
Unsupervised Word Sense
Disambiguation with Sense
Embeddings
Unüberwachte Wortbedeutungsdisambiguierung mit Embeddings von Bedeutungen
Master-Thesis von Maria Pelevina
Tag der Einreichung:

1. Gutachten: Prof. Dr. Chris Biemann
2. Gutachten: Dr. Alexander Panchenko

Unsupervised Word Sense Disambiguation with Sense Embeddings
Unüberwachte Wortbedeutungsdisambiguierung mit Embeddings von Bedeutungen

Vorgelegte Master-Thesis von Maria Pelevina

1. Gutachten: Prof. Dr. Chris Biemann
2. Gutachten: Dr. Alexander Panchenko

Tag der Einreichung:

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegendeMaster-Thesis ohne Hilfe Dritter nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus
Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den August 16, 2016

(Maria Pelevina)

1

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Problem Statement . 6
1.3 Hypothesis . 8
1.4 Contributions . 8

2 Related Work 10
2.1 Sense Embeddings . 10

2.1.1 Context Clustering . 10
2.1.2 Extensions of Skip-Gram . 11
2.1.3 Knowledge-based and Miscellaneous . 12

2.2 Word Sense Disambiguation . 13

3 Background 15
3.1 Word Embeddings . 15

3.1.1 word2vec . 16
3.1.2 GloVe . 19

3.2 Word Similarity . 20
3.2.1 Similarities using Vector Space Models . 20
3.2.2 Similarities using JoBimText . 20

3.3 Word Clustering . 22
3.3.1 Markov Cluster Algorithm . 22
3.3.2 Chinese Whispers . 23

4 Word Sense Induction 25
4.1 Overview . 25
4.2 Learning Word Vectors . 27
4.3 Calculating Word Similarity Graph . 29
4.4 Word Sense Induction . 31
4.5 Pooling of Word Vectors . 34
4.6 Examples . 35

5 Word Sense Disambiguation 38
5.1 Method . 38
5.2 Example . 39

6 Evaluation on TWSI 42
6.1 Evaluation Alternatives . 42
6.2 TWSI Dataset and Evaluation Metrics . 43

2

6.3 Experiments . 46
6.3.1 Sense Inventories . 47
6.3.2 Context Filtering . 49
6.3.3 Various System Configurations . 49
6.3.4 Statistical Significance of the Results . 51
6.3.5 Conclusion . 54

6.4 Error Analysis . 54

7 Evaluation on SemEval 58
7.1 Dataset and Evaluation Metrics . 58

7.1.1 Dataset . 58
7.1.2 Evaluation Metrics . 58
7.1.3 Participants . 59

7.2 Experiment . 60

8 Conclusion and Future Work 62
8.1 Conclusion . 62
8.2 Future Work . 63

3

1 Introduction
One of the considerable challenges in natural language understanding, the ability of computers to
derive meaning from human language, is lexical ambiguity. There are words in human language
that have the same spelling, but relate to different concepts. Consider the following example:

The whole family was sitting at the table1 and enjoying their dinner.
This table2 presents the preliminary results of our investigation.

The word table1 refers to a piece of furniture, while the word table2 means a type of data ar-
rangement in rows and columns. Humans have an ability to identify the implied meaning of an
ambiguous word from the context it is used in. For example, the words sitting and dinner indicate
to the first (furniture) meaning of the word table1. In order to provide computers with this ability,
we have to algorithmically imitate the same process that happens in human’s brain when they
read sentences like the ones above. In the field of natural language processing (NLP) this ability is
referred to as word sense disambiguation (WSD). In this thesis we focus on building a WSD system
operating on word and sense embeddings.

1.1 Motivation

Word embeddings are low dimensional representations of natural language words as real-valued
vectors. They capture important semantic and syntactic features of words in a compact manner
and help to overcome the curse of dimensionality. High-quality word embeddings exhibit many
interesting properties on their own and were shown to improve performance in several natural
language processing (NLP) tasks, when used as input features. Since introduction of computation-
ally efficient training algorithms in the last years, word embeddings and their use remain on peak
of interest from the research community.

Word embeddings rely on the co-occurrences of the words with their context (surrounding
words). This approach is based on the Distributional Hypothesis introduced and popularized
in the 1950s by English linguist J. R. Firth. It states that words that are used and occur in the
same context tend to have similar meaning. Indeed, two semantically similar words like lift and
elevator do not share any common features if we consider them as a sequence of characters or use
morphological information. However, they both appear next to up, down, stairs and floor. Exactly
these regularities are captured by values of the vectors representing these two similar words.

Continuous vector space language models place similar words close to each other and pull un-
related words apart. This explains one of the most discussed property of word embeddings. A
query for the nearest neighbours of France returns words like Germany, Spain and Italy. More-
over, embeddings capture analogy relations between words which can be revealed with algebraic
operations:

vec(France) – vec(Paris) ∼ vec(Germany) – vec(Berlin)

(semantic regularities) and

4

Figure 1.1: Word similarity graph of the word table based on vector cosine similarity.

vec(car) - vec(cars) ∼ vec(cat) - vec(cats)

(singular/plural regularities) [Mikolov et al., 2013d].
Recently several simple and highly computationally efficient models have been introduced

that can train word embeddings with neural networks on complete English Wikipedia in sev-
eral hours. Most notable among them are Continuous Bag Of Words (CBOW) and Skip-
Gram models [Mikolov et al., 2013a], commonly known as a word2vec toolkit and GloVe
[Pennington et al., 2014]. They have inspired a lot of research into the application of word
embeddings for various NLP tasks. For example, they were successfully used to improve state-
of-the-art results of the named-entity recognition (NER) task [Passos et al., 2014], dependency
parsing [Bansal et al., 2014] and machine translation [Mikolov et al., 2013b].

A common deficiency of mentioned word embeddings model is that they do not account for
the word ambiguity (polysemy or homonymy) and learn a unique representation per word. This
representation mixes several, sometimes unrelated senses of an ambiguous word into one vector.
If we retrieve 20 neighbours of the word table based on cosine vector similarity and build an word
similarity graph of those neighbours, it will look similar to the one in Figure 1.1. While this is
acceptable in some NLP tasks like part of speech (POS) tagging or NER, it will be misleading in
several other scenarios, for example machine translation. In particular, the translation of the word
table into German depends on its semantic: der Tisch for table1 and die Tabelle for table2. Other
applications that could benefit from the correct representation of word senses include information
retrieval and sentiment analysis.

It is desirable to represent each sense of a words as a separate vector. In scope of these thesis
we are going to develop a method that produces multi-sense word embeddings (also referred
to as multi-prototyped word embeddings or sense vectors) and we will show how to use those
embeddings for disambiguation of polysemous words in context. A detailed definition of the task
follows in the Section 1.2. An overview of related work will be given in Chapter 2.

5

(a) Concept explanation (WordNet entry). (b) List of related terms.

Figure 1.2: Sense representation types.

1.2 Problem Statement

The problem of learning multi-prototyped word embeddings can be regarded as a special case
of word sense induction (WSI) problem. It is also closely related to word sense disambiguation
(WSD) task. In this work we wish to address these problems together, as it will provide us a
method to asses the quality of produced sense embeddings.

The main objective of this thesis can be summarized in two steps:

1. induce word senses and associate them with sense-specific embeddings,

2. use word and sense embeddings to disambiguate words in context.

Requirements on Word Sense Induction
WSI is the task of automated identification of word senses from plain corpus. Its product is a

sense inventory: a mapping from words to the list of their senses. The senses may be formalised
in different ways, for example as a concept explanation like in dictionaries or as a set of related
terms (see Figure 1.2 for comparison). They may also differ in the way they were constructed:
either manually by language experts or automatically, usually with some form of word or con-
text clustering. Finally, sense inventories differ in terms of granularity and domain. Some of
the most prominent hand-crafted sense inventories designed to be used in computational man-
ner for all sort of NLP tasks are WordNet for the English language [Fellbaum, 1998], GermaNet
for the German language [Hamp and Feldweg, 1997] and their multi-lingual counterpart BabelNet
[Navigli and Ponzetto, 2012].

With regard to these properties of sense inventories we set the following requirements on the
WSI system:

• each word sense is represented by a unique sense vector

Sense inventory in form of vectors facilitates its use for NLP application and allows to profit
from advantages of word embeddings. Whenever necessary, such inventory can be easily
transformed into a human-readable format by listing nearest neighbours for each sense vec-
tor.

• senses are induced in a fully unsupervised and knowledge-free manner

Constructing any kind of a lexical resource by hand is a time-consuming and expensive pro-
cess. As a result, it makes any system relying on such resources de-facto restricted to 3-5

6

most popular and intensively researched languages. Moreover, hand-crafted sense invento-
ries have difficulties to catch up with an ever-changing language, for example the widely
used lexical database WordNet does not list senses like tablet as portable computer yet. Unsu-
pervised and knowledge-free approach will ensure the applicability of our method to a wide
variety of languages and specialised domains.

• coarse sense distinction

It has been observed that both experts and non-experts have difficulties to reach high level
agreement in disambiguation using fine-grained inventories like WordNet. The difference
between senses is too subtle and may not actually reflect how non-experts understand
word meaning. Instead we opt for a coarse-grained inventory as a more practical option
[Brown, 2008]. Figure 1.2 shows difference between fine-grained (on the left) and coarse-
grained (on the right) sense inventories.

• broad word coverage

We want a model that allows to induce senses for the whole vocabulary of the corpus and
not only for a limited number of specific words.

Requirements on Word Sense Disambiguation
Word sense disambiguation problem can be formulated as follows: given a word w and its con-

text c return s ∈ S, where S is a set of senses of word w according to some sense inventory. We say
that a WSD method is supervised, if it requires a model training step on data with sense-annotated
words. We also call it knowledge-based if it disambiguates words with respect to and/or using
clues from an external hand-crafted knowledge resource like dictionaries, WordNet or Wikipedia
disambiguation pages. In contrast, a knowledge-free WSD performs disambiguation with respect
to an automatically induced inventory. Our requirements for this step are:

• unsupervised disambiguation

Even though sense-annotated data is available, it is very rare, often limited in word cover-
age and bound to a specific sense inventory. As we have argued earlier for induced sensed
inventories, the construction of hand-annotated datasets for every new inventory would very
expensive and practically infeasible process. Therefore our requirement is to develop an
unsupervised WSD approach.

• knowledge-free disambiguation

The disambiguation method should not be bound to any specific sense inventory. This will en-
sure the applicability of our model to various languages and domains, as long as an induced
or hand-crafted inventory of suitable format is provided.

To wrap up this section we summarise the main objective of this work as follows:

The goal of this thesis is to build and evaluate an unsupervised knowledge-free word
sense induction and disambiguation (WSID) system using sense embeddings.

7

Figure 1.3: Two clusters representing senses of the word table.

1.3 Hypothesis

Word sense induction
Our approach for sense induction is based on clustering of local neighbourhoods of words. It

is known that vector space models place semantically similar words close to each other and pull
unrelated words apart. We have shown in Figure 1.1 that in a setting where there is only one
vector for each spelled word (single-prototyped vector space model), a collection of nearest words
for a polysemous word includes terms related to its different senses. We observe that neighbours
corresponding to one sense of the word table (desk, chair, furniture) tend to be closely related to
each other and only loosely connected to words representing a second sense (chart, graph, matrix).
We therefore suggest to cluster ego-networks of all words and to interpret clusters as senses. An
ego-network is a word similarity graph consisting of a single node (ego) together with the nodes
it is connected to (alters) and all the edges among those alters. For illustration see Figure 1.3. We
further suggest that a sense vector may be calculated as an average of word vectors belonging to a
cluster, thus solving our first problem.

Word sense disambiguation
Assuming that vector space models position words in space with respect to their similarity we

propose to disambiguate words in context by mapping them to the vector space and comparing the
similarity between context and sense vectors of a target word. A sense vector closest to the context
is the answer. We expect that context words {family, dinner, sitting} are sufficient to identify a
correct sense of table as furniture.

1.4 Contributions

The main contributions of this work are:

8

• An unsupervised and knowledge-free Word Sense Induction system based on clustering of
word ego-networks that represents senses as sense embeddings.

• An integrated Word Sense Disambiguation mechanism that performs comparatively to the
state-of-the-art systems.

• Systematic evaluation of proposed WSID system on publicly available datasets.

In addition to this, we provide the implementation of our systems, as well as several pre-trained
models online.1

1 https://github.com/tudarmstadt-lt/sensegram

9

https://github.com/tudarmstadt-lt/sensegram

2 Related Work
The goal of this thesis, as defined in the previous chapter, is to build a word sense induction and
disambiguation system operating on sense embeddings. This challenge relates to two strains of
research: multi-prototyped word embeddings and word sense disambiguation. In this Chapter we
discuss them both.

2.1 Sense Embeddings

Single-prototype vectors are not able to distinguish different senses of ambiguous words. Since
introduction of efficient learning algorithms for word embeddings, researches have intensively
studied methods to overcome this problem. The distributional hypothesis provided theoretical
foundation for classical word embeddings and similarly the key to learning sense-aware word
representations lies in the word’s contexts. This is in fact an obvious observation if we consider
how humans can recognise a sense of a word only with regard to the context and not in isolation.
So for example, we know that bank in a sentence “A bank can only issue a card if you have sufficient
funds on deposit." refers to a financial institution because we see it accompanied by words funds
and deposit.

The difference of methods that learn sense embeddings lies in the way they incorporate contex-
tual information: before or after training of embeddings, using clustering of contexts or probabilis-
tic approaches to differentiate senses, relying on lexical resources or external knowledge bases or
not. In following we give an overview of approaches that represent word senses as vectors, omit-
ting any work that might perform sense induction, but does not bind it to vector space language
models.

2.1.1 Context Clustering

Following the pioneering work of [Schütze, 1998], both [Reisinger and Mooney, 2010] and
[Huang et al., 2012] explicitly pre-cluster contexts of each word to induce senses. After-
wards they generate a distinct prototype for each sense cluster. A sense prototype in
[Reisinger and Mooney, 2010] is represented with a centroid of a context cluster. This ap-
proach does not operate on neural network learned word embeddings, but works with a tf-
idf [Rajaraman and Ullman, 2011, p. 8] weighted counting model. Its clustering algorithm pro-
duces a fixed number of k clusters per word that according to the authors do not directly corre-
spond to word senses. Instead they capture meaningful variations of word usage and allow to
measure similarity of two words, for example, as an average similarity between all their cluster
pairs. It has been evaluated on WordSim353 dataset [Finkelstein et al., 2002] for word similarity
task and on a custom dataset for near-synonym prediction. Basically, this approach does not ex-
plicitly model word meanings, but rather decomposes a single word embedding into several ones
to overcome a bias towards the most frequent sense.

[Huang et al., 2012] mostly follows the previous idea, but instead of tf-idf vectors it uses word
embeddings trained with a custom neural language model that learns word representations from

10

local and global context. Another difference is that to produce sense vectors it relabels all word
occurrences in the corpus with respect to the context cluster they belong to and retrains a neural
network on this relabelled corpus. Similarly to [Reisinger and Mooney, 2010] the number of senses
is fixed and in this case also does not directly represents word senses. The quality of embeddings
was evaluated on the WordSim353 dataset and on a custom Stanford’s Contextual Word Similarity
(SCWS) set, where word pairs are enriched with contextual information.

2.1.2 Extensions of Skip-Gram

Systems described in this subsection share a common property: they jointly perform word vector
learning and sense discrimination, directly producing word and sense embeddings in one step.
Also they all build on the Skip-Gram model of [Mikolov et al., 2013a].

[Tian et al., 2014] models word ambiguity from a probabilistic perspective. In comparison to
the Skip-Gram model, each word is modelled as a set of vectors and probability of two words’
co-occurrence is conditioned on the appearance of words’ vector. Each word has a fixed number of
prototypes, however in this case each prototype is associated with its prior probability. Most proba-
ble prototypes correlate well with word senses. This model has been evaluated on the word similar-
ity in context task using the SCWS dataset. It performs comparably with [Huang et al., 2012], but
runs about 3 times faster. It outperforms Skip-Gram vectors on the same task, but most probably
requires longer training time due to a more complex model.

[Neelakantan et al., 2014] were the first to present a non-parametric Multi-sense Skip-Gram
(NP-MSSG) model that discovers a varying number of senses per word type. During online training
they compare current context with already available sense vectors, and either update the closest
sense vector or create a new one. A sense slit-off happens if the distance from the context to
the nearest sense is lower than some threshold. They evaluate both parametric (in which new
vectors are never created) and non-parametric versions of their model on word similarity task,
showing that their approach beats both original Skip-Gram model and [Huang et al., 2012]. Even
though the non-parametric version is able to induce a reasonable number of senses, the parametric
version with 3 fixed senses per word performs better or comparably in the majority of tests. Quite
importantly, this model is highly computationally efficient: it does not run significantly slower in
comparison to the original Skip-Gram (2 hours vs. 0.33 hours) and improves impressively over
[Huang et al., 2012] (2 hours vs. 168 hours).

[Li and Jurafsky, 2015] propose a solution that incorporates Chinese Restaurant Processes (CRP)
into the Skip-Gram model and investigate the real value of multi-sense embeddings in NLP applica-
tions in comparison to single-prototyped word vectors. The underlying idea behind their approach
is very similar to that of [Neelakantan et al., 2014]: allocate a new representation for a word if
existing ones cannot explain it well enough. The main difference is that this model splits off a new
sense vector with a chance counter-proportional to probability of current context co-occuring with
already known senses and their frequency, while NP-MSSG makes decision based on a threshold.
Evaluation on word similarity (SCWS dataset) has shown that this variation achieves better re-
sults than [Neelakantan et al., 2014] and [Chen et al., 2014], although the advantage is minimal.
Furthermore, they evaluate sense vectors on POS-tagging, named entity recognition and several
sentiment analysis tasks, using sense vectors as input features. They observe that multi-sense
embeddings do indeed offer superior performance on some tasks (POS-tagging, semantic related-
ness), but not on others (NER, sentiment analysis). They come to a conclusion, that importance

11

of sense disambiguation for some applications might be overrated and that in some cases, similar
improvement can be achieved simply with increase of vector dimensionality.

To the best of our knowledge, the highest performance results at this moment are achieved
by the AdaGram model presented in [Bartunov et al., 2015]. They are also the first to apply
sense vectors to word sense disambiguation task. Their model is a bayesian extension of Skip-
Gram with Dirichlet process (DP) used for automatic determination of the required number of
prototypes. The sense vectors represent different word senses and granularity of sense induc-
tion is configured by a hyperparameter. AdaGram is compared to [Neelakantan et al., 2014] and
[Tian et al., 2014] on several WSI and WSD test datasets (SemEval-2007 Task 2, SemEval-2010
Task 14, SemEval-2013 Task 13 and a custom Wikipedia-based set). First of all, AdaGram con-
sistently and significantly outperforms other models on all sets. Secondly, it is observed that
a parametric version of [Neelakantan et al., 2014] (fixed three senses per word) shows better
results than a non-parametric one, which leads authors to a conclusion, that their systematic
Bayesian approach is better suited for word sense induction. Unfortunately, there is no com-
parison to [Li and Jurafsky, 2015]. It is worth noticing, that in word similarity AdaGram performs
worse than high-dimensional vectors of Skip-Gram and both NP-MSSG and MSSG, however it is
argued, that this task is not perfectly suitable for assessment of quality of sense embeddings.

