
B A C H E L O R T H E S I S

Asking for Help: Grapheme-to-Phoneme Conversion using
Active Learning at Application Time

vorgelegt von

Mario Mohr

MIN-Fakultät

Fachbereich Informatik

Language Technology Group

Studiengang: Informatik

Matrikelnummer: 6246684

Erstgutachter: Prof. Dr. Chris Biemann

Zweitgutachter: Benjamin Milde

Abstract

In natural language processing (NLP), situations are common in which a machine learning
system could theoretically request help from a human oracle at application time. Due to
constraints like the required domain-specific proficiency of the oracle, however, such manual
labeling is often costly.
In this thesis, it will be investigated whether it is possible for such a system to identify

problematic inputs at application time, and which approaches are best suited to achieve this.
To this end, some approaches from the field of active learning are introduced.
Active learning is a comparatively recent and currently sparsely researched field of machine

learning that aims to minimize data labeling costs by allowing a partially trained model
to select, from a larger set of unlabeled data, those samples it deems the most beneficial
for its ongoing training, and send these to an oracle for manual labeling. The problem of
identifying the most interesting samples at training time is related to that of identifying the
most problematic ones at application time, and the transferability of some active learning
techniques into application-time usage is discussed.
The NLP domain chosen for this thesis is grapheme-to-phoneme conversion (G2P). G2P

plays an important role in several fields of NLP applications and is currently being researched
intensely. Two state-of-the-art G2P approaches are implemented as a baseline to test against:
joint sequence model based G2P in the Sequitur implementation, and Long Short-Term Mem-
ory based G2P, a comparatively recent, but somewhat successful approach in sequence-to-
sequence learning. While some of the request decision approaches discussed are G2P-specific,
others are of a more generalistic kind, rendering the results of this thesis just as relevant to
other machine learning fields.

The results show that while several active learning based approaches to request decision fail,
both simply due to bad performance as well as due to incompatibility with the G2P domain,
others are somewhat promising. The generalistic approach of interpreting a system’s output
in terms of confidence towards an input sample is shown to be a robust and efficient metric to
identify problematic samples at application time. Additionally, the domain-specific approach
of grading test samples by the system’s ignorance towards the input, i.e. the difference of the
input to the bulk of the training data in terms of semantic distance, morphologic distance or
similar, is shown to be a sub-optimal, but promising approach.

iii

Acknowledgments

The author wishes to express their sincere thanks to Professor Chris Biemann and
Maximilian Strake for their valuable professional advice and ongoing encouragement.

Special thanks go to Benjamin Milde for the continuously productive exchange of ideas, for
late-night proofreading and valuable criticism.

v

Contents

1 Introduction 1
1.1 Related Work . 2

2 Theoretical Background 3
2.1 Joint Sequence Models . 3

2.1.1 Joint Sequence G2P . 4
2.2 LSTM G2P . 5

2.2.1 Feed-Forward Neural Networks . 6
2.2.2 Learning & Backpropagation . 9
2.2.3 Recurrent Neural Networks . 10
2.2.4 Backpropagation Through Time . 11
2.2.5 Long Short-Term Memory Networks 13
2.2.6 Encoder-Decoder Architecture . 15
2.2.7 Attention Mechanism . 15
2.2.8 Beam Decoding . 16

2.3 Dense Symbol Embeddings . 18
2.4 Active Learning . 20

3 Request Decision Approaches 23
3.1 Random-Request Approach . 23
3.2 Confidence-Based Approaches . 24
3.3 Ignorance-based Approaches . 26
3.4 Word-Origin-based Approach . 26
3.5 Error Predictor based Approaches . 27

4 Test Setup 29
4.1 Test System Architecture . 29
4.2 Decision Parameter Virtualization . 30
4.3 Dataset Sources & Preprocessing . 30

5 Evaluation and Results 33
5.1 Approach Performance Metrics . 33

5.1.1 WER and PER . 33
5.1.2 Request Performance Index . 33

5.2 Basic Model Performance . 35
5.2.1 Sequitur . 35
5.2.2 LSTM . 35

vii

Contents

5.3 Random-based Approaches . 36
5.4 Theoretical Optimum . 36
5.5 Confidence-Based Approaches . 38
5.6 Ignorance-Based Approaches . 38

5.6.1 Sequitur . 38
5.6.2 LSTM . 41

5.7 Word-Origin-Based Approaches . 43
5.8 Error-Predictor-Based Approaches . 45

6 Conclusion and Future Work 47

Bibliography 49

viii

1 Introduction

Grapheme-to-Phoneme Conversion (G2P) is the task of converting the ortographic represen-
tation of a word, consisting of graphemes such as letters, into its phonemic representation,
i.e. a symbolic representation of its pronunciation.
The phonemic representation of a language’s words plays an important role in a number

of Natural Language Processing (NLP) applications. The most obvious of these is Speech
Synthesis, where the knowledge of the pronunciation of a word - usually enriched with infor-
mation about emphasis, sentence structure and similar aspects - allows an artificial agent to
emulate natural speech. Another such application is its use in Automatic Speech Recognition
(ASR), where the knowledge of a language’s words typical pronunciations allows a recognition
component to distinguish and recognize individual words in continuous audio signals.
Systems requiring phonemic knowledge often employ pre-built, (semi-)manually created

datasets such as pronunciation dictionaries to provide relatively accurate knowledge on the
pronunciation of words. However, due to the high cost of manual manual G2P conversion by
experts and the constantly-evolving nature of natural languages, it is inherently impossible to
generate final, future-proof complete datasets. Additionally, domain-specific words (such as
medical terms) are often exceedingly difficult to completely and accurately cover.
In these cases, NLP systems often make use of G2P components. These are employed

whenever a word of interest is not included in the pronunciation dataset(s) used by the
system. Due to the advent of Natural Language Processing in the last decades and the
rising extension of NLP to highly non-formalized natural language (such as social media),
research in G2P approaches has experienced considerable interest in recent years. In addition
to this, some overlap with other fields of interest (such as generalistic sequence-to-sequence
mapping) has produced a number of exciting research opportunities for G2P conversion. Two
of these approaches, Joint Sequence Models and Long Short-Term Memory networks, will be
introduced in a later section of this work.
In this thesis, the problem of G2P in a specific environment will be explored: that of a semi-

supervised G2P component, for which incompletely labeled pronunciation data is available
and further manual labeling by experts is available, but expensive. Thus, we will explore
approaches for a G2P component to efficiently request labeling only for the most critical of
word pronunciation, while simultaneously minimizing the overall pronunciation error as much
as possible. To this end, several approaches based on Active Learning algorithms will be
introduced and their performance evaluated.
The language of interest for this paper will be English; however, efforts will be made to

keep all approaches generalistic enough to make them adaptable with reasonable amount to
other languages.

1

1 Introduction

1.1 Related Work

As far as the author is aware, no attempts to utilize active learning techniques for the
application-time requesting of manual labeling have been made so far.
Active learning at training time in the context of G2P systems appears to be a moderately

researched field. Kominek and Black (2006) propose a simple, perplexity-based active learning
approach to the training of a G2P, with results slightly better than that of a randomly trained
model. Kominek (2009) follows a similar approach, producing results that are only marginally
better than that of a randomly trained model and, additionally, utilizing metrics that are unfit
for application-time requesting of oracle help.
Schlippe et al. (2012) discuss a problem similar to the one discussed in this thesis: identi-

fying problematic samples from a larger set of phonemizations. However, in this case, a G2P
component is in fact used to check the phonemizations already present in a pronunciation
dictionary, making this approach unfit for this thesis’ application.
Kim and Snyder (2013) apply a technique similar to active learning to reduce the labeling

effort over unlabeled data for a G2P system; however, again, their approach is only applicable
during training time and offers no benefit for the identification of problematic phonemizations
at application-time.
In (Shen et al., 2011), active learning is used to reduce manual labeling for a homograph

disambiguation task on mandarin natural language. While not directly related to G2P, they
use metrics similar to the confidence and confidence entropy proposed in Chapter 3.2.

Active learning in general has successfully been applied to several fields, such as:

• computer vision, e.g. object recognition (Kapoor et al., 2007) and video tagging (Yang,
2003)

• robotics, e.g. inverse models for high-dimensional spaces, such as inverse kinematics
(Baranes and Oudeyer, 2013), and

• signal processing, e.g. music retrieval (Mandel, Poliner, and Ellis, 2006).

2

2 Theoretical Background

2.1 Joint Sequence Models

A Joint sequence model is a probabilistic approach to describe the relation between the
elements of two sets M1,M2 for which pairs of sequences (s1, s2) ∈ M1

∗ ×M2
∗ stand in a

predefined, meaningful relation R to each other. Generally, a joint sequence model may be
found for any two sets M1,M2, as long as there is a set of sequence tuples that relates the
two sets to each other; an example can be found in the field of machine translation of natural
language (Durrani, Schmid, and Fraser, 2011), for which the relation Rtrans might contain
known valid translations between two word sets of different languages:

(”The soccer ball is red”, ”Der Fussball ist rot”)
∈ Rtrans ⊂MEnglish

∗ ×MGerman
∗

In a joint sequence model, these tuples of joint sequences are subdivided into joint units that
pair shorter sequences from the two sets in a more fine-granular set of tuples. A possible
subdivision of the English-German sentence translation above might, for example, be:

{(”The”, ”Der”), (”soccer ball”, ”Fussball”), (”is”, ”ist”), (”red”, ”rot”)}
It is important to note that this set of joint units generated from the sentence above is a,
but not the only possible such subdivision. An equally valid set of joint units would be:

{(”The soccer”, ”Der”), (”ball”, ”Fussball”), (”is red”, ”ist”), (””, ”rot”)},
as there is no information inherent to the translated sentence that suggests the first of the two
subdivisions to be preferable over the second. In fact, for the generation of a joint sequence
model for English-German translations, every possible subdivision (or co-segmentation) of a
given sentence is considered.
If applied to a sufficiently large set of English-German sentence translations, however, one

of the crucial points of a joint sequence model will become apparent: while in the context of a
single sentence, (”The soccer”, ”Der”) and (”The”, ”Der”) may appear to be equally valid
co-segmentations, in the context of a larger number of sentence translations, the joint unit
(”The”, ”Der”) will appear significantly more often than (”The soccer”, ”Der”). In other
words, (”The”, ”Der”) will have a much higher likelihood p than (”The soccer”, ”Der”):

p((”The”, ”Der”)) > p((”The soccer”, ”Der”)),

where the likelihood p of a joint unit m is equal to its relative occurrence in the set of all
possible joint units generated from all possible co-segmentation of all sentence pairs in Rtrans:

p(m) =

∑
s∈S(Rtrans)

[s = m]

|S(Rtrans)|
(2.1)

3

2 Theoretical Background

In this way, joint sequence models capture the structural connection between short sequences
of the two sets in a purely data-driven manner.

