FAKULTAT
/2 ¥ Universitit Hamburg FUR MATHEMATIK, INFORMATIK

DER FORSCHUNG | DER LEHRE | DER BILDUNG UND NATURWISSENSCHAFTEN

Bachelor Thesis

Evaluation of Argumentation Schemas for the
Identification of Software-Architecture

Knowledge in Developer Communities

Joél Harms
3harms@informatik.uni-hamburg.de

Course of Studies: Software-System-Development

First Supervisor: Prof. Dr. Chris Biemann

Second Supervisor: Mohamed Soliman

II

Table of Contents

T INtroduction ... 1
2 Related WOrK ... 3
2.1 Argumentation TheOTY ... 3
22 Argumentation MINiNgccoeiiiiiiniiiiiiiic e 4
2.3 Argumentation Mining Datasets............cccooiiiiiiiiiiiii, 5
2.4 Argumentation SChemas..........ccocecveiniiiiiniiiniiiinciccce e 8
241 Claim Premise Schemac.cccceiciniiiniiiiniiiiiicicccceees 8
242 Toulmin Model of Argumentationccocccevviiiiniiiniiniiiiiiniccns 9
243 Stance-based Argument Mining..........ccccocovemivinininiiiininiiieeccnns 11

3 Methodology ..o 12
3.1 Preparation of Datacccccociviiiiiiiniiiniiic 12
3.2 The Annotation Process.........ccccoiiviiiiiiniiiniiciiiiccccce 14
3.3 Best Practices and Emergence of the Annotation Guidelines 17
3.3.1 First Approachi ... 17
332 Second APProach ... 19
3.3.3 Third ApProach ... 20
334 Fourth Approach..........s 20

3.4 The Annotation Guidelines...........cccccoeiviniiniiniiniiie 21
3.4.1 Motivation behind the Guidelines...........c.cccoeveciniiniininiiinininieenns 22
3.4.2 The Guidelines — Boundaries of the Statementscccccccceueuee. 22
3.4.3 The Guidelines — Definitionsccccoviiviiiiiiiiniiniiciiciccics 24

3.4.4 The Guidelines — AnNNotation ProCesseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 25

I

4 Results of the ANNOtation ProCeSS e eeeeeeee e

41 Inter Annotator Agreementccccoviviiiiiniiiiiniiniiii

4.1.1 Statement Agreement...........ccooeiviiininininiinn e

41.2 Statement and Relation Type Agreementccccccevvviviiiinnnnnnnes

42 Opverlap with the Ontology Classes of Soliman, Galster, and Riebisch. 31

B COMCIUSION .. e e e e e e e e et eeeeeeeaaeeeeeeeeeeseeeenneenees

6 References

A APPENAIX ..o
A1 Annotation Guidelinescccoeoiviiiiiiiiniiiniiie
A2 Overlap of Statements and Ontology Classes..............ccceceurvririrvriririnnnne.

A.3 Relations between different Ontology Classesccccceevrirvrirviinnnnnne.

v

List of Figures

Figure 2.1: The five Steps of the Argumentation Mining process............c.ccccccueuee. 4

Figure 2.2: Eleven acknowledgement classes found by Soliman, Galster, and

RI€DISCI (2017t sttt ettt et 7
Figure 2.3: A simple example of the claim premise schema.c.ccccceevvvrvninnnnnne. 9
Figure 2.4: All elements of the Toulin Model in action (Karbach 1987). 10

Figure 3.1: Example of the CSV file that we have received from M. Soliman.....12
Figure 3.2: Example of our data in CONLL-U Format.cccceeecvviiiinicniicninnne. 14
Figure 3.3: Example of our data imported to the annotation tool WebAnno......14
Figure 3.4: Annotator interface of WebANNO.ccccoevvviiiiiiiiniiiccce 15
Figure 3.5: A complete argumentation unit consists of one claim and one

premise that can have different types: supporting, attacking and

CONAIHIONINEG. ...t 16
Figure 3.6: Example of the first annotation attempt. ... 18
Figure 3.7: Example of the second annotation attempt...........ccccceevvvriiiinnnnnn. 19
Figure 3.8: Example of the third annotation attempt.cccccccoevviiiiinnnnnnn 20
Figure 3.9: Example of the fourth annotation attempt...........ccccoeevviniinninnnne. 21
Figure 3.10: An example for an annotation candidate.cccccccevviiniinnnnnne 23
Figure 3.11: Example of a definition in the guidelines...........cccccceceviiinnnnnn. 24

Figure 4.1: Micro and macro averaging.ceeeevevereeeninieiecncnineeecceeenennns 27

List of Tables

Table 4.1: Macro agreement for equal statements.............cccccoeveveeinieeiiciccennnnee 27
Table 4.2: Macro agreement for similar statementscccocecevriinecniinncnnes 28
Table 4.3: Micro agreement for equal statements...........ccccccoeeiviiiiniiiniinninnns 29
Table 4.4: Micro agreement for similar statements.............ccccooeiiiinnniiinnnnns 29
Table 4.5: Fleiss Kappa for statement type.........cccccoevvvrieiiininniciciccccccccee 30

Table 4.6: Fleiss Kappa for relations with same source and target statement 30
Table 4.7: Fleiss Kappa for relations with same source type and target type

] K= 11) 0.4 11 0 | SRR RPN 31

VI

List of Abbreviations

CSsv Comma Separated Value
HTML Hypertext Markup Language
ID Identification Number

SO StackOverflow

1 Introduction

According to a study conducted in March 2017 by the American hard disk
manufacturer Seagate and the International Data Corporation, global data
volumes will increase tenfold by 2025. It can be assumed that a huge amount of
that data is in text form. To handle this huge amount of text data,
Argumentation Mining is becoming a hot topic.

Argumentation Mining consists of several subject areas. These include
natural language processing, argumentation theory and information retrieval.
The aim of Argumentation Mining is the automatic extraction of argument
structures from unstructured text in order to provide a data basis for machine
processing (Lippi and Torroni 2016). In this way, it will be possible to index and
search through huge amounts of text data available on the internet for relevant
arguments, whether in online journals, product reviews, blogs or forums. It
thus supports the collection of information which is not present in other
sources.

Soliman et al. dealt with that kind of problem. The goal of their work was to
find out if it is possible to use an internet forum (StackOverflow? (SO) in this
case) as the basis for research in the area of software architecture solutions.
Because SO is generally used by developers who are looking for solutions for
coding problems, Soliman, Galster, and Riebisch developed an ontology that
identifies architectural knowledge concepts on SO (2017). The data generated
by Soliman, Galster, and Riebisch serves as the data basis for the argument
annotation process which is conducted in this bachelor thesis (Soliman et al.

2016; Soliman, Galster, and Riebisch 2017).

! https://www.seagate.com
2 https://www.stackoverflow.com

In this thesis, argument annotation is defined as a sub process of Argument
Mining in which human annotators annotate a text with the help of predefined
guidelines and a given annotation schema in order to create training data for
supervised machine learning algorithms. In this thesis we annotate the same
data that was used by Soliman et al. (Soliman et al. 2016) with one established
argumentation schema - the claim premise schema. The data is evaluated in
order to examine the usability to cover Solimans, Galsters, and Riebisch’s
ontology (2017). This would allow the automatic extraction of Solimans,
Galsters, and Riebisch’s schematized information on new data using established
reasoning argument mining algorithms (2017).

It is assumed that:

The argument structures that have been found by the annotators overlap with

the ontology classes, for example benefits and drawbacks, which were found by

Soliman, Galster and Riebisch in the architecture-relevant posts on SO (2017).
The aim of this work is to corroborate the hypothesis.

Chapter 2 covers the related work including argumentation theory in
general, the argumentation mining process, the results of Soliman et al. and
introduces some common argumentation schemas. In Chapter 3 the
methodology is presented, starting with the preparation process for the data,
followed by the annotation process and the best practices. Lastly the finalized
guidelines are presented. In Chapter 4 the annotation process is evaluated.
Thereby the inter annotator agreement is illustrated. We show the overlap with
the ontology classes developed by Soliman, Galster and Riebisch with our data.
Chapter 5 summarizes the results and discussed them. Finally a prospect for

future work is given.

2 Related Work

In this chapter the related work is presented starting with the argumentation
theory in general following with the argumentation mining process and the
results of Soliman, Galster and Riebisch. At the end of this section some

common argumentation schemas are introduced.