2.1.3 Knowledge-based and Miscellaneous

Finally, there is a group of methods that either rely on external knowledge bases, or find another
unique way to learn sense distinct word embeddings. [Qiu et al., 2014] propose to learn a separate
vector for every part of speech of a term. While this might be a natural approach on its own, it
only partially solves the WSD problem, as different word senses do not necessarily correspond to
different part of speech roles of a word in context. Moreover, as part of their method they first
process a corpus with a POS-tagger and then train word representations for POS-tagged terms.
So essentially the POS disambiguation strength of their system is limited by the quality of a POS-
tagger.

[Chen et al., 2014] learn sense embeddings for WordNet [Fellbaum, 1998] lexemes. To do so
they average vector representations of most relevant words in a respective sense glosse (sense
explanation). Clearly, the number of senses is defined by the WordNet inventory, even though it
is quite easy to add a new sense to the model once it appears. The WSD step with this model
is performed as a search for maximum cosine similarity between averaged context vectors and
known sense vectors of the target word. The method is compared to winners of SemEval-2007
competitions with mixed results, showing no decisive superiority of their approach.

The AutoExtend method [Rothe and Schütze, 2015] addresses a similar objective from an-
other perspective. Inspired by the mathematical properties of the embeddings discussed by
[Mikolov et al., 2013d], they suggest that in a vector space a word is a sum of its lexemes in
WordNet, and analogously, a synset (set of interchangeable synonyms) is a sum of its lexemes.
Based on this assumption they propose a neural network architecture that learns synsets and lex-
emes embeddings by taking a graph of WordNet entities and any available word embeddings as
input. This method does not require an access to the corpus on which the word embeddings where
trained and can be transferred to learn entities embeddings of other knowledge bases, such as
Freebase. In this scenario word sense representations correspond to lexemes embeddings. The
method has been evaluated on word similarity (SCWS dataset) and word sense disambiguation
(Senseval-2 and Senseval-3) tasks, showing improvement over the state-of-the-art results.

12

[Liu et al., 2015] train topic specific embeddings by combining Skip-Gram with latent Dirichlet
allocation (LDA) topic models. Combination of jointly learned word vectors and topic vectors can
be interpreted as senses. They improve performance on text classification task as compared to
single-prototyped word embeddings. [Wu and Giles, 2015] refer to Wikipedia for sense informa-
tion. Working on a "one sense per article" assumption, they cluster Wikipedia articles to induce
word senses and then derive a separate sparse word vector for each word sense associated with
a cluster. Finally, [Guo et al., 2014] use bilingual resources and induce senses by clustering of
word’s translations. Sense vectors are trained on a corpus that is sense-labelled with respect to
induced clusters. To train vectors they use an earlier recurrent neural network language model of
[Mikolov et al., 2010].

2.2 Word Sense Disambiguation

The goal of this section is to provide a brief overview over the types of word sense disambiguation
systems and give examples of most prominent techniques. For a detailed and comprehensive survey
refer to [Agirre and Edmonds, 2007] and [Navigli, 2009].

Navigli defines WSD as the “ability to identify the meaning of words in context in a computational
manner". A meaning of a word is determined with respects to a particular sense inventory which
contains information about word-sense distinction. While the goal of all such method is the same,
they are distinguished according to the amount of external knowledge used and according to the
level of supervision. Generally, they are categorised in three groups: knowledge-based, supervised
and unsupervised methods.

Knowledge-based approaches
Such approaches utilize information from a hand-crafted, often human-readable lexical re-

sources like dictionaries, WordNet or, since recently, Wikipedia. These resources also act as a
sense inventory. The classical Lesk algorithm [Lesk, 1986] looks for overlap between the def-
inition of a target word and definitions of context words. [Vasilescu et al., 2004] investigated
variants of Lesk algorithm on Senseval-2 task and found out that (1) filtering of stop words
from context improves performance and (2) context words further away from the target provide
less useful clues for disambiguation. To overcome a lexical gap (common problem of overlap-
based approaches, when the description and context do not have much vocabulary in common)
[Miller et al.,] expand words with similar terms using distributional similarity. Another difficulty
of knowledge-rich approaches is that lexical resources as WordNet are readily available only for
popular languages as English. To address this issue the system Babelfly [Moro et al., 2014] per-
forms entity linking (EL) and WSD using semi-automatically constructed lexical semantic network
BabelNet [Navigli and Ponzetto, 2012] that covers 271 languages.

Supervised approaches
Supervised approaches use an explicitly sense-labeled training corpus to construct a model, usu-

ally building one model per target word. Decisions tree are one of the simplest approaches, in
which context features like “bank of?" are used to choose a correct sense. However, other su-
pervised WSD algorithms consistently outperform decision trees [Navigli, 2009, p. 17]. Several
experiments tested “non-deep” neural networks for WSD, e.g. [Leacock et al., 1993, Mooney, 1996,
Towell and Voorhees, 1998], but due to the lack of contemporary studies of these approaches
we are unable to make any assumption on their performance. Later SVMs have been recog-

13

nised as the most successful mechanism for supervised WSD [Lee and Ng, 2002] to this date.
While Naïve Bayes classifiers are outperformed by more powerful methods such as SVMs,
they generally compare well despite their independence assumption [Mooney, 1996, Ng, 1997a,
Leacock et al., 1998, Pedersen, 2007]. Instance-based models, also known as memory-based mod-
els, have also been found to be among the highest-performing methods on this task [Ng, 1997b,
Daelemans et al., 1999]. Furthermore, ensembles of several supervised WSD systems surpass per-
formance of each of the individual classifiers [Klein et al., 2002, Florian et al., 2002].

Unsupervised approaches
While knowledge-based and supervised approaches demonstrate top performance in compe-

titions, they suffer from the knowledge acquisition bottleneck. Supervised approaches require
considerable amount of sense-annotated training data which is expensive to create and often in-
consistent. Knowledge-based approaches a tied to the fixed number of senses in the inventory. This
is problematic as (1) senses emerge and disappear over time; (2) different applications require dif-
ferent granulates of a sense inventory.

Unsupervised WSD approaches rely neither on hand-annotated sense-labeled corpora, nor
on handcrafted lexical resources. Firstly, they automatically induce a sense inventory from
raw corpora. Such unsupervised sense induction methods fall into two categories: con-
text clustering, such as [Pedersen and Bruce, 1997, Schütze, 1998, Reisinger and Mooney, 2010,
Neelakantan et al., 2014, Bartunov et al., 2015] and word similarity graph (ego-network) cluster-
ing, such as [Lin, 1998, Pantel and Lin, 2002, Widdows and Dorow, 2002, Biemann,]. Secondly,
they use disambiguation clues from the induced sense inventory for word sense disambiguation.
Usually, the WSD procedure is uniquely defined by the design of sense inventory. It might be the
highest overlap between the instance’s context words and the words of the sense cluster, as in
[Hope and Keller, 2013a] or the smallest distance between context words and sense hubs in graph
sense representation, as in [Véronis, 2004]. If senses are represented by distinct embeddings, the
maximum cosine similarity between a sense vector and context vector representation can be used
to choose a correct sense.

Our method belongs to the group of unsupervised approaches using ego-network clustering for
sense induction.

14

3 Background
In the introductory chapter to this thesis we have put forward a hypothesis that single-prototype
word embeddings can be transformed into sense-specific vectors via clustering of word similarity
graphs. The approach we propose to complete this task requires sequential execution of following
steps: (1) computation of word embeddings, (2) construction of word similarity graphs, and (3)
clustering of such graphs. All these tasks are subjects of long-standing research with multiple
solutions proposed over the years. We are going to select suitable systems for each step among
existing ones and combine them to build our custom WSID system. In order to justify our choices
and to provide the reader with the background knowledge necessary for understanding of further
chapters, we are going to introduce existing approaches that are most relevant to our work.

In the first section we talk about word embeddings and the most efficient algorithms for their
training. In Section 3.2 we discuss proposed measures for semantic word similarity and systems
for its computation. In the last section we present clustering algorithms used for sense induction.

3.1 Word Embeddings

Word embeddings are distributional representation of words with low-dimensional vectors, typ-
ically of 100 – 500 dimensions. They are opposed to sparse high-dimensional vectors of length
10,000 – 100,000. Independently of the length, word vector representations are based on a distri-
butional hypothesis developed in the works of Zellig Harris, John Firth and Ludwig Wittgenstein
during the 1950s [Firth, 1957]. The hypothesis states that we can determine the meaning of a
word by looking at the context it appears in. The objective is that the relative similarity of these
vectors correlates with semantic similarity of corresponding words.

Variety of models for distributed vector representation differ in types of contextual information
they use and ways statistical information of corpus is modelled. In the traditional scenario, local
word contexts are used to compute a sparse square matrix of word co-occurrences, where entries
represent the number of times two words appeared together in a fixed-sized word window. Word
association measures such as Pointwise Mutual Information (PMI) [Church and Hanks, 1990] are
often used instead of raw counts. The Latent Semantic Analysis (LSA) [Deerwester et al., 1990]
developed in information retrieval, uses documents as contexts. In both of these approaches,
dimensionality reduction techniques such as Singular Value Decomposition (SVD) can to be used
to reduce the length of sparse word representations. Generally such models are called count-based.

Another way of learning word vectors is to train a neural network that tries to predict a next
word given its predecessors. As a by-product of this task we get weight matrices of the trained
network, in which rows/columns correspond to words and turn out to represent their seman-
tics very well. The advantage of this approach is that it helps to avoid the dimensionality re-
duction step and directly produces low-dimensional word vectors. First models were proposed
by [Bengio et al., 2003, Morin and Bengio, 2005, Collobert and Weston, 2008], but they suffered
from considerable computational complexity caused by sophisticated non-linear architectures of
networks. Mikolov et al. [Mikolov et al., 2013a] made it practical to learn word embeddings by

15

(a) CBOW model (b) Skip-Gram model

Figure 3.1: Architectures of word2vec models.1

suggesting a simplified architecture of a neural network with only three layers. The models of this
group are referred to as predictive neural network models.

There is no fundamental difference between predictive neural network and count-based lan-
guage models, which are rather different computational means to arrive at the same type of a
semantic model [Levy and Goldberg,]. In the rest of this section we are going to discuss two
state-of-the-art models, each representing one of these categories.

3.1.1 word2vec

word2vec is a toolkit implementing two predictive neural network models for training of word
embeddings.

Theory
Mikolov et al. decided to explore simpler architectures of neural networks that could be

trained much faster on more data, without loosing in quality of the vectors. Two new archi-
tectures were proposed: a Continuous Bag-of-Words (CBOW) model and a Skip-Gram model.
Both operate on (wt ,ct) training pairs consisting of a word wt and the set of it’s context words
ct = {ct−k, . . . , ct−1, ct+1, . . . , ct+k}, where 2k is the size of the context window.

As depicted in Figure 3.1, the main difference between CBOW and Skip-Gram models is that:

• CBOW: predicts the word given its context,

• Skip-Gram: predicts the context given a word.

The neural network consists of three layers: input, hidden and output layers. Let V and N be
the size of a corpus vocabulary and the number of nodes in the hidden layer. The input words are
encoded as one-hot vectors of length V and each row of weight matrix WV×N is an N -dimensional

1 The image is adapted from [Rong, 2014]

16

vector representation vwI
of an associated word wI of the input layer. This implies that the activa-

tion function of the hidden layer is simply linear [Rong, 2014], which accounts for computational
efficiency of the models. Between the hidden layer and the output layer there is another weight
matrix W′N×V , where each column v′wO

corresponds to an output word wO. At the output layer the
models produce posterior multinomial distributions (one for CBOW and 2k for Skip-Gram), which
are obtained using softmax function and defined as:

p(wO | wI) =
ev′wO

·vwI

∑V
j=1 e

v′w j
·vwI

. (3.1)

At the end of the training the rows of WV×N matrix are used as word vectors representations.
Since the computation of the denominator in Equation 3.1 is very expensive due to the sum over

all words in the vocabulary, authors suggested a negative-sampling approach. Instead of iterating
over all possible word pairs for wI , they propose to randomly sample some negative (not co-
occurring with wI) examples of words from the vocabulary and only use them.

word2vec models employ further techniques to discard some of the training instances
[Goldberg and Levy, 2014]. First, words appearing less than a minimal count of times are not
considered as either words or contexts. Second, very frequent words are down-sampled with the
probability:

P(w) = 1−
r

t

f (w)
,

where f (w) is the frequency of a word w and t is a chosen threshold, typically around 10−5.
These words are removed from the text before training pairs are generated.

The combination of these optimization techniques results in extremely efficient training: an op-
timized single-machine implementation can train on more than 100 billion words in less than one
day, while previously proposed models [Collobert and Weston, 2008, Turian et al., 2010] required
several weeks on a smaller corpus [Mikolov et al., 2013c]. The quality of vectors is also said to
be improved [Baroni et al., 2014]. According to the authors, Skip-Gram model trains better word
representation when available corpus is small, while CBOW is faster and more suitable for large
datasets [Mikolov et al., 2013b].

Properties
Word embeddings trained with word2vec exhibit several interesting properties. First of all, as

expected from the training objective and analogous to the vectors obtained by other methods, the
angle between vectors of two words corresponds to the human’s perception of word similarity. To
give an example, the cosine similarity on a scale [−1,+1] for words student and university may be
0.7, whereas for student and ship it may be 0.2.

Furthermore, word2vec vectors have a property of additive compositionality [Mikolov et al., 2013c].
They exhibit linear structure that makes it possible to meaningfully combine words by element-wise
addition of their vector representations. Several examples of nearest neighbours of two-word com-
positions are given below:

17

Figure 3.2: Visualisation of gender relationship (on the left) and verb tense relationship (on the
right) between vector pairs using t-NSE dimensionality reduction technique.2

vec(house) + vec(king)→ vec(palace), vec(castle), vec(prince)
vec(Germany) + vec(river)→ vec(Elbe), vec(Rhine), vec(Danube)
vec(grapes) + vec(alcohol)→ vec(wine), vec(wines), vec(brandy)

Finally, the vectors are able to implicitly learn semantic and syntactical relationships between
words. These regularities are observed as constant vector offsets between pairs of words sharing a
particular relationship. For example, as illustrated in the Figure 3.2:

vec(man)− vec(woman)∼ vec(king)− vec(queen),
vec(swimming)− vec(swam)∼ vec(walking)− vec(walked),

vectors can capture gender and verb tense relationships between word pairs. Other observed
relationships include singular/plural for nouns, comparative/superlative for adjectives, as well as
country/capital and country/currency semantic relations. This allows to solve word analogy tasks
such as car:cars cat:X by computing X = vec(cars)−vec(car)+vec(cat) and taking the nearest vector
of X . However, according to the experiments of Prof. Jordan S. Ellenberg presented in his blog
post Messing around with word2vec3, the vectors are not able to find antonyms of words in a task
like: waste:economise happy:X.

The important takeaway from this paragraph is that (1) cosine similarity between word embed-
dings reflects, at least partially, semantic word similarity and (2) linear combinations of vectors
capture relationships between concepts. While these examples were produced with vectors trained
by word2vec toolkit, it is important to mention that the same properties were demonstrated by
vectors trained using other architectures [Levy and Goldberg, 2014b, p. 2].
2 The image is taken from Vector Representations of Words tutorial published on https://www.tensorflow.org/
versions/r0.7/tutorials/word2vec/index.html

3 https://quomodocumque.wordpress.com/2016/01/15/messing-around-with-word2vec/

18

https://www.tensorflow.org/versions/r0.7/tutorials/word2vec/index.html
https://www.tensorflow.org/versions/r0.7/tutorials/word2vec/index.html
https://quomodocumque.wordpress.com/2016/01/15/messing-around-with-word2vec/

Implementation
There exist two implementations of training algorithms for CBOW and Skip-Gram models. The

first one is the original word2vec toolkit4 written in C, which is fast and well parallelizable. Another
one is a re-implementation of the same algorithms in Python5 by Radim Řehůřek, distributed
within the gensim package [Řehůřek and Sojka, 2010]. It provides a better interface for usage
of trained vectors, but is several times slower. Therefore, it is advisable to train vectors with C
implementation, but it is easier to “play" with them when loaded with gensim package.

The most relevant parameters for the training of word vectors are:

• size: dimensionality of word vectors. Influences the quality of representations. Common
numbers are between 100-600.

• window: half-size of the symmetrical context window. Usually between 3 and 8.

• sample: threshold t for down-sampling of very frequent words. Reasonable threshold equals
10−5.

• negative: number of negative examples used for each input word in Equation 3.1. Lower
values lead to faster computation, but affect vector quality. Common values are between 3
and 10.

• min-count: threshold for removal of infrequent words from the corpus. Decreases model
size and removes noisy/erroneous words.

Parameter names correspond to the word2vec interface of the training algorithm.

3.1.2 GloVe

GloVe is a word embeddings model presented in [Pennington et al., 2014], which uses explicit
matrix factorisation to learn vectors. It belongs to the group of count-based methods. In the
following we briefly explain the approach and how its performance compares to word2vec models
discussed earlier.

The GloVe model learns vectors by examining the co-occurrences of words in a text corpus.
These are encoded as a XV×V matrix, where V is the size of corpus vocabulary and an entry X i j is
the number of times word i occurs in context of word j. The goal is to learn two separate sets of
word vectors w ∈ Rd and context word vectors w̃ ∈ Rd , such that:

wi · w̃j+ bi + b j = log(X i j),

where bi and b j are scalar bias terms associated with words i and j and trained together with
word/context vectors. The model is fit to minimize the sum of all squared errors using stochastic
gradient descend algorithm. To balance the influence of very frequent and very rare word pairs,
the errors are weighted with the function:

f
�

X i j

�

=







�

X i j

xmax

�α

if X i j < xmax

1 otherwise.

4 https://code.google.com/p/word2vec/
5 https://radimrehurek.com/gensim/models/word2vec.html

19

https://code.google.com/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html

For example, with xmax = 100 it will treat equally any pair co-occurring more than 100 times and
decrease the relevance of pairs observed together less than 100 times proportionally to their X i j.

The authors suggest to use a mean of wi and w̃i as a vector for a word wi. Vectors trained with
this model exhibit all the same properties that were discussed for word2vec models earlier in this
section. Therefore, they can also be used to solve word similarity and word analogy tasks. In
the original paper authors have reported a significant performance improvement of GloVe vectors
over Skip-Gram and CBOW vectors on these tasks. However, Levy et al. conducted experiments
comparing count-based and predictive word vector models (including word2vec and GloVe), which
showed that performance differences between the methods are mostly local and insignificant, and
that "there is no consistent advantage to one algorithmic approach over another" [Levy et al., 2015].
With regard to the training time the models are also comparable, however word2vec requires less
memory.

