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Abstract

Topics models allow to summarize and categorize vasts amount of information. Latent Dirich-
let Allocation (LDA) is a well-established topic model that uses a probabilistic approach to
estimating distributions over words, documents, and topics. LDA has been shown to have
two problems (1) scalable estimation and (2) poor semantic coherence of topics. Probabilis-
tic models are notoriously complex to estimate, often relying on sampling based methods.
Variational Inference presents an algorithm that allows circumventing this problem by pos-
ing the estimation as an optimization problem. Attention-Based Aspect Extraction has been
introduced as an improvement over LDA by enforcing topic coherence with an attention mech-
anism. This thesis investigates the link between estimation algorithm and resulting semantic
coherence of LDA and ABAE.
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Chapter 1

Introduction

1.1 Background

We are drowning in information but starved for knowledge
— John Naisbitt

The advent of the Information Age has started to transform every aspect of our lives
into a sequence of ones and zeroes. The amount of digital information has been growing
exponentially for the past year, while at the turn of the century Gigabytes seemed large we
are now thinking in Exabytes. The internet and modern sciences are examples of areas that
produce previously unimaginable amounts of data. A current estimate gauges that video
streaming platform Youtube will produce 1–2 exabytes of video by 2025 (1 exabyte is 1018

bytes), genome researchers have surfaced an estimate that by 2025, between 100 million and
2 billion human genomes could have been sequenced. The data-storage demands for this
alone could run to as much as 2–40 exabytes [Check Hayden, 2015]. This glut of information
has the potential to fundamentally improve medicine, government, and all scientific research.
The underlying assumption is that we can understand more about the world around is by
examining data and seek to explain it with models. Though I fundamentally I agree with this
assumption I see a gap between the excess of data and progress. Data alone will not spark
innovation or progress, it will be models transforming terabytes into new knowledge. Without
a model, data is just a binary representation of an observation. There exists a wide range of
models for extracting these patterns. The true marvel of the Information Age is the ability to
discover hidden patterns in these vast space of data. Thus the problem lies in two aspects:
how to capture the underlying systems and how do scale this up to terabytes of data.

The difference between data and information is a model. A model is a certain interpreta-
tion of the data that seeks to explain the generating process. The method of finding hidden
patterns in data is commonly referred to as Machine Learning. Machine Learning is a statis-
tical framework to develop, explore and evaluate models which explain data. A model applied
to data will produce one possible explanation, however, there are many competing models
to explain a single phenomenon. Machine Learning provides techniques to produce, evaluate
or find competing explanations. Traditionally Machine Learning Models can be broadly be
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categorized into supervised and unsupervised. Supervised models assume that the data set is
annotated with a true observed label, formally this means that the data D consists out of in-
puts x and output labels y. At the heart of supervised learning stands the data representation
Dsupervised = {(yi, xi)}Nn=1, where N is the number of training samples. Supervised learning
has been extremely successful, the most known member is the linear regression which is the
backbone of science. On the other side of the spectrum, are unsupervised models. Unsu-
pervised models include clustering and topic modeling. As these model’s name suggests the
aim is to find topics or clusters which group data together. Finding these labels stands at
the heart of unsupervised learning. The corresponding training set for unsupervised can be
formalized as Dunsupervised = {(xi)}Nn=1. The central difference is that unsupervised learning
does not have the associated label y for each data point x. Is the nature of unsupervised
methods to have less information to leverage. Less information allows for a large space of
solutions in which the labels lie. This loose nature of this unsupervised models lends itself to
more to an exploratory approach and also referred to as knowledge discovery [Murphy, 2013].
In the absence of labels for D the problem of unsupervised modeling is expressed as a den-
sity estimation problem. Clustering as a density estimation problem is formalized as p(xi|θ),
unlike the supervised case, which is formalized as p(yi|xi, θ). These formalizations highlight
supervised learning as conditional density estimation and unsupervised as unconditional den-
sity estimation. With this formulation of unsupervised learning, the main question of the field
can be formulated as: what set of parameters are optimal, what is optimal and how to find
the parameters? The answers to that question can be categorized again into two approaches:
Frequentist and Bayesian.

At the theoretical heart of machine learning lies the understanding of unknown quantities.
The fundamental principles of understanding these quantities can be done in two frameworks:
Frequentist and Bayesian (Probabilistic). The frequentist approach uses point estimates of
the unknown quantities. Frequentist only ever conditions on the actually observed data, in
this approach there is no notion of repeated trials [Murphy, 2013]. For the clustering example
from the previous section, a frequentist would argue in the following fashion. There exists a
likelihood function p(X|θ) for which we are trying to infer the θ value that maximises the
likelihood. This approach is called Maximum Likelihood Estimation (MLE) is the standard
estimation technique for Frequentist statistics.

θMLE = arg max
θ
p(X|θ)

= arg max
θ

∏
i

p(xi|θ)
(1.1)

Though it’s much more practical to find the θ value to optimize the log-likelihood we can
think of the described approach as ’classical frequentist statistics’. The estimation technique
for MLE is usually done with a gradient-based approach. These approaches optimize the
gradient of the loss function. Though very common the frequentist approach has been de-
scribed to be plagued by so-called: pathologies. Pathologies are deficiencies in interpretability
of p-values and confidence intervals and violation of the likelihood principles [Murphy, 2013].
Each pathology is a consequence of using point-estimates from the MLE approach outlined.
A different approach to the statistical foundations of machine learning is the probabilistic or
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Bayesian approach. The Bayesian approach is interested in the full distribution of unknown
quantities rather than point estimates and uses the concept of a prior. The full distribution of
unknown quantities is called the posterior distribution p(θ|D). The posterior distribution can
be expressed as p(θ|D) by conditioning the latent variable θ on the data D. The construction
of the posterior involves Bayes’ rule which expresses the posterior as the likelihood of the
data p(D|θ) multiplied with a specified prior over the latent variables p(D), normalized by
the marginalized evidence

∫
p(D, θ)dθ

p(θ|D) =
p(D|θ) · p(θ)∫
p(D, θ)dθ

(1.2)

Though concise in mathematical notation this model is intractable for any non-trivial
application. The main difficulty lies in the marginalization of the evidence term

∫
p(D, θ)dθ.