2.1 Argumentation Theory

This chapter provides an introduction to the topic of argumentation.
“Argqumentation is a multidisciplinary research field, which studies debate and
reasoning processes, and spans across and ties together diverse areas such as
logic and philosophy, language, rhetoric and law, psychology, and computer
science” (Lippi and Torroni 2016).

So argumentation is a highly complex interdisciplinary topic.

Van Eemeren, Grootendorst and Snoeck Henkemans describe argumentation
as a verbal activity that is done in an ordinary language in order “to state,
question or deny something, to respond to statements, questions or denials and
so on” (van Eemeren, Grootendorst, and Snoeck Henkemans 1996).
Argumentation can be supported by the use of facial expressions and gestures.
It is important to note that argumentation can appear without these nonverbal
means of communication, but it is not possible the other way around (van
Eemeren, Grootendorst, and Snoeck Henkemans 1996), which is the case in the
posts of SO. Because there is only text and no videos or live conferences, the
argumentation occurs without gestures and mimic.

To make it a less complicated for the context of this thesis a simplified

definition of argumentation is given: “Argumentation is defined as the act or

process of forming reasons and of drawing conclusions [...]” (Moens 2013).

Argumentation theory is a much-discussed field of research. Via the
examples, an insight into and a basic understanding of the topic is given. In the
next chapter an overview of the whole argumentation mining process is

presented to show where our project is to be placed.

2.2 Argumentation Mining

Argumentation mining is the computational approach to automatically
extracting argumentation from text corpora in order to provide data for

machine learning processes (Rocha, Cardoso, and Teixeria 2016):

Data
Preparation

Annotation

ArgMine Learning
Corpus Instances

Machine
Learning
Algorithms and
Techniques

Feature

Extraction

Figure 2.1: The five Steps of the Argumentation Mining process.

As illustrated in Figure 2.1, the whole process of argumentation mining can be
classified into five steps. During the annotation phase human annotators
annotate any kind of text in order to create a so called corpus. In the next step
the data of the corpus is transformed into learning instances. In the third step a
set of features is selected that represents the data best. During the next phase
several machine learning algorithms and techniques are used to create a model
of the argumentation.

In this bachelor thesis we focus on the first step, presented in Figure 2.2. We

annotate posts that contain software architecture relevant knowledge by using

the claim-premise schema. Furthermore we try to figure out whether the
argumentation overlaps with the ontology classes that have been found by
Soliman, Galster, and Riebisch (2017). In the next chapter we present the work
of Soliman et al. (2016/2017).

2.3 Argumentation Mining Datasets

In this section an overview of the papers by Soliman et al. is given (2016, 2017).
In their first paper “Architectural Knowledge for Technology Decisions in
Developer Communities” from 2016, Soliman et al. tested a new approach to
gather architecture knowledge from a popular online developer community
named SO. There are several reasons for their approach. The most important
one is that “Architectural decisions have a big influence on basic properties of a
software system [...]”. Another aspect is that the software architects have to
gather the information about architecture knowledge manually because there
are not enough sources to acquire the knowledge.

SO was chosen because it is the largest software developer community. Posts
on SO follow a question and answer structure. “The quality of the knowledge
on SO is ensured through evaluation of posts from users”. Furthermore there is
the possibility for users to rate the answers that were given. This possibility
ensures the quality as well. The posts are constantly updated, which leads to
the information being current.

Because SO is primarily used for software relevant questions, Soliman et al.
conducted an empirical study to identify posts that contain technology related
information (2016). The overview they have received is supposed to be used to
perform further analysis steps such as automatic mining and classification of
architecture relevant posts.

They identified that architecture relevant posts are based on two dimensions:

1. The purpose of the question
2. The solution type of the question
For the purpose dimension they classified the following sub-types:
1. Solution Synthesis:
“[Cloncerned with searching for suitable technology solutions, which have
certain characteristics [...]; address a design problem or context”.
2. Solution Evaluation:
“[Cloncerned with assessing one or more proposed technology solutions. The
evaluation of solutions could be done individually or through a comparison
between different alternative solutions. In addition, several concepts are
considered during evaluation, such as technology features, benefits and
drawbacks, suitable use cases, and quality attributes”.
3. Multi-purpose:
“[TIhis type of ARP [architecture relevant posts] comprise both types of posts,
solution evaluation and synthesis. Several questions are asked within a single
post”.
For the solution type dimension, the following types were defined:
1. Technology Feature:
“[FJocus on specific features of a technologyl...]".
2. Technology Bundle:
“[Clonsider the technology as a single architecture solution without referring to
the features within the technology”.
3. Architecture Configuration:
“[Cloncerned with the components and connectors design configurations”.
4. Combined Solution:
“[Cloncerned with different solution types”.
In summary, it can be said that Soliman et al. demonstrated the relevance of SO

as a source for software architecture knowledge in their 2016 paper.

Building on this knowledge they conducted a qualitative content analysis in
order to define an ontology. For this purpose Soliman, Galster, and Riebisch
selected a sample of 105 architecture relevant posts. They have identified eleven

acknowledgement concept classes which are presented in Figure 2.2.

(ID) Name and Description

(CONF) Architecture Configuration. represents part of an architectural model, which
consists of one or more component names associated with an architecture connector
verb or name.

(CB) Component Behavior: describes the behavior of an architecture component. It
gives an overview about the type of implemented logic and complexity. Sometimes
internal operations are mentioned during the description.

(EX) Existing System: describe part of an architecture of an existing software system.
It additionally describes the possible problems in the system.

(DI) Design Issue: users express their design problems through describing the
architecture configurations of a planned design. or the architecture configuration
design of an existing software system.

(REQ) Requirement and Constraint: two main types of requirements were found: 1)
Quality attribute requirements, and 2) Technology features requirements. In addition,
we found three types of constraints: 1) Technical skills constraint. 2) Development
time constraint. 3) Solution constraint.

(UR) User Request: exist in ARP question or title in a form of questions or needs.
It complements design issue, requirements and constraints by showing the type of
architecture activity (evaluation or synthesis).

(FEAT) Technology Features: Two main types of technology features: 1) Develop-
ment features are expressed through certain programming activities (e.g. debugging)
or programming features and tools (e.g. code generation), 2) Behavioral features are
expressed through technology specific component and class names, as well as their
implemented architectural patterns or their relationship with other technologies.
(ASTA) Technology Benefits and Drawbacks: They are distinguished through the
extensive usage of adjectives and adverbs in combination with technology features
and quality attributes. The adjectives or adverbs are used to express the advantages
or disadvantages of certain technology solutions or features.

(CASE) Technology Use-Cases: These are either success or failure stories for the
usage of technology solutions at certain contexts. The stories could be coming
from personal experiences of users, or well-known examples for existing systems.
The context associated with stories could include domain description, architecture
configurations, infrastructure, and constraints.

(ADD)} Recommended Design Decisions: They are recommendation from users based
on their experience or opinion for certain architectural solutions.

(DR) Decision Rules: Conditional recommendation for architectural solutions. The
rule condition might involve other ontology classes such as requirements, constraints
and architectural configuration. recommendations involve recommended ADDs for
certain technology solution or architecture configuration.

Figure 2.2: Eleven acknowledgement classes found by Soliman, Galster, and

Riebisch (2017).

In the next chapter we present different argumentation schemas that can be

used to investigate the argumentation of the SO posts.

2.4 Argumentation Schemas

In this section we present some argumentation schemas that can be used in

order to annotate web content.

2.4.1 Claim Premise Schema

Besnard and Hunter define an argument as:
“[Aln arqument is a set of assumptions [...], together with a conclusion that can
be obtained by one or more reasoning steps [...]. The assumptions used are called
the support (or, equivalently, the premises) of the arqument, and its conclusion
[...] is called the claim [...] of the arqument. The support of an argument
provides the reason [...] for the claim of the argument” (Besnard and Hunter
2010).

So an argument consists of a set of premises and a single claim. The set of

premises can be empty. A claim can support another claim, but this type of

argumentation has to be considered a weak one, since it is unclear whether the

supporting claim is true. Because there is a premise that can support a claim it

logically follows that there is a premise that can attack a claim as well.