3.2 Word Similarity

As we have mentioned in the beginning of this chapter, we want to learn sense-specific vectors
via clustering of word similarity graphs. To build such graphs we need a measure for semantic
word similarity. One measure that we could use is provided by vector space models discussed
in the previous section. There the similarity between two words is defined as a cosine similar-
ity of their vector representations. An alternative to this has been proposed by Biemann et al.
[Biemann et al., 2013]. In their JoBimText framework each word is represented with a set of its
observed context features and the similarity between two words is defined by the overlap of their
feature sets.

Both approaches take their roots in the Distributional hypothesis as they find word characteristics
in the context. In this section we present the word similarity measures in terms of both approaches,
with an emphasis on the JoBimText modelling of distributional semantics, which has not been
explained so far.

3.2.1 Similarities using Vector Space Models

In vector space models, including previously discussed word2vec and GloVe models, the similarity
between words is defined as a cosine similarity of their vectors:

simw2v(wi, w j) =
wi ·w j

||wi|| · ||w j||
, (3.2)

where wi and w j are word embeddings of words wi and w j respectively. The range of the measure
is [−1,+1], with most of the word similarities distributed between -0.2 and 0.8.

3.2.2 Similarities using JoBimText

JoBimText is a framework for application of Distributional Semantics using lexicalized features. It
provides a software solution for automatic text expansion and word sense induction using contex-
tualized distributional similarity. Context features are used for the computation of similarities. It
is highly scalable and open-source.

20

Figure 3.3: Dependency parse of example sentence from Stanford CoreNLP.6

Jo Bim

table case(•, at)

table det(•, the)

table nmod:at(sitting, •)

family det(•, the)

family nsubj(sitting, •)

Jo Bim

table trigram(the, •, was)

family trigram(the, •, .)

Table 3.1: Dependency features (on the left) and trigram features (on the right) of words table
and family extracted from the sentence in Figure 3.3.

A context feature of a word is some observation of this word in its context. In particular, JoBim-
Text uses dependency and n-gram features. Dependencies are grammatical relations among words
in a sentence and n-grams are word sequences of length n. To illustrate this consider an exemplary
sentence in the Figure 3.3. Context features that can be extracted from this sentence for words
family and table are listed in Table 3.1. The head word for which a feature is extracted is called Jo
and the features are called Bims, hence the name of the framework. An arbitrary symbol ’•’ acts as
a placeholder for the head word and enables features to be shared by different words. Thus, the
semantic relatedness between words desk and table can be expressed by their sharing of a feature
nmod:at(sitting, •).

Features like these are extracted from a large corpus and aggregated by head words. The count
statistics (number of times each Jo, each Bim and each JoBim pair appear in the corpus) are
collected as well. To reduce the noise and to make the computation scalable, each feature of a
word is ranked according to its significance for this word. Only p most significant features are
used to represent a word.

The similarity between two words is then defined as the number of features they share:

simJBT(wi, w j) = features(wi)∩ features(w j). (3.3)

This measure ranges from 0 to p.
The most influential parameters for this model are:

• features type: dependencies (Stanford parser [Klein and Manning, 2003], Malt parser
[Nivre et al., 2006]) or n-grams (bigrams, trigrams).

• significance measure for JoBim pairs: Pointwise Mutual Information (PMI), Lexicogra-
pher’s Mutual Information (LMI) or Log-likelihood ratio (LL). Definitions are given in
[Biemann et al., 2013, p. 74].

• p: number of features per word. Optimal values lie between 1,000 and 5,000 for very large
corpora.

6 The image is taken from web visualizer at http://nlp.stanford.edu:8080/corenlp/process.

21

http://nlp.stanford.edu:8080/corenlp/process

3.3 Word Clustering

This section is about clustering of graphs. Now that we have found several measures to express
semantic similarity between words, we can use them to build local word similarity graphs. Such
graphs are constructed for each word separately. They consist of (1) words most similar to the
target word as nodes and (2) similarity relations between word pairs as weighted edges. The
similarity measure we can use (simw2v and simjbt defined in equations 3.2 and 3.3) are symmetric,
therefore we work with undirected graphs. Out hypothesis is that:

1. local similarity neighbourhood of a polysemous word includes words related to its different
senses,

2. neighbours related to the same sense are stronger interconnected with each other than with
words related to other senses.

If this hypothesis is true, then clustering of a word similarity graph should produce clusters corre-
sponding the target word’s senses.

In this section we explore two algorithms for graph clustering. Both of them do not need a
predefined number of clusters to be found, which is a prerequisite for a reasonable sense induction
system.

3.3.1 Markov Cluster Algorithm

The Markov cluster algorithm (MCL) is a graph clustering algorithm developed by Stijn van Dongen
during his PhD [van Dongen, 2000]. It is based on a random walker concept, which is a theoretical
foundation for several other clustering algorithms as well. If we consider a graph that can be
clustered, it is supposed to have many links within a cluster and fewer links between clusters.
Therefore, if we start a random walk from any node, we are more likely to stay within a cluster,
than travel between.

MCL algorithm starts with a calculation of a square transition probability matrix, which models
the random walker’s chance of getting from one node to another in one step. Then it alternates
expansion and inflation steps until convergence to discover where the flow tends to gather, and
therefore, where clusters are.

The expansion step simulates the advancement of random walks. For example, taking the 2nd
power of initial transition matrix results in a matrix with probabilities of a random walk from one
node to another in two steps. This step allows to connect different graph regions.

The inflation step emphasises the flow discovered in the expansion step: strong connections are
further strengthened and weak connections are demoted. This is performed by raising each matrix
entry to a positive power r and subsequently re-normalizing columns. The power r is called
an inflation parameter and it controls the extend of strengthening and weakening of the links.
Eventually it influences over the granularity of clusters: higher values of r lead to finer-grained
clustering.

During alternation of these steps the connections weakened below some threshold are deleted.
Eventually the graph is separated into different segments, which are interpreted as clusters. The
global convergence of the algorithm is not proven, however, experimental results show that the
matrix starts to converge noticeably after 3-10 iterations in most of the cases. In the resulting

22

clustering each node is assigned to one cluster only, Exceptions to this are possible, but they occur
only in parts of the graph which are symmetrical.

The worst case time complexity of the algorithm is O(N3), where N is the number of nodes. In
practice it comes down to O(N · k2), where k is the maximum number of non-zero elements (re-
maining connections) per column. Because the matrix becomes sparse after several first iterations,
MCL is considered fast.

3.3.2 Chinese Whispers

Chinese Whispers (CW) is a randomized clustering algorithm proposed in [Biemann,]. It follows
a bottom-up procedure: the algorithm starts with each node belonging to its own cluster and then
iteratively increases the size of these clusters. Its time complexity is linear in the number of edges,
which makes it very efficient, especially for sparse graphs. It can be used on undirected weighted
graphs and produces a relatively coarse-grained hard partitioning (each node belongs to one class
only).

The pseudocode of CW is given in Algorithm 1. It takes a graph as input and produces a class
assignment of nodes. First, each node is assigned to a distinct class. Then a series of iterations
is performed until the clustering stabilizes. In one iteration nodes are processed in random order
and each node is assigned to the highest ranked class among its direct neighbours. Rank of a class
c with respect to a node v is the sum of edges’ weights connecting the node v with its neighbours
of class c:

Rank(c, v) =
∑

(v ,u)∈E
class(u)=c

weight(v, u). (3.4)

Algorithm 1: Chinese Whispers algorithm.
input : G = (V, E) – an undirected weighted graph
output: class(v) – a cluster assignment for all nodes in V

foreach v i ∈ V do
class(v i) = i

end
while clustering changes do

foreach v ∈ V do
class(v) = highest ranked class among neighbours of v

end
end

Intuitively this means that each node is assigned to the strongest class in the neighbourhood.
Some alternative definitions of this function exist, which aim to decrease the influence of hub
nodes or to set a minimum rank value necessary for an update to take place.

Because nodes are processed randomly, the algorithm is non-deterministic: each new run may
produce a different partition. The time complexity of the algorithm is O(n · |E|). In worst case
scenario, when the graph is fully connected, it is equivalent to the complexity of MCL (because
|E| = n2). In fact, CW can be regarded as a special case of MCL with very hard pruning of links:
only one positive entry per row in transition matrix is kept.

23

It does not have an explicit parameter to control the granularity of clustering. However, it can
be influenced by the density of the graph: with fewer edges in a graph an algorithm tends to create
more clusters.

24

4 Word Sense Induction
In the introductory chapter we have outlined our requirements on the WSID system, of which
the most important is that all steps of the method have to be performed in an unsupervised and
knowledge-free manner. The motivation for this is that lexical resources and sense-annotated
corpora are scarce, expensive, time-consuming to construct and often available only for limited
number of most popular languages. Even though supervised approaches using such resources so
far outperform their unsupervised counterparts, the ability to generalise unsupervised methods
to different languages and domains is a strong motivation for continuation of research in this
direction.

The first step in building such a system is to perform word sense induction (WSI), on which we
focus in this chapter. Word sense induction is a problem concerned with automatic identification of
the senses of a word from raw unstructured corpora. Therefore WSI approaches help to overcome
the bottleneck of lexical resources and hand-annotated data, otherwise required in large quantities.
As outlined in Section 2.2 of Related Work, WSI is usually performed with some form of clustering:
either of contexts or of words.

In our work we show how already existing methods for training of word embeddings, measure-
ment of word relatedness and clustering can be combined into a system producing senses vectors.
Representing word senses with vectors, and not sense clusters or sense definitions, is desirable
because they:

1. improve over single-prototyped word vectors by giving a true representation of polysemous
words and open doors to new applications of word embeddings,

2. reduce complexity of WSD procedure with direct application of vector cosine similarity to
identify correct meaning.

In this chapter we present our word sense induction method. In Section 4.1 we provide a high-
level overview of the complete pipeline. In Sections 4.2 to 4.5 we go deeper into the details of
every stage and describe how they work. Finally in Section 4.6 we illustrate the performance of
our induction system and provide several examples of induced senses.

4.1 Overview

The goal of our WSI system is to induce senses from a raw corpus and to represent them with
sense embeddings. In this work we use the words embeddings and vectors interchangeably. A sense
embedding is a compact (several hundreds of dimensions) continuous-valued representation of a
word meaning. Usually, to speak about semantics encoded in a word vector we examine which
words are placed close to it in vector space (we call them neighbours, similar words or related
terms). A sense vector corresponding to one of the meanings of a polysemous word, for example
sense of table1 as furniture, should have among its nearest neighbours only words like chair, desk,
counter and nothing related to data.

There is no general answer to the question how many senses words have and where to draw a
line between them. Usually linguists distinguish two types of sense ambiguity:

25

• homonymy – two completely unrelated senses. Examples of homonymy are table (furniture)
/ table (information), mouse (animal) / mouse (device), bank (finance) / bank (river). Even if
some historical or symbolical link may be drawn between those words, they refer to different
concepts, which are unlikely to appear in the same context.

• polysemy – two different but related to each other senses. Some examples include: chicken
(animal) / chicken (food), bank (finance) / bank (building), man (species) / man (person).
Usually polysemous words have a common origin.

In this work we do not differentiate between homonymy and polysemy. In fact, we refer to
any ambiguous word as polysemous, and the right interpretation of this term in our context is not
monosemous.

In Section 2.1 of Related Work we have shown that existing approaches for learning of sense
embeddings (1) use context clustering, (2) directly learn sense embeddings with modified neural
network architectures similar to Skip-Gram or (3) rely on sense inventories from lexical resources.
In contrast to these techniques we propose to induce a sense inventory using existing word embed-
dings via clustering of ego-networks of related words.

Our method consists of four main stages depicted in Figure 4.1. First, (1) we learn word vectors
with an existing system for single-prototype word embeddings. Then, (2) we use the vector space
formed by these word vectors to calculate a word similarity graph, which contains all words in
the vocabulary as nodes linked by edges weighted with similarity score between them. After that,
(3) we extract ego-networks for words in the similarity graph and cluster those to induce senses.
Finally, (4) we aggregate word vectors with respect to induced senses.

With respect to the set of requirements that we have outlined in Section 1.2 our WSI system:

• represents word senses with unique dense vectors,

• induces senses with a non-parametrized clustering algorithm and does not rely on any lexical
resource apart from a raw text corpus,

• uses clustering algorithm that is known to produce coarse-grained sense distinction,

• integrates only on highly scalable existing methods that can handle corpora with over one
million words in the vocabulary, thus ensuring the broad coverage of induced senses.

In addition to this, our system is very flexible. All stages of our method are independent of each
other, and therefore, black boxes used to implement them are replaceable. Should a better system
for learning of word embeddings or graph clustering appear, it can substitute the one used in our
pipeline. The same independence of single stages means that our method can use existing word
embeddings, word similarity graphs and sense inventories, which is very useful in situations when
an external system is not publicly available or its output is not feasibly reproducible. For example,
we can use an available sense inventory, thus skipping the stages two and three. Also we can
work with alternative word similarity graphs (therefore, skipping the second stage). This opens
up our system to a wide range of experimental scenarios, in which we can (1) evaluate various
configurations of the system itself or (2) use it as framework for comparison of systems integrated
into the pipeline in terms of their usefulness for word sense induction and disambiguation.

26

Figure 4.1: The complete word sense induction pipeline.

4.2 Learning Word Vectors

The goal of this stage is to train single-prototype word vectors from a large raw text corpus. This
stage produces one vector for each uniquely spelled term in a corpus, conflating word senses if a
word has many.

Word vectors are useful to us in many ways:

• The vector space provides us with a word similarity relation expressed as cosine similarity
between vectors. We use it at second stage to build a word similarity graph.

• Word vectors can be combined using linear operations in a semantically meaningful way. We
rely on this property at stage four, when we transform sense clusters into sense vectors.

• Word vectors can be used to represent context, in which a target word has to be disam-
biguated. We use them for this purpose in our WSD mechanism (Chapter 5)

To produce word vectors we first preprocess the text corpus and then run a word embed-
dings learning algorithm provided by word2vec toolkit. Our candidates for this step were Skip-
gram/CBOW or GloVe word embedding models. Both have publicly available implementations.
We have reported that they are currently considered to produce vectors of comparable qual-
ity [Levy et al., 2015]. We have decided to use word2vec because it has been introduced earlier,
has been longer in use, and therefore, is easier to troubleshoot thanks to a larger user community.

For training, we use the original C implementation of word2vec, because it is significantly faster
than the Python implementation distributed with gensim package [Řehůřek and Sojka, 2010].

Preprocessing
word2vec takes a tokenized text file as input. It interprets any sequence of chars surrounded by

white spaces as a token. Separation of text into sentences or articles is irrelevant. The default
preprocessing of word2vec consists of following steps:

• remove all URLs and tags,

• replace any character not in [a-z][A-Z][0-9] with a whitespace,

27

Figure 4.2: Stage 1: Learning word vectors.

• normalize each contiguous occurrence of white spaces to a single white space,

• lowercase all characters,

• spell out digits ("13" becomes "one three").

We consider this way of text cleaning too aggressive and simplifying. First of all, it splits hy-
phenated words like mother-in-law or good-looking, and as the result, removes them from model’s
vocabulary. Same thing happens to any word containing non-ASCII letters, i.e. café, étude or crêpe.
Secondly, lowercasing all words may partially remove semantic information. For example, two
meanings of the word python can be distinguished by the way the word is written in text: python
(snake) is likely to start with a small letter, while Python (programming language) mostly appears
capitalized. Finally, transforming numbers might also remove contextual information required dur-
ing training. Consider two usages of the word account: (1) transfer accounts to another branch and
(2) accounts to 15%. It is used as a bank account and as a verb respectively, and the number 15 is
an important clue that emphasises this difference.

We propose to modify original corpora as little as possible. Our preprocessing algorithm:

• tokenizes text with Treebank tokenizer,

• converts to lower case only if users sets the respective parameter,

• leaves all characters intact.

For illustration we provide an example of text preprocessing of the sentence "This state-of-the-art
language model has been presented in Quebéc in 2009." produced by the default word2vec prepro-
cessing script and our custom method:

default this state of the art language model has been presented

in qu bec in two zero zero six

custom This state-of-the-art language model has been presented

in Quebéc in 2009 .

In addition to preprocessing, at this stage we count word frequencies of the corpus. The output
file consist of lines in the following format:

word<SPACE>count

28

where count is the number of times the word appears in the corpus. Each word is written on a
new line and the list is sorted by the count number in decreasing order (most frequent terms are
in the beginning). The file of word frequencies is not crucial for the next stages of the pipeline,
but it may be used to prune words from the model or from a word similarity graph with respect to
their frequency.

Training Word Vectors
After the corpus has been prepared, we can train word vectors with word2vec. Here we have

to consider the importance of training parameters to our goal. Higher number of dimensions im-
proves the quality of vectors. This is especially noticeable up to 200 hundred dimensions. On
the other hand, it leads to a larger model and longer computation time of cosine similarity be-
tween vectors. The number of iterations can also positively influence vectors, however, it is more
important if the corpus is relatively small (several gigabytes or less). Setting the minimum word
frequency higher will decrease the vocabulary size of the model and may change the list of nearest
neighbours extracted for words. Other parameters include the size of a context window and type
of the model (CBOW/Skip-gram), but we cannot foresee their influence on the performance of our
system without experiments.

We have modified the original implementation of word2vec to save both weight matrices trained
by the algorithm. Independently of the model type, word2vec saves only the matrix WV×N (see
architecture of models depicted in Figure 3.1) and suggests to use it as word vectors. We also save
the complementary matrix W′N×V and refer to it as context vectors. We use them later in one of
our WSD mechanism. These vectors are not strictly necessary for the next stages of word sense
induction.

All vectors can be saved in a plain text format or binary format. Vectors are ordered by the
frequency of words they represent (vectors of most frequent words come first). Loading these
vectors with gensim package preserves this order.

4.3 Calculating Word Similarity Graph

The goal of this stage is to calculate the word similarity graph. This graph contains all words of the
vocabulary as nodes linked by edges weighted with the similarity score between them. The graph
is undirected.

As shown in Figure 4.3, to build this graph we propose to use two different similarity measures
introduced in Section 3.2. The first is based on the word embeddings trained at the previous stage
(simw2v) and the second one is based on word features approach provided by JoBimText framework
(simJBT). Multiple alternatives exist for computation of word similarities [Zhang et al., 2013]. We
have decided for those two because (1) both are scalable and allow to build a graph for all words
in the vocabulary; (2) they are interesting to compare, being based on two different types of
context observations. While word2vec interprets context as a bag of words, JoBimText works with
syntactical dependencies.

It is important to clarify that the notion of similarity implemented by those measures is much
wider than word synonymity and not limited by the part of speech of words. For example, neigh-
bours of the word warm may include terms like hot, cold and temperature. In literature this relation
is also called word relatedness, meaning that it measures word topical similarity and includes, but
is not limited to, synonyms, antonyms, hypernyms, hyponyms, etc. This is not an obstacle for word
sense induction. In fact, two senses hot (temperature) and hot (attractive) may be well distin-

29

Figure 4.3: Stage 2: Calculating word similarity graph.

guished with two groups of its synonyms, antonyms and other semantically related words: {cold,
warm, temperature, weather} and {good-looking, ugly, interesting, boring} respectively.

