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Abstract

Detecting whether two words have an opposite meaning and thus are antonyms is relevant for many

applications and methods in Natural Language Processing such as Lexical Substitution or Informa-

tion Retrieval.

In this thesis, we present a supervised approach to antonymy identification that relies on small lists

of known antonyms and large corpora. We train part-of-speech category specific classifiers using

a diverse set of features. The features exploit clues for antonymy residing in different layers of

language. The most prominent features make use of syntacmatic relations of antonym pairs. Other

features capture morphological clues, co-occurrence probabilities and distributional similarity.

We evaluate our classifiers intrinsically on a data set we compiled from WordNet containing word

pairs of different semantic relations such as antonymy, synonymy and hyponymy and on antonymy

versus synonymy evaluation sets. Apart from that, we evaluate our classifiers extrinsically on “most

contrasting word” questions.

On the one hand, our evaluations show that pattern based information can identify antonyms pre-

cisely. On the other hand, the evaluations reveal that the recall is not too high, even though we use

large corpora.
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Zusammenfassung

Antonymy bzw. Gegenteiligkeit zu erkennen ist von großer Relevanz für einige Disziplinen in der

Sprachtechnologie wie der lexikalischen Substitution und der Informationsrückgewinnung.

In dieser Arbeit wird ein überwachter Ansatz für das Erkennen von Antonymen präsentiert, der

auf kleinen Listen von Beispiel-Antonymen und großen Korpora basiert. Es werden Klassifikatoren

für die Wortarten Nomen, Verben und Adjektive trainiert. Verschiedene Merkmale werden herange-

zogen, um Antonymy zu erkennen. Darunter befinden sich morphologische Hinweise, Hinweise aus

Kookkurrenzstatistiken, die distributionelle Ähnlichkeit der Wörter und besonders Informationen zu

den syntaktischen Mustern, in denen die zu klassifizierenden Wortpaare vorkommen.

Die Klassifikatoren werden intrinsisch auf einem mittels WordNet erstellten Datensatz und weiteren

Datensätzen aus der Literatur evaluiert. Der WordNet-Datensatz enthält Worpaare verschiedenster

semantischer Relationen, Antonyme, Synonyme, Hyperonym/Hyponym- und Meronym-Holonym-

Paare, und Wortpaare, die keine Relation auweisen. Die Datensätze aus der Literatur enthalten

nur Antonym- und Synonym-Paare. Des weiteren werden die Klassifikatoren extrinisisch auf einem

Antwort-Auswahl-Test evaluiert. Bei diesem Test geht es darum zu einem Zielwort aus den Wörtern,

die als Antwortmöglichkeiten bestehen, das Wort herauszusuchen, das am stärksten im Kontast zu

dem Zielwort steht.

Die Evaluation zeigt, dass mit den sich vorwiegend auf syntaktische Muster verlassenden Klassifika-

toren Antonyme zwar präzise bestimmt werden, aber viele Antonym-Paare nicht als solche erkannt

werden.
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1 Introduction

Natural Language Processing (NLP) is a field of computer science concerned with the automatic

processing of natural (human) language. One challenge in NLP is to get the computer to understand

text, to gather structured knowledge from text that can be reasoned with.

To solve this task several subtasks have to be solved. The computer has to be able to identify entities

in texts, for instance it has to understand that
”
FC Bayern Munich“ is one entity. Furthermore, the

computer needs to be able to determine which sense of a word is used in a sentence in case a word

has more than one meaning. E.g. the computer needs to understand if the word
”
football“ in a

sentence refers to American football or soccer.

Then, the computer needs to be able to extract the semantic relations between word senses from

text. There are many different semantic relations. In this thesis, however, we concentrate on the

automatic identification of the relation antonymy. A word pair is antonymous if it is opposite in

meaning, e.g.
”
good bad“ is an antonym pair.

This first chapter motivates the importance of identifying antonymy, describes the research goal of

this thesis and outlines the thesis structure.

1.1 Motivation

Identifying antonymy/opposition is important for many applications of NLP. For instance, in the

case of Lexical Substitution, the task of choosing a suitable replacement for a word in a sentence,

filtering out antonymous candidate words is essential. Other applications which can profit from

antonymy identification include Machine Translation [Roth and Schulte im Walde, 2014], Sentiment

Analysis [Mohammad et al., 2013] and Information Retrieval [Lin et al., 2003].

There are manually created taxonomies which contain information about antonymous relations.

One of the prominent examples for the English language is WordNet [Miller, 1995]. For the German

language there is for example GermaNet [Hamp and Feldweg, 1997]. Both, WordNet and GermaNet,

encode antonymous relations for adjectives, nouns and verbs.

Although manually created taxonomies are often used to support the initially mentioned NLP tasks,

such taxonomies have several disadvantages. First, their coverage is limited. For instance, according

to Mohammad et al. [2013] more than 90% of the answer pairs in the Graduate Record Examination

(GRE) closest-to-opposite questions cannot be found in WordNet as antonym pairs. One reason for

low coverage is that language changes rapidly. Second, manually creating such taxonomies is a slow

and labor-intensive process [Snow et al., 2005] which requires the work of experts and is thus also

expensive. Apart from that, for many languages, especially minority languages, manually created

taxonomies simply do not exist.
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One way to assign meaning to words and to measure word similarity without depending on manu-

ally created lexical resources is to rely on distributional semantics. According to the distibutional

hypothesis [Harris, 1954] words that occur in the same contexts tend to have similar meanings.

However, not only synonyms or near-synonyms but also hyponyms, cohyponyms, meronyms,

antonyms and otherwise related words can be found among distributionally similar words. Thus,

only with information about the distributional similarity of a word pair the type of semantic relation

can not be uncovered which directly leads us to our research goal described in the next section.

1.2 Research Goal

In this thesis, we want to examine how antonymy can be identified and also discriminated from other

lexical relations, such as hyponymy or synonymy, using a supervised approach depending on different

feature categories including word representations, morphological features, co-occurrence frequencies

and most prominently pattern-based features.

The final goal is to develop a system which can identify antonymous pairs of words among distribu-

tionally similar words. The system should work for English adjective, noun and verb pairs.

1.3 Thesis Structure

In the following, we briefly outline the thesis structure. The basic knowledge necessary to understand

the research conducted in this thesis is provided in Chapter 2. This chapter describes some theoretical

views on antonymy and gives an introduction to distributional semantics and machine learning.

Thereafter, we discuss previous research on the task of antonymy identification in Chapter 3. We

present our own methods in Chapter 4 which we evaluate in Chapter 5. The thesis is concluded in

Chapter 6 which also gives a short outlook over possible future work.
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2 Background

This chapter provides an introduction to technical terms, concepts and algorithms, whose under-

standing is necessary to understand the core research on antonymy identification described in this

thesis. The chapter starts with a short introduction to the semantic relation antonymy, which is

followed by a broad overview of general linguistic terminology. In this thesis, lexical databases are

exploited to garner data for training and thus are introduced in another section. The next sections

present the idea of distributional semantics and a framework for determining distributional similarity

and describe technical foundations of the computation of distributional similarity. The chapter ends

with a primer on supervised machine learning and classification, the learning technique used to grasp

the concept of antonymy.

2.1 What is antonymy?

There exist different theoretical definitions on what antonymy is and whether antonymy and oppo-

sition are the same or antonymy is a subcategory of opposition. Cruse [1986] defines antonymy as a

relation between two gradable adjectives like “cold” and “hot”. The adjectives are supposed to point

into the polar directions of a scale and it should be possible to modify them with words such as very

and slightly. Murphy [2003] thinks of antonyms and opposites as synonymous terms. Apart from

gradable adjectives there are also non-gradable binary opposites like “dead” and “alive” and further-

more triplets or even more words that stand in opposition with each other like “to try”, “to succeed”,

“to fail” and the four seasons“winter”, “spring”, “summer”, “autumn” [Lobanova, 2012]. The difficulty

to define antonymy make [Lobanova, 2012] claim, that the “automatic extraction of opposites is a

much more difficult task than the identification of such relations as hyponymy or synonymy”. In this

thesis, we depend on the assessment of annotators of the used lexical resources on whether a word

pair is an antonymous one. Considering some example pairs from WordNet it seems that a rather

broad definition of antonymy was used constructing WordNet, since pairs of gradable, non-gradable

and pairs of antonymous nouns, verbs and adjectives can each be found in this lexical resource.

2.2 Linguistic Terminology

The field of linguistics can be divided into several subareas each addressing one level of language

[Jurafsky and Martin, 2000]. The process of language understanding can then be seen as a bottom-

up task iterating through the different levels or layers of language. The lowest layer, the level of

sounds, consists of phonetics and phonology, whereby the former deals with all possible human

sounds and the later with the sounds, phonemes, used to form human language. The next layer is

concerned with the smallest meaning-bearing units of human language, the morphemes, and thus is

call morphology. Morphemes can among others be prefixes like “un-” or “non-”, which make up the

beginning of a word, or suffixes like a plural “-s” at the end of a word. Words are in fact sequences
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of morphemes. The syntax layer resides above the morphology layer. Syntax is about the structure

of sentences, which are made of words (, which themselves are composed of morphemes, which are

in turn sequences or phonemes). The next level, semantics, is about the meaning of words, phrases,

sentences and documents. The top-most layer, pragmatics, covers the purpose and intent of spoken

or written language in context. Table 2.1 provides an overview of the different levels of language.

Level of Language Short Description

Pragmatics Purpose and intent of language use

Semantics Meaning of language

Syntax Structure of language

Morphology Smallest meaning-bearing units

Phonetics/Phonology Sounds/Basic sounds that form language

Table 2.1: Levels of language

Computational understanding of language can follow the theory of language layers by using a pro-

cessing pipeline whose consecutive steps each rely on the output of the respective previous step. A

common first step in analyzing natural language documents is to split the text into sentences, sen-

tence splitting, and to identify tokens, tokenization. Tokens are words and other language elements

like commas, points and exclamation marks. A subsequent step is lemmatization, the process of

assigning basic word forms called lemmas to the inflected word forms occurring in the raw text. To

reach the syntax level part-of-speech tags have to be assigned to the words and the sentences have

to be parsed. A list of the part-of-speech tags used in this thesis can be found in the appendix in

Table 7.1. Parsing of a sentence can be done with a dependency parser. Such a parser produces

a dependency tree. The tree contains the syntactic relations between words. An example of a

dependency tree is shown in Figure 2.3.

Figure 2.1: Dependency parse from Stanford CoreNLP1

The nominal subject of the sentence
”
he“, a personal pronoun is linked to the adjective

”
good“, which

is linked to the verb
”
is“. The relation types used in this thesis are described in De Marneffe and

Manning [2008].

A crucial part of semantics is to understand semantic relations between word senses. Apart

from antonymy whose basics were covered in section 2.1, other semantic relations include hy-

ponymy/hypernymy, co-hyponymy, holonymy/meronymy and synonymy. Hyponyms are superor-

dinate terms of hypernyms, subordinate terms. An example for a hypernym/hyponym pair is tree

and oak, as every oak is a tree. Co-hyponyms share a common hypernym. An example for co-

hyponyms are oak and chestnut, as both are trees. A meronym is a part of a holonym, e.g. a branch
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is a part of a tree. Note that semantic relations are defined between word senses and not between

words. E.g. an oak is not a hyponym of the data structure tree but of trees in a botanical sense.

2.3 Lexical Databases

Lexical databases are machine-readable lexical resources. Lexical resources are in turn composed

of one or more dictionaries mapping words to useful information such as different senses and their

definitions, pronunciation, translation and related words. Information about related words is of

particular interest in this thesis. We, in fact, compile the training set for our antonym classifiers

with the help of WordNet. Hence, we shortly introduce this lexical database at this point.

WordNet

A large English language lexical database is WordNet. As of version 3.0, WordNet contains more

than 150000 unique words. Words are either nouns, verbs, adjectives or adverbs, meaning there is

e.g. no information about pronouns, prepositions or determiners.

WordNet groups words in so called synsets, which consist of words expressing one sense. All of the

words in one synset belong to the same part-of-speech category. A synset has a short definition

(”gloss”) and may be accompanied with one or more phrases or sentences exemplifying the usage.

Synsets are linked among each other by semantic relations.

Synsets consisting of nouns are linked by hyponymy and meronymy. Synsets of verbs are linked by

troponymy. Adjectival synsets are ordered by antonymy.

Semantic relations are mostly encoded between synsets of the same part-of-speech category. An

exception to this are for instance
”
morphosemantic“ links connecting words sharing a stem, e.g. act

and actor.

To illustrate WordNet Figure 2.2 shows two of the adjectival synsets that contain the word
”
bad“.

The first synset is solely made of the word
”
bad“ and is defined by the gloss

”
having undesirable or

negative qualities“. This synset is linked to the antonymous synset
”
good“. Another synset of the

word
”
bad“ is described by

”
very intense“ and is linked to the synset

”
mild“.

2.4 Association Measures

An association measure computes an association score for a pair of items. A high association score

commonly indicates strong association and thus that a pair of items tends to co-occur. In the

context of NLP, the pair might consist of language elements such as words, N-grams or patterns.

