
Master Thesis

Document Similarity using Dense Vector
Representation

In cooperation with:
XING AG

Data Science

Ahmed Elsafty

4elsafty@informatik.uni-hamburg.de
Intelligent Adaptive Systems Master program
Matriculation No. 6641893

First Supervisor Hamburg University: Prof. Dr. Chris Biemann
Second Supervisor Hamburg University: Dr. Martin Riedl
External Supervisor XING AG: Dr. Fabian Abel

Abstract

The purpose of this thesis is to analyze different document representation models for
identifying similar job advertisements to improve the quality of job recommendations
on XING, a social network for professionals. We test our algorithms both in an offline
experiment as well as in an online evaluation. For offline experimentation, we present a
method for automatically creating a training dataset based on user interactions. We ex-
periment with different pre-processing techniques like lowercasing the input text and
stemming which shows significant increase in performance. Moreover, we test four
different word embedding techniques: average and weighted average of vectors using
Word2Vec, Word2VecF using arbitrary context and Doc2VecC. Results show performance
boost when a weighted average is used and both global and local context is included in
the model training. We also analyze the performance of LDA and discover that it does not
perform well on the dataset. The best results in the offline evaluation are achieved when
exploiting more information like the job title along with the full job posting description.
Titles are used for weighing the word vectors more accurately when building the vector
representing the entire document. Finally, we implement and integrate the best perform-
ing model also in XING’s job recommendation system and conduct an online A/B test
evaluation with Millions of XING users. The results from that online evaluation con-
firm our findings from the offline experimentation and lead to an +8.0% increase of the
click-through rate on job recommendations.

Acknowledgment

First of all, I would like to sincerely thank my supervisor, Dr. Martin Riedl, for his assis-
tance, priceless guidance, and advice throughout my thesis. I would also like to thank
Prof. Chris Biemann for his efforts to make the process as smooth as possible, beginning
from the thesis proposal, to the very end of it.

Special thanks to my Ruben for always dedicating the time to answer my questions and
assisting me with my technical problems. I would like to thank Mirko for his help during
the thesis and throughout my entire master degree. Special thanks for Fabian for propos-
ing the research problem and reviewing the thesis. I would also like to thank Daniel for
his precious guidance and the entire Data Science team for providing me with a proper
working environment and the needed facilities to complete the dissertation.

Finally, I would like to thank my parents for their continuous support and the tremen-
dous sacrifices they made to ensure that I get the best possible education. Everything
what I am now is because of you.

Contents I

Contents

1 Introduction 1
1.1 Goal . 3
1.2 Research Questions and Limitations . 3
1.3 Thesis Structure . 4

2 Background 5
2.1 Related Work . 5
2.2 XING Recommender System . 6
2.3 Dense Vector Representations . 9

2.3.1 Word2vec . 10
2.3.2 Word2VecF . 14
2.3.3 Doc2Vec . 16
2.3.4 Doc2VecC . 17
2.3.5 Latent Dirichlet Allocation . 18

2.4 Scoring, Similarity and Evaluation Metrics 20
2.4.1 TF-IDF . 20
2.4.2 Similarity Metrics . 20
2.4.3 F-measure . 22

3 Methodology 23
3.1 Experimental Setup . 23
3.2 Offline Evaluation Dataset . 24

3.2.1 Data Retrieval . 24
3.2.2 Data Preprocessing . 25
3.2.3 Ground Truth Construction . 27

3.3 Latent Space Evaluation . 29
3.3.1 Full Latent Vector Space Evaluation 30
3.3.2 Positive and Negative Sampling Dataset Evaluation 32

4 Offline Evaluation 35
4.1 Semantic Models Hyperparameters . 35
4.2 Semantic Models Comparison . 38
4.3 LDA . 39
4.4 Latent Vector Space . 41
4.5 Job Title . 42
4.6 Combining Title and Description Vectors 45
4.7 Synopsis . 47

II Contents

5 Online Evaluation 49
5.1 Experimental Setup . 49
5.2 Results . 52
5.3 Synopsis . 53

6 Conclusion 55

7 Future Work 57

A Appendix 59
A.1 XING Metadata . 59
A.2 Similar Postings Sample . 59
A.3 Job Posting Similarity Score . 60
A.4 Job Description Preprocessing . 62
A.5 A/B Test Workflow . 63
A.6 Coding pitfalls . 65

Bibliography 71

List of Figures III

List of Figures

2.1 XING user data model . 7
2.2 XING recommender system . 8
2.3 Word2Vec Architecture . 10
2.4 Word2Vec Project layer . 11
2.5 Doc2Vec: Distributed Memory Architecture 16
2.6 Doc2Vec: Distributed Bag-of-Words Architecture 17
2.7 Doc2VecCorruption Model . 18

3.1 Thesis Workflow . 24
3.2 User co-interactions . 27
3.3 Disciplines of similar pairs . 28
3.4 Positive and Negative Vector Space . 34

4.1 F1-score@K between normal and lower case models 36
4.2 F1-score@K between 3 window sizes of Skip-gram and CBOW models . . 37
4.3 Doc2VecC + LDA . 41
4.4 DBOW - Number of Dimensions Analysis 44
4.5 D/M vs DBOW vs Inferred Vectors . 45

5.1 A/B Test Workflow . 51

A.1 Wants, Haves and Interests . 59
A.2 Data Cleaning Example . 63

List of Tables V

List of Tables

2.1 Word2VecF Input File . 15
2.2 Word2Vec vs Word2VecF: most similar to "Quality Assurance" 15
2.3 LDA example output . 19
2.4 LDA Topic Word Distribution . 19

3.1 Co-Interacted Jobs Statistics . 25

4.1 F1-scores on cross-validation dataset . 38
4.2 LDA output of XING dataset . 40
4.3 LDA vs Doc2VecC . 40
4.4 F1-scores on the entire co-interaction dataset. 42
4.5 Combining title with description resulted in the best performance in the

thesis at 73% f1score@10. 47

5.1 A/A output of the Online evaluation . 50
5.2 A/B test pre-analysis of recommendations 52
5.3 A/B Test for most active users . 53

A.1 Example of similar job postings in the dataset 60
A.2 Top scores of the similarity scoring attempt 61
A.3 Lowest scores of the similarity scoring attempt 62

1

1 Introduction

Recommender Systems have received plenty of attention in the past decade. Given the
possibility to interact with a catalog of millions of items on e-commerce companies such
as Amazon1, users can utilize the search functionality to query the needed items, or a
system can be used to recommend items that the users may find relevant. Recommender
systems are exploited to suggest movies on Netflix2, music tracks on Spotify3, Novels
on Goodreads4 and hundreds of different items categories from different retailers and
e-commerce companies.

By exploiting certain user features and the user history of items interactions, recom-
mender systems may use an ensemble of recommendation algorithms to provide the user
with possibly relevant items. Instead of using static weights for combining the ensem-
ble of recommender strategies, a Recommender system constantly retrains and adjusts
its model. For example, a recommender system may need to balance between relevance
and diversity of the recommendation list. Recommending items for which the system
estimates high relevance may seem like a safe way to ensure steady revenue. However,
recommendations also need to be diversified to provide the user with more opportuni-
ties and thus allowing the user to find interesting items outside of her filter bubble while
maintaining an acceptable level of accuracy [Adomavicius and Kwon 2012]. This gives
Recommender systems flexibility to changing trends as well as the ability to provide per-
sonalized results for every user.

A Recommender system that retrieves more relevant and interesting items for users helps
increasing the revenue for e-commerce companies. Similarly, a recommender system in
social networks that suggests more relevant news and trends would win customers away
from their competitors and reduces the risk of churn.

XING5 is a social network company with approximately 18 million users worldwide
[Abel et al. 2016]. It offers, for example, functionality for exploring job offers: users
can either explicitly search for jobs or can explore jobs via a job recommendation ser-
vice. Around 45% of the traffic on job offers is driven by the job recommendation service.
Hence, the job recommendation system is a crucial component on the XING platform that
requires constant improvement.

1http://www.amazon.com/
2https://www.netflix.com/
3https://www.spotify.com/
4http://goodreads.com/
5https://www.xing.com/

2 1 Introduction

XING’s job recommendation system is an ensemble of recommender models. It is orga-
nized into four core recommender engines that identify items that are possibly relevant
to the user and around 20 filters, re-ranking strategies and diversification components
that focus on optimizing precision. Together, those core engines and other components
exploit around 200 features.

One of XING’s core recommender engine and currently the engine with the highest im-
pact on the recommendations is the so-called More-like-this (MLT) component: it recom-
mends the user those job postings that are similar to the ones that the user interacted with
in the past. Therefore, it exploits metadata of a job posting like keywords, disciplines and
industries in which the job is categorized. Such metadata is converted into a search query
to retrieve similar documents from the job posting inventory and rank them.

There are multiple problems that may rise from using exact keyword matching or match-
ing of categories for retrieving and ranking job postings. First, the document collection,
with 1 Million job postings, is fairly huge and too diverse to fit into the small number of
categories that XING uses, e.g. for its disciplines (22 disciplines such as HR or IT & Soft-
ware Development). If one would group the jobs by their discipline category, one would
thus result clusters of around 45,000 postings and it is likely that there is quite a high di-
versity within such a cluster, i.e. not all jobs of the cluster are similar and could be filled
by the same type of candidates.

Second, strict word matching has other side effects, for instance, J2EE Developer will not
be similar to Software Engineer, nor Data Lake Engineer to Data Architect. Moreover, by only
using the metadata of a job, which are typically supplied by HR agents or recruiters, we
lose information in the full-text description of the job offer itself that may solely identify
similarity between documents and clear ambiguities.

In this thesis, we analyze to what extent the full-text description of a job posting can
be used to identify similar job postings and thus enhance the aforementioned MLT-
component of XING’s job recommendation system. We propose to get a score of simi-
larity based on the XING’s job posting description, using Dense Vector representation to
avoid strict matching. Recent word embedding techniques can learn meaningful syntac-
tic and semantic relationship based on word occurrences in the text, which got extended
to documents as well. Given the ideal model, similar job postings in the inventory will
be placed in separate places in the vector space, making it easy to retrieve and rerank
similar job postings.

1.1 Goal 3

1.1 Goal

The goal of this thesis is to explore document representation methods that allow for de-
tecting similar job postings. In particular, we aim to solve the following problem:

Given the full-text description of a job posting p, find a vector representation
of p that allows to identify similar postings. Here, two items p1 and p2 are
similar if both items describe a similar job role.

Hence, aspects such as the company that is offering the job, benefits offered by the com-
pany or the location of the job do not need to be taken into account by the similarity
measure. The document representation strategy should be applied in XING’s job rec-
ommendation system and in the MLT-component in particular. Instead of using a plain
keyword- or category-based query to rank job posting recommendations, we aim to ex-
ploit vector representation of the postings’ full-text descriptions so that similar job post-
ings can be found closer to each other in the vector space and non-similar postings are
distant apart from each other. A proper document representation method will eventually
lead to better recommendations as XING’s key recommender engine is an item-to-item
based recommender algorithm that recommends those items that are similar to a user’s
previously liked items.

1.2 Research Questions and Limitations

In this section, we list down the main challenges, limitations and research questions in-
volved in finding the best document representation for a given dataset of job postings.

• There is no open source dataset of similar job postings. As we want to exploit the
structure and vocabulary of a narrow scoped dataset and would like to explore how
state-of-the-art word embedding techniques perform in the domain of job postings,
using a general open source document similarity dataset should be the last resort.
Hence, we need to solve the following question: How can we build a closed domain
dataset of job postings for the evaluation of the document similarity problem stated
above?

• What kind of strategies and particularly word embedding techniques can solve
the problem of identifying similar job postings? And what kind of pre-processing
methods need to be applied on the full-text in order to allow for the best perfor-

4 1 Introduction

mance? Can we possibly find a document representation that uniquely place sim-
ilar documents in distinctive places in the vector space, such that querying similar
job posting is as accurate as possible?

• How can we exploit additional types of information including metadata such as
the title of job postings and combine several representations so that we improve the
performance of the models for detecting similar postings?

• How do the strategies for representing documents by means of dense vectors per-
form in real life in XING’s job recommendation system? How will our models im-
pact the accuracy and quality of the job recommendations? And how do we build
the architecture and implement our strategies so that computations for building the
model can be done in a reasonable amount of time and that the strategies can be de-
ployed to the recommender service that receives Millions of requests per day and
up to 500 requests per second in peak times?

1.3 Thesis Structure

In the following, we briefly outline the structure of the thesis. In Chapter 2 we give an
overview of current approaches for representing document vectors. In addition, we pro-
vide background details on different topic modeling, word embeddings algorithms and
similarity metrics that are used in the thesis. Here, we focus on dense representations that
can be achieved using variants of Word2Vec and topic models. Chapter 3 introduces the
experimental setup for the topic model comparison, where we discuss the logic behind
data preprocessing and creating the ground truth and the evaluation datasets. Following
this, chapter 4 lists the results of the offline experiments. Here, we compare the per-
formance of multiple semantic models, different hyperparameters and combination of
features. while chapter 5 describes the workflow of the online evaluation, along with the
results from conducting the experiments on live XING users. Chapter 6 concludes the
thesis while Chapter 7 introduces the Future Work, which includes interesting research
questions raised by the thesis that couldn’t be tackled due to the time constraint.

5

2 Background

In this chapter, we go over the related work in the field of document similarity, moving
from the basics of bag-of-word models and Latent Semantic Indexing to topic and seman-
tic models, then we list down some of the available document similarity datasets.

Additionally, we describe the current architecture of XING recommender system, includ-
ing the data collected from users and howit gets exploited by different subrecommenders
to generate the job recommendations. We also describe the architecture of different word
and document representation models used throughout the thesis, in order to have bet-
ter understanding of the underlying training workflows and the hyperparameters used,
which helps in justifying why certain hyperparameters were selected during conducted
experiments later on.

We proceed by explaining word representation models like Word2Vec and its variation
Word2VecF, followed by document representation models like Doc2Vec and LDA, then
we discuss a word/document Hybrid model known as Doc2VecC. Finally, we present
the scoring, similarity and evaluation metrics used during the thesis.

2.1 Related Work

The task of a documents similarity has been intensively studied. Bag-of-Words model
[Harris 1954] was one of the earliest fixed length vector documents representations over
the entire vocabulary, where two documents are considered similar if they share the same
set of words. However, the word order is not significant, and non similar documents can
have the same representation if the same words happen to occur in the documents pair.
For instance, "X is slower than Y" would have the same document vector as "Y is slower
than X".

Better performing Bag-of-Words models integrated different weighting function for the
document vector. For instance, TF-IDF weights were used to allow certain words to in-
fluence the similarity calculation more than other words that appear often throughout
the corpus [Salton et al. 1975]. However, the approach failed in deducing relationship
between synonyms, for example, Doctor will not be similar to Physician. More problems
appear when a word can be used in multiple contexts (polysemes), like Ruby and Apache
ZooKeeper, which reduces the recall.

6 2 Background

To address some of these problems, Latent Semantic Indexing (LSI) was introduced
which represents a document by reducing the dimensionality of the TF-IDF vocabulary
vector to a smaller condensed topic vector, such that words and documents from the
same topic are mapped closer to each other. LSI reduces - but doesn’t solve - problems
with polysemes since words are grouped together based on the topic [Deerwester et al.
1990]. Better document representation algorithms were built on the concept of LSI like
Latent Direchlet Allocation (LDA) [Blei et al. 2003], which represent a document as a
distribution of topics, where every topic is presented as a multinomial distribution over
the corpus vocabulary. LDA is further explained in Section 2.3.5.

Le and Mikolov [2014] introduced Paragraph vector representation which can be learned
from variable-length text snippets, such as sentences, paragraphs and documents. Para-
graph vectors are learned by predicting the surrounding words in the text snippets,
demonstrating better performance than bag-of-words models. Paragraph vectors along
with different embedding models are explained in more details in Section 2.3.

Regarding existing document similarity dataset, The 20 Newsgroups [Lang 1995] and
TREC-AP [Lewis et al. 1996] are examples of document categorization dataset where the
task is to correctly classify a document against 20 classes. The datasets can be used for
document similarity if all documents within a given class are considered similar [Huang
2008]. Baudiš et al. [2016] introduced different sentence pair scoring datasets to tackle
multiple NLP tasks, two of them are the Semantic Text Similarity and Paraphrasing datasets.
Semantic text similarity (STS) datasets compares independent pairs of short sentences
with a score from 0 to 5, based on semantic similarity. While Paraphrasing (Para) is a bi-
nary classified dataset collected from Question and Answer platform1. It states whether
a given sentences pair share the same topic, asking the same question or describing the
same event. Unfortunately, the available datasets discuss general topics that are not spe-
cific to job postings, recruitment, hiring or salary. Most of them are oriented towards
sentiment analysis of short sentences, where the stemmed preprocessed job descriptions
at XING contain 29 words on average. To the date of writing the thesis, we didn’t find
any open source dataset of similar job postings.

2.2 XING Recommender System

XING is a social networking platform for professionals, with a descriptive slogan "to pro-
vide a better working life that enables professionals to grow". The platform provides
services for people who want to find better job opportunities to grow their careers and

1https://askubuntu.com/

2.2 XING Recommender System 7

connect them with other professionals in the field. Therefore, XING can recommend the
users nearby technical events that suits their skill sets, fitting job offers, other profession-
als that share similar skills and interests, and more.

