
Unsupervised Extraction
and Prediction of Narrative
Chains
Unüberwachtes Extrahieren und Vorhersagen von Narrativen Ketten
Master-Thesis von Uli Fahrer
Tag der Einreichung: 22.08.2016

1. Gutachten: Prof. Dr. Chris Biemann
2. Gutachten: Steffen Remus, MSc



Unsupervised Extraction and Prediction of Narrative Chains
Unüberwachtes Extrahieren und Vorhersagen von Narrativen Ketten

Vorgelegte Master-Thesis von Uli Fahrer

1. Gutachten: Prof. Dr. Chris Biemann
2. Gutachten: Steffen Remus, MSc

Tag der Einreichung:



Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter und nur

mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,

die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese

Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 22. August 2016

(Uli Fahrer)



Abstract
A major goal of research in natural language processing is the semantic understanding of natu-
ral language text. This task is particularly challenging since it requires a deep understanding of
the causal relationships between events. Humans implicitly use common-sense knowledge about
abstract roles and stereotypical sequences of events for story understanding. This knowledge is
organized in common scenarios, called scripts, such as going to school or riding a bus. Hence,
story understanding systems have historically depended on hand-written knowledge structures
capturing common-sense knowledge. In recent years, much work on learning script knowledge
automatically from corpora has emerged.

This thesis proposes a number of further extensions to this work. In particular, several script
models tackling the problem of script induction by learning narrative chains from text collections
are introduced. These narrative chains describe typical sequences of events related to the actions
of a single protagonist. A script model might for example encode the information that the events
going to the cash-desk and paying for the goods are very likely to occur together.

In this context, various event representations aiming to encode the most important narrative
document information such as what happened are introduced. It is further demonstrated in a user
study how these events can be exploited to support users in obtaining a broad and fast overview
of the important information of a document.

The script induction systems are finally evaluated on whether they are able to infer held-out
events from documents (the narrative cloze test). The best performing system is based on a lan-
guage model and utilizes a novel inference algorithm that considers the importance of individual
events in a sequence. The model attains improvements of up to 9 percent over prior methods on
the narrative cloze test.



Zusammenfassung
Eines der Hauptziele der Forschung zur natürlichen Sprachverarbeitung ist das semantische Verste-
hen der natürlichen Sprache in Texten. Diese Aufgabe ist besonders anspruchsvoll, da sie ein tie-
feres Verständnis für die kausalen Zusammenhänge zwischen Ereignissen voraussetzt. Menschen
benutzen unterbewusst Common-Sense Wissen wie soziale Rollen und sterotypische Abfolgen von
Ereignissen, um Geschichten zu verstehen. Dieses Wissen ist in wiederkehrende Schemata grup-
piert, auch Skripte genannt, wie beispielsweise zur Schule gehen oder mit dem Bus fahren. Daher
basierten frühere Story-Understanding-Systeme auf handgeschriebenen Wissensstrukturen, welche
Common-Sense Wissen abbildeten. In den letzten Jahren sind verschiedene Arbeiten über das au-
tomatisierte Lernen von Skript-Wissen erschienen.

In dieser Thesis werden eine Reihe von Erweiterungen dieser Arbeiten vorgeschlagen. Insbe-
sondere werden verschiedene Skript-Modelle vorgestellt, welche durch das Lernen von narrativen
Ketten aus Textsammlungen automatisch Skripte induzieren. Diese narrativen Ketten beschreiben
typische Abfolgen von Ereignissen über die Aktivitäten eines Protagonisten. Ein Skript-Modell kann
beispielsweise lernen, dass die Ereignisse an die Kasse gehen und für die Ware bezahlen sehr wahr-
scheinlich gemeinsam auftreten.

In diesem Zusammenhang werden verschiedene Darstellungen für Ereignisse vorgestellt, wel-
che das Ziel haben, die wichtigsten narrativen Elemente eines Dokumentes zu erfassen. In einer
Benutzerstudie wird weiter gezeigt, wie diese Darstellungen genutzt werden können, um einen
umfassenden und schnellen Überblick über die wichtigsten Informationen eines Dokumentes zu
geben.

Die Skript-Induktionssysteme werden schließlich evaluiert, indem getestet wird, ob diese in der
Lage sind ein Ereignis vorherzusagen, das aus einem Dokument entfernt wurde (der narrative clo-
ze test). Das beste Ergebnis erzielt ein System basierend auf einem Sprachmodell, welches einen
neuartigen Vorhersagealgorithmus benutzt, der die Bedeutung einzelner Ereignisse in einer Ab-
folge von Ereignissen berücksichtigt. Das Modell erreicht eine Verbesserung von bis zu 9 Prozent
gegenüber bisheriger Verfahren im narrative cloze test.



Acknowledgements

I would like to thank my thesis supervisor Prof. Dr. Chris Biemann for his guidance and inputs
throughout this process. He always supported me whenever I had questions about my research.

Finally, I want to thank my family and friends for their support, particularly Julia Kadur for all of
her love and encouragement during my studies at Technische Universität Darmstadt.



Contents
List of Abbreviations 7

List of Figures 8

List of Tables 9

1 Foundations 10
1.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Resources of Common-Sense Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Application in Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Background and Related Work 19
2.1 Script Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Visualization of Narrative Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Event Extraction and Representation 23
3.1 Definition of an Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Event Extraction Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Event Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Visualization of Narrative Chains 39
4.1 Event Browser Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Statistical Script Models 50
5.1 Extracting Narrative Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Learning from Narrative Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Evaluation 56
6.1 Evaluation Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Conclusion and Future Work 69
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5



Appendix 76

A User Study 77
A.1 Documents and Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.3 Evaluation Metric Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 80

6



List of Abbreviations
NLP natural language processing

PMI pointwise mutual information

POS part-of-speech

UI user-interface

NER Named Entity Recognition

HMM hidden Markov model

MLE maximum likelihood estimate

CRF conditional random field

AI artificial intelligence

API application programming interface

SVM support vector machine

CBOW continuous bag of words

LSTM long short-term memory neural network

7



List of Figures
1.1 Illustration of a general knowledge frame strucure . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Illustration of the restaurant script formalization . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Illustration of the frame-to-frame relations for the commercial transfer frame . . . . . 16
1.4 Example of a sketchy script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Architecture of the event extraction framework . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Example of a part-of-speech tagged sentence . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Example of a dependency parse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Illustration of different styles of dependency representations. . . . . . . . . . . . . . . . 32
3.5 Example of a non-defining relative clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Illustration of the max-hypernym algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Overview of the FactBro user-interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Illustration of the narrative chain view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Cumulative results of the user study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Two scatter plots showing the correlation between the answer-sentence index and

the average time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Individual results of the user study averaged with the geometric mean . . . . . . . . . 47
5.1 Illustration of the scoring function for the weighted single protagonist model . . . . . 54
6.1 Example of the narrative cloze test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Illustration of the invidiual script model results for each category . . . . . . . . . . . . 63
6.3 Example stories of the qualitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1 Illustration of the metaphor of two-dimensional text . . . . . . . . . . . . . . . . . . . . . 71

8



List of Tables
3.1 Table showing the individual supersense categories . . . . . . . . . . . . . . . . . . . . . 36
6.1 Evaluation results (Overall) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Evaluation results (Discounting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 Evaluation results (Word2vec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1 Table showing the top three similar words for the competition chain . . . . . . . . . . . 72
A.1 Test documents used in the user study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Results of the user study for the treatment group . . . . . . . . . . . . . . . . . . . . . . . 78
A.3 Results of the user study for the control group . . . . . . . . . . . . . . . . . . . . . . . . . 78

9



1 Foundations

1.1 Introduction and Motivation

Humans are great in organizing general knowledge in form of common sequences of events. This
common-sense knowledge is acquired throughout lifetime and is implicitly used to understand the
world around. It comprises everyday life events and their causal and temporal relations [Schank
and Abelson, 1977]. This concept also includes certain roles and events associated with them as
shown in the following example:

(1) John and his family visited the restaurant nearby. After having lunch, the children fell against
a vase while playing. However, the owner was not mad at them since he did not like the vase.

When reading this example, humans know that the vase broke although it is not explicitly stated
in the story. Humans can further infer that John and his family are the customer in the narrative and
that the owner refers to the owner of the restaurant. This implicit used common-sense knowledge
also captures that visiting the restaurant precedes having lunch.

In early years of artificial intelligence (AI), the encoding of such event chains was very popular.
For instance, Minsky [1974] proposed knowledge frames and Rumelhart [1975] proposed schemas.
Schank and Abelson [1977] introduced scripts, a knowledge representation that describes typical
sequence of events in a particular context. The most prominent example is the restaurant script.
This script consists of stereotypical and temporally ordered events for eating in a restaurant e.g.
finding a seat, reading the menu, ordering food and drinks from the waiter, eating the food, paying
for the food.

Scripts were a central theme to research in the 1970s for tasks such as question answering,
story understanding, summarization and coreference resolution. For example, Cullingford [1978]
showed that script knowledge improves common-sense reasoning for text understanding and
McTear [1987] showed applications for script-like knowledge in anaphora resolution.

Following Schank and Abelson [1977], script formalisms typically use a quite complex notion of
events to model the interactions between actors of a particular scenario. This kind of information
is difficult to represent in a machine-readable way, because machine learning algorithms typically
focus on shallower representations. Therefore, the representation of common-sense knowledge
needs to be formalized and simplified in a way that is understandable for machines. This formal-
ization is a major challenge in natural language processing.

The aforementioned approaches for organizing common-sense knowledge were based on hand-
written knowledge. It turns out that the acquisition of such knowledge is a time-consuming process.
It also reveals that people learn much more scripts throughout lifetime than researchers can write
down. Thus, manually-written script knowledge bases clearly do not scale.

With the increasing development of the Internet over recent years, large collections of textual
data are available. These could be exploited to learn common-sense knowledge automatically.
This enables to develop systems, which function in a completely unsupervised way without expert
annotators.

10



This work presents and explores several script systems that learn script-like knowledge from
text collections automatically. A script system captures the events and their relations involved
in everyday scenarios, such as dining in a restaurant or riding a bus. Thereby, it is able to infer
events that have been removed from an input text by reasoning and reacting towards the situation
the system encounters. For instance, given the event eat food, it should predict the pay for the
food event according to the restaurant scenario. The script models presented here utilize classical
language models [Manning and Schütze, 1999, p. 71], but also apply recent word embedding
language modeling techniques [Mikolov et al., 2013].

The major part of this thesis concentrates on the question of how machines can learn common-
sense knowledge from corpora. However, as already emphasized, the event representation is at
least as important as the actual learning algorithm. The way of how the knowledge is encoded
plays an essential factor for successful script learning. Moreover, the combination of a script model
and an event representation should allow to generalize over the different encoded situations. For
instance, the check reservation event that is associated with the waiter does not necessarily need to
occur in the restaurant scenario.

While this research direction focuses on how machines can learn humans’ common-sense, the
work presented here further examines whether the same underlying concepts can support humans
in different tasks such as to aid in reading texts. For example, information about protagonists and
their associated events extracted from a document could be exploited for reducing information
overload to provide humans a broad overview of that document. Hence, these concepts facilitate
the extraction of information about key elements of the document without reading the whole
text. Based on this idea, a text-reading tool is described that visualizes narrative information of a
document.

In particular, the thesis tackles the following research questions that will guide through the work:

(1) How can script knowledge automatically be learned from corpora?

(2) How should a script model be designed to allow flexible inference of events?

(3) How can events be represented in order to improve the performance of script models?

(4) Do events extracted from a document give a broad and fast overview of the important infor-
mation on that document?

This thesis is structured as follows. In the remainder of this chapter, some theoretical foundations
will be covered that are used throughout this work, while giving potential applications of common-
sense knowledge in Section 1.4. Chapter 2 presents a brief but essential background on automatic
script induction and then further introduces the state-of-the-art by presenting different approaches
that tackle the problem of learning script-like knowledge from corpora automatically. Chapter 3
outlines the event extraction methodology, proposes an event extraction framework and motivates
different event representations. In Chapter 4, a web-based platform for visualizing narrative events
is described and evaluated in terms of its utility for giving a broad and fast overview of a document.
The various script models explored in this thesis are described in Chapter 5 and Chapter 6 evaluates
the performance of these models in comparison to an informed baseline. Additionally, a qualitative
analysis discusses the common types of errors made by the systems. Finally, the work is concluded
in Chapter 7 and ends with an outlook on possible future research topics and further development
of the proposed script induction models.

11



1.2 Terminology

This section introduces recurring concepts and terms used in this thesis. If not stated otherwise,
these concepts come from Chambers and Jurafsky [2008]. The following story serves for illustra-
tion purposes:

Andrea was looking for a new pet. She was considering adopting a dog. After visiting
the local dog shelter, she decided to rescue a puppy. After the paperwork was finalized,
Andrea brought the dog home. Andrea introduced the dog to the family.

Source: Mostafazadeh et al. [2016]

The example above contains several narrative events, which describe actions performed by the
protagonists of the story. WordNet1 [Fellbaum, 1998] describes a protagonist as “the principal
character in a work of fiction”. According to this definition, the main protagonists can be identified
as Andrea and the dog, whereas all coreferent mentions2 of Andrea and the dog are straight and
dashed underlined, respectively.

Section 3 gives a further specification of the broad term “narrative event“. For the time being, a
narrative event e is defined as a tuple (v, d), where v is the verb that has the protagonist a as its
typed dependency d, such that d ∈ {subj, obj, prep}3. Following this definition, the narrative events
for the second sentence can be extracted as (adopting,subj) for Andrea and (adopting,obj)
for the dog. Note that the same verb may participate in multiple events as it can have several
arguments.

On this basis, a narrative chain is introduced as a partially ordered set of narrative events that
share a common protagonist. Thus, a narrative chain consists of a set of narrative events L and a
binary relation ≥ (ei, e j) that is true “if event ei occurs strictly before e j” [Chambers and Jurafsky,
2008]. Accordingly, the following narrative chain for Andrea can be defined as:

L = {(looking,subj),(adopting,subj),(rescue,subj),(brought,subj),(introduced,subj)}
(looking,subj)≥ (adopting,subj)≥ (rescue,subj)≥ (brought,subj)≥ (introduced,subj)

Chambers and Jurafsky [2008] were the first to introduce these concepts, which tackle the prob-
lem of script induction by learning narrative chains from text collections. The assumption that
events with shared arguments are connected by a similar narrative context builds the base for
their entity model. For example, the verbs rescue and adopting share the same protagonist and are
therefore considered as related. In this context, Chambers and Jurafsky formulated the following
narrative coherence assumption:

Verbs sharing coreferring arguments are semantically connected by virtue of narrative dis-
course structure. Source: Chambers and Jurafsky [2008]

This assumption can be compared to the distributional hypothesis, which is the basis for the con-
cept of distributional learning. Harris [1954] formulated the distributional hypothesis as follows:
“words that occur in the same contexts tend to have similar meanings”.

1 WordNet project page: https://wordnet.princeton.edu/ (accessed July 2016).
2 Two mentions are said to corefer, if they refer to the same entity.
3 Typed dependencies describe grammatical relationships in a sentence. For example, Mary stands in subject relation

to had in the sentence Mary had a little lamb.

12

https://wordnet.princeton.edu/


Chambers and Jurafsky [2008] stated that in contrast to distributional learning, narrative learning
reveals additional information about the participant. For instance, distributional learning might
indicate that the verb push relates to the verb fall. However, narrative learning also provides the
information that the object of push is the subject of fall.

Following Chambers’ and Jurafsky’s work, the script induction systems proposed in Section 5 are
based on the learning of narrative relations between events. This task also includes the extraction
of narrative events from document collections and the identification of coreferent mentions to
build narrative chains as further discussed in Section 3.

1.3 Resources of Common-Sense Knowledge

The following section introduces various models for representing common-sense knowledge. Some
of the resources are long-running projects, others are suspended but are worth mentioning due to
their contribution to the research community.

Knowledge Frames
The idea to use frames in artificial intelligence as a structured representation for conceptualizing

common-sense knowledge is attributed to Minsky [1974]. According to Minsky, a frame is a data
structure for representing a stereotyped situation like being in a certain kind of living room, or going
to a child’s birthday party. He also showed the relevance of frames for tasks related to language
understanding like the understanding of storytelling. The concept of frames can be seen as a
mental model that stores knowledge about objects or events in memory as a unit. When a new
situation requires common-sense reasoning, the appropriate frame is selected from the memory.

A frame is a structured data collection, which consists of slots and slot values. Slots can be of any
size and contain one or more nested fields, called facets. Facets may have a name and an arbitrary
number of values. In addition to descriptive information, slots can contain pointer information
used as references to other frames. The general concept is flexible and allows inheritance and
inferencing. Hence, frames are often linked to indicate has-a or is-a relationships. Figure 1.1
illustrates the general frame structure.

(<frame name>

(<slot 1> (<facet 1><value 1> ... <value k1>)

(<facet 2><value 2> ... <value k2>)

...

...

(<facet n><value n> ... <value kn>

...

...

(<slot 2> (<factet 1><value 1> ... <value k1)

Figure 1.1: A general frame structure (Source: Akerkar [2005]).

13



Figure 1.2: Illustration of the restaurant script formalization (Source: Bower et al. [1979]).

14



Scripts
The idea of scripts came in the 1970s from Schank and Abelson [1977]. A script is a knowledge

structure that describes a stereotyped sequence of events in a particular context. Scripts are closely
related to frames but contain additional information about the sequence of events and the goal
of the involved protagonists. Thus, this representation is less general than frames. According to
Schank and Abelson, a script has the following components:

• The scenario describes the underlying type of the situation. For instance, riding a bus, going
to a restaurant or robbing a bank.

• Roles are the participants involved in the events.

• Props is short for property and the term refers to the objects that the participants use to
accomplish the actions.

• In order to instantiate a script, certain entry conditions must be satisfied.

• The results describe conditions that will be true when the script is exited.

• The plot of a script is grouped into several scenes. Each scene describes a particular situation
and is further divided into events. An event represents an atomic action associated with one
or more participants of the script scenario. Precondition and postcondition describe the causal
relationships and are defined for each event accordingly.

Figure 1.2 shows the most prominent script that describes events, which occur in the individual
scenes corresponding to the situation of dining in a restaurant. The preconditions for going to a
restaurant are that the customer is hungry and is able to pay for the food. The involved protagonists
are the customer, the owner and other personnel staff. The props include tables, a menu, food, a bill,
and money. The final results are that the customer is no longer hungry, but has less money.

The illustration has been simplified in order to highlight the high-level concepts. For example,
each event in the restaurant script results in conditions, which trigger the next event.

FrameNet
The notion of frames has a wide range and occurs in different research disciplines. Fillmore’s

theory brings Minsky’s ideas about frames into connection with linguistics [Fillmore, 1976]. His
frame semantic theory describes complex semantic relations related to concepts. The basic idea
refers to the assumption that humans can better understand the meaning of a single word with
additional contextual knowledge related to that word.

A semantic frame represents a set of concepts associated with an event and involves various
participants, props, and other conceptual roles. A common example for a frame is the commercial
event frame [Fillmore, 1976]. This frame describes the relationship between a buyer, a seller, goods,
and money related to the situation of commercial transfer. Different words evoke and establish
frames. This is motivated by the fact that several lexical items can refer to the same event type. In
the previous example, the word pay or charge evokes the frame from the perspective of the buyer,
whereas sell evokes it from the perspective of the seller.

A prominent example that captures script-like structures for a particular type of situation along
with participants and props is FrameNet [Baker et al., 1998]. The FrameNet project4 is a realization

4 FrameNet project page: https://framenet.icsi.berkeley.edu/fndrupal/ (accessed July 2016).

15

https://framenet.icsi.berkeley.edu/fndrupal/


of Fillmore’s frame semantics as an online lexical resource. If offers a broad set of frames that range
from simple to complex scenarios constructed through expert annotators. Each frame consists of
semantic roles, called frame elements, and lexical units that model the words evoking a frame.
Frames additionally include relationships to other frames at various levels of generality, called
frame-to-frame relations. For example, selling and paying are subtypes of giving as shown in Figure
1.3. Although FrameNet covers script information in general, script scenarios are quite rare and
not explicitly marked. In the current version (1.5, as of August 2016), FrameNet consists of 1019
frames, 11.829 lexical units, 8.884 unique roles labels and 1.507 frame-to-frame relations.

However, frame-to-frame relations only allow the building of sequences of events to a certain
extent. For example, the commercial transfer frame has no frame-to-frame relation that describes
the negotiation between both parties, though it is considered as a typical event in common-sense.
Moreover, the creation of such a corpus is extremely expensive and requires effort over many years.

Figure 1.3: Illustration of the frame-to-frame relations corresponding to the commercial transfer

frame (Source: Gamerschlag et al. [2013]).

1.4 Application in Natural Language Processing

Script knowledge has a wide range of applications in modern language understanding systems.
Systems that operate on the document level would benefit the most from knowledge about entities,
events and their causal relation. In contrast, systems that work on the sentence or word level
have only limited context. Due to the limited context, such applications would not benefit from
information on higher level concepts and their relations. The following presents a few showcases
for applications that could profit from script knowledge.

Question Answering
A question answering system is designed to answer textual questions posted by humans in a

natural language [Manning and Schütze, 1999, p. 377]. Knowledge-based question answering
systems use a huge structured database containing an enormous amount of information. These

16



systems transform the meaning of the question into a semantic representation, which is then used
to query the database.

Most of these systems focus on factoid questions (e.g. what, when, which, who, etc.) that can
be answered with a simple fact. Consider the following examples. Each of these examples can be
answered with a short text that corresponds to a name or a location:

(1) Who shot Mr. Burns?

(2) Where is Mount Everest?

(3) What is Peter Parker’s middle name?