Distributional Semantics, which is presented in Section 2.5, relies on association scores of pairs

of language elements. Furthermore, the identification of semantically related words is often based

on pair-pattern association scores. Hence, in this section we shortly discuss the computation of

association scores and introduce often used association measures.

2 http://wordnetweb.princeton.edu/perl/webwn (last accessed: 2016/03/01)
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Figure 2.2: Extract of the adjectival synsets of
”
bad“ from the online WordNet interface2

The computation of association scores is based on the contingency table of an item pair [Evert,

2005, pp. 75]. Four important scores can be found in a contingency table (or computed from

information in a contingency table). First, the joint frequency, or co-occurrence frequency, of the

pair nA,B, denoting how often the pair’s items co-occur. Second and third the component frequencies,

or marginal frequencies, of a pair, thus, the single frequencies nA and nB of the pair’s items. And

fourth and last the total number of pairs N .

Several different association measures exist, which differ for instance in the assumptions made about

the distribution of the data, the computation speed and the ease of interpretation. In the following,

we introduce three association measure, which have proven to work well for NLP tasks.

Pointwise Mutual Information

Pointwise Mutual Information (PMI) [Church and Hanks, 1990] compares the joint probability of

two events x and y with the probabilities of x and y (the marginal frequencies).

PM I(x; y) = log
p(x , y)

p(x)p(y)
(2.1)

Assuming x and y being independent, the joint probability should equal the product of the two

events’ probabilities. Hence, taking the logarithm into account, the PMI of two events is 0 if the

events are statistically independent. If two events occur more often than expected, their PMI-score

13



is positive; if the events occur less often than expected, the PMI-score is negative. Note that PMI is

a symmetric measure.

Since the real joint probability and the real marginal probabilities often are unknown, the joint prob-

ability is normally approximated with
nA,B
N and the marginal probabilities with

nA
N and

nB
N , yielding:

PM I(A, B) = log
NnA,B

nAnB
(2.2)

A high PMI-score does not necessarily imply a truly high association of two terms. Assuming two

words occur statistically perfectly dependent, meaning the two words always occur together, the

following holds:

PM I(x; y) = log
p(x , y)

p(x)p(y)
= log

p(x |y)p(y)
p(x)p(y)

= log
p(x |y)
p(x)

= log
1

p(x)
= log

1
p(y)

(2.3)

Under this assumption thus the following applies: The more infrequent the words are, the higher is

the PMI-score.

Apart from that it is more likely that infrequent words coincidentally co-occur relatively often than

frequent words. Hence, PMI is biased towards infrequent words.

This weakness of PMI may be addressed by using frequency thresholds or resorting to the following

measure:

Lexicographers Mutual Information

Lexicographers Mutual Information (LMI) [Bordag, 2008] weights the PMI-score with the joint

frequency of the events:

LM I(A, B) = nA,B · PM I(A, B) (2.4)

The weight factor effectively reduces the bias of PMI towards infrequent words. PMI and LMI are

measures from information theory; in contrast to that, the measure introduced next is based on

hypothesis testing:

Log-likelihood Ratio

Log-likelihood Ratio (LLR) [Dunning, 1993] examines two hypotheses potentially explaining the

frequency nA,B:

� Hypothesis H0: P(A|B) = p = P(B|A)

� Hypothesis H1: P(A|B) = p1 6= p2 = P(B|¬A)

14



According to hypothesis H0 the pair’s items occur independently. Hypothesis H1 states that the items

occur dependently. Assuming an underlying binomial distribution and using maximum likelihood

LLR then gives an association score denoting whether hypothesis H0 or H1 is more likely:

LLR(A, B) = 2 log
H0

H1

= −2 · logλ

= 2 · [N log n− nA log nA− nB lognB + nA,B log nA,B

+ (N − nA− nB + nA,B) log(N − nA− nB + nA,B

+ (nA− nA,B) log(nA− nA,B)

+ (nB − nA,B) log(nB − nA,B)

− (N − nA) log(N − nA)− (N − nB) log(N − nB)]

(2.5)

As can be seen by studying their respective formulas, LMI is faster to compute than LLR, which

makes LMI a good choice if large amounts of data have to be analyzed.

2.5 Distributional Semantics

You shall know a word by the company it

keeps

[Firth, 1957]

De Saussure [[1916] 1983] differentiates between two viewpoints we make use of when reading and

trying to understand text. The syntagmatic and the associative viewpoint. The syntagmatic view-

point is about the linear ordering of textual units, about grammatical dependencies. The associative

viewpoint, also called paradigmatic viewpoint, is concerned with as de Saussure [[1916] 1983] states

”terms in absentia”, associated terms residing in the readers memory.

I play soccer

you do karate

they go swimming

I play soccer

you do karate

they go swimming

Table 2.2: Syntagmatic and paradigmatic relations (from left)

Years after the foundational work of de Saussure [[1916] 1983] the distributional hypotheses was

formulated [Harris, 1954]:

The distribution of an element is the total of all environments in which it occurs, i.e.

the sum of all the (different) positions (or occurrences) of an element relative to the

occurrence of other elements.
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Instead of using the abstract term
”
environment“ Miller and Charles [1991] later directly focused on

words and introduced the notion of semantic similarity in their strong contextual hypothesis:

Two words are semantically similar to the extent that their contextual representations are

similar.

Miller and Charles [1991] showed that semantic similarity as defined in their strong contextual hy-

pothesis correlates highly with human assessments on word similarity. This makes distributional

similarity (the similarity of contexts) a good tool to approximate paradigmatic relations, as defined

by de Saussure [[1916] 1983], between words.

The emergence of large corpora and the increase of computation power made it possible to compute

distributional similarity between all the word pairs in a huge vocabulary and store the results in a

Distributional Thesaurus (DT).

Examples for distributional thesauri include [Lin, 1998], [Curran, 2002] and [Biemann and Riedl,

2013].

In this thesis, we work with DTs generated with the standard parameters of the JoBimText frame-

work [Biemann and Riedl, 2013]. The details of this framework are described next.

The JoBimText Framework

The JoBimText framework implements a DT computation pipeline using Hadoop’s MapReduce3

paradigm. Hadoop makes it possible to process large amounts of (textual) data in reasonable time

by distributing the computation to several servers and/or threads, which run in parallel.

The JoBimText framework’s name stems from the terminology used to denote the key language

elements Jos and their context features Bims. Jos and Bims may be (and often are) words, but are

not restricted to being words. The framework’s pipeline to compute the DT relies on a list of tuples

< x , y > where x is a Jo and y is a Bim. This list of tuples is created via a so called holing operation

on the text input of the system. The holing operation defines the data type of the Jos and Bims and

operates on most commonly preprocessed text input. Lets elaborate on the concept of key language

elements, context features and the holing operation on this example sentence:

Sentence: Aubameyang can not stop scoring .

Position: 1 2 3 4 5 6

For our first example we define that Jos are words. Furthermore, we let our holing operation work

on a one word window to the right of each word to extract the context features Bims. We assume

that we process tokenized textual input. These definitions produce the following list of tuples:

< $0, (@; Aubame yang1)>,< Aubame yang, (@; can2)>,< can, (@; not3)>,

< not, (@; stop4)>,< stop, (@; scoring5)>,< scoring; (@; .6)>,< ., (@; $7)>

Note that @ is the hole symbol. It indicates the position of the Jo.

For our second more advanced example we assume that in a preprocessing step of our system the text

input was parsed with a dependency parser. Again, as keys we use words, but our holing operation

3 http://hadoop.apache.org
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Parameter Description

t minimum number of term-feature occurrences

s minimum significance of a context feature

p maximum number of features per language element

Table 2.3: Pruning Parameters

now works on the generated dependency trees. We assume the dependency tree for our example

sentence looks like Figure 2.3:

Figure 2.3: Dependency parse from Stanford CoreNLP4

Now this would be the list of generated < Jo,Bim> tuples:

< Aubame yang, (nsub j; stop4; @)>,< can, (aux; stop4, @)>,< not3, (neg; stop4,@)>,

< stop4, (neg;@; not3)>,< stop4; (aux; @; can1)>,< stop4, (nsub j; @; Aubame yang1)>,

< stop4; (dob j; @; scoring5)>,< scoring5; (dob j; stop4;@)>

Using dependency trees for context feature generation instead of only words in a small window might

make a lot of sense. For instance, in the above sentence
”
scoring“ describes the scorer Aubameyang

quite good and is only two dependency tree hops distant of Aubameyang. But even a three word

window would not yield
”
scoring“ as a context feature of Aubameyang.

Generating the list of language element and context feature tuples and counting how often a distinct

tuple occurs in the training data is the first step of the DT computation pipeline in the JoBimText

Framework. This step is done in the Context Feature Extractor. The full computation pipeline is

shown in Figure 2.4.

Once the Context Feature Extractor terminates, the frequencies of the occurring language elements

(Language Element Count) and the context features (Feature Count) are summed up, since these

counts are needed for the computation of the significance of term-feature pairs with measures im-

plemented in Frequency Significance Measure; for instance LMI or PMI (see section 2.4).

Next, the generated data is pruned (Pruning). Three parameters are used for pruning. If a term-

feature pair occurs less than t times or is less significant than s, the pair is discarded. Also, for

every term only the p most significant features are kept. See Table 2.3 for a summary of the pruning

parameters.

Pruning is an important step to make the computation scalable. According to [Biemann and Riedl,

2013], the whole DT, using 120 million sentences as corpus, can be computed on a small Hadoop clus-

ter (64 cores on 8 servers) in
”
well under a day“. Apart from that pruning makes sense semantically.

Insignificant term-feature pairs should not contribute to the paradigmatic similarity of terms.
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Figure 2.4: The DT computation workflow in the JoBimText framework; image from Biemann and Riedl

[2013]
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The final steps of the DT computation include aggregating the terms by feature (Aggregate per

feature) and sorting the list of term-feature pairs by significance.

The resulting list makes it possible to calculate a second-order (paradigmatic) similarity between

language elements using Equation 2.6.

sim(t1, t2) =
∑

f ∈ ranked f eatures(t1, p)∩ ranked f eatures(t2, p)

∧ ( f (t1)> t ∧ f (t2)> t)∧ (score( f )> s ∧ score( f )> s)1
(2.6)

Table 2.4 provides the function definitions used in the above similarity function:

Function Description

f (t) frequency of a language element

score( f ) significance score of a context feature

ranked f eatures( f , p) return the p most significant features

Table 2.4: Function definitions for the similarity function

Thereby, p plays an important role. Infrequent terms naturally have on average less features than

frequent terms. Thus, the definition of distributional similarity as stated above is biased towards

more frequent terms. Consider an infrequent term having only 500 features and p being 1000. Now,

this infrequent term can at best reach a similarity score of 500 with any other term. Hence, it is

important not to choose a large number for p. On the other hand, p should of course also not be

too small.

2.6 Classification

Machine Learning can be divided into several fields including supervised learning and unsupervised

learning. Unsupervised learning is about finding structures and patterns in data. A common task

in unsupervised learning is to divide data into coherent clusters/classes. In contrast to unsupervised

machine learning in supervised learning class labels for the data at hand are available. Then, the

task is to come up with general rules on what defines the present classes. These general rules can

be remembered in a model, which a classifier can use to assign class labels to new data points. For

example in our thesis, we want to learn what defines antonymy from a set of data points belonging

to each one pair of words and information about whether the pair consists of antonyms or not. In

the following, classification is introduced in a more thorough and formal way.

Classification is the task of assigning a class label y to a feature vector x = (x1, x2, x3, ..., xk)
where x f is called a feature value in the range v als( f ) of the feature f and k is the number of

features. Classifiers are trained on a training set T consisting of m labeled instances of the form

(x(i), y (i)) = (x (i)1 , x (i)2 , x (i)3 , ..., x (i)k , y (i)) with i = 1, . . . , m.
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There are plenty of different classification algorithms. According to Domingos [2012] learning algo-

rithms differ along three dimensions:

� the representation used, which is called the hypothesis space of the classifier

� the evaluation function used (also called objective function or scoring function)

� the optimization technique, which is used to find the best classifier

Table 2.5 shows some hypotheses spaces together with example algorithms that use the type of

representation.

Representation Example algorithms

Instances K-nearest neighbors, Support vector machines

Hyperplanes Naive Bayes, Logistic regression

Decision trees Decision trees, Random forests

Table 2.5: Common hypotheses spaces of classifiers

In the following, we give a short introduction to each of the example algorithms in Table 2.5.

2.6.1 Naive Bayes

Naive Bayes methods are a set of classifiers that use the Bayes’ theorem to make predictions:

P(y, x1, ..., xn) =
P(y)P(x1, ..., xn|y)

P(x1, ..., xn)
(2.7)

The classifiers are called
”
naive“, because they make the assumption that every pair of features is

statistically independent:

P(x i|y, x1, ..., x i−1, x i+1, ..., xn) = P(x i|y) (2.8)

Using the Bayes’ theorem and the
”
naive“ assumption, the probability of a class y given a feature

vector x can then be calculated in the following way:

P(y, x1, ..., xn) =
P(y)
∏n

i=1 P(x i|y)
P(x1, ..., xn)

(2.9)

Since P(y, x1, ..., xn) is constant for a feature vector and any class, the class ŷ with the highest

probability is chosen as prediction:

ŷ = argmax
x

P(y)
n
∏

i=1

P(x i|y) (2.10)
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Different naive Bayes classifiers then differ by how the distribution of P(x i|y) is modeled. Despite

the
”
naive“ assumption naive Bayes classifiers can be very good at classification tasks in NLP, for

example text categorization [Rennie et al., 2003].