The more XING knows about the users, the better the quality of recommendations it
can retrieve for them. Figure 2.1 shows different input sources for the recommender
system. Users can create a user profile that contains professional data like previous work
experiences, the skill set they possess and job opportunities they are interested in, as well
as the ability to add their co-workers and acquaintances to their list of contacts in a social
network perspective. The recommender system aggregates these different data sources
to generate relevant recommendations.

The user interaction behavior on the platform is being tracked to analyze what kind of job
postings the users are clicking, bookmarking or deleting. This would allow the system
to recommend job postings similar to those the user positively annotated via bookmarks
and reply intentions, or inhibit job postings similar to those the user deleted.

Figure 2.1: The more interactive and cooperative the users are in sup-
plying their information on the platform, the better recom-
mendations they receive. Like interacting with relevant jobs
and supplying their current city, previous employers and
their skill sets [Image Source: XING internal].

The recommender system consists of 4 separate sub-recommenders, each sub-recommender
is specialized in one of the main user information branches shown in Figure 2.1, where
they return a list of recommendations with a score. A final recommender aggregates all
recommendation lists based on the score and co-occurrences of job postings. i.e If the

8 2 Background

same recommended job was returned by multiple subrecommender, the recommenda-
tion score for this job gets boosted.

Figure 2.2: XING recommendation System consists of recommenda-
tion aggregator that combines output from 4 main sub-
recommenders, along with the filtering phase, the system
is used to retrieve and rerank the recommendation list for
the user requesting it.

Figure 2.2 shows the architecture of the job recommender, it consists of two main parts,
the recommender aggregator and the filters stage. The aggregator combines scores from
different sub-recommenders and the filters removes job postings that does not meet cer-
tain criteria, like different career level or city. The sub-recommenders utilize the users’
data as follows:

• Content-based Recommender: Exploits the user information on the platform to
match profile against job posting ads. Since user profiles contain Haves, Wants and
Interests as keywords (see Appendix A.1), Content-based Recommender simply
matches them to the job postings’ keywords supplied by the job owners and HR to
retrieve relevant job recommendations.

• Collaborative Recommender: If a job is suited for user X , it must be suited for user
Y if both users are similar in experiences and skill sets. Hence the Collaborative
Recommender groups similar users together, and boost job postings for a given

2.3 Dense Vector Representations 9

user that similar users are also interested in. It also uses the user information, like
contact list, to boost job postings in cities and companies where the user already
knows contacts and acquaintances.

• Knowledge Graph Recommender: Exploits the users’ previous work experiences,
to predict their next job positions. Knowledge Graph Recommender consider the
transition probabilities between job roles, analyzed from the user work experiences
and discipline transition to have a statistical estimate of the next career level. The
recommender provides the user with job posting recommendations for this esti-
mated future career level.

• Usage behavior Recommender: Also known as MLT Recommender (More Like
This), it retrieves job postings similar to those the user interacted with positively in
the last 3 months. It uses Elastic Search to retrieve 150 job postings (on each request)
based on discipline of positively interacted job postings, along with their title, and
ontology ID of skills and "keywords" used in the Content-based Recommender.

After collecting all recommendation lists from the 4 sub-recommenders with predefined
weights for each sub-recommender, the score is aggregated and reranked, then the rec-
ommendations are filtered out to avoid recommending job postings that user already
bookmarked, or job postings in different cities or countries.

Document similarity algorithm can be applied on the MLT recommender, as the recom-
mendation list is sorted by the Elastic Search ranking, using metadata and specific key-
words from the job owners, it is prone to noisy words and it can be improved. As shown
later in the thesis, strict matching shows inferior performance compared to semantics
based similarity. In this thesis, we will alter the rescoring function in the MLT recom-
mender to use a document embedding algorithm that exploits the description of the job
postings.

2.3 Dense Vector Representations

In this section, we discuss multiple semantic models that are used to generate word em-
beddings, parameterization and different architectures, in order to justify the choice of
hyperparameters and model decisions used later in the thesis.

10 2 Background

2.3.1 Word2vec

Word2Vec represents words as vectors in a multi-dimensional vector space, where similar
words tend to be close to each other [Mikolov et al. 2013a]. In order to gain such a rep-
resentation, two techniques have been proposed: the Continuous Bag of Word (CBOW)
model and the Skip-gram model. CBOW model predicts the current word using the sur-
rounding words (context) in a given window size, and the Skip-gram model predicts the
surrounding words using the current word.

Dense vector representation extracts semantic relationships based on the co-occurrence
of words in the dataset. The accuracy of representation of a given two words depends
on how many times the model sees these words within the same context throughout the
corpus. More word and context co-occurrences during training changes the hidden rep-
resentation, which allows the model to have more future successful predictions, leading
to a better representation of word and context in the vector space.

Figure 2.3 shows the architecture of the CBOW and SKIP-gram models, w(t) denotes the
word in a sentence at index t. In a window of size N , the context ranges from w(t � N)

to w(t+N) excluding w(t), hence the term w(t± 1..N).

Figure 2.3: In a window of size N , The CBOW model uses the context
w(t± 1..N) to predict the current word w(t), while the Skip-
gram predict the context given the current word [Mikolov
et al. 2013a].

The number of vector dimensions depicts the size of the projection layer shown in figure
2.3. The hidden layer is learned in unsupervised fashion during training of the neural

2.3 Dense Vector Representations 11

network like in conventional neural networks. While the projection layer is a matrix
composed of the hidden layer weights combined with the input layer, where the matrix
is shared for all words in the vocabulary [Mikolov et al. 2013a].

Figure 2.4: Given an input word xi, the bigram model predicts the sec-
ond word yi in a context window of size 1 using the input
and output layers of size V (vocabulary size) and hidden
layer of size N . The weight matrix WV ⇤N depicts the N di-
mensional weights of V vocabulary words, where W 0

N⇤V de-
notes the activation matrix needed to calculate the output.
[Rong 2014].

Figure 2.4 shows the detailed architecture of the CBOW model with a window of size 1,
also called a bigram model, with N number of vector dimensions depicting the size of
the hidden layer with vocabulary of size V . The goal is to predict the second word in the
window given the first one. The entire V words in the vocabulary is hot-encoded in the
input layer, which means that given an input word, only one unit in x1 to xV will be 1
and the rest will be 0.

The weights between the input and the hidden layer constitutes a V ⇤N matrix W , where
each row in W is an N dimensional vector representation of the one the V words in
the vocabulary [Rong 2014]. The predicted output is calculated by applying Softmax
function on another Matrix W 0

N⇤V containing the activation vectors for every word in the
vocabulary, resulting in a single output. Error is propagated back across the network to
modify the weights in W and W 0 to reduce the error in future iterations.

Matrix W contains the word vectors which can be used directly in the latent space for
similarity evaluation. Choosing the right number of vector dimensions and other hy-
perparameters can greatly affect the results. There are various parameters that will be

12 2 Background

discussed in the next subsections.

Window Size

Window size limits the words used in the context during training to twice the value. For
example, window size of 5 will include the 5 words to the left and the 5 words to the
right for each observed word in the sentence as context. Increasing the window size may
include context words that are not relevant to the current word. However, decreasing
the window size can capture relations between words and stopwords which is also not
preferred.

Kottur et al. [2016] and Levy et al. [2015] experimented the embeddings of their datasets
using window sizes of 2, 5, 10 as error rate fluctuates across window sizes. Another
reason to pick a proper window size is that it affects the performance, as using a larger
windows increases the training time, because more context pairs need to be considered.
Window size will be cross validated in Section 4.1 as advised by Le and Mikolov [2014].

Vector Dimensions

Melamud et al. [2016] evaluated skip-gram model on multiple intrinsic and extrinsic NLP
tasks to test how number of dimensions affect the accuracy of results. One of the four
extrinsic benchmarks tested was the Sentiment Analysis (SENTI [Pang and Lee 2005])
in a very similar setup to our experiment’s, where word representations were evaluated
in a sentiment analysis classification problem by averaging the words in the sentence to
construct a sentence vector. Melamud showed that number of dimensions doesn’t have
big impact on the accuracy, when going from 300 to 600 dimensions (+2.6% increase).
Therefore, we are going to conduct the experiment using 500 dimensions, which Levy
et al. [2015] used while testing Skip-gram hyperparameters, and still conforms with the
results from Melamud.

Negative Sampling

Negative Sampling is a mechanism to speed up the training time. Instead of updating
the vectors of all words in the vocabulary on every iterations, only a portion of the vo-
cabulary will be updated. By sampling random words from the vocabulary, chances that

2.3 Dense Vector Representations 13

they are similar to the current word w(t) are very low. Negative Sampling aims to max-
imize the similarity between words that appear together in the context, and minimizing
the similarity between w(t) and the sampled words, instead of the entire vocabulary.

Subsampling

Subsampling, denoted as sampling rate in the C code, simply removes words that are
more frequent than a certain threshold t with probability p, where f is the frequency of
the word in the corpus.

p = 1�
r

t

f
(2.1)

This approach imitates stopwords removal, as higher frequency words have higher prob-
ability of getting down-sampled from the vocabulary. In addition, Word2Vec has the
Minimum Count parameter which removes words that occurs less than the value spe-
cific which helps filtering out noisy words.

Sampling rate of 10�5 was used in the experiments, it was used by Mikolov et al. [2013b]
who proved its performance improvement. Minimum count of 5 is used, which is the
default in the C implementation of Word2Vec.

Number of Threads

The C implementation offers parallelism while training to reduce the training time, set by
number of threads. However, by analyzing the code, it appears that there is no locking be-
tween threads that write in the matrix of neural weights, some may overwrite each other.
The technique is called "Asynchronous Stochastic Gradient Descent" which reduces the
training time without significant effect on precision [Paine et al. 2013]. However, it may
not be reproducible since the order of rewrites is random and may not be suitable for
controlled experimentation. Hence, a single thread is used in the thesis.

Number of Training Iterations

Number of iterations depicts the number of times the model trains on the dataset, which
is preferred as more iterations pushes the model towards convergence. In the ideal case,

14 2 Background

the number of iterations should be plotted against the error [Hagan and Menhaj 1994]
to decide when to stop training if the error doesn’t significantly change as iterations go.
However, it was technically tedious to assert the error in the C code implementation
using python. According to Fallgren et al. [2016], increasing number of iterations doesn’t
lead to an increase in the score. Hence, 20 iterations were used in the thesis.

Since Word2Vec is conceptually a neural network, input dataset was shuffled between
iterations because "faster convergence has been observed if the order in which the mini-
batches are visited is changed for each epoch [Bengio 2012]".

Document Vector

As the aim is to project the documents into a vector space, we need document not word
vectors to get properly placed in the space. Liu et al. [2015] and Hong and Fang [2015]
suggested to use averaging of word vectors of a document as document representa-
tion. However, as more word vectors gets averaged, the more information regarding
the uniqueness of the document is lost.

Huang et al. [2012] proposed a solution that involves weighted average of word vectors to
represent the document, in order to favor words that are distinct to the document. Hence
pulling the document vector to a point in the vector space that represents the documents’
most noticeable features.

V (documentk�words) =

Pk
i=1weight_function(wi)V (wi)Pk

i=1weight_function(wi)
(2.2)

Equation 2.2 describes the weighted average formula. A vector for a document consists
of k words is calculated by summing all document’s word vectors V (w) multiplied by
a weight function over the sum of all weights used. The weight_function(w) is a look-
up table for word w and its corresponding weight. The weights can be a distribution of
important keywords assembled by human experts, or by using a scoring function based
on words distribution like TF-IDF (see Section 2.4.1).

2.3.2 Word2VecF

Word2VecF [Levy and Goldberg 2014] is a different implementation of Word2Vec, where
the input is a file containing tuples of words and contexts (instead of a file with the entire

2.3 Dense Vector Representations 15

text), giving more control over what to feed to the network, with the possibility of using
arbitrary context as shown in Table 2.1. Model embeddings can be biased by repeating
specific context pairs multiple times throughout the training phase. In addition, training
is noticeably faster in Word2VecF since extracting the tuples is preprocessed in advance,
along with the vocabulary count and subsampling.

I like
I Icecream
I Icecream
... ...
I document_id_5

like document_id_5
... ...

Table 2.1: By controlling the input to Word2VecF, specific tuples can be
repeated to add weights/bias to the resulted embeddings.
Arbitrary context can be added to add a global context

Constructing the document vector can be done with weighted average of document’s
word vectors. The difference here however, is adding arbitrary context words, like doc-
ument Ids, we can force words in a single document to predict the document vector
instead of adjacent words. This is an example of how global context can be exploited,
words are no longer tied to its neighboring words in the window as much as all words in
the document.

Word2Vec - Window size 10 Word2VecF - Global Context
selenium bug

test programming
manual jenkins

testautomation jira
testing assurance

testmethod unix
... ...

Table 2.2: Word2VecF shows more words that appears in the same doc-
ument as "Quality Assurance", while Word2Vec shows words
that can take the same or a neighboring place as "Quality As-
surance".

As shown in Table 2.2, when similar words are queried for "Quality Assurance" as an ex-
ample, Word2VecF tends to retrieve words that appear in the document associated with
Quality Assurance, like jenkins and programming. Where Word2Vec model retrieves

16 2 Background

words that can appear in the same location in the context window like testing and sele-
nium.

2.3.3 Doc2Vec

Both previously described methods (Word2Vec and Word2VecF) produces word vectors,
which get averaged to represent the document vector. In order to directly represent docu-
ments, Le and Mikolov [2014] introduced Doc2Vec, where every paragraph has a unique
vector in the matrix D and every word has its own vector in matrix W (same local context
architecture as Word2Vec). These vectors are averaged and combined to predict the next
word in the context in a given paragraph.

The paragraph vector is only shared among words of the same paragraph. It can be
represented as another word in the context that is fixed for all sentences and windows
in the paragraph. Hence it preserves (or memorize) the topic of the paragraph. That’s
where the architecture name got its name "Distributed Memory" shown in figure 2.5.

Figure 2.5: Doc2Vec Distributed Memory model uses the paragraph
vector along with the local context words to predict the
word w(t), it also acts as a memory of the paragraph’s topic
[Le and Mikolov 2014]

Distributed Bag-of-Words (DBOW) however, ignores the context window and word vec-
tors computation, as it forces the model to predict randomly sampled words in the doc-
ument given the document vector as shown in figure 2.6. DBOW only updates the para-
graph vector, so it needs less storage as it ignores word vectors.

The drawback of Doc2Vec is its computational complexity, as the paragraph matrix in-
creases in size with respect to number of documents, due to the absence of negative sam-
pling approach in updating document weights, all documents are involved in the learn-

2.3 Dense Vector Representations 17

Figure 2.6: Doc2Vec Distributed Bag-of-Words model tries to predict a
randomly sampled set of words in the paragraph given the
paragraph vector [Le and Mikolov 2014]

ing process. Moreover, to generate vectors for unseen documents, the documents have to
be added to the corpus and model training has to be restarted from the beginning, which
is not feasible in the industry since it doesn’t scale well [Chen 2017].

2.3.4 Doc2VecC

In order to tackle the problems in Doc2Vec, Chen [2017] presented a new approach to
include global context by capturing the semantic meanings of the document during
learning called Doc2Vec Corruption (Doc2VecC). Figure 2.7 shows the architecture of
the model, which is very similar to Word2Vec’s, except that on every learning iteration,
words are randomly sampled from the document (hence, corrupting the document) and
their vectors are averaged to represent a document vector, that is used to predict the
current word with the help of the local context words.

The output of Doc2VecC is a vector representation of words that shares global and local
semantics of the dataset. To generate a document representation, we compute the aver-
age of the word vectors. This results in a better representation than using embeddings
from word2vec (see Section 2.3.1). In addition, using the average of word vectors enables
the generation of document representation for documents that have not been seen dur-
ing training. As the method uses only a fraction of the words inside the document to
construct the document vector during training, the training time is further decreased.

Previously discussed semantic models generate a N-dimensional dense vector represen-
tation for documents, often uninterpretable and can’t be visualized. We believe it would

18 2 Background

Figure 2.7: In every iteration in the Doc2VecC model, words are ran-
domly sampled (depicted in wp, wq and wr) from the doc-
ument to represent the document vector which is used be-
side the local context to predict the current word wt. While
training, the error is back-propagated to all local and global
words used [Chen 2017].

be useful to explore different type of interpretable vector representations like topic mod-
eling.

2.3.5 Latent Dirichlet Allocation

Unlike context based semantic models, topic modeling provides a representation of doc-
uments based on the topics, implicit ideas or themes discovered across a document col-
lection [Blei and Lafferty 2009]. Latent Dirichlet Allocation (LDA) is a topic modeling
algorithm which is used to detect the distribution of topics in a certain document. LDA
starts training by defining a number of topics k representing the number of underlying
topics in the dataset. Each topic is represented as a multinomial distribution over all
words in the vocabulary. A document (as a vector) can be represented as a distribution
of the k topics [Blei et al. 2003].

