: for each of our models, we manually
annotate some of the topics as interpretable or not. Here are the criteria applied to determine
whether a topic is interpretable or not: first, if the meaning of a topic can be guessed easily just by
looking at its words, because the annotator knows them and detects that they all match one topic
then this topic is tagged as interpretable. If this is not the case because the words are unknown to
the annotator, then we randomly sample until 10 of the words it contains and search the meaning
of each one. After this, if the words match a same topic, it is tagged as interpretable, or tagged as
not interpretable otherwise. That way, we get the number of interpretable topics for each model
and thus a measure of the average interpretability of topics generated by each model.

Nevertheless, since there are not less than 32 different models to evaluate and each model contains
a few hundred topics, annotating all of them would require a tremendous amount of time. To make
this experiment feasible, while still relevant, we annotate 50 topics for each model. We sample
these topics randomly.

10.2 Discussion of results

We present a sample of interpretable topics in Table 10.1. Three non interpretable topics are
presented in Table 10.2. Overall results for this experiment are shown in Table 10.3. The fifth
column, "ratio interp. topics" is an estimation of the percentage of interpretable topics for the
given model. Since we annotated 50 topics, this value is simply the number of topics tagged as
interpretable, multiplied by 2. The sixth column, " # interp. topics" is the estimation of the total
number of interpretable topics in this model. It equals to the percentage of interpretable topics
multiplied by the number of topics within the model. The number of interpretable topics is the
value that we want to maximize eventually, but we would prefer to have a model giving a great
proportion of interpretable topics.

In Table 10.3, we notice that there is a tradeoff between the number of topics in a model and the
ratio of interpretable topics within this model. Indeed, the models based on the DDT with the
most topics, wiki30, are also the ones with the worst ratio of interpretable topics. However, since
they contain way more topics, the estimation of the overall number of interpretable topics is the
greatest one. On the other hand, models based on the other DDTs contain less topics but the ratio

39

topic size 20 topic words (randomly sampled)

47 Gretzky, Beckham, Ronaldo, Kewell, free-kick, Carrick, Drogba, Rooney,
Capello, Almunia, Bale, Zidane, Bellamy, Robben, Adebayor, Shevchenko,
Persie, Anelka, Nistelrooy, Messi ...

250 pistol, razor, armor, bullet, axis, ax, shovel, shotgun, needle, firearm, shield,
blade, pike, bent, spike, digging, drill, gunshot, Spear, torch ...
334 chemotherapy, fluke, milder, anesthesia, mole, transplant, catheter, diarrhea,

handicap, fatigue, pain, heartbeat, appetite, tuberculosis, Pick, vomiting,
cough, insomnia, breathing, headache ...

Table 10.1.: Example of three interpretable topics. Extracted from results of DDT news200, 2000
as frequency threshold and clustered with Chinese Whispers.

topic size topic words

3 Tricia, mother, Mara

10 TEAM, mammal, person, Sport, Species, GROUB animal, bitch, civilian, live-
stock, thing

13 Organization, Driver, Agency, Services, group, Reebok, Check, Service, com-

pany, member, Mix, Programs, Host

Table 10.2.: Example of three non interpretable topics. Extracted from results of DDT news200,
2000 as frequency threshold and clustered with Chinese Whispers.

of interpretable topics is greater — it almost reaches 50% with Chinese Whispers, wiki200 and 2000
as frequency threshold. Since these models contain much less topics than the model wiki30, the
estimation for the total number of interpretable topics is smaller.

Based on the analysis above, we could split our set of models into two subsets: the first subset
would contain the models based on the DDT wiki30 and the second would contain the models
based on the three other DDTs. Models in the first subset contain a lot of topics but a large
majority among them are of bad quality, whereas models in the second subset contain fewer topics
but quality of these topics is globally better.

freq. threshold 0 500 1200 2000
avg. ratio interp. topics (%) 12.5 15.8 18 25.3
mediane ratio interp. topics (%) 13 13 19 26
avg. # interp. topics 317.4 268.4 144.3 143.1
mediane # interp. topics 155 101.5 100.5 121.5

Table 10.4.: Comparison of results of interpretability annotations for the different frequency
thresholds: for each frequency threshold, average over all models based on this
threshold.

Regarding the frequency threshold used to filter the DDT before the clustering, Table 10.4 shows
a comparison of the results. The ratio of interpretable topics is increased when the frequency
threshold is increased, the best results are obtained with the threshold 2000. When we look at the

40

clust. method DDT freq. threshold # topics ratio interp. topics (%) # interp. topics
Ccw news200 O 595 14 83
CwW news200 500 359 34 88
CwW news200 1200 330 20 66
Cw news200 2000 286 38 109
CwW news50 0 835 18 150
CW news50 500 668 18 120
CwW news50 1200 596 26 155
CwW news50 2000 547 30 164
Cw wiki200 O 838 22 184
CwW wiki200 500 539 18 97
CwW wiki200 1200 467 24 112
CwW wiki200 2000 433 48 208
CwW wiki30 0 14599 10 1460
CwW wiki30 500 8503 10 850
Cw wiki30 1200 6857 12 823
Cw wiki30 2000 5914 10 591
LM news200 O 773 12 93
LM news200 500 440 16 70
LM news200 1200 375 24 90
LM news200 2000 343 28 96
LM news50 O 929 6 56
LM news50 500 711 6 43
LM news50 1200 619 18 111
LM news50 2000 557 24 134
LM wiki200 O 998 16 160
LM wiki200 500 662 16 106
LM wiki200 1200 559 14 78
LM wiki200 2000 529 20 106
LM wiki30 0 17651 2 353
LM wiki30 500 9665 8 773
LM wiki30 1200 7676 6 460
LM wiki30 2000 6714 4 269

Table 10.3.: Results of interpretability annotations for the different models. The five best ones are
highlighted, the best one is also underlined.

41

number of interpretable topics, the analysis is less easy. The average number of interpretable topics
decreases when the threshold is increased, while the mediane values do not show a clear tendency.
However, we have to keep in mind the huge number of interpretable topics for the models based
on wiki30. These values seem to involve an important bias here.

clust. method CW LM
avg. ratio interp. topics (%) 22 13.8
mediane ratio interp. topics (%) 19 15
avg. # interp. topics 328.8 1874
mediane # interp. topics 152.5 101

Table 10.5.: Comparison of results of interpretability annotations for Chinese Whispers and the
Louvain Method: for each clustering method, average over all models based on this
method.

Regarding the differences between the clustering methods, Chinese Whispers and the Louvain
Method, Table 10.5 shows that Chinese Whispers seems to produce more interpretable topics than
the Louvain Method, since all the metrics agree on this point.

42

11 Hypernym graph analysis

In this second experiment, we analyze topics coherence by building a graph based on hypernym
co-occurrences among topic words. We compute the global clustering coefficient for each graph.

11.1 Experimental settings

In this part, we describe the second method that we use to evaluate the topics models quality. The
idea of the method is the following: for each topic, we build a new graph in which the nodes are the
word senses of the topic, but the edges are drawn according to node hypernyms. For each node we
generate a set of hypernyms of the word associated to this node and we add an edge between two
nodes if the two associated words share at least one hypernym. The graph is therefore undirected
and the edges are unweighted.

Table 11.1 illustrates how we build the graph of hypernyms based on a simple example. In this
example, we consider a small topic made of four words: bed, jeans, shirt and sweater. Each of
these words has its own list of hypernyms, that are represented in Table 11.1. The words bed and
sweater both share the hypernym item, thus an edge is drawn between the two nodes. The words
sweater, jeans and shirt all have clothing as hypernym, they are therefore connected together.

word bed jeans shirt sweater
accomodation clothes clothes item

hypernyms equipment clothing clothing clothing
item basic gift accessory

Table 11.1.: Hypernyms for each word of the demo topic.

Figure 11.1.: Hypernyms graph of the demo topic.

43

topic clust. coef. of 20 topic words (randomly sampled)
size hypernym graph
66 0.98 virtuoso, percussion, harmonica, cellist, fiddle, drumbeat, gui-

tarist, pianist, trumpeter, bass, bassist, saxophonist, typewriter,
Baroque, banjo, drummer, drum, whistle, jukebox, bell ...

45 0.86 mousse, biscuit, potato, cheese, pasta, sauce, waffle, sausage,
dish, noodle, steak, crust, fruit, fries, toast, burger, Benedict, pud-
ding, cookie, pastry ...

128 0.42 roulette, heroin, passport, firework, needle, booze, adrenaline,
inhibitor, Taser, contraceptive, formulation, placebo, capsule, bul-
lion, Pot, medicine, Tobacco, bandage, slave, vaccine ...

Table 11.2.: Example of three topics with a high clustering coefficient of their hypernym graph.
Extracted from results of DDT news50, 2000 as frequency threshold and clustered with
Chinese Whispers.

With this graph we can evaluate the coherence of words inside the topic. The assumption is that
a topic is more likely to be of good quality if the words within this topic share many hypernyms
with each other. In Figure 11.1, the words jeans, shirt and sweater are connected because they all
denote a kind of clothes.

In order to acknowledge how connected the resulting graph is, we compute its global clustering
coefficient. The clustering coefficient is a metric based on triplets and triangles of nodes in the
graph. A triplet is composed of three connected nodes a, b, ¢ such that a is connected to b and b is
connected to c. A triangle is a triplet which is closed, such that a is connected to b, b is connected
to ¢ and c is connected to a. The global clustering coefficient C is defined as:

3 x number of triangles

number of connected triplets’

The more hypernyms the words in the topic share, the more edges (and triangles with them) will
be present in the graph and the closer to 1 the clustering coefficient will be. Ideally, if all n words
in the topic share at least one common hypernym, the graph built by our method will be the graph
K, and the clustering coefficient will equal to 1.

In the previous example Figure 11.1, there is one triangle and five triplets, therefore the clustering

coefficient is C = % =0.6.