After some of the basic concepts of joint sequence models have been introduced, in the
next subchapter, the transition to the G2P domain will be made and a more in-depth overview
over the key parts of a joint sequence based G2P system will be given.

2.1.1 Joint Sequence G2P

Joint sequence models as an approach for various topics related to natural language process-
ing have been in use since at least the 1990s (Deligne and Bimbot, 1995). One of the more
recent implementations - and one that is still used as one of the state-of-the-art approaches
to G2P conversion in current research (Toshniwal and Livescu, 2016; Novak et al., 2012;
Milde, Schmidt, and Köhler, 2017) - is the Sequitur system introduced by Bisani and Ney in
2008 (Bisani and Ney, 2008).

From a joint sequence based perspective, the initial problem a G2P system attempts to solve
is the following: Given are a grapheme set G, a phoneme set Φ and a relation Rpron ⊂ G∗×Φ∗

of known valid pronunciations. Desired is a function φ : G∗ → Φ∗ that maps any given word
in phoneme form to its correct counterpart in phoneme form, i.e. its correct pronunciation.
Bisani and Ney formalize this as follows: (Bisani and Ney, 2008)

φ(g) = argmax
φ′∈Φ∗

p(g, φ′) (2.2)

They define the likelihood p(g, φ′) of a phonemization φ being correct for the input word g
as:

p(g, φ′) =
∑

q∈S(g,φ)

p(q), (2.3)

where S(g, φ) denotes the set of all co-segmentations of g and φ. The set of all co-
segmentations for the word "if" and the (correct) phonemization "If", for example, would
contain the following sets of joint units (in the G2P context also referred to as graphones):

S("if", "If") =

{ ("i", "I"), ("f", "f") }
{ ("i", "If"), ("f", "") }
{ ("i", ""), ("f", "If") }
{ ("if", ""), ("", "If") }
{ ("if", "If") }

The individual probability of a graphone sequence p(q) (i.e. a co-segmentation of an input

and a possible phonemization, e.g. { ("i", "I"), ("f", "f") }) is approximated by the product
of the individual graphones’ posterior probabilities given the M previous graphones: (Bisani
and Ney, 2008)

4

2.2 LSTM G2P

p(q) ∼=
|q|+1∏
j=1

p(qj |qj−1, ..., qj−M+1) (2.4)

In other words, for each graphone, the probability that this exact graphone follows the
exact sequence of graphones leading up to its position in the word is calculated, while lim-
iting the window to the last M graphones. In this way, not only the statistical evidence in
the training data for each individual graphone, but also the evidence for the sequence order
of graphones is considered. This allows the joint sequence model to account for some of
the structural properties of both the individual sets (e.g. German and English) as well as
their joint properties (such as certain groups of English words translating to a single German
compound word, or even grammatical properties of the languages involved).

The training of a joint sequence model occurs by maximizing the log-likelihood of the
training set for the model. The log-likelihood of a data set N for a given model is defined as:

logL(N) =

|N |∑
i=1

logL(Ni) =

|N |∑
i=1

log

 ∑
S∈S(Ni)

p(Ni,S)

 , (2.5)

i.e. the sum of the log-likelihoods of all co-segmentations of all training input words and their
correct phonemizations. To achieve this, the expectation maximization algorithm is employed,
which will not be discussed in this thesis. For more details, Bisani and Ney (2008) give an
excellent introduction into the topic.
One last noteworthy aspect of the training process is the application of two additional

concepts to reduce over-fitting on the training data:

• evidence trimming, which only considers a graphone qi to continue a graphone sequence
if its training evidence of following the previous graphones e(qi, (qi−M+1, ..., qi−1)) is
higher than a threshold value dM (and thus, effectively discounts extreme edge-cases
with very little support in the training data), and

• model interpolation, which, when computing the probability of a graphone qi following
a graphone sequence (qi−M+1, ..., qi−1), not only considers the probability given by the
currentM -gram model, but also that of the lower-gram models (M−1, ...,M−M+1).

Again, for more details, Bisani and Ney (2008) are highly suggested as a more in-depth
explanation of the calculations employed.

2.2 LSTM G2P

In this subchapter, the theoretical background of the Long-Short-Term-Memory-based G2P
system utilized in later chapters is introduced. Starting with the foundational basics of artificial
neural networks, more complex concepts will be introduced until a sufficient overview of the
most relevant components of the LSTM G2P system is achieved.

5

2 Theoretical Background

2.2.1 Feed-Forward Neural Networks

Artificial Neural Networks are an approach to computational learning that is roughly in-
spired the information processing capabilities of the (human) brain. The first paper relevant
to the topic (although at this point, the idea of a digital artificial neural network was not
mentioned yet) was published in 1943 (McCulloch and Pitts, 1943). In it, a first attempt
at a mathematic-algorithmic description of the signal processing behaviour of neurons in the
human brain was made. In the late 1950s, research into the replication of these neural ap-
proaches to machine learning began in earnest (Rosenblatt, 1958), culminating in "the first
golden age of neural networks" (Yadav, Yadav, and Kumar, 2015).
While initial results of these first artificial neural networks were promising, toward the end

of the 1960s, artificial neural networks had failed to live up to the high expectations set into
them. Even some comparatively simple problems, such as the computation of the logical XOR
operator, could not be solved (Minsky and Papert, 1969). Consequently, research interest
into this field receded drastically. The reasons for the perceived shortcomings of early neural
network systems are varied and will not be discussed in this thesis; however, among the more
obvious ones are challenges regarding the hardware, availability of training data, and the fact
that many of the approaches taken were still rather in their infancy.
In the 1980s, interest in neural networks increased again; for similar reasons as the first, and

due to the advent of alternative approaches such as Support Vector Machines (Cortes and
Vapnik, 1995), this second surge in neural network research experienced stagnation during
the mid-1990s; however, in the 2000s, neural networks (and the research field of artificial
intelligence as a whole) experienced a third surge, and neural networks have been a field of
highly intense research for more than the last decade.

The basic theory behind artificial neural networks is comparatively simple:

• an vector of input features is fed into the input layer of the network;

• the data from the input vector is then transformed through one or multiple hidden
layers;

• finally, an output layer interprets the transformed data and returns it as the output of
the network

The in- and outputs of the network can represent a variety of types of data, from simple
numerical data over audio or video data to more abstract types of data such as class labels of
objects or even abstract vectors containing a sentence’s meaning (as will be discussed later).
During the transformation of the data, each layer iteratively receives the data of the previous
layer, performs a series of linear as well as non-linear operations on it, and passes it on to
the next layer. As layer k transforms the data, each neuron nki receives data from (usually,
but not always all) neurons of the previous layer i− 1 or the input layer if i = 1, computes a
weighted sum of those values, and applies a non-linear activation function to it. Subsequently,
the i + 1st layer receives data from the ith, until the output layer is reached and an output

6

2.2 LSTM G2P

is produced. Mathematically, the value that nki propagates to the next layer is defined as1:

aki = σk(z
k
i) = σk(

∑
ak−1
j ∈Ak−1

wkji · ak−1
j + bkj), (2.6)

where

• aki is the activation of the ith neuron in the kth layer, i.e. the value it passes on to the
next layer,

• zki is the weighted sum the neuron nki "receives" from the previous layer,

• Ak is the set of all neurons of the kth layer,

• wkji is the weight of the activation ak−1
j for the calculation of the activation of the

current neuron aki

• bkj is the bias of the nki , a single value that, among other things, enables individual
neurons to better center the data they process, and

• σ is the activation function on layer k.

This activation function, for which a non-linear function such as the sigmoid or the hy-
perbolic tangent is chosen, is the key component that enables artificial neural networks to
learn not only linearly separable problems (as they would if the activation function was a
linear one), but non-linear ones as well. A common intuition to understand this property
is to view every neuron’s output as a folding of the previous layer’s parameter space; thus,
instead of having to perform a linear decision on an unprocessed data input, the output layer
performs decisions on a heavily morphed version of the input data, allowing for significantly
more complex decision boundaries.
In practice, this is often visible in the form of increasingly complex data features being

constructed with later neuron layers. 2.1 shows such a hierarchical construction of features
in the image processing domain: while lower-tier layers fold the image data in such a way
that, for example, horizontal or vertical edges can be recognized, higher-tier layers use this
preprocessed data to recognize elements of the input symbols, and, eventually, even the
symbols themselves.
It is noteworthy that neural networks are a comparatively generalistic approach to problems

like classification and prediction: a neural network can be trained for any function between
two data sets, as long as they can be meaningfully encoded in numerical vectors.

1In the following equations, it is assumed that the layers of the network are fully connected, i.e. a neuron
receives data from all neurons of the previous layer.

7

2 Theoretical Background

Figure 2.1: A visual representation of the features learned by neurons of different layers for a
symbol recognition task. (Salakhutdinov, Tenenbaum, and Torralba, 2013)

Input #1

Input #2

Input #3

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.2: A simple feed-forward neural network.

8

2.2 LSTM G2P

2.2.2 Learning & Backpropagation

Similar to the joint sequence models presented in the previous chapter, neural networks are
a purely data-driven approach to machine learning. From a set of training data, a system is
taught - or, more accurately, teaches itself - to guess the correct output for any given valid
input.
To begin with, a network’s parameters (i.e. the weight vectors Wk and the bias vectors

Bk) are initialized. While this often occurs by simply setting every weight factor to a small
random number2 and the biases to zero, a number of more complex initialization methods
exists.
Subsequently,

1. individual data samples (or batches of samples) are fed into the network;

2. after each such training iteration, the expected outputs from the data set are compared
to the outputs produced by the network;

3. a loss is calculated as a measure of the network’s inaccuracy in producing the correct
outputs;

4. the network parameters are changed in such a way as to reduce the expected error on
the same samples in the future.

Different loss functions exist for different applications, from a simple metric such as the mean
squared error for simple numeric prediction outputs, to any number of arbitrarily complex
functions, as long as they adequately represent a model’s performance on the task at hand.
There are some requirements for a loss function to be utilized in combination with different
training algorithms, such as the differentiability of the function if it is to be used in conjunction
with the gradient descent training algorithm, but they will not be discussed here.

The above process is repeated with other samples or batches of samples until a termination
condition is fulfilled, such as an acceptable loss, converging parameters or loss, or a maximum
number of iterations.
There is a multitude of approaches to implement the fourth step, the update of the network

parameters for a given loss. Below, one of the most common - gradient descent - will be
introduced and on this example, the concept of backpropagation will be explained.

In a neural network, each neuron’s activation aki , i.e. the value it passes on to the next
layer, has a calculable impact on the overall loss for the current batch of samples m:

∂L(m)

∂aki
=

∑
zk+1
j ∈Zk+1

wk+1
ij · σ′k(zk+1

j) ·
∂L(m)

∂ak+1
j

, (2.7)

2There are at least two important reasons to use small random numbers: small initial weights allow for a
faster initial learning that larger, more slowly adaptable weights; and random initial weights prevent a
learning deadlock, in which each neuron of a layer processes and outputs the exact same value for a given
input.