For the examples above, the questions can be reformulated to statements that can be looked up
with simple patterns in the knowledge base. Assuming that the knowledge base is large enough, it
is very likely that the database contains the answers to such questions.

While these type of questions do not require script knowledge, more complicated questions
would require flexible inference based on entities and their actions in events as well as the causal
relations between them. For example, causal questions such as why or how require world knowl-
edge and common sense reasoning. The answer to such questions contains further elaborations
related to specific events or actors and the system requires therefore deeper understanding of the
text.

Coreference Resolution
Winograd [1972] proposed a schema that makes the implicit use of common-sense knowledge

apparent. Their schemas consist of one sentence that requires anaphora resolution to one of two
involving actors. A mention A is an anaphoric antecedent of mention B if and only if it is required
for comprehending the meaning of B. When one term in the Winograd schema is changed, the
correct actor for the anaphora changes. The following pair of sentences illustrate this kind of
schema:

(1) The city council refused the demonstrators a permit because they advocated violence.

(2) The city council refused the demonstrators a permit because they feared violence.

Source: Winograd [1972]

In the first sentence, the mention they refers to the demonstrators, whereas the same mention
refers to the city council in the second example. While the answer is immediately obvious to hu-
mans, it proves difficult for current automatic language understanding systems. The resolution of
this ambiguity requires knowledge about the relation of city councils and demonstrators to violence.
Script knowledge could help to solve this problem through its representation of actors and their
roles in events. A script model will ideally encode the fact that it is more likely that the city council
members engage in a fear violence event than an advocated violence event. Such a system could be
incorporated into a coreference resolution system5 to enable this sort of inferences.

Levesque [2011] proposed a collection of similar sentences as an evaluation metric for artificial
intelligence and an improvement on the Turing test.

5 Coreferring mentions could represent an anaphoric relation, but do not necessarily have to. However, the outlined
benefits also apply to the problem of coreference resolution.

17



Summarization
The task of automatic summarization in natural language processing describes the process of

reducing the content of a text document to its core information [Mani, 1999].
An essential part of this task is to identify sentences that describe the story’s main events. Script

knowledge can assist summarization systems in this task and help to organize the summary. It
provides important events that are expected to occur in common situations. For example, for a
scenario covering a political demonstration one would expect to find some of the events shown in
Figure 1.4.

DeJong [1982] used this idea for an automatic summarization system called FRUMP. The system
covers various scenarios like public demonstration or car accidents and is focused on the summa-
rization of newspaper stories. However, the approach is not applicable for stories that require
common-sense knowledge like dining in a restaurant or riding a bus since events that are associ-
ated with these type of scenarios are rather not explicitly mentioned in newspaper stories.

..

The demonstrators arrive at the demonstration location.
The demonstrators march.
Police arrive on the scene.
The demonstrators communicate with the target of the demonstration.
The demonstrators attack the target of the demonstration.
The demonstrators attack the police.
The police attack the demonstrators.
The police arrest the demonstrators.

Figure 1.4: The example is part of the sketchy script $DEMONSTRATION (Source: DeJong [1982]).

1.5 Contributions

The main contributions of this work are:

• An unsupervised narrative event and chain extraction framework that is designed to extract
events in different variants.

• A web-based platform that supports reading by extracting and visualizing narrative events
from text.

• An unsupervised script induction system that attains improvements over prior methods on
the narrative cloze test.

• A qualitative evaluation of the proposed script induction systems on a publicly available
dataset.

18



2 Background and Related Work
This chapter reviews the related literature of the two research directions of this thesis. Section 2.1
gives a short history of automatic script induction and presents the state-of-the-art. Section 2.2 dis-
cusses related work in the field of visualizing narrative structures that aims at supporting humans
in exploring collections of text.

2.1 Script Models

First attempts in story understanding have already been made back in the 1970s. This task is
extremely challenging and has a long running history. Schank and Abelson [1977] identified
that common-sense knowledge such as common occurrences and relationships between them is
implicitly used to understand stories. The term common-sense knowledge in the field of artificial
intelligence research refers to the collection of facts and background information that a human is
expected to know. While humans acquire this knowledge just by interacting with the environment,
it is hard to add this ability to machines in a way that allows flexible inference. This raises the
question of how to represent and provide common-sense knowledge to machines.

One way of aggregating common-sense knowledge are scripts, a “structure that describes ap-
propriate sequences of events in a particular context” [Schank and Abelson, 1977]. Scripts are
stereotypical sequences of causally connected events, such as dining in a restaurant. They also
include roles that different actors can play and are hand-written from the point of view of a protag-
onist. Various other knowledge structures have been proposed aiming to capture common-sense
knowledge as well [Rumelhart, 1975; Minsky, 1974; Winograd, 1972].

However, all of these approaches are non-probabilistic and rely on complicated hand-coded in-
formation. The acquisition of scripts is a time-consuming task and requires expert knowledge in
order to annotate events, their relation and participant roles. Although hand-structured knowledge
contains little noise, it is less flexible and will have a low recall. A story may contain the events
exactly as it is defined in the script, but any variation on the structure is difficult to handle.

Therefore, researchers have been trying to learn scripts from natural language corpora automat-
ically. The work on unsupervised learning of event sequences from text began with Chambers and
Jurafsky [2008]. They first proposed narrative chains as a partially ordered set of narrative events
that share a common protagonist. Chambers and Jurafsky learned co-occurrence statistics from
narrative chains between simple events consisting of a verb and its participant represented as a
typed dependency (see Section 1.2). This co-occurrence statistic C(e1, e2) describes the number of
times the pair (e1, e2) and (e2, e1) has been observed across all narrative chains extracted from all
documents. For instance, (eat,obj) and (drink,obj) is expected to have a low co-occurrence
count, because things that are eaten are not typically drunk6.

In order to infer new verb-dependency pair events that have happened at some point in
a sequence, Chambers and Jurafsky maximize over the pointwise mutual information (PMI)
[Church and Hanks, 1989] given the events in the sequence. Formally, the next most likely nar-
rative event in a sequence of events c1, ..., cn that involves an entity is inferred by maximizing

6 The example is taken from Pichotta and Mooney [2016].

19



argmaxe∈V

�∑n
i=0 pmi(ci, e)
�
, where V are the events in the training corpus and pmi is the pointwise

mutual information as described in Church and Hanks [1989].
In Chambers and Jurafsky [2009], they extend the narrative chain model and propose event

schemas, a representation more similar to semantic frames [Fillmore, 1976]. In contrast to their
previous work, the focus here is on learning structured collections of events. In addition, Chambers
and Jurafsky use all entities of a document when inferring new events rather than just a single
entity. As a consequence, they can only infer untyped events instead of verb-dependency pair
events. Results show that this approach improves the quality of the induced untyped narrative
chains. Numerous others focus on schema induction rather than event inference [Chambers, 2013;
Cheung et al., 2013; Balasubramanian et al., 2013; Nguyen et al., 2015]. However, this work
focuses on the original work of Chambers and Jurafsky [2008] and the field of event inference
instead of learning abstract event schema representations.

Previous attempts to acquire script knowledge from corpora automatically can be divided into
two principal areas of research: (1) open-domain script acquisition and (2) closed-domain script
acquisition.

Pichotta and Mooney [2016], Rudinger et al. [2015b], Jans et al. [2012] and Chambers and
Jurafsky [2008] focused on open-domain script acquisition. They extracted narrative chains from
large corpora such as Wikipedia or the Gigaword corpus [Graff et al.] to train their statistical
models. Thereby, a large number of scripts is learned. However, there is no guarantee of a specific
set of scripts such as the restaurant script being learned.

The problem of implicit knowledge is a more serious drawback of this approach i.e. newspaper
text does not state stereotypical common-sense knowledge explicitly. In addition, such articles
contain knowledge that deviates from everyday life events. The man bites dog aphorism is a good
example to illustrate the problem. This anecdotal states: “When a dog bites a man, that is not
news, because it happens so often. But if a man bites a dog, that is news.” and is attributed to
John B. Bogart of New York Sun. Given such an article, a script model would learn the fact that
humans bite dogs, even if it is more likely that dogs bite humans.

Rudinger et al. [2015a] argue that for many specialized applications, however, knowledge of
a few relevant scripts may be more useful than knowledge of many irrelevant scripts. With this
scenario in mind, they learn the restaurant script by applying narrative chain learning methods to a
specialized domain-specific corpus of dinner narratives7. Based on this approach, other work that
focuses on closed-script acquisition has been published [Ahrendt and Demberg, 2016]. According
to Rudinger et al. [2015a] this thesis is also directed towards closed-script acquisition and therefore
uses domain-specific corpora for training.

A variety of expansions and improvements of Chambers and Jurafsky [2008] have been pro-
posed:

Jans et al. [2012] explored several strategies to collect the model’s statistics. Their results show
that a language-model-like approach performs better than using word association measures like
the pointwise mutual information metric. Furthermore, they found that skip-grams [Guthrie et al.,
2006] outperform vanilla bigrams, while 2-skip-gram and 1-skip-gram perform similarly. Unlike
Chambers and Jurafsky [2008], Jans et al. [2012] include the relative ordering between events in
a document to their model. Section 5 gives more details about this bigram model and discusses
the differences in comparison with the script model proposed by Chambers and Jurafsky [2008].

7 Website with stories about restaurant dining disasters: http://www.dinnersfromhell.com (accessed July 2016).

20

http://www.dinnersfromhell.com


This work further extends the bigram model mentioned above to reflect the individual impor-
tance of each event in a sequence. Similar to Jans et al. [2012], the script models proposed here
also take the ordering between events in a document into account and do not rely on a pure bag
of events model. Finally, the original bigram model will be compared to the modified version in
order to show the benefit of such a modification.

Rudinger et al. [2015b] contributed a log-bilinear discriminative language model [Mnih and Hin-
ton, 2007] and also showed improved results in modeling narrative chains of verb-dependency pair
events. Overall, their log-bilinear language model reaches 36% recall in top 10 ranking compared
to 30% with the bigram model.

Pichotta and Mooney [2014] extended the verb-dependency pair event model to support multi-
argument events such as ask(Mary,Bob,question) for the sentence Mary asks Bob a question. This
representation not only includes the verb and its dependency, but also considers the arguments.
However, gathering raw co-occurrence statistics from these events would only count the actions
performed by the involved entity mentions, resulting in poor generalization. Thus, Pichotta and
Mooney [2014] also model the interactions between all distinct entities x , y and z in a script.
For example, if one participant asks the other (e.g. ask(x,y,z)), the other is likely to respond
(e.g. answer(y,•,•))8. Their model achieves slightly higher performance on predicting simple
verb-dependency pair events than the one that models co-occurring pair events directly.

This work adapts the multi-argument representation for modeling event sequences, but does not
model the interactions between entities explicitly. Instead, several other strategies are explored
that help to generalize over the training data.

Recently, the long short-term memory neural network (LSTM) [Hochreiter and Schmidhuber,
1997] has been applied successful to a number of difficult natural language problems such as
machine translation [Sutskever et al., 2014]. There has been also a number of recent work that
approach the problem of script induction with neural models. Pichotta and Mooney [2016] use a
recurrent neural network model with long short-term memory and show that their model outper-
forms previous bigram models in predicting verbs with their arguments.

Granroth-Wilding and Clark [2016] present a feedforward neural network model for script in-
duction. This model predicts whether two events are likely to appear in the same narrative chain
by learning a vector representation of verbs and argument nouns and a composition function that
builds a dense vector representation of the events. Their neural model achieves a substantial
improvement over the bigram model and the word association measure based model originally
introduced by Chambers and Jurafsky [2008]. According to Granroth-Wilding and Clark [2016],
one possible reason for its success is its ability to capture non-linear interactions between verbs
and arguments. This allows for example that the events play golf and play dead lie in different
regions of the vector space.

As the learning of vector representations gives a more robust model, this thesis also imple-
ments vector space based models and compares them to the traditional language-model-based
approaches.

All of these algorithms above require evaluation metrics to determine successful learning of
narrative knowledge. Chambers and Jurafsky [2008] proposed the narrative cloze test, in which an
event is held out from chains of events and the model is tested on whether it can fill in the left-out
event. This evaluation metric is inspired by the idea that people can fill in gaps in stories using their
common-sense knowledge. Thus, a script model that claims to demonstrate narrative knowledge

8 The filler (•) indicates that no entity stands in that dependency relation with the verb.

21



should be able to recover a held-out event from a partial event chain. This task has already been
used for various script induction models and is therefore used as a comparative measure in this
work [Chambers, 2013; Pichotta and Mooney, 2016; Rudinger et al., 2015b].

2.2 Visualization of Narrative Structures

The visualization of information extracted from unstructured text has become a very popular topic
in recent years [Jänicke et al., 2016; Keim et al., 2006]. It functions not only as an instrument to
present the result of an analysis, but also as an independent analysis instrument. The combination
of natural language processing and information visualization techniques enables new ways to ex-
plore data and reveal hidden connections and correlations that were not visible before. This kind
of fusion is not only scientifically rewarding, but also has great benefit in practical applications.

Yimam et al. [2016] have recently shown the added value in investigative journalism. They
provide journalists with a data analysis tool9 that combines latest results from natural language
processing and information visualization. The platform enables journalists to process large collec-
tions of newly gained text documents in order to find interesting pieces of information.

There are also NLP-based systems that aim to aid humans in reading text by using latest visu-
alization techniques. The following two systems visualize narrative structures and offer several
exploration mechanisms similar to the tool proposed in this thesis.

Reiter et al. [2014] described and implemented a web-based tool for the exploration and visu-
alization of narratives in an entity-driven way. They visualize the participants of a discourse and
their event-based relations using entity-centric graphs. While these graphs show entities jointly
participating in single events, they do not provide context information about the individual events.
Although the application offers an interface that allows searching for events and event sequences,
it lacks the ability to give a global overview of the narrative information of a document.

John et al. [2016] presented a web-based application that combines natural language processing
(NLP) methods with visualization techniques to support character analysis in novels. They extract
named entities such as characters and places and offer several views for exploring these entities
and their relationships. While the text view supports basic search mechanisms, entity highlighting
and a chapter outline, it does not present prominent information of the selected chapter. However,
such a feature could aid researchers in literary studies since it reduces information overload.

The approach described and implemented in this work enables both, entity-driven exploration of
the underlying document and the acquisition of a broad overview by visualizing events extracted
from that document in a structured outline. In contrast to the discussed systems, the system
proposed here only works on document level.

9 Project page: http://newsleak.io (accessed June 2016).

22

http://newsleak.io


3 Event Extraction and Representation
Based on the idea of learning relationships between everyday life events from narrative chains,
this chapter tackles the subproblem of extracting narrative events from text. The main part of this
chapter deals with an extraction framework for narrative chains, which was developed as part of
this work.

Section 3.1 places the broad term event into the context of narrative learning and motivates
the serious need for a flexible extraction framework for narrative events. Section 3.2 gives a
qualitative analysis of two state-of-the-art information extraction systems that seeks to answer
whether these approaches are suitable for the extraction of narrative chains and then describes the
event extraction methodology in the remainder of the section.

3.1 Definition of an Event

The TimeML10 annotation schema provides a definition for an event:

TimeML considers events a cover term for situations that happen or occur. [...] We also
consider as events those predicates describing states or circumstances in which something
obtains or holds true. Source: Pustejovsky et al. [2003]

TimeML is a specification language for events and temporal expressions in natural language and
was originally developed to improve the performance of question answering systems. According
to the definition above, the phrase meet him would be annotated as an event since it captures a
situation that occurs or happens. Likewise, the phrase is angry is considered as an event, because
it describes an event of state.

However, in the research community for the field of automatic script induction, there is no com-
mon understanding of what should be considered as an event. Chambers and Jurafsky [2008]
represent an event as a pair of a verb and a dependency between this verb and its entity argu-
ment (subj, obj). Pichotta and Mooney [2014] model events with a multi-argument representation
(v, s, o, p), where v is the lemma of the verb, s, o and p its corresponding subject, object and preposi-
tional object argument, respectively. Granroth-Wilding and Clark [2016] also consider predicative
adjectives11 where an entity is an argument to the verb be, seem or become. For instance, the
copula is links the subject Elizabeth to the predicative adjective hungry in the sentence Elizabeth
is hungry. In this case, Granroth-Wilding and Clark extract the corresponding narrative event as
be(Elizabeth,hungry) in which the predicative adjective hungry describes a situation that holds
for a certain amount of time. This approach most closely resembles the event definition above,
because it incorporates narrative state information to the event representation.

It becomes apparent that the extraction of narrative events from documents has to be a flexi-
ble process in terms of information representation. This raises a serious need for an automatic
event extraction framework that is capable to support various event representations. This includes

10 TimeML project page: http://www.timeml.org/ (accessed June 2016).
11 A predicative adjective is an adjective that follows a linking verb (copula) and complements the subject of the

sentence by describing it. Any form of be, become and seem is always a linking verb.

23

http://www.timeml.org/


the generation of simple verb-dependency pair events, but also complex multi-argument repre-
sentations. The ultimate goal is to have a framework that assembles individual components like
prepositional phrases, direct objects and even predicative adjectives to complete event representa-
tions. The separation of the identification of such fragments from the actual representation allows
numerous possibilities to model events. Thereby, it is possible to explore different event variants
without requiring expert knowledge about open information extraction.

3.2 Event Extraction Methodology

This subsection introduces Eventos, an unsupervised open information extraction system that is de-
signed to extract narrative events from unstructured text. It is highly customizable and supports
both, verb-dependency pair events and multi-argument event representations. Its design allows to
assemble different event representations without expert knowledge. Furthermore, the information
representation can be adapted to utilize the system for other applications. The utility of such a
system for other applications is assessed in a user study in Chapter 4.

Eventos is publicly available in open-source12. To date, no code has been published for generating
narrative chains since back Chambers and Jurafsky released their work13. The release of Eventos
should enable other researchers to catch up with the current state-of-the-art and encourage others
to make their work publicly available.

Open information extraction system comparison
The term information extraction describes the task of automatically extracting structured informa-

tion from unstructured or semi-structured documents [Andersen et al., 1992]. An open information
extraction system processes sentences and creates structured extractions that represent relations
in text. For example, the extraction (Angela,was born in,Danzig) corresponds to the relation
was born in in the sentence Angela was born in Danzig.

Two recent and prominent state-of-the-art information extraction systems are Stanford OpenIE
[Angeli et al., 2015] and OpenIE 4. The latter is the successor to Ollie [Mausam et al., 2012],
which was developed by the AI group of the University of Washington. The following discussion
raises a few problems with these systems when applied to the extraction of narrative events14.

Both systems create synthetic clauses with artificial verbs that do not occur in the sentence, so
called noun-mediated extractions. They apply dependency and surface patterns like appositions and
possessives to segment noun phrases into additional extractions. For example, the sentence I vis-
ited Germany, a beautiful country creates the open information triples (I,visited,Germany) and
(Germany,is,a beautiful country). The latter is extracted by applying a pattern that matches
the apposition a beautiful country in the sentence. The matched parts together with the supple-
mentary created predicate be then form the noun-mediated extraction. However, such extractions
are not considered as events, because they usually contain no narrative information.

12 The project page is available at http://uli-fahrer.de/thesis/ (accessed August 2016).
13 Code available at https://github.com/nchambers/schemas (accessed June 2016).
14 For the tests, the latest available version for both system were taken. That is, Washington’s OpenIE in version 4.1.x

downloaded from their project page and Stanford OpenIE compiled from their code repository.
• OpenIE project page: http://knowitall.github.io/openie/ (accessed June 2016).
• Stanford OpenIE repository: https://github.com/stanfordnlp/CoreNLP/

Commit ID 4fd28dc4848616e568a2dd6eeb09b9769d1e3f4e (accessed June 2016).

24

http://uli-fahrer.de/thesis/
https://github.com/nchambers/schemas
http://knowitall.github.io/openie/ 
https://github.com/stanfordnlp/CoreNLP/


More importantly, the task of extracting narrative chains requires separate events for each pro-
tagonist mentioned in the document. Hence, the system is expected to produce independent events
for Tom and for Jerry given the sentence Tom and Jerry are fighting. Stanford’s system is designed
to extract only complete triples and since there is no second argument available for the example,
the system yields no result. A possible interpretation of the sentence would be the fact that Tom
and Jerry fight with each other. Thus, the extraction (Tom,fight,Jerry) represents a valid open
information triple in this case. However, the system is not able to derive such a triple. In compar-
ison, OpenIE 4 extracts the proposition (Tom and Jerry,are fighting,•). This result reveals a
drawback of Washington’s OpenIE 4. Their system is not able to process coordinated conjunctions
like and or or in order to create multiple extractions for conjoined actions. In contrast, the Stanford
system is theoretically able to process coordinated conjunctions, if the sentence contains enough
fragments to assemble a triple.

Furthermore, only Washington’s OpenIE 4 is able to process simple relative clauses. Consider
the following sentences that are composed of such an additional and independent subordinate
clause. For the examples, the relative clause is underlined and the associated relative pronoun is
highlighted in bold.

(1) I told you about the woman who lives next door.

(2) The boy who lost his watch was careless.

(3) The hamburgers that I made were delicious.

In the first sentence, the relative pronoun who is the subject of the subordinate clause, but ref-
erences the woman in the main clause. The pronoun needs to be resolved in order to generate an
independent extraction for the relative clause. OpenIE 4 implements special rules to handle such
cases and generates (I,told,you,about the woman) and (the woman,lives,next door) as ex-
tractions. The Stanford system in contrast only yields the extraction (I,told,you) and ignores
the relative clause.