As shown in Table 2.3, topics reflects a certain latent subject in the corpus. For exam-
ple, cortex, vision and neuron can represent Opthalmology, while infection, aids and vaccine
represents immunology and so on. A document vector will consist of a probabilistic dis-
tribution of all topics. For example, a document discussing white blood cells will have a
document representation vector of 90% immunology, 8% chemistry and 2% opthalmol-
ogy.

Each topic is also represented as a distribution over all words in the corpus. Table 2.4

2.3 Dense Vector Representations 19

computer chemistry cortex orbit infection
methods synthesis stimulus dust immune
number oxidation fig jupiter aids

two reaction vision line infected
principle product neuron system viral

design organic recordings solar cells
access conditions visual gas vaccine

processing cluster stimuli atmospheric antibodies
computer chemistry ophthalmology astronomy immunology

Table 2.3: Most weighted words within Five topics from a 50-topics
LDA output trained on Science magazine [Blei and Lafferty
2009]. Documents can be represented as a distribution of top-
ics (last row is annotates the topics for elaboration). For ex-
ample, a document about Cataract will have a vector of 90%
opthalmology and 10% immunology.

shows the distribution of words in two topics in our dataset to show the contribution
of each word in the topic. For instance, the word data appears in the top words of both
topics, however the contribution of data in Topic A which talks more about big data and
statistics is bigger than its contribution in Topic B, which is related more to business
intelligence and solutions.

Topic A probability Topic B probability
data 0.161 business 0.230

statistics 0.095 intelligence 0.094
big 0.054 warehouse 0.079

mathematics 0.054 business_intelligence 0.078
big data 0.046 solutions 0.038
analytics 0.043 data 0.032

data mining 0.034 reporting 0.025
mining 0.030 tool 0.020

Table 2.4: Probability distribution of words in two topics in our dataset.
Words with highest probability should give an interpretable
theme of the topic. Topic A is more related to big data and
analysis, where topic B is more into business intelligence and
reports.

Unlike Word2Vec and other semantic models, LDA doesn’t take words order in perspec-
tive, as it tries to summarize the document into a collection of topics in a dimensionality
reduction fashion, where the output is a global representation of the document. Distribu-
tions for unseen documents can be generated using the model, and they can be compared
to have a similarity value between documents.

20 2 Background

2.4 Scoring, Similarity and Evaluation Metrics

In this section, we will go through TF-IDF as a weight function that can be integrated
with weighted average semantic models. In addition, we describe two similarity metrics,
Cosine and Hellinger Distances, to explain their significance to semantic and topic mod-
els. Finally, we discuss the main evaluation metric in the thesis, the F1 measure, that is
used to compare the model performances during the experiments.

2.4.1 TF-IDF

TF-IDF is a scoring function which consists of the product of two parts: the term fre-
quency (TF) and the inverse document frequency (IDF). Term Frequency (TF) of a given
word is how many times the word appears throughout the document. While Inverse
Document Frequency of a given word is the count of documents containing this given
word. Given N representing the total number of documents in the dataset, word w ap-
pears in n number of documents. Where f(w, d) is the frequency of the word w within a
given document d, then the TF-IDF of word w is calculated as follows [Robertson 2004]:

TF-IDF(w, d) = f(w, d) ⇤ logN
n

(2.3)

TF can’t be used on its own as a weighting function as words with high TF scores are
usually stopwords. IDF component should be used to normalizes the values of TF, as
it increases the score of words that are distinct to the document, and punishes words
that occurs in all documents. TF-IDF can be used for weighted average of word vectors,
since words that are unique to the document will have more priority during average than
stopwords and noisy ones.

2.4.2 Similarity Metrics

Once the documents are represented as vectors, similarity measures are used to compute
the similarity between two given documents. Tasks like clustering or finding nearest
neighbors can be used to perform using the similarity value between documents in the
corpus. There are plenty of similarity measures like Jaccard Coefficient, Euclidean dis-
tance, Cosine distances and more [Bordag 2008].

2.4 Scoring, Similarity and Evaluation Metrics 21

Cosine Similarity

One of the standard measure for document and word similarity is the cosine similarity
[Wan 2007][Dai et al. 2014][Mikolov et al. 2013a]. It shows how two vectors are related in
terms of the vector angle instead of the magnitude. Given two document vectors v1 and
v2, their cosine similarity value is calculated as follows [Shoaib et al. 2014]:

SIMC(v1, v2) =
v1.v2

|v1| ⇤ |v2|
(2.4)

where v1 and v2 are m-dimenstional vectors that represent the document, and the result
is a non-negative similarity score between -1 and 1, where a similarity score of 1 means
that v1 and v2 are identical.

Hellinger Distance

For memory performance reasons, LDA implementations sets probabilities lower than a
certain threshold to zero, converting the LDA output to a sparse vector, the cosine sim-
ilarity may not be the best metric for evaluation. But the sparse LDA output vector can
be represented as a probability distribution, which allows us to extend vector similarity
measures to include distributions similarity techniques, like Hellinger Distance [Blei and
Lafferty 2007][Seroussi et al. 2011][Rus et al. 2013].

Given the distribution of topics of documents i and j, Hellinger distance can be computed
as follows:

d(✓1, ✓2) =

s
1

2

X

k

(
p
✓1,k �

p
✓2,k)2 (2.5)

where ✓i is the topic distribution of document i, and ✓i,k is the probability of the k-th
topic of the document. The result, unlike cosine similarity, is a distance where 0 denotes
identical distributions and 1 denotes very dissimilar distributions or documents.

22 2 Background

2.4.3 F-measure

In information retrieval, the performance of different models can be compared using
metrics like Precision, Recall and F-measure. Precision shows the fraction of retrieved
documents that are relevant. While Recall measures the fraction of relevant documents
retrieved from all relevant documents in the dataset.

precision =
relevant documents \ retrieved documents

retrieved documents
(2.6)

recall =
relevant documents \ retrieved documents

relevant documents
(2.7)

As precision and recall have an inverse correlation, mostly a combination is used for
optimization. Recall will score 100% if all relevant documents are retrieved plus infinitely
many irrelevant ones. Precision will score 100% if the model managed to retrieve - for
example - only 5 relevant documents out of infinitely many relevant ones.

The F-measure (or F1-score) is defined as the harmonic mean between precision and re-
call. The harmonic mean is used because we are dealing with ratios and percentages, "As
It tends toward the least number, minimizing the impact of large outliers and maximiz-
ing the impact of small ones [Nadeau and Sekine 2007]". In other words, both Recall and
Precision have to be of a high value to have a high F1-score, making harmonic mean a
better fit than the arithmetic one.

F1-score = 2 ⇤ precision ⇤ recall
precision + recall

(2.8)

23

3 Methodology

This chapter gives an overview over the experimental design and the offline evaluation
in particular. The online evaluation is discussed in Chapter 5. In this chapter, we explain
how the dataset for the offline evaluation was collected and the detailed processing steps
followed to clean the job descriptions. We discuss how we built the ground truth dataset.
Later in the chapter, we describe the evaluation method used for the document similarity
task. We start by explaining why conventional machine learning models built on top of
vector spaces are not feasible in our case, then we describe model evaluation using the
entire latent vector space and its limitations. Finally, we present a different evaluation
approach using Positive and Negative Sampling that avoid of the limitations of full vector
space.

3.1 Experimental Setup

We hypothesize that documents are similar the closer they are to each other, and dissimi-
lar the further they are to each other in the N-dimensional latent space. Different methods
of document embeddings will generate different vector spaces, which can be analyzed,
tested and compared to each other. Therefore, every other variable has to be fixed except
the vector space for fair comparison. The evaluation work-flow includes multiple steps
as shown in Figure 3.1.

• Documents are passed by a data cleaner module which preprocess the data, stem
and lowercase the text, remove special characters, among other regular expression
filters that will be explained in details later in the chapter.

• A semantic model trains on the cleaned preprocessed dataset in order to gener-
ate document representations for job postings in the latent Space. This step is the
variable in our experiment, as different semantic models and hyperparameters dis-
cussed in Section 2.3 will be evaluated.

• When a given document d1 in the ground truth is evaluated across the latent space,
a set of similar documents will be retrieved according to how close they are to d1.
These similar documents can be evaluated using different evaluation datasets to
get a performance measure of how well are the documents are placed in our latent
space.

24 3 Methodology

Figure 3.1: i) Documents are preprocessed before getting embedded
into the latent space. ii) Given a document in the evaluation
dataset, the latent space will retrieve the nearest (most sim-
ilar) documents. iii) Retrieved documents can be compared
to the actual similar documents in the dataset to calculate a
performance score.

3.2 Offline Evaluation Dataset

In this section, we describe the data collected for our experiments and list interaction
statistics like total number of bookmarks, replies, users and job postings. Furthermore,
we explain the steps taken to clean the job posting descriptions like stemming, and re-
moving URLs and special characters. Finally, we explain the ground truth construction
and the intuition behind using the user interactions to build the dataset of similar job
postings.

3.2.1 Data Retrieval

User interactions with the platform were analyzed and used as follows: We collected user
interactions (bookmarks and reply Intentions) from March 2014 to March 2017 as (User,
Job) pairs. Then, we perform several filtering steps, removing less active and excessively
active users. First, we remove users and jobs that have less than two interactions. In
a second step, we filter out users with overall lifetime interactions that exceed the 99th
percentile of all users, which we consider as outliers.

Clicks data were not used as part of the dataset. Users can click on job postings because
the title is intriguing or they want to explore new career options. Therefore, we don’t
consider clicking data of a given user as relevant to him as jobs he clicked, read the de-
scription and shown interest in the posting by bookmarking it for the future or informing
the recruiter that he or she is interested.

3.2 Offline Evaluation Dataset 25

Dataset Total Tuples Count Number of Distinct Job Postings Number of Distinct Users
Replies 218,518 56,545 58,844

Bookmarks 397,805 102,721 79,620
Distinct Aggregation 616,323 129,156 110,417

Table 3.1: Statistics of retrieved data after cleaning outliers. Note that
users sometimes bookmark and reply on the same posting,
that’s why the aggregation values are not absolute summa-
tion.

Most interactive users on the platform prefer German job postings, which represents 91%
of the dataset collected. In theory, training a model in two language should put the words
in separate parts of the vector space, as the context is different for each word in each
language. In order to avoid the need of more dimensions required to represent several
languages, we train all models using solely German job postings.

Portable Document Format (PDF) job postings were not used as part of the training set.
Since most PDF readers parse the text line by line horizontally, which gives a wrong
context since 2 columns documents are read out of order. However, they were used in
the A/B Test, since the line order is not significant with the choice of model used.

Table 3.1 shows the size of the dataset after removing outliers, English postings and users
with a single click and PDF jobs. Distinct Aggregation lists the number of distinct job
postings and users from both datasets, since many users tend to simultaneously reply
and bookmark the job posting. Finally, the dataset consists of around 129,000 job postings
from around 616 thousand tuples.

3.2.2 Data Preprocessing

Before we train the models, multiple preprocessing steps were followed over the descrip-
tion of 129,000 available job postings in our dataset:

• HTML tags were removed using regular expressions.

• Initial models training resulted in bigger vocabulary size due to several represen-
tation of the same word. for instance, vocabulary contained Java, java and JAVA,
which the model sees them as three different words. Hence, job postings got low-
erecased.

• Removed all URLs and emails via regular expressions. When analyzing early mod-

26 3 Methodology

els, there were huge bias towards HR contacts emails and job agencies that include
boilerplate URLs in the job description footer.

• Numbers were replaced with a placeholder "numb" [Abdelwahab and Elmaghraby
2016]. In order to preserve context in the window size while training Word2Vec.
For example, "since 1994" will be "since numb". In this way, numbers will always
preserve its place and its relation to its neighbors in the local context. However, only
stand alone numbers were removed, since numbers are important for keywords like
J2EE and B2B.

• Umlauts in the German language were normalized. for example, für to fuer to help
removing special characters in the next step.

• All special characters like non alphabets, question marks and bullet points were
removed. There is no unified encoding for job postings as they come from different
sources, and most topic modeling libraries accept only utf-8 encoding.

• White spaces got trimmed, and the entire document got stemmed using snowball
stemmer, which gave better results as shown in Chapter 4.

Early preprocessing decisions involved normalizing the top occurring alphanumeric
words, like B2B to BtwoB and Html5 to Htmlfive. Due to the fact that HR sometimes
stamp the job description with alphanumeric codes (e.g 000003vw). However, the step
is not needed - and not used in later experiments - since both TFxIDF and Word2Vec’s
"minimum count" threshold would inhibit or remove noisy words.

NLTK sentence tokenizer [Stamatatos et al. 1999] was used in the early thesis experiments
to identify sentences in the job posting, the approach kept useful html tags like
,<h1>
to <h5> and , as sentence splitters. Then the sentence tokenizer exploits commas,
full stops, question marks and sentence length to identify when to end the sentence using
rule based approach (hence, avoid splitting over abbreviations with full-stops like e.g).

The intuition was to feed the Word2vec sentence by sentence instead of one sentence doc-
ument approach which - assumingly - could lower embeddings performance by adding
irrelevant context. For example, end of sentence concatenated with beginning of the next
sentence. However, Word2Vec favors contexts that happens more often in different loca-
tions around the corpus (with increase of number of iterations), and the issue can take
place if the two sentences always comes behind each other, one can argue that these two
sentences can be fitting contexts for each other. Sentence Tokenizer was not used in pro-
duction to reduce computational overhead.

3.2 Offline Evaluation Dataset 27

3.2.3 Ground Truth Construction

A open source dataset of similar job postings is not available. As we want to exploit the
sentence structure and vocabulary of job postings, we can’t use a general open source
dataset with a broad scope to train a model that would run on a very specific narrow
scope like job postings. In order to evaluate and compare different job posting embedding
models, a dataset set of job postings with similarity scores has to be used. It can be in the
form of a relational matrix that shows a similarity value between every document and
other documents in the dataset, or simply a boolean value that shows whether two or
more documents in a dataset are similar or not [Le and Mikolov 2014]. Given that creating
a similarity matrix by human experts is expensive and time consuming, as experts would
have to go through 129,000 jobs times 129,000 times for completeness, we use information
from users at XING to create the dataset.

Assumption: If two or more users show interest in two jobs. These two jobs are similar.

Figure 3.2: An example for users co-interactions. If three or more users
bookmark two jobs for future notice, these two jobs are most
likely similar

Our intuition is that users in general bookmark jobs that are relevant for them and in the-
ory should be similar. However, this information can also be erroneous, due to misusage
of the platform, like mis-clicks or saving for a friend. Hence, by selecting only jobs where
several users agree on, we can increase the probability that these jobs are similar.

In order to prove the assumption, a proper representative sample should be randomly
selected and asserted by human experts. However, sampling even 1% of the dataset
would result in a dataset sample of 6,000 similar jobs tuples to be asserted. Due to time
constraints a manual hypothesis testing would be intractable. Thus, we compare the
meta-data from the job postings. For example, for 616,000 tuples of similar jobs 70.02%
of them share the same discipline Id.

The co-occurrence matrix has been plotted and normalized by rows to show the distribu-

28 3 Methodology

Figure 3.3: Graph shows relation between disciplines in our co-
occurrence ground truth. Note that the matrix is row nor-
malized and not symmetric. It can be read using the refer-
ence axis as follows, for example, first row’s "Teaching, R&D"
has most of its discipline distribution across Teaching,R&D,
Marketing & Advertising and Management & corporate devel-
opment. The aim is to spot any odd discipline combina-
tions that may result from collecting the ground truth from
user interactions. Legend ranges from 0% "white" to 100%
"dark green" that depicts the percentage of job disciplines
co-occurrences for a given discipline.

3.3 Latent Space Evaluation 29

tion of disciplines without any frequency bias. As shown in Figure 3.3, most of the similar
pairs have the same disciplines. We also see high correlations between Marketing, QA
and Project Management, which is obvious, as these categories have high topical overlap.
Further relationships can be spotted, e.g. between Consulting, Law and Corporate Man-
agement, Product management and IT, as well as R&D and Corporate development.

There are some disciplines that may not considered very similar, like Engineering & Tech-
nical and Management & Corporate Development, which is expected noise as a result of
not hand-crafting the similarity pairs. Users aim for having slight diversity in the jobs
they bookmark. However, such non trivial discipline combination have very low values
depicted in the figure in pale green. Better solutions involve increasing the number of
users who co-interacts with the job, to increase confidence, but it will decrease the size
of the dataset drastically and skews the distribution of disciplines available in XING’s
metadata.

3.3 Latent Space Evaluation

The document embeddings models presented in Section 2.3 are used to train and embed
the documents into a vector space. Then a supervised learning algorithm can be used
on top of the vector space to either predict a similarity value between documents as a
regression algorithm [Nagaraj and Thiagarasu 2014] or classify the job posting into a
certain class as a classifier [Wajeed and Adilakshmi 2011].

Using a classifier requires the dataset to have classes or labels. The ideal approach is
to classify the job into a certain category, assuming that all jobs in this certain category
are similar. XING metadata like disciplines, industries and cities can be used to deduce
classes but it adds more challenges. For instance, the exponential number of classes gen-
erated from metadata, using 23 disciplines and 22 different industries, will result in 506
classes. The assumption that job posting pairs from different disciplines are not similar
might be a good indicator. However, for related disciplines this is often not the case, as
shown in Figure 3.2.