9

2 Theoretical Background

that is, its impact is equal to the sum of the error impact of the neurons in the next layer
weighted by the current neuron’s influence on their activation, wk+1

ij .
The neurons’ activations itself are not an adjustable parameter of the model - they are

simply the results of the inputs and the actual model parameters -, but from a neuron’s

impact on the batch error
∂L(m)

∂aki
, the impact of its incoming weights from the previous

layer, i.e. wkji, can be calculated:

∂L(m)

∂wwk
ji

=
∂L(m)

∂aki
· σ′k(zki) · ak−1

j , (2.8)

that is the impact the activation of nk−1
j had on the activation of the neuron nki and, through

this, on the overall sample batch loss L(m).
With this information, it is possible to adjust the individual weights wij of the neural

network in such a way as to reduce the expected error for future outputs for this batch’s
inputs:

wij ← wij − η ·
1

|m|
·
∂L(m)

∂wwk
ji

, (2.9)

where 0 < η ≤ 1 is the learning rate of the system. This learning rate is one of a network’s
main training hyperparameters; an overly large (i.e. close to 1) learning rate may lead to
issues such as a non-convergent training process (as the weights "oscillate" around individual
training samples), while an overly small learning rate may lead to exceedingly slow model
training speeds and convergence on local instead of global optima for the network parameters
(Jacobs, 1988).

The loss gradients
∂L(m)

∂aki
and

∂L(m)

∂wwk
ji

can be computed efficiently utilizing the backprop-

agation algorithm. As both loss gradients are dependent only on values from the next layer,
they can be computed iteratively from the last layer of the network back to the first, starting
with the output layer, the activations of which of course have a direct impact on the sample
batch loss, as the loss function is defined on the outputs of the network, i.e. the activations

of the neurons of the last layer. From these known values
∂L(m)

∂aoutputi

, the loss impact of the

individual layers can be computed backwards up to the input layer; the loss is propagated.

2.2.3 Recurrent Neural Networks

The basic neural network architecture introduced in the previous subchapter, while versatile
and quite effective for a considerable range of problems, has several significant drawbacks.
One of them - and one that is quite relevant in the context of G2P conversion - is the poor
ability of these networks, also known as feed-forward neural networks, to process sequential
data. While a feed-forward neural network may be taught to recognise certain features (such
as a human face) in the data of a single image, there is no effective way of feeding a sequence

10

2.2 LSTM G2P

Figure 2.3: A schematic view of a simple RNN. (Mikolov et al., 2010)

of images into it and e.g. teaching it to track an object, as both the in- and output-layers
are of a pre-determined size and expect the same number of input pixels and output labels
for each training sample. This is obviously a massive limitation to the applicability of simple
feed-forward neural networks for many problems, including sequence-to-sequence association
problems such as grapheme-to-phoneme conversion.
A relatively simple extension of the basic FFNN approach allows neural networks to be

applied to this kind of problem: that of recurrence.
A recurrent neural network (RNN) implements the same fundamental concepts as a FFNN,

but adds recurrent connections to each of the layers. Instead of inputting exactly one input
vector per sample into the network, an arbitrary number of n inputs can be inserted sequen-
tially; after each input, an output is produced and additionally, each neuron receives the
activations of all neurons in its layer from the previous time step as an additional input. The
equation for the activation of neuron nki at time t, aki,t, is therefore an updated version of the
equation for FFNNs:

aki,t = σk(z
k
i,t) = σk(

∑
ak−1
j,t ∈Ak−1

wkji · ak−1
j,t +

∑
akj,t−1∈Ak

wkji · akj,t−1+
∑

akj,t−1∈Ak

wkji · akj,t−1+
∑

akj,t−1∈Ak

wkji · akj,t−1 +bkj) (2.10)

This allows RNNs to process sequences of input vectors while retaining some latent information
over multiple timesteps (such as the current position of an object in an image, or the current
part of speech for NLP applications).

2.2.4 Backpropagation Through Time

The addition of recurrent connections into RNNs does, of course, require changes to be made
to the backpropagation algorithm as well. These changes, however, are surprisingly small and
intuitive. In fact, almost no changes are made to the loss backpropagation equations at all;

11

2 Theoretical Background

Figure 2.4: A schematic example of backpropagation through time. (Ma et al., 2015)

instead, a new preprocessing step is added: that of unrolling the network over the length of the
current training sample. Effectively, if the training sample had a length of T individual inputs
- and thus, the network went through T different internal states and produced a sequence of
T outputs -, the whole network is copied T times, and the in- and output-layer of each of the
T timestep-networks is connected with the previous one’s output and the next one’s input,
respectively. Figure 2.4 shows a simple example of this process.

Since the result is fundamentally a standard FFNN that simply has T as many layers as the
original RNN, the backpropagation algorithm introduced earlier can easily be applied to find

the loss impact of each timestep-specific neuron,
∂L(m)

∂nki,t
, and so, the loss impact of each

timestep-specific weight wkij,t. Finally, each weight wkij of the RNN is updated by averaging
the changes suggested by each time-specific edge in the unrolled network that corresponds
to wkij in the original RNN:

wij ← wij − η ·
1

T
·
∑

1≤t≤T

[
∂L(m)

∂wwk
ji,t

]
(2.11)

Although RNNs are fundamentally capable of processing data sequences instead of only
data vectors as FFNNs do, there are still several drawbacks to their use that will be addressed
in the next subchapters.

12

2.2 LSTM G2P

Figure 2.5: A schematic representation of a basic LSTM cell. (Marchi et al., 2017)

2.2.5 Long Short-Term Memory Networks

An issue that affects any moderately deep neural network, i.e. one with a sufficiently high
number of layers, is the so-called vanishing gradient problem3. As many of the activation
functions σ in use for neural networks have gradients in the area (−1, 1) or (0, 1), and
this gradient is a factor in the equation for the loss impact of a neuron nki , neurons in the
earlier layers (i.e., closer to the input layer) are subjected to exponentially small, or vanishing
change during each training iteration. As RNNs are "unrolled" into long chains of FFNNs
during training, they are especially susceptible to this vanishing gradient problem.
One possible solution that has received massive attention over the last two decades is

the concept of Long Short-Term Memory networks. LSTM neurons are fundamentally the
same as RNN neurons; however, several significant additions have been made to the neuron’s
behaviour:

• an input gate iki,t that determines whether or not the incoming data at timestep t
should influence the neuron’s next state or simply be ignored,

• a forget gate fki,t that determines whether the neuron’s last state at timestep t − 1
should influence its current state or simply be ignored, and

• an output gate oki,t that determines whether the neuron’s current state at timestep t
or a value of zero should be used to calculate the activation aki,t propagated to the next
layer.

3A similar, symmetrically opposed issue called exploding gradient exists, which will not be discussed here.

13

2 Theoretical Background

The equations for an LSTM neuron are then4:

iki,t = σg

 ∑
ak−1
j,t ∈Ak−1

[
wkji,inp · ak−1

j,t

]
+

∑
akj,t−1∈Ak

[
wkji,inp · akj,t−1

]
+ bki,inp

fki,t = σg

 ∑
ak−1
j,t ∈Ak−1

[
wkji,forg · ak−1

j,t

]
+

∑
akj,t−1∈Ak

[
wkji,forg · akj,t−1

]
+ bki,forg

oki,t = σg

 ∑
ak−1
j,t ∈Ak−1

[
wkji,out · ak−1

j,t

]
+

∑
akj,t−1∈Ak

[
wkji,out · akj,t−1

]
+ bki,out

,
(2.12)

where

• W k
inp, W

k
forg and W k

out are the weight matrices for the input, forget and output gates
for layer k, respectively,

• Bk
inp, B

k
forg and Bk

out are the bias vectors for the input, forget and output gates for
layer k, respectively, and

• σg is the sigmoid function, a function with an output range of [0, 1], i.e. closed gate
or opened gate.

With the values of these three gates calculated, the state of neuron nki at step t is calculated
as:

zki,t = fki,t · zki,t + iki,t · σc

 ∑
ak−1
j,t ∈Ak−1

[
wkji · ak−1

j,t

]
+

∑
akj,t−1∈Ak

[
wkji · akj,t−1

]
+ bki

 (2.13)

And with this, the output of the neuron nki at step t is:

aki,t = oki,t · σc(zki,t), (2.14)

where σc is the activation function of the neuron, often the hyperbolic tangent.
LSTM networks have several advantages over over traditional RNNs: due to the fact, if

the unit outputs any value at all (and thus contributes to the sample loss), the value of the
output gate will usually be close to 1; this largely prevents the vanishing gradient problem from
occurring. Additionally, a LSTM neuron can relatively easily learn to store information for
many timesteps. Thus, LSTMs have little problems with long-distance dependencies, which
occur, among other application domains, in many NLP problems (examples of this include
natural language text relationship extraction (Sutton and McCallum, 2006), natural language
dependency parsing (Imamura, Kikui, and Yasuda, 2007) and machine translation (Hai Son,
Allauzen, and Yvon, 2012)).

4The equations stem from the original work on LSTMs (Hochreiter and Schmidhuber, 1997) and were
adapted to be consistent with the notations established in the previous subchapters.

14

2.2 LSTM G2P

2.2.6 Encoder-Decoder Architecture

While LSTMs solve some of the issues of traditional RNNs, at least one major problem
remains: any RNN introduced so far produces an output sequence that is exactly as long
as the input sequence; there is simply no formalism for the network to either stop early and
ignore further inputs, or continue producing output steps after the full input sequence has
been inserted. While this constriction fits some NLP problems (such as sequence labeling
or Part-of-Speech-tagging),it is a gross mismatch with the reality of others, where cases in
which translated sentences are of a significantly different length than the original input, or
word pronunciations longer or shorter than the input word, are extremely common. While
there are workaround-solutions such as padding either of the input- or output-sequences, none
of them are optimal.
In 2014, a novel solution for this issue was proposed: the encoder-decoder architecture for

sequence-to-sequence learning (Cho et al., 2014a). The fundamental idea is this: instead of
employing a single RNN that produces outputs at the same time as inputs are fed into the
system, two networks are used: an encoder network that receives the input sequence and
encodes it into a compressed embedding vector similar to those introduced in more detail
in section 2.3; and a decoder network that, after the full input sequence has been encoded,
uses this dense representation of the input sequence’s data - and, at each timestep, its own
output from the previous timestep - to produce an output sequence. It is not uncommon
that, instead of using an explicit embedding vector that is propagated from the encoder to
the decoder, both encoder and decoder are constructed with the hidden-layer architecture and
the last hidden state (i.e. internal state of all neurons in the encoder) is simply transferred
into the decoder as the first hidden state of the decoder (Cho et al., 2014a).