Therefore the claim premise schema has four basic elements:

* (Claim

= Premise
* Support
= Attack

There is an example in Figure 2.3 that illustrates what a claim, a premise, a
support and an attack are. The blue box contains a claim. You cannot state
whether the weather is nice or not, because everyone has a different opinion of
what nice weather is. But you can state if the sun is shining at the moment or

not, so the message becomes provable. When that is the case the premise

supports the claim. We can also see an attack in the Figure 2.3. The statement in
the red box is an attack on the statement in the blue one. So in this case we have

a claim that is supported and attacked by two different premises.

The weather is nice in Hamburg

But it is very cold ‘

Figure 2.3: A simple example of the claim premise schema.

In the next chapter the Toulmin Model will be presented.

2.4.2 Toulmin Model of Argumentation

In his book “The Uses of Argument” Stephen Toulmin established a model for
argumentation which has become rather important in the research field of
argumentation theory. This model, the Toulmin Model of Argumentation,
basically consists of six main components (Toulmin 2008):

* (Claim (or conclusion)

» Fact (or data, ground, evidence)

* Warrant

* Backing

» Qualifier

» Rebuttal
The claim is a statement in which the speaker tries to convince his listener of his
point of view. To substantiate the claim the speaker provides facts to convince
his counterpart. It must be possible to decide whether a fact is right or wrong. A

warrant is the link between the claim and the facts which are related to a claim

10

by showing the relevance of the facts. This can happen in an explicit or implicit
way. The backing offers additional support for a warrant, especially in
situations where the warrant cannot confirm a fact by itself.

These four attributes are considered as the basic structure of an argument.
The qualifiers and rebuttals occur in more complex argumentative structures.
Qualifiers provide conditions under which a claim can be considered true, so
they limit the claim. In rebuttals however the speaker tries to refute possible
counter-arguments that a listener might have or sets conditions for a the claim
to hold (Lippi and Torroni 2016).

A minimum argumentation that follows the Toulmin model of
argumentation consists of at least one fact, one warrant and one claim element
(Kneupper 1978). The warrant can be implicit or explicit so it might be the case
that a fact and a claim are the only two visible arguments in a minimum
argumentation object. Figure 2.4 shows an example of an argument containing

all elements that are introduced by Toulmin.

BACKING: Because, fires generally
i produce smoke,
WARRANT: Since, smoke is a primary

sign of fire,
GROUNDS - eeeeeeeeeeneeemeeeeeee - CLAIM
Smoke is pouring * Ann’s bedroom is
from Ann's bedroom. i on fire.

QUALIFIER: So,
: chances are

REBUTTAL: Unless,
the smoke is a
product of a
chemical reaction.

Figure 2.4: All elements of the Toulin Model in action (Karbach 1987).

In the next chapter the stance-based argument mining idea is presented.

11

2.4.3 Stance-based Argument Mining

Another interesting approach to annotate web content is stance-based argument
mining. Stance-based argument mining is an approach that is used to annotate
implicit argumentation which often occurs in informal settings like forums
(Wojatzki and Zesch 2016). For instance #JesusOrHell is a hash tag used in the
debate about atheism. It can be assumed that the person who used this hash tag
“is against atheism, because the bible says that this will result in a stay in hell
after death. However, both claims are never explicitly mentioned” (Wojatzki
and Zesch 2016). Since explicit information can be absent, the stance-based
argument mining approach follows the idea that the claim corresponds to the
overall topic in which the statement was made. In a controversial topic, stance
is defined as being in favour of or against a specific theme.

For stance classification it is not only of interest whether someone is for or
against a topic. Furthermore the strength of the position of the annotators
towards the target of research is significant. Therefore annotators often have to
choose from different options. For instance the annotators have to categorise
whether they are: “strongly for”, “for”, “other”, “against” or “strongly against”

(Sobhani, Inkpen Diana, and Matwin 2015).

12

3 Methodology

In this chapter we describe the whole annotation mining process that we
conducted. We follow the order of the annotation process, beginning with the
preparation of the data followed by the annotation process. Finally the best

practices and the emergence of the guidelines will be presented.

3.1 Preparation of Data

For this bachelor thesis we received a file from M. Soliman, which was
provided in the form of a Comma Separated Value (CSV). This file contains
about 100 architecture-relevant posts of SO. The posts are sorted according to

their probability to contain architecture knowledge.

A B C D E F G H

1d, Title, Body, Body | | | | | |

4335,"High availability","<p>Is there anyway to configure a WCF service with a failover endpoint if the p

<p=Specifically | am using the TCR/IP binding for speed, but on the rare occurrence that the machine is

ok owa pa =

~p=Without trying to sound too vague but | think Windows Network Load Balancing (MLB) should handl

Figure 3.1: Example of the CSV file that we have received from M. Soliman.

The first line of the file that is represented in Figure 3.1 is called the header. The
header contains four elements: An ID, a title, a body and another body. The ID
is the ID of the post on SO. The title represents the topic of the question that
was asked on SO. The first body contains the question itself. The second body is
one answer to the question. For each answer on SO there is one line in the CSV
tile.

In the first step of the data preparation we removed the Hypertext Markup

Language (HTML) tags. In the next step we used a tokenizer in order to split

13

the sentences into tokens and transformed the CSV file into the CoNLL-U

format.

The CoNLL-U format contains of ten fields?:

1.

o = LN

ID: Word index, integer starting at 1 for each new sentence; may be a
range for multiword tokens; may be a decimal number for empty nodes.
FORM: Word form or punctuation symbol.

LEMMA: Lemma or stem of word form.

UPOSTAG: Universal part-of-speech tag.

XPOSTAG: Language-specific part-of-speech tag; underscore if not
available.

FEATS: List of morphological features from the universal feature
inventory or from a defined language-specific extension; underscore if
not available.

HEAD: Head of the current word, which is either a value of ID or zero
(0).

DEPREL: Universal dependency relation to the HEAD (root iff HEAD =
0) or a defined language-specific subtype of one.

DEPS: Enhanced dependency graph in the form of a list of head-deprel

pairs.

10. MISC: Any other annotation.

We wanted to use the ID, FORM, LEMMA and UPOSTAGs, but some problems

occurred while importing our data into our annotation tool WebAnno, a

multipurpose linguistic annotation tool, so we decided to use only the ID and

the FORM instead (see Figure 3.2).

® http://universaldependencies.org

14

newdoc id = 4335

pewpar id = 4335p2

sent id = 4335s2

3 text = Is there anyway to configure a WCF service with a
1 Is _ _ _ _ _ _ _ _

2 there _ _ _ _ _ _ _ _

Figure 3.2: Example of our data in CoNLL-U Format.

After the import into WebAnno our data looks like the example presented in

Figure 3.3:

High availability

Is there anyway to configure a WCF service with a failover endpoint if the pr
specify a failover server in a SQL cluster . Specifically I am using the TCP / I
the machine is not available I would like to redirect traffic to the failover ser
just prefer not to write the code to handle re-routing .

You need to use a layer 4 load balancer in front of the two endpoints . Prob t
Haven't done it yet with WCF but plan to have a local DNS entry pointing to
which will direct all traffic to one of our servers hosting services within IIS .

Figure 3.3: Example of our data imported to the annotation tool WebAnno.

In the next chapter we present the process of the guideline development.

3.2 The Annotation Process

We have annotated 14 documents which have a high chance to include
architecture knowledge. The documents were annotated by three annotators
who have a background in computer science.

For the annotation process we used the tool WebAnno. WebAnno is a web-
based tool that enables distributed work. There is no installation effort and a
high availability. It also has the possibility to unlock a very large distributed
workforce which may be interesting for feature work. Another important aspect

is that it is open source so it comes at no costs (Yimam et al. 2013).

15

1

B -5 s &

Open Prev. Next Export Settings First Prev. Go to Next Last teset
Bachelor Finall TOUS 26 tevm—— __ Showing 1.66f6-senterTas [document 1 of 30]
g
Wikipedia defines XMPP as : ... an open-standard communications protocol for

message-oriented middleware based on XML . xmpp.org defines XMPP as : The
Extensible Messaging and Presence Protocol (XMPP) is an open XML technology for
real-time communication , which powers a wide range of applications . Although I’

a Java develdp an actually do with XMPP ! For instance , I've-heatd XMPP can be

Figure 3.4: Annotator interface of WebAnno.