11.2 Discussion of results

A sample of the results is shown in Table 11.2. Overall results for this experiment are compiled in
Table 11.3. Tables 11.4 11.5 and 11.6 show results regarding respectively the clustering method,
the DDT and the frequency threshold used. In all figures, the metrics computed are the same:

44

clustering DDT frequency # ratio non zero avg. clust. coef. avg. clust. coef.
method threshold topics elements (%) non zero elements all elements
Cw news200 O 595 25 0.09 0.02
Cw news200 500 359 30 0.21 0.06
Cw news200 1200 330 30 0.52 0.16
Cw news200 2000 286 27 0.61 0.16
Cw news50 O 835 26 0.12 0.03
Ccw news50 500 668 26 0.35 0.09
Cw newsS0 1200 596 27 0.64 0.17
Cw news50 2000 547 28 0.90 0.25
Cw wiki200 O 838 23 0.08 0.02
Ccw wiki200 500 539 22 0.31 0.07
Cw wiki200 1200 467 22 0.40 0.09
Cw wiki200 2000 433 20 0.56 0.11
Ccw wiki30 0 14599 3 0.23 0.01
Cw wiki30 500 8503 3 0.56 0.02
Cw wiki30 1200 6857 3 0.85 0.03
Cw wiki30 2000 5914 3 0.97 0.03
LM news200 O 773 18 0.07 0.01
LM news200 500 440 25 0.39 0.10
LM news200 1200 375 24 0.60 0.14
LM news200 2000 343 24 0.72 0.17
LM news50 O 929 20 0.12 0.02
LM news50 500 711 18 0.38 0.07
LM news50 1200 619 18 0.67 0.12
LM news50 2000 557 20 0.81 0.17
LM wiki200 O 998 16 0.08 0.01
LM wiki200 500 662 16 0.37 0.06
LM wiki200 1200 559 18 0.56 0.10
LM wiki200 2000 529 18 0.69 0.13
LM wiki30 0 17651 1 0.08 0.00
LM wiki30 500 9665 2 0.47 0.01
LM wiki30 1200 7676 2 0.69 0.01
LM wiki30 2000 6714 2 0.88 0.02
Table 11.3.: Results of hypernym graphs analysis for the different models. The five best ones are

highlighted, the best one is also underlined. "ratio non zero el." reflects the proportion
of topics for which the clustering coefficient of the hypernym graph is different from
zero. The next column "avg. clust. coef. non zero elements" is the average of the
clustering coefficients of these topics. The last column "avg. clust. coef. all elements" is
the average of the clustering coefficients for all hypernym graphs, including those with
a clustering coefficient equal to zero. This the measure that we want to optimize.

45

metric Cw LM

avg. ratio non zero el. 0.20 0.15
avg. clust. coef. non zeroel. 0.42 0.47
avg. clust. coef. all elements 0.08 0.07

Table 11.4.: Comparison of results of hypernyms graph analysis for Chinese Whispers and the
Louvain Method: for each clustering method, average over all models based on this

method.
metric news200 news50 wiki200 wiki30
avg. ratio non zero el. 0.25 0.23 0.19 0.02
avg. clust. coef. non zero el. 0.40 0.49 0.38 0.53
avg. clust. coef. all elements 0.10 0.11 0.07 0.01

Table 11.5.: Comparison of results of hypernyms graph analysis for the different DDTs: for each
DDT, average over all models based on this DDT.

* the ratio of clustering coefficients not equal to zero among all of them (ratio non zero el.)

* the average of the clustering coefficients that are not equal to zero (avg. clust. coef. non
zero el.)

* the average over all clustering coefficients including the ones equal to zero (avg. clust. coef.
all el.)

We decided to use these three metrics because by looking at the raw results, we noticed that
many clustering coefficients equal to zero. This is the case when no triangle is present in the
graph, meaning that the topic is probably not coherent. However, values of the non zero clustering
coefficients are distributed between 0 and 1, reflecting different levels of coherence from the least
(clustering coefficient close to 0) to the most coherent (clustering coefficient close to 1). Therefore,
the ratio of non zero clustering coefficients shows the proportion of certainly not interpretable
topics, and the average score of the non zero values reflects the average level of interpretability of
the rest of the topics. Finally, the average score over all values allows us to get an insight of the
global average coherence of the topics.

Table 11.4 compares the results for the two methods: Chinese Whispers and the Louvain Method.
There is no clear evidence about which method performs better here: the Louvain Method pro-
duces more topics getting a null clustering coefficient, but on the other hand, the topics that get

metric 0 500 1200 2000
avg. ratio non zero el. 0.16 0.17 0.18 0.19
avg. clust. coef. non zeroel. 0.10 0.37 0.61 0.74
avg. clust. coef. all elements 0.01 0.05 0.10 0.14

Table 11.6.: Comparison of results of hypernyms graph analysis for the different frequency thresh-
olds: for each frequency threshold, average over all models based on this threshold.

46

a non zero clustering coefficient are globally more coherent than the ones produced with Chinese
Whispers.

Table 11.5 compares the results with the point of view of the DDTs used. These results match the
conclusion of the experiment with manual annotations of the interpretability of the topics: three
DDTs (new200, news50 and wiki200) produce globally topics with the same ratio of clustering
coefficient equal to zero, around 0.20 but with the last DDT, wiki30, the ratio of non zero clustering
coefficients is only equal to 0.02, thus ten times smaller than for the other DDTs. A large proportion
of the topics generated with the DDT wiki30 seems not to be coherent. The three other DDTs get
globally the same results but we can notice some slight differences: wiki200 gets the worst results
in terms of ratio and in terms of average score of non zero clustering coefficients. news200 and
news50 get nearly the same average over all clustering coefficients but the two other metrics differ
a little: news200 produces slightly more topics with the clustering coefficient equal to zero but, on
the other hand, the average score of these topics is smaller than for news50.

Finally, Table 11.6 compares the results according to the frequency threshold used. Here again, the
results match the conclusion of the first experiment with manual annotations of interpretability of
the topics: the more DDTs word senses were filtered before clustering the graph, the better the
quality of the topics is. This remark holds with respect to the three metrics we use in this exper-
iment, increasing the frequency threshold makes the clustering method produce more coherent
topics.

47

12 Mapping to BabelNet topics

In this the experiment, we compute the cosine similarity between our topics and topics from Babel-
Net [Navigli and Ponzetto, 2010] and analyze the similarity of the most similar BabelNet topics.

12.1 Experimental settings

In this third experiment, we make use of BabelNet [Navigli and Ponzetto, 2010]. Babel-
Net is a semantic network and an encyclopedic dictionary. It has been built upon Word-
Net and Wikipedia and realises a mapping between terms present in Wikipedia and Word-
Net synsets. BabelNet additionally provides some features such as machine translation. Ba-
belNet has already been used for several applications such as word sense disambiguation
[Ponzetto and Navigli, 2010] [Navigli et al., 2013] [Basile et al., 2014] and plagiarism detection
[Franco-Salvador et al., 2013].

The key point regarding our experiment is that each synset in BabelNet belongs to a specific topic
and therefore, seen from the opposite direction, BabelNet contains topics which are groups of
synsets. There are many different topics such as animals, media, music, technology and so on.
BabelNet topics are presented in Table 12.1. For instance, Figure 12.1 shows the entry for the word
Python with the sense of the programming language. This entry belongs to the topic computing.

Python (programming language), Pythonista

\ l l *. I Python is a widely used general-purpose, high-level programming

Computmg language.

Figure 12.1.: Example of BabelNet synset for the word Python as a programming language. This
synset belongs to the "computing” topic. Source: BabelNet.org.

In this experiment, we try to establish a mapping between our topics and BabelNet topics: for each
of our topics, we find the BabelNet topic which is most similar to this topic. The similarity measure
is computed using cosine similarity between the two topics.

Cosine similarity is a measure of similarity between two vectors in a given space. In the context of
text documents, each term is a dimension of the space. Vector’s coordinates are defined according
to the occurrences of each term in the document. The angle between the vectors representing two
documents is comprised between 0 and 90 degrees (vectors coordinates are non negative, since a

48

topic name # synsets
Engineering and technology 6041
Language and Linguistics 12708
Warfare and Defense 50169
Food and Drink 10722
Physics and Astronomy 18875
Farming 6965
Education 33698
Politics and Government 30777
Textile and Clothing 5330
Mathematics 17172
Heraldry Honors and Vexillology 3761
Health and Medicine 22843
Art Architecture and Archaeology 25973
Geology and Geophysics 5977
Media 77826
Business Economics and Finance 8532
Law and Crime 16034
Animals 27953
Music 106610
Culture and Society 990
Numismatics and Currencies 2499
Meteoroloy 4451
Computing 20481
Religion Myticism and Mythology 25967
Philosophy and Psychology 10134
Geography and Places 54789
Royalty and Nobility 23477
Chemistry and Mineralogy 17052
Literature and Theater 27823
Biology 31229
Games and Video Games 16972
Transport and Travel 40121
Sport and Recreation 96288
History 8429

Table 12.1.: BabelNet topics names and number of synsets per topic.

49

topic most similar cosine 20 topic words (randomly sampled)
size BabelNet topic similarity
867 food/drink 1.89E-4 mousse, biscuit, potato, cheese, pasta, sauce, waffle,

sausage, dish, noodle, steak, crust, fruit, fries, toast,
Benedict, burger, pudding, cookie, pastry, bread,
cream, salad ...

104 politics/government 1.51E-4 voting, Votes, ballot, bloc, counting, front-runner,
Santorum, Electoral, sweepstakes, hustings, proceed-
ing, Elections, Vote, senate, balloting, candidature,
judging, Pazz, Polling, Votes, Vote, e-mail ...

391 animals 0.86E-4 poodle, terrier, retriever, labrador, shepherd, aquar-
ium, bacterium, fungus, moth, flea, cockroach, ice-
berg, spider, deer, organism, cricket, moose, raccoon,
worm, elk, rabbit, coyote, parasite ...