In the second example, the relative clause occurs within the sentence, but the relative pronoun
is still the subject of the subordinate clause. For this example, OpenIE 4 yields the extractions (The
boy,lost,his watch) and (The boy who lost his watch,was,careless). Although these are
valid extractions, they are too over-specified for predicting narrative events. The system always
tries to extract the arguments in accordance with the longest match rule. Similar observations can
be made for the sentence Thomas Mueller from the FC Bayern club plays soccer. The result will
contain Thomas Mueller from the FC Bayern club as first argument. Stanford OpenIE yields no
results for the second sentence at all.

The third sentence is different from the previous examples. Here, the relative pronoun acts
as object of the relative clause. This sort of relative clauses is called non-defining relative clauses
and OpenIE has no full support for this kind of sentences. For the given sentence the system
returns (The hamburgers I made,were,delicious) and (I,made,•). While the first extraction
is correct, the second extraction misses the word hamburgers referenced by the relative pronoun
that as additional argument.

It has been shown that both systems lack essential features and are therefore not suitable for the
extraction of narrative events. Eventos in contrast is designed with the purpose of serving as an
extraction framework for narrative chains. Although it is developed for this purpose, it can still
be used as general information extraction system. The framework is rule-based and requires no

25



additional training. It operates on dependency parse annotations and utilizes a novel processing
concept.

This concept differs from traditional extraction approaches in that it separates the identification
of the syntactic constituents within a sentence from the actual event representation. This allows to
identify the head of the verb phrase as an event and delegate the decision of adding the dependents
to a post-processing step. Figure 3.1 illustrates the architecture of Eventos. It consists of two
higher-level parts: (1) a traditional NLP pipeline and (2) the event generation. The NLP pipeline
annotates unstructured text with linguistic annotations and assembles the result in a RichDocument.
The event generation takes the RichDocument as input and produces narrative events as a result.
Such a pipeline design has proven to be successful and is also employed in several industrial
applications and frameworks [Ferrucci and Lally, 2004; Cunningham et al., 2002]. In addition, the
whole framework can be embedded in an environment for big data processing like Apache Spark15

[Zaharia et al., 2010] to scale up to large document collections.

Figure 3.1: Architecture of the Eventos framework.

15 Apache Spark project page: http://spark.apache.org/ (accessed June 2016).

26

http://spark.apache.org/


3.2.1 Preprocessing

The NLP pipeline consists of several coherent processing units. Each unit performs a different
analysis in language understanding and consumes the enhanced output of the previous unit. The
individual components can be replaced as long as a RichDocument with the required annotations
is provided. The following briefly outlines each component and its usage in the pipeline.

Segmentation
Segmentation in general describes the process of dividing text into meaningful units like words or

sentences. Different kinds of text segmentation are typically applied for different tasks in language
understanding, such as paragraph segmentation, sentence segmentation, word segmentation and
topic segmentation.

Sentence segmentation is the problem of recognizing sentence boundaries in plain text. Since
sentences usually end with punctuation, the task thus becomes the identification of ambiguous use
of punctuation in the input text [Grefenstette and Tapanainen, 1994]. For example, abbreviations
like Dr. or i.e. usually do not indicate sentence boundaries, whereas the question mark or excla-
mation mark are almost unambiguous examples. Once these usages are resolved, the rest of the
separators are non-ambiguous and can be used to delimit the plain text in sentences. This process
is important, since most linguistic analyzers require sentences as input units to provide meaningful
results.

Word segmentation, also called tokenization, is the problem of dividing an input text in word-
tokens. A word-token usually corresponds to an inflected form of a word. The following exempli-
fies the process of tokenization16:

Input: John likes Mary and Mary likes John.

Output: [“John”, “likes”, “Mary”, “and”, “Mary”, “likes”, “John”]

Tokens are also often referred to as words. However, the term word would be ambiguous for the
type and token distinction i.e. multiple occurrences of the same word in a sentence are distinct
tokens of a single type. The segmentation unit in the pipeline includes both, sentence segmentation
and word segmentation for English. These annotations are created with the Stanford PTBTokenizer
[Manning et al., 2014] that is implemented as a deterministic finite automaton [McCulloch and
Pitts, 1988]. All subsequent components require sentence and word annotations.

Pos-Tagging
Pos-Tagging is the process of classifying words into their part-of-speech (POS). Parts of speech

are also known as word classes or lexical categories. Those categories have generally similar gram-
matical properties. For instance, words that belong to the same part of speech show similar usage
within the grammatical structure of a sentence. A part-of-speech tagger processes a sequence of
words and attaches part-of-speech tags to each word automatically.

The collection of part-of-speech tags used is called tag set. In practice, various tag sets are used.
They differ in terms of granularity and can be grouped into fine-grained and coarse-grained tag sets

16 The example is taken from the NLP for the Web course at TU Darmstadt. Course page:
https://www.lt.informatik.tu-darmstadt.de/de/teaching/lectures-and-classes/winter-term-

1516/natural-language-processing-and-the-web/ (accessed June 2016).

27

https://www.lt.informatik.tu-darmstadt.de/de/teaching/lectures-and-classes/winter-term-1516/natural-language-processing-and-the-web/
https://www.lt.informatik.tu-darmstadt.de/de/teaching/lectures-and-classes/winter-term-1516/natural-language-processing-and-the-web/


such as the universal tag set proposed by Petrov et al. [2012]. A prominent fine-grained example
is the tag set used in the Penn Treebank Project [Marcus et al., 1994] that comprises 36 different
parts of speech.

Figure 3.2 shows a sentence tagged with the part-of-speech labels from the Penn Treebank tag
set. This tag set distinguishes between tags for verbs with respect to their form such as tense and
case. For example, the tag VBZ indicates a 3rd person verb in singular present, whereas VBG is an
indicator for the gerund form. A similar distinction is made for nouns and pronouns. The words
dog and sausage are classified as singular common nouns (NN) and my is labeled as possessive
pronoun (PRP$). The complete list of tags is available online17.

The part-of-speech tagged data is required in subsequent processing steps like dependency pars-
ing and is an essential information for the event generation since the extraction patterns rely on it.
The pipeline of Eventos uses the maximum-entropy based Pos-tagger (log-linear model) proposed
in Toutanova et al. [2003] that achieves state-of-the-art performance on the Penn Treebank Wall
Street Journal.

..

....My ..dog ..also ..likes ..eating ..sausage ...

..PRP$ ..NN ..RB ..VBZ ..VBG ..NN ..SYM

Figure 3.2: Part-of-speech tagged sentence.

Dependency Parsing
A dependency parser analyses the grammatical structure of a sentence and derives a directed

graph between words of the sentence representing dependency relationships between the words.
These dependency relations are part of the current dependency grammar theory that is repre-
sented by head-dependent relations (directed arcs), functional categories (arc labels) and structural
categories like part-of-speech tags.

Figure 3.3 shows a sample dependency parse for the sentence John loves Mary. The arc from the
node John to the node loves shows that loves modifies John. The arc label nsubj further describes
the functional category. The root of the sentence is identified as the word that has no governor.
Within a sentence, there is only one root node.

The dependency parser is one of the most important components in the pipeline. Parses are used
to identify individual parts of the sentence required for creating the event representations. The
framework uses the transition-based parser described in Chen and Manning [2014]. This parser is
based on a neural network and supports English and Chinese.

17 Penn Treebank labels: https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
(accessed June 2016).

28

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html


....John ..loves ..Mary ....

subj

.

obj

.

punct

.

root

Figure 3.3: Simple dependency parse.

Lemmatization
The goal of lemmatization is to reduce the inflected form of a word to a common base form,

called lemma. This is especially useful for tasks that involve searching i.e. a search engine should
be able to return documents containing the words ate or eat, given the search query eating.

To disambiguate ambiguous cases, lemmatization is usually combined with Pos-tagging. Consider
for example the noun dove, which is a homonym18 for the past tense form of the verb to dive. The
combination of Pos-tagging and lemmatization allows to normalize the word dove to its proper
form, such as dove for the noun or dive for the verb.

The lemmatizer in Eventos uses the MorphaAnnotator from the CoreNLP suit [Manning et al.,
2014] that also annotates morphological features such as number and gender. This component
maps different inflected verbs to the same base form and is therefore essential to reduce sparsity
for the event representation. For example, go swimming and goes swimming should be mapped to
the same event. Additional features such as number and gender are further required for subsequent
processing steps like coreference resolution.

Named Entity Recognition
The task of Named Entity Recognition (NER) is to identify and classify atomic elements in docu-

ments into predefined categories such as persons, organizations and locations. Current state-of-the-
art systems19 achieve nearly human performance.

In Eventos, the Stanford Named Entity Recognizer [Finkel et al., 2005] is employed. This recog-
nizer uses a conditional random field (CRF) classifier, a probabilistic framework introduced first by
Lafferty et al. [2001]. CRFs are a type of graphical model and have been successfully applied to
several NLP tasks [Sha and Pereira, 2003; Settles, 2005]. Similar to hidden Markov model (HMM),
the algorithm finds the best tagging for an input sequence. However, in contrast to the HMM, CRFs
define and maximize conditional probabilities and normalize over the whole label sequence. This
allows to use much more features.

For the pipeline, a four class model (location, person, organization and miscellaneous) trained on
the CoNLL 2003 named entity data20 is used. Along with the morphological annotations produced
by the lemmatizer, the coreference resolution system uses named entity types as additional feature.

18 Homonyms is a group of words that share the same spelling and the same pronunciation, but have different mean-
ings. This is a rather restrictive definition that considers homonyms as homographs and homophones.

19 MUC-07 proceedings: http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_toc.html#

named (accessed June 2016).
20 CoNLL 2003 shared task page: http://www.cnts.ua.ac.be/conll2003/ner/ (accessed June 2016).

29

http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_toc.html#named
http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_toc.html#named
http://www.cnts.ua.ac.be/conll2003/ner/


Coreference Resolution
Coreference resolution seeks to cluster nominal mentions in a document, which refer to the same

entity. A possible clustering of coreference resolution might be: {{server, waiter, he}, {customer,
Frank, him, he}, ...}, where each cluster represents an equivalence class. This component requires
part-of-speech tags to identify pronouns and also uses features like grammatical information and
named entity types to cluster coreferent mentions.

The coreference resolution system used in Eventos implements both, pronominal and nominal
coreference resolution [Clark and Manning, 2015]. Next to the dependency parser, the coreference
system is the key component for generating narrative chains since it allows to group events that
share a common protagonist. For example, all verbs of a document that have one of {server, waiter,
he} as argument, will be part of the same narrative chain.

3.2.2 Event Generation

The process of event generation is divided into two components (see Figure 3.1). The first com-
ponent (Sentence Simplifier) creates an abstract representation consisting of relevant parts of the
sentence. The second component (Event Generator) transforms this intermediate representation
into narrative events according to a predefined but exchangeable event template.

Sentence Simplification: Clause and Constituent Identification

Based on the idea of ClausIE [Del Corro and Gemulla, 2013], sentences are split into smaller, but
still consistent and coherent units, called clauses. A clause is a basic unit of a sentence and consists
of a set of constituents, such as subject, verb, object, complement or adverbial. Each clause contains
at least a subject and a verb.

In general, a clause is a simple sentence like Frank likes hamburgers. In this case, the clause
contains a subject (S), a verb (V) and a direct object (Dobj) and describes one event corresponding
to the protagonist Frank. However, a sentence can be composed of more than one clause. For in-
stance, the sentence ⟦Frank likes hamburgers⟧C1 but ⟦Mia cooked vegetables⟧C2 is composed of two
independent clauses C1 and C2 joined via the word but. The event generator is expected to cre-
ate two different narrative events, each for every protagonist. The task of sentence simplification
includes therefore the recognition of such composed clauses.

The goal of this phase is to extract the headwords for all constituents of the new clause. If desired,
additional dependents can be added in a subsequent processing step. For example, the sentence
The waitress carries hot soup should create the clause (S: waitress; V: carries; dObj: soup),
where soup is the headword of the constituent hot soup that functions as the direct object in the
sentence.

Clauses are generated from subject dependencies like nsubj21, extracted from the dependency
graph for a given sentence. This approach is called verb-mediated extractions and means that every
subject dependency yields a new clause. The subject relation already identifies the subject and the
verb as its governor of the clause. All other constituents of the clause are either dependents of this

21 The dependency parser annotates parses with universal dependencies:
http://universaldependencies.github.io/docs/ (accessed August 2016).

30

http://universaldependencies.github.io/docs/


verb or the subject. Objects and complements are connected via dobj, iobj, xcomp, ccomp and cop,
while nmod, advcl or advmod connect adverbials. A set of dependency and surface patterns is used
to identify these parts as well.

The following exemplifies two rule subsets, which tackle common problems that are relevant for
open information extraction systems. The concepts behind these problems are especially important
for the extraction of narrative chains and are not fully supported by state-of-the-art systems as
shown in the previous comparison.

Coordinated conjunction processing
As already mentioned, a sentence can be composed of two or more clauses. These clauses are

called conjoints and are usually joined via coordinated conjunctions also known as coordinators
such as and or or. For instance, the example in Figure 3.4 shows the conjunction and in a subject
argument. As it is the interest to create separate events for both entities, independent clauses for
each entity need to be generated. The given sentence should therefore create the following two
clauses:

(1) Clause(S: Sam; V: prefer; Dobj: apples)

(2) Clause(S: Fry; V: prefer; Dobj: apples)

Different dependency parsers use different styles of dependency representation [Ruppert et al.,
2015; Chen and Manning, 2014]. Basic dependencies as presented in Figure 3.4a are a surface-
oriented representation, where each word in the sentence is the dependent of exactly one other
word. The representation is strictly syntactic and broadly used in applications like machine trans-
lation, where the overall structure is more important than the individual relation between content
words. However, the task of extracting narrative events recognizes the dependency structure as a
semantic representation. From this point of view, basic dependencies follow the structure of the
sentence too closely and therefore miss direct dependencies between individual words. For exam-
ple, the word Fry stands in subject relation with the verb prefer, but there is no direct connection
between them. Given those dependencies, the system would only identify one clause with Sam as
subject, prefer as verb and apples as direct object.

In contrast, the collapsed dependencies as shown in Figure 3.4b are a representation that is more
semantic. Here, dependencies such as prepositions or conjuncts are collapsed to direct depen-
dencies between content words. For instance, the coordinated conjunction dependency in the ex-
ample will be collapsed into a single relation. As a result, the relations cc(Sam-1, and-2) and
conj(Sam-1, Fry-3) change to the collapsed dependency conj:and(Sam-1, Fry-3)22.

Given dependencies in the collapsed representation, another mechanism called dependency prop-
agation can be used on top to further enhance the dependencies. This mechanism propagates the
collapsed conjunctions to other dependencies involving the conjuncts. For instance, one additional
dependency can be added to the parse in the example i.e. the subject relation of the first conjunct
Sam should be propagated to the second conjunct Fry. Figure 3.4c illustrates the result of the
propagation.

The collapsed and propagated representation is useful for simplifying patterns in the clause
extraction. Thereby, extractions are less prone to errors due to simpler and much more manageable

22 Inline dependency representation:
dependency_label(govenorGloss-govenorIndex, dependentGloss-dependentIndex).

31



rules. It also solves the problem of obtaining multiple clauses for conjunctions in both, verb and
subject arguments as illustrated below.

(1) ⟦Tim and Frank⟧Sub ject_Ar g like swimming.

(2) Tim likes ⟦swimming and dancing.⟧Ver b_Ar g

The first sentence exemplifies the use of a conjunction in a subject argument similar to the ex-
ample in Figure 3.4. The second example shows the usage of a conjunction in a verb argument,
where the same entity is associated with two actions. Likewise, the system is expected to generate
two independent clauses in this case. However, in contrast to the first example, the two clauses
correspond to the same protagonist. To return to the previous example in Figure 3.4c, the system
generates two independent clauses using the collapsed and propagated dependencies. One clause
for the original subject relation nsubj(Sam-1, prefer-4) and another clause for the propagated
dependency nsubj(Fry-3, prefer-4).

Collapsed dependencies and propagation mechanisms have been successfully implemented in
several dependency parsers [Ruppert et al., 2015; Chen and Manning, 2014]. Eventos uses the
Stanford dependency parser [Chen and Manning, 2014] as a basis that produces typed depen-
dencies in the collapsed and propagated representation. Find further details about the parser in
Section 3.2.1.

....Sam ..and ..Fry ..prefer ..apples.

cc

.

conj

.

nsubj

.

dobj

(a) Basic Dependencies

....Sam ..and ..Fry ..prefer ..apples.

cc

.

conj:and

.

nsubj

.

dobj

(b) Collapsed Dependencies

....Sam ..and ..Fry ..prefer ..apples.

cc

.

conj:and

.

nsubj

.

nsubj

.

dobj

(c) Collapsed and Propagated De-

pendencies

Figure 3.4: Illustration of different styles of dependency representations.

Relative clause processing
As opposed to the other two tested systems, Eventos implements additional rules to process

relative clauses. Those were added to increase the informativeness of extractions e.g. by replacing
relative pronouns (e.g. who, which, etc.) with its antecedents. English differentiates between
two types of relative clauses (1) defining relative clauses and (2) non-defining relative clauses. The
system supports both cases.

A defining relative clause is a subordinate clause that modifies a noun phrase and adds essential
information to it. This type of clause follows the pattern relative pronoun as subject + verb and can
occur after the subject or the object of the main clause. Without the relative clause, the sentence is
still grammatically correct, but its meaning would have changed. As a subject of the subordinate
clause, the relative pronoun can never be omitted. Consider the following two examples, where
the relative clause is underlined and the associated relative pronoun is marked in bold:

(1) The boy who lost his watch was careless.

(2) She has a son who is a doctor.

32



In the first sentence, the relative pronoun is the subject of the subordinate clause and references
the subject of the main clause. For that reason, the relative pronoun who becomes the subject
argument of the second clause. For the two subject dependencies, the system would therefore
extract the clauses as Clause(S: boy; V: be; C: careless) and Clause(S: who; V: lost;
C: watch). However, after this transformation, no evidence is left to which entity who refers
to. Furthermore, the coreference resolution system is not able to resolve the relative pronoun,
because it is only capable to cluster personal pronouns and nominal mentions. Hence, the event
generated from the second clause cannot be assigned to the narrative chain corresponding to the
boy.

To solve this problem and to increase the informativeness of the extraction, the pronoun who
is resolved to the entity mention boy. This is achieved with a surface pattern that matches the
relative clause dependency relation and extracts the relative pronoun together with its associated
representative mention. Although the relative pronoun follows the object and not the subject of
the sentence in the second example, the same rule can be applied.

In contrast, a non-defining relative clause adds extra information, which is not necessary for
understanding the statement of a sentence. In this case, the relative pronoun functions as an object
of the subordinate clause. In comparison to the defining-relative clause, the relative pronoun can
also be omitted as shown in the following examples:

(1) The hamburgers that I made were delicious.

(2) The hamburgers I made were delicious.

Although the relative pronoun is missing in the second sentence, the representative mention ham-
burger functions as object of the relative clause. This observation is used to extract the same clauses
for both cases. The framework creates the clauses in both examples accordingly as Clause(S: I;
V: made; Dobj: hamburgers) and Clause(S: hamburgers; V: be; C: delicious).

Figure 3.5a and Figure 3.5b additionally show the corresponding dependency parses for both
situations.

(a)

(b)

Figure 3.5: Non-defining relative clause in which the relative pronoun that functions as the object of

the subordinate clause and follows after the subject of the main clause. The images are

created with the web visualizer at http://nlp.stanford.edu:8080/corenlp/process
(accessed August 2016).

33

http://nlp.stanford.edu:8080/corenlp/process


Event Generation and Representation

The generation of open information facts is a flexible process as different applications require differ-
ent representations. This also applies to event representations for generating narrative chains. Re-
cent work has successfully shown the value of different forms of event representation for represent-
ing common-sense knowledge in machines [Ahrendt and Demberg, 2016; Pichotta and Mooney,
2016, 2014]. Some approaches depend on triple such as (Thomas,plays,football in Munich),
whereas others are based on n-ary extractions like (Thomas,plays,football,in,Munich) as de-
scribed by Pichotta and Mooney [2016] or Granroth-Wilding and Clark [2016].

Similarly, the granularity and form of extractions varies. One could consider to represent the
protagonist through the whole nominal phrase or just by its headword. For instance, the subject
in Thomas Mueller from FC Bayern plays soccer in Munich can be represented as Thomas or more
specialized as Thomas Mueller from FC Bayern. The same holds for the relational part of the
extraction that can be represented as plays or plays in. The latter also considers the verb particle
as a fragment of the narrative event. A potential variation might be also the incorporation of
negated expressions or conditionals into the event representation. This emphasizes the separation
of information gathering that tackles the question of What information is expressed? and its actual
representation in a two-step approach.

Several event generators were implemented for experiments, not only to existing proposals from
recent work, but also new representations not used so far. Each event generator utilizes the inter-
mediate clause representation of the sentence simplification unit and generates narrative events
enhanced with coreference information. Narrative chains can then be build by grouping together
all events that share the same protagonist i.e. the same coreference key in one of its arguments.

The following presents and motivates the different event representation used in the experiments.
Each representation is illustrated with examples and the section concludes with a comparison
between all proposed representations.

Verb-dependency pair events
The verb-dependency pair event representation is an adoption of the approach presented by

Chambers and Jurafsky [2008]. This representation models a narrative event as a pair consisting
of the verb lemma and the grammatical dependency relation between the verb and the protagonist.
For their experiments, Chambers and Jurafsky considered subject and direct object dependency
relations. Here, the representation has been extended to model not only subjects and direct objects,
but also indirect objects. Formally, a narrative event e = (v, d), is a verb lemma v that has some
protagonist as dependency d, where d is in { subj, dobj, iobj }.

For example, the sentence Sandy ordered a large pizza and she ate it all alone generates two
narrative chains corresponding to the protagonists Sandy and pizza. The first chain about Sandy
consists of the two pair events, modeled as (order,subj) and (eat,subj). The second chain
is associated with pizza and also contains two events that are represented as (order,dobj) and
(eat,dobj).