In Figure 3.4 the configuration of the annotator interface of WebAnno is
presented. There are three highlighted areas. The one at the top highlights the
annotator menu. The annotator can open a document or skip forwards and
backwards through the different documents. It is possible to export a specific
text. The annotator has the opportunity to customize the configuration of
WebAnno in the settings.

It is possible to navigate through different pages of a document. With the
button below “Script” it is possible to switch between a left-aligned and a right-
aligned position of the text. With a click on “Guidelines” the annotator can take
a look into the guidelines whenever it is needed. It is possible to reset and finish
a document.

The highlighted left corner represents the post of SO and the right presents
the different layers that can be used.

We used the claim premise schema to analyze the software architecture
relevant posts, because it is a comparatively simple but powerful annotation
scheme. The Toulmin Model of Argumentation however, is a relatively complex
schema, so we decided not to use it. Since the posts on SO are not considered
particularly controversial we decided not to annotate with the stance-based

argument mining approach either.

16

In our annotation study following the claim premise schema a complete
argumentation consists of a claim or conclusion and at least one premise “that
has truth-value” (Rocha, Cardoso, and Teixeria 2016), which provides evidence
for the claim. A claim expresses an opinion that either is argued in favour of or
against. Support or denial is performed by giving evidence in form of premises.
In an argumentation these premises should be related to a claim, because an
enumeration of facts without any relation to a claim is not an argumentation
that follows our definition presented in Chapter 2.1.

There are three different types of relations that can occur. The relation in
which the claim is supported by a premise is named supporting. Accordingly, a
relation with a claim that is attacked by a premise is called attacking. The whole
construct of at least one claim and one premise that relates to the claim is called

an argument (Figure 3.5).

Claim Premise

| | | | |] | | | | |]
Supporting l Attacking lCom:litioning \ Supporting l Attacking 'Cnm:litinning \

Figure 3.5: A complete argumentation unit consists of one claim and one

premise that can have different types: supporting, attacking and conditioning.

As seen in the figure we have added another relation which is called
conditioning, because in many posts on SO a claim is brought forward that

depends on a specific condition. This condition is often expressed through an if-

17

sentence. Therefore in this annotation study with the claim premise schema the

type of a relation can be supporting, attacking or conditioning.

3.3 Best Practices and Emergence of the Annotation Guidelines

During our annotation study we tested several different set ups in WebAnno.
We wanted to optimize the annotation speed and the clarity during the
annotation.

In our study each sentence of WebAnno contains one part of the post on SO.
For example, the first sentence of WebAnno contains the topic of the original
post. In the second sentence the question that has been asked on SO can be
found. And in the following sentences are located all answers question(s).

The experiences made during the annotation process are presented in the

following chapters.

3.3.1 First Approach

In the beginning we started with identifying the statements and defining
whether a statement is a claim, a premise or that we are uncertain if it is a claim
or a premise.

In the case of uncertainty the annotator has to state a tendency — claim or
premise. In the next step we draw the relations between the different statements

and specify their types.

18

iStalements
Benefits of Netty over basic ServerSocket server ?

(peermine [premae!
I need to create a relatively simple Java tcp / ip server and I 'm having a little trouble determining if

ichaen)
I should use something like Netty or just stick with simple ServerSocket and InputStream / OutputStream . We 1

then pass the new client Socket off to some processing code In a new thread . That thread will terminate once th

sent . I like the idea of pipelines , decoders , etc. In Netty , but for such a simple scenario It doesn't seem worth the

like a bit overkill for our initial requirements , but I 'm a little nervous that there are lots of things I 'm not consider

such simple requirements ? What am I failing to consider ?

o
First , write the logic of your service so that it’s Independent of your communication layer .

Figure 3.6: Example of the first annotation attempt.

We allowed cross answer relations which made it very difficult to draw every
relation between the different answers. Due to the presentation of the relations
in WebAnno confusion gets created, because if a lot of relations exist from
statements that are located at the end of a document to a statement that is
located at the beginning, there is a line for every relation and the other
statements become obscured. In Figure 3.6 there is an example with only one
statement that relates to another one in the first sentences (the yellow marked
line, note: the example does not represent a correct relation, it is for
presentation purposes only).

Due to the confusion that this attempt caused, a different approach was tested.

19

3.3.2 Second Approach

To ensure a better
annotation variant.
starting with one.

statement ID in the

clarity during the annotation process we tested another
Every statement had its own identification number (ID)
We replaced the relation marks by assigning a target

source statement. The annotator could chose between the

same types of statement as before (claim, premise, and uncertainty). The

relation receives the type in the span annotation instead of in the relation. So

the only layer that we annotated is the statement layer (Figure 3.7).

D | 100 A

First , write the logic of your service so that it's independent of your communication layer .

ATIED] Source 100 b
As Victor Sorokin said , there's a learning advantage to doing it yourself . So it ought to be worthwhile to write it with sockets 1D
. It will involve less effort to get started , and if it works well enough then you're off to the races . If you find that you need Target 200 A
more scalability / robustness later , you can switch to netty . Just write a new netty layer that communicates for your service D
logic layer and swap them out . "
The main advantage of Netty over simply reading from and writing to sockets using streams is that Netty supports Tendency | premise] Xi|v
non-blocking , asynchronous I/ O (using Java's NIO API) ; when you use streams to read and write from sockets (and you
start a new thread for each connected accepted from a ServerSocket) you are using blocking , synchronous I/ O. The Netty TvPe | supporting b
approach scales much better , which is important if your system needs to be able to handle many (thousands) of connections Relaﬁ‘:ﬂ
at the same time . If your system does not need to scale to many simultaneous connections , it might not be worth the trouble
to use a framework like Netty . Some more background information : Threads are relatively expensive resources in an Type uncertain v
operating system. Each thread needs memory for the stack (which can be for example 2 MB in size) . When you create of
thousands of threads , this is going to cost a lot of memory ; also , operating systems have limits on the number of threads Statement

Figure 3.7: Example of the second annotation attempt.

This approach didn’t work well. It took a long time to annotate the statements

and it gets really confusing with all the ID’s.

As a result we decided to keep the annotations within one sentence of

WebAnno, respectively within one answer to a question on SO.

20

3.3.3 Third Approach

Like already mentioned in the previous chapter, we decided to annotate every

answer to a question on SO for itself. This led to clear and fast annotation.

First, write the logic of your service so that it's independent of your communication Ia?e_r .

As Victor Sorokin said , there's a learning advantage to doing it yd@e_lf . So

o (oremisgl o | [dm

it ought to be worthwhile to write it with sockets . It will involve less effort to get started , and if
- _ (oemse] o

it works well enough then you're off to the races . If

;o?find that you need more scalrability/ robustness Ee_f , ;ou can switch to nett; . Just

write a new netty layer that communicates for your service logic layer and swap therﬁ out."

Figure 3.8: Example of the third annotation attempt.

We defined the direction of the relation as following: The annotator has to draw
the relation from the statement that relates to another to the statement that is
related (Figure 3.8). So it is possible to have multiple relations from one
statement to another and they can be bidirectional. The example illustrates that

transitive relations of statements which build on each other can exist.

3.3.4 Fourth Approach

We noticed that the intuitive way of defining the type occurs during the process
of evaluating which object relates to which statement. This is why we decided
to type the statements in the relation. So we mark every statement in the first

step. Afterwards we draw the relations and in the relations we type the source

21

and the target statement (Figure 3.9). Finally every statement that is not part of
a relation has to be typed.
We removed the option for uncertainty and decided that in case of doubt the

statement has to be typed as a claim.

Statement

First, write the logic of your service so that it's independent of your communication \ay?af .

S (Setemert) _
As Victor Sorokin said , there's a learning advantage to doing it yourself . So

(Statement) Statement (Statement)

it o@t to be worthwhile to write it with sockets . It will involve less effort to get started ,and if it works well enouaﬁ then

. o S .
you're off to the races . If you find that you need more scalability / robustness later , you can switch to netty .

Figure 3.9: Example of the fourth annotation attempt.

3.4 The Annotation Guidelines

This chapter explicates the annotation guidelines. In order to reach the highest
annotator agreement possible and to make clear what to annotate and when to
annotate, we spent a lot of time to developing the guidelines for the claim
premise schema. During that process we tried different approaches in order to
get the best possible annotator agreement (see Chapter 3.3).
In the guidelines the motivation for their existence is described. Then the term
statement is defined and the boundaries of the statements are stated.
Furthermore, definitions are given for the following terms:

= claim,

" premise,

= attacking,

* supporting and

* conditioning.