2.6.2 K-Nearest Neighbors

The k-nearest neighbor classifier (k-NN) is one of the simplest approaches of instance-based learning.

The algorithm does not rely on a complex training, instead it just memorizes the training examples.

For the classification of a feature vector the algorithm determines the k nearest training examples to

the feature vector. Then, the new sample gets labeled with the class that the majority of the nearest

k training examples are labeled with. Figure 2.5 illustrates the classification procedure.

Figure 2.5: Example of a classification with a 3-nearest neighbors classifier. The new sample (in grey) is

assigned to class y2.

Two parameters are of importance for k-NN: the value k and the used distance function. A too small

value of k makes the classifier vulnerable to noise in the training examples, a large value of k may

lead to too many other (distant) samples influencing the prediction. Common distance function are

the Manhattan distance

manhat tan(a, b) =
k
∑

i=1

|ai − bi| (2.11)

, the Euclidean distance

eucl idean(a, b) =

√

√

√

√

k
∑

i=1

(ai − bi)2 (2.12)

and the cosine similarity.
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cosine(a, b) =

∑k
i=1 ai bi
Ç

∑k
i=1 ai

Ç

∑k
i=1 bi

(2.13)

2.6.3 Logistic Regression

Although the name suggests otherwise, logistic regression is a statistical model, which can be used

for classification. Logistic regression is a generalized linear model, meaning it solves a problem of the

form:

hθ (x) = f (θTx + θ0) (2.14)

Thereby, f (.) is called an activation function. In the case of logistic regression the activation function

is the logistic sigmoid function σ(a) = 1
1+exp(−a) .

The parameters/weights θ can be determined using maximum likelihood.

Assuming that

P(y = 1|x;θ ) = hθ (x)P(y = 0|x;θ ) = 1− hθ (x) (2.15)

or more compactly written

p(y|x;θ ) = (hθ (x))
y(1− hθ (x))

1−y (2.16)

the likelihood of the parameters is:

L(θ ) =
m
∏

i=1

(hθ (x
(i)))y

(i)
(1− hθ (x

(i))1−y(i) (2.17)

Thus, the log likelihood is:

l(θ ) =
m
∑

i=1

y (i) · log h(x (i)) + (1− y (i)) log(1− h(x (i))) (2.18)

The derivative of the log likelihood function is:

δ

δθ j
l(θ ) = (y − hθ (x))x j (2.19)
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Having the derivative of the log likelihood function, the parameters maximizing this function can

for instance be found with the gradient ascent algorithm or more advanced algorithms for solving a

convex optimization problem.

Logistic regression is a standard linear classifier, which does not need long for training and classifi-

cation even if there are lots of features.

2.6.4 Decision Trees

There are two main types of decision trees in Machine Learning. First, classification trees and

second regression trees. Since this is a chapter about classification, we will focus on the former ones.

Classification trees define how a class label is predicted based on the feature values of an instance.

The nodes of classification trees consist of decision rules based on one of the features. The leaves of

the tree represent the class labels, which will be predicted if the classification process of an instance

ends in the particular leaf. A simple example of a classification tree is shown in Figure 2.6.

is affix == 1

Antonym in sen cooc > 0.5

Antonym Synonym

yes no

yes no

Figure 2.6: Example of a classification tree

Based on the two features is affix and in sen cooc word pairs are classified as either synonyms or

antonyms. is affix has the feature value 1 if one of the words can be formed by concatenating the

other word with an affix indicating antonymy and 0 if not. in sen cooc is the normalized probability

of the two words occuring together in one sentence. According to our simple toy example, a word

pair is classified as being antonymous if is affix is 1 or if the words are very likely to co-occur in one

sentence.

Algorithms for classification tree learning usually recursively construct the trees top down. In every

step the feature is chosen that best splits the training examples. Therefore, a metric is used that

defines how much is gained by splitting on a feature. Then, a new node is created containing the

decision rule on the feature and the steps are repeated for the new subsets until there are only leaves

that contain instances all having the same class. One popular metric for choosing on which feature

to split is the Information Gain (IG), which is e.g. used in the decision tree learning algorithm C4.5

[Quinlan, 1993].

IG(T, f ) = H(T )−
∑

v∈v als( f )

|{x ∈ T |x f = v }|
|T |

·H({x ∈ T |x f = v }) (2.20)
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IG relies on the Entropy H, which is a measure of impurity.

H(X ) = −
n
∑

i=1

p(x i) · lg(p(x i)) (2.21)

Intuitively, the Information Gain thus measures how much the impurity or uncertainty is reduced

making a distinct split. Thereby, H(T ) is the impurity before the split and the sum is the impurity

after the split. One problem of Information Gain is that there is a bias towards multivalued attributes.

One of the advantages of decision trees is that they do not need much data preparation. Decision

trees can handle nominal or ordinal and numerical data out of the box. For handling numerical data

the construction algorithm just tries every possible split for the present range of feature values.

A disadvantage of decision trees is that they tend to overfit if the tree is not pruned at all.

2.6.5 Random Forests

The random forest algorithm [Breiman, 2001] constructs several decision trees from the training

data. In fact, the algorithm splits the training set randomly into a number of smaller training

sets and constructs one decision tree for each split. This technique is called bagging. Also, during

construction of the trees at each node generation step only a random subset of the features is being

regarded. This technique is called random split selection. To predict a label, the output of all of the

created trees is combined. Since the random forest algorithm bases its decision on several decision

trees, and thus several distinct classifiers, the algorithm falls into the category of ensemble classifiers.

Both bagging and random split selection reduce the risk of overfitting making random forest a good

and often superior alternative to using just one decision tree.

2.6.6 Support Vector Machines

Support Vector Machines (SVMs) try to separate the data at hand by a hyperplane. A hyperplane’s

dimension is one lower than the dimension of the data. In case of two-dimensional data the hyper-

plane is thus a line (see Figure 2.7 for a visualization). The hyperplane is chosen that has the largest

margin to the two classes to separate. Note that a SVM can only separate two classes natively.

Multi-class classification is done in a one-vs-all strategy, hence fitting one classifier per class. Since

the margin to the classes is maximized the classifier is a maximum-margin classifier. The name

Support Vector Machine stems from the support vectors that define the chosen hyperplane. If the

data is not linearly separable the data can still be separated using the kernel trick, which means

projecting the data into a higher dimensional space.

2.6.7 Evaluation

To evaluate a classifier it is advisable to use a test set with instances whose class is known. Then,

the predictions of the classifier on the test set can be compared to the true labels. In the following
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Figure 2.7: Example of a maximum-margin hyperplane/line splitting two classes

we assume that there is a class c1. If the classifier predicts class c1 for an instance and the instance

is in fact labeled as c1, the output is called a true positive (T P). Not predicting c1 when in fact the

true label is c1 yields a false negative (FN). If an instance is classified as belonging to c1, but it

does not, this is called a false positive (F P). A true negative (T N) means that the instance does not

belong to c1 and that is what the classifiers predicts, too. Table 2.6 summarizes the cases described.

Predicted class:

c1 ¬c1

True class:
c1 T P FN
¬c1 F P T N

Table 2.6: Confusion matrix

Based on the number of true positives, false negatives, false positives and true negatives, a number

of measures can be defined, which all provide a rating between 0 and 1. A straight-forward metric

is the accuracy, which is the percentage of instances whose prediction is correct. Accuracy is not

always a good evaluation metric. For instance, sometimes it is very important to either have few

F Ps or to have few FNs. Then recall and precision come in handy. Recall is the fraction of the

objects that belong to c1 that are classified as such. Precision is the fraction of the objects classified

as c1 that truly belong to c1. It is easy to obtain a recall of 1: Just classify all instances as c1. It

is also easy to obtain a precision of 1: Just classify no instances as c1. Based on these observations

it makes sense to define another measure: The F-score. It combines recall and precision. In case of

β = 1 it is the harmonic mean of recall and precision. Note that in the following we write F-score if

we mean Fβ -score. Table 2.7 provides an overview of the described measures.
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Metric Definition

Recall T P
T P+FN

Precision T P
T P+F P

Accuracy T P+T N
T P+F P+T N+FN

Fβ -Measure
(1+β2)·Recal l·Precision
(β2·Precision)+Recal l

Table 2.7: Metrics for evaluating a classifier’s performance

In our example from above we deal with a binary classifier. A binary classifier decides if an object

belongs to a class (in our example class c1) or not. If there are multiple classes, recall, precision

and F-score can be calculated for every class. There are different ways to get one final F-score

for the multi-class case. The F-score can be calculated globally, which means counting the total

number of T Ps, FNs and F Ps and directly computing the F-score from these numbers. This yields

a so called micro-averaged F-score. Another way to receive one F-score in the presence of multiple

classes is combining the F-scores of the single classes. The macro-averaged F-score is the (weighted

or unweighted) mean of the F-scores for the single classes. If we provide a F-score in the following,

we either refer to the binary case or are in fact providing a macro-averaged weighted F-score.

It is often difficult to obtain labeled data. The acquired data then again has to be split into training

and test data. The smaller the training set and the test set are, the less reliable are the results of the

evaluation. To get reliable evaluation results a cross-validation is often used. For a cross-validation

the labeled data is split N times. Now, evaluation scores are computed N times for N different

training and test sets. The test set is one of the N folds. The training data is made up of the rest

N − 1 folds. In the end, evaluation scores can be reported taking the mean of the scores for the N

runs.
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3 Previous Work

Methods for the identification of antonymy can roughly be categorized into three classes. Some of

the methods deal with distinguishing antonymy from synonymy, other methods try to measure the

degree of contrast between two words. Another branch of research is the mining of antonym pairs

from text. Each of the three classes gets their own section in this chapter. Lots of the approaches

for the identification of antonymy use patterns to reach the goal. Thus, we conclude this chapter

with a section on general pattern-based approaches for the discovery of semantic relations between

words.

3.1 Distinguishing Antonyms from Synonyms

Often the research goal is to distinguish antonyms from synonyms, a more specific task than descrimi-

nating antonyms from non-antonyms. The eligability of this task is motivated by the common claim,

that measures of distributional similarity normally cannot distinguish synonyms from antonyms

[Mohammad et al., 2013].

Some researchers use pattern-based approaches to differentiate between antonymy and synonomy,

using either hand-coded [Lin et al., 2003], or automatically extracted patterns [Schulte im Walde and

Köper, 2013, Turney, 2008]. Others introduce new distributional measures to distinguish synonyms

from antonyms in an unsupervised manner [Santus et al., 2014, Scheible et al., 2013].

It is difficult to compare classification results, since lots of different datasets are used.

Lin et al. [2003] present two methods to retrieve synonyms from distributionally similar words.

The first method makes use of two patterns [either <X> or <Y>] and [from <X> to <Y>]. It

relies on the hypothesis that if two words X and Y appear in one of the patterns, they are very

unlikely synonymous. At this point, we will not discuss the second method, which relies on bilingual

dictionaries, since it suffers from a very low recall.

Lin et al. [2003] evaluate their methods on a custom dataset containing 80 randomly drawn pairs of

synonyms and 80 randonmly drawn pairs of antonyms from Webster’s Collegiate Thesaurus [Kay,

1988].

The pattern-based approach yields a precision of 86.4% and a recall of 95%. These numbers look

promising at first. But the antonyms in the dataset of Lin et al. [2003] were selected from a list

of high-frequency terms. Mohammad et al. [2013] claim, that Lin Patterns have a low coverage for

their antonym set.

Turney [2008] proposes a unified approach to analogies, synonyms, antonyms, and associations.

The approach consists of the PairClass algorithm (as refered to by the author), a feature extraction

algorithm, and supervised classification based on a Support Vector Machine (SVM). For each word

pair, PairClass extracts a feature vector, which consists of the logarithmic frequencies of the top k *
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N patterns containing the word pair. k was set to 20; N denotes the number of word pairs. Before

applying supervised classification, the feature vectors are normalized to unit length.

Turney [2008]’s evaluation is based on a set of 136 ESL questions. He reports an accuracy of 75%

as a result of a ten-fold cross-validation. However, his dataset is not stratified. According to him,

always guessing the majority class would lead to an accuracy of 65.4%.

Schulte im Walde and Köper [2013] present a pattern-based approach for distinguishing semantic

relations for German words. They created a custom dataset drawn from GermaNet [Hamp and

Feldweg, 1997], containing word pairs consiting of antonymous, synonymous and hyponymous nouns,

verbs and adjectives. Each of the classes (e.g. antonymous nouns or synonymous adjectives) contains

at least 61 and at most 97 pairs.

The authors extracted lexico-syntactic patterns between the word pairs and computed pattern-

frequency vectors. Using a nearest-centroid classifier they report an F-score of 70.75% on the task

of distinguishing antonyms from synonyms. Interestingly, non of the generalisations of the patterns,

e.g. replacing determiners with their POS-tag, which were tried by the authors, improved the result.