The output of this stage is a word similarity graph. We represent it in form of distributional
thesaurus (DT). A DT file consists of lines in the following format:

word1<TAB>word2<TAB>score

where score is the similarity score between word1 and word2. Thus, each line represents an edge
of the graph. Lines in DT are usually grouped by the first word and therefore, DT can also be seen
as a dictionary of related terms.

The graph produced at this stage is not fully connected. For each word of the vocabulary included
in the graph we draw at most N edges to its most similar terms. This is motivated by prior
studies [Biemann et al., 2013, Panchenko, 2013]: as observed, words have only several hundred
strongly semantically related words. In fact, we usually set N around 200.

Word2vec similarity
In this case, the similarity between two words is defined as a cosine similarity of their vectors:

simw2v(wi, w j) =
wi ·w j

||wi|| · ||w j||
, (4.1)

where wi and w j are word embeddings of words wi and w j respectively. To build a graph we iterate
over all words in the vocabulary of the model trained at the first stage. For each word we extract N
most similar terms. To find those most similar terms we have to calculate similarities to all words
in the vocabulary and sort them by the score. To do so based on a model that includes more than
one million words is very time consuming. To speed up this process we perform block-wise matrix
multiplication.

Let MV×D be the input matrix of normalized word embeddings, where V is the size of the vocab-
ulary and D is the dimensionality of vectors. We calculate word similarities for a block of B words
at a time. Let MB×D be a matrix of B normalized word embeddings belonging to the block. We
compute the product of these matrices:

MB×V =MB×D ·M
ᵀ
V×D, (4.2)

30

Figure 4.4: Stage 3: Word sense induction.

where an element mi j of the matrix MB×V corresponds to cosine similarity between vectors wi
and w j.

At this stage there is a possibility to filter words in the vocabulary. We propose to calculate
neighbours only for words that include no other chars rather than upper and lower case letters,
a point and a dash. This operation also preserves the original word order in the vector model
produced by word2vec.

JoBimText similarity
In this case we use the similarity measure implemented in JoBimText framework. The similarity

between two words is defined as the number of features they share:

simJBT(wi, w j) = features(wi)∩ features(w j), (4.3)

where features are observations of words in context, for example observed dependency relations,
normalized and pruned down to a recommended number of features per word. For computation
of a word similarity graph using this measure we rely on JoBimText implementation. In this
framework computation of a DT is one of the intermediate steps. More information about the
framework and how to use it can be found at its homepage1.

4.4 Word Sense Induction

The goal of this stage is to produce a sense inventory. In such inventory a word sense is represented
by a word cluster. For instance the cluster “chair, bed, bench, stool, sofa, desk, cabinet" can represent
the sense table (furniture).

We achieve this goal via clustering of word graphs, similar to [Pantel and Lin, 2002]
and [Biemann,]. In particular, to induce senses of a word t we first construct an ego-network
G of this word and then perform graph clustering of this network. The identified clusters are in-
terpreted as senses. An ego-network consists of a single node (ego) together with the nodes it is
connected to (alters) and all the edges among those alters. An ego-network of size 20 for a word
mouse is shown in Figure 4.5 as an example. All information necessary to build an ego-network for
all words in the vocabulary is already available to us in form of a DT built at the second stage.
1 http://maggie.lt.informatik.tu-darmstadt.de/jobimtext/

31

http://maggie.lt.informatik.tu-darmstadt.de/jobimtext/

Figure 4.5: An ego-network of size 20 for a word mouse.

The success of our approach is based on two hypotheses:

1. an ego-network of a limited size of a polysemous word includes words related to its different
senses,

2. words related to the same sense are tightly interconnected while having fewer connections
to words referring to other senses.

Our exemplary ego-network of a word mouse complies with these hypotheses.

Method description
As depicted in Figure 4.4, this stage consists of three main steps: (1) pruning of a word similarity

graph, (2) word sense induction, separated into building of ego-networks and their subsequent
clustering with Chinese Whispers algorithm and (3) filtering of clusters.

First step, pruning of the word similarity graph, is optional. In some situations we might want
to decrease the size of this graph, either to speed up the clustering or to reduce the memory load.
We suggest to do this with respect to word frequencies, assuming that sense induction might not
be relevant for very infrequent terms, which, however, contribute significantly to the graph’s size.
We can delete word pairs from the distributional thesaurus with help of word frequencies of the
corpus counted during preprocessing at the first stage. A pair is removed, if any of its words has a
count lower than a set threshold.

The second step is our word sense induction method, presented in Algorithm 2. It processes one
word t of the word similarity graph T per iteration. First, we collect N most similar terms of t in a
set denoted as V . These are the nodes of the ego-network G, which so far has no edges. After that
we iterate over nodes v in V . For each node we collect n of it most similar terms. If a new similar
term is already present in V , we draw an edge from it to v . Otherwise we do nothing. This way
we build an ego-network G. Note that it does not contain the ego word t, and therefore, has no
edges from t to its similar terms. In the end, we pass the ego-network G to the Chinese Whispers
algorithm and it returns sense clusters of the word t.

We have considered two candidates for the clustering step: Markov cluster algorithm (MCL) and
Chinese Whispers (CW). Both are parameter-free clustering algorithms which discover the number
of sense themselves. However, we have decided for CW because (1) it is a time-linear algorithm

32

that works faster than MCL in our scenario and (2) it does not require an additional granularity
parameter. Instead, the granularity of clusters is governed by the structure of an ego-network. In
addition to this, CW showed promising sense induction results in the past [Biemann,].

Algorithm 2: Word sense induction.

input : T – word similarity graph, N – ego-network size, n – ego-network connectivity
output: for each term t ∈ T , a clustering St of its N most similar terms

foreach t ∈ T do
V ← N most similar terms of t from T
G← graph with V as nodes and no edges E

foreach v ∈ V do
V ′← n most similar terms of v from T
foreach v ′ ∈ V ′ do

if v ′ ∈ V then add edge (v , v ′) to E
end

end
St ← ChineseWhispers(G)

end

Our induction algorithm has two parameters: size of the ego-network N and connectivity of the
ego-network n. With N we can increase the number of similar terms collected for each word and
in doing so, increase the chance of getting terms related to different senses. With n we can control
the granularity of clusters. n is a maximum number of edges a node can have in the network. By
decreasing it we decrease the number of edges in a network and in doing so, decrease the chances
of CW to merge two clusters together, thus producing finer-grained clusters. In Figure 4.6 we
show variations in the clustering of an ego-network of the word mouse built with fixed N = 20,
and varied n. As we can see, CW outputs three clusters with n= 10 and four clusters with n= 5 .

At the final step of this stage we filter sense clusters. The goal of filtering is to remove very small
clusters which are usually the result of noise in an ego-network. We remove any cluster of size less
than a parameter k. This parameter should be set with respect to the size of the ego-network N ,
for example k ∈ [5,15] can be considered for N = 200.

The output of this stage is a sense inventory. It contains senses of all words in a word similarity
graph, unless some of the words where pruned before clustering. Each sense of a word is repre-
sented with a set of its related terms (sense cluster). Each line in the output file corresponds to
one word sense written in the following format:

word<TAB>sense_id<TAB>rel_terms

where sense_id is an integer identifier of a sense of the word. This identifier is unique in scope of
the respective word. rel_terms is a sense cluster written in the following format:

term1:weight1,term2:weight2,...

where termi is an ith word included in the cluster and weighti is the weight of the edge between
termi and the word taken directly from the word similarity graph. In case of a word similarity
graph built with word2vec it is a float number that equals to cosine similarity between respective

33

(a) N = 20, n= 10 (b) N = 20, n= 5

Figure 4.6: Clusters produced by Chinese Whispers of an ego-network for the word mouse with
varied parameter n. Note that the ego word mouse is excluded from clustering.

word vectors. If the graph was built with JoBimText, it is an integer number corresponding to the
number of shared features. All terms in the rel_term list are listed in decreasing order of the
weight value.

4.5 Pooling of Word Vectors

The goal of this stage is to transform sense clusters into sense vectors. We achieve this by averag-
ing vector representations of words in a cluster. Our idea relies on the additive compositionality
property of word vectors discussed in Section 3.1. As it has been shown in one of the examples,
the element-wise addition of vectors representing words Germany and river conflated meaning of
these concepts and returned a vector close to those of German rivers (Elba, Rhine, Danube).

As shown in Figure 4.7, this stage requires a sense inventory and word vectors as input. We
iterate over the sense inventory and produce a sense vector for each sense cluster. We define a
sense vector as a function of word vectors representing items of a cluster.

Let W be a set of all words included in the word vector model and let Si = {w1, . . . , wn} ⊆ W
be a sense cluster from the sense inventory obtained at the previous stage. Consider a function
vecw : W → Rm that maps words to word vectors and a function γi : W → R that maps words from
the cluster Si to their weights. We propose two ways to calculate sense vectors:

unweighted average of word vectors:

si =

∑n
k=1 vecw(wk)

n
;

and weighted average of word vectors:

si =

∑n
k=1 γi(wk)vecw(wk)
∑n

k=1 γi(wk)
.

34

Figure 4.7: Stage 4: Pooling of word vectors.

This stage outputs (1) sense vectors, (2) sense probabilities and (3) an updated sense inventory.
Sense vectors are saved in the word2vec format, with each word sense identified as a concatenation
of the word and a sense_id in the following format:

word#sense_id

Sense vectors can therefore be loaded with original word2vec toolkit or gensim package.
During the pooling of word vectors we also calculate probabilities of senses. We define it with

respect to the size of a sense cluster. Consider a set of sense clusters Sw = {Sw
1 , . . . , Sw

n } of a word
w. A probability of a sense Sw

i is defined as:

P(Sw
i) =

|Sw
i |

∑n
j=1|S

w
j |

.

This definition is only an approximation of the real sense probability which could be calculated
on the original corpus with respect to the number of occurrences of each sense. However, we do
not have a possibility to compute it this way and instead we assume that senses, which are more
frequent, will also have more related terms.

Finally, we explain why we make an update of a sense inventory. In Overview of our WSI method
(Section 4.1) we have listed flexibility as one of its properties. Indeed, at this stage we can use
any external sense inventory that represents senses with word clusters as input. In rare cases, the
vocabulary of the sense inventory provided as input might not be completely covered by the word
vector model. Therefore, some words in a cluster or complete word senses might be ignored during
pooling of vectors. Depending on a sense inventory type and whether it uses word collocations (for
example female actor as a related term of actress), user can decide if collocations should be split
or not. An updated sense inventory reflects these changes and contains only elements that were in
fact used for computation of sense vectors.

4.6 Examples

In this section we provide examples of word senses induced with our method, as well as results of
intermediary stages.

35

table mouse ruby

1 – 10 100 – 110 1 – 10 100 – 110 1 – 10 100 – 110

tables desks mickey typewriter sapphire jewel

lookup queue mice snoopy rubies judy

lists pointers cat duck jruby cabochon

sortable asterisked apodemus bug macruby rexx

diagram calcrete toontown mousepad matz megan

rows menu rabbit click diamond mixins

parentheses column trackball tigger keeler haskell

tabular dime sniffles screensaver rubinius violet

lists summary jeckle keystroke spinel trixie

brackets sofa rat animation realbasic billy

Table 4.1: Nearest neighbours of words table, mouse and ruby. First ten neighbours from the
first hundredth and from the second hundredth for each word. Neighbours extracted
with word2vec similarity from vectors trained on 1.5 GB excerpt of an English Wikipedia
dump.

In the design of our method we have made several theoretical assumptions about the word’s
ego-networks and their usefulness for word sense induction. To understand if these assumptions
in fact hold in practice we conducted a small preliminary experiment. It provides evidence that
our method is indeed able to produce meaningful sense vectors.

Setup
In this experiment we have induced senses from an excerpt of an English Wikipedia dump. The

corpus was 1.5 GB in size and cleaned with word2vec default preprocessing script. We trained a
CBOW model with word vectors of 200 dimensions using a context window size 8 and performing
15 training iterations.

Stage 2: Word neighbours
First we observe the nearest neighbours of several polysemous words to see if they indeed in-

clude terms related to different senses. We extract 200 nearest neighbours using simw2v similarity
measure. The results for words mouse, table and ruby are given in Table 4.1. For each word we
display first ten neighbours from the first hundredth and from the second hundredth. We observe
that neighbours in fact refer to different senses, for example the word mouse is close to mickey, rat
and trackball. Sometimes one sense clearly outweighs the other, like it does for table. It has more
neighbours related to the data sense than to furniture.

Stage 3: Sense clusters
After that we cluster word similarity graph with Chinese Whispers using parameters N = 200,

n = 200 and filtering out all clusters with less than 5 elements. Senses that our model is able to
induce are given in Table 4.2. This confirms our hypothesis, that in an ego-network terms related
to one sense are stronger interconnected than terms related to different senses. We also observe

36

Word Id Cluster size Top cluster words

table 0 165 tables, lookup, lists, sortable, diagram, rows, parentheses

table 1 34 tray, drawers, trays, bucket, meishi, pigeonholes, lectern, billiard

mouse 0 43 mice, apodemus, rat, sylvaticus, peromyscus, maniculatus, hamster

mouse 1 120 mickey, cat, toontown, rabbit, sniffles, jeckle, cartoon

mouse 2 37 trackball, mouses, keyset, keyboard, chording, cursor, trackpad

ruby 0 53 jruby, macruby, matz, rubinius, realbasic, ironruby, vroom, perl

ruby 1 73 sapphire, rubies, diamond, spinel, emerald, opal, padparadscha

ruby 2 72 keeler, macie, vicki, stuntz, eloise, jack, kelly, lucy, gayle, tiffany

Table 4.2: Sense clusters of words table, mouse and ruby. Weights of cluster words are omitted.
Senses induced with word2vec similarity from vectors trained on 1.5 GB excerpt of an
English Wikipedia dump.

that cluster sizes differ significantly. Note that our model does not differentiate between lower and
upper case letters, therefore a sense of the word Ruby related to female names is also included.

Stage 4: Sense vectors
Finally, we want to understand how does our approach for calculation of sense vectors from

sense clusters work. We have computed sense vectors using unweighted pooling of word vectors
in a sense cluster. Nearest neighbours of all senses of words table, mouse and ruby are listed in
Table 4.3. We observe that while nearest neighbours of sense vectors are not identical to the words
in the corresponding sense cluster, they are semantically similar and sufficiently sense-specific.

In this section we have cherry-picked examples of successful performance of our word sense
induction system. Obviously, there are also situations when it does not perform as expected. Such
cases will be discussed in more detail in Section 6.4.

Sense Interpr. Top neighbours

table#0 data sorted#0, tables#1, leftmost#0, tabular#1, concatenating#0

table#1 furniture tables#0, drawers#0, chairs#1, billiard#1, desk#0, abattant#0

mouse#0 animal falettinme#1, rat#0, mouses#1, hamster#0, nutcracker#1, dormouse#0

mouse#1 cartoon horsecollar#1, hippety#1, clarabelle#0, mickey#0, plucky#1, sniffles#0

mouse#2 device keyboard#1, chording#1, typeball#0, snood#3, spacebar#0, chorded#1

ruby#0 language groovy#1, generics#0, php#0, jruby#0, gobject#0, actionscript#0

ruby#1 gemstone emerald#0, moonstone#1, emeralds#0, gems#0, tlich#1, diamond#0

ruby#2 name connie#0, skeeter#0, patsy#0, gayle#0, patty#0, loretta#0

Table 4.3: Nearest neighbours of sense vectors for words table, mouse and ruby. Sense vectors
calculated from sense inventory induced with word2vec similarity from vectors trained
on 1.5 GB excerpt of an English Wikipedia dump.

37

5 Word Sense Disambiguation
In the previous chapter we have proposed a knowledge-free system for induction of word senses
from raw text corpora. In this chapter we describe a word sense disambiguation mechanism built
on top of it.

The task of word sense disambiguation is to automatically identify which sense of a word is used in
a sentence, when a word has multiple meanings. This task can be solved for all words in a sentence
(all-words WSD) or just for one target word in a sentence (lexical sample WSD). In Section 2.2 we
have outlined three groups of approaches used to solve the WSD problem: knowledge-based,
supervised and unsupervised.

Our system falls into the third category. To solve the task it requires only word embeddings,
sense embeddings, and optionally, context word embeddings. First of all, the number of senses
for each word is defined by the induced sense inventory and is therefore not bound to any ex-
isting knowledge base or lexical resource. Secondly, the semantic information encoded in word,
sense and context embeddings is the only source of disambiguation clues. In compliance with our
requirements this mechanism is fully unsupervised and knowledge-free.

5.1 Method

The WSD problem can be formally defined as follows: given a word w and a set of its context
words C the goal is to define a mapping D(w, C) ∈ Sw, where Sw is a set of senses of the word w
according to some sense inventory. Our method consists of three stages: (1) context extraction,
(2) context filtering and (3) disambiguation according to one of two disambiguation strategies. It
takes a target word and the sentence in which it appears as input, and outputs a sense identifier.
To operate it needs (1) a collection of sense vectors, which acts as a sense inventory, and (2) either
word vectors or context vectors, depending on the disambiguation strategy.

Context extraction
Given a sentence and a target word w we tokenize the sentence and extract a fixed number

of tokens on the left and on the right of the target word (this number is called context window
size). We refer to these tokens as the context C = {c1, . . . , ck} of w. No removal of stop words or
punctuation happens at this step. The order of context words is irrelevant.

Disambiguation strategies
Given a target word w and its extracted context C we first map w to a set of its sense vectors

Sw = {s1, . . . , sn} available in the provided collection of sense vectors. We define a function vecw :
W → Rm that maps words to word vectors and a function vecc : W → Rm that maps words to
context vectors. For explanation of the difference between word vectors and context vectors refer
to Section 4.2. We use two strategies to choose a correct sense in context.

The first disambiguation strategy is based on the probability of a sense in the given context. The
roots of this idea lie in the architecture of word2vec language models that learn vectors by trying

38

to predict the word given its context or vice versa, depending on the model type. In this strategy
we use context vectors to represent words in C . The mapping Dprob(w, C) is defined as:

Dprob(w, C) = argmax
si∈Sw

P(C |si) = argmax
si∈Sw

1

1+ e−c̄c ·si
, (5.1)

where c̄c is the mean of context vectors representing context words in C:

c̄c =

∑k
i=1 vecc(ci)

k
.

The second disambiguation strategy is based on similarity between senses and context. It is
inspired by the ability of word embeddings to place vectors of semantically similar words closer
together. For this strategy we use word vectors to represent words in C . This is practical, as
the standard implementation of word2vec does not save context embeddings and thus most pre-
computed models provide only word vectors. The mapping Dsim(w, C) is defined as:

Dsim(w, C) = argmax
si∈Sw

sim(si, C) = argmax
si∈Sw

c̄w · si

||c̄w|| · ||si||
, (5.2)

where c̄w is the mean of word vectors representing context words in C:

c̄w =

∑k
i=1 vecw(ci)

k
.