Computing the evidence requires the summation over every possible latent variable configu-
ration. Even for a binary latent variable, the evidence requires 2N computations, where N is
the number of latent variables. The sheer number of computations required for the evidence
term makes an exact solution computationally impossible [MacKay, 2003]. The benefit of this
approach is that in the Bayesian framework, every relevant question about unknown quan-
tities is framed in terms of the posterior distribution. Therefore a major aspect of Bayesian
models is their tractable inference, which amounts to finding scalable approximations to the
evidence term

∫
p(D, θ)dθ. Approximation techniques have traditionally focused on different

Monte Carlo (MC) methods of integration. Research here has focused on aiding the under-
lying sampling mechanism, auxiliary constructs such as Hamiltonian Monte Carlo or Markov
Chain Monte Carlo ensured that the sampling space is restricted [MacKay, 1998]. However,
these methods still struggle with convergence and the ability to scale to very large datasets
[Blei et al., 2017]. A recent trend in Machine Learning is to reframe the question of posterior
inference as a search problem. First found in Statistical Mechanics to approximate partition
functions for exponential distributions has now found its place in Bayesian Machine Learn-
ing. Variational Inference (VI) casts the problem of posterior inference as a gradient-based
optimization problem. VI avoids the computing the evidence term by using a lower bound on
the evidence. With the lower bound and a distance measure for probability density functions,
commonly the Kullback-Leibler Divergence (KL-Divergence), the optimization objective Ev-
idence Lower BOund (ELBO) can be constructed. The ELBO can be used to search for
the best possible member of a variational family. Variational families are a set of probability
distributions. A common example is the mean-field variational family. The main objective
of VI is to find the member of the posed variational family that is closest, in terms of KL-
divergence, to the true posterior by optimizing the ELBO. VI has been successfully established
as a scalable alternative to MC methods [MacKay, 2003].

Unsupervised methods have been widely used but they are of particular interest in topic
modeling for natural language. Natural language refers to Human language digitized into a
representation and topic modeling refers to the process of finding a well-describing topic for
a document. For this thesis, the conceptual unit of language is a document. The length and
interpretation of a document depends on the context. A document can refer to a sentence,
an article or even a book. Topic modeling is the task of algorithmically finding a set of groups
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for documents. The aim of topic models is to find a set of labels in which groups are similar
and the documents belong to the same topic, thus the name topic modeling. A common
representation of language is the bag of words representation. Bag of words is a discrete
representation of the document in which each document is represented as a histogram of
words [Murphy, 2013]. Each histogram is a fixed length vector that counts the word oc-
currences of every word in all given documents and represents them as a natural number.
One approach to probabilistic topic modeling is the Latent Dirichlet Allocation (LDA). The
model’s name suggests two important aspects: Latent and Dirichlet. A Dirichlet distribution
is the multivariate generalization of Beta distribution [Murphy, 2013]. The Beta distribution
is a form of meta-distribution for probability distributions. The Dirichlet distribution gen-
eralizes this notion to multiple probability distributions. Latent is referring to the fact that
each observation of the topics is conditioned on observations. Each observation is only the
words occurred in a document, the actual topics never appear alone. The topic structure is
this latent and can only be gauged from the conditional distribution. LDA falls precisely into
this framework. The observed variables are the words of the documents; the hidden variables
are the topic structure; and the generative process is as described here. The computational
problem of inferring the hidden topic structure from the documents is the problem of com-
puting the posterior distribution, the conditional distribution of the hidden variables are given
the documents. LDA assumes an underlying generative process which produced a mixture
of different topic distribution over each document. This generative process defines a joint
probability distribution over both the observed and hidden random variables. For example,
each document exhibits several topics, LDA seeks to answer: to what extent is each topics
exhibit and what words are representative of each topic.

1.2 Research Question

The thesis aims to answer three questions:

1. Does the gradient based estimation influence the results of topic models? [Blei et al., 2003]
show that perplexity depends on K, does this also hold for batch size?

2. Does the semantic coherence depend on the type of optimization and K? [Hoffman et al., 2013]
recommends research in ELBO optimization for probabilistic models

3. Does ABAE produce topics with higher semantic coherence also with gradient based
estimation? [He et al., 2017] suggests this but the comparison is between sampling and
gradient based.

At the heart of any research stands the ability to compare to other methods. A major
question for unsupervised topic modeling is the evaluation of results. While supervised models
have a correct annotation to compare to, unsupervised models require different metrics. Tra-
ditional literature proposes several clustering evaluation metrics such as B3 and Rand Index,
since each topic forms a cluster of words those can also be used for topic modeling. These
metrics require a set of labels to compare to. Semantic Coherence is a clustering evaluation
metric tailored for gauging the human level semantic coherence of topics [Mimno et al., 2011].
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Other than the previously mentioned B3 and Rand Index semantic coherence does not require
labels to compare to. Semantic coherence focuses on co document frequencies to construct a
semantic measure. Other works have compared Bayesian and Frequentist unsupervised learn-
ing techniques but this works will only compare gradient based estimated models. Attention-
Based Auto-Encoder (ABAE) claims to outperform LDA in terms of semantic coherence.
The original paper only compares with a LDA sampling technique, the comparison is this not
necessarily on even grounds. Other topic modeling approaches have criticized LDA for their
poorly constructed topics [He et al., 2017]. An ABAE is a topic modeling approach which
leverages an attention mechanisms. The claim here lies that an attention-based mechanism
is able to come up with more coherent topics [He et al., 2017]. This work will investigate
that claim.

Not only are the consequences of sampling vs variational inference not well established, but
also the choice of optimization technique for variational inference remains an open question
[Blei et al., 2017]. The question of how to best optimize the ELBO remains open research.
While Frequentist gradient-based methods underwent extensive research in regards to the
optimizer used the choice of optimizer for ELBO has been less explored [Blei et al., 2017]. VI
optimizes the ELBO which is more complex objective than ML. The question for the second
experiment is thus: which gradient-based estimation technique is best suited for optimizing
the ELBO of LDA?