34



Multi-argument events
The representation so far only considers the verb and its syntactic relation like (arrest,dobj).

The given event indicates that somebody or something is arrested, because the protagonist stands
in an object relation to the verb. In this case the verb contains the most important information.
However, the argument often changes the meaning of an event e.g. perform play vs. perform
surgery23. In other cases, the verb carries almost no meaningful information as in (go,subj). In
that sense going to the beach is the same as going to heaven. This raises the need of having richer
semantic representations for narrative events.

As one of the first, Pichotta and Mooney [2014] proposed a script model that employs events
with multi-arguments. They define a multi-argument event as a relational atom (v, es, eo, ep), where
v is the verb lemma and es, eo and ep are possibly-null entities, which stand in subject, direct object
and prepositional relation to v, respectively. Multi-argument events can have arbitrary number of
arguments with different grammatical relations. For instance, a multi-argument event could be
modeled with predicative adjectives rather than with prepositional relations. Though, the repre-
sentation needs to capture the underlying story of a document and describe the most important
narrative information.

Similar to Pichotta and Mooney [2014], multi-argument events are represented as 4-tuples. How-
ever, instead of prepositional phrases, indirect objects are added to the representation. Thus, a
multi-argument is described as v:d(esub j, edob j, eiob j), where v is the verb lemma and esub j, edob j and
eiob j are possibly-null entities that stand in subject, direct object and indirect object relation to v,
respectively. The value of d specifies the relation of the protagonist ed for each event in a narrative
chain24. The following example illustrates the representation:

(1) take:dobj(PRP,train,•), schedule:subj(train,•,•), leave:subj(train,•,•),
exit:dobj(PRP,train,•)

This chain describes the common scenario for traveling with the public transport from the point
of view of the train: After boarding the train, it leaves the platform according to a scheduled time.
Once arrived at the destination the passengers leave the train.

The filler (•) indicates that no entity stands in that dependency relation with the verb. To reduce
sparsity, the place holder PRP replaces personal pronouns such as he or we. This generalization is
an optional post-processing step.

Multi-argument events with supersenses
Script models trained with narrative events need not simply learn the knowledge that is encoded,

but rather have to generalize over the training data to apply their knowledge to new situations.
This is even more important for multi-argument events, since such richer semantic representations
are more specific. For example, the multi-argument events drive:dobj(busman,vehicle,•) and
drive:dobj(driver,bus,•) describe the same situation though it is expressed differently due to
the ambiguous nature of natural language.

23 The example is taken from Granroth-Wilding and Clark [2016].
24 This event notation is similar to the formalization used by Pichotta and Mooney [2014], but explicitly illustrates

the relation d of the protagonist. Although Pichotta and Mooney omit this information in their formalization, they
use it in their script model. The enhanced formalization should emphasize that the relation d is used for narrative
learning.

35



GROUP place EVENT experience NATURAL OBJ flower PLANT tree
PERSON people MOTIVE reason RELATION portion TIME day
ARTIFACT car POSSESSION price SUBSTANCE oil STATE pain
COGNITION way ATTRIBUTE quality FEELING discomfort SHAPE square
FOOD food QUANTITY amount PROCESS process OTHER stuff
ACT service ANIMAL dog PHENOMENON result
LOCATION area BODY hair COMMUNICATION review

Table 3.1: Different noun sense categories taken from WordNet. The categories represent top-level

hypernyms in the taxonomy (Source: Schneider and Smith [2015]).

To abstract from the information that is encoded, the supersense tagger described in Schneider
and Smith [2015] is applied to the arguments of the event representation. Supersenses offer
coarse-grained semantic labels for lexical expression and are broadly applicable such as in question
answering or machine translation. These supersenses are labels based on WordNet’s lexicographer
files [Fellbaum, 1998] and represent top-level hypernyms in the taxonomy. WordNet contains 15
supersenses for verbs and 26 supersenses for nouns. The different noun categories along with the
most frequent lexical item in the STREUSLE corpus25 are listed in Table 3.1.

The task of supersense tagging can be considered as a form of coarse word sense disambiguation.
The goal is to assign each noun and verb its appropriate sense according to the given list of super-
senses. The supersense tagger employed here is based on a sequence tagging model that uses a
first-order structured perceptron [Collins, 2002]. For the event representation only noun arguments
are replaced with their supersense. The following example shows the differences to the event
representation using raw arguments:

(1) Multi-argument representation:
get:subj(PRP,snack,•), watch:subj(PRP,scenery,•), enjoy:subj(PRP,•,•),
see:subj(PRP,place,•), arrive:subj(PRP,hour,•), pick:dobj(friend,PRP,•)

(2) Multi-argument representation with supersenses:
get:subj(•,FOOD,•), watch:subj(•,ARTIFACT,•), enjoy:subj(•,•,•),
see:subj(•,GROUP,•), arrive:subj(•,TIME,•), pick:dobj(PERSON,•,•)

In addition, where either an argument is not filled with a dependency relation or there is no
supersense available, a place holder (•) is inserted for that argument. The generation of such
events also addresses the problem of assigning the same supersense to different mentions, which
reference the same entity. For instance, the coreferent entities bus and it in the narrative chain
drive:subj(bus,•,•), stop:subj(it,•,•) should be tagged with the same supersense.

There already exist a few approaches that utilize supersenses in the context of frames and events.
For example, Rusu et al. [2014] cluster events by applying supersenses to obtain a generalized
event representation and Coppola et al. [2009] learn domain-specific frames by matching the frame
elements to the associated supersenses. However, to date, no work has integrated supersenses into
event representation for narrative learning.

25 Corpus annotated with multiword expressions and supersenses for nouns and verbs [Schneider and Smith, 2015].

36



Multi-argument events with participant labels
Recently, Ahrendt and Demberg [2016] have proposed an event representation that captures

script-relevant entities in narrative chains. This approach is similar to the supersense tagging,
but assigns participant roles to entity arguments for a given scenario. Like in the supersense
representation, all other entities are mapped onto a single other representation.

Following Ahrendt and Demberg, the max-hypernym heuristic [Kampmann et al., 2015] is used
to label the arguments with participant roles. This heuristic combines information from WordNet
and information about coreferent protagonist mentions to automatically categorize these mentions
in terms of their role within the script.

The participant labeler assigns one role label for each coreference chain c. In order to achieve
this, it calculates the similarity between all synsets that are associated with one of the words in c
and all the synsets that correspond to a participant label. The similarity calculation uses NLTK’s26

build-in path similarity. The max-hypernym heuristic assigns then the highest obtained similarity
score for this label. The algorithm ignores all words that do not represent noun mentions. For
instance, it ignores personal pronouns like he, because this mention refers to the synset associated
with Helium.

The example in Figure 3.6 exemplifies the algorithm. Each of the words on the left side of the
figure corresponds to one synset obtained from WordNet for the participant label bus staff. The
right side of the figure shows all distinct protagonist mentions for one coreference chain. The
edges represent the different similarities obtained for each pair of synsets. The maximum of all
similarity values will be assigned as score for the coreference chain and the label bus staff.

Figure 3.6: Similarity between a set of participant label synsets and a coreference chain.

26 Project page: http://www.nltk.org/ (accessed June 2016).

37

http://www.nltk.org/


The following example illustrates the difference between all three event representations using
the story below. The sequence of events highlighted in bold corresponds to the main protagonist
referred to bus. The narrative chain describes the common scenario of riding a bus.

[...] I decided to take the bus. [...] At the bus stop, I waited only two minutes before
the bus arrived. [...] The trip into town took fifteen minutes because the bus had other
stops to make in the area before returning to the station . [...] The driver slowed down ,
and maneuvered the bus into its numbered space . [...] I got off the bus and went to the
theater. Source: Modi et al. [2016]

(1) Multi-argument representation:
take:dobj(PRP,bus,•), arrive:subj(bus,•,•), have:subj(bus,stop,•),
slow:dobj(driver,bus,•), maneuver:dobj(driver,bus,•)

(2) Multi-argument representation with supersenses:
take:dobj(•,ARTIFACT,•), arrive:subj(ARTIFACT,•,•), have:subj(ARTIFACT,EVENT,•)
slow:dobj(PERSON,ARTIFACT,•), maneuver:dobj(PERSON,ARTIFACT,•)

(3) Multi-argument representation with participant labels:
take:dobj(•,bus,•), arrive:subj(bus,•,•), have:subj(bus,bus_stop,•),
slow:dobj(bus_staff,bus,•), maneuver:dobj(bus_staff,bus,•)

The supersense and participant label representation look similar in terms of common concepts.
However, while the supersense representation assigns broad and general concepts, the participant
label representation annotates domain-specific labels. For example, instead of recognizing the
word driver as a general PERSON, the participant label representation identifies it as bus_staff.

Moreover, the application of supersenses results in more generalization since more specific
terms are mapped to the same category than this is the case for the role labels. For the rid-
ing a bus scenario, the argument time in know:subj(PRP,time,•) and the argument stop in
have:subj(bus,stop,•) correspond to the role labels time/date and bus_stop, whereas the su-
persense EVENT captures both arguments. The question remains whether this generalization also
results in better performance.

Both representations omit arguments where no general role or supersense is available. In con-
trast, the raw multi-argument representation only replaces personal pronouns and does not omit
extracted information.

38



4 Visualization of Narrative Chains
This chapter presents FactBro, a platform that enables users to explore events and narrative chains
in text documents without requiring any expert knowledge. FactBro annotates and highlights
events in the document and offers a user-friendly interface to explore the different narrative chains
contained in the respective document.

The combination of natural language methods and information visualization techniques further
enables the use of such an application for the purpose of getting a broad and fast overview of
the most important information in a large document. For that reason, an outline always presents
the current visible facts in the document. This is achieved by using an automatic alignment algo-
rithm that synchronizes facts in the outline and events visible in the document. Section 4.1 gives
an overview for each component of the user-interface and presents details about the alignment
algorithm. The utility of such an application is evaluated in Section 4.2.

4.1 Event Browser Overview

FactBro27 consists of two interlinked views: (1) the document view and (2) the document outline.
Figure 4.1 shows the user-interface (UI).

Figure 4.1: UI of FactBro showing the document view (left side) and event outline (right side).

27 Online video available at https://youtu.be/mSI7qm_o-VQ (accessed August 2016).

39

https://youtu.be/mSI7qm_o-VQ


Document View

The document view gives an overview of the document and its content. For each document the verb
fragment of the event is annotated and colored in blue. Once the user hovers over an annotated
verb the associated arguments are highlighted for multi-argument events. By hiding additional
information per default the overflow of visual stimuli is reduced.

The application has support for all event representations proposed in Chapter 3, which can be
enabled through the drop-down menu shown in Figure 4.1. This feature controls the granularity of
the presented events in the document view and the outline. The verb-dependency pair event rep-
resentation annotates only verbs, whereas the multi-argument representation also adds additional
arguments to the outline.

FactBro can visualize pre-deployed document collections or process and represent events and
narrative chains for new text. The user can change the current active collection in the drop-down
menu below the document view and explore it with the next and previous document button.

The platform uses the Eventos framework as a basis and adds an additional visual layer for the
processed documents and the extracted information.

Document Outline

Starting from an overview, the user can utilize the outline to further explore the document. Its main
objective is to browse through the interlinked knowledge structures that represent the underlying
events in the document. The outline shows more events than present in the current view-port of
the document, but always marks the current visible events in bold. In this way, the user can focus
on the current part of the document, while having a broader overview about upcoming events.

For each event in the outline, a representative mention replaces entities represented by personal
pronouns like she or we, whenever coreference information is available for a certain entity. For
the representative mention, the most frequent coreferring mention is selected considering only
lemmatized noun mentions. This feature increases the informativeness of the outline and gives the
reader direct reference to the antecedent the pronoun refers to without checking the document.

When the user scrolls the document pane, the outline pane adjusts itself automatically according
to the currently visible events in the document. This feature is called scroll-link, which is especially
useful for markdown editors in order to match the markdown-preview with its markdown source.

The simplest syncing approach is to keep the relative position of both scrollbars in sync. This
means, if the document pane is scrolled to 20% of its height, the outline pane is also scrolled 20%
of its height. However, the content between the two panes is very disproportional since a sentence
can yield multiple events. Therefore, the pane scrollbars can easily go out of sync. The platform
implements a more elaborate approach that uses invisible markers between both panes. While this
approach yields decent results, it is far more complex and should be avoided if the content is more
or less proportional between both panes.

The algorithm works as follows. Invisible markers are inserted between all event triggers in
the document view and additional matching markers are added to the outline view. When the
document pane is scrolled, it is determined, which of these markers are currently visible in the
view-port. The outline pane is then adjusted to show the same hidden markers. An additional
offset between both panes is also taken into account to make the result more accurate.

40



The mechanism for the scroll alignment works in both directions. So, when the outline is scrolled
the document view is also adjusted accordingly (and vice-versa). The directional button can be used
to disable the two-way scrolling for the outline scrollbar. In case the feature breaks, the user can
still deactivate it and scroll manually.

Narrative chain view

In contrast to the outline, the narrative chain view allows to focus on a specific actor in the doc-
ument and enables to explore the actions associated with this actor. At a first glance, the view
shows a grouped list of actors referenced throughout the document. Each group refers to a set of
coreferring mentions in the document. When a group is selected, the events associated with this
actor will be shown. Figure 4.2 presents the narrative chain view for the story given below.

Harris was poor. He decided to rob a bank. He held up the bank at gunpoint and stole
thousands of dollars. He escaped in his getaway car. Harris could not outrun the police
and was caught. Source: ROCStories corpus [Mostafazadeh et al., 2016]

The story contains one narrative chain with Harris as the main actor. The personal pronoun he
also represents Harris in the story and is therefore visualized in the same actor list. However, no
narrative chain could be resolved for bank, because the coreference resolution system failed in
extracting it as mention. Also no chain is created for police since it is only mentioned once.

When a user selects a narrative chain as shown on the right side of Figure 4.2, the sequence
of events associated with this chain is visualized. The individual events are ordered according to
their occurrences in the document. For this example, the temporal order of the events is in line
with the occurrence in the document. However, the order in text does not necessarily have to
match the real-world order. Humans tend to use common-sense knowledge to reason about the
temporal order of events in addition to the information available in the text. This is even possible,
if the information cannot be inferred from the document. For instance, eating food in a restaurant
usually precedes leaving it. A natural extension would therefore be to include temporal ordering
information to the visualization. Such an extension is discussed in the outlook in Section 7.2.

The narrative chain for Harris consists of eight events starting with a predicative adjective that
captures Harris current situation i.e. he was poor.

Figure 4.2: The figure demonstrates the narrative chain view for the given story above. The left side

of the figure shows the actor overview, whereas the right side lists the individual events

associated with the respective actor.

41



Subsequently, each event describes a major happening in the story until Harris gets finally caught.
By clicking on an event the source sentence is shown and highlighted as additional context in the
document view. However, even without the source sentences it is possible to deduct the story just
by looking at the sequence of events.

4.2 Evaluation

The goal of this experiment is to assess the overall quality difference of a system that makes use
of an event outline in comparison to one that does not. This is done via an extrinsic evaluation
[Clark et al., 2010] that measures the quality of the event outline by looking at its impact on
the performance of the overall system. This is in contrast to an intrinsic evaluation, where the
evaluation only considers an isolated part of the system. A variation of an extrinsic evaluation
is conducted, which not only includes the system as a whole, but also includes users and their
interactions. The quality of the system is then indirectly evaluated by considering (1) the whole
system with the event outline and (2) the system without the additional outline.

The objective of the experiment is to test whether the outline feature gives a broad and fast
overview of the documents and supports users in finding facts in large documents. The follow-
ing presents the procedures for the experiment, the experiment’s results and an analysis of those
results.

Procedure

For the evaluation, 40 users are asked to perform a standardized task i.e. finding answers in
documents to a set of test questions. For each question the time taken to find the answer in the
document is measured. All of these users are computer science students between 20 and 30 years
with a good command of English. The participants have not seen the application before and they
all received the same introduction to the tool prior to the evaluation (approximately 3 minutes).

The experiment is conducted with a between-subject design [Gray and Bjorklund, 2014] that has
two different groups of users. The first group is called the treatment group and is allowed to make
use of the event outline, whereas the outline is being disabled for the second group. Both groups
are equal in their size and users are distributed randomly. A major disadvantage that comes along
with the between-subject design is that it often requires a large number of participants to generate
reliable data.

The presence of the event outline feature is considered as an independent variable of the ex-
periment. In this context, the second group is called the control group, because the independent
variable being tested cannot influence the results for this group. This procedure helps to isolate the
independent variable’s effect on the experiment. On the other hand, the time taken to complete
the task represents the dependent variable28 of the experiment.

The documents used in this evaluation are obtained from the Simple English Wikipedia29 through
the Wikimedia API. The Simple English Wikipedia was selected because it only uses basic words,
simple grammar and shorter sentences. This aims to minimize the influence of language skills

28 Dependent variables are variables whose values are predicted using the independent variables.
29 Simple English Wikipedia project page: https://simple.wikipedia.org/wiki/Main_Page (accessed June 2016).

42

https://simple.wikipedia.org/wiki/Main_Page


in this task and should increase the reliability of the results. For example, a non-native speaker
should be able to complete the task while not being blocked by his language skills.

The experiment includes a subset of 16 documents that are marked as very good articles by the
Wikipedia’s editors. These articles are characterized by their correct style according to the require-
ments of very good articles30. This property helps to identify comprehensive articles containing
many facts. On average each document contains 109 sentences.

The events shown in the outline and documents presented in the document view are generated
from the plain text of the Wikipedia articles. Thus, additional Wikimedia markup such as image
captions, references, tables and info boxes are removed from the documents in a preprocessing
step.

Question generation and question wording is a difficult and crucial task. Several work has been
focusing on automatic question generation [Rus et al., 2007; Aldabe et al., 2006]. However, au-
tomatically generated test items have to be post-edited and the implementation of an automatic
question generation system is beyond the scope of this thesis. Hence, the set of test questions
is created manually in advance. For each document, a random sentence with at least one term
is selected. The sentence is then transformed into a question by changing its order. Questions
generated in this way need to meet the following requirements:

(1) The question should omit unnecessary and irrelevant material.

(2) The question should avoid giving clues to the correct answer e.g. “... is called an?”.

(3) There is only one valid answer to the question in the whole document.

(4) The answer consists of one word that also appears in the relevant sentence of the document.

If the generated question does not meet the criteria above, another random sentence is selected
until a valid question can be created. As an example, consider the sentence Percy knows that Ares
has tricked him when he finds the bolt in his backpack taken from the article about the novel The
Lightning Thief31. This sentence will be further transformed into the question Where does Percy find
the bolt? with the word backpack as correct answer. In addition, irrelevant parts of the sentence
are omitted in the question.

For a number of questions there are multiple possible answers, which can often only be resolved
given sufficient context. A common example is the question Where is the Taj Mahal?32. Besides to
the mausoleum in Agra, there is the Taj Mahal casino in Atlantic City, New Jersey. Such questions
are not uncommon, because entities are often ambiguous. However, in this experiment only the
term Agra is accepted as an answer for a document about the Taj Mahal, because it is the only
word that appears in the document and answers the question. Other answers that might be correct
in general, but do not appear in the document are therefore not accepted as correct answers.

After a first test, the summary sections from the documents were removed since these paragraphs
often contain clues leading to the correct answer. Also a few misleading questions were corrected
that caused participants to give wrong answers. To not affect the results of the experiment, the
pilot test results are excluded from overall evaluation.

30 Requirements for a very good article: https://simple.wikipedia.org/wiki/Wikipedia:Requirements_for_
very_good_articles (accessed June 2016).

31 Source for the example sentence: https://simple.wikipedia.org/wiki/The_Lightning_Thief (accessed June
2016).

32 The example is taken from Clark et al. [2010].

43

https://simple.wikipedia.org/wiki/Wikipedia:Requirements_for_very_good_articles
https://simple.wikipedia.org/wiki/Wikipedia:Requirements_for_very_good_articles
https://simple.wikipedia.org/wiki/The_Lightning_Thief


During the realization of the experiment, no systematic error in the measurement process that
correlates with the feature under test was detected. In this case, a systemic error could be i.e.
caused by a participant group that contains significantly more native-speakers than the other group.
As all participants in the experiment are non-native speakers and randomly distributed into groups,
it is assumed that the results are unaffected. Another systematic error could be the use of different
hardware setups for the evaluation. A setup that includes a mouse with a scroll wheel could be
superior against a setup with no scroll wheel in terms of task time. The same problem applies
to the usage of displays, which are different in their size. However, all participants use the same
hardware for the evaluation.

All question and answer pairs as well as the source sentences and their position in the document
are listed in the Appendix in Section A.1.

Results

For the results, only correct answers are considered among all participants. An answer is deemed
to be correct, if it is an exact or partial match of the gold standard answer, ignoring case. For
example, the answer Lung Cancer matches the gold standard answer cancer as partial match.

Figure 4.5a shows the document number as a function of the time taken to find the answer. The
individual results are averaged over the total number of participants using the geometric mean.
The geometric mean is an arithmetic mean after taking the logarithm of each value as illustrated
in Equation 4.1. � N∏

i=1

x i

�1/N
= ex p
� 1

N
·

N∑
i=1

ln x i

�
(4.1)

The values x i characterize the underlying data series that has the size N . The geometric mean
was favored over the arithmetic mean here, because the latter is highly sensitive to extreme values.
Consider the data series x = [3,4,5, 6,8082]. The corresponding arithmetic mean is calculated as
X = 1

5

∑
x i = 1620, which does not tell anything about the level of individual values. This behavior

makes the arithmetic mean much more prone to sampling errors.
In addition, most confidence interval formulas make the assumption that the sampling distribu-

tion of the estimator follows approximately a standard normal distribution. However, time data as
measured in this experiment is almost always positively skewed. This observation is also expressed
in the difference between the arithmetic and geometric mean i.e. the geometric mean is lower
than the arithmetic mean (compare Figure 4.5b and Figure 4.5a). If the data would be normally
distributed, the two values would be almost the same.