The research goal of Scheible et al. [2013] is to show, that adjectival synonyms and antonyms can

be distinguished via a word space model by introducing a new distributional measure. Instead of

taking into account all words in a window of a certain size for feature extraction, they experiment

with only taking into account words of a certain part-of-speech.

The intuition behind that is demonstrated on the example of the “happy/sad man” or the “un-

happy/sad man”. Whilst the synonym pair unhappy/sad and the antonym pair happy/sad are both

likely to co-occur with the noun man, the set of verbs co-occuring with “happy/sad man” will most

likely be different from the set of verbs co-occuring with “unhappy/sad man”. Thus, Scheible et al.

[2013] basically suggest to characterize an adjective by the verbs, which most likely co-occur with it.

Scheible et al. [2013]’s approach achieves 70.6% accuracy in the antonym/synonym classification task

on a dataset consiting of 97 antonym pairs and 97 synonym pairs from GermaNet.

Another distributional measure, APAnt, to distinguish antonymy from synonymy is presented in

[Santus et al., 2014]. APAnt is based on the observation that antonyms are often very similiar

except in one dimension of meaning. As one example Santus et al. [2014] present dwarf and giant.

Both are most likely persons, e.g. having two legs, two feet and so on, thus beeing very similar

except in their size. The authors furthermore claim, that the contrasting dimension of meaning is a

very salient one. For example dwarf will often co-occur with words like small or little and giant will

often co-occur with words like big or huge.

APAnt is an adaption of the Average Precision measure. It compares the N most salient contexts of

a pair of antonyms and synonyms. Santus et al. [2014] hypothesise, that synonyms share a number

of salient contexts that is significantly higher than the ones shared by antonyms.

APAnt is evaluated on a dataset containing more than 1000 antonymy-related and 1000 synonymy

related word-pairs obtaining an accuracy of 73% percent on the task of distinguishing antonyms from

synonyms.
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3.2 Computing Word-Pair Antonymy

Methods to compute word-pair antonymy range from the direct utilization [Mohammad et al., 2008]

of WordNet [Miller, 1995] to extending Latent Semantic Analyis [Yih et al., 2012] and training word

embeddings specific to the task of antonymy detection [Ono et al., 2015].

Antonymy identification is mostly evaluated on the GRE antonym question task, with F-scores

ranging from 60% up to 90%. The GRE dataset consists of over 1000 closest-opposite questions. A

closest-opposite question consists of a target word, which has to be mapped to the word out of five

given words, which is the closest opposite of the target.

Mohammad et al. [2008] assume, that all word-pairs of contrasting thesaurus categories are indeed

antonyms. Contrasting thesaurus categories are computed by determining if one category contains a

word, which can be formed by concatenating a word from the other thesaurus category with affixes

like -in or -un, which commonly indicate antonymy.

On the GRE dataset, Mohammad et al. [2008]’s method achieves an F-score of at most 70%.

Yih et al. [2012] introduce a word vector space, which incorporates synonym and antonym information

from thesauri, where antonyms lie on opposite sides of a sphere.

Yih et al. [2012] report an F-score of 87% on the GRE dataset.

Ono et al. [2015] train word embeddings specific to the task of identifying antonymy. They use both

WordNet and Roget to obtain synonym and antonym pairs for the supervised training of their word

embeddings. Their objective function, which is maximized to train the word embeddings, is designed

to produce similar embeddings for synonyms and embeddings with low similarity for antonymous

word pairs.

Choosing the response with the lowest similarity score of the respective word embeddings to the

target word on the GRE dataset, Ono et al. [2015] report an F-score of 89%.

3.3 Antonym Extraction

Apart from classifying a word pair as either antonymous or not or measuring the contrast of two

given words by comparing word embeddings another approach is to generate a list of antonymous

word pairs. Of course the resulting list can also be used to solve classification tasks as Mohammad

et al. [2008] do with their list generated from lexical resources on the GRE task. Lobanova [2012]

extract antonyms from Dutch text using first plain text patterns, second part-of-speech patterns and

third dependency patterns. The patterns are extracted using a seed set of antonymous word pairs

and then ranked by reliability meaning precision of extraction. Their evaluation hints that there is

no improvement with dependency patterns over surface part-of-speech patterns and they recommend

part-of-speech patterns for antonym extraction.
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3.4 Pattern-based Discovery of Semantic Relations

Several of the methods presented previously for the automatic identification of antonymy rely on

pattern information. Lin et al. [2003] used two hand-coded patterns to discover antonyms and distri-

butionally similar pairs of words, Turney [2008] described a pattern-based approach to differentiate

between different semantic relations including antonymy, Schulte im Walde and Köper [2013] dis-

tinguished between the relations hyponymy, synonymy, and antonymy of German word pairs using

patterns and Lobanova [2012] compared different pattern-based approaches for Dutch antonym ex-

traction. Since patterns play an important role in research on antonymy identification, we will shortly

cover other research on patterns for the identification of semantic relations other than antonymy.

[Hearst, 1992] was the first who used patterns for the automatic mining of hyponym relations. Like

Lin et al. [2003], who later presented two patterns for the identification of antonyms, Hearst [1992]

introduced a handful of patterns to extract hypernym/hyponym pairs from text. See Table 3.1 for

the patterns used.

Pattern Example

N P0 such as {N P1, N P2 ..., (and |
or)} N Pn

“The bow lute, such as the

Bambara ndang, ...”

such N P as {N P, }* {(or | and)}
N P

“... works by such authors as

Herrick, Goldsmith, and

Shakespeare.”

N P {, N P}* {,} or other N P “Bruises, wounds, broken bones or

other injuries ...”

N P {, N P}* {,} and other N P “... temples, treasuries, and other

impor- tant civic buildings.”

N P {,} including {N P ,}* {or |
and} N P

“All common-law countries,

including Canada and England ...”

N P {,} especially {N P ,}* {or |
and} N P

“... most European countries,

especially France, England, and

Spain.”

Table 3.1: Hearst patterns and examples (adapted from [Hearst, 1992])

Snow et al. [2005] generalized Hearst’s approach. They collected noun pairs from corpora and then

labeled them
”
hypernym pair“ or

”
no hypernym pair“. Then, they extracted all the dependency

paths possible between the noun pairs. On the pairs, their labels and information about with which

of the dependency paths the pairs were connected they trained a hypernym classifier. The classifier

learned which of the possible dependency paths were indicators for hypernymy. Among the paths

with the best precision-recall trade-off for finding hypernym pairs were the paths described by the

Hearst patterns.

30



4 Methods

In this chapter, our approach on learning whether words are antonyms or not is described. We follow

a supervised methodology whose general setting is described in Section 4.1. For supervised learning

training data is required and features have to be defined. Thus, this chapter contains both a section

on acquiring training data and a section on feature engineering. The chapter is concluded with a

section on finding the best feature combination and deciding on which classifier to use.

4.1 General Setting

We trained separate classifiers for the part-of-speech categories adjectives, nouns and verbs. The

classifiers are trained on instances of the training data with antonym pairs and non-antonym pairs

from WordNet and extracted features from several sources. We cross-validated our classifiers on

the data acquired from the lexical resource as one mean to not overfit the training data and later

evaluate our model trained on the whole training data on different evaluation sets from literature.

A basic overview of the process gives Figure 4.1.

Figure 4.1: Supervised Classification

4.2 Training Data

To our best knowledge no English data set exists that fulfills the following criteria: The data set

contains at least antonymous and synonymous word pairs and pairs related by hyponymy. The data

set is large enough for training meaning it contains at least 100 word pairs per class. Hence, we

compiled a new data set from WordNet.

When compiling the data sets we took care of the following: We did not include word pairs containing

a word that occurs less than 100 times in a 105 million sentences corpus consisting of news articles
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in the respective language. This threshold should make sure, that we can learn something useful

from a word pair, and that what is learned is not based upon unusual random occurrences of the

pair’s words. We made sure that we did not include one word more than once in the training data.

This helps to prevent the classifiers from learning that a word is e.g. a prototypical antonym or

non-antonym. For example if we had several pairs containing the word “bad” in our training set

and all pairs had the class label antonym, the following might happen. We split the data for a

cross-validation such that we have a pair containing ”bad“ in the training set and the test set. Now,

the classifier might just learn that “bad” is a prototypical antonym and we could get good test results

in spite our classifier did not learn what generally indicates antonymy. But, since we only include a

word in at most one pair of the whole data, this cannot happen. Every possible split of our data is

a delexicalized one. See [Levy et al., 2015] for more information on delexicalization of the training

data for learning semantic relations.

Which relations were included in the data set was based on the information available in WordNet.

WordNet provides information about nouns, adjectives and verbs and about relations such as syn-

onymy, antonymy, hypernymy/hyponymy and holonymy/meronymy. Co-hyponyms can be extracted

with the help of hypernymy/hyponymy relations. WordNet does not contain hypernymy/hyponymy

and holonymy/meronymy information for adjectives and verbs. Thus our adjective and verb data

contains only synonymous, antonymous and unrelated word pairs. We determined unrelated words

by extracting words with a high path length between the word’s synsets.

We stratified our data sets to get equal prior probabilities for each class, antonyms and non-antonyms.

Finally, we obtained a data set we will refer to as WordNetPairs (see also Table 4.2).

ANT SYN HYP COHYP MER UNR

WordNetPairs

NOUN 466 94 93 93 93 93

ADJ 999 450 449

VERB 310 155 155

Table 4.2: Training data

4.3 Feature Engineering

For corpus-based feature extraction we used different corpora whereby each of them fulfilled a distinct

and special need of the respective feature extraction algorithm. For one, we used a corpus of random

sentences from English news texts from the years 2005 to 2010, News105M. Each of the sentences was

POS-tagged and lemmatized and also parsed with a dependency parser. In case full texts (meaning

coherent sentences) were needed, we used a corpus consisting of news articles, the AQUAINT-2

corpus [Vorhees and Graff, 2008]. Furthermore, we worked with the Google N-gram corpus [Brants

and Franz, 2006]. This corpus delivers unigram to 5-gram counts compiled from over 95 billion
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sentences, thus being by far the largest corpus used. Apart from these corpora, we used information

about words that was gained in an unsupervised training process. First, we used a DT, computed

with the JoBimText-Framework on News105M. Second we used word embeddings trained by Mikolov

et al. [2013]. Not a single feature extraction algorithm is knowledge-based meaning it uses information

from manually tagged resources (as e.g. WordNet).

4.3.1 Morphology

Morphological clues, prefixes and suffixes indicating antonymy, are easy to spot and precise (for

instance on the adjective data we attained a precision of about 90% of the morphological clues).

Unfortunately, only a subset of all antonym pairs comes with these indicators. We used the mor-

phological pattern rules from Mohammad et al. [2013], which are visualized in Table 4.3. Then,

we incorporated one binary feature indicating whether one of the morphological antonym patterns

matches a word pair or not.

PatternID Word 1 Word 2 Example Pair

1 X antiX clockwise-anticlockwise

2 X disX interest-disinterest

3 X imX possible-impossible

4 X inX consistent–inconsistent

5 X malX adroit–maladroit

6 X misX fortune–misfortune

7 X nonX aligned–nonaligned

8 X unX biased–unbiased

9 lX illX legal–illegal

10 rX irrX regular–irregular

11 imX exX implicit–explicit

12 inX exX introvert–extrovert

13 upX downX uphill–downhill

14 overX underX overdone–underdone

15 Xless Xful harmless–harmful

Table 4.3: Morphological antonym pattern rules

Apart from the hand-coded patterns, we added three more features to address morphological clues.

For one, we added another binary feature specifying if one of the words is a part of the other one.

Also, we split the two words into their syllables1 and added the Jaccard distance (see Equation 4.1)

of the two syllable sets as feature.

1 We used PyHyphen for this task: https://pypi.python.org/pypi/PyHyphen/
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Jaccard(A, B) =
|A∩ B|
|A∪ B|

(4.1)

Furthermore, we added one feature carrying the normalized Levenshtein distance [Levenshtein, 1966]

of the two words. The Levenshtein distance denotes how many deletions, insertions or substitutions

are needed to transform one word into the other. To get a normalized count between 0 and 1 the

distance is divided by the word length of the longest word of the pair.

The features of this subsection are later referred to as feature category morpho.

4.3.2 Distributional Similarity

If a word pair is antonymous it is very likely that one word is present in the top distributionally

similar words of the other (at least regarding distributional similarity computed with the JoBimText

framework using standard parameters). For instance “bad” is the most distributionally similar word

of “good” (see Table 4.4 for the top 10 most distributionally similar words of “good”).

Word Similarity score

bad 112

excellent 99

decent 79

great 72

solid 65

strong 56

poor 55

tough 55

outstanding 54

terrific 54

Table 4.4: The top distributionally similar words for “good”

This does not always hold and the most distributionally similar word of a word often is in fact a

synonym. But our experiments show that incorporating features that state whether a word is present

in the top n, with n ∈ {1,3, 5,10, 20}, distributionally similar words helps our classifiers. Figure 4.2

shows how often it is the case for antonymous and synonymous adjectival word pairs that one word

occurs in the top n similar words of the other.