1.3 Outlook

This thesis is structured into four chapters. This chapter has outlined the problem and the
main research questions. The next chapter will introduce the necessary theoretical foundation
for understanding the main two experiments. In the third chapter, this thesis describes the two
experimental setups as well as a description of the data set used. This includes a description
of the used metrics, data, and processing. After the experiment has been explained the fourth
chapter will show and discuss the findings. The last chapter will distill the previous sections
and conclude with some finishing remarks as well as ideas for future work.
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Chapter 2

Background

This chapter introduces the relevant theory and concepts for the experiments in the following
chapters. The experiment will focus on a comparison between LDA and ABAE. To understand
the comparison of the experiment the reader is required to understand the following terms:
Natural Language Processing, Latent Dirichlet Location, Variational Inference and Attention
Based Aspect Extraction. The ensuing background chapter will provide the necessary back-
ground for the reader to understand the experiments later in this thesis. First, the general
concept of NLP and their subfields topic modeling and aspect extraction are introduced. With
the framework given two different models and their estimation techniques are explained.

2.1 Basics

2.1.1 Natural Language Processing

Natural Language Processing is the process of finding and discovering patterns in human
language [Goldberg and Hirst, 2017]. While machine learning is the unrestricted search for
hidden patterns, NLP is concerned with applying machine learning to documents written in
human language. Human language data covers a very broad spectrum of use cases, a common
example includes news articles, chat messages, and academic literature. Virtually every doc-
ument written by in human language classifies as natural language. Tasks in the field of NLP
range of parsing, speech recognition to topic modeling and many more. Natural Language is a
convoluted area of interest since its highly interdisciplinary and so fundamental to what makes
us human. Human language is inherently symbolic, one could argue that the logic underlying
computations is ideal to extract symbolic relations. Even though its symbolic and every human
can use language it has been historically an elusive endeavor to understand human language
with machine learning. Human language is considered a complex topic due to its ambigu-
ity, context-dependency, and high variability [Goldberg and Hirst, 2017]. To conquer these
complexities research has been shifting to statistical approaches for understanding language.
While initially focused on linear methods such as regression and support vector machine,
recent work has utilized the flexibility of non-linear methods [Goldberg and Hirst, 2017]. In
particular neural networks and recurrent neural networks have had a profound impact and
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replaced many traditional approaches [Goldberg and Hirst, 2017].
An essential building block for Natural Language Processing is the representation of hu-

man language document as features. Though all NLP models are concerned with the digitized
representation of language there are mainly two approaches to representing a document: dis-
crete and continuous. The discrete or continuous nature of representation presents a tradeoff
between simplicity and interpretability. This thesis only inspects discrete representations of
language. The most prominent member of language representations is bag of words (BOW).
The continuous counterpart to BOW is continuous bag of words (CBOW).

Independent of the representation of language every model will have set of documents
and each document will have at least one word. yil ∈ 1, ..., V represents the identity of the
l’th word in document i. In this set V is set of possible words over all documents in the
set [Murphy, 2013]. We assume l = 1 : Li, where Li is the known length of document i
and i = 1 : N where N is the number of documents. Within this framework, the BOW
representation for topic modeling can be formalized with the following notation. A major
drawback of the BOW approach is to neglect the order in which words occur in the document.
This approach represents a single document as histogram vector word occurrences for each
word in the entire corpora for each document. Since the number of all words used in a static
corpus never change and not all words appear in all documents the length of the feature
vector is fixed and sparse [Murphy, 2013]. This can be formalized as niv ∈ 0, 1, ..., Li where
niv is the frequency of word v in document i. The number of words is bound by the number
of documents, thus v = 1 : V . The resulting word count matrix has the shape of N × V
which can grow very large and place constraints on the number of documents or vocabulary
used [Murphy, 2013]. Fortunately, documents tend to express only a significantly smaller
subset of the entire vocabulary V . The document-term NxV matrix is thus sparse, this
invites for compression techniques to reduce the size of the matrix[Murphy, 2013]. With this
formalization of the actual task of feature extraction can now be described in the following
section. The aim of the following sections is introduce the joint probability models of p(yi)
or p(ni) using latent variables to capture the correlations between words.

2.1.2 Topic Modelling

Topic modeling is the process of discovering thematic structure within text [Blei, 2012]. The
found thematic structure can be used to annotate the documents to better organize and
summarize the content. This approach falls under the class of unsupervised machine learning
since the text is not labeled initially. The term topic modeling has been coined by bleialc.
Topic modeling has received attention due to its ability to find structure in a very large
corpus of text without little prior knowledge. With the ever-increasing amount of data,
unsupervised approaches such as topic modeling have become a viable tool to bring structure
into unstructured data. Though very successful in the text domain Topic modeling can also
be used to find latent structures in images, genetics data, social networks and many more
[Blei, 2014]. This work focuses on its application on text documents. The Latent Dirichlet
Allocation (LDA) is a simple and popular approach used in topic modeling. The main concept
of LDA is that very document exhibits a set of different topics. Each topic is a distribution over
a fixed vocabulary. The following illustration highlights these concepts in a single document.

9



Figure 2.1: A schematic representation of the LDA on article [Blei, 2012]

Figure 2.1 illustrates the concept of topic, document and the topic proportions and as-
signments. We can see the annotated document contains a color for each word which is
associated with a topic. Each document is a mixture of topics, to be specific: each docu-
ment exhibits a distribution over different topics. This distribution is highlighted in the topic
proportions and assignments. The proportion and assignment illustrate the distribution over
the colors, ie. the topics. With this approach, one find the distribution over topics for a given
document. One can also look at the top words for each topic. The top words serve as a good
description of the topics of nature.

The above example highlights that LDA is a useful approach to finding topics within the
unlabeled text. The next section will explain the computational problem when using this
approach.