This means that instead of being required to generate an output sequence with a length
matching that of the input sequence, the system can generate an output sequence of arbitrary
length; and, instead of producing an output from the moment the first input vector is fed into
the system, the model can assess the information content of the full input sequence before
producing a single output.

The training of this network architecture is, again, somewhat similar to that of traditional
RNNs. The decoder is unrolled back to its first iteration (i.e. the point at which it received the
embedding vector from the encoder). This is the exact same as the last iteration of the encoder
(which, at this point, passed the embedding vector to the encoder); so, from this point, the
encoder network is unrolled back towards the individual input vectors. Subsequently, the
standard backpropagation algorithm can be employed to calculate both networks’ parameter
updates.

2.2.7 Attention Mechanism

The encoder-decoder-architecture’s approach of using an encoding vector to transfer the
encoder’s interpretation of the input sequence to the decoder puts considerable pressure on
the encoding mechanism: it assumes that all relevant information of a potentially arbitrarily
long input sequence can be compressed into a single vector of fixed dimension. To alleviate
this, a comparatively recent approach to sequence-to-sequence learning proposes an additional

15

2 Theoretical Background

Figure 2.6: A diagram of an attention-based encoder-decoder network. In this case, both
encoder states (blue) and decoder states (red) are, through an attention layer,
jointly fed into an output layer (grey). (Luong, Pham, and Manning, 2015)

system component: the attention mechanism (Luong, Pham, and Manning, 2015; Mnih,
Heess, and Graves, 2014).
The concept of the attention mechanism is this: instead of giving the decoder access to

only the last output of the encoder network, it gains access to every single output along the
way, averaged to produce a single, attention-weighted context vector. This allows the decoder
to, depending on its current state and its last output, pay special attention to single vectors in
the input sequence. This attention averaging mechanism itself is a trainable neural network,
allowing the system to learn when to pay attention to which part of the input sequence.
This allows the model to learn even more complex semantical and syntactic connections for
a NLP-related task.

2.2.8 Beam Decoding

One last problem with RNNs that needs to be addressed is that of local optima. As, from
the first timestep on, the system’s output depends on its own output from the last timestep
(for the encoder-decoder architecture, the decoder feeds its own output into itself as an input
for the next timestep), standard RNNs have limited chance of producing the optimal output
sequence: if o1 is the first output generated by the system for the current input, any output
sequence produced for this input will start with o1; there is no possible output o′ where
o′1 6= o1, even if that output o′ were significantly better than the one actually produced.
Beam Decoding using beam search partially alleviates this issue.

In classical search problems, Beam Search is an approach designed to reduce the amount

16

2.2 LSTM G2P

Figure 2.7: A visualization of the attention vector for a machine translation application (Bah-
danau, Cho, and Bengio, 2015)

of hypotheses for possible partial solutions stored at any time. While search algorithms such
as breadth-first search (BFS) or the all-present A* algorithm guarantee finding an optimal
solution, they will require (or in the case of A* degenerate to require) the storage of bd

different partial solutions, with b being the branching factor of the graph and d being the
current search depth into the graph. In other words, the number of stored partial solutions is
exponential in the length of the solution.

Beam Search compensates for this potential problem by limiting the overall amount of
tracked partial solutions at any time to a fixed number k. Each step, these k solution
prefixes are employed to generate a subsequent set of partial solutions; from these, in turn,
the algorithm selects and continues on the k best. While Beam Search loses the property
to guaranteedly output an optimal solution in contrast to BFS or A* search, it allows an
algorithm to track only a constant instead of an exponential number of partial solutions at
each step.
In the context of Encoder-Decoder G2P conversion, this means the following: instead of

selecting only the best (i.e. most likely) phonemization for an input grapheme at each step for
continuation, the k most likely phonemes are selected and each used in a dedicated decoder
instance to produce, in total, k · |vp| phonemization hypotheses (with vp being the phoneme
vocabulary).
From these k · |vp| hypotheses, only the k best partial solutions (i.e. those with the highest

compound likelihood
Πi

1 p(Φi|Φi−1, vc) (2.15)

as estimated by the decoder for context vector vc step i) are kept and, unless the last generated

17

2 Theoretical Background

Figure 2.8: A simple example of beam search for a machine translation task with beam width
2. (Koehn, 2004)

phoneme is the end-of-sequence symbol, their respective last phonemes fed back into a new
decoder each for the next decoding step). In effect, the system maintains k distinct encoder
instances until a termination condition (such as maximum phonemization length, a compound
likelihood threshold or termination, i.e. output of the termination symbol for all instances, is
reached, after which the best overall solution is selected for output.
With individual output symbol probabilities naturally lying in the area [0, 1], longer output

candidate sequences are inherently at a disadvantage. To counteract this preference for
shorter output sequences, the log probability of each candidate sequence is normalized by the
sequence length (Cho et al., 2014b).

2.3 Dense Symbol Embeddings

Instead of plain symbol tokens, i.e. a unique, machine-readable representation for each input
or output symbol (such as a unique integer ID or a one-hot encoded vector over the total
input- or output-vocabulary, respectively), dense symbol embeddings will be used in the in-
and output-layers of the LSTM-based G2P approaches. Dense symbol embeddings are a
remarkable representation of semantical units in NLP applications that have experienced a
massive growth in attention over the last decade.
The analogous word-level concept are dense word embeddings. The origin of the idea of

word embeddings lies in the field of distributional semantics. Without delving too deeply
in the theory of this linguistic field, the fundamental idea behind distributional semantics is
this: a semantical unit (such as the word of a natural language) can to a great degree be
characterized by its surrounding context, or, in the words of one of the first proponents of
distributional semantics:

"You shall know a word by the company it keeps."
- J.R. Firth, 1890-1960

18

2.3 Dense Symbol Embeddings

Classically, the first computational examples of distributional semantics calculated a co-
occurrence matrix for a given text corpus, calculating the relative or absolute frequency of
co-occurrence for each pair of distinct words in the corpus in a given frame (such as a sentence
or a maximum in-sentence distance of n words). Each row of this matrix, corresponding to a
single word of the corpus, represents this word’s compiled contextual information in a high-
dimensional space (n-dimensional, with n being the number of distinct words in the corpus).
It was quickly realized that these dense word vectors have remarkable properties: among
others, semantical word clustering based on the co-occurrence vectors can be performed to a
certain degree, as pairs of words with similar meaning tend to have a low cosine distance in
their respective vectors, and vice versa, and some arithmetical operations can be performed
on them, one of the most famous being

v(king)− v(man) + v(woman) = v(queen).

To quote K. Lund and C. Burgess, two of the original researchers of this new field of NLP:
"The implication of these results is important. The vectors generated [...] function semanti-
cally. [...] The concepts of coffee and tea are similar and strongly associated. They tend to
co-occur in natural language, and their similarity can be seen in their vector representations.
These can be contrasted to road and street. Again, although these are two concepts that are
highly similar, they do not tend to co-occur in usage, yet their vector representations are very
similar." (Lund and Burgess, 1996)
Despite these somewhat useful properties, occurrence-matrix-based word representations

present a number of issues, two significant of which are the matrices’ tendency to grow
increasingly sparse with growing vocabulary, and the exponential growth of the matrices’
entries in regards to the corpus size.
One suggested solution to these issues was the introduction of dense word embeddings,

denser counterparts to the word vectors generated via co-occurrence matrices. While the
exact implementation of these embeddings varies for different approaches, the general concept
remains the same: the generation of a lower-dimensional, more densely populated counterpart
to the classical word vectors, while retaining their rich information and interesting arithmetic
properties.
The embedding approach that will be used in this thesis is that of neural network based

feature compression. Made popular in no small part by the word2vec implementation by
Mikolov et al. in 2013 (Mikolov et al., 2013), this approach utilizes a neural net with a single
hidden layer that is trained to either predict the surrounding context for a given word, or
predict a single word given a surrounding context. In either case, the key component of this
approach is the NN’s hidden layer, limited to a number of hidden units k significantly lower
that the overall vocabulary word count; the idea is that, if the NN performs adequately on
the word-/context-prediction task even when constricted to the use of the k hidden units,
then these k units must be able to store sufficient latent information to emulate the explicit
contextual information of each word’s full co-occurrence vector - in other words, the activation
vector of the NN’s hidden layer for a word must be at least roughly equivalent to the word’s
full co-occurrence vector in terms of expressiveness.

19

2 Theoretical Background

Figure 2.9: Some of the properties of word embeddings, projected onto a low-dimensional
space (Collis, 2017)

This assumption of equivalence has been confirmed for various domains. In this thesis, a
similar approach on a symbolic level, i.e. of dense grapheme embeddings, will be utilized in
two ways:

• as an additional laye for the LSTM-based G2P system that is inserted between the input
layer and the first hidden layer; this embedding layer is trained as part of the overall
training of the system, and

• as an advanced metric of similarity of words for some active learning approaches.

A challenge in the utilization of symbol embeddings will be the compilation of a words
individual symbol embeddings into a word embedding ; since generating embedding vectors
for the individual symbols of a word will produce embedding sequences of varied length for
different words, this process is far from trivial. Again, this is a topic of sufficient size to exceed
the frame of this thesis. Therefore, a simple averaging of the individual symbol embeddings
will be used as a starting point. This approach "has proven to be a surprisingly successful
and efficient way of [sequence] embeddings" (Kenter, Borisov, and Rijke, 2016) and should
provide an adequate baseline approach. (Faruqui et al., 2014; Yu et al., 2014; Gershman and
Tenenbaum, 2015; Kenter and De Rijke, 2015)

2.4 Active Learning

"The key idea behind active learning is that a machine learning algorithm can achieve greater
accuracy with fewer training labels if it is allowed to choose the data from which it learns. An
active learner may pose queries, usually in the form of unlabeled data instances to be labeled
by an oracle (e.g., a human annotator). Active learning is well-motivated in many modern
machine learning problems, where unlabeled data may be abundant or easily obtained, but
labels are difficult, time-consuming, or expensive to obtain." - Burr Settles (Settles, 2010)

The fundamental idea behind active learning is to enable a machine learning algorithm
to request help from an oracle in regards to labeling data. Traditionally, active learning is
employed in applications where only partially labeled data or fully non-labeled data is available

20

2.4 Active Learning

for training: instead of requiring an oracle to label all samples in a data set, the system itself
decides which subset of the data to label, depending on its own estimation of factors such
as the expected gain in accuracy or the expected change of the system’s parameters. Active
learning has been successfully applied to a broad range of problems and machine learning
approaches, including natural language processing applications.
While the goal of traditional active learning applications is not identical with the main

goal of this thesis - selecting samples for manual labeling to reduce error at application time
instead of to maximize the training progress from these samples - the hypothesis of the
following chapters is that for many active learning approaches, these goals are similar enough
to be able to transfer some of the ideas form the latter to the former. As a consequence, any
application-time requesting approaches determined to be successful in this thesis should also
be applicable to classical train-time active learning for the G2P domain.
The approaches selected to test this hypothesis are presented in Chapter 3 and evaluated

in Chapter 5.