Mohammad et al. [2013] also researched how antonymy and synonymy affects distributional similar-

ity. They used the definition of distributional similarity in Lin [1998] to compute similarity scores

on data drawn from WordNet. In their studies, antonym pairs had an average similarity of 0.064,

random pairs of 0.036 and synonym pairs of 0.056. These results also underpin the hypothesis that

antonyms are even more distributionally similar than synonyms.
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Figure 4.2: Top distributional similarity for antonym and synonym pairs

Intuitively, this makes sense, since antonymy mostly denotes very high similarity of two things in all

except one dimension. Santus et al. [2014] illustrate this idea on the example of a dwarf and a giant.

Both are persons sharing plenty of properties, except one is small and the other big.

The distributional features computed with the help of the JoBimText framework are later referred

to as feature category jb-sim. We also included the cosine similarity of the SKIP-gram word embed-

dings [Mikolov et al., 2013] of the two words as another measure of distributional similarity. Word

embeddings represent words as vectors, that are computed with neural networks on word transition

probabilities. The word embedding similarity of the words is later referred to as feature category

word-embed.

4.3.3 Co-occurence Probabilities

Charles and Miller [1989] proposed that antonyms relatively frequently co-occur in the same sentence.

This hypothesis was later backed by evidence in several experiments. Justeson and Katz [1991] tested

the hypothesis with a list of 35 antonyms stating that in a corpus of 25 million words, all pairs yield
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highly significant numbers of co-occurrences. Fellbaum [1995] also found supporting evidence testing

with 47 antonym pairs on the Brown corpus [Francis and Kucera, 1979]. Mohammad et al. [2013]

computed PMI scores of antonyms, synonyms and random pairs from WordNet. The average PMI

scores of antonyms were significantly higher than the ones of synonyms and random pairs (see also

Table 4.5).

Type of relation Average PMI

antonyms 1.471

synonyms 0.412

random pairs 0.032

Table 4.5: PMI scores of antonyms, synonyms and random pairs from WordNet (adapted from Moham-

mad et al. [2013])

We computed LMI scores for all antonymous and synonymous pairs in WordnetPairs regarding a

window of one sentence using News105m as a corpus.
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Figure 4.3: Intra-sentence association scores of antonyms and synonyms
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We chose LMI over PMI to not involuntarily prefer infrequent pairs. The resulting scores can be

seen in Figure 4.3. Note that we mapped non-existing LMI scores, due to pairs never co-occurring

in a sentence, to zero and that we plotted the logarithm of the actual LMI scores incremented by

one to fit the x axis into a range from zero to fifteen. The figure clearly shows that antonym pairs

have on average higher association scores than synonyms. 583 of 999 synonym pairs in our data set

never occur together in one sentence in News105m. In contrast only 191 of 999 antonym pairs do

not co-occur at least once in a sentence.
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Figure 4.4: Intra-paragraph association scores of antonyms and synonyms

However, words can occur together in a sentence significantly more often than chance because of

several reasons. Word pairs from multi-word expressions or collocations or word pairs that are in

any other form semantically related can have high association scores, too. Thus, LMI scores of a

word pair can only serve as one feature separating antonyms well from unrelated words and not as

well from synonyms. A cross-validation on our antonymy/synonymy data from WordNet using only

this feature and Decision Trees leads to an average F-score of about 0.68.

We later refer to the intra-sentence association scores as feature category sen-cooc.
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Having the intuition in mind that synonyms could occur more often than antonyms in different

sentences of a paragraph since writers do not want to repeat words, we also computed LMI scores

for paragraph windows. Therefore, we counted the number of times the word pairs co-occurred in

a window of three sentences excluding them co-occurring in the same sentence in the AQUAINT-2

corpus. The resulting scores are visualized in Figure 4.4.

Unfortunately, our paragraph co-occurence hypothesis does not hold. Antonyms still occur more

often together in a paragraph then synonyms. But the paragraph co-occurrence scores are ap-

parently still slightly useful as a feature for our classifiers since cross-validating on the WordNet

antonym/synonym data yields a F-score of 0.57.

We later refer to the intra-paragraph association scores as feature category para-cooc.

4.3.4 Association Scores of Pairs with Context Words
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Figure 4.5: LMI scores of antonymous and synonymous pairs with “both”
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Following work on lexical substitution from Szarvas et al. [2013], we added LMI scores of the pairs

with words occurring together with the pairs in a sentence as features. This is an easy way to

incorporate syntactic information into our model. A word pair that often occurs in the pattern

[both <X> and <Y>] will produce high association scores with the words “both” and “and”. Also,

a pair that often occurs in the pattern [<X> or <Y>] will produce high association scores with

“or”. Figure 4.5 shows that antonyms tend to be more associated with
”
both“. At the beginning

we included association scores of the pairs with 10000 very frequent words in News105m, later we

settled only for words that occured in patterns highly associated with the antonyms in our training

set.

The features of this subsection are later referred to as feature category news105-context.

The next step is not to measure association of pairs with words in their context but to measure the

association of pairs with patterns connecting them in a sentence.

4.3.5 Lin Patterns

As mentioned in section 3.1 Lin et al. [2003] proposed two patterns to distinguish synonyms from

antonyms, [either <X> or <Y>] and [from <X> to <Y>]. Simplifying their pattern-based method

they marked a pair as synonymous if it did not occur or only seldomly occurred with the two

patterns using search engine query results (for a more complete explanation of the method we refer

to section 3.1). Lin et al. [2003] reported a precision of 86.4% and a recall of 95% on a data set

containing 80 pair of synonyms and 80 pairs of antonyms. The reported scores combine to a F-score

of about 90%. As the experiments were conducted with a search engine (even a search engine that

is not existent any more, by name: AltaVista), they can not be reproduced precisely. We decided

to check the usefulness of the Lin Patterns not with a recent search engine but with regex searches

in two corpora: News105M and the Google N-gram corpus [Brants and Franz, 2006]. 161 of the

antonym pairs from WordNetPairs do occur in the pattern [either <X> or <Y>] in News105M,

only one synonym pair co-occurs with the pattern. 358 antonym pairs co-occur with [either <X> or

<Y>] in the Google N-gram corpus and only two synonym pairs. 440 of the antonym pairs appear

in at least one of the Lin patterns in at least one of the corpora. This holds for only 9 synonym pairs.

Table 4.6 and Table 4.7 provide counts for the antonym and synonym pairs regarding all possible

combination of patterns and corpora.

Corpus

News105m Google N-gram both

Pattern

[from <X> to <Y>] 180 115 212

[either <X> or <Y>] 161 358 390

both 245 385 440

Table 4.6: Number of times antonym pairs occurred with Lin patterns

From our findings we conclude that Lin patterns are very precise but do not offer a high recall. 559

of the 999 antonym pairs can not be found in at least one pattern in the combined corpora.

We later refer to the association scores of pairs with Lin patterns in News105M as news105-lin.
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Corpus

News105m Google N-gram both

Pattern

[from <X> to <Y>] 1 5 6

[either <X> or <Y>] 1 2 3

both 2 7 9

Table 4.7: Number of times synonym pairs occured with Lin patterns

4.3.6 Part-of-Speech Patterns

We relied on the work of Lobanova [2012] and choose to incorporate part-of-speech pattern infor-

mation into our classification process. Lobanova [2012] compared surface textual patterns, surface

part-of-speech patterns and dependency patterns for automatic opposite extraction. She claims to

not have found overall improvement with dependency patterns over surface part-of-speech patterns

and recommends part-of-speech patterns for opposite extraction. Unlike Lobanova [2012], we do not

automatically extract a list of opposites. Instead, we train classifiers following the methodology of

Snow et al. [2005] who trained a hyponymy-only classifier. We opt to do the same for antonymy.

The intuition behind Snow et al. [2005]’s and our approach is that if word pairs in a small list of a

designated relation are highly associated with some patterns, other word pairs that are also highly

associated with these pattern are likely to be related in the same way.

At first, we extracted all patterns that co-occurred at least once with antonyms from our training

data sets in News105m. Table 4.8 lists the patterns that most often occur with adjective antonyms

from our training set.

Pattern Occurences

<ANT>/JJ and/CC <ANT>/JJ 92456

<ANT>/JJ or/CC <ANT>/JJ 21018

the/DT <ANT>/JJ and/CC <ANT>/JJ 12062

<ANT>/JJ and/CC <ANT>/JJ ,/, 11000

,/, <ANT>/JJ and/CC <ANT>/JJ 8220

<ANT>/JJ and/CC <ANT>/JJ ./. 8082

of/IN <ANT>/JJ and/CC <ANT>/JJ 7895

both/DT <ANT>/JJ and/CC <ANT>/JJ 7609

between/IN <ANT>/JJ and/CC <ANT>/JJ 6336

<ANT>/JJ ,/, <ANT>/JJ 6212

<ANT>/JJ or/CC <ANT>/JJ ,/, 4607

in/IN <ANT>/JJ and/CC <ANT>/JJ 4054

,/, <ANT>/JJ and/CC <ANT>/JJ ,/, 3650

<ANT>/JJ or/CC <ANT>/JJ ./. 3646

,/, <ANT>/JJ or/CC <ANT>/JJ 3118

<ANT>/JJ ,/, <ANT>/JJ and/CC 2924

on/IN <ANT>/JJ and/CC <ANT>/JJ 2529
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Pattern Occurences

,/, both/DT <ANT>/JJ and/CC <ANT>/JJ 2003

<ANT>/JJ ,/, <ANT>/JJ ,/, 1895

for/IN <ANT>/JJ and/CC <ANT>/JJ 1811

,/, <ANT>/JJ or/CC <ANT>/JJ ,/, 1803

a/DT <ANT>/JJ and/CC <ANT>/JJ 1759

<ANT>/JJ to/TO <ANT>/JJ 1705

both/DT <ANT>/JJ and/CC <ANT>/JJ ,/, 1496

runners/NNS on/IN <ANT>/JJ and/CC <ANT>/JJ 1468

in/IN the/DT <ANT>/JJ and/CC <ANT>/JJ 1463

<ANT>/JJ and/CC the/DT <ANT>/JJ 1438

between/IN the/DT <ANT>/JJ and/CC <ANT>/JJ 1409

the/DT <ANT>/JJ or/CC <ANT>/JJ 1388

to/TO <ANT>/JJ and/CC <ANT>/JJ 1371

with/IN <ANT>/JJ and/CC <ANT>/JJ 1358

<ANT>/JJ and/CC <ANT>/JJ and/CC 1354

’s/POS <ANT>/JJ and/CC <ANT>/JJ 1346

a/DT <ANT>/JJ or/CC <ANT>/JJ 1315

the/DT <ANT>/JJ and/CC the/DT <ANT>/JJ 1315

<ANT>/JJ and/CC <ANT>/JJ in/IN 1295

,/, <ANT>/JJ and/CC <ANT>/JJ ./. 1269

<ANT>/JJ time/NN <ANT>/JJ 1266

the/DT <ANT>/JJ time/NN <ANT>/JJ 1262

for/IN the/DT <ANT>/JJ time/NN <ANT>/JJ 1182

Table 4.8: Patterns most commonly found with adjectival antonym pairs from training set

Short patterns like [<ANT>/JJ or/CC <ANT>/JJ] and [<ANT>/JJ and/CC <ANT>/JJ] occur

most often with the adjectival antonyms from the WordNet data.

[both/DT <ANT>/JJ and/CC <ANT>/JJ] and [between/DT <ANT>/JJ and/CC <ANT>/JJ],
which we later show are also precise patterns for antonymy identification also among the most

occurring patterns.

Figure 4.6 shows how often the patterns occur in total in the corpus. This distribution of patterns

follows the typical power-law distribution of language elements. Lots of the patterns occur very

infrequently and only some occur very frequently. This typical distribution of language elements was

discovered by Zipf [1929] and also applies for example to the frequency of words.
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Figure 4.6: Distribution of patterns

The extracted patterns were ranked by their association scores with the antonym pairs from the

training set. The top ranked antonym patterns for adjectives are listed in Table 4.9, the ones for nouns

in Table 4.10 and the ones for verbs in Table 4.11. [<ANT>/XX and/CC <ANT>/XX] is among the

top two patterns for XX ∈ JJ , NN , V B. Furthermore, [<ANT>/XX or/CC <ANT>/XX] is among

the top two patterns for XX ∈ JJ , NN , V B. Other interesting patterns are [both/DT <ANT>/XX

and/CC <ANT>/XX] and [between/DT <ANT>/XX and/CC <ANT>/XX]. Lin patterns do

not turn up in any of the top ten ranked patterns.