22

Finally the order and the process steps that have to be executed during the

annotation process are described.

3.4.1 Motivation behind the Guidelines

As already mentioned, internet forums became an adequate place for
developers to debate several topics like programming and architecture
knowledge. In this study we focus on posts of SO, which consist of a topic, a
question and up to several answers to the question. The goal of the guidelines is
to define how to identify argument structures in these posts. The annotation
guideline is based on the guidelines by Kluge (Eckle-Kohler, Kluge, and
Gurevych 2015).
Posts on SO contain several types of statements:
* Controversial statements that are called claims; these segments naturally
raise the reader’s doubt and need further support.
* Provable statements that are called premises or facts; it can be said
whether they are true or false.
* Not every segment in a text is arguable, e.g. when the author presents
background information. Such text passages are rather explanatory and
not of interest for this study.

In order to maximize the annotator agreement the guidelines try to make
absolutely clear which parts of the texts should be annotated.

3.4.2 The Guidelines — Boundaries of the Statements

First we provided a definition for a statement in order to make clear what a

statement is and what it looks like.

23

A statement is a sentence that contains any kind of opinion. So a statement is
the main class and claims and premises are sub classes of a statement.

In this study the length of a statement is the smallest possible grammatically
correct text passage. Therefore every annotation candidate must contain one
subject, one verb and at least one object. An annotation candidate is a statement
that we consider for annotation. A sentence would be grammatically correct
even without an object. But if there is no object, the statement doesn’t argue
anything. This is why we decided to include at least one object for the smallest
possible annotation. We don’t want to annotate expletives or conjunctions that
are at the beginning or the start of a sentence, because they are not

argumentative, either (see Figure 3.10).

Modified if nothing has changed between each client request . Also, if

- |Tlpremis:e_l_i!cnnditinn| |
you service has a natural time resolution ,

B8 | claim | O

you can set the max-age to take éd#ahtégé of that . For instance L ify

Figure 3.10: An example for an annotation candidate.

If there is a sentence that contains multiple statements, we decided to split it
where it makes sense. It is important that the snippets of the sentence are still
grammatically correct. The only exception is when a sentence has two
statements that are linked with the word “and” and there is only a subject and a
verb at the beginning of the sentence. Enumerations instead should be
annotated as one statement.

We decided not to annotate punctuation marks and source-code since these

elements are not argumentative.

24

3.4.3 The Guidelines — Definitions

Since most definitions are already given in the Related Work chapter, we only
describe the structure of the definitions and add definitions that have not been

mentioned yet. The definitions follow the structure presented in Figure 3.11.

3.2 Claims
Definition

A claim is defined as an arguable fragment that is either supported or attacked. Claims are
sometimes expressed by a question.

Sanity Checking
These questions might help you to find claims in the text:

* Why does the author think, that X is valid?

» How does he come to believe that X is / could be true?

* Could the opposite of X be true?

® |sit possible to leave X in such a way (without further context)?

Examples

Have you considered archived Atom feeds ?

This question does contain a claim. The author thinks that Atom feeds are most likely to
help.

Figure 3.11: Example of a definition in the guidelines.

First the definition for the term is given. After that some sanity checking
questions are presented in order to find the occurrences of the term in the posts
of SO. Finally there are examples to make it easier for the annotators to
understand the use of the definition.

Subsequently two definitions are added. Explanations describe background
information for the question in the SO post. They are not argumentative.
Therefore we decided not to annotate them. In posts on SO conditions are often

formulated for certain statements. This commonly happens via if-sentences.

25

That is why we decided to add the conditioning to the claim-premise schema

presented in Chapter 2.4.1, so we are able to annotate conditions.

3.4.4 The Guidelines — Annotation Process

In the last section of the guidelines, the process of annotating is defined. During
the first reading the annotator should read the whole post in order to gather an
overview of the post and an idea of the structure of the answers. In the second
reading the annotator has to mark every statement that is detected. In the third
step the annotator has to draw the relations between the statements in the
direction of the object (source) that relates to the related object (target). Then the
annotator has to define the type of the source, the target and the relation. Viable
types for the source and the target are claim and premise. Viable types for the
relation are supporting, attacking and conditioning. During the last reading the
annotator has to check the own annotations to verify them.

The complete guidelines are attached to the thesis in Appendix A.1.

26

4 Results of the Annotation Process

On the one hand this chapter presents the inter annotator agreement. For this
purpose, we examined the annotations on the basis of same statements and on
the basis of similar statements. In the following we will compare the spans, the
different types (claim, premise) and the relations (supporting, attacking and
conditioning). To find similar statements we used fuzzy matching in order to
increase the number of overlapping spans, which are the basis for the further
analysis.

On the other hand the overlap of our annotations and the ontology classes
that were found by Soliman, Galster, and Riebisch (2017) is presented. To this
end we used the fuzzy matching as well to find the most similar statements.
Since there are no relations in Solimans ontology, we first determined which
statements belong to which ontology class and then we detected the relations
between these classes based on our annotations. Thereby we can confirm that
our attempt can expand the results that were found by Soliman, Galster, and

Riebisch (2017).

4.1 Inter Annotator Agreement

In this chapter we present the annotator agreement, starting with the statement
agreement (the percentage of equal annotated posts). Besides the statement

agreement we show the agreement on statement- and relations types.

4.1.1 Statement Agreement

First of all, the statements are compared because they are the basic element of
our annotation process. We followed two different approaches to examine the

statements. In the first we compared only statements that were exactly the same

27

(called equal statements in the following), in the second we examined
statements that reach a fuzzy matching score of 80 percent (called similar
statements in the following). To evaluate the data we chose two different

averaging formulas — macro averaging and micro averaging (see Figure 4.1).

S% = set of statements annotated by Ain document d
St = set of statements annotated by Bin document d

D = setof documents

I4 . = set of common statements of annotator A and B for document d
d _ (gd d
I, p= (5% N Sp)

d
Zd eD |I,1j 1;|

micro

AR
Zd =) |Sfl|
fﬁ, il
Tu‘grﬁ _ Zd:ﬂ Sﬁl
’ | D|

Figure 4.1: Micro and macro averaging.

In Table 4.1 the macro agreement for equal statements is presented. The left
column represents the gold annotation. So we assume that the annotator has

performed the “correct” annotation.

Table 4.1: Macro agreement for equal statements.

28

0,33939

0,48980 1 0,05248

0,39773 0,10227 1

Table 4.2 however represents the results for similar statements. The agreement
has improved a little, which was expected. It would be possible to increase the
agreement even more, but when the equality score gets too low in the fuzzy
matching algorithm, we would match statements that aren’t the same
statements anymore.

Example: “Hello, my name is Leon” and “Good morning, my name is Sarah”.

The texts in the example have a match score of 54 percent, so if our score for a
match is 50 percent that is considered too low. That is why we decided to

choose a score of 80 percent.

Table 4.2: Macro agreement for similar statements.

0,41212

0,59475 1 0,07289

0,44886 0,14205 1

Table 4.3 shows the results of the micro averaging formula for equal statements.

Since we have a multi class comparison the micro average is preferable.
Because in contrast to the macro average, which computes the results for each
class independently first and then takes the average, the micro average creates

an average metric of all contributed classes.

29

Table 4.3: Micro agreement for equal statements.

1

0,56932 1 0,50464

0,64939 0,30706 1

Table 4.4 presents the micro agreement for similar statements. As before, the

results are a little bit better, since we match slightly more statements.

Table 4.4: Micro agreement for similar statements.

1 0,77650

0,72707 1 0,69505

0,71321 0,43647 1

In the next chapter the results of the type agreement are presented.

4.1.2 Statement and Relation Type Agreement

To evaluate the types of statements (claim or premise) and of the relations

(supporting, attacking or conditioning) we used the Fleiss” Kappa which is

30

basically an advancement of the Cohen’s Kappa. The Fleiss” Kappa can be used
to measure the annotator agreement for non pair wise annotations (Fleiss 1971).
So it is possible to compare the annotations of more than two people. There are
three different parameters that are required to calculate the kappa: a number of
annotators, the number of subjects (the number of annotated documents) and
the number of categories that were examined.