Table 12.2.: Example of BabelNet mapping results for three topics. Extracted from results of DDT
news50, 2000 as frequency threshold and clustered with Chinese Whispers.

word cannot occur a negative number of times). The cosinus of this angle is the cosine similarity
between the two documents: the closer to O the angle is, the closer to 1 the cosinus is and the most
similar are the two documents since they share most of their terms.

12.2 Discussion of results

After computing the cosine similarity between each pair of topics (our topic and all the BabelNet
topics), we record how similar to our topic the most similar BabelNet topic is. A sample of the
results for three topics is shown in Table 12.2. The overall results for this experiment are compiled
in Table 12.3. The fourth column contains the average cluster size for each model, as a recall
of Tables 7.1 and 7.3. Indeed, we believe that the cluster size plays a role in the results of this
experiment.

Table 12.4 compares results obtained with Chinese Whispers and the Louvain Method. The two
clustering methods provide comparable results, with a slight advantage for the Louvain Method.

method CW LM
avg. max cosine similarity 0.01226 0.01363

Table 12.4.: Comparison of results of experiment with BabelNet topics for the different clustering
methods: for each DDT, average over all models based on this DDT.

Table 12.5 compares results obtained with the four DDTs. In this experiment, models built upon
the DDT wiki30 get better results than the three others. Among them, models built with news200
obtain the worst results, news50 and wiki200 are get nearly the same results. If we refer to
the cluster average size in each model, shown in Table 12.3, we notice that the score for this
experiment is inversely proportional to the average cluster size: fine-grained models get better

50

clust. method DDT freq. thres. avg. cluster size avg. max cosine similarity
Ccw news200 O 382.7 0.00074
Cw news200 500 311.4 0.00079
CwW news200 1200 208.5 0.00083
CcwW news200 2000 170.8 0.00077
CW news50 O 325.9 0.00145
CcwW news50 500 258.0 0.00168
Cw news50 1200 184.9 0.00170
CwW news50 2000 145.8 0.00194
Cw wiki200 O 291.0 0.00169
CW wiki200 500 189.9 0.00170
CcwW wiki200 1200 142.3 0.00176
Cw wiki200 2000 113.5 0.00170
Cw wiki30 0 68.6 0.04592
Cw wiki30 500 50.1 0.04406
CW wiki30 1200 40.4 0.04120
CcwW wiki30 2000 34.8 0.03735
LM news200 O 295.0 0.00109
LM news200 500 254.4 0.00097
LM news200 1200 183.8 0.00103
LM news200 2000 142.8 0.00091
LM news50 O 292.9 0.00164
LM news50 500 242.4 0.00184
LM news50 1200 178.0 0.00181
LM news50 2000 143.2 0.00194
LM wiki200 O 244.3 0.00204
LM wiki200 500 154.6 0.00214
LM wiki200 1200 118.9 0.00218
LM wiki200 2000 92.9 0.00219
LM wiki30 0 56.7 0.05670
LM wiki30 500 44.1 0.05096
LM wiki30 1200 36.1 0.04747
LM wiki30 2000 30.7 0.04310

Table 12.3.: Overall results of experiment with BabelNet topics. The five best ones are highlighted,
the best one is also underlined.

51

scores. This might be due to the fact that vectors built from bigger topics tend to have a greater
angle to BabelNet topics, because they simply contain more terms and thus the number of their
terms not included in BabelNet topics tends to increase, increasing the angle as a consequence.

DDT news200 news50 wiki200 wiki30
avg. max cosine similarity 0.00089 0.00179 0.00193 0.04585

Table 12.5.: Comparison of results of experiment with BabelNet topics for the different DDTs: for
each clustering method, average over all models based on this method.

Regarding the frequency threshold used to filter the DDTs before clustering, results are shown in
Table 12.6. They show that in average, decreasing this threshold gives better results. However,
looking back at Table 12.3, we notice that this is true only for the models built upon the DDT
wiki30. For the other models, the tendency is the opposite.

frequency threshold 0 500 1200 2000
avg. max cosine similarity 0.01569 0.01302 0.01225 0.01124

Table 12.6.: Comparison of results of experiment with BabelNet topics for the different frequency
thresholds: for each frequency threshold, average over all models based on this
threshold.

According to this experiment, the best topic models are the models based on the DDT wiki30, O as
frequency threshold. Chinese Whispers and the Louvain Method provide comparable results.

52

13 Conclusion

We have performed three different experiments to compare the quality of our topic models. In the
first experiment, we inspected a random sample of topics from each model and manually annotated
these topics as interpretable or not. In the second experiment, we used a hypernyms database to
build a graph for each topic in which an edge is drawn between two topics terms if they share a
common hypernym. We then analyzed the structure of the produced graph by computing its global
clustering coefficient. In the third experiment, we used topics of BabelNet synsets and tried to map
each of our topics to the most similar BabelNet topic. We then compared the cosine similarities
between our topics and the most similar BabelNet topic.

Overall results of the three experiments are compiled in Table 13.1. We selected the most repre-
sentative measure for each experiment:

* the ratio of interpretable topics according to the first experiment
* the average clustering coefficients of all topics per model, according to the second experiment

* the average of the maximal cosine similarities to BabelNet topics, according to the third
experiment

Regarding the method used to cluster the graph, the three experiments do not fully agree on
which model gives the best results: according to the first experiment, it is Chinese Whispers, in the
second and the third experiments they are considered equal. Nevertheless, taking into account the
three experiments, we can conclude that Chinese Whispers has a slight advantage over the Louvain
Method in our use case.

Regarding the frequency threshold used to filter the graph before clustering, the two first experi-
ments agree on the point that the best models are produced with the greatest threshold. In the last
experiment, it is not the case, especially for the models built using the DDT wiki30, for which the
result is the opposite. For the other models, there is no clear tendency. As a consequence, accord-
ing to the first and second experiments, we conclude that greater frequency thresholds produce
better quality topics.

Regarding the DDT used as input of our system, the first and second experiments agree with each
other but the third experiment gives other conclusions. According to the first two experiments,
models based on the DDTs news50, news200, wiki200 give better quality topics than the ones
based on wiki30. However, the third experiment gives opposite conclusions. Among the three
DDTs news50, news200, wiki200, they obtain similar results in the first and second experiments.
wiki200 gives slightly better results in the first experiment while news50 and news200 models
seem a bit better in the second experiment. Considering these results, it is difficult to acknowledge
which model gives the best results.

Finally, we have noticed that coarsed-grained models perform better according to the two first
experiments, but fine-grained topics (models based on DDT wiki30) perform better regarding the
experiment with BabelNet topics.

53

clustering DDT frequency # of ratio interp. avg. clust. coef. avg. max
method threshold topics topics (%) all elements cosine similarity
Cw news200 O 595 14 0.02 0.00074
Cw news200 500 359 34 0.06 0.00079
Ccw news200 1200 330 20 0.16 0.00083
cw news200 2000 286 38 0.16 0.00077
Ccw news50 O 835 18 0.03 0.00145
cw news50 500 668 18 0.09 0.00168
Cw news50 1200 596 26 0.17 0.00170
Ccw news50 2000 547 30 0.25 0.00194
Ccw wiki200 O 838 22 0.02 0.00169
Ccw wiki200 500 539 18 0.07 0.00170
Cw wiki200 1200 467 24 0.09 0.00176
Cw wiki200 2000 433 48 0.11 0.00170
Cw wiki30 0 14599 10 0.01 0.04592
Cw wiki30 500 8503 10 0.02 0.04406
Ccw wiki30 1200 6857 12 0.03 0.04120
Cw wiki30 2000 5914 10 0.03 0.03735
LM news200 O 773 12 0.01 0.00109
LM news200 500 440 16 0.10 0.00097
LM news200 1200 375 24 0.14 0.00103
LM news200 2000 343 28 0.17 0.00091
LM news50 O 929 6 0.02 0.00164
LM news50 500 711 6 0.07 0.00184
LM news50 1200 619 18 0.12 0.00181
LM news50 2000 557 24 0.17 0.00194
LM wiki200 O 998 16 0.01 0.00204
LM wiki200 500 662 16 0.06 0.00214
LM wiki200 1200 559 14 0.10 0.00218
LM wiki200 2000 529 20 0.13 0.00219
LM wiki30 0 17651 2 0.01 0.05670
LM wiki30 500 9665 8 0.01 0.05096
LM wiki30 1200 7676 6 0.01 0.04747
LM wiki30 2000 6714 4 0.02 0.04310

Table 13.1.: Comparison results of the three experiments we conducted. The five best ones are
highlighted, the best one is also underlined.

54

Part V.

Application of the
structured topics to text
categorization

14 Visualization of topics

14.1 Introduction

Finally, we introduce a web application which allows the user to interact with our topic models. In
particular, possibility is offered to visualize topics as bags of words or as graphs and to search for
a text best matching topics. This application is composed of several entities that we will explain in
the following. It is implemented using Java EE, the Bootstrap® framework and the vis.js library?.

As part of this web application, there is the possibility to visualize each topic’s graph. More pre-
cisely, the subgraph induced by the topic words from the original DDT graph is displayed. This
visualization is implemented with a vis.js network. An example can be seen in Figure 14.1.

Structured Topics Home Topics About Contact Train

Zoom - || Zoom +

| 2
Monopole a

%

Heidsieck
'ﬁ ' Deutz
Clicq® : &
Ponsardin .

j ~omme Lanson
i oederer

. Taittinger =
Cliquot] L E

: Billecart-Salmon
Veubéper-Heidsieck

Layout settings

Figure 14.1.: Graph visualisation for a topic about wine/champagne.

14.2 Nodes positions

http://getbootstrap.com

2 http://visjs.org

56

14.2.1 Positioning algorithm

The graph informations are obtained from the original graph and the nodes are located such that
highly connected groups of nodes will be close of each other. Consequently, nodes with a great
centrality value will be located in the center of this subgraph.