Context filtering
To improve WSD performance we also apply context filtering. Typically, only several words in

context are relevant for sense disambiguation, like chair and kitchen are for table in “They bought a
table and chairs for kitchen." Using all words from the context window, including articles, pronouns
and other non-discriminative words, smoothes sense-related traits of the context and hinders dis-
ambiguation of the target word. Therefore, the idea is to use only several most discriminative
words from the context. For each word c j in context C = {c1, . . . , ck} we calculate a score that
quantifies how well it discriminates the senses. The score of a context word c j is computed as
follows:

max
i

f (su, c j)−min
i

f (sv , c j), (5.3)

where su and sv iterate over senses of the ambiguous word and f is one of our disambiguation
strategies: either P(c|s) or sim(s, c). The parameter p defines how many most discriminative
context words will be used for disambiguation.

5.2 Example

In this section we illustrate three stages of our WSD system. We want to disambiguate the word
table in the sentence “They bought a table and chairs for kitchen." For this example we used the
same word and sense vectors that were obtained during the preliminary experiment on word sense
induction described in Section 4.6. We perform disambiguation using similarity disambiguation

39

Figure 5.1: Three stages of word sense disambiguation of the word table in the sentence “They
bought a table and chairs for kitchen." : (1) context extraction with window set to 4,
(2) context filtering with threshold p set to 3 and (3) disambiguation using similarity
strategy.

strategy, context window of size 4 and filtering of contexts with parameter p set to 3. This setting
of parameters was chosen arbitrarily and was not governed by any evidence of good performance.

The actions performed by the WSD mechanism during disambiguation are depicted in Figure 5.1.
Our sense vectors contain two senses for the word table: one related to data and another related
to furniture. First we tokenize the sentence and extract four words on the left of the target word
and four on the right. Because the sentence has only three words on the left, we end up with 7
context words.

Next three steps handle the context filtering. First, we calculate the similarity between each sep-
arate context word c j and each sense si of the target word using the similarity strategy sim(si, c j).
We can observe that words like a and for are almost equivalently similar to both senses, while chair
and kitchen clearly tend toward the furniture sense. We calculate the relevance score as defined in
Equation 5.3 and choose the three most informative words.

Finally, we perform the disambiguation with similarity strategy (see Equation 5.2) using an
average vector of three chosen context words. Our model correctly identifies the meaning of the
word table to be related to furniture. The margin between two sense scores is large: 0.63 vs. 0.07,

40

in part thanks to the context filtering. Without it, the sense scores are 0.54 and 0.15 respectively
and the margin is smaller. While this causes no problem in this particular example, enlarging the
margin between sense scores increases chances of a correct sense choice in less trivial situations.

41

6 Evaluation on TWSI
This chapter is dedicated to the evaluation of our system on word sense disambiguation task using
the Turk Bootstrap Word Sense Inventory (TWSI) 2.0 dataset. TWSI is a large collection of sen-
tences with a single sense-annotated word with relation to an induced sense inventory based on
a lexical substitution task. The main goal of experiments described here is to understand the role
and influence of our system parameters, and possibly find a best performing configuration that
could act as default.

This chapter is structured as follows: In the first section we discuss alternatives for the eval-
uation of our system. Then, in Section 6.2 we introduce the TWSI dataset, evaluation metrics
and baselines. Section 6.3 contains results of our experiments and their interpretation. Finally, in
Section 6.4 we perform error analysis to better understand the flaws of our system.

6.1 Evaluation Alternatives

In this work we develop a word sense induction and disambiguation system, in which senses are
represented with vectors. This opens up a wide range of evaluation possibilities.

On the one hand, we can follow intrinsic evaluation approaches used in many works related
to development of multi-prototype word embeddings (see Section 2.1). Those test the quality
of produced vectors on word similarity tasks. The idea behind these experiments is that multi-
sense representation of words are expected to improve over single-prototype embeddings in cases
when at least one element of a word pair is polysemous. If a model can differentiate between
two senses of the word bank (finance and riverbank), it assigns a higher similarity score to the
pair bank/money by choosing a sense vector for bank that maximizes pair similarity. In contrast,
a model that conflates all senses in one word vector will deliver a lower score. This type of
evaluation has been used in [Reisinger and Mooney, 2010, Huang et al., 2012, Tian et al., 2014,
Neelakantan et al., 2014, Li and Jurafsky, 2015, Bartunov et al., 2015, Rothe and Schütze, 2015].
Among the most often used datasets for this task are WordSim353 [Finkelstein et al., 2002] and
SCWS [Huang et al., 2012].

On the other hand, we could focus on extrinsic evaluation, by applying our system to word sense
induction and disambiguation tasks directly. In these, the model has to predict a correct sense of a
word in context and the number of correct predictions evaluates performance of both induction and
disambiguation steps. Similar to the decision of the authors of the AdaGram model for sense em-
beddings [Bartunov et al., 2015], we have decided that this is a more suitable evaluation approach
for our system. It has been used in [Bartunov et al., 2015] and [Rothe and Schütze, 2015]. It is
usually performed on one of the datasets of Semantic Evaluation competition. We have decided to
make two series of experiments: one on the TWSI dataset for parameter tuning (to which this chap-
ter is dedicated) and another one on SemEval-2013 Task 13 dataset [Jurgens and Klapaftis, 2013]
for comparison with other approaches (described in the next chapter).

42

Word Substitutions

folk ethnic:12, folk genre:8, country:8, simple style:7, folk music:6, traditional:4, . . .

folk people:9, person:4, group:2, personnel:2, individual:2, community:1, leader:1, . . .

magazine publication:42, periodical:32, journal:30, manual:9, gazette:5, newsletter:4, . . .

magazine cartridge:6, clip:5, chamber:3, holder:3, mag:3, cache:2, loading chamber:2, . . .

tour circuit:18, road show:11, trip:10, journey:10, concert tour:9, expedition:8, show:7, . . .

tour journey:10, visit:10, expedition:10, trip:9, travel:5, sightsee tour:4, route:4, . . .

tour assignment:5, voyage:5, stint:5, tour of duty:4, circuit:4, duty:4, bout:4, . . .

Table 6.1: Examples of the TWSI inventory entries for several polysemous words.

6.2 TWSI Dataset and Evaluation Metrics

Original dataset
TWSI 2.0 [Biemann, 2012] is a coarse-grained sense inventory for lexical substitution of 1,012

highly frequent English nouns in Wikipedia. Each sense is represented with a list of words that can
substitute the target noun in a given sentence. It is accompanied by a large collection of sentences
with sense-annotated occurrences of target words.

This lexical resource was created by a relatively low-cost crowdsourcing process using Amazon
Mechanical Turk1. Workers were asked to supply a list of substitutions for a word in its sentence-
wide context. All sentences were taken from English Wikipedia dump of January 2008. To induce
senses, the occurrences of the same word were automatically clustered by the overlap of their
substitutions. Further tasks included manual verification of clustering and sense annotation of
target words in a collection of sentences. Table 6.1 provides senses of exemplary polysemous
words in the resulting sense inventory. Substitutions are weighted by the number of times they
were provided by the annotators for a target in context. We can observe that for some words (folk,
magazine) senses are very distinct, while in case of the tour the difference in meanings is quite
subtle. Substitutions are provided in form of words or word collocations. On average, each sense
is represented with 8-9 substitutions.

TWSI sense inventory covers 1,012 words, split into 2,443 senses with an average of 2.41 senses
per word. The average number of senses is about a third compared to WordNet, and similar to
other coarse-grained inventories such as OntoNotes [Hovy et al., 2006]. Figure 6.1 demonstrates
that a majority of words have from 2 to 6 senses, but more than a third are monosemous. The
dataset of sentences with sense-annotated target word occurrences has 145,140 instances, with
almost 79% of contexts assigned to the most frequent senses.

Sense-balanced dataset
As we can see from the statistics above, the TWSI dataset is skewed towards the most frequent

sense and includes a significant amount of sentences with monosemous target words. While this
honestly reflects the sense distribution in real-word language usage and is undoubtedly a relevant
test set for evaluation of a WSID system, we have decided to create an additional sense-balanced
subset of TWSI with an equal number of sentences for each sense and including only ambiguous

1 http://www.mturk.com

43

http://www.mturk.com

Figure 6.1: Distribution of number of senses per target in the unbalanced TWSI dataset.2

target words. It will ensure a better interpretability of the results which is especially important at
the early stages of parameters tuning. We perform the following steps:

1. remove all monosemous words,

2. remove a word if any of its senses has less than five sentences in the dataset,

3. for all remaining words sample five random sentences from the original dataset.

This results in a small development set with 463 words and 6,165 test instances. In comparison
to the original dataset it covers 45% of nouns and 4.25% of test instances. The average number of
senses increased only slightly (from 2.41 to 2.66), from which we draw a conclusion that together
with monosemous words we also removed most of the words with very fine-grained sense distinc-
tion. In the remaining of this thesis we refer to the original dataset as full or unbalanced TWSI and
to the balanced version as balanced TWSI.

Mapping of inventories
One common problem in the evaluation of WSID systems is how to compare predicted sense

labels from an induced sense inventory with golden labels of a lexical resource. Obviously senses
of two inventories may differ in labels or sense distinction and a straightforward comparison is not
possible. Therefore, it is necessary to perform a mapping from induced senses to the dataset senses.
Methods proposed to solve this problem fall into two categories [Manandhar and Klapaftis, 2009]:

• supervised evaluation, when the first part of predictions is used to learn the mapping, and the
second part is used to evaluate WSD performance.

• unsupervised evaluation, where sense disambiguation is regarded as a clustering task and
evaluation is performed with measures of clustering quality.

2 The figure taken from [Biemann, 2012].

44

We describe several of this metrics in detail in Section 7.1.
Proposed metrics are designed to handle the mapping problem in a situation, when sense labels

are the only available information. However, in our scenario we have human-readable sense inven-
tories for both the TWSI dataset and for senses produced by our system. Each sense is represented
with a set of substitutions or related terms respectively. We propose a direct mapping approach
based on cluster overlap.

We define the mapping as a partial function mapping : U 7→ T ∪ {None}, that maps each sense
from the user sense inventory U to at most one sense from the TWSI inventory T . The mapping
algorithm is presented in Algorithm 3. For each user word sense we assign the closest TWSI sense
with respect to the measure cosine_sim of their clusters. This measure calculates cosine similarity
for vectors of word weights, regarding only words that appear both in the user cluster and the
TWSI cluster. If clusters have no common words, then the similarity equals zero. If it equals zero
for all TWSI senses of the same target word, then a user sense has no match in T and the mapping
function for this sense is undefined (None).

Please note that mapping is neither injective, nor surjective. Several custom senses may be
mapped to the same TWSI sense; usually it happens if meanings of those custom senses are very
close. Also, not all TWSI senses get a pair, which is a sign that a particular TWSI sense was not
discovered by our induction system.

Algorithm 3: Mapping of inventories.

type sense = {word : String ; /* target word */

cluster : set(String, float) } ; /* set of word and weight pairs */

input : U ← a set of user senses
T ← a set of TWSI senses

output: mapping : U 7→ T ∪ {None} of user senses to TWSI senses

foreach u ∈ U do
Tu.word ← {t ∈ T | t.word= u.word}

foreach t ∈ Tu.word do
scores(t)← cosine_sim(t.cluster, u.cluster)

end

if at least one element of scores(t) is > 0 then
mapping(u)← argmax

t∈Tu.word

scores(t)

end
else

mapping(u)← None
end

end

Metrics
Now that we have a mapping from user sense inventory to the TWSI inventory, we can evaluate

predictions in a straightforward way. We use traditional Precision, Recall and F-score measures. Let
S = {s1, . . . , sn}, G = {g1, . . . , gn} and P = {p1, . . . , pn} be a set of test sentences, gold labels and

45

predicted labels respectively. For some sentences there might be no prediction: |S|= |G| ≥ |P|. We
define:

Precision=
correct

retrieved
; Recall=

correct

|S|
; F-score= 2 ·

Precision · Recall

Precision+ Recall
,

where

• correct is a number of (gi, pi) pairs for which mapping(pi) = gi

• retrieved= |P| is a number of provided predictions

Note that if a sense was predicted by our system, but it has no mapping to TWSI senses, then this
instance is counted as retrieved, but not correct.

Baselines
To facilitate the interpretation of the results we use several baselines:

• Upper bound of the induced inventory
It always selects the correct sense for the context, but only if a mapping from the induced
sense inventory to this sense exists. Therefore, a disambiguation system cannot perform
better using a given sense inventory.

• MFS of the TWSI inventory
This measure assigns the most frequent sense in the TWSI dataset. The most frequent sense
is calculated on the full TWSI set. This baseline is usually hard to beat.

• MFS of the induced inventory assigns the identifier of the largest sense cluster of a target
word. In a scenario like ours, when there is no information about sense frequency, the size
of a sense cluster provides a good approximation of MFS.

• Random sense baseline of the TWSI and induced sense inventories selects a random sense
for a target word according to the provided inventory.

6.3 Experiments

Our experiments are focused on the following stages of the system: construction of the similarity
graph (Stage 2), clustering of ego-networks (Stage 3), pooling of word vectors (Stage 4) and word
sense disambiguation. In particular, in Subsection 6.3.1 we investigate how the granularity of sense
inventories affects the performance of disambiguation. In Subsection 6.3.2 we experiment with
context filtering. In Subsection 6.3.3 we compare different similarity measures for computation
of the word similarity graph, two methods for pooling of word vectors into sense vectors and two
disambiguation strategies. We conclude this section with a test of statistical significance of our
results and a conclusion, which summarizes our findings.

Parameters for Stage 1 remain unchanged for the whole set of these experiments. We have
trained vectors on the complete English Wikipedia dump of October 2015. This corpus has a size
suitable for the task (12 GB), provides broad coverage of word senses and has acquired popularity
within the research community. We have preprocessed it with our custom script, meaning, among
others, that both lower- and upper-cased spelling of words get a vector representation. We have

46

trained vectors using the following parameters of word2vec: CBOW model, window size 3, vector
size 300, min-count 5, negative sampling 25, threshold for down-sampling of frequent words of
10−4 and 3 iterations. In the choice of the model, window size and vector size our decision was
governed by a short series of preliminary experiments, which revealed that these settings lead to
better performance of our system. For other parameters we used the default word2vec settings.
The number of iterations is reasonable for the corpus of this size. We have saved both word and
context vectors, each with a vocabulary of approximately 2.7 million words.

6.3.1 Sense Inventories

The goal of this experiment is to investigate how the granularity of sense inventories influences
WSD performance. To achieve it, we take six different sense inventories, calculate sense vectors
(Stage 4) and perform word sense disambiguation with fixed parameters on the sense-balanced
TWSI dataset.

Setup
The first sense inventory was induced by our system using word2vec (w2v) similarities for calcu-

lation of nearest neighbours at Stage 2. We have applied filtering of words to speed up the process:
during construction of the word similarity graph we have included words consisting only of lower-
or upper-cased letters, a point or a dash, and before sense induction we have filtered out words
with frequencies lower than 100. This mostly leads to removal of tokens resulted from tokeniza-
tion errors, numbers, and infrequent named entities. For clustering of ego-networks we have used
parameters N = 200, n= 200 and minimal cluster size k = 5.

The second one was produced by JoBimText framework using JoBimText (JBT) similarities for
calculation of word neighbours. The word similarity model was built from English Wikipedia
corpus using dependency features obtained with Malt parser. Same clustering parameters were
used, except for minimal cluster size k = 15.

Another three inventories were also built with JoBimText using the same Wikipedia corpus and
a different parser for extraction of dependency features (Stanford parser). For these three the ego-
network connectivity parameter was varied (n = 200, n = 100 and n = 50), leading to increase
in sense granularity. Finally, we also use the golden TWSI inventory, because it serves as a good
baseline for word sense induction part of our task.

For calculation of sense vectors we applied an unweighted average of word vectors. We perform
word sense disambiguation using probability strategy. The context is not filtered.

Results and Interpretation
Results of this experiment are presented in Table 6.2. The first two columns correspond to the

inventory name and its average number of senses per word. The second two columns show the
upper bound measure of an inventory and its WSD performance.

The upper bound reflects the best possible performance of the inventory based only on cor-
rectness of sense mapping, disregarding the correct or incorrect choice of a sense by the WSD
mechanism. As it can be expected, the upper bound of the TWSI inventory equals 1 across all mea-
sures, because it provides exactly the same senses as used in the dataset and ensures an absolutely
correct mapping of senses. Also unsurprisingly, it outperforms all other inventories on the WSD
task. On the other hand, the F-score for the TWSI inventory in word sense disambiguation reaches
only 0.484, which means that there is much room for improvement of our WSD mechanism.

47

Inventory #Senses Upper bound Probability-based WSD

Prec. Recall F-score Prec. Recall F-score

TWSI 2.26 1.000 1.000 1.000 0.484 0.483 0.484

w2v wiki, n = 200, k = 5 1.56 1.000 0.479 0.648 0.367 0.366 0.366

JBT wiki, Malt, n = 200, k = 15 1.64 1.000 0.488 0.656 0.383 0.383 0.383

JBT wiki, Stanford, n = 200, k = 5 2.55 1.000 0.598 0.748 0.338 0.338 0.338

JBT wiki, Stanford, n = 100, k = 5 3.59 1.000 0.671 0.803 0.305 0.305 0.305

JBT wiki, Stanford, n = 50, k = 5 5.13 1.000 0.724 0.840 0.275 0.275 0.275

Table 6.2: Influence of sense granularity on upper bound and WSD performance on sense-balanced
TWSI dataset. Sense vectors calculated using unweighted pooling, disambiguation per-
formed with probability strategy, no context filtering.

The other five inventories display sense granularity ranging from 1.56 to 5.13. Our first ob-
servation is that the more granular the sense inventory, the better match between the TWSI and
the induced inventory can be established. It is quite natural, if we remember that we map every
induced sense to at most one TWSI sense and therefore, having more senses per word increases
our chances to cover more TWSI senses. If we consider that in the upper bound baseline precision
always equals 1 (because prediction is always assumed to be correct), we can understand that
recall in this scenario reflects the coverage of TWSI senses by an induced sense inventory.

However, the relation of actual WSD performance to granularity is inverse: the higher the num-
ber of senses, the lower the WSD performance, falling as low as 0.275 for the most granular
JBT wiki, Stanford, n=50, k=5 inventory with 5.13 senses per word on average. This is observed
for all sense inventories except for JBT wiki, Malt, n=200, k=15, which despite having more senses
on average than a comparable w2v inventory, delivers slightly better results in WSD. Based on this
observation we speculate that having many senses per word (especially more senses per word than
a golden TWSI inventory) makes sense disambiguation more complicated.

Also we see that in WSD tests our system produces almost identical precision and recall results.
An explanation for this is the following: our WSD mechanism has no notion of prediction confi-
dence. It always produces a prediction for a given test instance with respect to the induced sense
inventory, even when this has no mapping to the TWSI inventory or the choice is not certain. As
a result, precision always equals recall (except when the target word is not covered by our sense
vectors and the prediction cannot be made at all). Introducing a measure of system’s confidence of
prediction and setting a threshold on it could increase the precision, but we have left it for future
work.