Note that the sampling error is negligible for sufficiently large N . At least for N →∞, the mean
of sample sets is normally distributed, even if the underlying data is not normally distributed. Thus,
the following equation is approximately true regardless of the shape of the population distribution:

X ∼N (µ,
σp
N
) (4.2)

44



where µ = E(Xk) is the expected value and σ2 = var(Xk) models the variance. This observation
is a direct consequence of the central limit theorem (without proof). Though, for small N the
approximation error is large.

To reduce the influence of this error a log-transformation is applied to the data series33. Howell
[2012] found this transformation to be one of the best transformations for time data. The geomet-
ric mean and the geometric standard deviation of the resulting log-normal distributed population
are used to calculate the 95 percent (quantile) confidence intervals. The confidence intervals and
estimates are finally back transformed to the original units for interpretation. One consequence of
calculating the confidence intervals from the transformed data is that the intervals are not symmet-
ric around the geometric mean.

The chart in Figure 4.5a highlights the benefit of the performed data transformation. It is divided
into two parts. The dark gray bars describe the average time taken to find the answer by using
the document outline. The light gray bars in contrast show the average time taken without the
respective feature. The average time is calculated with the geometric mean and is tabulated in
seconds for both data series. The bold numbers located above the bars of each document represent
the sentence indices of the sentences that contain the answers. These numbers are referred to as
answer-sentence indices in the following.

The Y error bars in the negative and positive direction show the measurement uncertainty of
the measurements for a confidence range of 95 percent. For instance, one can be 95 percent
confident that the average time with the outline feature for the first document is between 96.21
and 133.49 seconds. Likewise, the average time without the outline feature for the first document
is with a probability of 95 percent between 217.98 and 245.14 seconds.

The chart in Figure 4.5b shows the same information, but averages the time with the arithmetic
mean instead. Here, the difference observed between the two groups for document 12 is not
statistically significant, as the error margin overlaps. The difference in Figure 4.5a in contrast is
statistically significant for the same document. Similar observations can be made for document
three. This shows that the data transformation is beneficial to reduce the sampling error in this
experiment.

The chart in Figure 4.3 summarizes the accumulated results. It highlights the overall time taken
for all users and documents. The total time series is approximately normally distributed for each
group. Thus, the arithmetic mean is used to average the results. The Y error bars show a 95 percent
confidence interval, which is symmetric around the arithmetic mean. The individual times as
measured for both groups appear in Table A.2 and Table A.3 of the Appendix in Section A.2.

33 The analysis and log-transformation is implemented in the statistical programming language R [R Development
Core Team, 2008]. The associated code can be found in the Appendix in Section A.3.

45



...

.......

5

.

10

.
15

.20 .
25

.

30

.

35

.

40

.

45

.

50

.

.

.. .

.

.
.

.
21.591

.

42.297

.

A
ve

ra
ge

ti
m

e
in

m
in

u
te

s

.

. ..With Outline

. ..Without Outline

Figure 4.3: The chart shows the cumulative results of the experiment. Results are averaged for all

users and documents using the arithmetic mean and are tabulated in minutes. The dark

gray bar illustrates the results for the treatment group, whereas the light gray bar shows

the results for the control group. The black numbers above both bars represent the aver-

age time.

(a) Treatment group (r = 0.8376, p-value = 5.148−05). (b) Control group (r = 0.8836, p-value = 5.67−06).

Figure 4.4: The scatter plots show the correlation between the answer-sentence index and the aver-

age time taken to find the answer tabulated in seconds. The black line represents the line

of best fit.

46



...
..

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

.

9

.

10

.

11

.

12

.

13

.

14

.

15

.

16

.0 .

50

.

100

.

150

.

200

.

250

.

300

.

350

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

74

.

38

.

13

.

9

.

56

.

36

.

82

.

65

.

110

.

11

.

17

.

59

.

7

.

162

.

120

.

12

.

Document

.

A
ve

ra
ge

ti
m

e
in

se
co

n
ds

.

. ..With Outline

. ..Without Outline

(a) Geometric mean.

...
..

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

.

9

.

10

.

11

.

12

.

13

.

14

.

15

.

16

.0 .

50

.

100

.

150

.

200

.

250

.

300

.

350

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

74

.

38

.

13

.

9

.

56

.

36

.

82

.

65

.

110

.

11

.

17

.

59

.

7

.

162

.

120

.

12

.

Document

.

A
ve

ra
ge

ti
m

e
in

se
co

n
ds

.

. ..With Outline

. ..Without Outline

(b) Average mean.

Figure 4.5: The chart shows the average time for each document. The individual results are aver-

aged over the total number of participants. The black number above each group of bars

represent the index of the answer sentence.

47



Discussion

This section analyses the results of the experiment. No errors such as the occurrence of confound-
ing factors were identified.

The results in Figure 4.3 clearly indicate that the event outline supports users in finding facts
in documents. Moreover, participants using the outline were twice as fast than those without the
respective feature. A comparison between the two test groups in the chart of Figure 4.5a reveals
differences.

In general, the measured time for documents in which the relevant sentence occurred at a higher
index is significantly lower for the treatment group than for the control group. This finding implies
that the outline feature had a positive effect for these documents. That is, participants with the
outline were significantly faster than participants not using it on documents, where the answer is
placed at the end.

However, there seems to be almost no supporting effect for documents with small answer-
sentence indices i.e. for documents where the answer can be found in the first few sentences
of the document such as document 13 or document 16. Although the answer to the question could
be found in the upper part of the outline, users without the outline were faster.

In this cases, a weakness of the event outline becomes apparent. The question for document 13
i.e. Who received the Congressional Gold Medal? serves for illustration purposes. Because the
outline represents event arguments by the head of each constituent, the associated fact in the
outline is extracted as He [Graham] received honors including Medal from the answer sentence.
The participants on the other hand were focused on the whole phrase Congressional Gold Medal
and therefore overlooked the correct fact in the outline. This took additional time and required
the participants to recheck the document. Similar observations can be made for document 16. The
issue could be resolved by incorporating additional dependents like compounds to each argument.
The fact would then become He [Graham] received honors including Congressional Gold Medal.

In general, users tended to use the document as additional context to recheck their findings. This
time is negligible for larger documents, but has a big impact on shorter ones.

The results further suggest an association between the average time and the sentence index of
the answer for both groups. The scatter plots in Figure 4.4a and Figure 4.4b show the average
time as a function of the answer-sentence index. Both plots give the evidence of a strong positive
correlation. To support this finding the Pearson correlation coefficient denoted as r [Pearson, 1895]
is calculated. This coefficient is a measure of the strength of a linear association between two
variables and can take a range of values from +1 to −1. The stronger the correlation, the closer
the Pearson coefficient will be to either +1 or −1 depending on whether the correlation is positive
or negative. See Section A.3 of the Appendix for implementation details.

The value of r is 0.8376 with a p-value of 5.148−05 for the treatment group. This is a strong
positive correlation, which means that high X variable scores go with high Y variable scores (and
vice versa). The number also indicates that there is just a small variation around the line of best
fit. The correlation is even stronger for the control group with r = 0.8836 and p-value = 5.67−06.

The scatter plot for the control group contains one major outlier, which also varies from the line
of best fit for the treatment group. This data point is associated with document 15, which is an
article about the planet Saturn. The reason for the variation in both groups is attributed to the
question that belongs to this document that is What is Hyperion?. This question differs from the
other questions in that it gives direct evidence about the term to search for in the document. This

48



tempted users to scan the document only for this term without actually reading the document. As
a result, the average time spent to find the answer to this question was less compared to the length
of the document.

Conclusion

The FactBro platform was introduced as a tool for visualizing narrative chains and events for giving
a broad and fast overview of large documents. For this purpose, an automatic alignment algorithm
was proposed that always shows the current visible facts in a document outline. Finally, a large
user study with 40 participants was conducted to show the utility of such a platform.

Overall, the experiment succeeded in showing that the outline feature with events supports users
in finding facts in large documents. It enables users to scan the document for certain facts within
a short amount of time. On average, users who had access to the outline feature were twice as fast
than users without it.

The system also shows a significant influence for documents, where the answer to the question
is placed at the end of the document. In this case, the outline system achieves an improvement by
a factor of 3 regarding the time to find the fact. In contrast, almost no improvement was measured
for documents in which the answer is found within the first few sentences.

User feedback after the evaluation was very positive. Different applications could benefit from
the use of such a technology. For example, Wikipedia might use an additional event outline with
the document as context. For this use case, the outline could be grouped into paragraphs leading
to a faster overview of the individual sections of Wikipedia. Furthermore, the combination of such
an event outline with a navigation structure could lead to a better overview for large documents.

Future work includes the incorporation of additional argument dependents, like compounds
to the event representation, rather than just using the head of each phrase (e.g. Congressional
Gold Medal instead of Medal). While this feature leads to more sparsity for the script induction
systems, it helps to recognize multi-word expression in the outline. A second evaluation with these
enhancements might show improvements for documents in which the answer can be found in the
first few paragraphs. The visualizing of narrative events in their temporal order will be tackled in
future work.

The platform is publicly available and open-source34.

34 The project page is available at http://uli-fahrer.de/thesis/ (accessed August 2016).

49

http://uli-fahrer.de/thesis/


5 Statistical Script Models
The script models presented in this chapter tackle the problem of script induction by learning
narrative chains from text collections. Given a sequence of narrative events, the goal is to predict
the most likely event that has happened at some point in the sequence.

Models for the prediction of narrative events are typically divided in two steps. In the first step,
a text collection with document annotations is processed in order to find narrative chains in each
document. In a second step, the narrative chains are used as training data to infer relationships
between everyday life events in order to learn common-sense knowledge automatically.

The following sections describe each step in detail and discuss the various possible choices in
each step.

5.1 Extracting Narrative Chains

For the experiments, different event representations are evaluated in order to learn common-sense
knowledge. These representations were introduced in Chapter 3 and range from simple verb-
dependency pair events to more complex multi-argument events.

According to previous work [Chambers and Jurafsky, 2008; Jans et al., 2012], the narrative
events are identified with a coreference resolution system and a dependency parser. The Eventos
framework uses both technologies as a basis and extracts narrative chains from documents in the
required representation (see Section 3.2).

Although the dependency parser and coreference system make mistakes, the training includes all
extracted chains. The closed-domain corpora used in this setup are rather small and experiments
show that the models yield better results when being trained on the whole set of chains. However,
for open-domain corpora it might be beneficial to select a subset of the extracted chains from each
document. Jans et al. [2012] proposed and evaluated three different selection strategies:

(1) Select all narrative chains with two or more events linked by common protagonists.
This strategy produces the largest amount of training data, but may contain noise. Especially
short chains may contain preprocessing errors.

(2) Select only the longest narrative chain for each document.
This selection strategy includes the chain from the key protagonist of the story. That chain
may be of higher quality and is more likely to represent a real script. This strategy is especially
useful when a lot of training data is available.

(3) Select all narrative chains consisting of five or more events.
This strategy is the most balanced approach trying to combine the benefits of the previous
two selection strategies.

After extracting the narrative chains, a subsequent step would be the temporal ordering of events
since the occurrence of events in text does not necessarily represent the real-world order. However,
this task goes beyond the scope of the presented thesis and is therefore considered as future work
and discussed in Section 7.2.

50



5.2 Learning from Narrative Relations

This section provides an overview of the different script models explored in this thesis. The pre-
sented models can be grouped into language-model and vector-space-model-based approaches.
The language-model-based approaches derive a probability distribution over events to estimate a
maximum likelihood estimate (MLE) [Manning and Schütze, 1999, p. 197]. The vector-space-based
approaches use vectors to represent events in a document.

Language Model based Script Induction

Single Protagonist Model
The single protagonist model is an adaption of the bigram model proposed in Jans et al. [2012].

Unlike the model presented by Chambers and Jurafsky [2008], this approach takes the ordering
between events in a document into account.

The input of this model will be a narrative chain c = c1, ..., cn and a position m that shows
where the new event should be added in the sequence. The events can be either verb-dependency
pair events such as ci = (vi, di) with di ∈ { subj, dobj, iobj }, or multi-argument events such as
ci = vi:di(esub j:i, edob j:i, eiob j:i). The model predicts the event ê that maximizes the scoring function
Sb(e, c, m) with

Sb(e, c, m) =
m∑

k=1

log P(e|ck)︸ ︷︷ ︸
s1

+
n∑

k=m+1

log P(ck|e)︸ ︷︷ ︸
s2

(5.1)

ê = argmaxe∈V Sb(e, c, m) (5.2)

where n is the length of the partial chain c from which new events are inferred. The left sum s1

describes the probability of an event being observed following all the events before it in the chain.
Likewise, the right sum s2 describes the probability being observed preceding all the events after it
in the chain. Both sums contribute independently to the score Sb(e, c, m).

The conditional probability P(e2|e1) is the learned bigram probability of seeing e2 after e1, given
the occurrence of e1. It is estimated as:

P(e2|e1) =
P(e1, e2)

P(e1)
(5.3)

=
C(e1, e2)∑
e′ C(e1, e′) (5.4)

where C(e1, e2) is the bigram-count describing the number of times e1 has been observed prior
e2 in a training corpus. Note that the collection of events is no longer an unordered set as in
Chambers and Jurafsky [2008]. Therefore, C(e1, e2) ̸= C(e2, e1) applies to the bigram-count C .

51



The applied strategy to collect the bigram-count may vary. For regular bigrams, the
occurrence of two adjacent events in a narrative chain is counted. For example, given
the following narrative chain consisting of three verb-dependency pair events (enter,subj),
(bring,dobj), (order,subj), the bigrams would be extracted as ((enter,subj), (bring,dobj))
and ((bring,dobj), (order,subj)). However, Jans et al. [2012] found out that event bigrams
with one intervening event outperforms vanilla bigrams. This approach is called skip-ngram mod-
eling [Guthrie et al., 2006] and reduces data sparsity since more observations are made. Although
skip-bigrams can be used as a counting method, the bigram probability will still be derived as in
the classical language model. The skip-bigrams are only utilized to increase the size of the training
data. For instance, given the same narrative chain as mentioned above, the 1-skip-bigram counting
strategy would generate ((enter,subj), (order,subj)) as additional event besides to the bigram
events ((enter,subj), (bring,dobj)) and ((bring,dobj), (order,subj)).

Imagine the chain corresponds the actions performed when visiting a restaurant: After entering
the diner, the waitress takes the customer to the table and he orders a beer. While the bigram strategy
assumes that the customer is brought to the table after entering the restaurant, the skip-gram
approach allows to skip this event and directly proceed with the ordering. This approach is most
similar to the scripts as presented by Schank and Abelson [1977] that also allow to omit events in
the sequence. The single protagonist model is referred to as the Bigram model in the following.

There are many unseen bigrams in the rather small corpus used in the evaluation. Thus, dis-
counting is essential to achieve decent performance with the script models on such a dataset. In
general, two variants for discounting exist: (1) backoff and (2) interpolation.

The backoff model estimates the conditional probability with a lower n-gram model if the higher
n-gram is not present in the language model. Equation 5.5 shows the backoff approach for the
bigram model as used in the script models.

P(e2|e1) =

¨
P(e2|e1) if C(e1, e2)> 0

P(e2) · a otherwise
(5.5)

If a certain bigram probability P(e1, e2) is not present in the language model, the unigram model
is used as a backoff. The backoff weight a preserves the overall probability distribution.

However, higher and lower order n-grams have different advantages and disadvantages. For
instance, bigrams are sensitive to context, but have sparse counts. In contrast, unigrams consider
no context, but have robust counts. This observation motivates the usage of interpolation, which
combines the individual distributions as shown in Equation 5.6.

P(e2|e1) = λ · P(e2|e1) + (1−λ) · P(e2) with 0≤ λ≤ 1 (5.6)

Previous work used absolute discounting and a backoff approach for their models [Rudinger
et al., 2015b; Ahrendt and Demberg, 2016]. This approach is based on the assumption that high
counts are more reliable than low counts. Therefore, it subtracts some small but fixed amount d
from all observed counts and redistributes it proportionally based on the observed events. The
value of d lies between 0 and 1 and can be estimated via a maximum likelihood estimate and

52



leave-one-out testing [Manning and Schütze, 1999]. While absolute discounting provides accurate
estimates for frequent n-grams, it is not suitable for small samples.

Empirically, interpolated algorithms tend to perform better than their backoff variants [Chen
and Goodman, 1996]. To validate this finding for script models, an interpolated version of Ney’s
absolute discounting [Ney and Essen, 1991] is added to each language-model-based approach.
Additionally, the Witten-Bell discounting [Witten and Bell, 2006] is evaluated in its backoff and
interpolation version. This discounting algorithm is easy to compute and robust for small corpora
[Chen and Goodman, 1996].

One of the most popular discounting methods is the modified Kneser-Ney discounting [Chen
and Goodman, 1996]. It is an extension of the absolute discounting and proves to be effective for
higher and lower order n-grams. This discounting method was originally proposed as a backoff
algorithm by Kneser and Ney [1995] and both variants are included in the evaluation.

Unigram Model
The unigram model ranks events according to their unigram probability as calculated from a set

of training documents. This model corresponds to a bag-of-word model, which assumes that events
occur independently. It can be further trained with different event representations using bigram
or skip-bigram counting. This model was first employed as a baseline by Pichotta and Mooney
[2014]. They find that the Unigram model is essentially as good as the Bigram model. Rudinger
et al. [2015b] confirmed this finding.

Weighted Single Protagonist Model
The weighted single protagonist model is similar to the Bigram model, but the distance between

events in a document is taken into account. The approach is based on the assumption that the
closeness of events describes some association between them. This kind of assumption has not been
proposed for narrative events before. It is inspired by the underlying concept of word association
measures, which assumes that the closeness of words in text is an indicator for some kind of
relationship between them. In the same manner, statistical tests to measure the strength of word
similarity assume that similarity between words follows through word co-occurrence.

The weighted single protagonist model maximizes the objective function Swb(e, c, m) as given in
Equation 5.7.

Swb(e, c, m) =
m∑

k=1

w(ck) · log P(e|ck) +
n∑

k=m+1

w(ck) · log P(ck|e) (5.7)

w(e) =
1

d(e)
(5.8)

Similar to the Bigram model, the events before and after the insertion point m contribute inde-
pendently to the overall score. However, each probability derived from the context ck is weighted
with its inverse distance to the held-out event at position m. Equation 5.8 illustrates the weight-
ing. Such a scoring has not been used before for narrative learning, but is a natural extension.

53



Figure 5.1 further exemplifies the weighting for a partial chain with seven events and tabulates
the distance d for each event. Due to the equivalence of ranking in the evaluation, the sum of the
individual weights does not necessarily need to add up to one. It holds

ê = argmaxe∈V
1
Z
· Swb(e, c, m) = argmaxe∈V Swb(e, c, m) (5.9)

where Z is a normalization factor. The model is referred to as Weighted-Bigram in the following.

..
..partial chain c ..c1 ..c2 ..c3 .. ..c5 ..c6 ..c7 ..c8

..distance d ..3 ..2 ..1 ..0 ..1 ..2 ..3 ..4
.

P(e|c1) ·w(c1) = P(e|c1) · 1
3

.......

Swb(e, c, 4) = P(e|c1) ·w(c1) + P(e|c2) ·w(c2) + P(e|c3) ·w(c3) + P(c5|e) ·w(c5) + P(c6|e) ·w(c6)+
P(c7|e) ·w(c7) + P(c8|e) ·w(c8)

Figure 5.1: Illustration of the scoring approach for the Weighted-Bigram model.

Script Induction with Dense Vectors

Mikolov et al. [2013] describe a method to learn dense vector representations of words (word
embeddings) from large corpora that capture relationships and similarities between words. Such
representations seem to capture many different semantic and syntactic similarities. For instance,
the vector operations W (king) − W (man) + W (woman) yield a vector that is very close to the
vector W (queen). The example indicates that the similarity between king and man is similar to the
similarity of queen and woman. Mikolov et al. [2013] made the implementation available as the
word2vec framework35.

Word2vec consumes a sequence of text with a sliding window of a fixed length. The algorithm
starts with a random initialization and transforms the words in a vector of fixed length by minimiz-
ing the error using a linear combination of the context. Thereby, a vector representation is learned
for each word using the vector representations of the surrounding words within the window.

The framework contains two different methods: (1) continuous bag of words (CBOW) and (2) con-
tinuous skip-gram model. Although the continuous skip-gram model is slower than CBOW, it per-
forms better for infrequent words. A closer look at the differences between both algorithms ex-
plains this finding. CBOW predicts target words from their context words, whereas the skip-gram
model implements the inverse and predicts context words from the target word. The skip-gram
model therefore treats each pair of context and target word as a new observation and creates more
training instances from limited amount of data as a consequence.

35 Project page: https://code.google.com/archive/p/word2vec/ (accessed June 2016).

54

https://code.google.com/archive/p/word2vec/


Consider the sentence the quick brown fox jumped over the lazy dog36. The first step is to define
the words and the context in which they appear. Here, context refers to the window of words to the
left and to the right of a word. However, in general the context can be defined in any meaningful
way. Using a window size of 1 yields the dataset ([the, brown], quick), ([quick, fox], brown),
([brown, jumped], fox), ..., where the first entry of the tuple represents the context and the second
entry the target word. The skip-gram model inverts these pairs and predicts each context word
from its target word. For instance, it tries to predict the and brown from quick.