14.2.2 Storing positions

The positions need to be computed from scratch by the vis.js algorithm?®: it can take up to several
minutes for big topics, resulting in a bad usability for users. To avoid such an issue, nodes positions
can be stored once the positioning algorithm has come to an end or the positions sufficiently reflect
the network structure. This action is done using the button Store Positions just over the vis.js
network container.

Once the positions for a given topic have been stored, this topic network will be directly loaded
with those positions, saving the positions calculation time. A second button Reset Positions is also
present to allow a user to remove former stored positions for the topic. In this case, the algorithm
is run again to calculate new nodes positions.

A script was written to automate the process of loading a topic graph, waiting for its stabilization
and then storing the positions. It uses PhantomJS* to perform all these actions without the need
of a browser.

14.3 Images

Images are assigned for each node in the topic and pictured along the words in the graph visu-
alization. Images allow the user to understand what the topic is about faster and easier than by
reading topic words.

14.3.1 Images sources

The images come from three different sources. The first source database is the Serelex database
[Panchenko et al., 2013]. Serelex® is a visualisation tool for semantically related terms. Actually,
it is more or less a thesaurus visualisation tool: we can search for one word and get a network
visualisation of this term and its most similar words, with all the connections between them. Each
word is represented by an image. For each word in our topics, we look in the Serelex images
database and get the image for this word. However, some words do not have an image in this
database. In this case, DBpedia [Auer et al., 2007] is queried. DBpedia is a database containing
structured information from Wikipedia. Among the information extracted from each article is the
main image of this article, that is displayed at the top right of the article. If a Wikipedia article

3 http://visjs.org/docs/network/physics.html

http://phantomjs.org

> http://serelex.cental.be

57

title matches the word, its image is retrieved. Nevertheless, it can happen that neither Serelex nor
DBpedia provide an image for a word. As a last resort, an image is searched in Flickr®, a pictures
hosting website.

14.3.2 Images size

The images size varies with the node centrality in the topic. The greater the centrality value, the
bigger the image. This way, words which are more connected, and thus more important in the
network, are brought forward. The centrality involved here is the same as the centrality used in
Section 7.5 to compute the centroid of each cluster. We therefore refer the reader to this part of
the thesis for its definition.

6 http://flickr.com

58

15 Topics exploration

15.1 General presentation

In this master thesis we tried several models to generate the topics. For each model, the user can
visualize the list of all topics generated. Figure 15.1 shows an example. For each topic, the 50
most significant words are displayed as well as the topic id, the total number of elements within
this topic, hypernyms and IS-A relationships to help grasp what the topic is about. Each entry in
the list also contains two links: one to the graph visualization of this topic and another one to
a page in which all terms in the topic are displayed, this page can be seen in Figure 15.2. The
topics can be sorted by topic size, by topic score or by topic id, randomly assigned during the topic
computation pipeline. For each criteria, the topics can be sorted from the largest to the smallest or
the other way around.

15.2 Sorting topics by quality

Among the criteria available to sort topics in the list of all topics described above, there is the
possibility to sort them by score. This score is the result of a measure that we developed in order
to globally sort the topics by quality. It uses the topic size and the clustering coefficient of the topic
subgraph. Its goal is to easily retrieve topics which neither too small nor too big and that are of
good quality. The clustering coefficient of the topic subgraph gives information on the latter part.
The score S is computed as follows:

S=C x exp "N

where C is the clustering coefficient of the topic subgraph, N the average topic size of the model
and n is the topic size

We did not formally prove that a high score S means that the quality of the topic is good, however,
we noticed that this tends to be the case.

59

Structured Topics Home Topl Contact Train

Browse all topics

Select a model: Single word Expressions Topics (385?) | T}
Sorted by: score [+to- [| OK

Topic id: 153 Full topic Graphical view
Topic size: 9179
50 topic words by frequency: Smith,Moore,Johnson,Miller,Davis,Jones,Williams,Walker,Brown,Thompson,Anderson,Harris,Wilson,Robinson,Tay

lor,Wright,Evans,Jackson,Griffin,Murphy,Baker,Bailey,Bennett,Coleman, Sanders,Hayes,Henderson,Lewis,Watson,Peterson,Jenkins,Turner,Clark,Carter
,Phillips,Parker,Richardson,Robertson,Dixon, Tucker,Patterson,Sullivan,Reynolds,Allen,Adams,Reed, Edwards,Roberson,Mitchell,Barnes

Hypernyms: 2, C, MD

IsA relationships: music(91), said(62), band(153), style(77), subject(106), answer(79), value(85), artist(135), act(68), entertainment
(54)

Topic id: 213 Full topic Graphical view
Topic size: 5989
50 topic words by frequency: cheese,bean,potato,vegetable,tomato, rice,bread,bacon,onion,sausage,pea, sauce,mushroom,pepper,spinach,shri

mp, salad, ham,chicken,butter, fruit,egg,carrot,apple,broth,cream,meat, juice,chili,noodle, soup, pork, cabbage, pasta, beef,asparagus, lettuce, couscous
,cauliflower,nut, cake,eggplant,strawberry,banana, polenta,vinegar, cucumber,milk, ginger, pesto

Hypernyms: cast, cell, good

IsA relationships: scully(5), sport(42), way(5), game(15), sockettimeoutexception(7), event(25), item(4), weather(8), activity(23), op
tion(6)

Figure 15.1.: Topic list.

ured Topics Home Topics About Contact Train
Marcus is cooking chicken with rice

Topic: [Score = 0.08433662] Graphical view
Cluster words by frequency: cheese, bean, potato, vegetable, tomato, rice, bread, bacon, onion, sausage, pea, sauce, mushroom, pepper, spinach
, shrimp, salad, ham, chicken, butter, fruit, egg, carrot, apple, broth, cream, meat, juice, chili, noodle, soup, pork, cabbage, pasta, beef,
asparagus, lettuce, couscous, cauliflower, nut, cake, eggplant, strawberry, banana, polenta, vinegar, cucumber, milk, ginger, pesto, yogurt, c
hutney, confit, seafood, steak, corn, salmon, lobster, slaw, celery, berry, slice, prosciutto, tuna, honey, herb, chocolate, chive, oyster, ar
tichoke, sandwich, scallop, peanut, saut, pie, spice, scallion, mustard, almond, pear, tofu, fries, zucchini, pizza, pancake, Parmesan, fennel
, shallot, curry, squash, ricotta, salt, clam, chickpea, lentil, chorizo, stew, grits, pineapple, pudding, lamb, macaroni, leek, salsa, chily,
sugar, syrup, turnip, broccoli, mayonnaise, coriander, yam, plantain, lasagna, burger, mint, avocado, arugulum, cumin, pistachio, walnut, cof
fee, vinaigrette, beet, pate, basil, puree, saffron, radish, mozzarellum, turkey, raisin, dessert, peach, veggy, dish, meatloaf, gnocchus, okr
a, tea, hazelnut, paprika, pastry, cilantro, calamarus, prawn, flour, anchovy, meatball, tartare, cereal, oatmeal, pickle, mussel, peppercorn,
parsley, sardine, parmesan, hummus, toast, pancetta, thyme, crouton, oregano, dumpling, roast, carpaccio, apricot, gratin, appetizer, chowder
,» pumpkin, truffle, kebab, coconut, cracker, mignon, terrine, risotto, venison, omelet, cookie, grapefruit, custard, dill, rosemary, brisket,
mango, biscuit, ravioli, bisque, salami, gravy, fish, soda, rind, flan, rib, watercress, gras, lime, hamburger, cranberry, currant, papaya, fi
g, spaghetti, coleslaw, leaf, marmalade, cheddar, ragout, ketchup, sauerkraut, horseradish, margarine, chile, tarragon, buttermilk, crumb, lin
guine, jus, swordfish, veal, endive, raspberry, quiche, cashew, oats, soy, compote, powder, molasses, tenderloin, clove, sweetbread, feta, win
e, waffle, marshmallow, rhubarb, zest, souffle, pur, caviar, sirloin, gumbo, tortilla, watermelon, kale, aiolus, flake, melon, pecan, fillet,
anise, casserole, roe, curd, sherry, loin, seaweed, nutmeg, guacamole, caper, tamale, cinnamon, scone, yolk, stir-fry, seasoning, applesauce,
barley, filet, patty, chard, chestnut, mousse, radicchio, lemonade, nacho, cutlet, enchilada, cider, tempura, baguette, shellfish, blueberry
squid, pomegranate, taco, cobbler, cod, sage, chanterelle, brie, cheeseburger, pretzel, mayo, vanilla, crust, shank, filling, empanada, jelly,
cocoa, strudel, choy, bun, loaf, lemongrass, burrito, sushi, grape, pilaf, cornmeal, candy, sashimus, citrus, stuffing, croquette, fraiche, h
alibut, dough, cheesecake, o0il, pepperoni, crabmeat, quesadillum, gelatin, morel, tablespoon, cardamom, masalum, cornstarch, shiitake, cob, qu
esadilla, Gorgonzola, granolum, chillus, porcinus, parsnip, cornbread, marinade, brulee, miso, muffin, fettuccine, starch, crepe, wasabus, plu
m, bagel, vert, cayenne, popcorn, flavoring, espresso, antipasto, kimchus, grouper, wheat, brioche, entree, portobello, bratwurst, porridge, e
scarole, teaspoon, tartar, meringue, mascarpone, pita, escargot, teriyakus, cube, cheese, paellum, fajita, lard, ham, couli, ceviche, vermicel
1i, quinoa, cantaloupe, yoghurt, romaine, savory, jicama, verde, jam, brownie, bruschetta, penne, quail, tomatillo, mutton, edamame, rye, capp
uccino, tripe, rabe, collard, monkfish, hominy, dressing, breast, orzo, mesclun, smoothie, barbecue, daikon, crackling, crostinus, bulgur, gaz
pacho, provolone, tapenade, prune, octopus, olive, matzo, breadcrumb, beer, dal, pimento, tortellinus, scampi, marinara, oxtail, lima, dressin
g, mein, pastrami, sorbet, gorgonzolum, tempeh, shaving, tapioca, homemade, malt, sauce, focaccium, beetroot, mahi-mahus, bologna, seed, jalap
e, fried, nectarine, poblano, tomatoes, hotdog, kasha, pecorino, charcuterie, marsalum, chevre, fondue, spicy, frite, tabbouleh, mash, paneer,
fontina, veg, sorrel, sprout, chicory, pimiento, sprig, doughnut, wonton, blini, jalapeno, kraut, rutabaga, bouillon, Spam, adobo, garlic, gi
blets, roquefort, farro, kielbasa, Brie, jambalaya, flatbread, buttery, tequila, hock, cooked, chilli, bran, lingonberry, masa, biscotto, hash
, baked, floret, yuca, napoleon, fritter, goulash, codfish, broccolinus, fava, capona, che, garbanzo, Marsala, sundae, cola, cornflake, spaetz

Figure 15.2.: View of a topic with all words.