In our further experiments we focus on first two sense inventories: one based on the w2v sim-
ilarities and another based on JBT similarities (Malt parser). Because of almost identical training
corpus, preprocessing and clustering parameters used to obtain these inventories, we consider
them suitable for comparison of two measures of word similarity proposed for Stage 2 of our
method.

48

Full TWSI Balanced TWSI

w2v JBT w2v JBT

no filter 0.676 0.669 0.383 0.397

filter, p = 5 0.679 0.674 0.386 0.403

filter, p = 3 0.681 0.676 0.387 0.409

filter, p = 2 0.683 0.678 0.389 0.410

filter, p = 1 0.683 0.676 0.390 0.410

Table 6.3: Influence of context filtering on disambiguation in terms of F-score. Results for the sense-
unbalanced (Full TWSI) and the sense-balanced (Balanced TWSI) dataset using w2v and
JBT sense inventories. Sense vectors calculated using weighted pooling, disambiguation
performed with similarity strategy.

6.3.2 Context Filtering

As we have observed from the gap in performance of the TWSI inventory on WSD task as compared
to its upper bound, our WSD mechanism could be improved. One possibility to do so is through
context filtering. The goal of this experiment is to find an optimal number of context words to use
for disambiguation.

Setup
In this experiment we use two sense inventories obtained using word2vec similarities (w2v) and

JoBimText similarities (JBT) and described in the previous subsection. We calculate sense vectors
using weighted average of word vectors and perform disambiguation with similarity strategy. We
repeat tests on both the sense-unbalanced and the sense-balanced TWSI datasets. We experiment
with different number of words used for disambiguation: p = 5, p = 3, p = 2 and p = 1.

Results and Interpretation
Results of this experiment are presented in Table 6.3. We provide only the values of F-score

measure because, as mentioned in the previous subsection, our system performs equally in terms
of precision and recall.

First of all, we can observe that, as expected, context filtering improves the performance of
WSD mechanism on both datasets independently of word similarity type. Secondly, we see the
correlation between number of context words used for disambiguation and the results: with lower
p value the F-score increases. This tendency stops around p = 2, which agrees with intuition: using
only one, even most discriminating context word, might not be enough for correct prediction.
Based on this experiment we suggest to use two words from context as an optimal setting for
parameter p.

6.3.3 Various System Configurations

This is our largest experiment on the TWSI dataset. Its goal is to consistently compare all major
variations of system’s configuration and to summarize our findings. In particular, we investigate the

49

Figure 6.2: Visualisation of WSD performance (see Table 6.4) of different configuration of our
method for three sense inventories (w2v, JBT and TWSI). Results for the sense-
unbalanced TWSI dataset (Full TWSI) and the sense-balanced TWSI dataset (Balanced
TWSI).

influence of two similarity measures, compare unweighted and weighted pooling of word vectors
and contrast two disambiguation strategies. To facilitate the interpretation of results we include
several baselines.

Setup
For this experiments we use three different inventories: two based on word2vec similarities (w2v)

and JoBimText similarities (JBT), as described in Subsection 6.3.1, and the golden TWSI inventory.
For each inventory we test four configurations of the system: (1) unweighted pooling of word
vectors and probability disambiguation strategy, (2) weighted pooling of vectors and probability
disambiguation strategy, (3) weighted pooling of vectors and similarity disambiguation strategy
and (4) weighted pooling of vectors and similarity disambiguation strategy with optimal context
filtering (p = 2). Also for each inventory we compute three baselines: (1) upper bound of the
inventory, (2) most frequent sense baseline and (3) random sense baseline. All test are repeated
on the sense-unbalanced (full TWSI) and the sense-balanced TWSI datasets.

Results and Interpretation
Results of this experiment are presented in Table 6.4. First three blocks of lines correspond to

three baselines. The last three blocks correspond to three inventories, with four model configura-
tions in each. Results in terms of F-score are visualised in Figure 6.2.

First of all, we look at the baselines. We may observe that our system significantly outperforms
the random sense baseline of all inventories on both datasets. This is especially noticeable for
the TWSI inventory which has the largest number of senses per word. With regard to the most
frequent sense baseline, which is usually very difficult to outperform, our models based on induced
inventories are performing comparably, only slightly loosing on the sense-unbalanced dataset.

Then we focus on the different pooling and disambiguation methods. First of all, we see that
using weighted pooling of word vectors in a sense cluster (line weighted – prob.) consistently
produces better results across all inventories and datasets in comparison to the unweighted pooling

50

(line unweighted – prob.). Indeed, some clusters may contain irrelevant words and using weights
helps to discount their contribution.

Moreover, the similarity disambiguation strategy (line weighted – sim.) always yields better
results than probability disambiguation strategy (line weighted –prob.). This complies with an
observation that cosine similarity between word vectors proved to be useful for semantic relat-
edness [Mikolov et al., 2013a, Baroni et al., 2014]. At the same time, there is less evidence about
successful use-cases of the CBOW language model itself, on which the probability strategy is based.

Finally, this experiment confirms that filtering of context words (line weighted – sim. – filter
(p = 2)) improves the performance of our disambiguation mechanism. This is again observed
across all inventories and datasets.

Last but not least, we look at the relevance of word similarity measure used for induction of
sense (w2v inventory vs. JBT inventory). They perform comparably, with JBT based inventory
producing slightly better results on the balanced dataset (0.41 vs. 0.39). Quite surprisingly, using
the gold TWSI inventory improves the results in comparison to the induced inventories only on
the sense-balanced dataset. It is not obvious, why it looses to the induced inventories on the
unbalanced full TWSI dataset.

6.3.4 Statistical Significance of the Results

Our experiments provide indications about optimal settings for various parameters of our model.
However, it is noticeable that in many cases, the the difference in result values is very small. For
example, the context filtering improves the performance of the model based on the w2v inventory
from 0.676 to 0.683 (F-score on Full TWSI). In order to understand if this small change is sufficient
to state that one configuration performs better the other, we can apply a statistical significance test.
Such test can indicate whether the null hypothesis about two sets of values holds.

Theory
The null hypothesis refers to a statement that the change in values of a binary variable at two

points in time over the same population cannot be explained by anything rather than chance.
Therefore our goal is to refute the null hypothesis about performance of our models. In our sce-
nario the population is a collection of sentences (test instances) in a dataset. Two models we want
to compare can be considered as two points in time. In this case a binary variable is a True/False
value assigned to a prediction produced by a model for a sentence in the dataset (True for a correct
prediction and False for a wrong prediction).

There exist various statistic tests designed to check if the null hypothesis holds. One of them is
McNemar test introduced in 1947 [McNemar, 1947]. It is applied to a 2x2 contingency table with
the outcomes of two model tests. Omitting the table itself, we define two relevant values:

• b – the number of sentences correctly predicted by the first, but not the second model.

• c – the number of sentences correctly predicted by the second, but not the first model.

There are several formulations of the McNemar test statistic. The original one is given as follows:

χ2 =
(b− c)2

b+ c
.

Under the null hypothesis the function χ2 approximates the chi-squared distribution with one
degree of freedom. However, if χ2 is improbably large according to chi-squared distribution, then

51

Full TWSI Balanced TWSI

Model #Senses Prec. Recall F-score Prec. Recall F-score

Upper bound of the TWSI inventory 2.26 1.000 1.000 1.000 1.000 1.000 1.000

Upper bound of the w2v inventory 1.56 1.000 0.761 0.864 1.000 0.477 0.646

Upper bound of the JBT inventory 1.64 1.000 0.751 0.858 1.000 0.488 0.656

MFS of the TWSI inventory 2.26 0.787 0.787 0.787 0.373 0.373 0.373

MFS of the w2v inventory 1.56 0.691 0.690 0.690 0.370 0.369 0.369

MFS of the JBT inventory 1.64 0.677 0.676 0.676 0.370 0.370 0.370

Random Sense of the TWSI inventory 2.26 0.536 0.534 0.535 0.160 0.160 0.160

Random Sense of the w2v inventory 1.56 0.643 0.643 0.643 0.347 0.346 0.346

Random Sense of the JBT inventory 1.64 0.634 0.634 0.634 0.359 0.359 0.359

w2v – unweighted – prob. 1.56 0.655 0.654 0.654 0.367 0.366 0.366

w2v – weighted – prob. 1.56 0.657 0.656 0.656 0.367 0.367 0.367

w2v – weighted – sim. 1.56 0.677 0.676 0.676 0.383 0.382 0.383

w2v – weighted – sim. – filter (p = 2) 1.56 0.683 0.682 0.683 0.390 0.389 0.389

JBT – unweighted – prob. 1.64 0.646 0.646 0.646 0.383 0.383 0.383

JBT – weighted – prob. 1.64 0.657 0.657 0.657 0.387 0.387 0.387

JBT – weighted – sim. 1.64 0.669 0.669 0.669 0.397 0.397 0.397

JBT – weighted – sim. – filter (p = 2) 1.64 0.678 0.678 0.678 0.410 0.410 0.410

TWSI – unweighted – prob. 2.26 0.568 0.565 0.567 0.484 0.483 0.484

TWSI – weighted – prob. 2.26 0.634 0.631 0.633 0.522 0.521 0.522

TWSI – weighted – sim. 2.26 0.602 0.599 0.601 0.533 0.532 0.532

TWSI – weighted – sim. – filter (p = 2) 2.26 0.650 0.648 0.649 0.582 0.582 0.582

Table 6.4: WSD performance of different configuration of our method for three sense inventories
(w2v, JBT and TWSI). Results for the sense-unbalanced TWSI dataset (Full TWSI) and
the sense-balanced TWSI dataset (Balanced TWSI). Model name denotes its configura-
tion: inventory – pooling method – disambiguation strategy – context filtering. The best
results per section are typeset in boldface.

52

Figure 6.3: pmid measure over b, c ∈ [1,100]. Grey area corresponds to pmid < 0.05.

the null hypothesis may be rejected. In other words, a larger value χ2 means a greater significance
of the result.

For small values of either b or c (b + c < 25), χ2 does not provide a good approximation of
imbalance between them. In this case one of the following p-measures can be used. They make
an assumption that the data under null hypothesis can be explained by a binomial distribution.
Therefore, if the probability of actual observations under this assumption is too low, then the
assumption may be considered wrong.

pexact = binom.cdf(b),
pmid = pexact− binom.pmf(b).

Here binom is initialized with shape parameters n = b + c and p = 0.5. cdf is a cumulative
distribution function and pmf is the probability mass function. Lower values of p indicate higher
statistical significance. Usually the null hypothesis is rejected when p < 0.05. Figure 6.3 illustrates
the behaviour of pmid measure for b and c in the range [0,100]. Any (b, c) pair falling in to the
grey area is considered statistically significant.

Results
We have applied this test on six pairs of models, testing the importance of context filtering and

sense inventory types. We have decided to use the pmid measure because evidence exists that it
works better than others [Fagerland et al., 2013]. Results of our tests are given in Table 6.5. Each
row corresponds to a pair of models which performance variation is being investigated. In the
first column are the parameters which were the same for both tested model. The second column
tells what parameter was varied. We report the pmid value, calculated for model predictions over
development and full TWSI datasets.

All results in the table are lower than 0.05, from which we conclude that null hypothesis can be
refuted and differences in experimental results are statistically significant.

53

Model P-measure (pmid)

Fixed parameters Altered parameter Full TWSI Dev TWSI

w2v – weighted – sim no filter / filter (p = 2) <0.001 0.013

JBT – weighted – sim no filter / filter (p = 2) <0.001 <0.001

TWSI – weighted – sim no filter / filter (p = 2) <0.001 <0.001

weighted – sim – filter (p = 2) w2v / JBT 0.001 0.002

weighted – sim – filter (p = 2) w2v / TWSI <0.001 <0.001

weighted – sim – filter (p = 2) TWSI / JBT <0.001 <0.001

Table 6.5: Statistical significance of differences in performance of four pairs of models expressed
as pmid measure. Any value below 0.05 indicates that the difference is statistically signifi-
cant.

6.3.5 Conclusion

The series of experiments on TWSI has allowed us to find optimal setting for some of our pa-
rameters. We suggest to use the weighted pooling method at Stage 4 of our method and the
similarity-based disambiguation strategy with context filtering. With regard to the word similar-
ity measure (word2vec similarity or JBT similarity), no clear choice can be made, as one measure
outperforms the other depending on the dataset. To support our conclusion we have performed
the significance test over the experimental results. While we run this test only with regard to the
context filtering and inventories, we assume that it would similarly hold for variations between
pooling methods and disambiguation strategies.

6.4 Error Analysis

In Chapters 4 and 5, which were dedicated to our word sense induction and word sense disam-
biguation mechanisms, we have provided several examples of the successful performance of our
system. However, as evident from the experiments presented in this chapter, it is not always able
to accomplish its task. To find out the reasons for it, we perform manual error analysis. With re-
gard to the design of our system, we have found it appropriate to investigate the output of several
system’s stages. In particular, we take a look at the word similarity graph (in other words, 200
neighbours of polysemous words), sense clusters and instances of the dataset, that where assigned
a wrong sense label.

Problems with Word Neighbours
In many cases our system makes a prediction error, because the correct sense has not been

induced and is not in the inventory on which the system operates. The induction capacity of our
system depends on the quality of extracted neighbours and the clustering performance. First we
observe the neighbours.

One of our expectations, on which the induction process is based, is that 200 nearest neighbours
of a word contain terms related to the word’s different senses. By looking at the distributional

54

Neighbours

Word
Expected

Senses
w2v JBT

Ruby name, language Daisy, Violet, Lily, Cora, Jasmine, Jade, Ellie, Chloe, Ada, Debbie,

Amber, Maggie, Molly, Dee, Holly. Perl, Python, PHP, Java, Haskell.

architecture art, structure Neo-Classical, neoclassical, Indo-Saracenic, building, art, structure, literature,

classicism, Neo-Byzantine, architectonic. decor, processor, hardware.

bass music, fish drums, trumpet, guitar, keyboards, guitar, piano, drum, violin, banjo,

bodhran, autoharp, darbuka, cello. catfish, trout, carp, pike, perch.

club sport, nightclub team, clubs, league, Juventus, Hibs, FC, Arsenal, team, league, Millwall,

striker, Benfica, Dinamo, Bundesliga. venue, hall, nightclub, clubhouse.

magazine journal, gun magazines, periodical, e-zine, webzine, publication, journal, book, fiction,

InStyle, newspaper, Newsweek. Newspaper, blog, paper, newsletter.

Table 6.6: Excerpts of 200 nearest neighbours that do not contain terms related to multiple senses
of a word. Examples provided for neighbours extracted with word2vec and JoBimText
similarities. Neighbours are not ordered by weights.

thesauri build at Stage 2 with word2vec and JoBimText similarity measures, we found out that it is
not always the case.

We have investigated the thesauri built from the Wikipedia corpus as described in the TWSI ex-
periment. Some examples that illustrate our findings are presented in Table 6.6. For five words we
have randomly picked several neighbours that approximate well the content of their 200 neigh-
bours. Our choice of five words was governed by the problem most prominently evident in the
neighbours extracted with word2vec.

If we look closely at neighbours extracted with word2vec, we can see that they contain terms
related to only one of the expected word senses. For example, for Ruby, which may refer to a
women name or the programming language, only names are included. The same applies to all
five words in the table. Moreover, among extracted neighbours are many rare word, like bodhran,
darbuka for bass and e-zine, webzine for magazine. From this we draw a conclusion, that the
placement of words in the vector space by word2vec is highly influenced by their frequency and
rare similar words are pulled together. When we train word2vec on a large corpus (12 GB compared
to 1.5 GB used in the example in Section 4.6), the variety of rare terms, for example women names
or musical instrument types, increases, and they take all the places in 200 extracted neighbours,
leaving terms related to other senses out. Indeed, some names of programming languages could
be observed among neighbours of Ruby, but at much lower ranks.

On the other hand, this problem is less noticeable for neighbours extracted with JoBimText. For
the first four words in our table, JoBimText neighbours included terms related to both expected
senses. Also they contain more general and more frequent terms, for example art, building for the
word architecture, whereas word2vec extracts specific architecture styles. However, the discussed
problem also occurs with JoBimText neighbours (see neighbours of magazine).

55

Word
Expected

Senses
Neighbours

ruby gem1, colour2 sapphire1, topaz1, gemstone1, amethyst1, blood-red2, sapphires1, jewels1

rubies1, draconium1, deep-blue2, earring1, rose-colored2, purple2, gemstones1.

instrument music1, device2 device2, lute1, method2, lute-like1, tool2, organ1, lyre1, ukuleles1, technique2,

thermometer2, transducer2, keyboard1, apparatus2, resonator1, xylophones1.

chair person1, furniture2 chairman1, chairperson1, head1, president1, chairwoman1, professorship1,

co-chair1, vice-chair1, dean1, desk2, sofa2, under-secretary1, chairmanship1.

Table 6.7: Excerpts of 200 nearest neighbours that contain terms related to multiple senses of a
word, but were assigned to the same sense cluster. Examples provided for neighbours
extracted with word2vec. Neighbours are not ordered by weights and are manually
annotated with expected senses.

Problems with Sense Clusters
As stated above, the induction capacity of our system also depends on the clustering perfor-

mance. To investigate errors at this stage, we have observed clusters produced by the Chinese
Whispers algorithm from the word similarity graph based on word2vec similarity measure. We
specifically looked for words whose 200 nearest neighbours are not subject to the problem dis-
cussed earlier, meaning that they contain term related to different senses.

We have found out that for some of these words the clustering does not split the ego-network
in parts, even though representatives of different senses are present. Examples of such words are
given in Table 6.7. Again, we show only several randomly picked neighbours of these words trying
to preserve the ratio of sense-related neighbours. Neighbours in the table are hand-annotated with
expected senses for readability. All 200 neighbours of these words were assigned to one cluster.

As we can see, a lower-cased word ruby may refer to a gemstone or colour, which is also con-
firmed by its neighbours, however, the clustering algorithm fails to recognise two separate sense
clusters. The same can be observed for other words. In case of the word chair, one may notice that
neighbours of one sense (person) heavily outnumber the neighbours of the other sense (furniture).
Although clusters induced from JoBimText-based word similarity graph for the same words are not
present in this table, we have found out that they, on the contrary, correspond to expected senses.
However, this observation may not be suitable for fair comparison of word2vec and JoBimText simi-
larity measures in terms of clustering performance, because we only looked up those words in JBT
sense inventory, that were already found to be clustered incorrectly in w2v sense inventory.

Problems with Disambiguation
All problems discussed previously were related to the induction of senses. However, even when

our system operates on the golden sense inventory, it only reaches 58% of precision on the sense-
balanced TWSI dataset with the best configuration. Our goal is to understand the reasons behind
this number. For this we focus on the errors that occur only at the disambiguation stage and cannot
be explained by the incorrect induction of senses.