2.1.3 Probabilistic Modelling

Finding hidden patterns in data stands at the core of machine learning. One way to gauge
hidden patterns is to model them in terms of unobserved random variables that capture
patterns in observed data. One approach to topic modelling is to treat the topic distribution
as an unobserved random variable. A probabilistic model of a latent variable z and given data
x describes the posterior distribution as p(z|x). The construction of the posterior involves
Bayes’ rule which expresses the posterior as the likelihood of the data p(x|z) multiplied with
a prior over the latent variables p(z), normalized by the marginalized evidence

∫
p(x, z)dz

p(z|x) =
p(x|z) ∗ p(z)∫
p(x, z)dz

(2.1)

10



Figure 2.2: On the left are the topic probability for the previous example toping and on the
right are the top 15 words for 4 topics [Blei, 2012]

Though concise in mathematical notation this model is intractable for any non-trivial
examples. The main problem here lies in the marginalization of the evidence term. Computing
the evidence requires the summation of every possible latent variable configuration. For a
binary latent variable, the evidence requires 2N computations, where N is the number of
latent variables. There are two general approaches to dealing with the evidence: sampling and
variational inference. While sampling such offers conceptual simplicity it struggles with larger
models. VI casts the problem of posterior inference an optimization problem [Blei et al., 2017,
Wainwright and Jordan, 2008, MacKay, 2003]. One simplified constraint one can employ is to
limit the prior to be of the same probability distribution family. Using a conjugate prior allows
expressing the posterior in a closed form. This simplifies the problem of posterior inference
remains a hard problem as actual inference algorithms make assumptions that will make the
integral tough to compute again. The next section will introduce two useful conjugate priors.
Conjugate prior!!!

2.2 Latent Dirichlet Allocation

2.2.1 Beta and Dirichlet Distribution

This section will introduce the prior for our probabilistic topic model later on. Since the name
of the model inherits from its prior I will commence by explaining its role in the model. The
Beta distribution is a probability distribution function (PDF) that has two free parameters:
a,b. The Beta distribution is commonly used as a prior in Bayesian modeling since it serves as
a conjugate prior for common discrete posterior distributions such as Bernoulli and Binomial.
The PDF of the Beta distribution can be given as:
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Beta(x|a, b) , 1

B(x|a, b)
xa−1(1− x)b−1 (2.2)

The Beta distribution uses the Beta function which is defined by the following equation
where is the gamma function. The gamma function is defined for Γ(x) =

∫ 0
inf

B(a, b) ≡ Γ(a)Γ(b)

Γ(a) + Γ(b)
(2.3)

The Beta distribution serves as a starting block for the Dirichlet distribution. The Dirichlet
distribution is a family of continuous multivariate probability distributions parameterized by
a vector α of positive real numbers. It is the multivariate generalization of the just described
Beta distribution. Like the Beta distribution, it is a popular prior in Bayesian modeling. It
is used as prior because it is the conjugate prior to the multinomial and categorical posterior
distribution. The Dirichlet distribution has the following pdf.

Dir(x|a) ,
1

B(α)

K∏
k = 1x

α−1
k
k I(x ∈ Sk) (2.4)

The I is the mutual information of the data points x in the simplex. The Dirichlet
distribution has an interesting geometric interpretation. Dirichlet distribution pdf is a function
thas support over the simplex Sk = x : 0 < xk < 1,

∑
Kk = 1xk = 1.

In section a) of the chart above the full simplex of the parameter vector α is illustrated.
This is directly representing the simplex geometry described above. Section b) charts the
probability density for the Dirichlet distribution given α = (2, 2, 2), which is broad and
centered in the middle. Section c highlights the shape of α = (20, 2, 2) with a tight peak on
one corner. d) shows how all small α = (0.2, 0.2, 0.2) values creates peaks on the edges. Small
values under 1 create spikes at the corner of the simplex [Murphy, 2013]. This interpretation
of the simplex surface will appear in the next section where the words of a document span
the simplex.

2.2.2 Latent Dirichlet Allocation

The Latent Dirichlet Allocation (LDA) is one of the main models of the thesis and represents
a probabilistic topic modeling approach on discrete data representation [Blei et al., 2003].
The LDA interprets the documents qi as a discrete mixture model where every document
is a mixture of Categorical distributions. The parameters of the Categorical distribution are
treated as a random variable and give it a prior distribution defined using the described
Dirichlet distribution. Given K as the number of topics, every document is assigned to a
single topic qi ∈ 1, ...,K. The assignment to each topic is drawn from a global distribution
π. Every word is assigned to its own topic qil ∈ 1, ...,K drawn from a document-specific
distribution. In this model, every document exhibits membership of every topic to a certain
degree or probability. LDA differentiates itself from other approaches where every document
only exhibits membership of a particular topic. For this reason, this approach is also referred
to as the mixed membership model [Murphy, 2013]. The name Latent Dirichlet Allocation
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Figure 2.3: The Dirichlet distribution four different parameter values [Murphy, 2013].

comes from the prior used on the categories of document. The Dirichlet distribution is
conjugate to the categorical distribution. The relevant posterior is categorical but just the
prior on this distribution is Dirichlet. Using a Dirichlet priors makes LDA a twofold process.
Not only is the parameter Each parameter for the Categorical distribution Cat() is drawn from
Dirichlet prior. With this in mind, the LDA can be formalized as the following. The prior
Dir(α1K) is specified as the conditional probability of the categories given the values of the
prior.

πi|α ∼ Dir(α1K) (2.5)

qil|πi ∼ Cat(πi) (2.6)

bk|γ ∼ Dir(γ1V ) (2.7)

yil|qil = k,B ∼ Cat(bk) (2.8)

The twofold nature of this model becomes in the use of parameters. The distribution over
topics for a document is drawn from qil|π ∼ Cat(πi) which is drawn from πi|α ∼ Dir(α).
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This hierarchical interaction can also be illustrated in the form of Probabilistic Graphical
Model (PGM) [Wainwright and Jordan, 2008]. The advantage of this formalism is the ability
to express inference and other interesting functions as the transformation of the underlying
graphical model. Ignoring the details of PGM for now, the representation of the LDA as PGM
allows to highlights the hierarchical nature of parameters.

Figure 2.4: Latent Dirichlet Allocation represented as a probabilistic graphical model
[Murphy, 2013].

In this graphical notation shaded vertices are observed variables and grey are latent vari-
ables. The edges with a direction notate conditional dependencies between variables. The
plates refer to repetitions of sampling steps with the variable.

A useful approach to better understand LDA is to understand it from a geometric per-
spective. As previously described each vector bk defines a distribution over V words with k
topics. Each vector pii defines a distribution over K topics.

When only a significantly less number of topics and words are given LDA can also be
interpreted as a form of dimensionality reduction [Murphy, 2013]. In this case, topics span a
low-dimensional subsimplex and the projection of each document onto the low-dimensional
subsimplex can be thought of as dimensionality reduction [Murphy, 2013].