Pattern LMI score

<ANT>/JJ or/CC <ANT>/JJ 1338.9366

<ANT>/JJ and/CC <ANT>/JJ ./. 1100.8132

<ANT>/JJ or/CC <ANT>/JJ ./. 820.1146

between/IN <ANT>/JJ and/CC <ANT>/JJ 766.0270

<ANT>/JJ and/CC <ANT>/JJ ,/, 739.7385

of/IN <ANT>/JJ and/CC <ANT>/JJ 612.6060

the/DT <ANT>/JJ and/CC <ANT>/JJ 561.0529

both/DT <ANT>/JJ and/CC <ANT>/JJ 507.9798

<ANT>/JJ or/CC <ANT>/JJ ,/, 411.0576

,/, <ANT>/JJ and/CC <ANT>/JJ 353.8351

between/IN <ANT>/JJ and/CC <ANT>/JJ ./. 283.9915

,/, <ANT>/JJ and/CC <ANT>/JJ ./. 275.2062

,/, <ANT>/JJ or/CC <ANT>/JJ ./. 271.1614

in/IN <ANT>/JJ and/CC <ANT>/JJ 245.4885

on/IN <ANT>/JJ and/CC <ANT>/JJ 239.0602

,/, <ANT>/JJ or/CC <ANT>/JJ 238.8114

,/, <ANT>/JJ and/CC <ANT>/JJ ,/, 227.0190

both/DT <ANT>/JJ and/CC <ANT>/JJ ./. 217.2118

42



<ANT>/JJ 1980s/NNS and/CC <ANT>/JJ 216.4160

the/DT <ANT>/JJ 1980s/NNS and/CC <ANT>/JJ 216.4160

Table 4.9: Top ranked antonym patterns for adjectives

Pattern LMI score

<ANT>/NN and/CC <ANT>/NN 811.7324

<ANT>/NN and/CC <ANT>/NN ./. 715.0134

<ANT>/NN or/CC <ANT>/NN 550.9287

a/DT <ANT>/NN and/CC a/DT <ANT>/NN 528.6189

a/DT <ANT>/NN and/CC a/DT <ANT>/NN ./. 419.6441

<ANT>/NN and/CC a/DT <ANT>/NN 374.0532

<ANT>/NN and/CC a/DT <ANT>/NN ./. 366.6803

between/IN a/DT <ANT>/NN and/CC a/DT <ANT>/NN 366.2596

<ANT>/NN and/CC <ANT>/NN ,/, 352.0106

the/DT <ANT>/NN and/CC <ANT>/NN 339.3649

between/IN a/DT <ANT>/NN and/CC a/DT <ANT>/NN ./. 275.5476

<ANT>/NN or/CC <ANT>/NN ./. 217.5345

a/DT <ANT>/NN and/CC a/DT <ANT>/NN ,/, 204.3381

<ANT>/NN and/CC a/DT <ANT>/NN ,/, 177.2604

a/DT <ANT>/NN and/CC <ANT>/NN 170.7638

one/CD <ANT>/NN and/CC one/CD <ANT>/NN 166.1370

the/DT <ANT>/NN and/CC <ANT>/NN of/IN 165.3372

between/IN <ANT>/NN and/CC <ANT>/NN 158.5301

<ANT>/NN and/CC <ANT>/NN of/IN 152.4708

between/IN a/DT <ANT>/NN and/CC a/DT <ANT>/NN ,/, 145.4421

Table 4.10: Top ranked antonym patterns for nouns

Pattern LMI score

<ANT>/VB or/CC <ANT>/VB 961.6148

<ANT>/VB and/CC <ANT>/VB 636.1911

<ANT>/VB or/CC <ANT>/VB ./. 347.1819

<ANT>/VBP and/CC <ANT>/VBP 295.6043

to/TO <ANT>/VB and/CC <ANT>/VB 253.0905

<ANT>/VB and/CC <ANT>/VB ./. 214.7118

<ANT>/VB or/CC <ANT>/VB the/DT 178.6803

<ANT>/VBP or/CC <ANT>/VBP 170.4069

,/, <ANT>/VB or/CC <ANT>/VB 157.9835

<ANT>/VB or/CC <ANT>/VB a/DT 145.4078
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<ANT>/VB and/CC <ANT>/VB ,/, 143.7145

to/TO <ANT>/VB or/CC <ANT>/VB ./. 112.2844

<ANT>/VB or/CC <ANT>/VB ,/, 106.6906

to/TO <ANT>/VB or/CC <ANT>/VB the/DT 83.6648

can/MD <ANT>/VB or/CC <ANT>/VB 83.3056

not/RB <ANT>/VB or/CC <ANT>/VB 80.0805

<ANT>/VBP and/CC <ANT>/VBP ,/, 68.2536

<ANT>/VB and/CC <ANT>/VB the/DT 55.8227

will/MD <ANT>/VB or/CC <ANT>/VB 50.7752

can/MD <ANT>/VB and/CC <ANT>/VB 43.6558

Table 4.11: Top ranked antonym patterns for verbs

Patterns strongly associated with antonyms might not necessarily be the ones that are best at

discriminating antonyms from synonyms and other word pairs. Which patterns distinguish antonyms

from other word pairs is learned by the classifiers. We trained Decision Trees using a single pattern

at a time as feature on the adjectival training data and plotted precision and recall of the single

patterns (see Figure 4.7).

The analysis shows that [between/IN <ANT>/JJ and/CC <ANT>/JJ] and [both/DT <ANT>/JJ

and/CC <ANT>/JJ] are among the top patterns concerning the trade-off between precision and

recall. Shorter patterns like [<ANT>/JJ and/CC <ANT>/JJ] are less precise, but offer a higher

recall. The analysis gives justification to Lin’s intuition about patterns of incompatibility as both

Lin patterns are among the patterns with the best trade-off between precision and recall.

The features of this subsection are later referred to as feature category news105-patterns.
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Figure 4.7: Precision versus recall of the patterns using News105m as corpus
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4.3.7 Surface Textual Patterns and the Google N-gram Corpus

In subsection 4.3.5 we showed that the recall of the Lin patterns strongly increases when relying

on counts from the Google N-gram corpus instead of counts from News105m. So, we ported our

pattern-based approach to this corpus. We did not mine the Google N-gram corpus for antonym

patterns again. Instead, we took the antonym patterns, we mined from News105m and discarded

the part-of-speech information. Also, we filtered out all patterns longer than five tokens, because

there are no N-gram counts available in the Google corpus for these.

Precision vs. recall of the patterns

Again, we trained each a Logistic Regression classifiers for the single pattern features to compare

the importance of the patterns for the antonym classification. Results are shown in Figure 4.8.

For verbs, adjectives and nouns the patterns [<X> or <Y>] and [<X> and <Y>] are in the mid

range of recall and precision. For all of the part-of-speech categories the patterns [either <X> or

<Y>] and [both <X> and <Y>] have a high precision but their recall is not high. For adjectives

and verbs the pattern [between <X> and <Y>] scores as well as the patterns [either <X> or

<Y>] and [both <X> and <Y>]. But for verbs the pattern is less precise. [from <X> to <Y>] is

only precise for adjectives, but does not work as well with nouns and verbs. Thus, from the two Lin

patterns [either <X> or <Y>] and [from <X> to <Y>] only the former one scores well for all

part-of-speech categories. [both <X> and <Y>] scores as well as [either <X> or <Y>] and also

[both <X> and <Y>] should be considered to rule out contrasting pairs in a way Lin proposed.

Comparing the results using Google’s N-gram corpus and the results using News105m two observa-

tions can be made. Mostly the same patterns offer the best recall-precision trade-off. And the recall

of the patterns increases strongly using the N-gram corpus. Whereas the best pattern has a recall

of about 0.4 with the smaller corpus, with the large-scale web counts the best pattern has a recall

of more than 0.7.

Does it make sense to separate the part-of-speech categories?

Figure 4.8 indicates that the patterns with the best recall-precision trade-off for the different part-of-

speech categories do not differ too much. Thus, we heuristically checked whether the separation into

the different categories makes sense. We trained a logistic regression model each for the different

part-of-speech categories and examined the patterns with the lowest coefficients (see Table 4.12).

Note that the patterns with the lowest coefficients are the ones which indicate antonymy since in the

mathematical model the class antonymy is denoted with one and the class non-antonymy is denoted

with two.

Adjectives Nouns Verbs

Coefficient Pattern Coefficient Pattern Coefficient Pattern

-1.27e+00 both X and X -1.41e+00 both X and Y -1.03e+00 X to a Y
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Adjectives Nouns Verbs

Coefficient Pattern Coefficient Pattern Coefficient Pattern

-1.10e+00 X than Y -1.39e+00 between X and Y -9.48e-01 X or Y ,

-1.03e+00 either X or Y -1.06e+00 the X or Y -8.43e-01 one X and one Y

-9.73e-01 X , not the Y -9.08e-01 X , not Y -8.05e-01 X , not Y

-9.09e-01 from X to Y -8.36e-01 the X or Y of -7.75e-01 X or Y

-8.93e-01 the X or the Y -7.77e-01 at the X and Y -6.85e-01 X as well as Y

-8.72e-01 X as well as Y -6.85e-01 X to a Y -6.66e-01 the X or the Y

-8.16e-01 for X and Y -6.60e-01 , X or Y , -6.32e-01 , X or Y

-7.92e-01 between X and Y -6.54e-01 X news and Y -6.30e-01 either X or Y

-7.89e-01 ’s X and Y -6.03e-01 , X and Y , -6.24e-01 is X and Y

-7.57e-01 all X and Y -5.41e-01 X and Y -5.84e-01 are X and Y

-7.53e-01 X or Y -5.38e-01 X as well as Y -5.54e-01 not X and Y

-6.13e-01 , X and Y -5.23e-01 of X and Y -5.47e-01 to X or Y the

-5.92e-01 , X and Y , -5.00e-01 for X or Y -5.33e-01 of X , Y

-5.71e-01 of X and Y -4.98e-01 a X , a Y -5.25e-01 both X and Y

-5.70e-01 about X and Y -4.76e-01 X round Y -5.07e-01 an X , Y

-5.49e-01 The X and Y -4.61e-01 like X and Y -5.06e-01 the X and Y

-5.44e-01 X nor Y -4.60e-01 from X and Y -4.50e-01 neither X nor Y

-5.41e-01 X to that Y -4.56e-01 from X to Y . -4.22e-01 by X and Y

-5.24e-01 X of the Y for -4.50e-01 a X or a Y -4.19e-01 in X and Y
...

...
...

...
...

...

4.97e-01 X , Y 5.73e-01 X quarter Y 5.05e-01 X nor Y

5.26e-01 the X to the Y 5.78e-01 to X and Y 5.19e-01 in the X , Y

5.40e-01 from X and Y 5.87e-01 from X to Y and 5.33e-01 X for a Y

5.83e-01 on X and Y 5.98e-01 X of the Y 5.42e-01 X against Y

6.56e-01 with X and Y 6.01e-01 a X and Y . 5.83e-01 from X to Y and

6.66e-01 – X , Y 6.47e-01 the X , Y 5.94e-01 X to Y .

6.87e-01 X and Y , 7.10e-01 X to Y . 7.09e-01 of X and Y

7.59e-01 from X to Y and 7.45e-01 about X and Y 7.31e-01 of X or Y

7.72e-01 X on a Y 8.83e-01 X or a Y 9.12e-01 as X and Y

1.03e+00 by X and Y 8.95e-01 X and the Y , 9.55e-01 – X , Y

Table 4.12: The coefficients of logistic regression models for the different part-of-speech categories from

lowest to highest. Low coefficients indicate antonymy.

We computed the overlap of the top n patterns indicating antonymy according to the coefficients of

logistic regression models for the different part-of-speech categories. Results are shown in Table 4.13.

For the top 20 patterns the overlap between the different categories is about 20%, for the top 50

patterns 30% and the top 100 patterns 40%. These numbers rather hint that there are notable

differences between the part-of-speech categories. Using only the features from the Google corpus
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n Adjectives-Nouns Adjectives-Verbs Noun-Verbs

20 5 5 4

50 15 19 15

100 42 38 41

Table 4.13: Overlap of the top n patterns indicating antonymy according to the coefficients of logistic

regression models for the different part-of-speech categories.

we obtained F-scores for a 10-fold cross-validation with random forest models of 0.8371 for the

adjective pairs, 0.8049 for the noun pairs and 0.7401 for the verb pairs. Combining the data we

obtained an F-score of 0.7691. This score is about 0.025 lower than the unweighted mean of the

three single F-scores, which is 0.7940, and about 0.043 lower than the mean F-score of the part-of-

speech categories weighted by training size, which is 0.8117. Those scores again indicate, that it

makes sense to train different classifiers for the part-of-speech categories since normally one would

expect an even better F-scores for the combination of the training sets, because there is considerably

more data available for training. And more training data most often leads to better results.

Pruning

Furthermore, we checked whether pruning to a certain extent leads to better results, finding no

evidence that pruning is helpful. Table 4.14 lists the F-scores keeping only the top n patterns

determined by the total association score with antonym patterns from WordNetPairs. The best

pattern alone achieves a score of about 0.69 for the noun data. The results get continuously better

adding more patterns. This holds also for the adjective and verb data.

n F-score adjectives F-score nouns F-score verbs

1 0.7943 0.6939 0.6744

5 0.7933 0.6883 0.6809

10 0.7994 0.7020 0.6744

50 0.7974 0.7058 0.6841

100 0.8048 0.7268 0.6922

200 0.8020 0.7423 0.7215

300 0.8043 0.7569 0.7051

400 0.8047 0.7476 0.7134

500 0.8098 0.7585 0.7135

Table 4.14: F-score for the antonyms vs all task on the noun pairs from WordnetPairs

The features of this subsection are later referred to as feature category web1t-patterns.
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Figure 4.8: Precision versus recall of the patterns using the Google N-gram corpus
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4.4 Fitting the Model

Having gathered enough training data and having extracted many features from different feature

categories, the next step is to find a suitable combination of features and to evaluate which classifier

to choose and to find the best hyperparameter setting for the chosen classifier.