First, we try to understand if the TWSI inventory, while providing the correct distinction of
senses, might be inferior to w2v inventory in terms of representation of senses. Our WSD mech-
anism uses representation of senses in the vector space. The word2vec-based inventory provides
sense clusters derived directly from the vector space on which the disambiguation operates. The

56

Word Senses Precision

Full TWSI Balanced TWSI

w2v TWSI w2v TWSI

metal music, material 0.94 0.89 1.0 1.0

solution mixture, problem 0.91 0.88 1.0 0.9

plant factory, biology 0.86 0.92 0.9 0.9

performance effectiveness, show 0.85 0.84 0.8 0.8

head chair, body 0.77 0.87 0.9 1.0

Average: 0.86 0.88 0.92 0.92

Table 6.8: Correctly induced words in the w2v inventory and disambiguation precision on these
words by models based on the w2v and TWSI inventories. Configuration of models is
weighted – sim. – filter (p = 2).

TWSI sense clusters, on the other hand, are built on a different notion of word substitutions. To
understand if this is a relevant difference, we have made the following experiment.

We hand-pick several words, which senses are correctly induced by our system from a word2vec-
based word similarity graph. We define correct as:

• TWSI and w2v inventories have an equal number of senses for a given word,

• the mapping function from w2v senses to TWSI senses of a given word is bijective (all senses
of TWSI inventory are mapped to).

Afterwards we calculate precision of the word2vec-based model and the TWSI-based models for
those words only. We use our best configuration: weighted – sim. – filter (p = 2) run on the full
and balanced TWSI datasets.

Results of this experiment are presented in Table 6.8. Both models perform almost equally, from
which we conclude that First, we can conclude that, when induction errors are taken out of the
picture, the choice of inventory does not influence the performance of disambiguation mechanism.
Second, there is no evidence that disambiguation errors of the TWSI-based model are caused by
the nature of the TWSI inventory (word substitutions).

Therefore, we draw our attention to the context of instances, where the TWSI model cannot
identify the correct sense. We have looked at multiple negative examples and have noticed two
patterns. First of all, our model can be mislead by some words in the context. For example, in a
sentence "Most trans fats consumed today are industrially created by partially hydrogenating plant
oils – a process developed in the early 1900’s and first commercialized as Crisco in 1911." the word
plant is used in the biology meaning, however the model predicts the factory sense because of the
context words industrially and hydrogenating.

Secondly, many of the disambiguation errors are concentrated at the words that have very close
senses, often represented with overlapping sense clusters. For example the word judge has two
senses: one related to sports and the other related to the court of law. However, their sense cluster
share terms like juror and arbiter. As the result, the corresponding sense vectors are very similar
and cannot effectively disambiguate words even in contexts that provide enough clues.

57

7 Evaluation on SemEval
In the previous chapter we have evaluated our system on the less frequently used, but large TWSI
dataset. We have compared various configurations of the system and were able to identify optimal
values for some of the parameters. However, not less important is to understand how well our
system performs against other state-of-the-art approaches. To achieve this we have decided to test
it on the word sense induction and disambiguation task of the SemEval 2013 competition (Task
13). The results of this experiment are described in this chapter.

This chapter is structured as follows: In the first section we introduce the dataset, evaluation
metrics and other participants of the competition. In the second section we present results of the
experiment.

7.1 Dataset and Evaluation Metrics

7.1.1 Dataset

SemEval 2013 Task 13 [Jurgens and Klapaftis, 2013] was part of an on-going series of Seman-
tic Evaluation (SemEval) competitions dedicated to the evaluation of semantic analysis systems.
It has has been designed for a setting, where each target word in a sentence may be annotated
with several sense labels weighted by the likelihood of their applicability in the given con-
text. The motivation for this idea came from an observation that annotators tend to find sev-
eral applicable senses for one word if a fine-grained sense inventory, such as WordNet, is used
[Erk and McCarthy, 2009, Passonneau et al., 2012, Jurgens, 2013]. Nevertheless, the dataset can
be used for single-sense annotation too.

The dataset provides the total of 4664 sentences for 20 nouns, 20 verbs and 10 adjectives.
Target words are manually annotated with WordNet senses, with an average of 1.12 labels per
instance. The minimum of 22 sentences and the maximum of 100 sentences per word are given. All
sentences were drawn from Open American National Corpus [Ide et al., 2004], including spoken
and written portions of the corpus.

The participants were asked to annotate target words with sets of either WordNet sense labels
or labels of an induced sense inventory. Labels should have applicability weights: measure of how
suitable a sense is in the given context. The task was designed for unsupervised systems, therefore
no training data was provided. For sense induction participants were allowed to use the ukWaC
corpus [Baroni et al., 2009]: a 2 billion word English corpus crawled from the .uk domain of the
web.

7.1.2 Evaluation Metrics

As it has been mentioned previously, a great challenge in evaluation of WSD systems operating on
an induced sense inventory is the mapping of gold and induced inventories. For the SemEval 2013
Task 13 five evaluation metrics were proposed based on two evaluation approaches: supervised
and unsupervised. In this subsection we explain the approaches and present the metrics.

58

Supervised Evaluation
Supervised evaluation approaches are based on the mapping of two inventories. Even though

similar in name, this approach is different from the direct mapping of two inventories based on
sense cluster overlap that we have used for TWSI evaluation. Instead, the mapping is learned from
the dataset already labelled by the participating system. The dataset is randomly divided into five
partitions, four of which are used to learn the mapping of golden and induced senses, and the
last part is used for evaluation. This process is repeated five times, so that each partition could be
evaluated once. This approach makes two evaluation metrics applicable.

The Jaccard Index measures the agreement of chosen labels. It equals |X∩Y |
|X∪Y | , where X is a set

of assigned sense lables and Y is a set of golden sense labels. This measure disregards weights of
sense labels.

The Positionally weighted Kendall’s τ evaluates the ranking of senses assigned to the instance.
It employs a modification of Kendall’s τ: a distance measure that counts the number of swaps
necessary to make two sequence identical, with positional weighting that penalises errors in higher
ranks more than errors in lower ranks [Kumar and Vassilvitskii, 2010]. The measure is normalized
by the maximal possible distance, which depends on the sequence length, and transformed to
similarity measure.

The goal of Weighted Normalised DCG (WNDCG) is to evaluate the agreement in applicability
weights assigned to sense labels. The measure is adapted from Information Retrieval setting. It is
a weighted version of Normalised Discounted Cumulative Gain (NDCG) [Moffat and Zobel, 2008]
that takes into account the weights assigned to the predicted labels.

Unsupervised Evaluation
Unsupervised approaches are based on the idea that the WSD task can be regarded as a clustering

challenge. Each set of instances for one target word has to be clustered into groups representing
senses of this word. Therefore, it can be evaluated with measures developed for clustering evalua-
tion. The special aspects of the tasks itself are that: (1) clusters can overlap, because one instance
may be labelled with several senses and (2) clusters are fuzzy, because applicability of a sense for
a given instance is expressed with a weight.

Fuzzy B-cubed is a measure that compares two clusterings on a per-item basis, integrating the
notion of precision and recall. It is based on the B-cubed measure version that can handle over-
lapping clusters [Amigó et al., 2009] and was further adapted to work with fuzzy clusters, where
degree of cluster membership is specified by a weight.

Fuzzy Normalised Mutual Information (Fuzzy NMI) is an extension of Mutual information, the
quantity used to measure the level of agreement between two variables, which in this scenario
represent gold and assigned sense labels. It has been adapted from [Lancichinetti et al., 2009]
version to work on fuzzy overlapping clusters. It evaluates performance on the clusters level rather
than the instances.

All of the described here measures are normalised to [0, 1]. Their formal definitions, as well as
accompanying detailed explanations, can be found in [Jurgens and Klapaftis, 2013].

7.1.3 Participants

Four participants have submitted nine models in total to the competition. AI-KU [Baskaya et al., 2013]
is a system which induces senses based on lexical substitutions of target words. It first collects 100
substitutions for a target words in each instance. Afterwards, all instances, represented with a

59

vector based on these substitutions, are clustered by the k-means algorithm. By design, this system
is not able to assign labels to new single instances.

Unimelb [Lau et al., 2013] applies Hierarchical Dirichlet Process to discover topics of target
words from a corpus. For this they use contextual and positional features. Discovered topics
are interpreted as word senses. To perform disambiguation, they calculate the probability of a
topic applicability in a given context.

UoS [Hope and Keller, 2013b] is based on dependency-features of words. For each target word
in a SemEval dataset they build a graph of 300 hundred words appearing in a dependency relation
with respective target word. Afterwards, they use MaxMax algorithm to produce sense clusters
from these graphs. For disambiguation they calculate a separation score between context words
and the words of the sense cluster.

La Sapienza [Agirre and Soroa, 2009] is the only system that does not perform word sense in-
duction and instead relies on the WordNet sense inventory. It applies Personalized Page Rank
algorithm on a WordNet-based network to compare the similarity of each sense with the similarity
of the context.

7.2 Experiment

In this experiment we evaluate the best configurations of our system on the SemEval dataset. We
variate the type of similarity measure used to calculate the word similarity graph (w2v or jbt), but
keep all other parameters fixed. As in previous experiments, models based on the TWSI dataset
are also included.

Setup
In order to enable clean comparison of our system to the participants of SemEval competition,

we retrain the models on the ukWaC corpus. The parameters of word2vec used at the first stage
remain unchanged (CBOW model, context window 3, min-count 5, 3 iterations), except for the
size of vectors, which equals 100. We again use w2v- and JBT- based approaches for induction of
senses. All procedures, including parameters of the Chinese Whispers clustering algorithm, remain
the same as for TWSI experiments (see details in Subsection 6.3.1, Setup paragraph). Based on
the findings of the previous experiment, we calculate sense vectors with weighted pooling method
and apply similarity disambiguation strategy with filtering of context words (p = 2).

We test our models on the full SemEval dataset. Because the TWSI inventory contains only
nouns, we can apply it only to the subset of SemEval dataset, which consists of instances where
the target word is a noun. For comparison, we run our w2v- and JBT-based configurations on such
subset as well.

We compare our system to the AdaGram system, which was described in Related Work Sec-
tion 2.1.2. As it has not participated in the SemEval competition, we have trained it ourselves on
the ukWaC corpus. The results delivered by SemEval participants were taken from the original
paper reporting on this competition [Jurgens and Klapaftis, 2013].

Results and Interpretation
Results of this comparative evaluation are presented in Table 7.1. First of all, one may observe

that dependency-based (JBT) word similarities yield slightly better results than word embedding
similarity (w2v) for inventory induction. Secondly, we see that our model based on the TWSI

60

Supervised Unsupervised

Model Jacc. Tau WNDCG F.NMI F.B-Cubed

Baselines One sense for all 0.171 0.627 0.302 0.000 0.631

One sense per instance 0.000 0.953 0.000 0.072 0.000

Most Frequent Sense (MFS) 0.579 0.583 0.431 – –

SemEval AI-KU (add1000) 0.176 0.609 0.205 0.033 0.317

AI-KU 0.176 0.619 0.393 0.066 0.382

AI-KU (remove5-add1000) 0.228 0.654 0.330 0.040 0.463

Unimelb (5p) 0.198 0.623 0.374 0.056 0.475

Unimelb (50k) 0.198 0.633 0.384 0.060 0.494

UoS (#WN senses) 0.171 0.600 0.298 0.046 0.186

UoS (top-3) 0.220 0.637 0.370 0.044 0.451

La Sapienza (1) 0.131 0.544 0.332 – –

La Sapienza (2) 0.131 0.535 0.394 – –

Sense emb. AdaGram, α = 0.05, 100 dim. vectors 0.274 0.644 0.318 0.058 0.470

Our models w2v – weighted – sim. – filter (p = 2) 0.197 0.615 0.291 0.011 0.615

w2v – weighted – sim. – filter (p = 2): nouns 0.179 0.626 0.304 0.011 0.623

JBT – weighted – sim. – filter (p = 2) 0.205 0.624 0.291 0.017 0.598

JBT – weighted – sim. – filter (p = 2): nouns 0.198 0.643 0.310 0.031 0.595

TWSI – weighted – sim. – filter (p = 2): nouns 0.215 0.651 0.318 0.030 0.573

Table 7.1: Performance of the best configurations of our method on the SemEval 2013 Task 13
dataset. Model name denotes its configuration: inventory type – pooling method –
disambiguation strategy – context filtering.

inventory significantly outperforms both JBT- and w2v-based models. This indicates that precise
sense inventories greatly influence the quality of WSD performance.

In general, performance of the best configurations of our method is comparable to the top-
ranked SemEval participants, but is not systematically exceeding their results. AdaGram sometimes
outperforms our method, sometimes it is on par, depending on the metric. We interpret these
results as an indication of comparability of our method to state-of-the-art approaches.

Finally, note that none of the unsupervised WSD methods discussed in this paper, includ-
ing the top-ranked SemEval submissions and AdaGram, were able to beat the most frequent
sense baselines of the respective datasets (with the exception of the balanced version of TWSI).
The similar results are observed for other unsupervised word sense disambiguation meth-
ods [Nieto Piña and Johansson, 2016].

61

8 Conclusion and Future Work

8.1 Conclusion

In this work we have built an unsupervised knowledge-free words sense induction and disambigua-
tion system. In this we have achieved our main goal.

Senses in our system are induced for each word in separate via clustering of its ego-network.
Different measures of similarity can be used to construct the word ego-network, of which we have
tried JoBimText word similarity and cosine vector similarity of word embeddings obtained with
word2vec toolkit. In general, the mechanism heavily relies on the distributional theory. Each sense
may be represented as a cluster of related terms or a sense embedding. The number of senses is
induced automatically by the clustering algorithm. For induction of senses only a large text corpus
is needed.

The disambiguation mechanisms of our system works on vector representations of word senses
and the context. The context is regarded as a bag of words. We have proposed two metrics for
estimation of sense applicability in the given context: similarity-based and probability-based. In
contrast to other state-of-the-art systems that disambiguate senses via clustering of test instances,
our WSD approach can be used in the online setting.

We have performed two stages of evaluation. In the first one based on the TWSI dataset, we in-
vestigated the influence of different parameters. We have established (1) that sense vectors should
be computed with weights of terms in the sense cluster accounted for, (2) that the similarity-based
disambiguation mechanism yields better results than the probability-based one and (3) that context
filtering based on words’ relevance for the disambiguation improves the performance. Use of dif-
ferent word similarity measures at the induction step of our system does not show strong influence
on the results, but integration of the correct sense inventory dramatically improves performance
on the test dataset.

In the second stage we have evaluated our system on the SemEval 2013 Task 13 to enable
comparison of our approach to the state-of-the-art systems. We were not able to outperform par-
ticipants of this competition, but our results were competitive.

One significant advantage of our system is its flexibility. Most of its elements can be substi-
tuted by their better counterparts, should these emerge. This holds for word embedding training
algorithms and clustering algorithms. In addition to this, one can directly use pre-trained word
vectors for sense induction or representation of words during disambiguation, and available sense
inventories for computation of sense vectors.

The most notable limitations of our system are the following. It is better suited for scenarios
where coarse-grained distinction of senses is expected. In terms of scalability, its bottleneck is
at the construction of the word-similarity graph based on word2vec vector similarity. It requires
V 2 calculation of vector dot products, where V is the size of the vocabulary.

62

8.2 Future Work

In Section 6.4 we have discussed several flaws of our system. With respect to these we have
suggestions for future work that could improve the performance of our system.

First of all, we have identified that our approach for construction of words’ ego-networks is
not always able to include neighbours of words related to their different senses. This problem is
especially prominent, when word2vec word similarity measure is used. In order to overcome this
problem, one could re-weight the similarity scores between word pairs before extraction of 200
nearest neighbours with some approximation of words frequency or information content. The goal
is to lower the ranks of very specific infrequent neighbours of a word, that word2vec tends to pull
very close.

Secondly, we have found out that even when an ego-network contains terms related to differ-
ent senses, the Chinese Whispers clustering algorithm is sometimes not able to separate them into
different clusters. For one, we have not experimented with the parameter of CW that controls gran-
ularity of clusters. Also, one could try other clustering algorithms like MCL [van Dongen, 2000] or
MaxMax [Hope and Keller, 2013a].

Finally, we have discussed that even when provided with a golden sense inventory, our WSD
mechanism is not able to reach 60% precision on the sense-balanced TWSI dataset. In order to
improve the quality of sense disambiguation we suggest to use syntactic dependencies as context
features. Thanks to the recently proposed modification of word2vec approach to training word
embeddings developed by [Levy and Goldberg, 2014a], it is possible to adapt our WSD mechanism
to this setting. Their algorithm allows to train word embeddings on arbitrary word/context pairs,
including pairs of words and dependency relations they occurs in along the corpus. This provides
us with with vectors that represent different dependency context features. The solution is then to
parse a test sentence, extract dependencies in which the target word participates, represent those
dependencies with available vectors and proceed in the same manner that our disambiguation
mechanism identifies the correct word sense. Because dependency context features are known to
be sparse, it is advisable to combine them with bag of words features. For example, this can be
achieved by concatenation of two context vectors: one built from BoW features and another from
dependency features.

63

Bibliography
[Agirre and Edmonds, 2007] Agirre, E. and Edmonds, P. (2007). Word Sense Disambiguation: Al-

gorithms and Applications. Springer, Berlin, first edition.

[Agirre and Soroa, 2009] Agirre, E. and Soroa, A. (2009). Personalizing PageRank for word sense
disambiguation. In Proceedings of the 12th Conference of the European Chapter of the Association
for Computational Linguistics, pages 33–41, Athens, Greece.

[Amigó et al., 2009] Amigó, E., Gonzalo, J., Artiles, J., and Verdejo, F. (2009). A comparison
of extrinsic clustering evaluation metrics based on formal constraints. Information Retrieval,
12(4):461–486.

[Bansal et al., 2014] Bansal, M., Gimpel, K., and Livescu, K. (2014). Tailoring continuous word
representations for dependency parsing. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, ACL 2014, Volume 2: Short Papers, pages 809–815,
Baltimore, MD, USA.

[Baroni et al., 2009] Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta, E. (2009). The
WaCky wide web: a collection of very large linguistically processed web-crawled corpora. Lan-
guage Resources and Evaluation, 43(3):209–226.

[Baroni et al., 2014] Baroni, M., Dinu, G., and Kruszewski, G. (2014). Don’t count, predict! A sys-
tematic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, pages
238–247, Baltimore, MD, USA.

[Bartunov et al., 2015] Bartunov, S., Kondrashkin, D., Osokin, A., and Vetrov, D. (2015). Breaking
sticks and ambiguities with adaptive Skip-gram. arXiv preprint arXiv:1502.07257.

[Baskaya et al., 2013] Baskaya, O., Sert, E., Cirik, V., and Yuret, D. (2013). AI-KU: Using sub-
stitute vectors and co-occurrence modeling for word sense induction and disambiguation. In
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings
of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages 300–306,
Atlanta, GA, USA.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural prob-
abilistic language model. Journal of Machine Learning Research, 3:1137–1155.