For the statement type we have only two categories whereas for the relation
type there are three categories. The number of annotators is three in both cases.
The number of subjects is different, because there are more statement types
than relation types. Our results for the Fleiss” Kappa are represented in Table
45,46 and 4.7.

The overall Agreement is the original Fleiss” Kappa score. The free-marginal
kappa was introduced by Warrens (2010) and is an extension to the Fleiss’
Kappa. This kappa should be considered when the annotators “are not forced to
assign a certain number of cases to each category”+ This is the case in our

annotation study.

Table 4.5: Fleiss Kappa for statement type.

Similar Data

Equal Data

Overall Agreement 0,60938

0,60390

Free-Marginal Kappa 0,41406 0,40584

Table 4.6: Fleiss Kappa for relations with same source and target statement.

* http://justusrandolph.net/kappa/

31

Similar Data

Equal Data

Overall Agreement 0,90909

0,90470

Free-Marginal Kappa 0,86364 0,85714

Table 4.7: Fleiss Kappa for relations with same source type and target type

statement.

Equal Data Similar Data

Overall Agreement 0,88462 0,90000

Free-Marginal Kappa 0,82692 0,85000

The score for similar data is inferior to the equal data, because a lot of the fuzzy
matched statements were typed differently. The Fleiss Kappa and the free-
marginal kappa for relations differ only slightly between similar and equal

statements.

4.2 Overlap with the Ontology Classes of Soliman, Galster, and
Riebisch

To measure the overlap between the ontology classes by Soliman, Galster, and
Riebisch (2017) and our results, we used the fuzzy matching as well. For each
statement that was annotated by Soliman, Galster, and Riebisch we searched

through our annotations and took the best fuzzy matching statement as a

32

match. This way we achieved an overlapping percentage of 21 % (157 matches
of 758 total statements) using the annotations of all three annotators, but with a
quite high score (70 %) on the fuzzy matching algorithm. The full list of the
overlap is too long to attach to this thesis (see Appendix A.2). It is available on
the disk.

The data of Soliman, Galster, and Riebisch didn’t consider relations. They
only conducted a span annotation like we did with our statements. Since the
claim premise schema allowed us to draw relations between different objects,
we tried to expand the results by Soliman, Galster, and Riebisch. Therefore we
provided a list in which the matching statements, the type of the relation
between these statements and the ontology classes are represented (see

Appendix A.3).

33

5 Conclusion

Over the course of this bachelor thesis we dealt with the following hypothesis:

The argqument structures that have been found by the annotators overlap with
the ontology classes, for example benefits and drawbacks, which were found by

Soliman, Galster and Riebisch in the architecture-relevant posts on SO (2017).

In order to test this hypothesis, we conducted an annotation study with the aim
of developing an efficient method for analyzing arguments in software
architecture relevant posts. First of all we had to choose an argumentation
schema that we wanted to annotate with. The options included the claim
premise scheme, the Toulmin Model of Argumentation and stance-based
argument mining. We selected the claim premise schema because it is much
easier to apply than the Toulmin Model of Argumentation. Furthermore the
claim premise schema seems to be state of the art. Stance based argument
mining is eliminated for the reason that the posts on SO contain relatively few
implicit expressions.

In the next step the data was prepared and uploaded to the annotation tool
WebAnno. Afterwards the guidelines were engineered in order to reach the
highest annotator agreement possible with the minimum amount of time
needed for the annotation process. Then the annotation process was performed
with three annotators.

The results of the statement overlap have shown that the macro as well as
the micro annotator agreement for statements was higher when we looked at
similar statements (cf. Table 4.1 — Table 4.4). This is obvious, because the
number of matching statements increases significantly when small deviations in

the statements lead to a match. The results can’t be generalized as the sample of

34

annotated documents was relatively small. The subjectivity, the different
knowledge and language skills of the annotators are factors that might have
contributed to further distorting the results. To improve the results, the
guidelines can be extended by adding more examples to clarify the boundaries
of the statements. In addition, the annotators could have received even more
training.

To analyze the types of the statements and of the relations we used the Fleiss
Kappa. For the statement types we have reached an overall agreement of 60 %
(cf. Table 4.5). At this point, we only examined statements annotated by at least
two annotators. A possibility to reach a better inter annotator agreement would
be to increase the number of annotators to eliminate strong deviations and to
improve the guidelines with more detailed information on what constitutes a
claim and what constitutes a premise.

The same applies to the relations. The annotator agreement for the type of
relations differs between 88-90 % (cf. Table 4.6 and 4.7). This score seems pretty
high, but the total agreement on relations is 36 of 542 relations (~6 %). Even this
number can be misleading, since the same or fuzzy matched statements, the
same source and target types and the same relation type must be specified for a
correct relation. So the number of possible sources of error is comparatively
high. For example, assuming only equal statements and the same relation type,
the match increases to 17 %. To improve this score the amount of sources for
errors has to be reduced. Further improvements and training seems promising
in this case too.

In order to corroborate the hypothesis, we compared our statements with
those of Soliman, Galster, and Riebisch. As already mentioned in Chapter 4.2,
the result is a 21 percent agreement with the data from Soliman, Galster, and
Riebisch, but with a quite high score (70 %) on the fuzzy matching algorithm.

That leads to the relatively small overlap, because the statements of Soliman,

35

Galster, and Riebisch are longer than ours so it is impossible for the fuzzy
matching algorithm to find matches. In order to increase the score, another
matching algorithm has to be tested, because our statements are often
substrings of the spans annotated by Soliman, Galster and Riebisch. Since the
statements of them are longer than our statements. To reach an even better
agreement it is possible to concatenate multiple statements of us and compare
the new statement with the data of Soliman, Galster and Riebisch.

Very interesting is that we found relations in our data that link the
statements that are part of the ontology classification. This data is represented
in Appendix A.3. So we were able not only to find an overlap but also to
expand the ontology class of Soliman, Galster, and Riebisch with relations that
link the different ontology classes. Therefore, we believe that we have found a
good way to examine software architecture relevant posts on SO.

Our work has shown numerous approaches for further investigations. First
of all the annotation guidelines could be improved to reach a better overlap
than we did. The annotation process can be repeated with more annotators, so
that the deviations become negligible. It would be possible to search for more
argumentation schemas in order to find a better suiting one.

Apart from possibilities that improve the results of this work our results can
be used to expand the ontology classification that was done by Soliman,
Galster, and Riebisch with relations. We developed a corpus for machine
learning that can be used in order to automatically search through SO and
detect software architecture knowledge. This would help many software

architects around the globe.

36

6 References

Besnard, Philippe, and Anthony Hunter. 2010. Elements of Argumentation.
Cambridge: MIT Press.

Eckle-Kohler, Judith, Roland Kluge, and Iryna Gurevych. 2015. “On the Role of
Discourse Markers for Discriminating Claims and Premises in Argumentative
Discourse.” In Proceedings of the 2015 Conference on Empirical Methods in

Natrual Language Processing, pp. 2236-2242. Lisbon, Portugal.

Fleiss, Joseph L. 1971. “Measuring Nominal Scale Agreement Among Many
Raters.” Psychological Bulletin 76 (5): pp. 378-382.

Karbach, Joan. 1987. “Using Toulmin's Model of Argumentation.” Journal of
Teaching Writing 6 (1): pp. 81-91.

Kneupper, Charles W. 1978. “Teaching Argument: An Introduction to the
Toulmin Model.” College Composition and Communication 29 (3): pp. 237-241.

Lippi, Marco, and Paolo Torroni. 2016. “Argumentation Mining: State of the art
and merging trends.” ACM Transactions on Internet Technolology 16 (2): pp.
10:1-10:25.

Moens, Marie-Francine. 2013. “Argumentation Mining.” In Proceedings of the 5th
2013 Forum on Information Retrieval Evaluation - FIRE 13, pp. 10:1-10:6. New
Dehli, India.

Rocha, Gil, Henrique Lopes Cardoso, and Jorge Teixeria. 2016. “ArgMine: A
Framework for Argumentation Mining.” In Computational Processing of the

Portuguese Language, n. p. Tomar, Portugal.

Sobhani, Parinaz, Inkpen Diana, and Stan Matwin. 2015. “From Argumentation
Mining to Stance Classification.” In Proceedings of the 2nd Workshop on

Argumentation Mining, pp. 67-77. Denver, CO, USA.