Using a regression algorithm however requires a similarity score between job posting
pairs, as shown in the similarity score attempt in Appendix A.3, getting a consistent sim-
ilarity score between job postings is impossible without using a group of human experts
to manually evaluate the similar pairs, making the regression algorithm approach obso-
lete.

30 3 Methodology

3.3.1 Full Latent Vector Space Evaluation

Since a supervised algorithm is not feasible in our case, we use an unsupervised
K�nearest neighbor algorithm. The approach was followed initially in this order:

• Train the desired model using given hyperparameters.

• Sample N jobs from the dataset, along with their similar job postings.

• Use the model to create document vectors for the sampled jobs. Insert them into
the vector space.

• For each Job Ji, get K-Nearest jobs J1..k given that the similarity measures between
Ji and every job in J1..k are within a certain threshold.

• F-measure can be used to compare similar job postings of Ji from the dataset (rel-
evant) and the retrieved jobs from the vector space (J1..k). F-measure of all N jobs
can be averaged to give a performance estimate of the model.

In order to get the K-Nearest-Neighbors in a vector space, all items have to be compared
to all items to calculate cosine similarity, sort by the value and then cut off at threshold.
This is an expensive O(N2) operation [Maillo et al. 2017], as a sample of 5000 job postings
will have to conduct 25 million similarity calculations.

A popular approach however, is to index the space using a tree data structure, such that
every branch in the tree is used to search a small portion of the vector space. These
branches are constructed in a hierarchical fashion to the tree root while indexing, which
is a one time operation that takes plenty of time, but offers faster query times by not
traversing specific branches of the tree in Nearest Neighbor search.

KD-Tree vs Approximate Nearest Neighbor

KD-Tree partitions the vector space by recursively generating hyperplanes and splitting
at the points where there is a maximal variance in the data [Bentley 1975]. Unfortunately,
Lee and Wong [1977] show that KD-Tree, with query complexity of O(k.N1� 1

k), doesn’t
scale well with high dimensional vectors k.

A faster way to generate hyperplanes is by using random projections to build up the

3.3 Latent Space Evaluation 31

tree in what is called Approximate nearest neighbor [Arya et al. 1998], where random
hyperplanes are chosen for the split. It is a tradeoff between precision of the nearest
neighbor results and query time performance. Approximate nearest neighbor algorithm
doesn’t necessarily returns the nearest neighboring points in the vector space.

ANNOY

ANNOY 1 is a python library with Approximate Nearest Neighbor implementation from
Spotify. It offers querying functionality using cosine distance that fits most of our mod-
els. It also offers faster query times with moderate resources management, since data
(mmaped into memory) is shared across multiple processes.

Since ANNOY uses random projections to index the vectors, the same Random Seed value
- used to initialize the pseudo random number generator - has to be set to get repro-
ducible and comparable results. Number of trees used for indexing is responsible for the
tradeoff between percision of nearest neighbor output and the time taken for indexing.
The more trees used, the more accurate the results going to be but the longer time it will
take for indexing. Finally, queried job postings from ANNOY should be filtered by a
threshold to avoid getting irrelevant non similar job postings, if the job to be queried is
in a distant point in the vector space.

After setting a Random Seed value, number of trees and a threshold, nearest neighbors
for job postings can be queried for different vector space modeling algorithms for com-
parison as shown in Section 4.4.

Limitations

Jobs with titles Java Developer, Hamburg and Java Backend Developer, Stuttgart are examples
of two very similar job postings but in different locations, and therefore they suit two
different types of users, those who live in Stuttgart and those who live in Hamburg.
According to our dataset rules, if no three users co-interacted with these two jobs, they
will not be considered similar in the dataset. Same issue appears with similar job postings
with relatively big time interval between them. For instance, Accountant (posted in 2014)
and Audit (posted in 2017), users who interacted with the first job may have either been
inactive on XING three years after or rather not interested in a similar job they interacted
with three years ago.

1https://github.com/spotify/annoy

32 3 Methodology

To conclude, the dataset contains similar postings, but it does not contain a similarity
score between every job and another in the dataset. By putting all the jobs in a single
vector space, similar jobs are retrieved that gets punished by the incomplete dataset that
we are using. In other words, we do not want to capture the co-interaction behavior
of users as much as the document similarity itself, which requires a slightly different
evaluation approach.

3.3.2 Positive and Negative Sampling Dataset Evaluation

In order to avoid the limitations of using the full latent vector space, we have to evaluate
the models on a dataset of narrower scope, which can be achieved by generating smaller
datasets for every job posting. In order to assert their approach in information retrieval
tasks, Le and Mikolov [2014] created their own dataset of triplets, consisting of Paragraph
A, similar Paragraph B and a third paragraph C that was randomly sampled from the rest
of the collection as a non similar paragraph. Inspired by the authors, Negative Sampling
in Word2Vec architecture and Cross Validation [Stone 1974]. We extended the approach
to construct the positive and negative Dataset in this order:

• Set a Random Seed value to obtain to obtain reproducible results, and comparable
across different models.

• For every job Ji, randomly sample N similar jobs from the dataset (Positive Jobs),
and sample tN jobs from the entire dataset (Negative Jobs) to create a test-list of job
postings for the given Job.

• Create K lists of randomly sampled positive and negative job postings for each job
and shuffle all lists.

• Reorder every list using cosine similarity value between each job posting in the list
and its corresponding job posting Ji.

• F-measure can be used to compare the lists cutout at N (retrieved), and the rele-
vant job postings from the dataset. F-measure of all lists can be averaged to give a
performance estimate of the model.

The K lists generated can be viewed as K�folds in cross validation, where F-measure can
be averaged out on the fold level to compare models statistically, or just have an average
over all folds to give a comparable performance value for the model.

3.3 Latent Space Evaluation 33

By "Negatively sampling" job postings from the entire dataset, we reduce the chance of
fetching similar job postings that our dataset did not capture. There is a chance of having
similar job postings labeled as negative/not-similar, but that’s one of the reasons K lists
for each job is randomly sampled, so errors can be averaged out. Which follows the
same concept of negative sampling in the Word2Vec architecture, as the model works by
repetition, chances that similar words (in our case job postings) that gets sampled out
from the entire corpus (dataset) is low.

During the experiments, we chose t = 4 and N = 10 to have 50 jobs per list. Increasing
the ratio of negative samples to positive ones pushes the model to behave more like the
Full Vector space evaluation, as more negative samples will eventually retrieve similar
documents.

Unfortunately, by using negative sampling approach for picking non similar jobs, we
can’t be certain that all of them are non similar. Hence, the ideal model won’t have 100%
F1 score on this dataset.

Visualizing 500 dimensions is impossible, but using some dimensionality reduction al-
gorithms like T-SNE, we can display the relationship between items in the vector space
on a 2D or 3D plane. Figure 3.4 shows one of the sampled lists in Positive and Negative
dataset approach, where red colored job represent the job being evaluated, and the blue
colored ones represent the positive similar job postings sampled from our user interac-
tions, and the rest of the jobs (in black) depicts the non similar jobs sampled from the
entire corpus. In the figure, we can already notice multiple observations:

• Most of the blue similar jobs are already encapsulating the job being queried, where
they all discuss the same topic, Java Development.

• Some of the black non similar sampled jobs are very relevant to Java development,
we see FrontEnd developer and Teamleader in IT Development on close proximity to the
Java cluster.

• There are multiple clusters forming already. For instance, the top right corner in
the figure has a cluster of Media Management, which happened to get sampled as
negative dataset for our job being evaluated.

Hence, our goal is to have a document representation where all the (blue) similar job
postings are as close as possible to the one being evaluated (red), and at the same time,
as further away from all non similar (black) job postings. When evaluation takes place, a
nearest 10-neighbor will take place to query the 10 nearest job postings to the job being

34 3 Methodology

Figure 3.4: After generating job posting embeddings, the dataset can be
visualized using a dimensionality reduction algorithm (T-
SNE). The figure shows one of the sampled list in Positive
and Negative Dataset, where the red job posting is the one
being evaluated, blue job postings depicts the similar Posi-
tive job postings, and the black ones represents the negative
non similar sampled jobs from the entire corpus.

evaluated. We achieve maximum F-measure if the top 10 jobs (in the example) in the
sorted list are the 10 positive job postings we sampled earlier, or minimum F-measure if
none of the positive job postings appeared in the top 10.

The subsequent chapter will use the two offline evaluation datasets covered to compare
the performance of different model architectures, hyperparameters and feature combina-
tion attempts.

35

4 Offline Evaluation

In this chapter, the results are shown to justify the choices of the hyperparameters cho-
sen, as well as the experimental results of the comparison between different document
embedding models. Positive and Negative Dataset was used for all the experiments, for
both parameter tuning and models comparison, where the entire latent vector space were
only used in models comparison to make certain both datasets shows the same behav-
ior. In other words, did we create any biases while creating the Positive and Negative
Dataset?

4.1 Semantic Models Hyperparameters

There are plenty of hyperparameters to tune in Word2Vec model. Researchers exploit the
hyperparameters that best suit their needs on their given datasets [Levy et al. 2015][Ji
et al. 2016][Yao et al. 2017]. However, in order to test all combinations of the most used
hyperparameters by researchers to find out the best performing ones on our dataset, we
would have to conduct over 190 experiments.

First Experiment: Lowercase

We perform a sweep over the parameters in a iterative fashion: The first experiment was
to find out whether Lowercase transformation can produce better results. 10% of the
dataset were sampled and the experiment was carried out while fixing all other hyperpa-
rameters as follows: 500 Vector dimensions, window = 10, sampling rate of 1e-5, negative
sampling 15 and minimum count of 5. Documents were shuffled to avoid structured bias
[Melamud et al. 2016] that results from documents that may be trained in the same or-
der.

As shown in Figure 4.1, we obtain consistent improvements for the F1 score at differ-
ent ranks K than the model trained by the unprocessed text by a maximum F1 score
improvement of +4.0 on the training sample.

Lowercase transformation is a common practice in Natural Language processing [Reynar
1999] and information retrieval applications [Jansen et al. 1998]. The skepticism however,
came from the fact that German language uses capital letters to denote nouns. Hence,

36 4 Offline Evaluation

Figure 4.1: Training the model with lowercased text consistently scores
better F1 values than normal case text across the K ranks of
the retrieved items.

given a clean text, nouns should be the most important words to distinguish the doc-
ument, which is not the case in our dataset. Multiple occurrences of the same word
appears with different representations, because there is no clear format for job postings,
and sometimes to direct attention to certain words, like accountant, Accountant and AC-
COUNTANT, where the model treat them differently, with different - and similar - vector
representations. However, it reduces the model’s accuracy overall, since context of the
same word will be shared among all its different representations.

Second Experiment: Model Hyperparameters

After lowercasing the job postings’ description, another experiment was conducted to
decide which Word2Vec architecture will be used (Skip-gram or Continuous Bag-Of-
Words). In addition, we cross validated different window sizes (w = 1,5,10) in the same
experiment as shown in Figure 4.2.

The graph shows significant difference between F1 scores of CBOW models (denoted as

4.1 Semantic Models Hyperparameters 37

Figure 4.2: Skip gram models performs generally better than CBOW
models, and the F1 score goes higher as window size in-
creases.

dashed lines) and Skip-gram models (denoted as full lines). F1 scores also vary across
different window sizes of the same model architecture. In Skip-gram model, the bigger
the window, the higher the F1 scores, as a window of size 10 captures broad topical
content than a window of size 1. Which is not true however in the CBOW architecture, as
window of size 1 performs 3% better than the model with window size 10. We believe the
drop in performance due to increasing window size in CBOW is caused by the averaging
(smoothing) of context word vectors before assigning the vector for middle word, which
is not the case in Skip-gram models that scales well with window size. One more reason
for Skip-gram performance is its sensitivity to infrequent and rare words [Mikolov et al.
2013b] that possibly constitute the main features/keywords of the document.

Skipgram Model with window size of 5 performs slightly worse than window size of 10.
A window of size 5 can be used as a performance/training speed trade-off, since adding
more context to words increases training time [Mikolov et al. 2013b]. However, Skip-
gram model with window size of 10 training time is afforded while experimenting, and
hence the model is used to conduct the rest of the experiments. We used a window that
includes 21 words (10 + 1 + 10) which is not far from the average document word count
in the corpus of 29 words per document.

38 4 Offline Evaluation

Levy et al. [2015] attempted to tackle the most beneficial hyperparameters in the Skip-
gram model, window size was put under test with values of 2,5 and 10. Where window
sizes of 5 and 10 performs equally better than window size of 2 (similar results to our
experiment).

Different negative sampling values were also experimented in the paper which yielded
better results for values 5 and 10 than negative sampling value of 1. Levy stated in the
practical recommendations part that it’s preferable to use many negative samples in the
Skip-gram negative sampling architecture. Confident by the similar finds in our experi-
ment and Levy’s regarding the effect of window size, Negative sampling of value 15 was
used in the thesis.

Based on the experiments conducted on model architectures and window sizes, along
with the hyperparameter values discussed and justified in Section 2.3.1, Word2Vec hy-
perparameters used in upcoming experiments can be summarized as follows:

1 Word2Vec -size 500 -window 5 -sample 1e-5 -negative 15 \

2 -threads 1 -iter 20 -min-count 5

4.2 Semantic Models Comparison

Once all hyperparameters are picked for the models, they can be compared to each other
on the same dataset. F1 score @ 10 is picked for as comparison criteria since we have 10
positive similar job postings in each list, which can be interpreted as an average percent-
age of jobs in the top 10 which are actually similar. For example, a model has 70% F1
score @ 10 can be visualized that on average, 7 out of 10 jobs are similar. Note that 100%
F1 score is almost impossible because of the limitations listed in Section 3.3.2.

Model F1 score@10
TF-IDF 08.69 %
Word2Vec 54.84 %
Word2Vec + stemming 56.22 %
Word2VecF + stemming + Document Context 61.12 %
Word2VecF + stemming + Document Context + TF-IDF Weights 62.81 %
Doc2VecC + stemming 62.73 %
Doc2VecC + stemming + TF-IDF Weights 64.23 %

Table 4.1: F1-scores on cross-validation dataset

As baseline we use the simple TF -IDF , which represents documents as a vector of TF-

4.3 LDA 39

IDF scores of words in the description sections, then cosine similarity is used for re-
ranking. This baseline performs lowest with an F@10 score of 8.69%. One characteristic
can be deduced is that similar documents don’t share exact words in the description, and
even if they do, the shared words are not enough in frequency and inverse document
frequency to distinctly identify similarity between them.

The Word2Vec model (Negative Sampling Skip-gram model) was tested using the hyper-
parameters in Section 4.1, the score of 54.84% (with striking difference from TF-IDF’s)
shows that using semantic similarity between words performs better than using exact
words, if the words are placed properly in the vector space. Using Stemmed input for
both training and assertion scores better than using the unstemmed text (+1.38) and help
reducing the training time, since stemmed input contains smaller distinct vocabulary
than the original’s.

Word2VecF model when combined with arbitrary context, in this case the document ID,
performs +4.9 better than using Word2Vec alone. Since Word2VecF would aim to predict
the documentID instead of the context window, the context can be seen as a global context
over the entire document, which should (and does) perform better than using Word2Vec
local context.

By using TF-IDF scores in the weighted average, F1 score was boosted by +1.69 at 62.81%.
Since all words contributes in building the document vector, TF-IDF gives more share to
words which are distinct to the document, hence pulling the document vector more into
their direction. Stop words with low TF-IDF score contribute very little in the weighted
average, or not at all if word appears in all documents.

Doc2VecC performs the best among single model experiments using description input
at 62.73% with stemming only and 64.23% with both stemming and TF-IDF weighted
average. As it combines the Word2Vec local context and the Word2VecF global context
(using its own document vector while training).

4.3 LDA

LDA model was trained on the corpus after filtering frequent words, that appear in more
than 50% of the documents, and those with frequency less than 20. The corpus was
populated with bigrams that appear more than 20 times across the dataset, and the model
was trained with 1000 topics over the default values used in Gensim python library.

40 4 Offline Evaluation

Before conducting the experiment, we analyzed the topic distribution to make sure the
topics are interpretable. Table 4.2 shows the top words (translated to English) of some of
the latent topics in our dataset. We can see in the example a topic with a very particular
theme like Finance, where most of the words can be traced back to the field of risk man-
agement and financial transactions. Some of the topics has a broad scope like Technical,
where words ranges from Mechanical Engineering to Technology. One of the topics han-
dle a very specific case as shown in Regional topic, where the top words consist of the city
Kiel which lies in the state of Schleswig Holstein. We saw that this topic contributes more
in northern-German job postings.

Database Project leader Region Technology Linux Investment
SQL Project Regional Technical System Risk

ORACLE Costs Kiel (city) Documentation Unix Client
Datenbank Appointments Schleswig (region) Engineer Service Finance

Maintenance Management Holstein (region) Training Operation Banking
Query Planning Rest Further Education Python Risk management
Tuning Subprojects Resting Mechanical Engineering Apache Transaction

Datawarehouse Coordination Schleswig Holstein Construction Windows Trading
Data responsbility Sales Region Design MySQL market

Databases Project management Regional Technical Operation Systems Finance

Table 4.2: Top words in 6 of our underlying topics in our dataset where
last row summarizes the topic in a single word. A document
can be represented as a vector of 60% Databases, 30% Opera-
tion Systems and 10% Technical.