Granroth-Wilding and Clark [2016] trained a neural network to learn a non-linear composition
of verbs and arguments into an event representation. The word vectors of their neural network are
initialized with word embeddings generated from narrative chains.

Similarly, the embedding script model presented here learns word embeddings from narrative
chains. To derive the embeddings with word2vec, each verb-dependency pair event is treated as a
word and each narrative chain as a sentence. In this way, word2vec learns vector representations
for verb-dependency pair events, so that those that appear in similar chains are close together.

The model is trained using the continuous skip-gram model and hierarchical softmax sampling
that performs better for infrequent words. Equation 5.10 shows the scoring function.

Sw(e, c, m) = cosine
� n∑

i=1

W (ci), W (e)
�

(5.10)

The variable e represents the pair event candidate to be scored, ci the given context of length n
and W the vector associated with its given event. The candidate e is scored by the cosine similarity
[Manning and Schütze, 1999, p. 541] of its verb-dependency vector W (e) to the context vector.
This context vector is derived as the sum of the vectors from W for each verb-dependency pair
event of the partial chain c.

The model is referred to as Word2Vec-Event in the following.

36 The example is taken from the TensorFlow manual hosted at https://www.tensorflow.org/versions/r0.9/
tutorials/word2vec/index.html (accessed June 2016).

55

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html
https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html


6 Evaluation
This chapter focuses on the evaluation of the systems described in the previous chapters. The
performance of these systems is assessed with a comparative measure that is commonly applied to
evaluate script models. The evaluation also includes a detailed analysis for the influence of several
model parameters. In addition, a qualitative evaluation is conducted that seeks to explain what
kind of knowledge is learned from a closed-domain corpus and further shows the common types
of errors made by the systems.

6.1 Evaluation Task

The various script models presented in Section 5.2 are evaluated on the narrative cloze test [Cham-
bers and Jurafsky, 2008]. This method is inspired by the classical psychological cloze test that is
used to evaluate human for language proficiency [Taylor, 1953]. Given a sentence with a word
missing, the test requires a subject to fill in the blank. For instance, the word brings is the correct
solution for the gap in the cloze test: The waitress the beer to the table.

Similarly, the narrative cloze test is a sequence of narrative events from which one event has
been removed. Chambers and Jurafsky [2008] designed the test as a “comparative measure to
evaluate narrative knowledge” and it is “not meant to be solvable by humans”. Figure 6.1 shows
an example of such a cloze test with a partial narrative chain associated with hair as protagonist.

The exact definition of the narrative cloze test depends on the event representation used in
a script system as stated by Pichotta and Mooney [2016]. For example, Chambers and Jurafsky
[2008], Jans et al. [2012] and Ahrendt and Demberg [2016] evaluate inference of held-out verb-
dependency pair events. In contrast, Pichotta and Mooney [2016] and Pichotta and Mooney [2014]
evaluate on the task of guessing a full multi-argument event, given all other events in a document.

The narrative cloze test used in this evaluation is as follows. Given a partial chain of events
e1, ..., en from a document and the position m of some held-out event em, attempt to predict the
missing pair event, given the other events in the chain. The model can either be trained on multi-
argument events or verb-dependency pair events, but has to predict pair events in both cases. This
definition is similar to the cloze test as used by Jans et al. [2012], where the position of the missing
event is known.

The cloze tests are auto-generated from the dependency parses and coreference system. This
is another major change with respect to the original narrative cloze test, where event chains are
manually verified. But in contrast to Jans et al. [2012] and Pichotta and Mooney [2014], only
script-relevant verbs with their arguments are used as held-out events. This constraint makes the
cloze test results even more meaningful.

56



..

She led me to the sink and washed my hair, then brought me back to comb it out.
Once my hair was dried and styled, she tidied it up with a hair straightener.

Cloze test: (wash, dobj) (comb, dobj) (dry, subj) (tidy, dobj)
Answer: (style, subj)

Figure 6.1: Example for a narrative cloze test as used in the evaluation for the models trained on

verb-dependency pair events (Source: InScript corpus [Modi et al., 2016]).

6.2 Experimental Setup

The script models are trained on documents from the InScript corpus37 [Modi et al., 2016]. InScript
is a closed-domain corpus of 910 quality-checked stories containing on average 12 sentences each.
The stories were collected via the Amazon Mechanical Turk platform38, which allows to present an
online task to humans. Turkers were asked to describe a scenario in form of a story “as if explaining
it to a child” by using only a minimum of 150 words [Modi et al., 2016]. The corpus consists of
ten different scenario categories with about 90 stories for each scenario type.

The InScript corpus contains additional text annotations like basic linguistic information such
as tokenization, parts of speech and dependency labels for each sentence. Furthermore, all noun
phrase heads in the corpus are annotated with a participant role and all verbs are annotated
with an event label, which indicates whether this verb is script-relevant. Additionally, the text
is annotated with coreference chains between noun phrases. However, for the purpose of this
evaluation, narrative events and narrative chains are extracted automatically, instead of relying on
gold annotated coreference chains and events.

The datasets are rather small i.e. between 87 and 133 stories. Thus, following Rudinger et al.
[2015a], leave-one-out testing [Manning and Schütze, 1999] at document level is performed. For
each fold of training, all narrative chains in the held-out test document are extracted. Every event
from a narrative chain that has been annotated as script-relevant generates a new narrative cloze
test. Narrative chains with less than two events are not considered for the cloze test generation.

The difficulty of the narrative cloze test varies depending on the context around the missing
event. For some cases it might be likely to predict a single event. However, for most of the cases
there is no confident single event that is likely to occur. Thus, the task is more about ranking the
missing event high than predicting a single event. Pichotta and Mooney [2014] also argue that
a script system is best evaluated by its top inferences. The performance of the script model is
therefore evaluated with the following metric:

(1) Recall at Rank
Recall at rank (R@N) measures the fraction of cloze tests where the system predicts the
missing event in the top N of its ranked list [Jans et al., 2012]. The value ranges from 0 to
1, where 1 indicates perfect system performance. It is defined in terms of a cloze collection
C consisting of |C | partial chains. For each partial chain c with missing event e, the function
rank(c) represents the rank of the event e in the guess list for the narrative chain c:

37 Corpus is available for download at http://www.sfb1102.uni-saarland.de/?page_id=2582 (accessed June
2016).

38 Amazon Mechanical Turk Platform: https://www.mturk.com/mturk/welcome (accessed June 2016).

57

http://www.sfb1102.uni-saarland.de/?page_id=2582
https://www.mturk.com/mturk/welcome


1
|C | ·
�� {c | c ∈ C ∧ rank(c)≤ N} �� (6.1)

Other metrics to evaluate script models like the average rank as proposed by Chambers and Ju-
rafsky [2008] or the mean average precision [Manning and Schütze, 1999] are strongly influenced
by miss-ranked events. Since these metrics were also not reported in prior work for the InScript
corpus, their reporting does not aid in comparison. Recall at rank in contrast allows to assess the
performance of the script induction systems by their best inferences.

Similar to Ahrendt and Demberg [2016], a document threshold d = 5 is applied for the ranking.
That is, every event that occurs in less than d distinct documents during training will be ranked
after every event whose count meets the threshold.

6.3 Results

Table 6.1 shows the average R@10 and R@1 measure for the different script models over all sce-
narios of the InScript corpus. The results are further divided into four categories, each representing
another event representation.

Although the script models are trained on multi-argument events, the task requires to infer
verb-dependency pair events. However, only the language-model-based approaches support multi-
argument representations. Although, the outlook in Section 7.2 discusses the support of argument
words in the vector representations to learn a representation of verbs and arguments together.

The scores are generated using the best performing settings for each system. For each language-
model-based approach, the bigram-count C and the discounting algorithm is tabulated. In this
context, the shortcut WB stands for Witten-Bell discounting, AD represents Ney’s absolute dis-
counting and MKN stands for the modified Kneser-Ney discounting. The postfixes I and B denote
interpolated and backoff variants of the algorithms above respectively. The following describes the
best performing setting for each model.

The Weighted-Bigram model uses bigram counts and Witten-Bell discounting. It is furthermore
trained with a pseudo event <s> and </s>, which marks the beginning and the end of a narrative
chain. This feature is referred to as event marker (EM) in the following. The rest of the setup is
arranged as described in Section 5.2.

The Bigram model is configured as stated in Ahrendt and Demberg [2016] to allow for the com-
parability of the results. The model uses Ney’s absolute discounting and skips up to the entire
length of the chain. This means that the bigram count C(e1, e2) is incremented if e1 and e2 occur
anywhere within the same narrative chain. The results for this model in Table 6.1 correspond to the
re-implementation of their system, whereas values marked with (*) correspond to the results re-
ported by Ahrendt and Demberg [2016]. The variation is attributed to the different preprocessing
steps and is further discussed in Section 6.4.

The best performing Word2Vec-Event model is using a skip-gram model with hierarchical soft-
max sampling, a window size of 1 and a vector size of 200. This configuration is able to capture
the context of one narrative event around a target event. Implementation details and the overall
setup are described in Section 5.2.

58



Finally, the Unigram model is used as competitive and informed baseline on this task. Table 6.1
contains the results for this model using bigram and skip-bigram counts for training.

Figure 6.2 shows the results for each of the scenarios from the InScript corpus separately. The re-
sults were generated with verb-dependency pair events for training and for held-out inference. The
light gray and dark gray bars illustrate the R@10 and R@1 measure respectively. The description
labels are as follows.

• V1: Weighted-Bigram model with event marker.

• V1B: Unigram model trained on bigrams.

• V2: Bigram model.

• V2B: Unigram model trained on all skip-bigrams.

• V3: Word2Vec-Event model.

Table 6.2 illustrates the results of the different discounting methods for the language-model-
based approaches. Each discounting algorithm is evaluated in its backoff and interpolated variant.
In order to make the effect of the discounting visible, the additional event markers are omitted for
the Weighted-Bigram model. However, the modified Kneser-Ney discounting was not applicable
to the skip-all counting variant. This happens when the count-of-count statistics of the training
data is not suitable for KN discounting. In these cases, the cell in the table is left blank (-).

Table 6.3 tabulates the vector size as a function of the window size for the Word2Vec-Event
model. Each entry contains the R@10 and R@1 measure for a fixed vector and window size.

59



Model Count C Disc. Average Recall at Rank

R@10 R@1

Pa
ir

ev
en

ts

Weighted-Bigram+EM bigram WB-I 0.39 0.067
Weighted-Bigram bigram WB-I 0.35 0.063
Unigram bigram - 0.27 0.029

Bigram skip all AD-B 0.30/0.34* 0.056/0.018*
Unigram skip all - 0.27/0.29* 0.051/0.040*

Word2Vec-Event - - 0.33 0.079

M
u

lt
i-

ar
gu

m
en

t Weighted-Bigram+EM bigram WB-I 0.33 0.060
Weighted-Bigram bigram WB-I 0.28 0.050
Unigram bigram - 0.24 0.030

Bigram skip all AD-B 0.25 0.042
Unigram skip all - 0.24 0.049

Su
pe

rs
en

se

Weighted-Bigram+EM bigram WB-I 0.35 0.061
Weighted-Bigram bigram WB-I 0.31 0.058
Unigram bigram - 0.25 0.039

Bigram skip all AD-B 0.27 0.050
Unigram skip all - 0.25 0.054

R
ol

e
la

be
ls

Weighted-Bigram+EM bigram WB-I 0.35 0.067
Weighted-Bigram bigram WB-I 0.31 0.057
Unigram bigram - 0.25 0.043

Bigram skip all AD-B 0.28 0.048
Unigram skip all - 0.24 0.050

* value as reported in [Ahrendt and Demberg, 2016]

Table 6.1: Best average performance of the different script models on the documents of the InScript

corpus over all scenarios. The performance is measured as R@10 and R@1 and is gener-

ated using the best configuration for each system. The table contains the results for all

event representation introduced in Section 5.1.

60



Model Count C Absolute Discounting (AD) Witten-Bell Discounting (WB)

Backoff Interpolate Backoff Interpolate

R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1

Weighted-Bigram bigram 0.326 0.064 0.332 0.064 0.350 0.063 0.350 0.063
Bigram skip all 0.303 0.056 0.309 0.057 0.306 0.055 0.314 0.056

Kneser-Ney Discounting (MKN)

Backoff Interpolate

R@10 R@1 R@10 R@1

0.330 0.060 0.348 0.064
- - - -

Table 6.2: Average performance of the language-model-based systems on the documents of the In-

Script corpus over all scenarios using different discounting methods.

Vector Size Window Size

1 2 3 4 5

R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1

50 0.299 0.074 0.309 0.072 0.306 0.069 0.305 0.064 0.301 0.065
100 0.312 0.077 0.312 0.074 0.308 0.076 0.306 0.071 0.304 0.072
150 0.321 0.078 0.319 0.077 0.311 0.073 0.309 0.073 0.305 0.069
200 0.329 0.079 0.320 0.077 0.314 0.075 0.312 0.073 0.306 0.070
250 0.325 0.070 0.320 0.070 0.314 0.070 0.308 0.072 0.305 0.072

Table 6.3: Average performance of the Word2Vec-Event model on the documents of the InScript

corpus over all scenarios tabulating the vector and window size.

61



(a) Grocery (b) Flight (c) Bus

(d) Bicycle (e) Haircut (f) Bath

(g) Cake (h) Library (i) Train

62



(j) Tree

Figure 6.2: Best system comparison per category using verb-dependency pair events.

Weighted-Bigram model + EM: V1, Unigram model trained on bigrams: V1B, Bigram
model: V2, Unigram model trained on all skip-bigrams: V2B and Word2Vec-Event model:

V3.

6.4 Discussion

The first part of the discussion deals with the analysis of the results for the verb-dependency pair
event representation in Table 6.1 and Table 6.2. The second part then interprets the performance of
the script models using multi-argument representations and concludes with a comparison between
the usage of simple pair events and multi-argument events for event inference.

Verb-dependency pair events
Almost all systems in their best configuration perform above the associated unigram baseline

on R@10 and R@1. The sole exception is the difference between the Bigram model and its cor-
responding baseline, which is not significant39 at p ≤ 0.05 on R@1 (t-value: 0.671 and p-value:
0.26). This observation stands in contrast to the finding of Pichotta and Mooney [2014], where the
Unigram model is essentially as good as the Bigram model. However, Pichotta and Mooney trained
on an open-domain corpus and considered every event as a test case for the cloze test. Thereby,
the Unigram model is able to yield decent performance for test cases with common events such as
(have,subj) or (do,subj). In contrast, the closed-domain evaluation conducted here only con-
siders script-relevant events for the cloze test. These test cases do not necessarily have to occur
frequently in the corpus. Thus, the effect of the event frequency prior is reduced.

The best R@10 performance of 0.39 was achieved by the Weighted-Bigram + EM model, im-
proving 12 points over the informed Unigram baseline. This model also achieves a 9% absolute
improvement compared over the state-of-the-art Bigram model that reaches a R@10 score of 0.30.
Overall, the model beats all other systems by a large margin on R@10.

39 Unless otherwise stated: The dependent t-test for paired samples is used to determine if the two series of data are
significantly different from each other.

63



The Weighted-Bigrammodel without the additional event marker reaches a R@10 value of 0.35
and therefore also outperforms the Bigrammodel on this measure. While the event marker feature
gives 4 points performance improvement on R@10 for the Weighted-Bigram model, the result is
not significant at p ≤ 0.05 on R@1 (t-value: -1.144 and p-value: 0.141). Hence, both weighting-
based models attain the same performance with 0.067 and 0.063 for R@1. This evidence suggests
that the weighting has no influence on the top rank. However, both settings reach a R@1 score
twice as high than the informed Unigram baseline with 0.029. Moreover, the improvement between
the Weighted-Bigram model and the associated Unigram baseline of 8% is much larger than the
3% margin between the Bigram model and its baseline.

The improvement of the event marker feature reveals that narrative chains tend to have stereo-
typical events that start and end the sequence of common actions. This observation is consistent
with the experience of common sense scenarios that have fixed entry conditions for the underlying
situation. For example, the scenario of riding a bus tends to start with the action of going to the bus
stop or taking the bus.

The values for the Bigram and Unigrammodels reported by Ahrendt and Demberg [2016] slightly
differ from the results produced with the re-implementation of the same system. This variation is
not surprising since the narrative chains for training and testing are different due to different
preprocessing. Thereby, the number of cloze tests per category varies. For example, when the
preprocessing miss to extract a script-relevant subject complement like swim in he likes to swim,
the system is not tested on this event. In addition, small variations in the ranking functions could
contribute to the difference as well.

In order to show the improvement of the weighting as an isolated feature, the Bigram model is
trained with the interpolated Witten-Bell discounting method instead of applying an absolute dis-
count. This allows a direct comparison of the Weighted-Bigrammodel using the same discounting.
The counting strategy C remains different for both models, because the weighting feature is not
appropriate for skip-bigram counting. Table 6.2 shows the results for the Bigram model trained
with the Witten-Bell discounting. The model achieves an absolute improvement with a value of
0.31 on R@10 of 1% compared to the usage of Ney’s absolute discounting algorithm. Thus, the
improvement of the weighting feature can be identified as 4%. While the bigram counting strategy
produces much less training data than the skip-gram modeling, the Weighted-Bigram model with
vanilla bigrams performs better than the Bigram model using skip-bigrams.

Although the data is sparse, the Word2Vec-Event model outperforms the Bigram model with a
R@10 value of 0.33 and a R@1 value of 0.079 as well. Both, R@10 and R@1 show an absolute
improvement of 3% and 2% over the corresponding values for the Bigram model. Hence, all
proposed models perform better than one of the state-of-the-art script induction systems using
verb-dependency pair events for training. More importantly, the event embedding model also
performs better than the Weighted-Bigram model on R@1. However, the difference between R@1
for this model and the Weighted-Bigram model using the event marker feature is not significant at
p ≤ 0.05 (t-value: 1.65 and p-value: 0.066). Incorporating event marker into the event embedding
representation might increase the performance on R@10 as well and yield similar results as the
Weighted-Bigram + EM model. The assessment of this assumption in a second evaluation is left
for future work.

Overall, the model that performs best is the Weighted-Bigram + EMmodel, trained on all chains,
using interpolated Witten-Bell discounting and bigram counting. This model also significantly out-
performs the results of the Bigram model reported by Ahrendt and Demberg [2016].

64



As stated in Section 5.2, Chen and Goodman [1996] found out that interpolated discounting
algorithms tend to perform better than their backoff variants for classical language models using
probability distribution over sequences of words. This raises the question whether similar obser-
vations can be made for language models using event sequences. The results in 6.2 show that
this finding only applies to the modified Kneser-Ney discounting on R@10 for the InScript corpus.
There are no further statistically significant differences.

Besides, Witten-Bell and the modified Kneser-Ney discounting perform better than Ney’s absolute
discounting, which was commonly used in previous work [Ahrendt and Demberg, 2016; Rudinger
et al., 2015a]. For instance, the Weighted-Bigram model with Witten-Bell discounting in its back-
off variant achieves an absolute improvement of 3% on R@10 over the usage of Ney’s absolute
discounting. This improvement may be due to the fact that absolute discounting overly penalizes
events that occur only once or twice, while Witten-Bell discounting is robust for small and noisy
corpora. A possible solution to this problem would be to have separate discounting values for rare
events.

However, there is no difference between Witten-Bell discounting and the modified Kneser-Ney
discounting for the Weighted-Bigram model. This observation may be attributed to the rather
small corpus used in the evaluation. This analysis clearly demonstrates that the Witten-Bell and
modified Kneser-Ney discounting techniques are more suitable for small corpora than Ney’s abso-
lute discounting.

Table 6.3 reveals that target events for the Word2Vec-Event model are best described with their
direct neighbors i.e. a window size of 1 and a vector size of 200. This observation is in accordance
with the improvement of the weighting feature using vanilla bigrams as a basis. The bigram
counting strategy only considers adjacent event pairs for training and the weighting feature assigns
the highest score to the direct neighbors of the held-out events and penalizes long-distance events.
Thus, this approach is additionally based on the assumption that a target event is better described
by a smaller context and results confirm this assumption.

Multi-argument events
In the evaluation of the multi-argument events with supersenses, the Weighted-Bigram model

using the event marker feature performs better than all other script models with a R@10 of 0.35
and a R@1 of 0.061. This observation demonstrates that the event marker and the weighting
feature are useful extensions for a richer semantic representation. Moreover, the supersense rep-
resentation shows large improvements over the usage of raw multi-argument events for all script
models, which is an indicator for its ability to generalize well over the dataset.

Both weighting-based script models beat the informed baseline by a large margin, whereas the
difference between the Bigram model and its associated baseline is rather small. This shows that
the Unigrammodel is still not able to exploit and benefit from frequently occurring multi-argument
events. Instead, the performance drops, because the richer representation leads to more sparsity.

At a first glance, the participant label representation seems to generalize more than the super-
sense events, though the difference in R@10 and R@1 is marginal. It shows that there is no
significant difference in the performance of the Bigram model and the Unigram baseline on R@10
compared to the multi-argument representation using supersenses. Finally, the Weighted-Bigram
+ EM model with a R@10 score of 0.35 and a R@1 score of 0.067 is the best performing system for
the participant label representation.

65



In comparison with the supersense representation, the effort to generate participant label events
is immense, while both representations perform equal good on the InScript dataset. Thus, there
is little payoff regarding the required resources. In addition, domain-specific participant labels are
required to replace arguments with their abstract role within the script. The participant label rep-
resentation is therefore not applicable to open-domain corpora consisting of thousands of different
scripts. The supersense approach in contrast functions in a totally unsupervised way that allows to
acquire supersense events with minimal effort that yield decent performance.

Overall, the script models utilizing multi-argument representations perform worse than the mod-
els trained with simple pair events. Thus, the general assumption that richer semantic representa-
tions improve the inference of held-out events is not confirmed. However, this does not necessarily
mean that such representations are not suitable for representing common-sense knowledge.