37

Soliman, Mohamed, Matthias Galster, and Matthias Riebisch. 2017.
“Developing an Ontology for Architecture Knowledge from Developer

Communities.” In 2017 IEEE International Conference on Software Architecture

(ICSA), pp. 89-92. Gothenburg, Sweden.

Soliman, Mohamed, Matthias Galster, Amr R. Salama, and Matthias Riebisch.
2016. “Architectural Knowledge for Technology Decisions in Developer
Communities: An Exploratory Study with StackOverflow: An Exploratory
Study with StackOverflow.” In 2016 13th Working IEEE/IFIP Conference on
Software Architecture (WICSA), pp. 128-133. Venice, Italy.

Toulmin, Stephen Edelston. 2008. The Uses of Argument. Cambridge: Cambridge

University Press.

van Eemeren, Frans H., Robert Grootendorst, and Arnolda Francisca Snoeck
Henkemans. 1996. Fundamentals of Argumentation Theory: A Handbook of
Historical Backgrounds and Contemporary Developments. Mahwah: Lawrence

Erlbaum Associates.

Warrens, Matthijs J. 2010. “Inequalities between multi-rater kappas.” Advances

in Data Analysis and Classification 4 (4): pp. 271-286.

Wojatzki, Michael, and Torsten Zesch. 2016. “Stance-based Argument Mining -
Modeling Implicit Argumentation Using Stance.” In Proceedings of the
Conference on Natural Language Processing (KONVENS 2016), pp. 313-322.

Bochum, Germany.

Yimam, Seid Mubhie, Iryna Gurevych, Richard Eckart de Casthilho, and Chris
Biemann. 2013. “WebAnno: A Flexible, Web-based and Visually Supported
System for Distributed Annotations.” In Proceedings of the 51st Annual Meeting

of the Association for Computational Linguistics, pp. 1-6. Sofia, Bulgaria.

38

A Appendix

A.1 Annotation Guidelines

Motivation

Internet forums became an adequate place for developers to debate several
topics. In this study, we focus on posts on StackOverlow®. These posts contain a
question and several answers to or comments on it. The goal of this annotation
guide is to define how to identify argument structures in these posts. This
annotation guide is based on the guidelines by Kluge (Eckle-Kohler, Kluge, and
Gurevych 2015).

Segment

Explanation Arg. Unit Cther

' Claim Premise
Supporting l Attacking lCunditiﬂningI Supporting Attacking lCunditiﬂning\

Figure A.1: Taxonomy of terms. In the annotation study, only the colored boxes

(claim, premise, support, attack and condition) will be considered.

Posts contain several types of statements:

* Controversial statements are called claims; these segments naturally
raise the reader’s doubt and need further support.

* Sentences in the context of a claim may either support or attack the
claim. Accordingly, these segments are called supports and attacks.

> https://stackoverflow.com/

39

*= Not every segment in a text is arguable, e.g. when the author presents
background information. Such text passages are rather explanatory and
not of interest for this study.

The term argumentation unit generalizes the terms claim, premise and the
relations supporting, attacking and conditioning. Premises are provable facts. A

statement which we consider for annotation is named annotation candidate.

Boundaries of the Statements

We want to annotate the smallest possible grammatically correct passages.
Therefore every annotation candidate must contain a subject, a verb and an

object.

I believe IBM's free broker RSMB is limited to 1024 connections

We left out “I believe”, because it doesn’t matter for the argumentation.

Do not annotate expletives or conjunction.

this can be accessed by developers when needed ! However , when you are using master / slave ActiveMQ topology with journalled JDBC, you might end up loosing messages since
you might have messages in journal that are not yet into the DB ! "

therefor it can be considered unsafe and unéu;ﬁpbrted

We left out “therefor”.

If a sentence contains more statements split them where it makes sense, but

keep in mind that every snippet must be grammatically correct.

((Statement]] [{Statement)|
this can be accessed by developers when needed ! However , when you are using master / slave ActiveMQ topology with journalled JDBC , you might end up loosing messages since

you might have messages in journal that are not yet into the DB ! "

The sentence that starts with “however” was split into three grammatically correct

statements.

40

We do not annotate any source-code, because it is not argumentative. Do not
annotate any punctuation marks. Try to annotate complete statements of the

authors. Don’t cut important parts of it.

We do not annotate nested statements. Annotations should make sense when
you look at all related statements within an argument. A statement on its own

doesn’t have to make sense context wise if it is grammatically correct.

1ttps://issues.apache.org/jira/browse/AMQ-5238 is an issue in Apache issue tracker that asks for a JDBC persistence adapter for schedulerdb

The three statements don’t make sense by themselves, but when you read the whole

sentence, they make sense.

We do not annotate links, unless they are the subject of the sentence. Sometimes
there is additional information in a sentence that starts with “that”. This should

be annotated as one statement.

[iSTztement)
it's really up to what you're trying to do with it. The value that Tibco (BusinessWorks) adds is that it provides a simple , straightforward middleware application designer and

(Statement]
makes it simple to deploy apps in a load balanced and fault tolerant environment .

In this example the link or the information that is linked with the link is the subject of
the sentence. Therefore it is annotated. After the “that” there is additional information

relating to the main clause. That is why it is annotated as one statement.

If there is an “and” in a sentence that expresses two different aspects, we mark
them as two statements. Only in this case, the statements don’t have to be
grammatically correct. When the “and” appears in an enumeration, then mark

the whole enumeration as one statement.

Here is an example where the sentence with an “and” is split into two statements.

41

Relations should always be drawn to the next claim possible. If the same claim

is made twice then the relation should be drawn to both statements.

Suggestions introducing a possible solution are claims.

Statements that are not typed in a relation have to be typed in the statement
field. It has to be ensured that every statement has only one type. If you are
uncertain whether it is a claim or a premise, then in case of doubt define it as a

claim. Ensure that every relation is typed.

Annotation Types

Statements

Definition

A statement is a sentence that contains any kind of opinion.

Claims

Definition

A claim is defined as an arguable fragment that is either supported or attacked.
Claims are sometimes expressed by a question.

Sanity Checking

These questions might help you to find claims in the text:

* Why does the author think that X is valid?
= How does he come to believe that X is / could be true?

= Could the opposite of X be true?
» Isit possible to leave X in such a way (without further context)?

Examples

1| claim | &

Have f-::uu considered archived Atom feeds ?

42

This question does contain a claim. The author thinks that Atom feeds are most

likely to help.

Premises

Definition

A premise is a provable fact. It is possible to make a clear decision whether it is
true or false. Every premise needs a claim that it refers to. Statements about
speed are premises, because it is possible to measure speed. Enumerations of
tool characteristics are facts and therefore premises as well.

Sanity Checking

These questions might help you to find premises in the text:

= Could this statement be true?
= Is the effort realistic?

Examples

|2 | premise | 1| attack] |3 premise | 1| support|

They are 100 % RESTful fhey are very scalable

The author underlines his statement “Have you considered archived Atom

feeds?” by enumerating technical facts.

Explanations

Definition

The posts on StackOverflow often contain explanations or descriptions of
background information. We call these segments explanations, because they are
not part of the argumentation, we do not annotate them.

Telling apart Explanations and Claims

43

Because it is difficult to distinguish statements and explanations, here are some
questions that might help to decide whether it is a statement or an explanation:

» What did the author do so far?
* What is his background?

Examples

Meed some help figuring out what I am looking for . Basically , I need a service in which
the Server dumps a bunch of XML into a stream (over a period of time) and every time
the dump occcurs N number of clients read the dump . Example : Every time one of a
1000 stocks goes up by 5 cents , the service dumps some XML into a stream . The
connecting applicaticns grab the information from the stream . I don't think the
connection will ever close , as there needs to be something reading the stream for new
data . This needs to adhere to WCF REST standards , is there something out there that I
'm locking for ? In the end , it's just a non-stop stream of data . Update : Looks like the
service needs to be a multi-part / mixed content type .

This is a typical explanation where the author describes the background of his

topic.

Support and Attack

Claims can either be supported or attacked by premises. A support brings
evidence for a claim. An attack rebuts a claim. It is possible that some premises
have a characteristic of a claim. A later section will describe how to handle these
types of situations. A support or attack can occur before or after the claim it
refers to. In our scenario we only mark relations within one answer. Exception:
If the author cites another author, then it is allowed to set relations between
these two answers. Otherwise we cannot be sure whether the relation to
another post was intended by the author or if it is a random phenomenon.