First, we standardized our data in the way. We subtracted from each feature its mean value to make

each feature have zero-mean and we divided each feature by its standard deviation to make each

feature have unit-variance. This standardization is useful or even necessary for some of the learning

algorithms we tested including SVMs with different kernels and Logistic Regression. Other learning

algorithms do not depend on feature normalization, e.g. Decision Trees and Random Forests. But

these algorithms do not produce worse results if the features are indeed normalized.

We used 10-fold cross-validation to obtain mean F-scores on the WordNet adjectival training data

for several learning algorithms2 (Henceforth, every time we refer to a cross-validation unless specified

otherwise a 10-fold cross-validation was conducted.) Table 4.15 shows the obtained scores. At this

point, we used the standard hyperparameter settings of their respective implementations.

F-score adjectives F-score nouns F-score verbs

Nearest Neighbors 0.8793 0.8496 0.7554

Linear SVM 0.9133 0.8780 0.7826

RBF SVM 0.7883 0.6477 0.6283

Decision Tree 0.9164 0.8559 0.7775

Random Forest 0.9274 0.8909 0.8411

Naive Bayes 0.7753 0.8255 0.7580

Logistic Regression 0.8868 0.8550 0.7744

Table 4.15: Comparing different classifiers on the training data

For all part-of-speech categories a random forest fits the data best, which is why we chose random

forest models for further evaluation of our approach. The worst results were obtained with a radial

basis function SVM and Naive Bayes. As the results with a linear SVM show, a radial basis function

is the wrong kernel for our data. Naive Bayes does not work well for our data since for example

features from feature categories like web1t-patterns and news105-patterns are not independent, which

violates the basic assumption of Naive Bayes.

The Random Forest algorithm offers some hyperparameters to tune including the number of Decision

Trees to train and some tree pruning factors such as maximum tree depth. We ran a grid search

testing different hyperparameter settings finding no considerable performance decline or improvement

of a specific setting. Hence, we settled for the standard parameters. The following experiments are

conducted with this algorithm configuration.

Two experiments were carried out to find the best feature combination. We performed cross-

validations using one feature category at a time and we conducted ablation tests. Results of the

first experiment are shown in Table 4.16.

2 We used implementations of the learning algorithms from Scikit Learn: http://scikit-learn.org/stable/
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For all of the feature categories the precision is higher than the recall. For example the Lin patterns

produce precision scores of above 98% on all part-of-speech categories but low recall scores. Some

feature categories like jb-sim, word-embed and para-cooc score low on their own, but we later show

that they are helpful in combination with the pattern features.

The best scores yields feature category web1t-patterns with about 84% for the adjective data, 80%

for the noun data and 74% for the verb data.

It is interesting that news105-context, which is calculated on the same corpus as news105-patterns

and comprises mostly the same information, produces better F-scores on the adjective and the verb

data. news105-context provides association scores of the pairs with the words of the top ranked

patterns regarding a sentence window, for instance association scores of “both” and “between” and

“and” with the pairs. This information should conceptually be less precise than the pair-pattern

association of news105-patterns. But, only for the noun data we obtained the expected result. This

can be interpreted as evidence that dependency patterns could improve the results. The pairs might

sometimes not occur in the exact patterns but slightly altered infrequent versions of the patterns.

This is captured by news105-context but not by news105-patterns.

Adjectives Nouns Verbs

P R F P R F P R F

sen-cooc 0.8219 0.6582 0.7478 0.7044 0.4893 0.6174 0.7867 0.5601 0.6952

news105-context 0.8410 0.7144 0.7817 0.7636 0.6279 0.7045 0.8143 0.6698 0.7554

news105-lin 0.9922 0.2445 0.5583 0.9846 0.2598 0.5675 0.9875 0.1683 0.4951

jb-sim 0.8031 0.3597 0.5935 0.7097 0.2805 0.5343 0.7840 0.3458 0.5632

morpho 0.8953 0.6643 0.7861 0.8919 0.6805 0.7885 0.8440 0.5272 0.7021

word-embed 0.6393 0.5923 0.6133 0.6359 0.6159 0.6232 0.5876 0.5306 0.5582

news105-patterns 0.9332 0.5432 0.7402 0.8789 0.5999 0.7498 0.9021 0.5247 0.7204

para-cooc 0.8262 0.3628 0.6093 0.7281 0.2717 0.5327 0.7577 0.2814 0.5477

web1t-patterns 0.9107 0.7556 0.8371 0.8557 0.7430 0.8049 0.8193 0.6276 0.7401

Table 4.16: Cross-validations on WordNetPairs with a single feature category each

The results of the ablation test can be inspected in Table 4.17. Discarding morphological clues leads

to the heaviest decrease in F-score. The score for e.g. adjectives drops from about 93% by 7% to 86%.

Plenty of the antonym pairs in WordNet match one of the morphological patterns in subsection 4.3.1,

which explains this drop. Excluding the features from web1t-patterns results in another significant

F-score reduction. This, again, makes sense, because counting only on pair-pattern association scores

using the Google N-gram corpus for instance yields an F-score of about 82% for the adjective data.

Excluding some feature categories produces slightly higher scores than using all features. The differ-

ences are all below 0.5%. We decided to just use all the features for our final model because for all

feature categories the values had already been computed. In case computation time is of importance,

it might make sense to exclude some feature categories and/or to use more elaborate feature selection

methods.
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Adjectives Nouns Verbs

P R F P R F P R F

sen-cooc 0.9378 0.9309 0.9334 0.8955 0.9060 0.8956 0.8604 0.8351 0.8458

news105-context 0.9365 0.9189 0.9269 0.8969 0.9059 0.8979 0.8661 0.7961 0.8329

news105-lin 0.9380 0.9289 0.9324 0.8884 0.9036 0.8909 0.8608 0.8318 0.8460

jb-sim 0.9451 0.9259 0.9349 0.8890 0.9129 0.8956 0.8479 0.8415 0.8428

morpho 0.8458 0.8808 0.8541 0.8212 0.8300 0.8206 0.7832 0.8060 0.7879

word-embed 0.9367 0.9309 0.9329 0.8946 0.9082 0.8966 0.8381 0.8220 0.8281

news105-patterns 0.9355 0.9269 0.9298 0.9003 0.9013 0.8966 0.8473 0.8446 0.8427

para-cooc 0.9441 0.9269 0.9349 0.8858 0.9061 0.8910 0.8470 0.8352 0.8395

web1t-patterns 0.9252 0.9078 0.9153 0.8838 0.8854 0.8781 0.8036 0.8254 0.8045

all 0.9349 0.9269 0.9299 0.8887 0.9013 0.8897 0.8555 0.8349 0.8445

Table 4.17: Ablation test on WordNetPairs. The last row contains the results with all feature categories.

The other rows show the results without the feature category given in the first column.

Finally, we evaluated the chosen setting on all of the WordNet data. We performed our experiments

for the adjective, noun and verb data each in two ways. On the one hand, we trained binary

classifiers for the antonymy vs synonymy task, on the other hand, we trained binary classifiers for

the task of discriminating antonymous word pairs from word pairs of any kind. It does not seem that

there is a difference in difficulty between those two tasks since the F-scores at most differ slightly.

Regarding part-of-speech tag categories identifying antonymous verbs seems to be the most difficult.

The F-scores drop about 10% compared to the adjectival data.

Cross-validation on WordNetPairs F-score

Adjectives: antonymy vs synonymy 0.93

Adjectives: antonymy vs all 0.93

Nouns: antonymy vs synonymy 0.90

Nouns: antonymy vs all 0.90

Verbs: antonymy vs synonymy 0.82

Verbs: antonymy vs all 0.84

Table 4.18: Cross-validating on WordNet data
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4.5 Error Analysis

To conduct an error analysis on the WordNet data we obtained predictions for all the labeled instances

in the following way. We performed a 3-fold cross-validation, collected the predictions for the test

sets and combined them.

Adjectives

We attained a precision of 0.92, a recall of 0.92 and a F-score of 0.92 on the adjective pairs from

WordNet. There were 85 false positives and 80 false negatives (see Table 4.19).

Predicted class:

antonyms non-antonyms

True class:
antonyms 918 80

non-antonyms 85 913

Table 4.19: Confusion matrix for adjective pairs

The association scores of the pairs with the antonym patterns in the Google N-gram corpus make up

lots of the top features of our Random Forest Model (Feature importance was measured as described

in [Breiman et al., 1984]). Thus, we examined the scores, looking for commonalities of especially

the true positives and the true negatives. We determined how often the association scores are on

average positive for the top 50 features.

True positives True negatives False positives False negatives

Mean 12.1885 0.7338 5.8941 2.3125

Median 8 0 4 0

Standard deviation 11.5734 1.8703 7.1331 4.5801

Table 4.20: Mean/median/standard deviation of the number of lmi scores bigger than zero in the top 50

features from feature category web1t-pattern for the adjective data from WordNet

Results are shown in Table 4.20. For pairs in the true positives the mean number of positive

association scores with the top 50 web1t-pattern features is about 12.1885. For pairs in the true

negatives it is 0.7338. This indicates that the number of positive scores correlates positively with

predicting the class antonym. We see that false positives are often also associated with many of the

top patterns. The mean is 5.8941. We also included the median because the mean might be strongly

influenced by outliers. In this case the median is 4, which is lower than the mean but still shows

that the false positive pairs often co-occur with some of our antonym patterns. We counted for the

top patterns how often they have positive association scores with false positive pairs. See Table 4.21

for an excerpt of the results.

False positive pairs very often occur with the patterns [<X> or <Y>], [<X> and <Y>] and [<X>

, <Y>]. We earlier showed that those patterns offer a high recall for antonym identification, but not

a high precision. In fact, as we see now, they seem to be responsible for lots of the false positives.

More precise patterns like [between <X> and <Y>] only seldomly co-occur with false positives.
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Pattern
Number of positive association

scores with false positives

[<X> or <Y>] 44

[<X> and <Y>] 42

[<X> , <Y>] 42

[both <X> and <Y>] 0

[between <X> and <Y>] 2

[either <X> or <Y>] 1

Table 4.21: Patterns that are often associated with pairs from the set of the false positives

Another source of error are word pairs that are tagged as synonyms in WordNet and are very close

in writing like
”
blond blonde“,

”
licenced licensed“,

”
economic economical“ or

”
polemic polemical“.

Those pairs produce high values for some of the features in feature category morpho, which are also

among the top features of our model.

An interesting false positive pair is
”
experimental observational“. The two words are tagged as

synonymous in WordNet. But at least in the medicinal domain they are often used contrastingly.

There are experimental studies and observational studies, which are two different things. This is one

rare case where antonymy seems to be domain-dependent.

Nouns

We attained a precision of 0.87, a recall of 0.87 and a F-score of 0.87 on the noun pairs from WordNet.

There were 64 false positives and 46 false negatives (see Table 4.22).

Predicted class:

antonyms non-antonyms

True class:
antonyms 389 46

non-antonyms 64 371

Table 4.22: Confusion matrix for noun pairs

Most of the false positive pairs are synonyms (36), 14 are hyponyms (see also Table 4.23).

Relation Number of false positives

synonyms 36

hyponyms 14

meronyms 9

cohyponyms 5

unrelated 0

Table 4.23: True relation of the false positive pairs

Again, We counted how often the pairs are positively associated with the top 50 patterns. Results

can be inspected in Table 4.24.
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True positives True negatives False positives False negatives

Mean 11.9434 2.8355 8.4688 6.0652

Median 8 0 4 3

Standard deviation 6.4567 1.8703 10.1543 8.5645

Table 4.24: Mean/median/standard deviation of the number of lmi scores bigger than zero in the top 50

features from feature category web1t-pattern for the noun data from WordNet

False positive pairs on average were positively associated with the top pattern about 8.5 times, which

is about 6 times more than true negative pairs. Again, the patterns [<X> or <Y>], [<X> and

<Y>] and [<X> , <Y>] were often positively associated with false negative pairs (see Table 4.25).

Pattern
Number of positive association

scores with false positives

[<X> or <Y>] 29

[<X> and <Y>] 35

[<X> , <Y>] 32

[both <X> and <Y>] 5

[between <X> and <Y>] 4

[either <X> or <Y>] 2

Table 4.25: Patterns that are often associated with pairs from the set of the false positives

We observed that a slightly bigger ratio of false positive noun pairs than adjective pairs were as-

sociated with high precision patterns like [both <X> and <Y>]. and [between <X> and <Y>].
Among the pairs associated with the later pattern is

”
hearing listening“, which is related by syn-

onymy according to WordNet. In WordNet the sense
”
the act of hearing attentively“ is linked by

synonymy with listening. Our classifier might have found hearing in a sense of
”
the act of hearing

inattentively“ to be antonymous to listening. Other pairs that occur together with high precision

patterns are the co-hyponyms
”
kicker punter“ and

”
fullback halfback“, which are football positions.

An interesting false positive pair is
”

job taks“. In WordNet the pair is annotated as synonymous.