60

16 Text categorization

16.1 Front-end

Another entity present in the web application lets the user input a text and find the most similar
topics to this text. The user can select the model that he wants to use. Figure 16.1 shows the
search page, in which the user entered a text about Python, the programming language.

After selecting a model and submitting a piece of text, a results page is presented to the user, it
contains the top 3 topics in the specified model given the text. For each of them, topic words, topic
hypernyms from WordNet and topic IS-A relationships are displayed, as well as a list of matches

with the submitted text words and a link to the topic visualization. An example is shown in Figure
16.2.

16.2 Back-end: a search engine

16.2.1 Introduction

We want to use our models to tag any text with relevant topics. To perform the tagging process,
we create an index with all the topics and perform searches on it. For each query, the text is
analyzed and a matching process between the analyzed text and the topics is performed. The
topics receive a score between 0 and 1. The higher the score is, the more relevant the topic is. For
the implementation, we use an ElasticSearch! index.

1 http://elastic.co

Structured Topics Home Topics About Contact Train

Enter a text and look for its topics!

Python is a widely used high-level, general-purpose, interpreted, dynamic programming language.[24][25] Its design philosophy emphasizes code readability, and its syntax allows
programmers to express concepts in fewer lines of code than possible in languages such as C++ or Java.[26][27] The language provides constructs intended to enable clear
programs on both a small and large scale.[28]

Python supports multiple programming paradigms, including object-oriented, imperative and functional programming or procedural styles. It features a dynamic type system and
automatic memory management and has a large and comprehensive standard library.[29]

Python interpreters are available for many operating systems, allowing Python code to run on a wide variety of systems. Using third-party tools, such as Py2exe or Pyinstaller,[30]
Python code can be packaged into stand-alone executable programs for some of the most popular operating systems, so Python-based software can be distributed to, and used
on, those environments with no need to install a Python interpreter.

Single word Expressions Topics (385?) u

Submit

Figure 16.1.: View of the search home page.

61

Structured Topics Home Topics About Contact Train
Marcus is cooking chicken with rice

Topic: [Score = 0.08433662] Graphical view
Cluster words by frequency: cheese, bean, potato, vegetable, tomato, rice, bread, bacon, onion, sausage, pea, sauce, mushroom, pepper, spinach
, shrimp, salad, ham, chicken, butter, fruit, egg, carrot, apple, broth, cream, meat, juice, chili, noodle, soup, pork, cabbage, pasta, beef,
asparagus, lettuce, couscous, cauliflower, nut, cake, eggplant, strawberry, banana, polenta, vinegar, cucumber, milk, ginger, pesto, yogurt, c
hutney, confit, seafood, steak, corn, salmon, lobster, slaw, celery, berry, slice, prosciutto, tuna, honey, herb, chocolate, chive, oyster, ar
tichoke, sandwich, scallop, peanut, saut, pie, spice, scallion, mustard, almond, pear, tofu, fries, zucchini, pizza, pancake, Parmesan, fennel
, shallot, curry, squash, ricotta, salt, clam, chickpea, lentil, chorizo, stew, grits, pineapple, pudding, lamb, macaroni, leek, salsa, chily,
sugar, syrup, turnip, broccoli, mayonnaise, coriander, yam, plantain, lasagna, burger, mint, avocado, arugulum, cumin, pistachio, walnut, cof
fee, vinaigrette, beet, pate, basil, puree, saffron, radish, mozzarellum, turkey, raisin, dessert, peach, veggy, dish, meatloaf, gnocchus, okr
a, tea, hazelnut, paprika, pastry, cilantro, calamarus, prawn, flour, anchovy, meatball, tartare, cereal, oatmeal, pickle, mussel, peppercorn,
parsley, sardine, parmesan, hummus, toast, pancetta, thyme, crouton, oregano, dumpling, roast, carpaccio, apricot, gratin, appetizer, chowder
, pumpkin, truffle, kebab, coconut, cracker, mignon, terrine, risotto, venison, omelet, cookie, grapefruit, custard, dill, rosemary, brisket,
mango, biscuit, ravioli, bisque, salami, gravy, fish, soda, rind, flan, rib, watercress, gras, lime, hamburger, cranberry, currant, papaya, fi
g, spaghetti, coleslaw, leaf, marmalade, cheddar, ragout, ketchup, sauerkraut, horseradish, margarine, chile, tarragon, buttermilk, crumb, lin
guine, jus, swordfish, veal, endive, raspberry, quiche, cashew, oats, soy, compote, powder, molasses, tenderloin, clove, sweetbread, feta, win
e, waffle, marshmallow, rhubarb, zest, souffle, pur, caviar, sirloin, gumbo, tortilla, watermelon, kale, aiolus, flake, melon, pecan, fillet,
anise, casserole, roe, curd, sherry, loin, seaweed, nutmeg, guacamole, caper, tamale, cinnamon, scone, yolk, stir-fry, seasoning, applesauce
barley, filet, patty, chard, chestnut, mousse, radicchio, lemonade, nacho, cutlet, enchilada, cider, tempura, baguette, shellfish, blueberry,
squid, pomegranate, taco, cobbler, cod, sage, chanterelle, brie, cheeseburger, pretzel, mayo, vanilla, crust, shank, filling, empanada, jelly,
cocoa, strudel, choy, bun, loaf, lemongrass, burrito, sushi, grape, pilaf, cornmeal, candy, sashimus, citrus, stuffing, croquette, fraiche, h
alibut, dough, cheesecake, oil, pepperoni, crabmeat, quesadillum, gelatin, morel, tablespoon, cardamom, masalum, cornstarch, shiitake, cob, qu
esadilla, Gorgonzola, granolum, chillus, porcinus, parsnip, cornbread, marinade, brulee, miso, muffin, fettuccine, starch, crepe, wasabus, plu
m, bagel, vert, cayenne, popcorn, flavoring, espresso, antipasto, kimchus, grouper, wheat, brioche, entree, portobello, bratwurst, porridge, e
scarole, teaspoon, tartar, meringue, mascarpone, pita, escargot, teriyakus, cube, cheese, paellum, fajita, lard, ham, couli, ceviche, vermicel
1i, quinoa, cantaloupe, yoghurt, romaine, savory, jicama, verde, jam, brownie, bruschetta, penne, quail, tomatillo, mutton, edamame, rye, capp
uccino, tripe, rabe, collard, monkfish, hominy, dressing, breast, orzo, mesclun, smoothie, barbecue, daikon, crackling, crostinus, bulgur, gaz
pacho, provolone, tapenade, prune, octopus, olive, matzo, breadcrumb, beer, dal, pimento, tortellinus, scampi, marinara, oxtail, lima, dressin
g, mein, pastrami, sorbet, gorgonzolum, tempeh, shaving, tapioca, homemade, malt, sauce, focaccium, beetroot, mahi-mahus, bologna, seed, jalap
e, fried, nectarine, poblano, tomatoes, hotdog, kasha, pecorino, charcuterie, marsalum, chevre, fondue, spicy, frite, tabbouleh, mash, paneer,
fontina, veg, sorrel, sprout, chicory, pimiento, sprig, doughnut, wonton, blini, jalapeno, kraut, rutabaga, bouillon, Spam, adobo, garlic, gi
blets, roquefort, farro, kielbasa, Brie, jambalaya, flatbread, buttery, tequila, hock, cooked, chilli, bran, lingonberry, masa, biscotto, hash
, baked, floret, yuca, napoleon, fritter, goulash, codfish, broccolinus, fava, capona, che, garbanzo, Marsala, sundae, cola, cornflake, spaetz

Figure 16.2.: View of the search results page for the text "Marcus is cooking chicken with rice."

In order to test the search method, we run a first experiment using only 7 topics in the index.
These topics are about fishes, medical drugs, professional cyclists, dogs, theater characters, famous
navigators and wine, they were selected manually. The goal of this experiment is to make sure that
the matching process is correctly performed and gives relevant results. We decided to use few
topics to keep a reasonable size for the process.

The principle of this experiment is the following: we want to query this 7-topics-index with texts
about each of these topics. The texts we submit are extracted from Wikipedia: we select articles
from lists of articles included in wikipedia e.g. List of common fish names for the topic about fishes.
We use the dump enwiki-20160113-pages-articles-multistream.xml.bz2 to get those articles. We
submit only the abstract of each article, so that all texts have a comparable size. Metrics for this
set of text are outlined in Table 16.1.

topic # texts avg. texts length
drugs 390 931
fishes 1079 751
theater 217 978
explorers 458 869
cyclists 208 791
wine 576 637
dog breeds 502 570

Table 16.1.: Metrics of test texts for search engine.

16.2.2 nDCG

To get a better insight of the results quality, we use the normalized discounted cumulative gain
measure (nDCG) with the logarithm base 2.

DCG;

For a topic j, nDCG; = TdealDCG; -

The nDCG; value is between 0 and 1, nDCG; = 0 means that no article about the topic j has
the topic j in its results (for the articles about fishes, none of them has the topic fish as a result),
nDCG; = 1 means that all the articles about the topic j have the right topic j as first or second
result (for the articles about fishes, all of them have the topic fish as first or second result).