One issue for the multi-argument event representation may be the data sparsity problem. How-
ever, the problem may also be attributed to the training algorithm. The current approach calculates
raw co-occurrence counts from multi-argument events resulting in poor generalization. Instead,
the script models need to utilize the representation in a way that allows more generalization and
flexible inference. As an improvement the relationships between entities in multi-argument events
can be incorporated in the learning algorithm. According to Pichotta and Mooney [2014] such a re-
lationship may be captured through the overlapping entities for two multi-argument events. Their
results show slight improvement for the prediction of simple pair events using multi-argument
events for training. A combination of their training algorithm with the supersense or participant
label representation may further increase the improvement. This approach is described as future
work in the outlook in Section 7.2.

6.5 Qualitative Evaluation

The goal of this qualitative evaluation is to provide a feeling for the knowledge that is learned
from a closed-domain corpus with the Weighted-Bigram model and verb-dependency pair events
as presented in Section 5.2. For this purpose, two example stories from different scenarios of
the InScript corpus are selected. The script model is then used to induce a narrative chain that
maximizes the probability of the events in the longest chain extracted from the example story. The
event marker <s> is used as initial pseudo event. Subsequently, events are added to the new chain
maximizing the probability of the sequence given the previous events as context. The example
story is excluded from training. This approach enables to analyze whether the thereby induced sub-
chain contains meaningful and script-relevant events, but also reveals whether the events match
the overall context40.

Figure 6.3 shows the selected stories for the qualitative evaluation. The events corresponding
to the longest chain are marked in bold. The blue boxed words represent the best narrative chain
that is automatically induced from the longest chain. For each boxed word, the prediction order is
annotated as subscript number.

The first story is taken from the haircut scenario of the InScript corpus. The longest chain contains
12 events and corresponds to the mention she representing the hairdresser. Based on this chain,
the highest probability narrative chain of length five is induced.

40 The approach is similar to the Shannon game, which is about predicting the next letter in a sequence of letters.

66



The script model assigns the highest score to the welcome event (check in)41. This event is a
reasonable component of the haircut script and is also annotated as script-relevant. In addition,
the model succeeds in predicting this event first, given the pseudo starter event as context. The
check in event is usually one the first events that occur when visiting a barbershop. The script
model demonstrates to possess this common-sense knowledge too.

The second most likely event in the chain is confirm (talk haircut). This event is again script-
relevant and its occurrence after the check in event is plausible, because the customer first needs
to agree with the hairdresser about the type of service. The third event in the chain is put (put on
cape), which is script-relevant and fits in the overall context.

Although the fourth and fifth event are script-relevant, their order does not match the real-world
order. Humans would commonly agree that the hair is usually washed before it is conditioned.
This observation is a common problem with script induction systems, which rely on the order of
events in the document. However, it is not the order of the event occurrences in the text that
matters. Script systems should take the real-world order into account. Otherwise, associations are
learned that would never occur in that order in the real-word. For instance, an informed system
should not predict the live event, given a partial chain that contains the die event.

This discussion also raises the question, whether the text order should be part of the cloze test.
For the InScript corpus, the textual occurrence of events seems to match the real-world order in
most of the cases. This is probably due to the turkers who wrote their stories in a linear fashion.
Though, the gap between the real-world order and the order of the event occurrences in the text
is much larger for corpora consisting of complex written stories. The problem of classifying the
temporal relation between events is further discussed in the outlook in Section 7.2.

The next story that will be analyzed is taken from the flight scenario. The longest chain of this
document is associated with the we mention and consists of eight events. The induced chain of
length three is boxed and highlighted in blue. While the second event booked (get ticket) is script-
relevant, the two other events such as have and decided are not.

Rudinger et al. [2015a] suggest that incorporating object information into the event representa-
tion could improve the performance of the model. With this information, a script model would be
able to distinguish for example between the events have tickets and have seat. Note that in contrast
to have tickets the event have seat is script-relevant for this scenario. However, without additional
argument information, have will dominate due to its frequent nature in natural language.

41 The annotated terms correspond to the event annotation labels used by the InScript corpus.

67



As I was getting ready for work this morning, I noticed in the mirror that my hair was

getting a bit longer than I’d like. I resolved to go get a haircut after work. While I was at

work, I researched salons. I decided on one while I was at lunch, and called to make an

appointment for 5 pm. I got there about 15 minutes early, and informed the receptionist

that I had an appointment. She welcomed1 me and asked me to have a seat. I saw

and perused a few magazines and hairstyle books while I waited, and actually found a

style I liked more than what I had already had in mind. Once the stylist was done with

her previous client, she came to greet me. She asked what I wanted and I presented the

picture I found. She said that was no problem, and took me back to the styling chair. She

washed5 and conditioned4 my hair and put3 a cape on me. She confirmed2

with me again what I wanted, and set off to cutting. I sat as tiny bits of hair fell all around

me. Once she was done, she blow dried and styled my hair. It looked just like the picture.

That’s how I got a hair cut.

Source: Haircut scenario 95 from Modi et al. [2016]

My wife decided she wanted to go to the beach last summer. We decided 1 the best way to

get there would be an airplane. We booked 2 the tickets 3 months in advance to ensure

we would have3 tickets to board the plane to take us to our vacation destination. When

the day finally came fly on the airplane, we made sure we arrived at least an hour and a

half early. There are many delays before you actually get on board an airplane. First, you

have to go through a metal detector and wait in long lines just to get to the metal detectors.

Then you have to check your luggage. After that, you have to go to the terminal and provide

proof of a ticket. Once you get on an airplane, you have to prepare for turbulence. Other

than that, flying on an airplane is a safe and efficient way to travel. When we landed, we

went straight to the beach.

Source: Flight scenario 49 from Modi et al. [2016]

Figure 6.3: Example stories of the InScript corpus as used in the qualitative evaluation. The longest

chain is marked in bold. The boxed words correspond to the best narrative chain of

length n.

68



7 Conclusion and Future Work

7.1 Conclusion

This thesis tackled the problem of script induction by learning narrative chains from text collections
as introduced by Chambers and Jurafsky [2008], but with a focus on event inference. In order to
emphasize the contribution of this work, each chapter is briefly summarized.

Chapter 3 introduced Eventos as a flexible extraction framework for narrative chains. The
unsupervised system allows to extract various event representation ranging from simple verb-
dependency pair events to richer semantic representations. In this context, the supersense rep-
resentation was proposed as an alternative to the participant label events that rely on abstract
script roles. In contrast, supersense events are extracted in a pure unsupervised way that does not
require explicit participant labels acquired from expert annotators. The application of supersenses
as generalization method for narrative learning has not been used in previous work.

In Chapter 4, the value of narrative events in giving a broad and fast overview for large docu-
ments was shown. In a user study with 40 participants, users were asked to find facts to questions
in different documents. Results show that users were twice as fast with an outline of narrative
events extracted from the document than the control group without this feature. Especially for
longer documents, participants utilizing the outline were about three times faster when the an-
swer is placed near the end of the document.

Finally, in Chapter 5 and Chapter 6 different script models for learning common-sense knowledge
were presented and evaluated on the narrative cloze test. The best performing system trained on
verb-dependency pair events significantly outperforms prior script induction approaches using the
same simple pair events for training. This script system utilizes a novel event weighting concept
and applies a training algorithm, which is based on the assumption that narrative chains tend
to start and end with stereotypical actions. The significant improvements further confirm this
assumption and demonstrate that the theoretical concept of common entry and exit conditions to
a script can be incorporated into an automatic script induction system. The evaluation also reveals
that held-out events from documents are better described by a smaller surrounding event context.

Furthermore, the novel supersense event representation yields similar results to the expensive
participant label representation and in contrast is applicable for open-domain corpora.

69



7.2 Future Work

This work addressed the problem of automatically learning knowledge of event sequences from
text. Future research directions emerged during this study that are out of the scope of this thesis,
but should be handled in future work. This research includes some higher level concepts related
to the extraction of narrative chains, but also extensions to the existing approaches in order to
improve the performance of the developed systems.

Ordering Narrative Events

The task of ordering narrative events describes the problem of temporally ordering sets of narrative
events centered around a common protagonist. The script induction systems proposed here rely
on the assumption that the textual order of events follows the temporal order. However, this
condition is not always satisfied. For example, the second event in (1) and (2) precedes the first
[Moens, 1987].

(1) Max fell. John pushed him.
(2) John went to visit Mary. He had bought her some flowers.

Several other relationships between two narrative events are possible, e.g. the simultaneous
relation, which captures temporally overlapping events. In some cases, the order of narrative
events does not matter, e.g. when adding of ingredients for baking. However, for script induction
systems it is essential to learn relationships from narrative chains that reflect the real-world order
rather than the occurrence of events in text. While the margin between the textual order and
temporal order of events for close-domain corpora is rather small, it significantly differs for corpora
like newspaper collections. But also for small closed-domain corpora the script models learn wrong
associations as shown in the qualitative evaluation in Section 6.5.

An additional processing step preceding the script model training therefore is the learning of a
partial temporal ordering of the extracted events. However, in the context of learning relationships
from narrative chains only the before relation is relevant.

Chambers et al. [2007] present a machine-learning approach using a support vector machine
(SVM) to extract the temporal relation between pairs of events. Future work includes the incorpo-
ration of such an approach to the event extraction pipeline in order to improve the performance of
the script induction systems.

Context Expansion

According to Bruner [1986], humans use two different modes of thinking to interpret and under-
stand the world around: (1) narrative thinking and (2) paradigmatic thinking. While narrative
thinking describes the learning and using of relationships between different events, paradigmatic
thinking is concerned with categorizing knowledge according to commonalities e.g. cats and dogs
are both animals.

The learning of narrative chains already implements the first concept for script models. However,
to date there has been no approach for using paradigmatic relations to improve the performance

70



of script models. As natural language is ambiguous, several sequences of events can describe the
same situation. For example, the narrative chains arrive, start, win and reach, begin, beat both
express the scenario of succeeding in a competition. While current approaches are able to learn
the relations between the individual events, they cannot recognize that both chains describe the
same situation. However, with access to knowledge about semantically related events, the model
would be able to connect both chains to the same underlying narrative context. Paradigmatic
thinking in contrast allows humans to detect these commonalities.

In this context, Biemann and Riedl [2013] proposed the metaphor of two-dimensional text,
which represents language in two dimensions. The first dimension captures the syntagmatic re-
lations between language elements like grammatical relations and the second dimension models
paradigmatic relations, which describe elements that can be substituted with each other. This
principle has its root in Saussure’s structural linguistics hypothesis and is illustrated in Figure 7.1.
Based on this idea, Biemann and Riedl introduce the JoBimText framework42, which provides a
software solution for automatic text expansion using contextualized distributional similarity.

The framework allows to expand the verb fragments for each event and provides a list of verbs
occurring in similar context. The training algorithm of the script model can then use this infor-
mation to connect the verb fragments with the expanded context. For each observed event pair
(e1, e2), the expanded verbs of e1 can be conditioned with e2 and the expanded verbs of e2 can be
conditioned with e1 as well.

Table 7.1 shows the top three expanded verb fragments for the aforementioned narrative chain
using the English JoBimText model computed on a 100 million sentences corpus using Stanford de-
pendency parser for context representation. For the first event arrive, the associated reach event is
not among the first three elements. In contrast, the begin event is placed first for its corresponding
start event. Likewise, the beat event is ranked third for the win event.

Using this approach the script model is able to condition the events in the second narrative chain,
if it only observes the first chain during training. Thereby, it classifies the different appearing events
with the same underlying situation. The same approach can be applied to the arguments of the
raw multi-argument events in order to reduce data sparsity.

..

Syntagmatic

.

Pa
ra

di
gm

at
ic

.

..The ..ridiculous ..girl ..fell ..into ..the ..pond.

.. ..silly ..person ..jumped .. .. ..lake

.. ..foolish ..woman ..tripped .. .. ..sea

.. ..funny ..lady ..plunged .. .. ..river

.. ..crazy ..princess ..walked .. .. ..ocean

.. ..... ..... ..... .. .. .....

Figure 7.1: Illustration of the metaphor of two-dimensional text showing the difference between sur-

face words and terms43.

42 Project page: http://maggie.lt.informatik.tu-darmstadt.de/jobimtext/ (accessed August 2016).
43 Source: https://courses.nus.edu.sg/course/elltankw/history/Vocab/B.htm (accessed August 2016).

71

http://maggie.lt.informatik.tu-darmstadt.de/jobimtext/
https://courses.nus.edu.sg/course/elltankw/history/Vocab/B.htm


arrive#VB start#VB win#VB

Jo Score Jo Score Jo Score

travel#VB 119 begin#VB 509 clinch#VB 241
land#VB 99 continue#VB 246 lose#VB 220
depart#VB 97 want#VB 142 beat#VB 164

Table 7.1: Top three similar words for each event in the competition chain. The values were gener-

ated with the JoBimText framework using the English Stanford dependency parser model

on a 100 million sentences corpus.

Learning Entity Substitution

The verb-dependency pair event representation is not capable to capture interactions between
different entities. Consider the following example:

(1) Tom fights Jerry in the last match. He is regarded as the underdog of the tournament and
knows Jerry very well.

Narrative chain for Tom: (fight,subj), (regard,subj), (know,subj)

Narrative chain for Jerry: (fight,dobj), (know,dobj)

The pair event representation for both protagonists is given below the example. It fails in captur-
ing the most important facts of the story such as Tom and Jerry are fighting with each other and that
Tom knows his opponent. The events (fight,subj) and (fight,dobj), as well as (know,subj)
and (know,dobj) are totally unrelated to each other.

In contrast, richer semantic representations like the multi-argument representation capture in-
teractions between different entities. The narrative chain for Jerry using multi-argument events
becomes then: fight:dobj(Tom,Jerry,•), know:dobj(Tom,Jerry,•). However, modeling raw
multi-argument events was not superior to simple pair events and even the more generalized
representations such as supersense and participant label events could not achieve similar perfor-
mance in the evaluation. The problem may be attributed to the gathering of raw co-occurrence
statistics from multi-argument events. Given the two multi-arguments ask:subj(Mary,Bob,•) and
answer:subj(Bob,•,•) the bigram statistics only considers the occurrence for the involved enti-
ties i.e. Bob and Mary.

Pichotta and Mooney [2014] in contrast proposed another training strategy that is based on
entity substitution. It achieves improved performance on predicting verb-dependency pair events
using multi-argument events for training. Their training algorithm is illustrated in Algorithm 1 that
captures relationships in multi-argument events between entities by their overlapping entities. The
algorithm gathers co-occurrence counts from narrative events and starts with an initialization step,
where N(e1, e2) describes the number of times e1 has been observed prior to e2 and evs represents
the set of all multi-argument events. The function coocurEvs returns all pairs of co-occurring
events for a document d, whereas the set of all documents is given by documents. Thus, instead
of training over sequences of events for each entity, the algorithm uses one event sequence per
document.

72



Algorithm 1 Learning with entity substitution (Source: Pichotta and Mooney [2014]).
1: for e1, e2 ∈ evs do
2: N(e1, e2)← 0
3: end for
4: for D ∈ documents do
5: for e1, e2 ∈ occurEvs(D) do
6: for σ ∈ subs(e1, e2) do
7: N(σ(e1),σ(e2))← N(σ(e1),σ(e2)) + 1
8: end for
9: end for

10: end for

The function subs consumes two multi-arguments e1 and e2 and returns all variable substitutions
σ from entities involved in the events e1 and e2 to a set of four variables {x , y, z, o}. The variables
x , y, and z represent arbitrary entities, whereas the fourth variable o models entities not shared
between both events. The substitution follows the following rules:

(1) The substitution maps coreferent entities to the same variable in {x , y, z}.
(2) No distinct entity is mapped to the same variable in {x , y, z}.
(3) Entities not shared between both events are mapped to a dummy variable o.

(4) Arguments not filled with an entity are mapped to itself.

After gathering the substituted co-occurrence counts, the conditional probability can be derived
as before. The adaption of this training algorithm is one of the major focuses for future work.
By using this training algorithm, the supersense and participant label representation may achieve
much better results and might also outperform simple pair events.

Script Model Extensions

The following presents a variety of script model improvements.

Mixture model
The language-model-based approaches already provide decent performance in the task of

learning common-sense knowledge from text collections automatically. However, while the
Weighted-Bigram model outperforms the traditional Bigram model using skip-gram modeling, it
still lacks the ability to omit events in a sequence of events.

Assume the Weighted-Bigram model learns the following narrative chain from common actions
performed by a waitress: take order, bring order, do payment. The script model would not be able
to react to a new situation, where the customer carries the food to the table on his own as it is
often the case in fast-food restaurants. In such a situation, the bring order event is missing and the
chain for the waitress only consists of take order and do payment. However, the script model never
conditioned the events together during training. Thus, the occurrence of both events receives a
low score44, although the scenario is quite common.

44 In case the model uses a backoff approach, the pair receives the unigram probability normalized with some backoff
constant.

73



In order to allow flexible inference, the script model needs to be able to skip events in the
sequence. This could be achieved with the n-skip-bigram modeling approach, which also collects
pairs of events that occur with n events intervening between them. For example, this approach
would also learn a relationship between the take order and the do payment event. However, a
pure skip-gram model proves not suitable for this task as shown in the evaluation. In contrast, the
Weighted-Bigram model with simple bigram counting yields better results but is not able to skip
events.

Therefore, a mixture model is proposed aiming to combine the strength of both models. This
mixture model interpolates a pure bigram model with a skip-bigram model and represents the
conditional probability P(e2|e1) as

λ · Pbigram(e2|e1) + (1−λ) · Pskip(e2|e1) 0≤ λ≤ 1 (7.1)

, where Pbigram describes the conditional probability using bigram counting and Pskip models the
learned bigram probability using skip-bigram counting. The parameter λ determines the influence
of each model on the overall score. It can be tuned for each model and event representation over
a development set. In order to find the best possible solution, λ can be estimated with values from
0 to 1 and a step size of 0.01.

In general, the mixture model allows the combination of various different language models. A
possible extension is to mix a supersense or participant label event model with a script model
trained on raw multi-argument events. Thereby, an event pair that also matches in its raw form
could receive a higher score than those just matching the generalized representation.

However, the utility of such a mixture model has to be assessed in a new evaluation.

Multi-argument word2vec event model
The Word2Vec-Event model successfully learned embeddings from verb-dependency pair events

extracted from closed-domain corpora and showed decent performance in the narrative cloze test.
However, the model lacks the ability to learn embeddings from multi-argument event representa-
tions. Incorporating both, the verb and the argument fragments of a multi-argument event in the
training context allows to learn a vector representation of verbs and arguments together. The fol-
lowing example illustrates the word2vec sentence representation based on multi-argument events:

(1) Multi-argument representation:
get:subj(PRP,snack,•), watch:subj(PRP,scenery,•), enjoy:subj(PRP,•,•),
see:subj(PRP,place,•), arrive:subj(PRP,hour,•), pick:dobj(friend,PRP,•)

(2) Word2Vec sentence representation:
get:subj PRP:arg snack:arg watch:subj PRP:arg scenery:arg enjoy:subj PRP:arg see:subj

PRP:arg place:arg arrive:subj PRP:arg hour:arg pick:dobj friend:arg PRP:arg

Similar to Granroth-Wilding and Clark [2016], each verb and argument headword functions as
both, context word and target word for the word2vec skip-gram model. The vector representation
for a multi-argument event e is then defined by the sum of the argument vectors and the verb-
dependency pair event vector as shown in Equation 7.3. The scoring function Sw is similar to the
previous approach, but uses the enhanced vector representation:

74



Sw(e, c, m) = cosine
� n∑

i=1

comb(ci), comb(e)
�

(7.2)

comb(e = v:d(esub j, edob j, eiob j)) =W (v:d) +W (esub j) +W (edob j) +W (eiob j) (7.3)

75



Appendix

76



A User Study
A.1 Documents and Questions

Table A.1 lists all documents used in the user study. It includes the question and the answer for each
document and also tabulates the sentence index of the answer. The entire document is accessible
with the document name joined via underscores and the following link:
https://simple.wikipedia.org/wiki/#{underscore-document-name}#.

# Article Name #Sent #Answer Question Answer

1 The Lightning Thief 131 74 Where does Percy find
the bolt?

backpack

2 Hanami 44 38 Where are the gift trees
planted?

Washington

3 Violine 122 13 How old is the modern
violin in years?

400

4 Ana Ivanovi 64 9 Where does Ana Ivanovi
come from?

Serbian

5 American Airlines Flight
11

78 56 When did CNN inter-
rupted their commer-
cial?

08:49

6 Anna Kournikova 63 36 Who gave Anna K. the
best double pair award?

WTA

7 Jessica Alba 87 82 Which political party
does Jessica A. belong
to?

Democratic

8 Powderfinger 88 65 When did Bishop leave
the band?

1992

9 Red Hot Chili Peppers 162 110 Who rejoined the band? Frusciante
10 Bobby Robson 99 11 What made Robson die? Cancer
11 Bloc Party 110 17 Who plays the drums? Tong
12 Jupiter 130 59 When did NASA’s Voy-

ager 1 probe went to
Jupiter?

1979

13 Billy Graham 145 7 Who received the Con-
gressional Gold Medal?

Graham

14 City of Manchester Sta-
dium

171 162 Who performed the first
concert in the stadium?

RHCP

15 Saturn 153 120 What is Hyperion? moon
16 Mourning Dove 112 12 What sound gives the

doves its name?
woo-oo-oo-oo

Table A.1: Document references with question answer pairs.