21

3 Request Decision Approaches

In this chapter, the selected active learning approaches and their specific application to the
two G2P systems are presented.

3.1 Random-Request Approach

An obvious choice for a naive baseline approach for the request decision process is that of
random requesting. In this approach, a fixed probability is given for any grapheme input to
be sent for manual requesting to the oracle, regardless of any potentially decision-relevant
information the G2P system may provide.
The expected accuracy gain for this approach is a linear one in respect to the request

probability (and thus, the relative number of phonemizations requested):
For a request probability 0 ≤ p ≤ 1 and a test set N , the expected number of requested

manual labelings R is:

|R| ≈ p · |N | (3.1)

Furthermore, for any sufficiently large randomly selected |R|, the relative number of phone-
mization errors contained in this subset can be expected to be equal to that of the total test
set N :

|Rerrors|
|R|

≈
|Nerrors|
|N |

(3.2)

Since we assume that a manual labeling request returns a perfectly labeled, i.e. error-free
phonemization, the number of phonemization errors remaining for a random request proba-
bility of p is:

Errs(p) ≈ |Nerrors| − |Rerrors|
≈ |Nerrors| − p ·Nerrors,

(3.3)

i.e. a linear function dependent on the random request probability p.

23

3 Request Decision Approaches

3.2 Confidence-Based Approaches

An important metric of any classification, prediction or otherwise labeling system is the sys-
tem’s confidence in any generated output. Many machine learning approaches, however, do
not offer a natural measure of their confidence; rather, values like an output candidate’s
probability (as is the case for the Sequitur-based G2P system) or its neural activation is
produced and the most likely candidate chosen for output. Therefore, the approaches chosen
for Sequitur G2P and LSTM-based G2P in this thesis are to be understood as reasonable
interpretations of the systems’ outputs and output metadata rather than a true, natural con-
fidence metric. In this section, three prospective confidence metrics for both G2P approaches
and their potential usages in request decision are proposed.
The joint sequence modeling approach of the Sequitur G2P system offers a rather natural

metric of confidence, proposed by the authors themselves: the posterior probability of a
phonemization φ given an input word g: (Bisani and Ney, 2008)

pseq(φ|g) =

∑
q∈S(g,φ)

pseq(q)

pseq(g)
, (3.4)

where the probability of an input word is approximated by the sum of the probabilities of
all possible phonemizations φ ∈ Φ∗: (Bisani and Ney, 2008)

pseq(g) =
∑
φ∈Φ∗

pseq(g, φ) =
∑

q∈Q∗|g(q)=g

pseq(q), (3.5)

where Q∗ is the set of all possible graphone sequences and g(q) is the grapheme part of a
graphone sequence.
Thus, p(φ|g) , while not being a true measure of confidence, is an expression of the Sequitur

system’s statistical support from the training data to propose the phonemization φ for the
given word g. We therefore define the confidence of the Sequitur-based G2P system in a
produced phonemization as:

cseq(g, φ) = pseq(g, φ) (3.6)

For the LSTM-based G2P system, a similarly obvious choice for a confidence metric is
available: the total likelihood of the best beam result. In our system, the likelihood of
a single output symbol φt at timestep t is defined as the softmax value of this symbol’s
activation over all activations of the output layer (where aoi,t) is the activation of the ith
output neuron at timestep t) :

plstm(g, φi,t) =
e(aoi,t)∑

φj∈Φ

e(aoj,t)
(3.7)

The total likelihood of a beam result φk is then simply the product of the individual symbol

24

3.2 Confidence-Based Approaches

likelihoods, normalized by the length of the output sequence (as previously discussed):

plstm(g, φk) =

∏
1≤t≤|φk|

plstm(g, φkt)

|φk|
(3.8)

Again, we define the system’s confidence in a phonemization as this probability:

clstm(g, φ) = plstm(g, φ) (3.9)

These "confidence" metrics, cseq(g, φ) and clstm(g, φ), do not take any phonemization be-
yond the most likely into account. Therefore, two additional measures of "confidence" will be
evaluated: the probability margin between the two most likely phonemizations (hereafter re-
ferred to as "confidence margin"), and the probability entropy over all possible phonemization
candidates (hereafter referred to as "confidence entropy").1

The confidence margin pmarg(g, φ) of a phonemization output φ for a word g is defined as
the difference between the confidences of two most likely phonemizations φ1, φ2:

cmarg(g, φ) = c(g, φ1)− c(g, φ2) (3.10)

This produces the following two calculations for our Sequitur- and LSTM-based systems,
respectively, where K is the number of beams used in the LSTM system:

cseqmarg(g, φ) = argmax
φ′∈Φ∗

cseq(g, φ′)− argmax
φ′∈(Φ∗\φ1)

cseq(g, φ′)

clstmmarg(g, φ) = argmax
1≤k≤K

clstm(g, φk)− argmax
k∈([1,..,K]\kbest)

clstm(g, φk)
(3.11)

This metric will hopefully support a request-decision component in differentiating situations
in which the produced phonemization is moderately likely, but significantly better than any
alternatives against those in which the phonemization is moderately likely, but only marginally
better than at least one alternative.

As an extension of the confidence margin, the confidence entropy pentr(g, φ) of a phonem-
ization output φ for a given word g is defined. This is similar to (Kominek and Black, 2006),
where an entropy function over Markov chain emission probabilities is used in the context of
traditional active-learning-based training of a G2P system.

cseqentr(g, φ) = 1/−
∑
φ′∈Φ∗

cseq(g, φ′) ∗ logseq(c(g, φ′))

clstmentr (g, φ) = 1/−
∑

1≤k≤K
clstm(g, φk) ∗ log(clstm(g, φk)),

(3.12)

i.e. the inverse of the information-theoretical entropy over the probabilities of all potential
phonemization candidates. This should give a request decision component a better impression
of the ambiguousness of the G2P component’s output.

1The beam search approach for our LSTM-based system does, of course, not calculate the likelihoods of all
possible phonemizations, but only that of the the k best candidates.

25

3 Request Decision Approaches

3.3 Ignorance-based Approaches

"Ignorance represents the distance of a new query point from the training samples seen so
far." - Edwin Lughofer (Lughofer, 2012)

In 2012, a series of new ideas for the field of Active Learning was proposed by Edwin
Lughofer. Among them, the idea of request by ignorance the most promising one for use in
this thesis.
The fundamental idea behind request by ignorance is that a system utilizing active learning

techniques should request labeling for those samples that are the most different from those
already known and labeled. While the definition of the distance of a single sample to the
set of known ones is far from trivial in many cases, it is especially difficult in the context
of grapheme-to-phoneme conversion, as there are no inherent numeric attributes attached
to any single symbol or words; and as such, the definition of a distance metric between
two individual words as well as between an individual word and a group of words poses a
considerable challenge.
In this thesis, multiple different approaches to this problem are implemented:

The total grapheme sequence likelihood of a given input word for the Sequitur-based
G2P model. This value is independent of any chosen output phonemization and represents
the system’s training-data-based estimation of the total likelihood of the input sequence oc-
curring.

For the LSTM-based approach, the cosine distance of an input word’s average embedding
vector within the network (i.e. of the average of the activation vectors of the embedding layer
over the timesteps) to the overall average of all training dataset embeddings will be used as
a metric for the system’s ignorance regarding that word; additionally, the same metric will be
computed for the average of the network’s hidden layer activations.

3.4 Word-Origin-based Approach

In their recent paper, Milde, Schmidt, and Köhler (2017) suggest that, for German G2P
systems, "loan words and names with predominately English pronunciation, [... and] the
same for French" pose a particular challenge due to their different morphology.
As described in Chapter 5, early tests for these word classes showed a diminishing impact

on the test data used, and so no further effort into a sophisticated application of this fact in
the request decision component was made. It is noteworthy, however, that the detection of
a word’s language has seen successful research in the last years, and so approaches for this
purpose exist, such as detecting Anglicisms in German (Leidig, Schlippe, and Schultz, 2014b)
and Afrikaans (Leidig, Schlippe, and Schultz, 2014a) text or the detection of English words
in Hindu social media (Das and Gambäck, 2014).

26

3.5 Error Predictor based Approaches

3.5 Error Predictor based Approaches

In the previous subchapters, multiple potential metrics to enable the decision component to
directly identify problematic phonemizations that require an oracle’s help were introduced.
As an additional metric, the combination of those metrics in the form of an error prediction
system will be implemented.
This error predictor is trained on a part of the test data and, for each sample in this

test subset, receives all other confidence metrics as input an the number of errors made in
the phonemization of that sample by the G2P component as an output. This should make
it possible to integrate the confidence metrics into one unified measurement of expected
inaccuracy, further improving the decision component’s performance.
The approach chosen for this error predictor is multiple linear regression, a common ap-

proach used in machine learning applications where an output variable’s dependency on one
or multiple input variables is learned by a model. While more complex models - such as the
feed-forward neural networks introduced in previous chapters - would be a valid choice for the
error predictor’s approach, linear regression has the distinctive advantage of learning linear
dependencies between the input variables and the output, making it possible to use their
learned weight vectors to identify the input variables that the predictor assumes to have the
highest influence on the G2P system’s output error.

27

4 Test Setup

In this section, the test setup, optimizations and data sets used to evaluate the different
request approaches’ performance are presented.

4.1 Test System Architecture

The setup to measure the performance of the different approaches can be seen in Figure 4.1.
Samples from the test set (i.e. words in their graphemic representation) are fed into the
respective G2P component. The G2P component’s phonemization hypothesis for the given
word is then supplied to a decision component, together with the relevant phonemization
metadata (such as the component’s confidence in the hypothesis or the word’s grapheme form
or phoneme form embedding vector). Based on this metadata, the decision component then
either accepts the G2P component’s phonemization and adds it to the system’s phonemization
list for the test set; or it initiates a ’manual’ request.
In a real-life application, this manual request would then be forwarded to a human user,

such as a linguist expert, for manual labeling in the form of a manual phonemization. In the
test setup, this oracle is virtualized: when receiving a phonemization request, it performs an
immediate lookup for the word’s correct phonemization in the test set labels. This access
to - in the context of the test set - guaranteedly correct phonemization means that in all
our results, we make the assumption that a perfect oracle is available. This is a strong
and often unrealistic assumption for human oracles (Donmez and Carbonell, 2008). However,
investigating approaches to compensate for oracle-induced labeling errors is a field of research
on its own and will not be discussed in this thesis.
After the oracle returns the requested labeling for a given word, this phonemization is added

to the system’s phonemization list for the test set. Subsequently, performance metrics, such
as the PER, are computed for the respective approach and the selected hyperparameters (such
as hypothesis confidence threshold1).