LDA was tested using stemmed input but it didn’t perform anywhere close to the
Word2Vec variations that includes global context. In order to reduce the computational
complexity of comparing vectors of 1000 dimensions, topic modeling frameworks reduce
the vector to sparse one, where dimensions lower than a certain threshold, a probability
of 0.01, is set to 0. Two experiments where held using two different similarity measure as
shown in Table 4.3, Hellinger distance performs way better on sparse vectors than cosine
distances, yet not good enough with a score of 57.69%.

Model F1 Score@10
LDA + stemming + Cosine Distance 42.55 %
LDA + stemming + Hellinger Distance 57.69 %
Doc2VecC + stemming + TF-IDF Weights + LDA 65.85 %

Table 4.3: LDA results show the striking difference between using different similarity
metrics, where hellinger distance is better suited for LDA. Combining LDA
and Doc2VecC performed slightly better than Doc2VecC itself.

One idea was to combine the document vector from Doc2VecC and the document vector
(vector of probabilities) from LDA to construct a 1500 document vector, hoping to bias
the vector towards its global features. However, since the two vectors performs best

4.4 Latent Vector Space 41

with two different similarity measures, combining them wasn’t feasible. The approach
followed however, was calculating the similarity of the Doc2VecC vectors of 2 given
documents, then averaging it out with the similarity of the LDA vectors of the given
documents together as illustrated in Figure 4.3.

Figure 4.3: To compute the similarity between two documents in LDA
and Word2Vec/F/Doc2VecC setup, the models infer the
vectors for the two documents, and similarity scores are
computed separately using different metrics, then averaged
out to compute the final score.

By averaging the LDA vector with Doc2VecC, that already includes local and global
contexts, we give more bias to the global aspect of the document when calculating the
similarity score. Combining LDA to Doc2VecC showed improvement over using only
Doc2VecC by +1.63. Which is the best result achieved from using the plain text in the
description of job postings. However, training LDA model takes over 9 hours over a
sample of 112,000 jobs, it raises a question - from an every-day usage practical perspec-
tive - whether +1.63 increase in accuracy in retrieving similar documents is worth the
time and resources spent to train the LDA model in production pipelines.

4.4 Latent Vector Space

Even though using the entire Latent Vector Space is not appropriate for hyperparameters
tuning, it is useful to run the models over jobs in unconstrained environment to imitate
real life production pipeline, and to check for any contradictory behaviors. 10,000 jobs
got sampled from the dataset and embedded in the vector space using different models
then K-Nearest Neighbor is used to retrieve nearby jobs within a threshold = 0.5.

As shown in Table 4.4, models’ performance scores follow a similar behavior in full latent
vector space as the positive and negative dataset but the ratios are different. Stemming

42 4 Offline Evaluation

Model F1 Score@threshold
Word2Vec 2.098 %
Word2Vec + stemming 2.142 %
Word2VecF + stemming + TF-IDF Weights 2.319 %
Doc2VecC + stemming 2.529 %
Doc2VecC + stemming + TF-IDF Weights 4.237 %
Doc2VecC + stemming + TF-IDF Weights + LDA 4.231 %

Table 4.4: F1-scores on the entire co-interaction dataset.

doesn’t seem to affect the score with negligible +0.04, Word2VecF doesn’t perform as
good as Doc2VecC. TF-IDF has the biggest impact that almost doubles the F1-score of
Doc2VecC without weighted average.

Combining LDA and Doc2VecC in the vector space doesn’t seem to add any value (negli-
gible - 0.006%). Following these observations and the results from the Positive/Negative
Dataset, along with LDA computational overhead, LDA wasn’t picked for the final On-
line evaluation.

4.5 Job Title

Instead of using the description only, the title can also be used to distinguish similar
job postings. An experiment was conducted that started by building a document vector
using Word2Vec (stemmed with TF-IDF weights) using the words in the title only, and
use the vector for evaluation. The aim of this experiment was to avoid any computational
complexity from processing the entire description if the title contains enough information
to distinctly differentiate the document in the vector space.

The intuition was that Word2Vec should perform well without any help from global con-
text since titles contains on average 4.8 words, such that word embeddings using the local
context should be enough to give promising results. As shown in Table 4.5, Word2Vec us-
ing title vector only yielded 58.79%. Compared to the description vector from Doc2VecC
(64.23%) in Table 4.1, the F1 score difference is significant enough that there was no point
in running the experiment using the full vector space.

4.5 Job Title 43

Doc2Vec

Since title is short, Doc2Vec training shouldn’t take as much training time using titles
as using full descriptions. Moreover, Since we are not using the C code, using Gensim
library for training Doc2Vec, number of iterations can be asserted and visualized to track
down the error rate (or in our test case, the F1 score) while training. As well as using
multiple cores for parallel processing, without worrying about dirty writes, since Gensim
takes into account locking between threads.

The first Doc2Vec experiment was to assert the number of dimensions, all other variables
were fixed, window size = 10 to include all the title words, default minimum count = 5
and sampling rate = 1e-5 and a Distributed Bag of Words model, which has the same
architecture as Word2Vec’s Skip-gram. The variable number of dimensions was tested
with values of 100, 250 and 500.

Figure 4.4 shows the results of conducting the experiment with three DBOW models
with different number of dimensions over 20 iterations. Looking at the results, the per-
formance increase from a 100 dimensional model to 500 dimensional one is +1.36%. One
could argue that it’s a fair price to pay to decrease the training time by using the 100
dimensional model. One interesting remark is that the models seems to converge after
15 iterations, which also reduces the training time once the model is used in production
pipelines.

The results of using Doc2Vec on title gives better results than using Word2Vec, but the re-
sults shown are plots of F1 scores on training dataset. An experiment has to be conducted
to check the effect of Doc2Vec on titles it hasn’t seen before. In other words, how good
is the model when it infers document vectors rather than updating the neural weights of
jobs titles during training.

Another experiment was conducted to test the performance of Doc2Vec models on un-
seen documents. However, this time we also cross validate the second Doc2Vec archi-
tecture, the Distributed Memory model (DM). Our intuition to exclude it in the first ex-
periment was backed by the fact that DM depicts the C-BOW model in Word2Vec which
already showed worse results than the Skip-gram (see Section 4.1). However, since titles
are considered very short sentences, CBOW approach can behave differently and thus
was worth investigating.

Two models were tested using 500 dimensions over 50 iterations, while testing the perfor-
mance of the inferred vectors of unseen documents every 5 iterations. Figure 4.5 shows
the results of the experiment, DBOW performs surprisingly well with 65.39%, almost as

44 4 Offline Evaluation

Model f1score@10 / Iteration = 20
DBOW - 100 dimensions 59.87 %
DBOW - 250 dimensions 60.03 %
DBOW - 500 dimensions 61.23 %

Figure 4.4: By fixing all other hyperparameters, experiment was con-
ducted on 3 DBOW models with different number of dimen-
sions to test it’s significance. A sample of 2500 jobs where se-
lected as a validation dataset to test the training error across
iterations. The table shows the absolute F1 scores at itera-
tion 20.

good as both combining Doc2VecC and LDA together (Section 4.3), where D/M scored
61.59% only as expected from the previous experiment. Unfortunately, Inferred vectors
for unseen documents results were drastically lower that most results in all experiments
in the thesis at 31.15% and 20.66% for D/M and DBOW inferred vectors respectively.

Having a look at the inferV ector() in the implementation, the drop in accuracy can take
place for many reasons. For instance, trying to infer a vector for a seen document will not
yield the same vector back. It is a random process that tries to approximate the vector by
running the training function once using the unseen document to calculate the vector, as
it depends on the seed and the order of input tokens fed to the function.

4.6 Combining Title and Description Vectors 45

Model (500 Dimensions) f1score@10 / Iteration = 50
D/M 61.59 %
DBOW 65.51 %
D/M - Inferred Vectors 31.15 %
DBOW - Inferred Vectors 20.66 %

Figure 4.5: DBOW models give better performance on short sentenced
documents than D/M models. However, accuracy drops to
half if the model tried to infer a vector to an unseens docu-
ment. The table shows the absolute F1 scores at iteration 50.

The drawback of such low accuracy in unseen documents that, Doc2Vec can’t be used as
a query model where it calculates title vectors on the fly in Online systems and produc-
tion pipelines. The model would have to be trained overnight every time a bulk of new
documents arrives.

4.6 Combining Title and Description Vectors

Since title performed very well, an experiment was conducted to show the effect of using
both title and description vectors. Garten et al. [2015] proposed concatenating vectors

46 4 Offline Evaluation

to prove that "hybrid representations effectively leverage strengths of individual compo-
nents". In our scenario, documents can be represented by a single feature vector by con-
catenating title vector from Doc2Vec and description vectors from Doc2VecC, since both
of them share the same distance metric (Cosine Distance). The experiment was rerun us-
ing document vectors of 1000 dimensions using both Positive and Negative Dataset and
the Full Vector Space, as shown in Table 4.5.

Combining title and description vectors yielded 69.13% F1 score, +3.62 more that its indi-
vidual components’ scores on the Positive/Negative Dataset. On the full latent space, the
concatenated vector scored 4.853%, relatively speaking, that’s +14% more F1 score that
the individual components score in the full latent space. We believe that title contains
condensed information regarding the job title with as least noisy words as possible, and
the description helps in adding extra information needed to differentiate different jobs
that share similar titles.

However, since part of the algorithm uses Doc2Vec (with titles), we are constrained with
pre-trained documents, as inferring title vector would drop accuracy as mentioned ear-
lier. On the other hand, Doc2VecC model is train once (can be weekly, monthly) and
generate description vectors on the fly. Another approach that involves Online evalua-
tion has to be investigated that uses the information in the title and the Doc2VecC speed
in generating vectors for unseen documents, just in case training Doc2Vec everyday is
not feasible in production.

Title weighted Description

The experiment followed aimed to use the average of Doc2VecC word vectors of the de-
scription weighted by the TF-IDF values except that it also gets weighted by an arbitrary
variable if the word is contained in the title. It can be visualized as follows:

V (documentk�words) =

Pk
i=1

8
<

:
TF -IDF (wi) ⇤ V (wi) ⇤ P if wi 2 title

TF -IDF (wi) ⇤ V (wi) otherwise

Pk
i=1

8
<

:
TF -IDF (wi) ⇤ P if wi 2 title

TF -IDF (wi) otherwise

(4.1)

Equation 4.1 shows how the word vectors gets weighted. When constructing the docu-
ment vector containing K words (V (documentk�words)), all word vectors V (wi) are multi-
plied by the their corresponding TF-IDF values TF -IDF (wi) and a constant P if the word

4.7 Synopsis 47

appears in the title, the vectors are summed up and divided over the weights to calculate
the weighted average. If no word in the description appear in the title, it behaves as a
normal TF-IDF weighted average as explained earlier in Equation 2.2. Otherwise, the
word appears in the title, the vector is multiplied by a the constant P that gives more
weight for the given word. We already know that the title is good enough to distinguish
the document based on the Doc2Vec results earlier, so giving the title words more weight
when averaging pull the document vector a bit closer to the title in the vector space.

Model (+ stemming + TF-IDF weights) f1score@10 f1score@Threshold
Word2Vec Title 58.79 % -
Doc2Vec Title 65.51 % 4.258 %
Doc2Vec Title + Doc2VecC Description 69.13 % 4.853 %
Description Weighted Average in title’s words favor 73.05 % 4.272 %

Table 4.5: Combining title with description resulted in the best perfor-
mance in the thesis at 73% f1score@10.

By arbitrary picking P = 5, the approach yielded 73.05% F1 score on the Positive and
negative Dataset, considered the best result we have by a + 3.92 better than the second
best as shown in Table 4.5. It shows that by choosing a proper weighting function, we
can achieve better results than changing the entire model. However, it scored 4.272% in
the Full Vector Space, going second best after concatenating the Title Doc2Vec and the
Description Doc2VecC.

As mentioned earlier, The Full vector space models the user interactions more than the
similarity of documents themselves because of how the dataset were sampled out and
created. One reason for the drop in the F1 score while using the weighted average ap-
proach when compared to concatenation technique is that number of dimensions was
doubled (500 vs 1000 dimensions respectively), and using the same number of trees in
the random hyperplane generation of ANNOY may yield different results in an unfair
comparison.

4.7 Synopsis

To sum up, we conducted multiple experiments in this chapter to decide on which differ-
ent preprocessing steps, hyperparameters values and models should be used to increase
the quality of recommended similar job postings for users. Results showed that F1 val-
ues increase significantly by lowercasing and stemming the input text, which helps in
reducing the vocabulary size and increasing the training co-occurrences.

48 4 Offline Evaluation

After cross validating the model architecture (CBOW vs Skip-gram) and different win-
dow sizes (1,5,10), the Skip-gram model with window of size 10 performed the best on
our ground truth. We believe Skip-gram showed better results because of its sensitivity to
infrequent and rare words while bigger window size helps integrating more words while
training, resulting in a global context learning behavior. Performance of different seman-
tic models were compared to decide on the best performing model on our job postings
dataset. Word2VecF model that incorporates global features while learning performs bet-
ter than models that only uses local features only like Word2Vec. Where Doc2VecC that
uses both global and local features performed the best in the model comparison. As doc-
ument vector is constructed by average of word vectors in the document, TF-IDF is used
to convert document vector to weighted average, where it consistently performed better
than using normal average. Since documents contain certain words that can uniquely
identify them, more weights should be given to these unique words when constructing
the document vector.

LDA was used in an attempt to see the effect of topic modeling algorithms on document
similarity, it didn’t perform as good as Doc2VecC. However, when both models were
combined in an attempt to bias the global features, they performed slightly better than
Doc2VecC.

Job titles were integrated to investigate the effect of using other document features beside
the description. After cross validating the model and number of dimensions, Doc2Vec
Distributed Memory model with 500 dimensions were used. The model, using only the
job titles, scored better than any model that integrated job posting descriptions. Com-
bining both Doc2Vec on title and Doc2VecC description yielded even better results than
only using Doc2Vec. We believe using the title is good enough to distinguish most of
the jobs apart, but description contains necessary contextual information than be should
integrated for more accuracy.

Overall, our strategy was to use a model that generates document vectors with the least
training and evaluation time. A model that uses a weighted average of the word vectors
favoring those that refer to words in the title achieved the best performance and was
therefore chosen to be tested online in XING’s recommender system. The details of the
online evaluation are discussed in the subsequent chapter.

49

5 Online Evaluation

The final phase of the thesis is the A/B test, where the best performing model during the
experiments along with the experimented hyperparameters are tested to evaluate their
performances against the current implementation of XING Elastic Search Reranking.

5.1 Experimental Setup

The two evaluation datasets explained in Section 3.3 are considered Offline, since data
were collected from an earlier time span and filtered from outliers. An Online evaluation
however is testing the model in real time using active users on the platform, to assert the
performance in every day situation.

A controlled experiment was conducted that splits most active users into two groups,
where the first group gets job posting recommendations using the currently existing ar-
chitecture known as the Control Group, and the second group gets job posting recom-
mendations that are vectorized and re-ranked using the model currently under trial, the
group is known as the experimental group. In Industry, the test is known as A/B Test
which maps to Control/Experimental groups respectively.

An A/A test was conducted [Kohavi et al. 2009], that splits the sample of active user
groups to two groups that get recommendations from the same recommender system, in
order to validate the absence of any bias that may occur from choosing a poor split. Table
5.1 shows the result of the A/A test, the absolute Click-through Rate (CTR) is masked
due to XING policies, by normalizing the real CTR in Group A1 to 50% and changing
the absolute number of clicks and Group A2’s CTR accordingly to preserve ratios and
obscure XING’s private data.

The table shows the results of the split over 30 days, where the same users was separated
to two groups based on the users’ IDs. On average there are 1.4 million users who viewed
10.9 million job posting on average, and (masked out) 5.46 million job postings got their at-
tention. The Click-Through Rate (CTR) is the core of Online evaluations, as it measures
success rate of a certain algorithm or major change in the logic behind delivering services
to users. It is calculated as shown in Equation 5.1, the more items that the user interacted
with, the higher the CTR and the more successful is the algorithm (or less successful if
less interactions with a certain group of items is intentional).

50 5 Online Evaluation

Group A1 Group A2

Number of users 1,399,523 1,403,822
Shown 10,918,720 10,952,460
Masked Clicks 5,459,360 5,476,230
Masked CTR 50.00% 50.035%

Table 5.1: A/A output for the split function over sampled users over
30 days, with masked Clicks and CTR to comply with XING
policies, resulting in negligible difference in the split.

CTR =
#ofclickeditems

#ofshownitems
⇤ 100 (5.1)

Since the difference in the CTR between the two groups is almost negligible (0.02%). The
split hashing function can be used to conduct the A/B Test, and the test outcome should
be credited to the different strategy applied on the Experimental Group.

The experiment was conducted by having XING employees only as the experimental
group, then ramping up the ratio of all users on the platform from 5% to 50% over 4
intervals with a couple of hours in between. This way we can track missing recommen-
dations or problems in the workflow that may affect large amount of users which can be
caught and handled in time with minimal losses [Kohavi et al. 2009].