The following figure illustrates this projection with a vocabulary of three (V=3) and
two topics (K=2). The resulting V-1 simplex spans a space that represents all probability
distribution over the words. The shaded area is the 2-dimensional simplex that represents
all possible probability distributions for the three words. In this fashion, documents can
be represented as a point in this plane as well. In the resulting three dimensional space
observed documents are approximated as being 2-dimension on a 2-dimensional simplex.
The 2-dimensional simplex is spanned by the specified two topics, each of which live in a
3-dimensional simplex.

In the illustration above displays the 3-dimensional simplex. The two topics are colored
are black, they are represented in terms of the probability for each word. A geometric inter-
pretation of the Dirichlet prior on the topic-word distributions is that it can be interpreted as
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Figure 2.5: Geometric interperetation of LDA with three words and two topics [Murphy, 2013]

forces on the topic locations with higher α moving the topic locations away from the corners
of the simplex. This was illustrated in a previous section.

The main question that arises now is: How are the parameters for LDA estimated? This
questions stands at the heart of much LDA research. There are two schools of parame-
ter estimation techniques for complex probability density function. Monte Carlo methods,
which have a long history of simulating solutions to hard to compute integrals. And the
other approach is Variational Inference, instead of approximating the integral this approach
solves a similar but easier problem. VI rephrases the problem of parameter estimation as an
optimization problem.

2.3 Monte Carlo Estimation Techniques

Computing the posterior distribution for any non-trivial Bayesian model is intractable. In
general, computing the distribution of a function of a latent variable using the change of
variables formula can be difficult. One simple but powerful approach is to generate S samples
from the distribution, call them x1, ..., xS. There are many approaches to generate such
samples Markov chain Monte Carlo or MCMC is a popular choice. With the generated
samples, the distribution of f(X) can be approximated by using the empirical distribution
of the generated samples [MacKay, 2003]. Sampling methods are well established but also
expose some significant flaws. The intractable nature of the evidence term in probabilistic
models has given rise to several sampling methods specialized for machine learning. For the
context of this work, two Monte Carlo approaches are relevant: Monte Carlo and Collapsed
Gibbs Sampling [MacKay, 1998]. While Monte Carlo is the general approach for approximating
complex integral, Collapsed Gibbs sampling is a special use case of sampling commonly used
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for LDA.

2.4 Information Theory

Information Theory provides the theoretical underpinnings for scaleable probabilistic topics
modeling as well as evaluating the coherence of topics models. At the heart of Information
Theory stands the problem of communication. Claude Shannon, the father of this field, has
defined the fundamental problem of communication as the ability to reproduce a message
that was sent at a different point [MacKay, 2003]. Though the relation to probability and
the content of the thesis might not be apparent at first glance it undoubtedly is connected.
For example, the distribution over words can be seen as a way to encode a message where
common words are bits. A different example would be that the most common words in
the English language are very short (’I’,’and’,’the’) while rare words tend to be much longer
[Murphy, 2013]. The relevant part of information theory for this thesis are: Entropy, Kullback-
Leibler Divergence and Mutual Information.

The entropy of a random variable X with with a probability density function p is denoted
by H(X) or H(p). For discrete random variables with K states the entropy H is defined as:

H(X) , −
K∑
k=1

p(X = k)log2p(X = k) (2.9)

The term Entropy comes from the field of Thermodynamics and refers to the disorder of a
system. Intuitively higher entropy means more disorder in a system, this disorder interpreted in
the context of probabilities as uncertainty. A high entropy implies high uncertainty of outcome.
Looking at the Entropy of a Bernoulli random variable highlights this concept. For a Bernoulli
distribution with with K = 2 and p(0.5) the entropy is at 1. This means that if two outcomes
are equally likely the uncertainty is at its maximum. Uniform distributions thus produce high
entropy. If the concept of entropy is extended to several probability density functions it
can also be used to measure the dissimilarities between random variables. Entropy is this
context is called relative entropy and is used to construct the Kullback-Leibler Divergence
(KL-divergence). The term H(p, q) is called cross entropy and the extension to the previously
described entropy term H(p).

H(p, q) , −
∑
k

pklogqk (2.10)

With this definition of cross entropy of two random variables the KL-divergence can be
defined as the following:

KL(p||q) ,
K∑
k=1

pklog
pk
qk

(2.11)

KL(p||q) =
∑
k

pklog pk −
∑
k

pklog qk = −H(p) +H(p, q) (2.12)
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Intuitively the Cross entropy H(p,q) is the average number of bits required to encode data
coming from source with distribution p when we use q to define the code book. The code
book is referring to the underlying code producing the message. Consequently, the regular
entropy is equivalent to the cross-entropy with the same argument. H(p) = H(p,p). Using the
frame of information theory on can understand the KL divergence as the average number of
additional bits required to encode the data with distribution q instead of the true distribution
q [Murphy, 2013]. This measure will play a major role in the following sections as LDA can
be estimated by optimizing the KL-divergence.

Several version of LDA will be evaluated in terms of their semantic coherence. Semantic
coherence is commonly just referring to Pairwise Mutual information (MI), which is closely
related to entropy.

[Murphy, 2013] defines PMI as:

PMI(x, y) , log
p(x, y)

p(x)p(y)
= log

p(x|y)

p(x)
= log

p(y|x)

p(y)
(2.13)

The PMI measures the discrepancy between two events occurring together versus them
occurring together by chance. This can be interpreted as several words occurring together in
a topic by the topic model or just by chance. This concept will resurface later as a key metric
for evaluating topic models.

2.5 Variational Inference

Variational Inference allows circumventing computing the likelihood of the evidence term by
framing posterior estimation an optimization problem. To treat posterior estimation as an
optimization problem the objective function needs to be specified and justified. The already
introduced KL-divergence is the backbone in constructing a useful objective function for
finding a distribution that is similar or close to the true posterior. This section explains how
an optimization objective equivalent to the KL-divergence can be constructed. The Evidence
Lower Bound is equivalent to KL-divergence but does not require the marginalized evidence
term. Furthermore, the Mean-Field approximation as a Variational Family is introduced. This
section concludes with alternatives to KL-divergence and the Mean-Field Variational Family.