77

https://simple.wikipedia.org/wiki/#{underscore-document-name}#


A.2 Descriptive Statistics

# Geometric Mean 95% Confidence Interval Max. Time in s Min. Time in s

lower upper

1 113.33 96.21 133.49 231.43 52.17
2 76.39 62.91 92.77 192.05 37.30
3 37.49 28.45 49.39 136.26 12.23
4 26.36 20.1 34.55 79.02 8.59
5 54.05 45.96 63.57 90.49 25.39
6 98.60 80.08 121.41 220.76 35.71
7 81.46 71.19 93.21 153.25 41.55
8 86.46 75.52 98.3 160.20 46.92
9 119.01 92.46 153.18 247.36 18.01
10 31.69 25.19 39.87 94.89 10.26
11 19.27 15.97 23.24 43.87 10.34
12 96.96 73 128.77 300.10 39.53
13 47.32 34.86 64.24 200.51 20.46
14 164.97 141.15 192.81 297.43 6.27
15 75.49 61.57 92.57 165.55 16.18
16 53.67 39.61 72.71 186.54 18.50

Table A.2: Individual results of the user study for the treatment group.

# Geometric Mean 95% Confidence Interval Max. Time in s Min. Time in s

lower upper

1 231.16 217.98 245.14 322.93 190.55
2 163.04 148.18 179.39 266.36 103.53
3 54.32 50.59 58.33 71.56 34.22
4 25.25 23.14 27.55 38.63 17.03
5 235.83 210.56 264.13 369.90 113.25
6 148.17 136.76 160.53 217.97 77.89
7 238.43 221.93 256.15 304.83 152.28
8 198.96 183.53 215.69 298.75 151.10
9 302.49 279.47 327.39 462.15 227.17
10 34.57 32.39 36.90 46.82 25.14
11 32.06 30.25 33.99 44.85 25.48
12 165.31 156.18 174.97 220.14 132.95
13 20.72 18.82 22.8 31.59 13.15
14 336.14 316.80 356.65 440.35 258.18
15 164.85 154.55 175.84 246.21 131.95
16 28.49 26.21 30.96 40.03 19.55

Table A.3: Individual results of the user study for the control group.

78



A.3 Evaluation Metric Implementations

Calculation for the confidence interval of a geometric mean

# Calculates the confidence interval of a geometric mean

# with alpha = 0.05. Usage: v = c(1.5,2.5,7,4); gm(v)

# Arguments: x vector of numeric values.

gm <- function(x) {
# Calculate the geometric mean

gm1 = mean(log(x), na.rm = T)
# Lower bound

cil = exp(gm1 - (1.96 * (sd(log(x), na.rm = T) / sqrt(length(x)))))
# Upper bound

ciupp = exp(gm1 + (1.96 * (sd(log(x), na.rm = T) / sqrt(length(x)))))
vec = c(round(cil, 2), round(ciupp, 2))
return (vec)
}

Scatter plot calculation

# Vector with the sentence index of the answers

x = c(74,38,13,9,56,36,82,65,110,11,17,59,7,162,120,12)
# Times with the outline feature

y1 = c(
113.3289563756,76.3933290845,37.4900478064,26.3572783024,54.0495305509,

98.6004207197,81.4575916051,86.1606510193,119.0099113883,31.6932739519,

19.2650299498,96.9569250775,47.3225145322,164.9691917148,75.4943081358,

53.6684531426)

# Times without the outline feature

y2 = c(
231.160098354,163.0374201949,54.3232420166,25.2490176775,235.8292109,

148.165916911,238.4254213069,198.9608480099,302.4854697313,34.5689433476,

32.0623210613,165.3105315447,20.7159459428,336.1384676832,164.8477554888,

28.4909123659)

# Run tests

cor.test(x,y1, method = "pearson")
cor.test(x,y2, method = "pearson")
# Plot scatter plot for treatment group

plot(x,y1, xlab = "Sentence number of answer",
ylab = "Average time in seconds", ylim=c(0,400))
abline(lm(y1 ~ x))
# Plot scatter plot for control group

plot(x,y2, xlab = "Sentence number of answer",
ylab = "Average time in seconds", ylim=c(0,400))
abline(lm(y2 ~ x))

79



Bibliography
S. Ahrendt and V. Demberg. Improving event prediction by representing script participants. In

Proceedings of the 2016 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 546–551, San Diego, California, June
2016. Association for Computational Linguistics.

R. Akerkar. Introduction to Artificial Intelligence. New Delhi: Prenctice- Hall of India Private Limited,
2005.

I. Aldabe, M. L. de Lacalle, M. Maritxalar, E. Martinez, and L. Uria. Arikiturri: An automatic
question generator based on corpora and NLP techniques. In Proceedings of the 8th International
Conference on Intelligent Tutoring Systems, ITS ’06, pages 584–594, Jhongli, Taiwan, June 2006.
Springer-Verlag.

P. M. Andersen, P. J. Hayes, A. K. Huettner, L. M. Schmandt, I. B. Nirenburg, and S. P. Weinstein.
Automatic extraction of facts from press releases to generate news stories. In Proceedings of the
3rd Conference on Applied Natural Language Processing, ANLC ’92, pages 170–177, Trento, Italy,
1992. Association for Computational Linguistics.

G. Angeli, M. J. Johnson Premkumar, and C. D. Manning. Leveraging linguistic structure for open
domain information extraction. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 344–354, Beijing, China, July 2015. Association for
Computational Linguistics.

C. F. Baker, C. J. Fillmore, and J. B. Lowe. The Berkeley Framenet project. In Proceedings of the 36th
Annual Meeting of the Association for Computational Linguistics and 17th International Conference
on Computational Linguistics, volume 1 of ACL ’98, pages 86–90, Montreal, Quebec, Canada,
1998. Association for Computational Linguistics.

N. Balasubramanian, S. Soderland, Mausam, and O. Etzioni. Generating coherent event schemas
at scale. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Process-
ing, pages 1721–1731, Seattle, Washington, USA, October 2013. Association for Computational
Linguistics.

C. Biemann and M. Riedl. Text: Now in 2D! A framework for lexical expansion with contextual
similarity. Journal of Language Modelling, 1(1), Apr 2013.

G. H. Bower, J. B. Black, and T. J. Turner. Scripts in memory for text. Cognitive Psychology, 11:
177–220, 1979.

J. Bruner. Actual Minds, Possible Worlds (The Jerusalem-Harvard Lectures). Harvard University Press,
Cambridge, MA, October 1986.

N. Chambers. Event schema induction with a probabilistic entity-driven model. In Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1797–1807,
Seattle, Washington, USA, October 2013. Association for Computational Linguistics.

80



N. Chambers and D. Jurafsky. Unsupervised learning of narrative event chains. In Proceedings of
the 46th Annual Meeting of the Association for Computational Linguistics, ACL ’08, pages 789–797,
Columbus, Ohio, USA, June 2008. Association for Computational Linguistics.

N. Chambers and D. Jurafsky. Unsupervised learning of narrative schemas and their participants. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP, volume 2 of ACL ’09, pages 602–
610, Singapore, August 2009. Association for Computational Linguistics.

N. Chambers, S. Wang, and D. Jurafsky. Classifying temporal relations between events. In Pro-
ceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions,
ACL ’07, pages 173–176, Prague, Czech Republic, June 2007. Association for Computational
Linguistics.

D. Chen and C. Manning. A fast and accurate dependency parser using neural networks. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP
’14, pages 740–750, Doha, Qatar, October 2014. Association for Computational Linguistics.

S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language modeling.
In Proceedings of the 34th Annual Meeting on Association for Computational Linguistics, ACL ’96,
pages 310–318, Morristown, NJ, USA, 1996. Association for Computational Linguistics.

J. C. K. Cheung, H. Poon, and L. Vanderwende. Probabilistic frame induction. In Proceedings of the
2013 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 837–846, Atlanta, Georgia, USA, June 2013. Association
for Computational Linguistics.

K. W. Church and P. Hanks. Word association norms, mutual information, and lexicography. In
Proceedings of the 27th Annual Meeting on Association for Computational Linguistics, ACL ’89,
pages 76–83, Vancouver, BC, Canada, 1989. Association for Computational Linguistics.

A. Clark, C. Fox, and S. Lappin, editors. The Handbook of Computational Linguistics and Natural
Language Processing. Blackwell Handbooks in Linguistics. Wiley-Blackwell, 2010.

K. Clark and C. D. Manning. Entity-centric coreference resolution with model stacking. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
1405–1415, Beijing, China, July 2015. Association for Computational Linguistics.

M. Collins. Discriminative training methods for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proceedings of the ACL-02 Conference on Empirical Methods in
Natural Language Processing, volume 10 of EMNLP ’02, pages 1–8, Philadelphia, PA, USA, July
2002. Association for Computational Linguistics.

B. Coppola, A. Gangemi, A. M. Gliozzo, D. Picca, and V. Presutti. Frame detection over the semantic
web. In The Semantic Web: Research and Applications, 6th European Semantic Web Conference,
pages 126–142, Heraklion, Crete, Greece, May 2009. Springer.

R. E. Cullingford. Script Application: Computer Understanding of Newspaper Stories. PhD thesis,
Department of Computer Science, Yale University, New Haven, CT, 1978.

81



H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. Gate: A framework and graphical
development environment for robust NLP tools and applications. In Proceedings of the 40th
Anniversary Meeting of the Association for Computational Linguistics, ACL ’02, Philadelphia, PA,
USA, July 2002. Association for Computational Linguistics.

G. F. DeJong. An overview of the FRUMP system. In W. G. Lehnert and M. H. Ringle, editors,
Strategies for Natural Language Processing, pages 149–176. Lawrence Erlbaum, Hillsdale, NJ,
1982.

L. Del Corro and R. Gemulla. ClausIE: Clause-based open information extraction. In Proceedings of
the 22nd International Conference on World Wide Web, WWW ’13, pages 355–366, Rio de Janeiro,
Brazil, 2013. ACM.

C. Fellbaum. WordNet: An Electronic Lexical Database. Language, Speech, and Communication.
MIT Press, Cambridge, MA, 1998.

D. Ferrucci and A. Lally. UIMA: An architectural approach to unstructured information processing
in the corporate research environment. Natural Language Engineering, 10(3-4):327–348, 2004.

C. J. Fillmore. Frame semantics and the nature of language. Annals of the New York Academy of
Sciences: Conference on the Origin and Development of Language and Speech, 280(1):20–32, 1976.

J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information into information
extraction systems by gibbs sampling. In Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, ACL ’05, pages 363–370, Ann Arbor, Michigan, June 2005. Association
for Computational Linguistics.

T. Gamerschlag, D. Gerland, R. Osswald, and W. Petersen. Frames and Concept Types: Applica-
tions in Language and Philosophy. Studies in Linguistics and Philosophy. Springer International
Publishing, 2013.

D. Graff, J. Kong, K. Chen, and K. Maeda. English Gigaword. Linguistic Data Consortium, Philadel-
phia.

M. Granroth-Wilding and S. Clark. What happens next? Event prediction using a compositional
neural network model. In Proceedings of the 30th Conference on Artificial Intelligence, pages
2727–2733, Phoenix, Arizona, USA, Feb 2016. AAAI Press.

P. Gray and D. F. Bjorklund. Psychology. Worth Publishers, 2014.

G. Grefenstette and P. Tapanainen. What is a word, what is a sentence? Problems of tokenization.
In Proceedings of 3rd conference on Computational Lexicography and Text Research, COMPLEX ’94,
pages 79–87, Budapest, 1994.

D. Guthrie, B. Allison, W. Liu, L. Guthrie, and Y. Wilks. A closer look at skip-gram modelling. In
Proceedings of the 5th international Conference on Language Resources and Evaluation, LREC ’06,
pages 1–4, Genoa, Italy, 2006.

Z. S. Harris. Distributional structure. Word, 10(23):146–162, 1954.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
Nov. 1997.

82



D. C. Howell. Statistical Methods for Psychology. Wadsworth Cengage Learning, 2012.

B. Jans, S. Bethard, I. Vulić, and M.-F. Moens. Skip n-grams and ranking functions for predicting
script events. In Proceedings of the 13th Conference of the European Chapter of the Association for
Computational Linguistics, pages 336–344, Avignon, France, April 2012. Association for Compu-
tational Linguistics.

M. John, S. Lohmann, S. Koch, M. Wörner, and T. Ertl. Visual analytics for narrative text - vi-
sualizing characters and their relationships as extracted from novels. In Proceedings of the 7th
International Conference on Information Visualization Theory and Applications, volume 7, pages
29–40, Rome, Italy, February 2016. SciTePress.

S. Jänicke, G. Franzini, M. F. Cheema, and G. Scheuermann. Visual text analysis in digital humani-
ties. Computer Graphics Forum, Jun 2016.

A. Kampmann, S. Thater, and M. Pinkal. A case-study of automatic participant labeling. In Pro-
ceedings of the International Conference of the German Society for Computational Linguistics and
Language Technology, pages 97–105, Duisburg-Essen, Germany, October 2015. German Society
for Computational Linguistics and Language Technology.

D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler. Challenges in visual data analysis. In
Proceedings of the Conference on Information Visualization, IV ’06, pages 9–16, Washington, DC,
USA, 2006. IEEE Computer Society.

R. Kneser and H. Ney. Improved backing-off for m-gram language modeling. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP ’95, pages 181–184, Detroit, Michi-
gan, USA, May 1995.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proceedings of the 18th International Conference on
Machine Learning, ICML ’01, pages 282–289, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

H. J. Levesque. The Winograd schema challenge. In Logical Formalizations of Commonsense Rea-
soning, pages 21–23. American Association for Artificial Intelligence, March 2011. AAAI Spring
Symposium.

I. Mani. Advances in Automatic Text Summarization. MIT Press, Cambridge, MA, USA, 1999.

C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky. The Stanford CoreNLP
natural language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations, pages 55–60, Baltimore, Maryland, June
2014. Association for Computational Linguistics.

C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT Press,
Cambridge, MA, USA, 1999.

M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson, K. Katz, and B. Schas-
berger. The Penn Treebank: Annotating predicate argument structure. In Proceedings of the
Human Language Technology Workshop, HLT ’94, pages 114–119, San Francisco, USA, 1994. As-
sociation for Computational Linguistics.

83



Mausam, M. Schmitz, R. Bart, S. Soderland, and O. Etzioni. Open language learning for infor-
mation extraction. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, EMNLP-CoNLL ’12, pages
523–534, Jeju Island, Korea, 2012. Association for Computational Linguistics.

W. S. McCulloch and W. Pitts. Neurocomputing: Foundations of research. chapter A Logical
Calculus of the Ideas Immanent in Nervous Activity, pages 15–27. MIT Press, Cambridge, MA,
USA, 1988.

M. McTear. The Articulate Computer. Oxford: Blackwell, 1987.

T. Mikolov, Q. V. Le, and I. Sutskever. Exploiting similarities among languages for machine transla-
tion. volume abs/1309.4168, 2013.

M. Minsky. A framework for representing knowledge. Technical report, Cambridge, MA, USA,
1974.

A. Mnih and G. Hinton. Three new graphical models for statistical language modelling. In Pro-
ceedings of the 24th International Conference on Machine Learning, ICML ’07, pages 641–648,
Corvallis, Oregon, USA, June 2007. ACM.

A. Modi, T. Anikina, S. Ostermann, and M. Pinkal. Inscript: Narrative texts annotated with script
information. In Proceedings of the 10th International Conference on Language Resources and Eval-
uation, LREC ’16, Paris, France, May 2016. European Language Resources Association.

M. Moens. Tense, Aspect and Temporal Reference. PhD thesis, Centre for Cognitive Science, Univer-
sity of Edinburgh, 1987.

N. Mostafazadeh, N. Chambers, X. He, D. Parikh, D. Batra, L. Vanderwende, P. Kohli, and J. Allen.
A corpus and cloze evaluation for deeper understanding of commonsense stories. In Proceed-
ings of the 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 839–849, San Diego, California, June 2016.
Association for Computational Linguistics.

H. Ney and U. Essen. On smoothing techniques for bigram-based natural language modelling. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages
825–828, Toronto, Canada, 1991. IEEE.

K.-H. Nguyen, X. Tannier, O. Ferret, and R. Besançon. Generative event schema induction with
entity disambiguation. In Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 188–197, Beijing, China, July 2015. Association for Computa-
tional Linguistics.

K. Pearson. Note on regression and inheritance in the case of two parents. Proceedings of the Royal
Society of London, 58(347-352):240–242, 1895.

S. Petrov, D. Das, and R. McDonald. A universal part-of-speech tagset. In Proceedings of the 8th
International Conference on Language Resources and Evaluation, LREC ’12, Istanbul, Turkey, May
2012. European Language Resources Association.

84



K. Pichotta and R. Mooney. Statistical script learning with multi-argument events. In Proceedings of
the 14th Conference of the European Chapter of the Association for Computational Linguistics, EACL
’14, pages 220–229, Gothenburg, Sweden, April 2014. Association for Computational Linguistics.

K. Pichotta and R. J. Mooney. Learning statistical scripts with LSTM recurrent neural networks.
In Proceedings of the 30th AAAI Conference on Artificial Intelligence, AAAI ’16, pages 2800–2806,
Phoenix, Arizona, February 2016. AAAI Press.

J. Pustejovsky, J. M. Castaño, R. Ingria, R. Saurí, R. Gaizauskas, A. Setzer, and G. Katz. TimeML:
Robust specification of event and temporal expressions in text. In Fifth International Workshop
on Computational Semantics, IWCS ’05, Stanford, CA, USA, 2003. AAAI Press.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2008.

N. Reiter, A. Frank, and O. Hellwig. An NLP-based cross-document approach to narrative structure
discovery. LLC, 29(4):583–605, 2014.

R. Rudinger, V. Demberg, A. Modi, B. Van Durme, and M. Pinkal. Learning to predict script events
from domain-specific text. In Proceedings of the Fourth Joint Conference on Lexical and Computa-
tional Semantics, pages 205–210, Denver, Colorado, June 2015a. Association for Computational
Linguistics.

R. Rudinger, P. Rastogi, F. Ferraro, and B. Van Durme. Script induction as language modeling. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP
’15, pages 1681–1686, Lisbon, Portugal, September 2015b. Association for Computational Lin-
guistics.

D. Rumelhart. Notes on a schema for stories, pages 211–236. Academic Press, Inc, 1975.

E. Ruppert, J. Klesy, M. Riedl, and C. Biemann. Rule-based dependency parse collapsing and prop-
agation for German and English. In Proceedings of the International Conference of the German
Society for Computational Linguistics and Language Technology, pages 58–66, Duisburg-Essen,
Germany, October 2015. German Society for Computational Linguistics and Language Technol-
ogy.

V. Rus, Z. Cai, and A. C. Graesser. Experiments on generating questions about facts. In Computa-
tional Linguistics and Intelligent Text Processing: 8th International Conference, CICLing ’07, pages
444–455, Mexico City, Mexico, February 2007.

D. Rusu, J. Hodson, and A. Kimball. Unsupervised techniques for extracting and clustering complex
events in news. In Proceedings of the 2nd Workshop on EVENTS: Definition, Detection, Coreference,
and Representation, pages 26–34, Baltimore, Maryland, USA, June 2014. Association for Compu-
tational Linguistics.

R. C. Schank and R. P. Abelson. Scripts, plans, goals and understanding: An inquiry into human
knowledge structures. The Artificial intelligence series. Psychology Press, 1977.

N. Schneider and N. A. Smith. A corpus and model integrating multiword expressions and su-
persenses. In The 2015 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL ’15, pages 1537–1547, Denver,
Colorado, USA, May 2015.

85



B. Settles. ABNER: An open source tool for automatically tagging genes, proteins, and other entity
names in text. Bioinformatics, 21(14):3191–3192, 2005.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational Linguistics on Hu-
man Language Technology, volume 1 of NAACL ’03, pages 134–141, Edmonton, Canada, May
2003. Association for Computational Linguistics.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems, pages 3104–3112, Montreal, Quebec, Canada, December 2014.

W. Taylor. Cloze Procedure: A New Tool for Measuring Readability. Journalism Quarterly, 30:
415–433, 1953.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-speech tagging with a
cyclic dependency network. In Proceedings of the 2003 Conference of the North American Chap-
ter of the Association for Computational Linguistics on Human Language Technology, volume 1
of NAACL ’03, pages 173–180, Edmonton, Canada, May 2003. Association for Computational
Linguistics.

T. Winograd. Understanding natural language. Cognitive Psychology, 3(1):1 – 191, 1972.

I. H. Witten and T. C. Bell. The zero-frequency problem: Estimating the probabilities of novel
events in adaptive text compression. IEEE Trans. Inf. Theor., 37(4):1085–1094, Sept. 2006.

S. M. Yimam, H. Ulrich, T. von Landesberger, M. Rosenbach, M. Regneri, A. Panchenko, U. F.
Franziska Lehmann, C. Biemann, and K. Ballweg. new/s/leak information extraction and vi-
sualization for an investigative data journalists. In Proceedings of the 54rd Annual Meeting of the
Association for Computational Linguistics on Interactive Poster and Demonstration Sessions, Berlin,
Germany, August 2016. Association for Computational Linguistics.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud ’10, pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.

86


	List of Abbreviations
	List of Figures
	List of Tables
	Foundations
	Introduction and Motivation
	Terminology
	Resources of Common-Sense Knowledge
	Application in Natural Language Processing
	Contributions

	Background and Related Work
	Script Models
	Visualization of Narrative Structures

	Event Extraction and Representation
	Definition of an Event
	Event Extraction Methodology
	Preprocessing
	Event Generation


	Visualization of Narrative Chains
	Event Browser Overview
	Evaluation

	Statistical Script Models
	Extracting Narrative Chains
	Learning from Narrative Relations

	Evaluation
	Evaluation Task
	Experimental Setup
	Results
	Discussion
	Qualitative Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	User Study
	Bibliography