Our hypothesis is that group B, interacting with job postings reranked by our top per-
forming model, should have higher CTR, since users will be shown job postings which
are more similar to those they interacted with in the past.

The best performing model, title weighted description, was used in the A/B Test to assert
the model’s performance with user interactions in real time, and to validate the hypoth-
esis that job postings similar to the ones interacted by the users will be more appealing
to them. The preprocessing stage had to be rewritten in Scala to fit in XING’s technol-
ogy stack. The Hive, Spark, Oozie and lower level workflows are explained in details in
Section A.5.

On a higher level, Figure 5.1 shows the concept of the A/B Test workflow. There are 4
main steps to generate the recommendations in the A/B test environment. It starts by
a user bookmarking and positively interacting with multiple jobs on the platform. The
next time the platform generates recommendations for this user, a query is generated
based on the aggregated features and metadata of previously bookmarked and replied
job postings. The query is sent to ElasticSearch which uses the keywords and metadata

5.1 Experimental Setup 51

Figure 5.1: The workflow runs as follows: i) The user bookmarks and
replies to job postings are denoted as set BM . ii) The rec-
ommender creates a query Q using the metadata of BM . iii)
For both Group A and B, Q is issued to ElasticSearch to re-
trieve documents and rank them using keywords and BM
metadata, resulting in a set of job recommendations R. iv)
An additional step for group B is passing the results R and
bookmarked/replied jobs BM to Topic model vector repre-
sentation module to re-rank the documents based on simi-
larity between BM and R, and returns the reranked list R0

[XING internals].

like disciplines to retrieve and rank job postings from XING jobs inventory. Until now,
this is the current implementation of More-Like-This recommender at XING and it ap-
plies to all users.

If the user ID belongs to group B in the A/B Test, an extra module receives the list of re-
trieved recommendations while from ElasticSearch and ignores its ranking. Then, along
with the positively interacted job postings from the user, it calculate the cosine similarity
between the positively interacted vectors and the retrieved job postings vectors in the
latent space to re-rank the list. Hence, we explicitly compare the re-ranking performance
between ElasticSearch metadata and keyword matching algorithm in group A versus Se-
mantic and Topic model embeddings in group B.

52 5 Online Evaluation

5.2 Results

Before conducting the Online evaluation workflow, another test had to be conducted first
to check whether the A/B test will give different results than the current architecture. In
other words, is it worth it to run the A/B test in the first place?

The model got implemented and deployed on a REST endpoints. Which was used -
along with the original endpoint - to rerank the same recommendations for 2000 of most
active users on the platform. As shown in Table 5.2, the intersection of recommendations
between the two endpoints does not pass 36% for all K ranks in the recommendation
lists. Which shows that the changes implemented would have significant results.

Top K Intersection Distance From User (KM)
mean stdev Original Endpoint Endpoint B

4 30.1% 32.16% 287.4 179.3
10 35.5% 27.89% 293.5 188.4
20 35.4% 25.69% 325.4 195.1
50 34.1% 21.28% 336.1 191.9

Table 5.2: A/B test pre-analysis of recommendations

Another interesting remark from the analysis is the average distance of the jobs to the
User. In other words, how far are the job recommendations from the user’s location/city
in Kilometers (KM). The model reranks recommendations with an average distance of
30% closer to the users than the current approach in the top 4, up to 60% in the top 50.
One hypothesis is that jobs in the same city are closer in the vector space to each other
which are influenced by city vectors in the description.

The A/B test was conducted for 10 days using the user group split discussed in Section
5.1, the target audience for the test was a sample of users who bookmarked, interacted or
rated a job posting in the last 3 months. Due to the fact that noninteracting users will not
receive any recommendations from the MLT recommender, which makes the two groups
get the same recommendations from other sub-recommenders.

Table 5.3 shows the results from the A/B Test, the absolute values of Clicks and CTR
are masked out by normalizing Group A’s real CTR to 50% and changing the Clicks
and Group B’s CTR accordingly to preserve the ratios without showing XING confi-
dential numbers. The experimental group B has a very noticeable difference of +8.00%
more clicks per received recommendations using the title weighted description model in
a short span of 20 days.

5.3 Synopsis 53

Group A Group B

No of users 77,151 76,853
Shown 1,022,788 1,003,527
Masked Clicks 511,394 541,904
Masked CTR 50.00% 54.00%

Table 5.3: Sampled users in Group B have +8.00% higher CTR using
those in control group A. The CTR and absolute clicks are
masked to comply with XING policies.

5.3 Synopsis

In this chapter, an A/A test was conducted to split the users into two groups and make
sure the two groups performs similarity before applying any major changes. Then the
A/B test was conducted over the span of 20 days to assert the impact of the document
representation model. The results of the offline evaluation could thus be confirmed in the
online A/B test. Using the weighted average of word vectors while putting an emphasis
on those word vectors that appear in the title of the job posting outperformed the current
setup that XING was using, i.e. a ranking that is primarily based on Elastic Search’s TF-
IDF vectors.

55

6 Conclusion

To sum up the work done in this thesis, we constructed the dataset based on the positive
user interactions with the platform due to the lack of a dataset of similar job postings.
Our hypothesis that if 2 or more users showed interest in 2 job postings, these postings
are similar. We used the constructed dataset to evaluate the performance of different
document representation models and preprocessing steps. Experiments conducted dur-
ing the thesis displayed better performance when the text is preprocessed via Lowercase
conversion and stemming, reducing the number of vocabulary the models has to deal
with, and increasing the number of word co-occurrences for training.

Different document representation techniques have been experimented with like average
of word vectors from different word representation models like of Word2Vec, Word2VecF
with arbitary context and Doc2VecC. The experimental process took an iterative approach
in finding out the best hyperparameters for the semantic models. Experiments with topic
modeling algorithms was also conducted using LDA on its own and in combination with
Doc2VecC vector representation which yielded slightly better performance than only us-
ing Doc2VecC, which were not used for the Online test due to the computational com-
plexity of LDA training in production.

We went to explore different features of the job postings that is not associated with the
job description. For instance, Doc2Vec using only job postings’ titles yielded better re-
sults that using any document description representation, and combining both title vec-
tor from Doc2Vec and description vector from Doc2VecC yielded the best results on our
dataset. However, in an effort to eliminate Doc2Vec due to its limitations in inferring
document vectors, we showed how manipulating the average weight of word vectors to
favor features like job title can improve the accuracy of retrieved jobs. Since words in
the document should not be equally responsible to construct the document vector, re-
searching a better weighting function should be as important as finding the best vector
representation model.

Finally, an A/B test was conducted to assert our hypotheses during the thesis. The
best performing document representation along with the experimented hyperparameters
were implemented in XING pipeline. In order to test it in real time over an experimental
and a control user groups, where the A/B test succeeded with about +8.00% increase in
Click-Through Rate, concluding that users are indeed getting more similar jobs to those
they annotated earlier.

57

7 Future Work

This section lists down the main research questions raised by the thesis, which couldn’t be
tackled due to the time constraint. Future work proposes new experiments that should be
conducted to investigate the impact of different preprocessing ideas and semantic model
modifications on the accuracy of results.

As stated in Section 2.3.1, dense vector representation extracts semantic meanings based
on the co-occurrence of words in the dataset. As more word co-occurrences within the
same context throughout the corpus yield better word representations in the vector space.
However, in the German language, there exist many compound words, for example
Diplomsozialpädagogik which can be split down to Diplom, Sozial and Pädagogik. The model
would include the compound word as a stand alone word along its subcomponents in
the vocabulary.

Compound words are less frequent than their single compounds, implying weaker rep-
resentation of compound words since they are not as frequent as their subcomponents.
The effect of splitting compound words should be investigated which reduces vocabulary
size and training time, and increase the number of co-occurrences for even better repre-
sentation for the subcomponents. For this, compound splitting methods can be used like
SECOS [Riedl and Biemann 2016], [Koehn and Knight 2003] or [Ziering and van der Plas
2016].

Same problem can be seen with using common prefix and suffixes in the job description,
e.g Team- und Kommunikationsfähigkeit is read as Teamfähigkeit and Kommunicationsfähigkeit,
same with ziel- und ergebnisorientierte and Analysetools und -verfahren. The current model
can’t reconstruct the words back from the common prefixes and suffixes, and treat the in-
complete word in the text as a new vocabulary. Recovering the words to its original form
will also decrease vocabulary size and increase the number of training co-occurrences.

Regarding weight functions discussed in Section 2.4.1, our intuition that TF-IDF can han-
dle exhibiting and inhibiting words based on their importance to the document, but other
methods with steeper and more rewarding/punishing weight functions should be ex-
perimented with. Average of word vectors can be limited only by named entities using
Named Entity Recognition, which excludes noisy and stop words from calculating the
document vector.

One of the popular applications in Word2Vec is the vector arithmetics operations on
analogies, such that King�Man+Woman = Queen. In other words, retrieve all words

58 7 Future Work

in the vector space that is similar to King and Woman but not similar to Man, and the
answer was words closest to Queen. The applications of vector arithmetics on job posting
dataset, if a better model is found that preserve relationships between major document
keywords, can allow users to tailor there search results coming from the vector space, for
example, retrieve all job postings that are similar to Marketing and Internship and not
similar to Computer to retrieve student jobs in Marketing areas that is not involved with
technology.

Doc2VecC showed interesting results in both the original paper and the experiments on
XING dataset (see Section 4.2). One can exploit the document vector used for training
in the model by selecting top TF-IDF words to represent the document instead of just
random word sample. Metadata can be used as document vector like title words and
skills in the job postings.

Finally, since we are restricted by XING architecture, ElasticSearch is used for retrieval
of documents and Reranking step is done using Dense Vector representation. ANNOY
can be used for both retrieval and reranking, by placing all the documents inventory
in the vector space, we are no longer tied to ElasticSearch retrieval rule that uses strict
matching. ANNOY will be able to retrieve documents based on their text description
and not their metadata, that can query relevant documents which ElasticSearch will not
be able to retrieve.

59

A Appendix

A.1 XING Metadata

Users at XING can fill in what kind of skills they excel at, and what kind of job opportu-
nities they are looking for as shown in Figure A.1. This helps the job recruiters to find the
candidates for a given job, and help XING improve the quality of the recommendations
delivered for the users.

Figure A.1: Users at XING can supply the skill set they possess and
what kind of job opportunities they are looking for.

A.2 Similar Postings Sample

Table A.1 shows a sample of similar postings used as a dataset during experiments. The
tuples were collected from user interactions on the platform, where two job postings
are considered similar if 3 or more users co-interacted with the two jobs positively, via
bookmarks or reply intentions.

60 A Appendix

Job Posting A Job Posting B

Senior Consultant (m/w) Management Be-
ratung

Senior Consultant (m/w) Operations

Regionalverkaufsleiter (m/w) Bereichsleiter (m/w) / Managementnachwuchs
Bereichsleiter (m/w) / Managementnachwuchs Führungsnachwuchskraft (m/w) Vertrieb / Ju-

nior Sales Manager (m/w)
Junior Key Account Manager (m/w) im Lebens-
mitteleinzelhandel

Führungsnachwuchskraft (m/w) Vertrieb / Ju-
nior Sales Manager (m/w)

Senior Consultant (m/w) Management Be-
ratung

Senior Associate (m/w)

Ingenieure (m/w) Maschinenbau und Elek-
trotechnik

Ingenieure, Bachelor, Master (m/w)

Entwicklungsingenieur (m/w) Projektingenieur (m/w)
Senior Associate (m/w) Technology Strategy Senior Associate (m/w)
Trainee MINI Produktmanagement (m/w) Trainee Produktmanagement (m/w)
IT LEITER (M/W) BEREICHSLEITUNG IT / CIO (M/W)
VICE PRESIDENT OPERATIONS - WELTWEIT
- Strategische Verantwortung: Prozesse

GESCHÄFTSFÜHRER, MANAGING DIREC-
TOR EMEA - Erfolgreicher Mittelständler

Berufseinsteiger / Hochschulabsolvent - Human
Resources (m/w)

Junior HR Manager (m/w)

GESCHÄFTSFÜHRER, MANAGING DIREC-
TOR EMEA - Erfolgreicher Mittelständler Au-
tom

Geschäftsführer Vertrieb/Marketing m/w

BEREICHSLEITUNG IT / CIO (M/W) Leiter IT (CIO) m/w
M&A Berater (m/w) Senior Associate (m/w)
Strategic Business Development Manager
(m/w)

Business Development Manager (m/w)

Director (m/w) GESCHÄFTSFÜHRER, MANAGING DIREC-
TOR EMEA - Erfolgreicher Mittelständler

Trainer/in und Berater/in für Führungskräfte-
Entwicklung

Trainer/in und Berater/in Persönlichkeits-
Entwicklung

LKW- Disponent/in disponent nahverkehr (m/w)
Consultant (w/m) Tax Consultant (w/m) Wirtschaftsprüfung / Audit
Management-Trainee-Programm Bereichsleiter (m/w) / Managementnachwuchs
Selbstständige Berater (m/w) für internationales
Coaching-Unternehmen

Quereinsteiger (m/w) als selbstständige Un-
ternehmer für Führungskräfte-

Table A.1: Example of similar job postings in the dataset

A.3 Job Posting Similarity Score

An experiment was conducted during the early stages in the thesis to discover features
that can help deducing a similarity scores between job postings by exploiting TF-IDF
approach in calculating the score. for example, Job1 and Job2 has 23 interested users in
common. but one of those users is interested in 50 other jobs, in the same logic as IDF,
this user is not interested in this specific job as someone who have 5 job interests only.

So the suggested similarity score was use absolute count of common users N as TF value,

A.3 Job Posting Similarity Score 61

multiplied by average of logarithmically scaled interaction per user u by the maximum
number of user interactions as IDF:

similarity(Job1, Job2, N) = N ⇤
NX

u=1

log(MAX(INTERACTION)+1
INTERACTION(u))

N
(A.1)

Note that outliers should be removed before getting the maximum interactions. Also,
The log nominator has to be 1 more than the maximum in include most diverse and active
users (even if they contribute very little).

The results shown in A.2 shows the top scores, which - according to our assumption -
should be the most similar in our dataset in such a way that a pair of jobs should be
more similar to each other than another with lower score. The same logic implies that
the lowest rows of the table should contain the least similar job postings with the lowest
scores and should be filtered out if possible.

Job Posting A Job Posting B Score

Junior Berater(in) Junior-Berater (m/w) 19.325092609365527
Ingenieure (m/w) Maschinenbau und Elektrotech Ingenieure, Bachelor, Master (m/w) 17.183404979908726
Ingenieure (m/w) für eine nachhaltige Karrier Qualitätsingenieur (m/w) 16.097931530469232
Global E-Commerce Manager (f/m) "Multi-Channe Global E-Commerce Manager (f/m) "Marketplaces" 14.305941834880505
Objektleitung (m/w) Technikumsfachkraft (m/w) Technologieentwicklungszentru 14.040325531164266
Business Analyst Senior Business Analyst 13.428748543542065
Praktikum: Praktikant M&A / Corporate Finance Praktikum Mergers and Acquisitions (M&A) / Corporate Fi 13.14698925238014
General Manager China (m/w) General Manager China 13.132628067596858
Praktikum: Praktikant (m/w) im Bereich Person Praktikant (m/w) im Bereich Human Resources - Recruitin 12.806322408073845
Internship: Administrative Operations (Intern Internship: Project Management Assistant (Intern/Workin 12.64634977031052
Junior-Consultant / Consultant (m/w) Industr Junior-Consultant / Consultant (m/w) Retail Frankfurt 12.245597040699085
Trainee SAP Consultant (m/w) Einstiegsprogramm mind access (m/w) 12.217703151279492
Praktikum: Praktikant/in Entwicklung Fahrzeug Praktikum: Praktikant/in Innovationsmanagement 12.194691929235548
Praktikum: Praktikant/in Digital Marketing Praktikum: Praktikant/in Product Marketing 11.83270617345294
Head of Finance / operativer CFO (m/w) für mi Chief Financial Officer (m/w) 11.599521713811814
Recruiter (m/w) Sourcer / Recruiter (m/w) 11.559789351196196
Studentenjob: Trainee-Programme bei AB InBev Studentenjob: Trainee-Programme in Bremen - General Man 11.407704832016398
Krankenpflegehelfer (m/w) Technikumsfachkraft (m/w) Technologieentwicklungszentru 11.341945183721643
Praktikum / Studentenjob im Business Developm Internship: Summer Analyst | London (m/f) 11.241406060754091
VP FINANCE EMEA & ASIA PACIFIC GLOBAL HEAD OF FINANCE (M/F) 11.181253081569333
Mediengestalter/Reinzeichner Grafikdesigner/Mediengestalter/Layouter/Reinzeichner (m 11.142771942202257
Projektmanager (m/w) Kommunikation und Market Marketing/PR & Eventmanager - m/w 11.083593708885372
Internship: Administrative Operations (Intern Internship: Project Management Assistant (Intern/Workin 11.06042365064935
Senior Marketing Manager (m/f) - Kindle Content Redakteur/in 11.028797234269074
Praktikum Personalentwicklung / Academy Praktikum HR People & Talent Management 10.965929440982546
Gesundheitsberater (m/w) in München Gesundheitsberater (m/w), München, attraktive Bezahlung 10.895442224479737
Investment Banking Analyst - Germany Investment Banking Associate - Germany 10.807258043490705
Praktikum: Heimarbeit Kugelschreiber montiere Praktikum: Heimarbeit Kugelschreiber montieren 10.805448127604095
Graphic Designer / Art Director for Diverse a Grafik Designer (Art Director) 10.762749995976673
Praktikum: Heimarbeit Kugelschreiber montiere Studentenjob: Heimarbeit mit Kugelschreibern 10.736257755101933

Table A.2: Top scores of the similarity scoring attempt

Unfortunately, Table A.3 shows what should have been the least similar job posting pairs
in the dataset. Visual inspection shows very similar job postings like Software Test En-
gineer and Quality Assurance Manager, Linux Administrator and System Administrator with
focus in Linux and Director Corporate Development and Sales Manager. Job descriptions has
been inspected to avoid any title bias, but job posting pairs where also very similar on

62 A Appendix

the description level.