Figure 2.6: Variational Inference for LDA algorithm [Blei et al., 2003]
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2.5.1 The Evidence Lower Bound

There are many approaches to define a measure of distance between two probability density
functions. An information theoretic approach is the Kullback-Leibler (KL) Divergence. KL
divergence has its origins in information theory and is an asymmetric, nonnegative proximity
measure for two densities. Even though KL-Divergence allows to express the distance between
two probability function it still requires the computation of the untractable evidence term. The
evidence lower bound (ELBO) allows circumventing the intractable computation by optimizing
a lower bound on the marginal probability of the observations log p(z). Using the Jensen’s
inequality, a computational tractable lower bound on log p(x) can be constructed. Jensen’s
inequality and the concavity of the logarithm function imply that for any random variable y
there exists a lower limit for the logarithm of the expectation. The formal definition of the
Jensen’s inequality

log E[f(y)] ≥ E[f(log(y))] (2.14)

With this inequality, one can construct a lower bound for the KL-divergence which is
denoted as L(q). The next equation shows that the ELBO and KL-divergence are almost
identical and that the ELBO does not require the computation of log p(x):

log p(x) = log

∫
p(x, z, β)dzdβ

= log

∫
p(x, z, β)

q(z, β)

q(z, β)
dzdβ

= log

(
Eq

[
p(x, z, β)

q(z, β)

])
= Eq[log p(x, z, β)− Eq[log q(z, β)]

, L(q)

(2.15)

The second last line highlights the two components of the ELBO. First the expected log
joint Eq[log p(x, z, β) and the entropy term of the variational distribution −Eq[log q(z, β)].
Both depends on the variational distribution over the latent variables q(z, β). The ELBO
objective is equivalent to the KL divergence up to an additive constant [Hoffman et al., 2013].

KL(q(z, β) || p(z, β|x)) = Eq[log q(z, β)]− Eq[log q(z, β|x)]

= Eq[log q(z, β)]− Eq[log q(z, x, β)] + log p(x)

, −L(q) + constant

(2.16)

The main advantage of the ELBO is that the KL-divergence can be expressed without the
marginal probability of x. As described earlier is, the main problem of probabilistic models
is exponential computations required for the evidence term. Circumventing the computation
of the marginal likelihood of the evidence allows for a reasonable approximation of many
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probabilistic models [Hoffman et al., 2013]. The optimized distribution is then used as a
proxy for the true posterior. The solution and the required search for the solution depend on
the choice of Variational Family, which role is described in the next subsection.

2.5.2 Mean-Field Variational Familiy

One major assumption in variational inference is the choice of variational family. A family here
refers to a set of distributions over the latent variables with its own variational parameters. The
aim of the variational family is to restrict the search space by limiting the possible variational
distributions. The complexity of variational family directly impacts the complexity of the
optimization. More complex families are harder to optimize than simpler families. Mean-Field
variational families are a common choice of variational families. The mean-field variational
family assumes that latent variables are not correlated and each individually describes by a
single factor in the variational density. The power of the mean-field assumption first became
apparent in statistical mechanics. The Ising model is used in statistical mechanics to compute
interesting properties of a system of magnets. To understand the benefits of the Mean-Field
assumption it is beneficial to take a look at the Ising model. The Ising model is a lattice of
spins where each spin points either up or down.

Figure 2.7: Lattice of magnets and their associated spin [Altosar, 2017].

The idea behind the Ising model is that two adjacent magnets can either be attracting
or repulsing. Two magnets repulse if their poles oppose and they attract otherwise. The
spin at location i is formally described as up (si = +1) or down (si = −1). The attraction
between two magnets is described in terms of the interaction strength J . If two magnets
oppose they will contribute −J and J if they attract. For any interaction strength, J > 0 the
system will align to minimize the energy of the system. The energy of n spins is the sum of
all interactions in the system: E(si, ..., sn). Relevant questions such as: what is the likeliest
spin or what is the average energy can only be answered in terms of distributions which is
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very similar though to probabilistic machine learning [Altosar, 2017]. In statistical mechanics
the spin configuration can be described with Boltzmann distribution:

p(s1, ..., sn) =
e−βE(si,...,sn)

Z
(2.17)

The parameter β is the inverse of the temperature and only of anecdotal value in this
thesis. The denominator Z is referred to as the partition function Z and is the true highlights
of this equation. The partition function Z ensures that the distribution integrates to 1. This
is identical to the marginalized probability of the evidence term in probabilistic modeling.
Without the right Z the function p(si, ..., sn) would not be a probability. The partition
function is given as:

Z =
∑
s1=±1

...
∑
sn=±1

e−βE(si,...,sn) (2.18)

This written form the partition function illustrated why this term can’t be evaluated
analytically. Each sn has two possible states resulting in 2n terms for computing the partition
function. The partition function is intractable for the same reasons as the evidence term in
probabilistic models. However, while in machine learning one is interested in expectations of
distribution in statistical mechanics it is the magnetization of the system that is of interest.
The solution to the intractable nature of the similar functions was found by Physicists in
the seventies [Altosar, 2017]. The Mean-Field Theory is an approximation technique that
focuses on certain properties of the distributions such as magnetization and expectations.
The Mean-Field approximates the energy by only accounting for local interactions of spins
[Altosar, 2017].

Figure 2.8: The Mean-Field approximation of a single spin. The magnetic field H is shown
with dashed lines [Altosar, 2017].

The main assumption here is that the impact of spins on other spins beyond their magnetic
field is negligible. One thus only focuses on the z nearest spins. The contribution of each
individual spin to the total energy under the Mean-Field approximation can be written as:
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Es1 = −s1
(
J
∑
j=1

zsj +H

)
(2.19)

For the two-dimensional case now only needs to sum over the four closest neighbors
instead of all other spins in the lattices. Taking this further, the energy for a single spin
si can also be written in terms of a different spin sj fluctuation’s around its mean value
m = mean(sj) and sj = m + (sj − m) The mean-field approximation is now when one
even ignores the neighbors fluctuations around its mean and only uses the mean directly. The
mean-field approximation for the energy function of a single spin is thus:

EMF
s1 = −s1(zJm+H) (2.20)

Literature refers to this spin as non-interacting since it’s energy function only depends
on its state s1 and not of any other states. This example illustrates how the interaction
effects of different spins can be approximated by the average magnetic field induced by the
neighboring spins. This approach is referred to in Physics as the mean field. Connecting the
Ising model to the probabilistic model we can see that the partition function Z is identical
to the marginalized likelihood of the evidence term logp(x). Machine learning researched
have leveraged the Mean-Field approximation as Variational Family for Variational Inference.
The Mean-Field Variational Family describes each latent with its own parameters and no
interaction with other latent variables:

q(z, β) = q(β|λ)
N∏
n=1

J∏
j=1

q(znj |θnj) (2.21)

In this formulation, the term q(z, β) is expressed as a member of a mean-field variational
family where the posterior now depends on a new parameter λ and θ. One requirement is
that q(z, β) and q(β|λ) must be in the same exponential family.