All code used in this thesis was written in the Python2 programming language. Different
virtualenv3 instances were maintained to cleanly separate the program environments of the
different G2P systems. All code, including the LATEXfiles and graphics used for this document,

1The threshold is the value of the relevant decision metric (such as confidence) that determines for which
input words labeling requests are being made. E.g., any phonemizations for which the system’s confidence
lies under 0.42 are being sent to the oracle for clarification.

2https://www.python.org/
3https://virtualenv.pypa.io/

29

4 Test Setup

were version controlled in a git4 repository hosted on GitHub5.
The models used were trained on the author’s home computer, using a standard consumer-

grade setup in regards to working memory, CPUs and a dedicated graphics card.

4.2 Decision Parameter Virtualization

During early tests, it quickly became apparent that individual test runs for each set of decision
parameters (such as the confidence value) is infeasible for any relevant granularity - as well as
unnecessary: both the Sequitur G2P and the LSTM-based G2P systems are fully deterministic
in their phonemization output at application time. Thus, the selection of decision parameter
thresholds was further virtualized. The fully-trained models for Sequitur G2P and LSTM-
based G2P were both run only once against the test dataset, without any interference by
a request decision component. During these executions, any potentially decision-relevant
metadata was kept and stored in a .JSON file, containing the grapheme form, the hypothesized
phonemization and a rich amount of metadata for each sample in the test dataset.
This facilitates the evaluation of different decision-making approaches for different decision

thresholds without the highly expensive execution of the actual G2P components; for example,
the graphs shown in 5.3 were generated by sorting the test samples by the G2P component’s
confidence in the respective phonemizations, requesting correct labeling for the n samples
with the lowest confidence, and calculating the resulting PER.

4.3 Dataset Sources & Preprocessing

One main data source was utilized in the training and evaluation of the present Sequitur- and
LSTM-based systems:
CMUdict version 0.7b6, the most recent version of the Carnegie Mellon University Pro-

nouncing Dictionary. CMUdict 0.7b contains slightly over 134.000 English words and their
respective phonemizations in a slightly modified version of the ARPABET. All entries are
manually labeled and thus, the CMUdict is a common data set to be used as a gold standard
in G2P tasks.
The CMUdict dataset split being used will be that of the sequence-to-sequence tutorial

of the Windows CNTK framework7. This is in accordance with the data set split utilized
by Milde, Schmidt, and Köhler (2017), whose results will be used as a sanity check for
the basic performance of the two underlying G2P systems used in this thesis. This split
yields approximately 115.000 training samples and almost 13.000 test samples. Because of
differences in the choice of development sets and the dealing with duplicate input words, the
Sequitur-based system’s effective test set is slightly different from the one used in (Milde,
Schmidt, and Köhler, 2017), lying closer to 12.000 samples.

4https://git-scm.com/
5https://github.com/
6http://www.speech.cs.cmu.edu/cgi-bin/cmudict
7https://github.com/Microsoft/CNTK/tree/master/Examples/SequenceToSequence/CMUDict/Data

30

4.3 Dataset Sources & Preprocessing

G2P

Decision
Component

Oracle Test Dataset

word
input
w ∈ S∗

pronounciation
candidate
p ∈ G∗

Request
manual
labeling

Lookup
correct
label

return
correct
label

accept
candidate

pronounciation
output
p ∈ G∗

Figure 4.1: The test setup.

31

4 Test Setup

For the error predictor based approaches, the test set was further split into two equal parts,
resulting in approximately 6.000 samples each in the predictor-train and -test sets.
To evaluate the influence of words of foreign origin on the phonemization accuracy as

proposed in Chapter 3.4, the English Wiktionary8 was crawled for English words tagged as
"true French", i.e. words imported from French without any adaptation. This set was
intersected with the test dataset from the CNTK-CMUdict-split, producing a list of 1334
words with their known correct pronunciation from the CMUdict dataset.

8https://en.wiktionary.org

32

5 Evaluation and Results

5.1 Approach Performance Metrics

5.1.1 WER and PER

In G2P performance evaluation, two performance metrics are most commonly used: the Word
Error Rate (WER) and the Phoneme Error Rate (PER). (Bisani and Ney, 2008)
The WER is defined simply as the ratio of words with at least one phonemization error

over the total number of words in the test set.
The PER is the sum of the Levenshtein Distances of all word phonemizations to their

correct counterparts over the total number of phonemes in the test set:

PER =

∑
wi∈N (Si +Di + Ii)

|N |
, (5.1)

where

• N is the test dataset,

• wi is the ith word in the dataset,

• Si, Di and Ii are the number of substitutions, deletions and insertions respectively that
are needed to transform the system’s predicted phonemization into the correct one

5.1.2 Request Performance Index

As, to the author’s knowledge, the systematic evaluation of request decision approaches as
described in this thesis has never been attempted before, no previous unified metric for the
comparison of such approaches exists. A new metric of this kind must therefore be defined;
if possible, independent of parameters specific to both the selected G2P approaches as well
as the G2P domain as a whole.
To achieve this, a novel metric - called the Request Performance Index (RPI) - is proposed

in this subchapter and used in the subsequent comparison of the different request decision
approaches’ performance.
In Chapter 3.1, the usage of a random-based requesting approach as a performance baseline

was proposed. It was demonstrated that such an approach can be expected to result in a
continuous linear reduction of errors with rising number of manual labeling requests made.
In this thesis, the problem of finding an optimal request decision approach will be consid-

ered as an optimization problem of the area under the function γ that plots the remaining

33

5 Evaluation and Results

errors against the number of requests made for the current request threshold ρ:

γ(|Rρ|, α) = |Nerrors| − |Rρerrors|, (5.2)

where

• ρ is the current requesting threshold,

• Rρ ∈ N is the subset of samples from the test set N that receives manual labeling
requests under the current ρ for the approach α and

• Nerrors and Rerrors are the number of phonemization errors in the data set and the
requested set, respectively.

The area under this curve for an approach α is thus:

∫
γ(α) =

ρn∑
ρ=ρ0

γ(|Rρ|), (5.3)

where

• ρ0 is the request threshold at which no manual requests are performed for any samples
in the test set for the approach α, and

• ρn is the request threshold at which a manual request is performed for every sample in
the test set for the approach α.

This area is normalized by the area of the baseline approach, random-based requesting.
Since this approaches curve is linear, as discussed in Chapter 3.1, this area is a triangular
area:

∫
γ(random) =

1

2
· |Nerrors| · |N | (5.4)

As a result, the Request Performance Index of an approach α is defined as:

RPI(α) =

∫
γ(α)∫

γ(random)

=
2 ·

∫
γ(α)

|Nerrors| · |N |

(5.5)

This normalization means that randomly requesting manual labeling should result in a RPI
close to 1; request decision approaches that perform worse than random requesting should
result in a RPI larger than 1; and request decision approaches that perform better than
random requesting should result in a RPI of less than 1.

34

5.2 Basic Model Performance

N-Gram PER WER
1 42.55% 97.37%
2 17.77% 64.84%
3 10.26% 41.50%
4 7.22% 30.02%
5 6.48% 27.10%
6 6.23% 26.28%
7 6.20% 26.15%
8 6.20% 26.14%

Table 5.1: The baseline performance for different n-gram Sequitur models.

5.2 Basic Model Performance

In this chapter, the basic performance statistics of the two chosen G2P approaches are pre-
sented. For the request decision approaches discussed in this thesis to be applicable to
real-world G2P applications, the performance of the underlying G2P systems must be suffi-
ciently close to that of current state-of-the-art G2P systems. It will be discussed whether this
is the case for both the Sequitur- and the LSTM-based systems utilized as core systems in
this thesis.
As reference performance statistics, the results of the previously mentioned, very recent

paper on Sequitur- and LSTM-based G2P systems by Milde, Schmidt, and Köhler (2017) will
be used.

5.2.1 Sequitur

For the joint sequence models, the Python Sequitur implementation1 was used. Significant
additions were made to the code to allow the output of decision-relevant metadata.
The error rates of the Sequitur-based G2P system trained in the context of this paper are

listed in Table 5.1.
These results largely match those produced by Milde et al. (with the reference values being

6.12% PER and 25.71%WER for an 8-gram model). Thus, it can be concluded that the
Sequitur-based model used as a basis for the request decision approaches presented in this
paper is representative of current state-of-the-art Sequitur-based G2P models.

5.2.2 LSTM

For the LSTM-based model, a Python program based on the Tensorflow machine translation
tutorial2 was implemented.

1https://github.com/sequitur-g2p
2https://github.com/tensorflow/nmt

35

5 Evaluation and Results

Adopting many of the hyperparameters proposed by Milde, Schmidt, and Köhler (2017),
an LSTM with the following hyperparameters was trained:

• 3 layers of256 neurons each

• an embedding size of 10

• a dropout probability of 0.5 for the neurons of each layer

• attention model: scaled Luong-style attention3

• the Adam optimization algorithm

The resulting network achieved an PER of 15.73%15.73%15.73% on the test data from the CNTK-
CMUdict-split. This is a significant decrease of accuracy over the system PER of 6.81%
reported in (Milde, Schmidt, and Köhler, 2017); however, this is explainable by the fact that
several improvements made by Milde et al. were not implemented in our system, for reasons
of implementation- as well as training-effort. These improvements include the reversal of
input sequences, the usage of a bi-directional encoder network and the inclusion of residual
learning.
In any case, the PER achieved by our system is still that of a moderately well-working G2P

system, and this decrease in accuracy should not diminish the applicability of the insights
generated in this thesis to other, more fine-tuned LSTM-based G2P systems.

5.3 Random-based Approaches

In the previous subchapter, the request performance index was introduced and the hypothesis
made that the RPI of a decision component that randomly selects samples for labeling should
have an RPI close to 1. In this subchapter, this hypothesis is evaluated. For both Sequitur-
and LSTM-based systems, the RPI of random requesting was determined by having multiple
simulation runs, in each of which the system ordered the test samples randomly and requested
manual labeling for the top n, with an increasing n simulating an increasing probability for
any one sample to be sent to the oracle.
The resulting graphs can be seen in Figure 5.1. As is clearly visible, the overall test set error

is reduced linearly with increasing number of requested samples, as assumed in Chapter 3.1.
Additionally, the resulting RPIs are close to 1, confirming the choice of basing the calculation
of the RPI on random requesting as a baseline.

5.4 Theoretical Optimum

After establishing random requesting as the approach with the worst (realistic) RPI, the best-
case performance, i.e. that of a theoretical, perfect error predictor is evaluated. This perfect
error predictor is simulated by ordering the test data samples by the actual errors made on

3As implemented in https://github.com/tensorflow/nmt/blob/master/nmt/attention_model.py

36

5.4 Theoretical Optimum

Figure 5.1: The performance of random-requesting for the Sequitur-based system (top) and
the LSTM-based system (bottom).