[Biemann et al., 2013] Biemann, C., Riedl, and M. (2013). Text: Now in 2D! A framework for
lexical expansion with contextual similarity. Journal of Language Modelling, 1(1):55–95.

[Biemann,] Biemann, C. Chinese Whispers: An efficient graph clustering algorithm and its appli-
cation to natural language processing problems. In Proceedings of the First Workshop on Graph
Based Methods for Natural Language Processing, pages 73–80, New York City, NY, USA.

64

[Biemann, 2012] Biemann, C. (2012). Turk bootstrap word sense inventory 2.0: A large-scale re-
source for lexical substitution. In Proceedings of the Eighth International Conference on Language
Resources and Evaluation (LREC 2012), pages 4038–4042, Istanbul, Turkey.

[Brown, 2008] Brown, S. W. (2008). Choosing sense distinctions for WSD: Psycholinguistic evi-
dence. In Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics
on Human Language Technologies: Short Papers, pages 249–252, Columbus, Ohio.

[Chen et al., 2014] Chen, X., Liu, Z., and Sun, M. (2014). A unified model for word sense repre-
sentation and disambiguation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2014), pages 1025–1035, Doha, Qatar.

[Church and Hanks, 1990] Church, K. W. and Hanks, P. (1990). Word association norms, mutual
information, and lexicography. Computational Linguistics, 16(1):22–29.

[Collobert and Weston, 2008] Collobert, R. and Weston, J. (2008). A unified architecture for nat-
ural language processing: Deep neural networks with multitask learning. In Proceedings of
the 25th International Conference on Machine Learning (ICML 2008), pages 160–167, Helsinki,
Finland.

[Daelemans et al., 1999] Daelemans, W., Van Den Bosch, A., and Zavrel, J. (1999). Forgetting
exceptions is harmful in language learning. Machine Learning, 34(1):11–41.

[Deerwester et al., 1990] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harsh-
man, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391.

[Erk and McCarthy, 2009] Erk, K. and McCarthy, D. (2009). Graded word sense assignment. In
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Vol-
ume 1, EMNLP ’09, pages 440–449, Singapore.

[Fagerland et al., 2013] Fagerland, M. W., Lydersen, S., and Laake, P. (2013). The McNemar test
for binary matched-pairs data: mid-p and asymptotic are better than exact conditional. BMC
Medical Research Methodology, 13(1):1–8.

[Fellbaum, 1998] Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge, MA, USA.

[Finkelstein et al., 2002] Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman,
G., and Ruppin, E. (2002). Placing search in context: The concept revisited. ACM Transactions
on Information Systems, 20(1):116–131.

[Firth, 1957] Firth, J. R. (1957). A synopsis of linguistic theory 1930-55. Studies in Linguistic
Analysis (special volume of the Philological Society), 1952-59:1–32.

[Florian et al., 2002] Florian, R., Cucerzan, S., Schafer, C., and Yarowsky, D. (2002). Combining
classifiers for word sense disambiguation. Natural Language Engineering, 8(4):327–341.

[Goldberg and Levy, 2014] Goldberg, Y. and Levy, O. (2014). word2vec explained: deriving
Mikolov et al.’s negative-sampling word-embedding method. CoRR, abs/1402.3722.

65

[Guo et al., 2014] Guo, J., Che, W., Wang, H., and Liu, T. (2014). Learning sense-specific word
embeddings by exploiting bilingual resources. In Proceedings of 25th International Conference
on Computational Linguistics (COLING 2014), pages 497–507, Dublin, Ireland.

[Hamp and Feldweg, 1997] Hamp, B. and Feldweg, H. (1997). GermaNet – a lexical-semantic
net for German. In Proceedings of the ACL workshop on Automatic Information Extraction and
Building of Lexical Semantic Resources for NLP Applications, pages 9–15, Madrid, Spain.

[Hope and Keller, 2013a] Hope, D. and Keller, B. (2013a). MaxMax: a graph-based soft clustering
algorithm applied to word sense induction. In Proceedings of the 14th International Conference
on Computational Linguistics and Intelligent Text Processing - Volume Part I, pages 9–15, Samos,
Greece.

[Hope and Keller, 2013b] Hope, D. and Keller, B. (2013b). UoS: a graph-based system for graded
word sense induction. In Second Joint Conference on Lexical and Computational Semantics
(*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation
(SemEval 2013), pages 689–694, Atlanta, GA, USA.

[Hovy et al., 2006] Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., and Weischedel, R. (2006).
OntoNotes: the 90% solution. In Proceedings of the Human Language Technology Conference of
the NAACL, Companion Volume: Short Papers, pages 57–60, New York City, NY, USA.

[Huang et al., 2012] Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). Improving
word representations via global context and multiple word prototypes. In Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics: Long Papers - Volume 1,
ACL ’12, pages 873–882, Jeju Island, Korea.

[Ide et al., 2004] Ide, N., , Ide, N., and Suderman, K. (2004). The american national corpus first
release. In Proceedings of the Fourth Language Resources and Evaluation Conference (LREC 2004),
pages 1681–1684, Lisbon, Portugal.

[Jurgens, 2013] Jurgens, D. (2013). Embracing ambiguity: A comparison of annotation method-
ologies for crowdsourcing word sense labels. In Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pages 556–562, Atlanta, GA, USA.

[Jurgens and Klapaftis, 2013] Jurgens, D. and Klapaftis, I. (2013). SemEval-2013 Task 13: Word
sense induction for graded and non-graded senses. In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013), pages 290–299, Atlanta, GA, USA.

[Klein and Manning, 2003] Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing.
In Proceedings of the 41st Annual Meeting on Association for Computational Linguistics - Volume 1
(ACL 2003), pages 423–430, Sapporo, Japan.

[Klein et al., 2002] Klein, D., Toutanova, K., Ilhan, H. T., Kamvar, S. D., and Manning, C. D.
(2002). Combining heterogeneous classifiers for word-sense disambiguation. In Proceedings
of the ACL-02 workshop on Word Sense Disambiguation: Recent successes and future directions,
pages 74–80, Philadelphia, PA, USA.

66

[Kumar and Vassilvitskii, 2010] Kumar, R. and Vassilvitskii, S. (2010). Generalized distances be-
tween rankings. In Proceedings of the 19th International Conference on World Wide Web (WWW
2010), pages 571–580, Raleigh, North Carolina, USA.

[Lancichinetti et al., 2009] Lancichinetti, A., Fortunato, S., and Kertész, J. (2009). Detecting the
overlapping and hierarchical community structure in complex networks. New Journal of Physics,
11(3):033015.

[Lau et al., 2013] Lau, J. H., Cook, P., and Baldwin, T. (2013). unimelb: Topic modelling-based
word sense induction. In Second Joint Conference on Lexical and Computational Semantics
(*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation
(SemEval 2013), pages 307–311, Atlanta, GA, USA.

[Leacock et al., 1998] Leacock, C., Miller, G. A., and Chodorow, M. (1998). Using corpus statistics
and WordNet relations for sense identification. Computational Linguistics, 24(1):147–165.

[Leacock et al., 1993] Leacock, C., Towell, G., and Voorhees, E. (1993). Corpus-based statistical
sense resolution. In Proceedings of the Workshop on Human Language Technology (HLT 1993),
pages 260–265, Princeton, New Jersey, USA.

[Lee and Ng, 2002] Lee, Y. K. and Ng, H. T. (2002). An empirical evaluation of knowledge sources
and learning algorithms for word sense disambiguation. In Proceedings of the ACL-02 Conference
on Empirical Methods in Natural Language Processing - Volume 10, EMNLP ’02, pages 41–48,
Philadelphia, PA, USA.

[Lesk, 1986] Lesk, M. (1986). Automatic sense disambiguation using machine readable dictio-
naries: How to tell a pine cone from an ice cream cone. In Proceedings of the 5th Annual
International Conference on Systems Documentation (SIGDOC 1986), pages 24–26, Toronto, On-
tario, Canada.

[Levy and Goldberg,] Levy, O. and Goldberg, Y. Neural word embedding as implicit matrix fac-
torization. In Proceedings of Annual Conference on Neural Information Processing Systems (NIPS
2014).

[Levy and Goldberg, 2014a] Levy, O. and Goldberg, Y. (2014a). Dependency-based word embed-
dings. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics,
Volume 2: Short Papers, (ACL 2014), pages 302–308, Baltimore, MD, USA.

[Levy and Goldberg, 2014b] Levy, O. and Goldberg, Y. (2014b). Linguistic regularities in sparse
and explicit word representations. In Proceedings of the Eighteenth Conference on Computational
Natural Language Learning, pages 171–180, Baltimore, MD, USA.

[Levy et al., 2015] Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving distributional similarity
with lessons learned from word embeddings. Transactions of the Association for Computational
Linguistics, 3:211–225.

[Li and Jurafsky, 2015] Li, J. and Jurafsky, D. (2015). Do multi-sense embeddings improve natural
language understanding? CoRR, abs/1506.01070.

[Lin, 1998] Lin, D. (1998). An information-theoretic definition of similarity. In Proceedings of the
Fifteenth International Conference on Machine Learning (ICML 1998), volume 98, pages 296–
304, Madison, WI, USA.

67

[Liu et al., 2015] Liu, Y., Liu, Z., Chua, T.-S., and Sun, M. (2015). Topical word embeddings. In
Proceedings of the 29th AAAI Conference on Artificial Intelligence, pages 2418–2424, Austin, TX,
USA.

[Manandhar and Klapaftis, 2009] Manandhar, S. and Klapaftis, I. P. (2009). SemEval-2010 Task
14: evaluation setting for word sense induction & disambiguation systems. In Proceedings of
the Workshop on Semantic Evaluations: Recent Achievements and Future Directions, pages 63–68,
Boulder, CO, USA.

[McNemar, 1947] McNemar, Q. (1947). Note on the sampling error of the difference between
correlated proportions or percentages. Psychometrika, 12(2):153–157.

[Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estima-
tion of word representations in vector space. CoRR, abs/1301.3781.

[Mikolov et al., 2010] Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S.
(2010). Recurrent neural network based language model. In Proceedings of the 11th Annual
Conference of the International Speech Communication Association (INTERSPEECH 2010), pages
1045–1048, Makuhari, Chiba, Japan.

[Mikolov et al., 2013b] Mikolov, T., Le, Q. V., and Sutskever, I. (2013b). Exploiting similarities
among languages for machine translation. CoRR, abs/1309.4168.

[Mikolov et al., 2013c] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013c).
Distributed representations of words and phrases and their compositionality. In Proceedings of
the 27th Annual Conference on Neural Information Processing Systems 2013, pages 3111–3119,
Lake Tahoe, NV, USA.

[Mikolov et al., 2013d] Mikolov, T., Yih, W., and Zweig, G. (2013d). Linguistic regularities in
continuous space word representations. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
746–751, Atlanta, GA, USA.

[Miller et al.,] Miller, T., Biemann, C., Zesch, T., and Gurevych, I. Using distributional similarity
for lexical expansion in knowledge-based word sense disambiguation. pages 1781–1796.

[Moffat and Zobel, 2008] Moffat, A. and Zobel, J. (2008). Rank-biased precision for measurement
of retrieval effectiveness. ACM Transactions on Information Systems, 27(1):2:1–2:27.

[Mooney, 1996] Mooney, R. J. (1996). Comparative experiments on disambiguating word senses:
An illustration of the role of bias in machine learning. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP 1996), pages 82–91, Philadelphia,
PA, USA.

[Morin and Bengio, 2005] Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural net-
work language model. In Proceedings of the Tenth International Workshop on Artificial Intelligence
and Statistics (AISTATS 2005), pages 246–252, Bridgetown, Barbados.

[Moro et al., 2014] Moro, A., Raganato, A., and Navigli, R. (2014). Entity linking meets word
sense disambiguation: a unified approach. Transactions of the Association for Computational
Linguistics, 2:231–244.

68

[Navigli, 2009] Navigli, R. (2009). Word sense disambiguation: A survey. ACM Computing Surveys,
41(2):10:1–10:69.

[Navigli and Ponzetto, 2012] Navigli, R. and Ponzetto, S. P. (2012). BabelNet: the automatic
construction, evaluation and application of a wide-coverage multilingual semantic network.
Artificial Intelligence, 193:217–250.

[Neelakantan et al., 2014] Neelakantan, A., Shankar, J., Passos, A., and McCallum, A. (2014).
Efficient non-parametric estimation of multiple embeddings per word in vector space. In Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1059–1069, Doha, Qatar.

[Ng, 1997a] Ng, H. T. (1997a). Exemplar-based word sense disambiguation: Some recent im-
provements. CoRR, cmp-lg/9706010.

[Ng, 1997b] Ng, H. T. (1997b). Getting serious about word sense disambiguation. In Proceedings
of the ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What, and How, pages
1–7, Washington, D.C., USA.

[Nieto Piña and Johansson, 2016] Nieto Piña, L. and Johansson, R. (2016). Embedding senses
for efficient graph-based word sense disambiguation. In Proceedings of the Human Language
Technology Conference of the NAACL (to appear), San Diego, CA, United States.

[Nivre et al., 2006] Nivre, J., Hall, J., and Nilsson, J. (2006). MaltParser: a data-driven parser-
generator for dependency parsing. In Proceedings of the Fifth International Conference on Lan-
guage Resources and Evaluation (LREC 2006).

[Panchenko, 2013] Panchenko, A. (2013). Similarity measures for semantic relation extraction.
PhD thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium.

[Pantel and Lin, 2002] Pantel, P. and Lin, D. (2002). Discovering word senses from text. In Pro-
ceedings of the eighth ACM SIGKDD international conference on Knowledge Discovery and Data
Mining, pages 613–619, Edmonton, AB, Canada.

[Passonneau et al., 2012] Passonneau, R. J., Bhardwaj, V., Salleb-Aouissi, A., and Ide, N. (2012).
Multiplicity and word sense: evaluating and learning from multiply labeled word sense anno-
tations. Language Resources and Evaluation, 46(2):219–252.

[Passos et al., 2014] Passos, A., Kumar, V., and McCallum, A. (2014). Lexicon infused phrase
embeddings for named entity resolution. In Proceedings of the Eighteenth Conference on Compu-
tational Natural Language Learning (CoNLL 2014), pages 78–86, Baltimore, MD, USA.

[Pedersen, 2007] Pedersen, T. (2007). Learning Probabilistic Models of Word Sense Disambiguation.
PhD thesis, Southern Methodist University, Dallas, TX, USA.

[Pedersen and Bruce, 1997] Pedersen, T. and Bruce, R. (1997). Distinguishing word senses in
untagged text. In Proceedings of the Second Conference on Empirical Methods in Natural Language
Processing, pages 197–207, Providence, RI, USA.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). Glove: global vec-
tors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar.

69

[Qiu et al., 2014] Qiu, L., Cao, Y., Nie, Z., Yu, Y., and Rui, Y. (2014). Learning word representation
considering proximity and ambiguity. In Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, pages 1572–1578, Québec City, Québec, Canada.

[Rajaraman and Ullman, 2011] Rajaraman, A. and Ullman, J. D. (2011). Mining of Massive
Datasets. Cambridge University Press, New York, NY, USA.

[Řehůřek and Sojka, 2010] Řehůřek, R. and Sojka, P. (2010). Software framework for topic mod-
elling with large corpora. In Proceedings of the Language Resources and Evaluation Workshop on
New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta.

[Reisinger and Mooney, 2010] Reisinger, J. and Mooney, R. J. (2010). Multi-prototype vector-
space models of word meaning. In Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 109–117,
Los Angeles, CA, USA.

[Rong, 2014] Rong, X. (2014). word2vec parameter learning explained. CoRR, abs/1411.2738.

[Rothe and Schütze, 2015] Rothe, S. and Schütze, H. (2015). AutoExtend: extending word em-
beddings to embeddings for synsets and lexemes. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of Natural Language Processing, Volume 1: Long
Papers, pages 1793–1803, Beijing, China.

[Schütze, 1998] Schütze, H. (1998). Automatic word sense discrimination. Computational lin-
guistics, 24(1):97–123.

[Tian et al., 2014] Tian, F., Dai, H., Bian, J., Gao, B., Zhang, R., Chen, E., and Liu, T.-Y. (2014). A
probabilistic model for learning multi-prototype word embeddings. In Proceedings of the 25th
International Conference on Computational Linguistics: Technical Papers (COLING 2014), pages
151–160, Dublin, Ireland.

[Towell and Voorhees, 1998] Towell, G. G. and Voorhees, E. M. (1998). Disambiguating highly
ambiguous words. Computational Linguistics, 24(1):125–145.

[Turian et al., 2010] Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representations: A simple
and general method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics (ACL 2010), pages 384–394, Uppsala, Sweden.

[van Dongen, 2000] van Dongen, S. (2000). Graph Clustering by Flow Simulation. PhD thesis,
University of Utrecht, Utrecht, Netherlands.

[Vasilescu et al., 2004] Vasilescu, F., Langlais, P., and Lapalme, G. (2004). Evaluating variants of
the Lesk approach for disambiguating words. In Proceedings of Language Resources and Evalua-
tion Conference (LREC 2004), pages 633–636, Lisbon, Portugal.

[Véronis, 2004] Véronis, J. (2004). HyperLex: Lexical cartography for information retrieval. Com-
puter Speech and Language, 18(3):223–252.

[Widdows and Dorow, 2002] Widdows, D. and Dorow, B. (2002). A graph model for unsuper-
vised lexical acquisition. In Proceedings of the 19th international conference on Computational
linguistics, pages 1–7, Taipei, Taiwan.

70

[Wu and Giles, 2015] Wu, Z. and Giles, C. L. (2015). Sense-aware semantic analysis: A multi-
prototype word representation model using Wikipedia. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, pages 2188–2194, Austin, TX, USA.

[Zhang et al., 2013] Zhang, Z., Gentile, A. L., and Ciravegna, F. (2013). Recent advances in meth-
ods of lexical semantic relatedness – a survey. Natural Language Engineering, 19(04):411–479.

71

	Introduction
	Motivation
	Problem Statement
	Hypothesis
	Contributions

	Related Work
	Sense Embeddings
	Context Clustering
	Extensions of Skip-Gram
	Knowledge-based and Miscellaneous

	Word Sense Disambiguation

	Background
	Word Embeddings
	word2vec
	GloVe

	Word Similarity
	Similarities using Vector Space Models
	Similarities using JoBimText

	Word Clustering
	Markov Cluster Algorithm
	Chinese Whispers

	Word Sense Induction
	Overview
	Learning Word Vectors
	Calculating Word Similarity Graph
	Word Sense Induction
	Pooling of Word Vectors
	Examples

	Word Sense Disambiguation
	Method
	Example

	Evaluation on TWSI
	Evaluation Alternatives
	TWSI Dataset and Evaluation Metrics
	Experiments
	Sense Inventories
	Context Filtering
	Various System Configurations
	Statistical Significance of the Results
	Conclusion

	Error Analysis

	Evaluation on SemEval
	Dataset and Evaluation Metrics
	Dataset
	Evaluation Metrics
	Participants

	Experiment

	Conclusion and Future Work
	Conclusion
	Future Work