2.5.3 Natural Gradient of the ELBO

One of the most important features of optimization problems is the gradient of the optimiza-
tion objective. Traditional gradient descents methods optimize a function f(λ) by taking
steps of size p in the direction of the gradient. The parameter update is described as:

λt+1 = λt + p∇λf(λt) (2.22)

If the gradient of function f(λ) exists points in the direction of most ascent. Optimizing
along the gradient thus guaranties that the change in parameters will improve the objective
function. This is formally described as:

arg maxdλf(λ+ dλ) = subject to ||dλ||2 + ε2 (2.23)

The updates the parameters of our variational distribution are chosen to maximize the
negative distance between two distributions. The parameters are updated according to the
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gradient of the objective functions. The problem lies here in the assumption that the param-
eter space is Euclidean. The assumption in 2.25 is that any small change in ε would move λ
in the direction of the gradient. Euclidean distance is a poor measure for the dissimilarities
between two parameter vectors λ and λ

′
and the resulting distribution q(β|λ′ and q(β|λ).

The intuition here is that given a Normal distribution N with two different parameters λ and
λ
′
the Euclidean distance between the two parameter vector does not describe the dissimilar-

ities between the distributions. For example, the Euclidean distance between N(0, 100000)
and N(10, 100000) is 10 but the actual difference between the two distributions is barely
noticeable. On the other hand, the distribution N(0, 0.01) and N(0.1, 0.01) barely overlap
but the Euclidean distance is very small. Thus using the Euclidean space for optimizing the
gradient would result in poor performance simply because the distribution parameters are
assumed to be in Euclidean space. The natural gradient projects the gradient to lie in a space
natural to the task. A better approach is to look for the gradient of a space that is similar to
the symmetric KL-divergence.

.

Dsym
KL (λ, λ

′
) = Eλ

[
log

q(β|λ)

q(β|λ′)
] + E

′
λ

[
log

q(β|λ)

q(β|λ′)

]
(2.24)

The direction of the steepest ascent can also be formulated for the symmetric Kl-divergence.

arg maxdλf(λ+ dλ) = subject to DKL
sym(λ, λ+ dλ) + ε (2.25)

The difference between the two gradient formulations is that the Euclidean gradient points
in the direction of steepest ascent in Euclidean space and the natural gradient points in the
direction of steepest ascent in the Riemannian space. In Riemannian space, the distance is
defined by KL divergence rather than the L2 norm [Hoffman et al., 2013]. To project the
gradient into the Riemann space one can define a linear transformation of λ under which
the squared Euclidean distance between λ and nearby vector λ + dλ is the KL-divergence
between q(β|λ) and q(β|λ + d). The Riemann metric G(λ) is that linear transformation
which transforms the Euclidean gradient into the Riemann space.

dλTG(λ)dλ = DKL
sym(λ, λ+ dλ) (2.26)

2.5.4 Stochastic Gradient Variational Inference

Scalling variational inference to much data? How do update gradient influence result? How
to do stochastic?

Using stochastic variational inference allows for a scalable estimation of probabilistic top-
ics modeling, however the resulting topic models are different. [Hoffman et al., 2013] have
shown that stochastic approximation to the gradient in variational inference lead to poorer
results. The main reason for this result is that stochastic variational inference is guaranteed
to converge on a local optimum but approximating the gradient with few data points may
lead to a poor results.
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Figure 2.9: Algorithm for variational inference [Hoffman et al., 2013]

2.5.5 Variational Inference beyond KL-divergence and Mean-Field

The two main assumptions in the previous sections where the choice of metric for the distance
of the variational family and the choice of variational-family. Though for the context of this
thesis only these two choices will be relevant, the alternative should be mentioned as well.
The recent spike in interest in probabilistic models has also sparked research in more powerful
metrics and variational families. An early example of a variational family beyond mean-
field is the Thouless-Anderson Palmer (TAP) equation approach [Zhang et al., 2017]. The
TAP equation approach allows relaxing the assumption of total independence by introducing a
perturbative corrections to the entropy term. This approach has been successfully been used in
Boltzmann machines and Neural Networks [Zhang et al., 2017]. The KL-divergence approach
allows for analytically tractable of conditional probability density functions, however, they
have been shown to underestimate posterior variance break symmetry when multiple modes
are close and is a comparably loose bound [Zhang et al., 2017]. For those three reasons,
different divergence measures have been constructed. The α-divergence is a generalization of
the ELBO in which the parameter α controls how much mass placement is enforced in the
posterior. The α parameter is bound by α > 0 and α 6= 1

DR
α (p||q) =

1

1− α
log

∫
p(x)αq(x)1−αdx (2.27)

The mass control in the α-divergence regulations how much the posterior the variational
distribution is drawn to areas of posterior probability. The small α values force that the mass
is spread out over the posterior while a higher α results in zero-forcing of mass. The KL-
divergence is a special case of the α-divergence where α→ 1. The α-divergence has also been
shown to not only to provide a lower bound on the marginal probability but also an upper
bound. This has been successfully been leverage in different machine learning application
[Zhang et al., 2017]. Beyond the α-divergence there is the f - a divergence which has an even
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more general form of:

Df (p||q) =

∫
q(x)f

(
p(x)

q(x)

)
dx (2.28)

Where f can be any convex function with f(1) = 0, in the case of the KL-divergence this
function is the logarithm. With the previous mentioned Jensen’s inequality and specialized
f function a tighter bound on the marginal likelihood of x can be given. The short section
highlighted alternative approaches for variational inference for a detailed discussion please see
[Zhang et al., 2017].

One concern raised in research is tightness of the evidence lower bound [?]. One would
assume that the closer the bound is to the actual evidence term the better the result. However,
the authors have shown that tighter ELBO for variational objectives do not always imply a
better approximated model. For a full treatment of this please refer to [?].