But, the pair has a high association score with the pattern [from <X> to <Y>], which is very

uncommon for synonyms. In fact, job and task are, in the software domain, often used for different

things. Tasks are often the steps/parts of a job or in other definitions jobs are used to reserve the

resources required by tasks.

Of the 46 false negative pairs 14 (about 30%) cannot be found in 3-grams in the Google N-gram

corpus and 33 (about 70%) do not co-occur in a sentence in News105m. Of all antonym pairs 10%

cannot be found in 3-grams in the Google corpus and 38% not in the news corpus. Examples of false

negative pairs that do not co-occur in a 3-gram window are for example
”
difference sameness“ and

”
coldness hotness“.
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Verbs

We attained a precision of 0.82, a recall of 0.82 and a F-score of 0.82 on the verb pairs from WordNet.

There were 63 false positives and 49 false negatives (see Table 4.26).

Predicted class:

antonyms non-antonyms

True class:
antonyms 260 49

non-antonyms 63 247

Table 4.26: Confusion matrix for verb pairs

An interesting false positive pair is
”
call visit“. In WordNetPairs the pair is annotated as a random

pair. The pair is highly associated with patterns like [either <X> or <Y>] and [from <X> to

<Y>] that commonly indicate antonymy. We hypothesize that the contrasting options ”just call” or

”really go visiting” make our classifiers see the pair as antonyms. Apart from that, the errors for verb

pairs are similar to the ones for adjectives and nouns. Again, pairs similar in writing like
”
crystallise

crystallize“ produce several false positive pairs. Also, high association scores with the patterns [<X>

or <Y>], [<X> and <Y>] and [<X> , <Y>] often lead to false positive predictions.

Generally we observed four major error categories:

� High similarity in writing produces false positive pairs.

� High association with the following patterns produces false positive predictions:

– [<X> or <Y>]

– [<X> and <Y>]

– [<X> , <Y>]

� Domain-specific or situation-specific contrast leads to false positives.

� Antonyms that do not co-occur in sentences are not recognized.
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5 Comparative Evaluation

It is customary to evaluate a NLP system or algorithm intrinsically and extrinsically [Baroni and

Lenci, 2011, Jones and Galliers, 1995].

Intrinsic evaluation is about testing the system in itself, e.g. testing a classifier on a test set.

Extrinsic evaluation is about testing the system on a secondary task. Biemann and Riedl [2013],

for instance, evaluated the quality of their DT extrinsically on the task of POS-tagging. A common

source of errors assigning POS-tags are unknown words, words which did not occur in the training

data of the tagger. A DT can help to mitigate this problem. Encountering an unknown word, the

word can often be substituted with the help of the DT with a distributionally similar word which

occurred in the training data of the tagger. Biemann and Riedl [2013] showed in this task-oriented

evaluation, that their DT can improve the accuracy of part-of-speech tagging.

We already evaluated our classifiers intrinsically in the last chapter performing cross-validations on

our own data sets. Since this is not a sufficient intrinsic evaluation we tested our classifiers on some

more test sets from literature. These experiments are described in section 5.1.

5.1 Intrinsic Evaluation

To be able to compare our classifiers for English word pairs to results from literature, we used two

data sets. The first one (AntSynLin) from Lin et al. [2003] contains 80 antonymous noun pairs and

80 synonymous noun pairs. The second one (AntSynTurney) from Turney [2008] consists of 137

antonymous and synonymous pairs of mostly nouns and adjectives, but also verbs.

Table 5.1 provides an overview of the data sets used for intrinsic evaluation.

ANT SYN HYP COHYP MER UNR

WordNetPairs

NOUN 466 94 93 93 93 93

ADJ 999 450 449

VERB 310 155 155

AntSynLin

NOUN 80 80

AntSynTurney

NOUN 15 7

ADJ 43 26
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ANT SYN HYP COHYP MER UNR

VERB 31 14

Table 5.1: Data Sets

AntSynLin

On AntSynLin we reach a F-score of 81%. Lin et al. [2003] report a score of about 90%. Lin

et al. [2003] worked with counts from search engines. Most probably the difference in F-score stems

from Lin et al. [2003] accessing a larger corpus, albeit in an irreproducible manner. Our classifier

produced 65 true positives, 63 true negatives, 16 false positives and 15 false negatives. Among the

false positives were for instance the pairs
”
art craft“ and

”
prison college“. Both are synonym pairs

according to AntSynLin.
”
art craft“ can be found in several of the patterns we found to indicate

antonymy in our WordNet analysis like [both <X> and <Y>] and [between <X> and <Y>].
Intuitively, we would think of art and craft as something contrasting, with art being nonfunctional

and craft being functional. College is a slang term for prison and thus the pair
”
college prison“ is

a synonym pair in AntSynLin. Most probable the high association of the pair with [from <X> to

<Y>] which we would rather attribute to college in an educational sense is what produces this false

positive pair.

Among the false negative pairs are
”
average maximum“ and

”
average minimum“. Whereas our

classifiers recognize
”
maximum minimum“ as an antonym pair they fail to detect the incompatibility

of the middle
”
average“ and the poles of the scale ranging from minimum to maximum. Another false

negative pair is
”
exaggeration understatement“, which only rarely, 370 times, co-occurs in 3-grams

in the Google N-gram corpus. Other false negative pairs like
”
exodus influx“ never co-occur in any

N-gram of the Google corpus.

AntSynTurney

On AntSynTurney we reach a F-score of 77% which seems to be slightly better than the pure

pattern-based approach of Turney [2008] which produced a score of 75%.

Among the false positive pairs are for instance pairs like
”
generic general“ that are close in writing and

pairs that have high association scores with [<X> and <Y>] and [<X> or <Y>] like
”
university

college“. Among the false negatives are pairs like
”
permit deny“ that never co-occur in a N-gram in

the Google Corpus.

5.2 Extrinsic Evaluation

We use the GRE data set for a task-oriented evaluation of our classifiers for the English language.

This data sets consists of questions containing a target word and five choices. The task is to determine
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the choice as response which is closest to being an antonym of the target word. Table 5.2 shows an

example question from the GRE data set.

Target Choices Response

solvent enigmatic, bankrupt, fiducial, puzzling, gilded bankrupt

penchant distance, imminence, dislike, attitude, void dislike

paucity pouch, peace, quickness, abundance, nuisance abundance

lithe stiff, limpid, facetious, insipid, vast stiff

lurid dull, duplicate, heavy, grotesque, intelligent dull

malevolent kindly, vacuous, ambivalent, volatile, primitive kindly

manifest limited, obscure, faulty, varied, vital obscure

impecunious affluent, afflicted, affectionate, affable, afraid affluent

inane passive, wise, intoxicated, mellow, silent wise

maniacal demoniac, saturated, sane, sanitary, handcuffed sane

Table 5.2: Data sample from the GRE data set.

The GRE data comes in two parts. A development set containing 950 questions and the test set

containing 790 questions. We did not use the development set, we only tested our classifiers on

the test set. Table 5.3 provides previous results on the GRE test set. We considered two different

baselines for the systems. Guessing the answer would result in a F-score of 0.2. A system which

would look up the target and choice pairs in WordNet and take a guess if none of the word pairs can

be found in WordNet would come up with a score of 0.23.

F-score

Baseline 0.2

Wordnet lookup baseline 0.23

Lin et al. [2003] 0.24

Mohammad et al. [2013] 0.69

Ono et al. [2015] 0.88

Table 5.3: Results on the GRE test set

The achieved F-scores range from 0.24 to 0.88. 0.24 is achieved by a re-implementation of the method

of Lin et al. [2003] from Mohammad et al. [2013]. Mohammad et al. [2013] answer the questions

with an antonym list generated from different lexical resources using several heuristics. They reach

a F-score of 0.69. The best score, 0.88, is reported by Ono et al. [2015] who trained specialized word

embeddings using antonymy and synonymy information from lexical resources.

We relied on the confidence values of our classifiers’ predictions to answer the questions. We fed our

classifier with all target/choice pairs. Then, we picked the choice as our answer which resulted in the

highest confidence value for the class antonym. Proceeding this way, our system yielded a F-score of

about 0.32. We inspected the confidence values for the class antonym of the target/choice pairs to

look for an answer to the question why our system performs rather bad in comparison. For most of

the questions none of the choices is considered contrasting to the target by our classifiers. For most

of the questions even none of the confidence values for antonymy is higher than 0.1. See Table 5.4

for sample results for some questions.
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target choices real answer

incipient exuberant full-bodied explicit plentiful full-blown full-blown

0.0 0.0 0.0 0.0 0.0

veneration derision blame avoidance ostracism defiance derision

0.08 0.0 0.0 0.01 0.03

testiness devotion patience methodicalness caution discretion patience

0.04 0.04 0.06 0.04 0.0

transparent indelicate neutral opaque somber tangible opaque

0.02 0.4 0.9 0.02 0.09

asset duty qualification denial liability instability liability

0.38 0.06 0.11 0.82 0.08

Table 5.4: Sample results for GRE. The choices are mapped to the confidence score of the classifiers for

predicting the class antonymy.

We proceeded to compute a F-score for the results for only a subset of the questions. We only

regarded the questions where at least one of the confidence scores was 0.5 our higher. For this subset

of the GRE test set we reached a F-score of about 0.65. But, only 68 of 790 could be answered this

way. The low F-score achieved by the method of Lin et al. [2003], who used two patterns which

are also in our automatically mined patterns, hints into the right direction. Only 139, about 17.6%,

of the 790 most contrasting choices co-occur with their respective target word into 3-grams in the

Google N-gram corpus. This data sparseness makes it impossible to reach a high F-score with a

pattern-based approach and the Google corpus.
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6 Conclusion and Future Work

6.1 Conclusion

We found that the predominantly pattern-based approach works well on established and frequent

antonyms from WordNet. Results ranged from F-scores of about 0.82 to 0.93 for the antonymy

versus synonymy task and from 0.84 to 0.93 for the task of classifying random word pairs as being

antonyms or not. Regarding different part-of-speech tag categories, identifying antonymy seems to

be most difficult for verbs.

An analysis on which patterns are the most useful for identifying antonymy gave experimental

evidence for the intuition of Lin et al. [2003] who used the patterns [either <X> or <Y>] and

[from <X> to <Y>] to identify antonyms. Our analysis showed that [both <X> and <Y>] and

[between <X> and <Y>] are as useful as the Lin patterns.

We showed that more data improves the pattern based approach a lot. With a 105 million sentences

corpus we reached a F-score of 0.72 for the antonymy versus all task on our WordNet adjectival data.

Using the Google N-gram corpus we reached a F-score of 0.82.

Our results on antonymy versus synonymy data sets from Lin et al. [2003] and Turney [2008] were

in line with the literature; we reached F-scores of 0.81 and 0.77 for these data sets, versus 0.9 and

0.75 reported in literature.

A task-oriented evaluation on the GRE data set uncovered the weaknesses of our approach. Only for

about a tenth of the questions our classifier found one of the answer choices to be antonymous with

a confidence higher than 50%. These results can be explained with data sparseness. Most of the

contrasting pairs in the GRE data do not co-occur at all in the N-grams from the Google N-gram

corpus.

6.2 Future Work

We focused a lot on the antonymy versus synonymy task which was examined among others by Lin

et al. [2003], Turney [2008] and Santus et al. [2014]. The results on our data from WordNet hint that

antonymy can be distinguished from other relations like hyponymy or co-hyponymy at least equally

well as from synonymy. However, we did not examine this in depth, posing this as possible future

work.

One strength of the pattern based approach is that a relatively small training set is sufficient.

Hence, it is possible to port the approach to other languages without much effort. The Google

N-Gram corpus is also available in the same format in for example German, Spanish and French.

Thus, it would be interesting to concentrate on the pattern features from this N-gram corpus and

port the approach to the other languages available in the corpus.
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Furthermore, the approach could be included into or generalized for ontology induction from text. It

might be interesting to evaluate if it is possible to create lexical resources such as WordNet without

relying on manual annotation.
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7 Appendix

Number Tag Description

1. CC Coordinating conjunction

2. CD Cardinal number

3. DT Determiner

4. EX Existential there

5. FW Foreign word

6. IN
Preposition or subordinating

conjunction

7. JJ Adjective

8. JJR Adjective, comparative

9. JJS Adjective, superlative

10. LS List item marker

11. MD Modal

12. NN Noun, singular or mass

13. NNS Noun, plural

14. NNP Proper noun, singular

15. NNPS Proper noun, plural

16. PDT Predeterminer

17. POS Possessive ending

18. PRP Personal pronoun

19. PRP$ Possessive pronoun

20. RB Adverb

21. RBR Adverb, comparative

22. RBS Adverb, superlative

23. RP Particle

24. SYM Symbol

25. TO to

26. UH Interjection

27. VB Verb, base form

28. VBD Verb, past tense

29. VBG Verb, gerund or present participle

30. VBN Verb, past participle

31. VBP Verb, non-3rd person singular present

32. VBZ Verb, 3rd person singular present

33. WDT Wh-determiner

34. WP Wh-pronoun

35. WP$ Possessive wh-pronoun
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Number Tag Description

36. WRB Wh-adverb

Table 7.1: Alphabetical list of part-of-speech tags used in the Penn Treebank Project
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