16.2.3 Baseline results with naive random ranking

In order to have a baseline, we consider the case where the search engine returns the topics ranked
in a random order. Statistically, we should get a uniform distribution over the 7 topics. The result
does not depend on the topic or the number of articles but let us consider the topic 3 about theater
as an example. For this topic, we have 217 texts. Since each text will get the 7 topics in a random
order, each topic should get around 217/7=231 topics for each ranking position. This is illustrated
in Table 16.2.

topic drugs fishes theater explorers cyclists wine dog breeds
Ist result 31 31 31 31 31 31 31
2nd result 31 31 31 31 31 31 31
3rd result 31 31 31 31 31 31 31
4th result 31 31 31 31 31 31 31
5th result 31 31 31 31 31 31 31
6th result 31 31 31 31 31 31 31
7th result 31 31 31 31 31 31 31

Table 16.2.: Results for 7 topics randomly distributed for each text.

The nDCG measure is computed as follows:

63

31 31 31 31 31
- - + + +
log,2 logy,3 log,4 log,5 log,6 log,7
1 1 1 1 1
- -+ + + +
log,2 log,3 log,4 log,5 log,6 log,7

DCG, =31+

DCG,=31x(1+

)
DCG, =31 x 4.30

IDCG, =217=31x7

For 7 articles, the baseline nDCG score is 0,61.

16.2.4 Simple TF-IDF query

First, we try a simple matching query: each article text is tokenized using an English tokenizer
and English stopwords are filtered out. Each resulting token is lowercased and then compared
to the words in each topic. A score between 0 and 1 is returned for each topic using TF-IDF
[Salton and McGill, 1986] and the topics are ranked according to this score. In the following, we
refer to this method as the Method 1.

The results for each list of articles can be seen in Table 16.3, Table 16.4, Table 16.5, Table 16.6,
Table 16.7, Table 16.8, Table 16.9. We count the number of results for each topic and each ranking
position, so that we can then compute the nDCG score described before.

Example: List of articles about drugs (386 articles): (82 in the first column and the first row
means that for 82 out of 386 articles, the topic about fishes was the first result) Note: Since for
some articles, there is no topic found at all, the number of articles does not necessarily equal to
the sum of values in the first row (or in any other row).

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 202 8 10 11 43 43 17

2nd result 32 19 33 16 50 32 19

3rd result 9 12 15 29 15 13 20

4th result 7 7 3 11 3 10 8

S5th result 0 2 2 7 3 0 2

6th result 0 0 0 2 0 0 2
7thresult O 0 0 0 0 0 0

Table 16.3.: Search results for texts about drugs with the Method 1.

64

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult O 823 7 31 48 67 6

2nd result 2 90 20 105 138 165 48
3rdresult 5 14 16 96 65 62 24

4th result 3 2 14 48 13 18 18
Sthresult 3 0 2 3 3 3 14
6thresult O 0 0 0 0 0 2
7thresult O 0 0 0 0 0 0

Table 16.4.: Search results for texts about fishes with the Method 1.

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 1 1 39 13 22 69 23

2nd result 8 3 23 11 16 20 24

3rd result 2 5 11 6 11 10 9

4th result 1 2 2 9 3 3 4
S5thresult 0 1 0 1 0 0 5

6th result 0 0 0 0 0 0 0
7thresult O 0 0 0 0 0 0

Table 16.5.: Search results for texts about theater with the Method 1.

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 2 26 52 73 54 97 20

2nd result 4 16 39 37 28 28 22

3rd result 2 5 15 28 16 6 17

4th result 2 4 4 7 3 7 6

S5th result 1 2 1 3 0 1 4

6th result 0 1 1 0 0 0 0
7thresult O 0 0 0 0 0 0

Table 16.6.: Search results for texts about explorers with the Method 1.

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 1 4 5 15 152 16 0
2nd result 4 14 16 39 21 26 5
3rd result 6 6 16 13 0 11 8
4th result 2 2 7 5 0 3 3
Sthresult 0 0 1 3 0 3 2
6th result 0 0 0 0 0 0 1
7thresult O 0 0 0 0 0 0

Table 16.7.: Search results for texts about cyclists with the Method 1.

65

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult O 0 0 0 0 575 0

2nd result 2 17 36 25 30 0 26
3rdresult 1 5 3 7 5 0 8
4thresult 0 0 1 4 0 0 1
Sthresult O 0 0 0 0 0 0
6thresult O 0 0 0 0 0 0
7thresult O 0 0 0 0 0 0

Table 16.8.: Search results for texts about wine with the Method 1.

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult O 18 18 10 6 35 406

2nd result 0 34 56 18 31 58 67

3rd result O 18 22 22 15 22 10

4th result 1 4 10 10 15 5 1

S5th result 0 2 3 12 3 3 0

6th result 0 0 0 2 1 0 0

7thresult O 0 0 0 0 0 0

Table 16.9.: Search results for texts about dog breeds with the Method 1.

topic nDCG
drugs 0.62

fishes 0.86
theater 0.32
explorers 0.29
cyclists 0.84

wine 1.00

dog breeds 0.95

avg. 0.70 £ 0.27

Table 16.10.: Overall search results with the Method 1.

The overall results with the Method 1 are shown in Table 16.10. They are better than the baseline,
the average nDCG is 0.70 against 0.61 with a random ranking. However, this search method has
a drawback: it can match parts of words, for example id the input text contains the word cat and
a topic contains the word catholicism, there will be a match because the word cat is contained in
the word catholicism. This can cause relevance problems in the search results.

66

16.2.5 Exact term matching

In order to address the issue previously mentioned, we try a second method in which the matching
process is performed with full words exclusively. Furthermore, since our topics are only constituted
of nouns, we apply a part of speech tagger to the text and keep only the nouns and proper nouns.
We refer to this method as Method 2.

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 313 23 3 1 10 4 4

2nd result 12 48 14 4 28 12 20

3rd result 0 10 7 11 17 13 9

4th result O 4 0 17 2 7 1
S5thresult 0 0 0 4 1 2 1

6th result 0 0 0 1 0 3 0
7thresult O 0 0 0 0 0 0

Table 16.11.: Search results for texts about drugs with the Method 2.

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 8 947 0 0 20 0 8

2nd result 22 18 11 14 92 29 53

3rd result 2 3 7 46 10 13 12
4thresult 0 0 0 11 1 4 3
Sthresult O 0 0 1 0 0 0
6thresult O 0 0 0 0 0 0
Z7thresult O 0 0 0 0 0 0

Table 16.12.: Search results for texts about fishes with the Method 2.

topic drugs fishes theater explorers cyclists wine dog breeds
1stresult 4 3 155 7 10 0 7

2nd result 7 10 6 26 11 1 24

3rd result 3 0 4 6 3 3 8

4th result 1 1 0 2 0 2 1

S5th result 1 0 0 0 0 2 0

6th result 0 0 0 0 0 0 1
7thresult O 0 0 0 0 0 0

Table 16.13.: Search results for texts about theater with the Method 2.

67

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 9 45 59 75 19 6 27

2nd result 4 8 25 24 9 10 10
3rdresult 1 2 0 15 2 6 9

4th result 0 1 1 2 1 0 2
Sthresult O 0 0 2 0 0 0
6thresult 0 0 0 0 0 0 0
7thresult O 0 0 0 0 0 0

Table 16.14.: Search results for texts about explorers with the Method 2.

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 6 4 5 3 103 1 5
2nd result 3 5 10 9 2 1 8
Srd result 1 5 0 3 1 3 1
4th result O 0 0 2 0 3 2
Sthresult O 0 0 1 0 0 0
6th result O 0 0 0 0 0 0
7thresult O 0 0 0 0 0 0

Table 16.15.: Search results for texts about cyclists with the Method 2.

topic drugs fishes theater explorers cyclists wine dog breeds
Ist result 2 1 0 1 0 569 O

2nd result 27 332 84 28 15 3 14

3rd result 3 112 31 10 4 1 7
4thresult 0 32 2 1 0 0 1

5th result 0 2 0 3 0 0 0

6th result 0 0 0 0 0 0 1
7thresult O 0 0 0 0 0 0

Table 16.16.: Search results for texts about wine with the Method 2.

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 17 55 22 18 17 3 338

2nd result 3 33 11 5 11 3 105

3rd result 1 11 2 9 13 27 18

4th result 0 2 0 13 1 11 0

Sthresult 0 0 0 0 0 3 0

6th result 0 0 0 0 0 0 0

7thresult O 0 0 0 0 0 0

Table 16.17.: Search results for texts about dog breeds with the Method 2.

68

Table 16.18.: Overall search results with the Method 2.

topic nDCG
drugs 0.83

fishes 0.90
theater 0.75
explorers 0.24
cyclists 0.51

wine 1.00

dog breeds 0.91

avg. 0.73 £0.25

The Method 2 gives slightly better results than the first method (0.73 against 0.70). Nevertheless,
there tend to be less topics in the results because of less matches.

16.2.6 Combining both methods

Finally, we try to combine both queries to keep the advantages of each one: the first method gives
many results but some of them might not be relevant whereas the second one gives more relevant
results but sometimes there are not a lot of them. We therefore apply both queries. We boost the
results given by the second method, by multiplying their score by 10, such that these results are
also the highest ranked in the global results and we add the results from the first method so that
we have more results.

topic drugs fishes theater explorers cyclists wine dog breeds
Ist result 304 23 2 2 20 13 8

2nd result 16 47 33 20 62 39 30

3rd result 8 17 26 31 20 29 18

4th result 5 14 10 17 9 17 9
Sthresult 0 3 7 6 3 12 2

6th result 0 2 1 1 1 1 2
7thresult O 0 0 1 0 1 1

Table 16.19.: Search results for texts about drugs with the Method 3.

69

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 1 986 2 3 18 12 13

2nd result 22 19 25 115 170 182 75
3rdresult 6 7 19 111 68 92 22

4th result 6 5 14 51 16 41 13

S5th result 4 0 7 9 6 7 3
6thresult O 0 0 0 0 3 5
7thresult O 0 0 0 0 0 0

Table 16.20.: Search results for texts about fishes with the Method 3.