Here are some typical patterns for support:

» Claim, because premise

44

* Premise leads to claim

* Because of premise claim is valid

* Out of premise follows claim

* Premise. Therefore claim

* Premise proves, that claim applies

* (Claim is shown by the fact that claim applies

Here are some typical patterns for attack:

* Claim, although premise

» Although premise, it is true that claim
* Opposite premise claim is

* Premise. However claim is

* Claim. Premise speaks against it.

Sanity Checking

* “Does this support cause me to accept the claim more readily?
* Does this attack foster my doubts against the claim?
* Especially, does the author bring about the premise evidence in order to

support/attack the claim?”¢

Condition

In posts on StackOverflow conditions are often formulated for certain
statements. This commonly happens via if-sentences.
The if-sentence is always a premise, the following part is always the claim.

Example

Modified if nothing has changed between each client request . Also, if

[7 | premise | 8 | condition

you service has a natural time resolution ,

8 | claim | T

you can set the mak—ége to take éd#ahtégé of that . For instance ify

®https://www.ukp.tu-darmstadt.de/fileadmin/user_upload/Group_UKP/data/argument-
recognition/annotation_guidelinesArgMinNews.pdf

45

Through the if-clause a condition for the following statement has been given.

This is why it is a condition.

Annotation process

This section describes how to annotate a document with our specific WebAnno
setup. While the first reading, you should get an idea what the document is
about. In the second reading you have to draw relations and type the source
and the target statement. In the last reading you should check if the current

annotation is correct and follows these guidelines.

First reading: Gather an Overview

Just read the whole document and figure out what it is about. Do not assign any

annotation candidates. Try to get an idea of the structure in the answers.

Second reading: Identify statements

During the second reading mark every statement that attracts your attention.
We do not annotate the topic and the question of the post, so you have to start

in line 3.

Third reading: Draw relations and type the statements

If you want to, you can type the statement immediately. But this step is
optional.

Draw the relation from the direction of the statement that relates to another
statement. Define the type of the source statement as premise or claim.

Afterwards select premise or claim for the target of the relation. Statements that

46

are not relating on any other premise or claim remain statements, because a

statement alone is no argumentative element.

In transitive relations you have to draw every relation that occurs.

[(Statement)] (Statement]
XMPP can be used for a wide range of messaging based applications . Basically , it provides core services which can be used to build XML based messaging applications

Example for possible objects for relations:

Premise - premise
Premise - claim
Claim - premise
Claim - claim

Fifth reading: Checking

Try to verify the annotation that you made during the last reading.

References

Eckle-Kohler, Judith, Roland Kluge, and Iryna Gurevych. 2015. “On the Role of
Discourse Markers for Discriminating Claims and Premises in Argumentative
Discourse.” In Proceedings of the 2015 Conference on Empirical Methods in

Natrual Language Processing, pp. 2236-2242. Lisbon, Portugal.

47

A.2 Overlap of Statements and Ontology Classes

Ontology type

Statement

claim Development Feature | where XMPP really shines is in its extensibility
Benefit
claim Interoperability Feature | XMPP integration with Camel is trivial
Benefit
premise | Technology Pattern | it provides core services which can be used to
Relation build XML based messaging applications
premise | Use Technology | utilizes long-lived TCP connections for
Relationship comimunicating
premise | Technology Pattern | Its based on a decentralized -client-server
Relation architecture
premise | Pattern Use Cases An incredible amount of use-cases can be
elegantly covered by PubSub , from queuing
long-running jobs and having workers handle
them , to micro-blogging
premise | Development Feature | Camel's framework allows vou to build an
Benefit application and easily swap out different
messaging technologies (JMS , STOMF, mina ,
etc)
claim Reliability Feature | XMPT has a very robust and widely available
Benefit, Technology | extension to handle PubSub in a standard way
Pattern Relation
claim Interoperability A Camel component that allows integration
Technology Relation with Smack AFI in Camel routes
premise | Development Feature | described in XEP-0060 and providing out of the
Benefit box a workflow for handling publishing ,
subscriptions , notifications and security

48

A.3 Relations between different Ontology Classes

Source Ontology

Source Statement

Relation Type

Target Statement

Target Ontology

Development providing out of the | supporting MWPP has a wvery | Reliability Feature
Feature Benefit bom a workflow for robust and widely | Benefit, Technology
handling publishing, available extensionm | Pattern Relation
subscriptions, to handle PubSub in
notifications and a standard way
security.
Technology Bundle- | it can be used to wire | supporting Camel MMPP - A | Interoperability
Feature Relation together applications Camel component | Technology
via XML messaging that allows | Relation
and XMPP APIs integration with
Smack APTin Camsl
routes
Not Recommend | JAN-EPC or JAX-WS | attacking For a Java to Java | Technology ADD

Technology ADD

for Java-to-Java
communication

should be avoided

application FMI is a
good solution

Context, Decision
Rule

External Constrain

clients are not under

conditioning

TAN-RPC or [AN-WS

Not Recommend

your control or might for Java-to-Java | Technology ADD
move to another communication
platform should be avoided
Architecture client js NATTED conditioning EMI has a much | Interoperability
Component complex underlving | Feature Drawback
Behaviour network protocel
which requires wou
to open up EMI
ports, and also might
not work if the client
is NATTED.
Use Technology | they are relving on | © Web Services are | Recommended
Relationship HTTP only more likely to work | Technology ADD
Decision Rule If vou know that this | conditioning vou should consider | Recommended
issueis not a problem, using RMI Technology ADD

you should consider

using RMI

49

Source Omtology

Source Statement

ERelation Type

Target Statement

Target Ontology

Architecture send complex object | * it's probably faster | Performance Featre
Confignration nsts from ome with BEMI Benefit

application to another
Recommended I might as well point | supportng Cloud AMQP iz | Use Technology
Tedmology ADD yvou to other Fabbithil) as a | Relatonship

commerdal Service

offering s Cloud AMOP
Commerdal Feature | an easy tounderstand | sopporting It is complving to | Technology Pattern
Benefit and espedally nowadays Felation

published pridng expectations on a

madel Software as a service

(5aaS) product,

Interoperability voucan integrate wih | supporting give GromyWsaty | Recommended
Technology Java web servies Technology ADD
ERelation dients like Spring W5

CXF, and JAX-WS

pretty easily.
Interoperability The thing that makes | supporting give CroovyWsatry | Recommended
Featre Benefit Groovy so great is Technology ADD

how easy it is to

integrate with Java
Interoperability EB session beans, | sapportng The business logic is | Business
Technology which are usually implemented in EJB | Requirement
Felation invaked either from a session beans Technology

web request, a [MS Felation

message ar a

EMI-IOF remote call
Eecommended voucan exposz EFC's | supporting Has any one | Recommended
Technology ADD | as Ssrvics (WCF) and comsidered Biztalk | Technology ADD

use it in any Adapter service pad:

application . it suppaorts version

EX-

Interoperability interaperability conditioning i would go for WCF | Recommended
Eequirement these days Tedmology ADD
Recommended Youcould comtinue to | attacking biggest problem is | Design Issue
Technology ADD use the SAP going to be

Connector for 5AF connecting to SAF

460 460

50

Source Ontology

Source Statement

Relation Type

Target Statement

Target Omtology

Wellknown System | [see a lot of big | supporting I would consider | Recommended
Experience players do recently| for moving away from | Technology ADD
example twitter, digg, therelation database
facebook, reddit). in favor of for
example Cassandra.
Architecture This introeduces a lot | supporting Basing the high level | Recommended
Configuration of latency into the design around a s=t | Conceptual Solution
Performance application of modulesis a good | ADD
Drawback way to manage
complenity and
structurs
development
Development I think it is way to | supporting I don't like the part | Mot Recommend
Feature Drawback | comple about S0AP Technology ADD
Welllmown System | HipHop for php | supporting I would also advice | Recommended

Experience

which comwerts wour
php code to C code
which was a huge

boost for facebook.

vou tohave a look at

HipHop for php

Technology ADD

Note: The symbol * represents untyped relations. There should be none, but

some types were not set.

51

Statutory Declaration

I declare that I have authored this thesis independently, that I have used no
other than the declared sources / resources, and that I have explicitly marked all
material which has been quoted either literally or by content from the

referenced sources.

place, date (signature)