37

5 Evaluation and Results

them by the respective G2P system and requesting the n samples with the highest number
of errors. The results can be seen in Figure 5.2, resulting in a theoretically achievable RPI of
0.199 for the Sequitur-based and one of 0.402 for the LSTM-based G2P system.

5.5 Confidence-Based Approaches

Figure 5.3 shows the results of confidence-based requesting for the two G2P systems. The
RPIs of 0.48 for the joint sequence model and 0.66 for the LSTM based model show that
confidence-based requesting of samples results in a massively increased accuracy gain per
sample request over random requesting.
This effect is more pronounced for the Sequitur-based system. A possible explanation for

this is that this system’s output probability is, in fact, a true probability measure, based
directly on the graphone sequence evidence from the training set, while for the LSTM-based
system, no such direct link exists.
Surprisingly, there is only very little improvement gained from the more complex confi-

dence metrics, confidence margin and confidence entropy : while the usage of the confidence
entropy only marginally improves the approach’s RPI, switching to the confidence margin
actually decreases the system’s performance. This observation, in concert with the fact that
the confidence entropy’s calculation is significantly more expensive than that of the default
confidence, makes the "natural" confidence the superior vanilla choice for most applications.

An interesting observation regarding the performance of confidence-based requesting for
differently well-trained models can be found in Figure 5.4. It shows that more well-trained
(i.e. higher n-gram) Sequitur models offer an increasingly useful "natural" confidence: while
the confidence of the undertrained 1-gram model yields only moderate improvements over
random requesting, this gain improves with increasing n-gram-count, until the RPI converges,
similar to the PER of the respective systems.
This indicates that while the "natural" confidence metric is less useful for undertrained

models, its usefulness improves together with a system’s overall accuracy for a given task.

5.6 Ignorance-Based Approaches

While it was possible to jointly discuss the performance on both Sequitur- and LSTM-
based systems for the other request decision approaches, the concrete implementations of
the ignorance-based requesting differ too much between the two models to discuss them in
parallel. Therefore, this subchapter is divided into two sections, detailing the implementation
and the results of ignorance-based requesting for the two systems, respectively.

5.6.1 Sequitur

The results of ignorance-based requesting are shown in Figure 5.5.
While the resulting RPI of 0.650.650.65 is inferior to that of confidence-based requesting with 0.48,

the results are still somewhat interesting, as they clearly demonstrate that the total likelihood

38

5.6 Ignorance-Based Approaches

Figure 5.2: The performance of a theoretical, perfect error predictor for the Sequitur-based
system (top) and the LSTM-based system (bottom).

39

5 Evaluation and Results

Figure 5.3: The performance of confidence-based requesting for the Sequitur-based system
(top) and the LSTM-based system (bottom).

40

5.6 Ignorance-Based Approaches

Figure 5.4: The performance of confidence-based requesting for different n-gram Sequitur
models, normalized by their PER at 0 requests.

of an input word g based on the training set is a valid metric of the system’s ignorance
towards that input word; and furthermore, that this ignorance is a valid parameter to predict
the necessity for the sytem to request help in its phonemization.

5.6.2 LSTM

The results of various ignorance-based request approaches for the LSTM G2P system can be
seen in Table 5.2.
These results somewhat clearly demonstrate that metrics based on the average of the activa-

tions of the embedding layer neurons or the hidden layer neurons are not a valid measurement

Approach RPI
Average embedding distance 1.05

First layer encoder cosine distance 1.02
Sum of encoder first layer cosine distances 1.10

Sum of encoder second layer cosine distances 1.09
Sum of encoder third layer cosine distances 1.11

Table 5.2: The RPIs of several unsuccessful ignorance-metrics for the LSTM system.

41

5 Evaluation and Results

Figure 5.5: The performance of ignorance-based requesting for the Sequitur-based system.

of the system’s ignorance towards an input sample.
The explanation for these results is quite straight-forward: metrics such as the average

(or the harmonic mean, which was implemented but did not yield improved results) are lossy
operations in regard to the sequence of input symbols. Following this approach, the two input
words "blue" and its French counterpart "bleu" would have the same average vectors at least
for the embedding layers, despite posing a very different challenge for a G2P component.
The effects of this are easily demonstrated by the words calculated by this approach as the

most "regular" (i.e. words with the smallest average embedding distance) and their least "reg-
ular" counterparts. Figure 5.6 shows a selection from the 30 most and least "regular" words,
respectively. It appears that the calculated "regularity" of words is dependent mainly on two
factors: their individual letters, without any regards to their sequence, with letters more com-
monly used in the English language being a benefit; and, significantly, their length. The likely
explanation for the preference of longer words is that the averaged embedding vector of a long
word with mostly typical letters is closest to that of a massive corpus such as the training set.4

Following these observations, a further approach was implemented. Using the same test
data split as for the error predictor models, a small multi-layer LSTM was trained using the
embedding vector sequences of approximately 6.000 word inputs and the respective errors

4In fact, in an earlier iteration of the LSTM system, with a different dataset split, one of the words considered
to be most "regular" by the approach turned out to be the infamous Supercalifragilisticexpialidocious from
the musical Mary Poppins.

42

5.7 Word-Origin-Based Approaches

Most regular words Least regular words
carolingian spey
travaglini sep

materializes pesch
facilitator’s jest
radicalized setups
quadrupling essa
laryngitis esso

artiodactyls smother
artiodactyls expects
petralia suspects

Figure 5.6: Most and least "regular" words from the test set, according to their average
embedding cosine distance to the training set’s average embedding vector.

made in their phonemization by the LSTM-based G2P system; subsequently, its accuracy in
predicting the G2P system’s error based on the make-up of the input word alone was evaluated
on the remaining 6.000 test samples. The results can be seen in Table 5.3.
The best of these systems achieves an RPI of 0.680.680.68, only marginally worse than that of

confidence-based requesting for the LSTM-based system at an RPI of 0.66. While this is not
a true ignorance-based approach, as the smaller LSTMs were trained without any access to
the training data of the G2P system, they are able to (reasonably well) identify problematic
phonemizations on the morphology of the input word alone, without any further information
from the system. This makes them at least related to ignorance-based requesting approaches.

The fairly good performance of both the ignorance-based approach for the Sequitur-based
system (RPI: 0.65) and the semi-ignorance-based requesting approach for the LSTM-based
system (RPI: 0.68) show that even for non-numeric input data, a reasonably effective metric
of ignorance towards an input sample can be found.

5.7 Word-Origin-Based Approaches

As a preliminary test of the influence that words of foreign origin have on a G2P system’s
phonemization accuracy, the Sequitur-based system was evaluated on the 1344 words of
French origin crawled from the English Wiktionary. The phoneme error rate achieved on this
test subset was 16.07%16.07%16.07%, almost three times as high as the base error on the full test dataset.
This confirms that the observation made by Milde, Schmidt, and Köhler (2017) that words
of foreign origin are especially problematic for a G2P component hold true for English as well
as German.
Due to the fact that these words make up less than ten percent of the test samples,

however, no further effort was put into this approach. Even if a component capable of
perfectly distinguishing these foreign word from non-foreign ones, the impact on the overall

43

5 Evaluation and Results

Layers Neurons RPI
1 8 0.734
1 16 0.694
1 32 0.688
1 64 0.697
1 128 0.723
1 256 0.749
2 8 0.692
2 16 0.674
2 32 0.683
2 64 0.705
2 128 0.724
2 256 0.741
3 8 0.709
3 16 0.684
3 32 0.679
3 64 0.694
3 128 0.727
3 256 0.718

Table 5.3: The performance of a symbol-embedding-LSTM based ignorance-request approach
for different LSTM layouts.

44

5.8 Error-Predictor-Based Approaches

performance of a request decision component would likely be neglectable.
It is noteworthy, however, that such a component is likely to have an impact in G2P

domains where a significant number of foreign words can be expected, such as French loan
words in the context of fashion, or Latin terms in the context of medicine.

5.8 Error-Predictor-Based Approaches

The performance of the error predictor models can be found in Figure 5.7. In addition to the
linear predictor described in section 5.8, a simple predictor-FFNN with one hidden layer of 128
units was trained to learn any potential non-linear relationships between the input variables
and the produced error. The error predictors’ performance for both systems was effectively
identical to that of the confidence-based approaches. On the joint sequence based model,
the error predictor scored an RPI of 0.478 (compared to the confidence-based RPI of 0.487),
and on the LSTM based model it scored an RPI of 0.66 (compared to the confidence-based
RPI of 0.651).

This indicates that a system’s confidence in a phonemization is the main (and solely re-
quired) metric for manual request decision, at least out of the ones discussed in this thesis.

45

5 Evaluation and Results

Figure 5.7: The performance of different error predictor models for the Sequitur-based system
(top) and the LSTM-based system (bottom).

46

6 Conclusion and Future Work

In this thesis, a novel application for active learning in G2P systems was introduced: enabling
a system to ask for help on particularly problematic phonemizations. This was achieved by
defining metrics that enable the system to identify potentially problematic in- or outputs.
It could be shown that the natural confidence of both the Sequitur- and the LSTM-based

systems is a considerably robust metric to support this decision that, additionally, is easily
implemented at very little cost.
Further metrics were introduced with mixed results; some of the metrics predictably failed

to prove useful, while others, such as the ignorance metrics, likely require further refinement.
With the implementation of the ignorance metric, especially that for the Sequitur system, it
could be shown that finding such a metric for non-numeric inputs is not only possible, but
potentially useful to predict that system’s error in the phonemization of an input.
The Request Performance Index, a normalized performance metric to compare application-

time requesting approaches, was introduced and demonstrated to accurately express an ap-
proach’s performance.
The list of evaluated decision approaches is unlikely to be anything approaching exhaustive.

The request by word origin approach, in particular, demands further research, and with more
work, more problematic word categories could certainly be identified.
Another potential future research topic of interest is the consideration of the individual

labeling cost of an input sample. While in this thesis, each word was considered to be of
equal labeling difficulty for a human oracle, the reality is certainly different. This effect is
likely even stronger for machine learning domains where more complicated operations are
required for the correct manual labeling of a data sample.
Lastly, the exploration of domain-specific decision metrics analogue to the word origin and

word morphology for the G2P domain is likely to yield not only exiting results for application-
time help requesting, but also for general insights into the respective domain.

The overall combination that achieved the best results was the 8-gram joint sequence
model using the system’s natural confidence to request labeling. Given the ease of employing
the Sequitur implementation for joint-sequence models, accessing the CMUdict pronunciation
dataset or pre-trained Sequitur models, and extracting the system’s confidence in an output,
this system architecture offers an excellent, ready-to-use G2P system capable of dealing with
most practical G2P applications, while additionally being capable of requesting expert help
on especially problematic inputs.