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 3 4 148 17 15 3 13

2nd result 8 10 19 22 15 44 34

3rd result 8 1 6 22 7 33 11

4th result O 5 1 7 10 18 1

S5th result 2 0 1 1 4 5 2

6th result 0 0 0 0 1 0 4
7thresult O 0 0 0 0 0 0

Table 16.21.: Search results for texts about theater with the Method 3.

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 5 42 70 105 43 54 34

2nd result 8 14 30 64 29 45 17

3rd result 3 10 8 40 21 24 12

4th result O 3 8 9 8 12 6

S5th result 1 1 4 5 2 4 0

6th result 0 1 0 0 0 1 0
7thresult O 0 0 0 0 0 0

Table 16.22.: Search results for texts about explorers with the Method 3.

topic drugs fishes theater explorers cyclists wine dog breeds
1stresult 4 6 7 14 149 10 5
2nd result 8 13 21 42 20 18 7
3rd result O 8 11 20 3 24 3
4th result 3 2 7 3 2 3 6
S5th result 0 1 3 4 1 4 2
6th result 1 0 0 0 0 1 0
7thresult 1 0 0 0 0 0 0

Table 16.23.: Search results for texts about cyclists with the Method 3.

70

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult O 0 0 0 0 574 0

2nd result 28 333 84 29 15 0 17

3rd result 4 112 55 29 14 0 10

4th result 1 31 4 12 5 0 4
Sthresult O 4 0 4 1 0 4
6thresult O 0 0 0 0 0 1
7thresult O 1 0 0 0 0 0

Table 16.24.: Search results for texts about wine with the Method 3.

topic drugs fishes theater explorers cyclists wine dog breeds
Istresult 1 36 10 4 9 4 429

2nd result 12 46 56 28 27 72 52

3rd result 5 18 27 29 22 51 2

4th result 4 4 17 20 12 13 0

S5th result 0 7 8 7 3 10 0

6th result 0 0 2 2 0 0 1

7thresult O 0 0 0 0 0 0

Table 16.25.: Search results for texts about dog breeds with the Method 3.

topic nDCG
drugs 0.84

fishes 0.94
theater 0.79
explorers 0.44
cyclists 0.83

wine 1.00

dog breeds 0.96

avg. 0.83 £0.17

Table 16.26.: Overall search results with the Method 3.

The third method, combining both the first and the second method and boosting results from the
second one, gives the best results. The average nDCG equals 0.83 against 0.70 and 0.74 with
the first and second method. The standard deviation is also lower than before (0.17 against 0.27
and 0.25) reflecting the fact that the results are more homogeneous. As a consequence, the third
method is the one applied in the web application.

71

16.3 Conclusion

In this part, we have presented a web application which allows to interact with topics. Several
features have been introduced: the user can explore a topic model and each topic that it contains,
the topic can also be visualized graphically. Finally, the user can input some text and find the topics
best matching this text.

72

Part VI.
Conclusion and future work

17 Conclusion

In this thesis, we introduced a novel method and a system to generate topics using a Distributional
Disambiguated Thesaurus. Our method can be decomposed into three subsystems. First, the DDT
is preprocessed, discarding low frequency terms. Second, a clustering method isolates clusters
of word senses within the DDT, these clusters are our topics. Finally, topics are annotated by
hypernyms to represent the gist of the topic. We explored two hypernyms sources: a man-made
lexical resource, WordNet and an automatically built IS-A relationships database, extracted using
lexical-syntactic patterns.

Different values were tried out for the several parameters in our method: as input we had four
different DDTs built using two different corpora, several thresholds for the term frequency based
filtering during the preprocessing step and three unsupervised clustering methods. Variations in
these parameters values resulted in 32 different topical models, that we compared through three
independent experiments. In the first experiment, we manually inspected topics interpretability,
in the second one we analyzed topics coherence using a hypernyms database and the last exper-
iment was focused on mapping our topics to topics available in BabelNet. We found out that
coarsed-grained models give globally better quality topics according to the two first experiments.
Additionally, increasing the frequency threshold for the word senses in the DDT also improves the
quality of our topics. According to the experiment with BabelNet topics, fine-grained topics were
shown to get better results. In this experiment, models with lower frequency thresholds were also
better.

Regarding topic annotations with hypernyms, we explored several strategies to make these hyper-
nyms more relevant to the topic itself, with and without considering weights, more or less deep in
the Wordnet hypernyms hierarchy and applying or not a TF-IDF scheme.

Finally, we introduced a web application which allows the user to interact with our topic models.
In particular, possibility is offered to visualize topics as bags of words or as graphs and to search
for a text best matching topics.

The implementation of the system for building topics, as well as the user interface is available on
GitHub'.

! http://github.com/smndf/Statistical-Models-of-Semantics-using-Structured-Topics

74

18 Future work

Building on the work presented in this thesis, future work could include new experiments to evalu-
ate topics quality, since the three experiments presented in this thesis do not give the same results.
New experiments could definitely tilt the balance in favour of one topic model.

In the scope of this thesis, the DDTs were preprocessed in two different ways: keeping only the
word senses tagged as nouns and proper nouns, and filtering word senses based on a frequency
threshold. Future work could focus on elaborating more intelligent filtering methods, in order
to improve the eventual topic model. Regarding the annotation of topics of hypernyms, other
strategies, of weighting for example, could be explored.

Finally, a more general perspective is to bridge the gap between topic models generated by our
system and existing common methods used to find topics, such as the Gibbs sampling method.
Currently, this gap mainly results from the intrinsic characteristics of our topic models, such as the
topics being a split of the whole vocabulary instead of a distribution over this vocabulary in the
case of Gibbs sampling. This can be done using the graph structure of the DDT: for each of our
topics, we could first compute a central node c for this topic e.g. by taking the node with the max
centrality. Then, we could run a shortest path algorithm over the whole graph from the previously
found central node c. Since edge weights in the graph denote semantic similarity between nodes,
the distance between a given node and the central node ¢ would be inversely proportional to the
probability of occurrence of this given node in the topic of the central node c. This way, we could
obtain distributions of words over the whole vocabulary for each topic, assuming the graph to be
connected.

75

List of Figures

4.1. Results page for the word "car" in thesaurus.com. 14
4.2. Pipeline for the computation of semantic similarity values. Source: [Biemann and Riedl, 2013] 15
4.3. Dependency parsing output for the sentence I suffered from a cold and took aspirin.. 15
4.4. Neighborhood graph of the word tablet. Source: [Simon, 2015] 16
5.1. Dataflow diagram of our system for building topics. 20
7.1. Example of the two steps of the Louvain Method. 26
7.2. Example of the steps during the Chinese Whispers clustering method. 27
8.1. Hypernym hierarchy of the word cat (felinesense). 33
8.2. Hypernym hierarchy of the word table (furniture sense). 33
11.1.Hypernyms graph of the demo topic. 43
12.1.Example of BabelNet synset for the word Python as a programming language. This
synset belongs to the "computing” topic. Source: BabelNet.org. 48
14.1.Graph visualisation for a topic about wine/champagne. 56
15.1.Topic list. . . . o o v e e e e 60
15.2.View of atopicwithallwords. 60
16.1.View of the search home page. 61
16.2.View of the search results page for the text "Marcus is cooking chicken with rice." . 62

76

List of Tables

4.1. Sample from a thesaurus in which none of the words are disambiguated.
4.2. Sample from a thesaurus in which only the entry word is disambiguated.
4.3. Sample from a fully disambiguated thesaurus.
4.4. Statistics of the datasets used in our experiments.

6.1. Datasets metrics after removing all word senses with non noun tags.
6.2. ddt-news-n200 filtered with different frequency thresholds.
6.3. ddt-news-n50 filtered with different frequency thresholds.
6.4. ddt-wiki-n200 filtered with different frequency thresholds.
6.5. ddt-wiki-n30 filtered with different frequency thresholds..

7.1. Clustering results for Chinese Whispers applied to the different models.
7.2. Davies-Bouldin indices for Chinese Whispers applied to the different models, lower
values mean better clustering.
7.3. Clustering results for the Louvain Method applied to the different models.
7.4. Davies-Bouldin indices for the Louvain Method applied to the different models,
lower values mean better clustering.
7.5. Clustering results with MCL, the DDT ddt-news-n200 and 2000 as word frequency
threshold. e

8.1. Sample of the IS-A relationship database.
8.2. Accuracy of methods with and without TE-IDF to annotate topics with hypernyms
from the IS-A database.

10.1.Example of three interpretable topics. Extracted from results of DDT news200, 2000
as frequency threshold and clustered with Chinese Whispers.
10.2.Example of three non interpretable topics. Extracted from results of DDT news200,
2000 as frequency threshold and clustered with Chinese Whispers.
10.4.Comparison of results of interpretability annotations for the different frequency
thresholds: for each frequency threshold, average over all models based on this
threshold. e
10.3.Results of interpretability annotations for the different models. The five best ones
are highlighted, the best one is also underlined.
10.5.Comparison of results of interpretability annotations for Chinese Whispers and the
Louvain Method: for each clustering method, average over all models based on this
method.