Experiments were conducted using different similarity scores that punishes interactions
on jobs only, others that punish both interactions on jobs and users, along with smoother
and harsher log scales, but results were the all the same, the similarity scoring doesn’t
reflect the degree of similarity between job postings. Hence, the idea of having similar-
ity score was refuted, and the dataset would contain only similar and non similar job
postings.

Job Posting A Job Posting B Score

Verkaufsleiter (w/m) National Key Account Manager (m/w) 0.008217335371184667
Chief Operations Officer/ Co-Geschäftsführer (m/w) Geschäftsführer: Management In bei kleinem Champion 0.011485057489497127
Verkaufsleiter (w/m) Director Corporate Development (m/w) 0.011801624679543049
Verkaufsleiter (w/m) Sales Manager (m/w) 0.01186391250310543
Kommunikations-/ Marketingmanager (m/W) PR Berater / PR Consultant (m/w) Bereich Fashion 0.014470677361283046
Apothekenaußendienstmitarbeiter / Apothekenreferent OTC Vertriebsspezialisten im Leuchtenfachhandel (m/w) 0.01514486597033136
Head of New Sales (m/w) Senior Consultant or Manager - Management Consulting 0.017456029024504174
Head of New Sales (m/w) Field Marketing Professional (B2B Channel) 0.01960293681314222
Operativer Controller (m/w) Mandat Business Controller - Karrierechance für High-Potential 0.022097250675885163
Field Marketing Professional (B2B Channel) Senior Consultant or Manager - Management Consulting - Telco 0.023762613704010106
Vertriebsleitung (m/w) für die Vertriebsgebiete Ham Prozessmanager (m/w) Back-Office Vertrieb 0.0239028494917414
Verkaufsleiter (w/m) Area Sales Manager (m/w) / Gebietsleiter/in im Außendienst 0.024554500428032953
Vertriebsleiter global/internationale Kunden Field Marketing Professional (B2B Channel) 0.02500730314817397
Software Test Engineer / Testautomatisier (m/w) Quality Assurance Manager / Testmanager (m/w) 0.026472737978250734
Software Test Engineer / Testautomatisier (m/w) Quality Assurance Manager / Testmanager (m/w) 0.02723568894419922
Trade Marketing Manager (m/w) Senior Manager Business Development (m/w) 0.029883873685283294
Quality Assurance Engineer (m/w) Quality Assurance Manager / Testmanager (m/w) 0.029890790220842376
Aerodynamik Ingenieur für Turbomaschinen oder exter r FEM/NVH/Akustik (m/w) für den Standort Stuttgart 0.029890790220842376
Quality Assurance Engineer (m/w) Quality Assurance Manager / Testmanager (m/w) 0.031115509737746346
Management-Nachwuchs (m/w) Brand-Portfolio-Manager / Marketing-Manager (m/w) Cheese 0.03131193483637759
Verkaufsleiter (w/m) Key Account Manager LEH (m/w) 0.031372259124059075
(Junior/Senior) Mobile Developer Android (m/w) Werkstudent/Praktikant (m/w) im Bereich App Entwicklung 0.03195629030450236
Director Corporate Development (m/w) Projektleiter Strategie & Unternehmensentwicklung (m/w) 0.03230117310892549
Key Account Manager (m/w) - Enterprise Customers Junior Sales Manager (m/w) Handel 0.032485301714278395
Director Corporate Development (m/w) Regionalverkaufsleiter (m/w) 0.034751070682343045
Linux Administrator (m/w) System Administrator (w/m) Schwerpunkt Linux 0.03582204980294593

Table A.3: Lowest scores of the similarity scoring attempt

A.4 Job Description Preprocessing

Figure A.2 shows the before and after effects of applying the document preprocessing
stage on text input, important HTML tags are used as sentence tokenizer like < br >.
HTML tags are then removed entirely from the text, numbers get normalized to numb
keyword to preserve the context. Websites and Emails are removed and Umlauts gets
normalized to make it easier for decoding step that removes all special characters Finally,
the text is lowercased and stemmed for training or generating a document vector.

A.5 A/B Test Workflow 63

1 < !��XHS : 1 : JOBS : 6��>Ihr Aufgabenbereich

2 D e f i n i t i o n des Produkt�P o r t f o l i o s f \xc3\xbcr Produkte von D r i t t a n b i e t e r n (TPP) in \xc3\x9cbereinstimmung mit der

P r o d u k t s t r a t e g i e unserer Lighting�Marken

3 D e f i n i t i o n des Produkt�P o r t f o l i o s f \xc3\xbcr Handelsware und OEM�Vertr iebskan\xc3\xa4le , um die entsprechenden

Kundenanforderungen zu a n t i z i p i e r e n und zu e r f \xc3\ x b c l l e n

4 Management des Produktlebenszyklus (OEM und Handelswaren) i n k l u s i v e Road Map, Management von Neuprodukten ,

Produkteinf\xc3\xbchrung und P r i c i n g

5 Enge Zusammenarbeit mit den Produktmana�gern unserer Gesch\xc3\ x a 4 f t s e i n h e i t Zumtobel & ; Thorn bez\xc3\xbcg l i ch

des Produktlebenszyklus im Bereich D r i t t a n b i e t e r

6 Aktive M i t a r b e i t an Make�or�Buy�Entscheidungen

7 Produktpr\xc3\xa4sentat ionen und �schulungen f \xc3\xbcr OEM� und Lighting�Kunden

8 \xc3\x9cberwachung und B e r i c h t e r s t a t t u n g der produktbezogenen Umsatzentwicklung

9 Enge Zusammenarbeit mit dem Einkauf , dem Qual i t\xc3\xa4ts�und Prozessmanagement sowie verschiedenen S c h n i t t s t e l l e n

innerhalb der Zumtobel Gruppe

10 Ihr P r o f i l

11 Abgeschlossenes Studium in der B e t r i e b s w i r t s c h a f t s l e h r e oder im Marketing

12 Mindestens 2 Jahre e i n s c h l \xc3\xa4gige Be rufs prax i s sowie Erfahrung auf in ternat iona lem P a r k e t t

13 B e r e i t s c h a f t zu D i e n s t r e i s e n auf wel twei ter Ebene sowie zur M i t a r b e i t in einem kleinen , amb i t ion ier ten Team

14 R o u t i n i e r t in der Steuerung von S c h n i t t s t e l l e n zu bzw . zwischen e i n e r Reihe von Abteilungen und internen Prozessen<

br>

15 S i e sind an der M i t a r b e i t in einem i n t e r n a t i o n a l e n Konzern mit spannenden Aufgabengebieten inte�r e s s i e r t ?

16 Auf Ihre Online�Bewerbung unter www. zumtobelgroup . com/de/ k a r r i e r e . htm f r e u t s i c h

17 Nadine Grasl

18 Human Resources

19 Tel . +43 664 808 92 2111

1 i h r aufgabenbereich
2 d e f i n i t i o n des produkt p o r t f o l i o s fuer produkt von d r i t t a n b i e t tpp in uebereinstimm mit der p r o d u k t s t r a t e g i uns

l i g h t i n g mark
3 d e f i n i t i o n des produkt p o r t f o l i o s fuer handelswar und oem v e r t r i e b s k a n a e l um die entsprech kundenanforder zu

a n t i z i p i und zu e r f u e l l
4 management des produktlebenszyklus oem und handelswar i n k l u s i v road map management von neuprodukt produkteinfuehr

und p r i c i n g
5 eng zusammenarbeit mit den produktmana gern uns g e s c h a e f t s e i n zumtobel amp thorn bezueg des produktlebenszyklus im

bere ich d r i t t a n b i e t
6 a k t i v m i t a r b e i t an mak or buy entsche id
7 produktpraesentat ion und schulung fuer oem und l i g h t i n g kund
8 ueberwach und b e r i c h t e r s t a t t der produktbezog umsatzentwickl
9 eng zusammenarbeit mit dem einkauf dem q u a l i t a e t und prozessmanagement sowi verschied s c h n i t t s t e l l innerhalb der

zumtobel grupp
10 i h r p r o f i l
11 abgeschloss studium in der b e t r i e b s w i r t s c h a f t s l e h r oder im marketing
12 mindest numb j a h r e in sch l aeg b e r u f s p r a x i s sowi e r f a h r auf i n t e r n a t i o n a l p a r k e t t
13 b e r e i t s c h a f t zu d i e n s t r e i s auf weltweit eben sowi zur m i t a r b e i t in ein k l e i n a m b i t i o n i e r t team
14 r o u t i n i e r t in der s t e u e r von s c h n i t t s t e l l zu bzw zwisch ein r e i h von a b t e i l und i n t e r n prozess
15 s i e sind an der m i t a r b e i t in ein i n t e r n a t i o n a l konz mit spannend aufgabengebiet i n t r e s s i e r t
16 auf i h r onl in bewerb unt f r e u t s i c h
17 nadin g r a s l
18 human resourc
19 t e l
20 numb numb numb numb numb

Figure A.2: HTML tags are removed, numbers normalized to numbs,
lowercase filter and stemmers are applied, umlauts normal-
ized and websites removed.

A.5 A/B Test Workflow

In order to test the impact of using Dense vector representations using online evaluation,
the A/B test has to be implemented using the technology stack at XING. The stack used
in the A/B test consists of the following:

• Hive1 is a data warehouse software that uses SQL like syntax to manage datasets in
distributed environments like Hadoop Distributed File System (HDFS).

1https://hive.apache.org/

64 A Appendix

• Spark1 is a cluster computing framework that allows in memory data processing
that’s best utilized for data streaming. It uses Resilient Distributed Dataset (RDD)
as primary data abstraction, it is lazy evaluated such that data is only transformed
and available when needed, and it allows parallel operation on data.

• Cassandra2 is a highly available distributed database with linear scale performance,
making it ideal for read operations in run-time.

• Oozie3 is a workflow managing system used to run and schedule Apache Hadoop
jobs.

The Workflow has to be conducted every night using Oozie to generate vectors for avail-
able jobs as follows:

• Jobs retrieval: Hive script retrieves all available jobs from users, and all interacted
jobs in the past 3 months by the users.

• Jobs Preprocessing and Vector Inference: Spark retrieves the jobs, the word vec-
tors and the titles to combine them and infer the document vectors.

• Jobs’ vectors storage: Vectors are imported to Cassandra to be used by the recom-
mender to calculate similarity scores.

Dense Vector representation models return a text file in a form of a map of word to vector
representations. Early stages failed to load the file to every driver in Spark (4 GB file), it
had to be ported from HDFS to a tabular format that can be read by Hive/Spark. Which
changed the logic of how Spark reads the documents to an RDD of pairs (PostingID,
Word) to facilitate joins over the word vectors table.

1 val t i t l e : RDD[(PostingID , Array [Word])] // R e t r i e v e s PostingIDs and c l e a ns/lowercase/stems the t i t l e s
2 val wordVectors : RDD[(Word , DenseVector [Double])]
3 val docIDWordPair : RDD[(PostingID , Word)]
4
5 val docVecWithIDF : RDD[(PostingID , Array [Double])] = docIDWordPair
6 // Get t i t l e words with l e f t j o i n to handle empty t i t l e s
7 . l e f t O u t e r J o i n (t i t l e)
8 // I d e n t i f y words t h a t appear in t i t l e
9 . map { case (docID , (word , t i t l eWords)) =>

10 (word , (docID , t i t l eWords . fo ld (f a l s e) (_ . conta ins (word)))) }
11 // J o i n with Word ’ s IDF value and Vector
12 . j o i n (wordsIDF)
13 . j o i n (wordsVectors)
14 // Add the t i t l e weight to the TF�IDF value with r e s p e c t to t i t l eWords
15 . map { case ((_ , (((documentId , i s I n T i t l e) , idfValue) , vec tor))) =>
16 val weightedVector = vec tor ⇤ idfValue
17 val weightedVectorTi t le = vec tor ⇤ idfValue ⇤ t i t l e B o o s t

1https://spark.apache.org/
2http://cassandra.apache.org/
3http://oozie.apache.org/

A.6 Coding pitfalls 65

18 val weightedTi t leBoost = idfValue ⇤ t i t l e B o o s t
19 (documentId , (i f (i s I n T i t l e) weightedVectorTi t le e l s e weightedVector , i f (i s I n T i t l e) weightedTi t leBoost e l s e

idfValue) , 1)
20 }
21 //reduce over documents to sum up the vectors , weights and wordsCount
22 . reduceByKey { case ((vec1 , weight1 , count1) , (vec2 , weight2 , count2)) =>
23 (vec1 + vec2 , weight1 + weight2 , count1 + count2) }
24 // Don ’ t c a l c u l a t e document v e c t o r s i f number of words are below threshold
25 . f i l t e r { case (_ , (_ , _) , numberOfWords) => numberOfWords >= minWordsCount }
26 // Divide document vec tor over the weights (Equation 6 . 1)
27 . map { case (documentId , (vector , numberOfWords)) =>
28 (documentId , (vec tor / numberOfWords . toDouble) . toArray)
29 }

Listing A.1: RDD workflow to calculate the document vectors in production pipeline

Listing A.1 shows the Spark workflow for generating the vectors with comments. Note
that reduceByKey and map condition should be used since groupBy is very expensive.
Spark’s lazy evaluation calculates data rows only when it needs them, groupBy however
would have to finish transforming all the data rows before going to the next operation,
creating a bottleneck at this streaming stage.

A.6 Coding pitfalls

In this section, we list some of the coding suggestions that can help decreasing execution
time and save resources. The less time experiments take to execute, the more data can
be squeezed in, more hyperparameters can be tested simultaneously, especially when
dealing with huge amount of data like XING’s.

A.6.1 Doc2Vec

Doc2Vec in Gensim library works by assigning a list of words in the document, along
with the document ID. One coding pitfall is that an array of a single long String is much
more memory efficient the same long String but divided over multiple cells in the array.

Early tryouts with Doc2Vec models didn’t make it to convergence, because the algorithm
used all the 32 GB of RAM and crashes when it requires more. A better approach is to
do the preprocessing while reading from Disk. Listing A.2 shows a ReadFromDisk class
that creates an iterator such that preprocessing is done only on the current line which the
iterator is pointing to. This allowed the Doc2Vec to consume 4 GB of RAM at maximum.

1 c l a s s T i t l e I t e r a t o r (o b j e c t) :
2 from n l t k . stem . snowball import GermanStemmer
3
4 t i t l e _ c l e a n e r = re . compile (r " [^0�9a�z]+ ")

66 A Appendix

5 stemmer_de = GermanStemmer ()
6
7 def _ _ i n i t _ _ (s e l f , dataset , seed) :
8 s e l f . id_ tuple = [(job . id , job . t i t l e) f o r job in d a t a s e t . j o b s . values ()]
9 s e l f . seed = seed

10
11 def _ _ i t e r _ _ (s e l f) :
12 documents = [x f o r x in s e l f . id_ tuple]
13 seed (seed)
14 s h u f f l e (documents)
15 f o r j i d , t i t l e in documents :
16 t i t l e = re . sub (t i t l e _ c l e a n e r , " " , t i t l e . lower)
17 t i t l e = [s e l f . stemmer_de . stem (w) f o r w in t i t l e . s t r i p () . s p l i t (" ") i f len (w) > 1]
18
19 y i e l d TaggedDocument (t i t l e , [j i d])
20
21 }

Listing A.2: Use of an iterator for Doc2Vec

A.6.2 ANNOY

Using ANNOY is straight forward, the high end programmer creates an index with the
needed number of dimensions in the vector space. The vectors are then added sequen-
tially using an numeric index in a look up fashion, i.e Index to vector as shown in Listing
A.3.

1
2 space_indexer = AnnoyIndex (vector_dimensions = 500)
3
4 f o r i , key in enumerate (sor ted (t e s t _ i d s)) :
5 i f len (d a t a s e t . j o b s [key] . vec tor) > 0 :
6 space_indexer . add_item (i , d a t a s e t . j o b s [key] . vec tor)

Listing A.3: Indexing in ANNOY

Initial implementation involved using the document ID as an index e.g 15032152 which
killed the virtual machine. After tracing the code, it appeared that ANNOY uses the ab-
solute value of the ID to locate memory for max(ID) + 1, which means that document
IDs has to be mapped to another incremental lookup table, because retrieving the near-
est neighbors from ANNOY is using and retrieving these incremental IDs. A better ap-
proach while adding indices is adding the maximum incremental index first, to allocate
the memory once to reduce indexing speed.