47

Bibliography

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural machine transla-
tion by jointly learning to align and translate”. In: International Conference on Learning
Representations 2015. (San Diego, California).

Baranes, Adrien and Pierre-Yves Oudeyer (2013). “Active learning of inverse models with
intrinsically motivated goal exploration in robots”. In: Robotics and Autonomous Systems
61.1, pp. 49–73.

Bisani, Maximilian and Hermann Ney (2008). “Joint-sequence models for grapheme-to-phoneme
conversion”. In: Speech communication 50.5, pp. 434–451.

Cho, Kyunghyun et al. (2014a). “Learning phrase representations using RNN encoder-decoder
for statistical machine translation”. In: Conference on Empirical Methods in Natural Lan-
guage Processing 2014. (Doha, Qatar). Association for Computational Linguistics.

Cho, Kyunghyun et al. (2014b). “On the properties of neural machine translation: Encoder-
decoder approaches”. In: Conference on Empirical Methods in Natural Language Process-
ing 2014. (Doha, Qatar). Association for Computational Linguistics.

Collis, Jaron (2017). Glossary of Deep Learning: Word Embedding. December 9, 2017. url:
https://medium.com/deeper-learning/glossary-of-deep-learning-word-
embedding-f90c3cec34ca.

Cortes, Corinna and Vladimir Vapnik (1995). “Support-vector networks”. In: Machine learning
20.3, pp. 273–297.

Das, Amitava and Björn Gambäck (2014). “Identifying languages at the word level in code-
mixed indian social media text”. In: Proceedings of the 11th International Conference on
Natural Language Processing. (Goa, India). Association for Computational Linguistics,
pp. 169–178.

Deligne, Sabine and Frederic Bimbot (1995). “Language modeling by variable length se-
quences: Theoretical formulation and evaluation of multigrams”. In: International Con-
ference on Acoustics, Speech, and Signal Processing, 1995. (ICASSP-95). (Detroit, Michi-
gan). Vol. 1. IEEE, pp. 169–172.

Donmez, Pinar and Jaime G Carbonell (2008). “Proactive learning: cost-sensitive active
learning with multiple imperfect oracles”. In: 17th ACM conference on Information and
knowledge management. (Napa Valley, California). Association for Computing Machinery,
pp. 619–628.

Durrani, Nadir, Helmut Schmid, and Alexander Fraser (2011). “A joint sequence translation
model with integrated reordering”. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies-Volume 1.
(Portland, Oregon). Association for Computational Linguistics, pp. 1045–1054.

Faruqui, Manaal et al. (2014). “Retrofitting word vectors to semantic lexicons”. In: Pro-
ceedings of the 2015 Conference of the North American Chapter of the Association

49

BIBLIOGRAPHY

for Computational Linguistics. (Denver, Colorado, USA). Association for Computational
Linguistics, pp. 1606–1615.

Gershman, Samuel and Joshua B Tenenbaum (2015). “Phrase similarity in humans and ma-
chines”. In: Proceedings of the 37th Annual Conference of the Cognitive Science Society.
(Pasadena, California). Cognitive Science Society.

Hai Son, Le, Alexandre Allauzen, and François Yvon (2012). “Measuring the influence of
long range dependencies with neural network language models”. In: 2012 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. (Montréal, Canada). Association for Computational Linguistics,
pp. 1–10.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In: Neural
computation 9.8, pp. 1735–1780.

Imamura, Kenji, Genichiro Kikui, and Norihito Yasuda (2007). “Japanese dependency parsing
using sequential labeling for semi-spoken language”. In: Proceedings of the 45th Annual
Meeting of the ACL on Interactive Poster and Demonstration Sessions. Association for
Computational Linguistics, pp. 225–228.

Jacobs, Robert A (1988). “Increased rates of convergence through learning rate adaptation”.
In: Neural networks 1.4, pp. 295–307.

Kapoor, Ashish et al. (2007). “Active learning with gaussian processes for object categoriza-
tion”. In: 11th International Conference on Computer Vision. (Rio de Janeiro, Brazil).
IEEE, pp. 1–8.

Kenter, Tom, Alexey Borisov, and Maarten de Rijke (2016). “Siamese cbow: Optimizing word
embeddings for sentence representations”. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, ACL 2016. (Berlin, Germany). Vol. 1.
Association for Computational Linguistics.

Kenter, Tom and Maarten De Rijke (2015). “Short text similarity with word embeddings”. In:
Proceedings of the 24th ACM International on Conference on Information and Knowledge
Management. (Melbourne, Australia). ACM, pp. 1411–1420.

Kim, Young-Bum and Benjamin Snyder (2013). “Optimal Data Set Selection: An Applica-
tion to Grapheme-to-Phoneme Conversion”. In: 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies. (Atlanta, Georgia). Association for Computational Linguistics, pp. 1196–1205.

Koehn, Philipp (2004). “Pharaoh: a beam search decoder for phrase-based statistical machine
translation models”. In: Machine translation: From real users to research, pp. 115–124.

Kominek, John (2009). “TTTS from zero: Building synthetic voices for new languages”. PhD
thesis. Carnegie Mellon University, Language Technologies Institute, School of Computer
Science.

Kominek, John and Alan W Black (2006). “Learning pronunciation dictionaries: language
complexity and word selection strategies”. In: Conference of the North American Chapter
of the Association of Computational Linguistics. (New York City, New York). Association
for Computational Linguistics, pp. 232–239.

50

BIBLIOGRAPHY

Leidig, Sebastian, Dipl-Inform Tim Schlippe, and Ing Tanja Schultz (2014a). “Single and Com-
bined Features for the Detection of Anglicisms in German and Afrikaans”. In: Bachelor’s
Thesis.

Leidig, Sebastian, Tim Schlippe, and Tanja Schultz (2014b). “Automatic detection of angli-
cisms for the pronunciation dictionary generation: a case study on our German IT corpus”.
In: SLTU, pp. 207–214.

Lughofer, Edwin (2012). “Single-pass active learning with conflict and ignorance”. In: Evolving
Systems 3.4, pp. 251–271.

Lund, Kevin and Curt Burgess (1996). “Producing high-dimensional semantic spaces from
lexical co-occurrence”. In: Behavior Research Methods, Instruments, & Computers 28.2,
pp. 203–208.

Luong, Minh-Thang, Hieu Pham, and Christopher D Manning (2015). “Effective approaches
to attention-based neural machine translation”. In: 2015 Conference on Empirical Meth-
ods in Natural Language Processing. (Lisbon, Portugal). Association for Computational
Linguistics, pp. 1412–1421.

Ma, Xiaolei et al. (2015). “Large-scale transportation network congestion evolution prediction
using deep learning theory”. In: PLoS One 10.3, e0119044.

Mandel, Michael I, Graham E Poliner, and Daniel PW Ellis (2006). “Support vector machine
active learning for music retrieval”. In: Multimedia systems 12.1, pp. 3–13.

Marchi, Erik et al. (2017). “Deep Recurrent Neural Network-Based Autoencoders for Acoustic
Novelty Detection”. In: Computational intelligence and neuroscience.

McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of the ideas immanent in
nervous activity”. In: The bulletin of mathematical biophysics 5.4, pp. 115–133.

Mikolov, Tomas et al. (2010). “Recurrent neural network based language model”. In: Inter-
speech 2010. (Makuhari, Japan). Vol. 2. International Speech Communication Associa-
tion, pp. 1045–1048.

Mikolov, Tomas et al. (2013). “Efficient estimation of word representations in vector space”.
In: International Conference on Learning Representations - Workshop Papers. (Scottsdale,
Arizona).

Milde, Benjamin, Christoph Schmidt, and Joachim Köhler (2017). “Multitask Sequence-to-
Sequence Models for Grapheme-to-Phoneme Conversion”. In: Interspeech 2017. (Stock-
holm, Sweden). International Speech Communication Association, pp. 2536–2540.

Minsky, Marvin L and Seymour Papert (1969). Perceptrons: an introduction to computational
geometry. MIT Press.

Mnih, Volodymyr, Nicolas Heess, Alex Graves, et al. (2014). “Recurrent models of visual at-
tention”. In: Conference on Neural Information Processing Systems. (Montréal, Canada),
pp. 2204–2212.

Novak, Josef R et al. (2012). “Improving WFST-based G2P conversion with alignment con-
straints and RNNLM N-best rescoring”. In: Thirteenth Annual Conference of the Inter-
national Speech Communication Association. (Portland, Oregon). International Speech
Communication Association.

Rosenblatt, Frank (1958). “The perceptron: A probabilistic model for information storage and
organization in the brain”. In: Psychological review 65.6, p. 386.

51

BIBLIOGRAPHY

Salakhutdinov, Ruslan, Joshua B Tenenbaum, and Antonio Torralba (2013). “Learning with
hierarchical-deep models”. In: IEEE transactions on pattern analysis and machine intelli-
gence 35.8, pp. 1958–1971.

Schlippe, Tim et al. (2012). “Automatic Error Recovery for Pronunciation Dictionaries”. In:
Interspeech 2012. (Portland, Oregon). International Speech Communication Association,
pp. 2298–2301.

Settles, Burr (2010). “Active learning literature survey”. In: Computer Sciences Technical
Report 1648. University of Wisconsin, Madison.

Shen, Binbin et al. (2011). “Combining Active and Semi-supervised Learning for Homograph
Disambiguation in Mandarin Text-to-Speech Synthesis”. In: Interspeech 2011. (Florence,
Italy). International Speech Communication Association.

Sutton, Charles and Andrew McCallum (2006). An introduction to conditional random fields
for relational learning. Vol. 2. Introduction to statistical relational learning. MIT Press.

Toshniwal, Shubham and Karen Livescu (2016). “Jointly learning to align and convert graphemes
to phonemes with neural attention models”. In: Spoken Language Technology Workshop
(SLT) 2016. (San Diego, California). IEEE, pp. 76–82.

Yadav, Neha, Anupam Yadav, and Manoj Kumar (2015). An introduction to neural network
methods for differential equations. Springer.

Yang, Jie et al. (2003). “Automatically labeling video data using multi-class active learning”.
In: 9th International Conference on Computer Vision. (Catania, Italy). IEEE, pp. 516–
523.

Yu, Lei et al. (2014). “Deep learning for answer sentence selection”. In: Conference on Neural
Information Processing Systems - Deep Learning Workshop 2014. (Montréal, Canada).

52

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Bachelorstudien-
gang Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel –
insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt habe.
Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wurden, sind als
solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem
anderen Prüfungsverfahren eingereicht habe und die eingereichte schriftliche Fassung der auf
dem elektronischen Speichermedium entspricht.

Hamburg, den 12.12.2017 Mario Mohr

Veröffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 12.12.2017 Mario Mohr