11.1.Hypernyms for each word of the demo topic.
11.2.Example of three topics with a high clustering coefficient of their hypernym graph.
Extracted from results of DDT news50, 2000 as frequency threshold and clustered
with Chinese Whispers. e et

35

40

43

11.3.Results of hypernym graphs analysis for the different models. The five best ones
are highlighted, the best one is also underlined. '"ratio non zero el." reflects the
proportion of topics for which the clustering coefficient of the hypernym graph is
different from zero. The next column "avg. clust. coef. non zero elements" is the
average of the clustering coefficients of these topics. The last column "avg. clust.
coef. all elements" is the average of the clustering coefficients for all hypernym
graphs, including those with a clustering coefficient equal to zero. This the measure
that we want to Optimize. i i e e e 45
11.4.Comparison of results of hypernyms graph analysis for Chinese Whispers and the
Louvain Method: for each clustering method, average over all models based on this

method. 46
11.5.Comparison of results of hypernyms graph analysis for the different DDTs: for each
DDT, average over all models based onthisDDT. 46

11.6.Comparison of results of hypernyms graph analysis for the different frequency
thresholds: for each frequency threshold, average over all models based on this

threshold. 46
12.1.BabelNet topics names and number of synsets per topic. 49
12.2.Example of BabelNet mapping results for three topics. Extracted from results of DDT

news50, 2000 as frequency threshold and clustered with Chinese Whispers. 50
12.4.Comparison of results of experiment with BabelNet topics for the different clustering

methods: for each DDT, average over all models based on this DDT. 50
12.3.0Overall results of experiment with BabelNet topics. The five best ones are high-

lighted, the best one is also underlined. 51
12.5.Comparison of results of experiment with BabelNet topics for the different DDTs:

for each clustering method, average over all models based on this method. 52

12.6.Comparison of results of experiment with BabelNet topics for the different frequency
thresholds: for each frequency threshold, average over all models based on this

threshold. e 52
13.1.Comparison results of the three experiments we conducted. The five best ones are

highlighted, the best one is also underlined. 54
16.1.Metrics of test texts for search engine. 62
16.2.Results for 7 topics randomly distributed foreach text. 63
16.3.Search results for texts about drugs with the Method 1. 64
16.4.Search results for texts about fishes with the Method 1. 65
16.5.Search results for texts about theater with the Method 1. 65
16.6.Search results for texts about explorers with the Method 1.. 65
16.7.Search results for texts about cyclists with the Method 1. 65
16.8.Search results for texts about wine with the Method 1. 66
16.9.Search results for texts about dog breeds with the Method 1. 66
16.100verall search results with the Method 1.. 66
16.11Search results for texts about drugs with the Method 2. 67
16.12Search results for texts about fishes with the Method 2. 67
16.13earch results for texts about theater with the Method 2. 67
16.14Search results for texts about explorers with the Method 2. 68

16.15Search results for texts about cyclists with the Method 2. 68
16.165earch results for texts about wine with the Method 2. 68
16.175earch results for texts about dog breeds with the Method 2. 68
16.18)verall search results with the Method 2.. 69
16.1%earch results for texts about drugs with the Method 3. 69
16.2(Bearch results for texts about fishes with the Method 3. 70
16.21Search results for texts about theater with the Method 3. 70
16.22earch results for texts about explorers with the Method 3.. 70
16.235earch results for texts about cyclists with the Method 3. 70
16.245earch results for texts about wine with the Method 3. 71
16.255earch results for texts about dog breeds with the Method 3. 71
16.260verall search results with the Method 3.. 71

79

Bibliography

[Auer et al., 2007] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z.
(2007). Dbpedia: A nucleus for a web of open data. In The semantic web, pages 722-735.

[Basile et al., 2014] Basile, B, Caputo, A., and Semeraro, G. (2014). An enhanced lesk word
sense disambiguation algorithm through a distributional semantic model. In Proceedings of
COLING2014, the 25th International Conference on Computational Linguistics, pages 1591-1600.

[Biemann, 2006] Biemann, C. (2006). Chinese whispers: an efficient graph clustering algorithm
and its application to natural language processing problems. In Proceedings of the first workshop
on graph based methods for natural language processing, pages 73-80.

[Biemann et al., 2007] Biemann, C., Heyer, G., Quasthoff, U., and Richter, M. (2007). The leipzig
corpora collection-monolingual corpora of standard size. Proceedings of Corpus Linguistic.

[Biemann and Riedl, 2013] Biemann, C. and Riedl, M. (2013). Text: Now in 2d! a framework for
lexical expansion with contextual similarity. Journal of Language Modelling, pages 55-95.

[Blei and Lafferty, 2006] Blei, D. M. and Lafferty, J. D. (2006). Dynamic topic models. In Proceed-
ings of the 23rd international conference on Machine learning, pages 113-120.

[Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation.
Journal of machine Learning research, pages 993-1022.

[Blondel et al., 2008] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008).
Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and
experiment, page P10008.

[Davies and Bouldin, 1979] Davies, D. L. and Bouldin, D. W. (1979). A cluster separation measure.
IEEE transactions on pattern analysis and machine intelligence, pages 224-227.

[Deerwester et al., 1990] Deerwester, S., Dumais, S. T., Furnas, G. W,, Landauer, T. K., and Harsh-
man, R. (1990). Indexing by latent semantic analysis. Journal of the American society for
information science, pages 391-407.

[Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-
merische mathematik, pages 269-271.

[Donoho and Stodden, 2004] Donoho, D. and Stodden, V. (2004). When does non-negative ma-
trix factorization give a correct decomposition into parts? In Advances in Neural Information
Processing Systems 16, pages 1141-1148.

[Faralli et al., 2016] Faralli, S., Panchenko, A., Biemann, C., and Ponzetto, S. P (2016). Linking
lexical resources to disambiguated distributional semantic networks. In Proceedings of the 15th
International Semantic Web Conference.

80

[Ferraresi et al., 2008] Ferraresi, A., Zanchetta, E., Baroni, M., and Bernardini, S. (2008). Intro-
ducing and evaluating ukwac, a very large web-derived corpus of english. In Proceedings of the
4th Web as Corpus Workshop (WAC-4) Can we beat Google, pages 47-54.

[Franco-Salvador et al., 2013] Franco-Salvador, M., Gupta, B, and Rosso, P (2013). Cross-
language plagiarism detection using a multilingual semantic network. In Proceedings of the
35th European Conference on Advances in Information Retrieval, pages 710-713.

[Gabrilovich and Markovitch, 2007] Gabrilovich, E. and Markovitch, S. (2007). Computing se-
mantic relatedness using wikipedia-based explicit semantic analysis. In International Joint
Conferences on Artificial Intelligence, pages 1606-1611.

[Geman and Geman, 1984] Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs dis-
tributions, and the bayesian restoration of images. IEEE Transactions on pattern analysis and
machine intelligence, pages 721-741.

[Gliozzo et al., 2013] Gliozzo, A., Biemann, C., Riedl, M., Coppola, B., Glass, M. R., and Hatem,
M. (2013). Jobimtext visualizer: a graph-based approach to contextualizing distributional sim-
ilarity. Graph-Based Methods for Natural Language Processing, pages 6—10.

[Graff and Cieri, 2003] Graff, D. and Cieri, C. (2003). English gigaword corpus. Linguistic Data
Consortium.

[Griffiths, 2002] Griffiths, T. (2002). Gibbs sampling in the generative model of latent dirichlet
allocation. Tech. rep., Stanford University.

[Hearst, 1992] Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text corpora.
In Proceedings of the Fourteenth International Conference on Computational Linguistics. Nantes,
France, pages 539-545.

[Hofmann, 1999] Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceedings of the
15th conference on Uncertainty in artificial intelligence, pages 289-296.

[Klema and Laub, 1980] Klema, V. and Laub, A. (1980). The singular value decomposition: Its
computation and some applications. IEEE Transactions on automatic control, pages 164-176.

[Likas et al., 2003] Likas, A., Vlassis, N., and Verbeek, J. J. (2003). The global k-means clustering
algorithm. Pattern recognition, pages 451-461.

[Miller et al., 1990] Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. J. (1990).
Introduction to wordnet: An on-line lexical database. International journal of lexicography,
pages 235-244.

[Miller and Charles, 1991] Miller, G. A. and Charles, W. G. (1991). Contextual correlates of se-
mantic similarity. Language and cognitive processes, pages 1-28.

[Navigli et al., 2013] Navigli, R., Jurgens, D., and Vannella, D. (2013). Semeval-2013 task 12:
Multilingual word sense disambiguation. In Proceedings of the Second Joint Conference on Lexical
and Computational Semantics, pages 222-231.

[Navigli and Ponzetto, 2010] Navigli, R. and Ponzetto, S. P (2010). Babelnet: Building a very
large multilingual semantic network. In Proceedings of the 48th annual meeting of the association
for computational linguistics, pages 216-225.

81

[Panchenko et al., 2013] Panchenko, A., Romanov, P, Morozova, O., Naets, H., Philippovich, A.,
Romanoyv, A., and Fairon, C. (2013). Serelex: Search and visualization of semantically related
words. In Proceedings of the 35th European Conference on Advances in Information Retrieval,
pages 837-840.

[Ponzetto and Navigli, 2010] Ponzetto, S. P and Navigli, R. (2010). Knowledge-rich word sense
disambiguation rivaling supervised systems. In Proceedings of the 48th annual meeting of the
association for computational linguistics, pages 1522-1531.

[Rosen-Zvi et al., 2004] Rosen-Zvi, M., Griffiths, T., Steyvers, M., and Smyth, P (2004). The
author-topic model for authors and documents. In Proceedings of the 20th conference on Un-
certainty in artificial intelligence, pages 487-494.

[Salton and McGill, 1986] Salton, G. and McGill, M. J. (1986). Introduction to modern information
retrieval.

[Salton et al., 1975] Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for
automatic indexing. Communications of the ACM, pages 613-620.

[Sebastiani, 2002] Sebastiani, E (2002). Machine learning in automated text categorization. ACM
computing surveys (CSUR), pages 1-47.

[Simon, 2015] Simon, J. (2015). Word sense induction using distributional semantics. Master’s
thesis, Technische Universitdat Darmstadt, Darmstadt, Germany.

[Van Dongen, 2001] Van Dongen, S. M. (2001). Graph clustering by flow simulation. PhD thesis,
University of Utrecht.

[Wallach, 2006] Wallach, H. M. (2006). Topic modeling: beyond bag-of-words. In Proceedings of
the 23rd international conference on Machine learning, pages 977-984.

[Wallach et al., 2009] Wallach, H. M., Murray, 1., Salakhutdinov, R., and Mimno, D. (2009). Eval-
uation methods for topic models. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 1105-1112.

82