A.6.3 Apache Hive

Our Dataset already had pairs of (User1,Job1), approximately 4 million pairs. We can
group by Jobs to get Users who interacted with a given a job. But the goal was to do
Set intersection between users to get jobs that 3 or more users interacted with. In other
words:

A.6 Coding pitfalls 67

1 CREATE TEMPORARY FUNCTION a r r a y _ i n t e r s e c t ;
2
3 SELECT a . post ing_id as jobA ,
4 b . post ing_id as jobB ,
5 a r r a y _ i n t e r s e c t (a . users , b . users) as common_users
6 FROM JobsUsersTuples a
7 CROSS JOIN JobsUsersTuples b
8 WHERE a . post ing_id > b . post ing_id �� to speed up by x2
9 HAVING s i z e (common_users) >= 3 ;

10
11 Query ID = hive_2017022
12 Tota l j o b s = 1
13 Launching Job 1 out of 1
14
15 ��
16 VERTICES STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED
17 ��
18 Map 1 RUNNING 1 0 1 0 0 0
19 Map 2 SUCCEEDED 1 1 0 0 0 0
20 ��
21 VERTICES : 01/02 [=============>>�������������] 50% ELAPSED TIME : 7184 .90 s
22 ��

Listing A.4: Dataset generation Hive Script

Hive works by splitting the data and preprocessing it concurrently using Mappers, then
collecting the results using Reducers. Cross Joins on such a table would produce 4 mil-
lion times 4 million rows before filtering, which is very time consuming (O(N2) time
complexity). Hive would have to go through each row for every row in the table, which
completely makes Map and Reduce features obsolete in such operation. In the example,
only 1 mapper and 1 reducer are used, since the operation can’t be parallelized.

The second approach was to create a User Defined Function (UDF) in Hive that stores the
table in the mapper’s memory, which transforms the problem to O(N) space and O(N)

time complexity. As shown below:

1 c l a s s UDTFCrossJoinSet Intersect ion extends GenericUDTF {
2 p r i v a t e [t h i s] var jobAConverter : P r i m i t i v e O b j e c t I n s p e c t o r = _ // reads current row , c a s t i t to JobID
3 p r i v a t e [t h i s] var usersConverter : L i s t O b j e c t I n s p e c t o r = _ // reads current row ,
4 // c a s t i t to L i s t of Users
5 p r i v a t e [t h i s] var MemoryData : Map[Int , u t i l . L i s t [_]] = _ // copy of the e n t i r e t a b l e in memory
6
7 overr ide def i n i t i a l i z e (argOIs : Array [O b j e c t I n s p e c t o r]) = . . . // outputs to postingA , postingB , common_users
8 overr ide def conf igure (mapredContext : MapredContext) = . . . // reads t a b l e using HCat and f i l l s in ‘MemoryData ‘
9 overr ide def process (jobA : int , usersA : Array [I n t]) = // J o i n s in memory with Set i n t e r s e c t i o n

10 MemoryData . foreach { case (jobB , usersB) =>
11 i f (usersA . i n t e r s e c t (usersB) . length > 1)
12 forward (jobA , jobB , usersA . i n t e r s e c t (usersB))
13 }

Listing A.5: Memory UDF in Hive

Using the UDF is a simple function call over the table of pairs. However, Hive works on
top of a cluster resource manager called YARN, which tries to optimize queries whenever
possible. If a query can be executed locally without the need for Map/Reduce, it will ex-
ecute the query locally, resulting in an error using our UDF since it’s mapper dependent.
The behavior should be switched off using:

68 A Appendix

1 SET hive . f e t c h . task . conversion=none ;

Unfortunately, the memory consumption was too high that it affected the scheduled
queries for production at XING, it wasn’t reproducible and at that stage in the thesis,
multiple iterations of dataset generation had to be executed, it took over 2 hours and it
completely blocked the Hive queues for other operations at XING.

The final solution was generating the dataset using Map/Reduce like approach. Where
we do a join over the table using the userIDs, which would "emit" 3-tuples of (userID,
jobID1, jobID2). we can group over jobID1 and jobID2 to group all userIDs in a reduce-
like fashion. In this case, we join over IDs and group over IDs, with no need for cross
join. Emitting tuples and grouping them is how Hive do Map/Reduce operations on a
lower level.

First operation took over an hour before terminating it manually to investigate the dis-
tribution of userIDs in the dataset. According to the distribution of userIDs (can’t be
listed to comply with XING policies), the number of clusters had to change from 128 to
97. Which is a prime number big enough to split the distribution of userIDs evenly. The
workflow took 14.31 seconds to finish, down from over 2 hours.

1 CREATE TABLE JobUserPair (post ing_id int , user_id i n t)
2 CLUSTERED BY(user_id) INTO 97 BUCKETS
3 STORED AS ORC;
4
5 �� f i l l i n g in the tu ples
6 INSERT OVERWRITE TABLE JobUserPair . . .
7
8 SET mapred . reduce . t a s k s =97; ��s e t s number of reducers
9

10 CREATE TABLE Emitter AS
11 SELECT a . post ing_id as postingA ,
12 b . post ing_id as postingB ,
13 a . user_id as common_user
14 FROM JobUserPair a
15 JOIN JobUserPair b
16 ON a . user_id = b . user_id
17 WHERE a . post ing_id != b . post ing_id ; �� to avoid d u p l i c a t e s
18
19
20 CREATE TABLE Reducer AS
21 SELECT postingA ,
22 postingB ,
23 c o l l e c t _ s e t (common_user) as common_users
24 FROM Emitter
25 GROUP BY postingA , postingB
26 HAVING s i z e (common_users) >= 3 ;
27
28 ��
29 VERTICES STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED
30 ��
31 Map 1 SUCCEEDED 2 2 0 0 0 0
32 Map 3 SUCCEEDED 2 2 0 0 0 0
33 Reducer 2 SUCCEEDED 97 97 0 0 0 0
34 ��
35 VERTICES : 03/03 [==========================>>] 100% ELAPSED TIME : 1 4 . 3 1 s
36 ��

Listing A.6: Set Intersection in Hive

A.6 Coding pitfalls 69

A.6.4 General Tips

• Code should be parallelized in every possible situation, number of PoolExecutors
should be 1.5 times the number of cores on the machine. The function to be paral-
lelized should return an output, not write directly in Data Structure to avoid dirty
writes.

1 import concurrent . f u t u r e s
2 executor = concurrent . f u t u r e s . ProcessPoolExecutor (1 0)
3 f u t u r e s = [executor . submit (example_function () , input_value) f o r input_value in l i s t _ o f _ v a l u e s]
4 concurrent . f u t u r e s . wait (f u t u r e s)

Listing A.7: Multiprocessing in Python

• Researcher should get familiar with the Data Structure used and how to iterate
them effectively. For instance, if it is no longer needed to add more items to a given
Set, accessing FrozenSet is faster than a normal mutable Set.
In the example below, list intersection can be written in 3 different ways. Using list
comprehension is not suitable for big lists, but converting the lists to sets and do set
intersection performs better, since intersection is based on hash and not absolute
values.

1 # l i s t comprehension
2 i n t e r s e c t i o n = [a f o r a in x i f a in y]
3
4 # f u n c t i o n a l way achieve b e t t e r performance
5 i n t e r s e c t i o n = f i l t e r (lambda a : a in x , y)
6
7 # convert ing to s e t i n t e r s e c t i o n i s even b e t t e r
8 i n t e r s e c t i o n = l i s t (s e t (x) & s e t (y))

Listing A.8: 3 different ways to write list intersection

• Progress bars and logging are extremely useful when dealing with time consum-
ing problems, it allows the Researcher to take a decision whether the experiment
should continue running for few more hours or restart it with different setup.

1 import logging
2
3 logger = logging . getLogger ()
4 logger . s e t L e v e l (logging .DEBUG)
5 logging . debug (" t e s t ")
6
7 def progress_bar (message , current , t o t a l , frequency = 10) :
8 percentage = (f l o a t (current) / t o t a l)⇤100
9 i f format (percentage % frequency , ’ . 2 f ’) == ’ 0 . 0 0 ’ or current + 1 == t o t a l or frequency == 1 :

10 p r i n t "%s\ t \ t \ t \t pro gr e ss : %s %%" % (message , s t r (percentage))

Listing A.9: Progress Bar

Bibliography 71

Bibliography

Abdelwahab, O. and Elmaghraby, A. (2016). UofL at SemEval-2016 Task 4: Multi Domain
word2vec for Twitter Sentiment Classification . In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016) at NAACL-HLT 2016, pages 164–170,
San Diego, California.

Abel, F., Benczúr, A., Kohlsdorf, D., Larson, M., and Pálovics, R. (2016). Recsys challenge
2016: Job recommendations. In Proceedings of the 10th ACM Conference on Recommender
Systems. New York: ACM.

Adomavicius, G. and Kwon, Y. (2012). Improving aggregate recommendation diversity
using ranking-based techniques. IEEE Transactions on Knowledge and Data Engineering,
24(5):896–911.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. (1998). An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the
ACM (JACM), 45(6):891–923.

Baudiš, P., Pichl, J., Vyskočil, T., and Šedivỳ, J. (2016). Sentence pair scoring: Towards
unified framework for text comprehension. In CoNLL, Berlin, Germany.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep archi-
tectures. In Neural networks: Tricks of the trade, pages 437–478. Springer.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517.

Blei, D. M. and Lafferty, J. D. (2007). A correlated topic model of science. The Annals of
Applied Statistics, pages 17–35.

Blei, D. M. and Lafferty, J. D. (2009). Text mining: classification, clustering, and applications,
chapter Topic Models, pages 71–89. CRC Press.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
Machine Learning Research (JMLR), 3:993–1022.

Bordag, S. (2008). A Comparison of Co-occurrence and Similarity Measures as Simulations of
Context, pages 52–63. Springer Berlin Heidelberg, Berlin, Heidelberg.

72 Bibliography

Chen, M. (2017). Efficient vector representation for documents through corruption. In
ICLR, Toulon, France.

Dai, A. M., Olah, C., and Le, Q. V. (2014). Document embedding with paragraph vectors.
In Proceedings of Deep Learning and Representation Learning Workshop at NIPS, Montreal,
Canada.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990). In-
dexing by latent semantic analysis. Journal of the American society for information science,
41(6):391.

Fallgren, P., Segeblad, J., and Kuhlmann, M. (2016). Towards a standard dataset of
swedish word vectors. In Sixth Swedish Language Technology Conference (SLTC).

Garten, J., Sagae, K., Ustun, V., and Dehghani, M. (2015). Combining distributed vector
representations for words. In VS@ HLT-NAACL, pages 95–101.

Hagan, M. T. and Menhaj, M. B. (1994). Training feedforward networks with the mar-
quardt algorithm. IEEE transactions on Neural Networks, 5(6):989–993.

Harris, Z. S. (1954). Distributional structure. Word, 10(2-3):146–162.

Hong, J. and Fang, M. (2015). Sentiment analysis with deeply learned distributed repre-
sentations of variable length texts. Technical report, Technical report, Stanford Univer-
sity.

Huang, A. (2008). Similarity measures for text document clustering. In Proceedings
of the sixth new zealand computer science research student conference (NZCSRSC2008),
Christchurch, New Zealand, pages 49–56.

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). Improving word repre-
sentations via global context and multiple word prototypes. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1,
pages 873–882, Jeju, Korea.

Jansen, B. J., Spink, A., Bateman, J., and Saracevic, T. (1998). Real life information re-
trieval: A study of user queries on the web. In ACM SIGIR Forum, volume 32, pages
5–17. ACM.

Ji, S., Satish, N., Li, S., and Dubey, P. (2016). Parallelizing word2vec in shared and dis-
tributed memory. arXiv preprint arXiv:1604.04661.

Koehn, P. and Knight, K. (2003). Empirical methods for compound splitting. In Pro-

Bibliography 73

ceedings of the tenth conference on European chapter of the Association for Computational
Linguistics-Volume 1, pages 187–193. Association for Computational Linguistics.

Kohavi, R., Longbotham, R., Sommerfield, D., and Henne, R. M. (2009). Controlled ex-
periments on the web: survey and practical guide. Data mining and knowledge discovery,
18(1):140–181.

Kottur, S., Vedantam, R., Moura, J. M., and Parikh, D. (2016). Visual word2vec (vis-w2v):
Learning visually grounded word embeddings using abstract scenes. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 4985–4994.

Lang, K. (1995). Newsweeder: Learning to filter netnews. In Proceedings of the 12th inter-
national conference on machine learning, volume 10, pages 331–339.

Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and documents.
In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages
1188–1196.

Lee, D.-T. and Wong, C. (1977). Worst-case analysis for region and partial region searches
in multidimensional binary search trees and balanced quad trees. Acta Informatica,
9(1):23–29.

Levy, O. and Goldberg, Y. (2014). Dependency-based word embeddings. In ACL.

Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving distributional similarity with
lessons learned from word embeddings. Transactions of the Association for Computational
Linguistics, 3:211–225.

Lewis, D. D., Schapire, R. E., Callan, J. P., and Papka, R. (1996). Training algorithms for
linear text classifiers. In Proceedings of the 19th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 298–306. ACM.

Liu, Y., Liu, Z., Chua, T.-S., and Sun, M. (2015). Topical word embeddings. In AAAI,
pages 2418–2424.

Maillo, J., Ramírez, S., Triguero, I., and Herrera, F. (2017). knn-is: An iterative spark-
based design of the k-nearest neighbors classifier for big data. Knowledge-Based Systems,
117:3–15.

Melamud, O., McClosky, D., Patwardhan, S., and Bansal, M. (2016). The role of
context types and dimensionality in learning word embeddings. arXiv preprint
arXiv:1601.00893.

74 Bibliography

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word
representations in vector space. ICLR Workshop.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119.

Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26.

Nagaraj, R. and Thiagarasu, V. (2014). Correlation similarity measure based document
clustering with directed ridge regression. Indian Journal of Science and Technology,
7(5):692–697.

Paine, T., Jin, H., Yang, J., Lin, Z., and Huang, T. (2013). Gpu asynchronous stochastic
gradient descent to speed up neural network training. arXiv preprint arXiv:1312.6186.

Pang, B. and Lee, L. (2005). Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. In Proceedings of the 43rd annual meeting on
association for computational linguistics, pages 115–124. Association for Computational
Linguistics.

Reynar, J. C. (1999). Statistical models for topic segmentation. In Proceedings of the 37th an-
nual meeting of the Association for Computational Linguistics on Computational Linguistics,
pages 357–364. Association for Computational Linguistics.

Riedl, M. and Biemann, C. (2016). Unsupervised compound splitting with distributional
semantics rivals supervised methods. In HLT-NAACL, pages 617–622.

Robertson, S. (2004). Understanding inverse document frequency: on theoretical argu-
ments for idf. Journal of documentation, 60(5):503–520.

Rong, X. (2014). word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.

Rus, V., Niraula, N., and Banjade, R. (2013). Similarity measures based on latent dirichlet
allocation. In International Conference on Intelligent Text Processing and Computational
Linguistics, pages 459–470. Springer.

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620.

Seroussi, Y., Zukerman, I., and Bohnert, F. (2011). Authorship attribution with latent

Bibliography 75

dirichlet allocation. In Proceedings of the fifteenth conference on computational natural lan-
guage learning, pages 181–189. Association for Computational Linguistics.

Shoaib, M., Daud, A., and Khiyal, M. (2014). An improved similarity measure for text
documents. J. Basic Appl. Sci. Res, 4(6):215–223.

Stamatatos, E., Fakotakis, N., and Kokkinakis, G. (1999). Automatic extraction of rules for
sentence boundary disambiguation. In Proceedings of the Workshop on Machine Learning
in Human Language Technology, pages 88–92.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal
of the royal statistical society. Series B (Methodological), pages 111–147.

Wajeed, M. A. and Adilakshmi, T. (2011). Different similarity measures in semi-
supervised text classification. In India Conference (INDICON), 2011 Annual IEEE, pages
1–5. IEEE.

Wan, X. (2007). A novel document similarity measure based on earth movers distance.
Information Sciences, 177(18):3718–3730.

Yao, Y., Li, X., Liu, X., Liu, P., Liang, Z., Zhang, J., and Mai, K. (2017). Sensing spatial
distribution of urban land use by integrating points-of-interest and google word2vec
model. International Journal of Geographical Information Science, 31(4):825–848.

Ziering, P. and van der Plas, L. (2016). Towards unsupervised and language-independent
compound splitting using inflectional morphological transformations. In HLT-NAACL,
pages 644–653.

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Bachelorstudien-
gang Wirtschaftsinformatik selbstständig verfasst und keine anderen als die angegebe-
nen Hilfsmittel - insbesondere keine im Quellenverzeichnis nicht benannten Internet-
Quellen - benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichun-
gen entnommen wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin,
dass ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren eingereicht habe
und die eingereichte schriftliche Fassung der auf dem elektronischen Speichermedium
entspricht.

Hamburg, den 25.08.2017 Ahmed Elsafty

Veröffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 25.08.2017 Ahmed Elsafty