2.6 Attention Based Aspect Extraction

Latent Dirichlet Allocation has been the dominant approach in topic modeling [He et al., 2017].
LDA’s success stems from its ability to summarize a given corpus and conceptual simplicity.
Both have created a mature ecosystem for estimating these models, making LDA success-
ful and available approach to topic modeling [Pedregosa et al., 2011]. Critics of LDA have
argued that LDA-based models may describe a corpus fairly well but the resulting individual
topics have poor quality [He et al., 2017]. The poor quality of individual topics manifests in
loosely related words in the aspects. The reasons for the low coherence of aspects have been
argued to be twofold. Firstly, LDA neglects word co-occurrence statistics which are the pri-
mary source of information to preserve topic coherence. The section on coherence describes
that co-occurrences are an essential part of measuring the coherence of topics. The second
weakness of LDA is its probabilistic nature. LDA requires to estimate the distribution of
topics for each word, for applications with small documents this causes significant problems.
Documents with few words have been shown to result in poor coherence in the resulting top-
ics [He et al., 2017]. The Attention-based Aspect Extraction (ABAE) is designed to address
both of the shortcomings of LDA. The authors of the original paper describe the model as
[He et al., 2017]:

In contrast to LDA-based models, our proposed method explicitly encodes word-
occurrence statistics into word embeddings, uses dimension reduction to extract
the most important aspects in the review corpus, and uses an attention mechanism
to remove irrelevant words to further improve coherence of the aspect

ABAE’s aims to improve the coherence of individual topics by using aspect embeddings
that take co-occurrences into account. ABAE is designed to estimate a set of aspect embed-
dings, each aspect can be represented and interpreted by their nearest or representative words
in the embedding space [He et al., 2017]. Every word w in the vocabulary has an associated
feature vector ew ∈ Rd [He et al., 2017]. The word embedding feature vector is designed
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to map words that often co-occur to points in the embedding space that are close to each
other. This results in space where the distance between two points is the representative of the
co-occurrence of words. The embedding features are represented as a word embedding matrix
E ∈ RV xd where V is the vocabulary size. Each row of this matrix represents a feature vector
for each word. The embedding is designed to not only represent the co-occurrences of words
but also to represent the associated aspects. Each word is thus embedded in space of co-
occurrences with other words and aspects. The require aspect embedding matrix T ∈ RKxD
where K is the predefined number of aspects. The number of aspects is application specific
but tends to be significantly smaller than V . The aspect embeddings are necessary to es-
timate the words for every aspect of the vocabulary V , to further enhance this process the
attention mechanism filters aspect words [He et al., 2017]. The general process follows three
steps. The input is a list of indexes for words in a document. Each index is then processed
in two steps. First all non-aspect words are down-weighted by the attention mechanism

Figure 2.10: A schematric representation of underlying ABAE architecture [He et al., 2017]

Identical to LDA the input to ABAE is a discrete representation of the document, each
input sample is a list of indexes for words in a document. The sentence embedding zs is the
weighted sum of all word embeddings ewi

zs =

n∑
i=1

aiewi (2.29)

The weight ai which enforces coherence is estimated by the attention mechanism. The way
in which the attention mechanism enforces coherence is by conditioning on the embedding
of the word as well the global context of the sentence. The weight can be seen as the
probability that wi is the right word in the order to capture the main topic of the sentence
[He et al., 2017]. The weights for ai need to be estimated with the following procedure.
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ai =
exp(di)∑n
j=1 exp(dj)

(2.30)

The attention mechanism to compute the weights for ai follows a two-step logic [He et al., 2017].
First the matrix M captures the relevance of each work to the K topics.

di = eTwi ·M · ys (2.31)

Then the relevance of the filtered words is expressed as the inner product of the filtered
words and the global context ys. The global context ys is the average of the words embedding.

ys =
1

n

i=1∑
n

ewi (2.32)

The parameters ys and ew are estimated by using a gradient-based approach. The authors
propose an error function with regularization as well as non-linearities to construct an error
function. The error function is then optimized as a neural network. The For a full treatment
of ABAE and the associated estimation process see [He et al., 2017].
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Chapter 3

Experiment

After the previous chapter has explained the theory behind probabilistic topic modeling and
especially LDA with variational inference and ABAE, the coming sections will focus on ex-
periments. The experiments are tailored to address the research questions in Chapter 1. The
first section of this chapter describes the data set and the used preprocessing. The following
sections explain the used evaluation metrics for the experiments and the actual experiment
setups.

3.1 Dataset and preprocessing

The dataset for the experiments come from an online marketplace. Marketplace platforms
have become a big part of the economy in the information age. Facilitating a transaction
between seller and buyer has not only created economic value but also a glut of transaction
data. One vast source of information in those marketplaces are reviews left by users for
products. As described in the introduction, the power of unsupervised and especially topics
models is to bring structure to vast datasets. Airbnb is a two-sided marketplace platform
that allows users to book apartments from other users online. In the year 2017 more than
100 million nights have been booked through the marketplace. After a user has left the
accommodation he is asked to write a review for his experience. This includes a rating
for cleanliness, location, and communication as well as several written texts. The most
salient written review is the public review, the public review is displayed on the apartment’s
website and visible for future potential guests. The public review is limited to 500 words
and the user has 14 days after the checkout to write this review. The public review contains
a description of the stay and the overall experience from the user’s perspective. For the
following experiments, I will use a corpus of Airbnb public reviews. A very similar setup has
been used by [Mitcheltree et al., 2018], where the authors focused on ABAE. The corpus
contains all reviews written between 1 January 2011 and January 1, 2017. The corpus is then
processed with spaCy 1. SpaCy was used to split the reviews into sentences, remove stop

1SpaCy is an open-source library for NLP parsing that leverages Cython to provides an efficient implemen-
tation. Cython allows for memory efficient programming in Python. SpaCy is a use full connection between
high-level programming in Python and efficient memory allocation in Cython. More information can be found
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words and only include the English language. The following two examples highlight how the
corpus changes from step 2 to the final step.

Tip to share: from Ricky’s place to LGA airport, if you have weekly
metro pass, take sub #1 (8 min walk) to Columbia Univ. and then M60

We called Antonella and she helped us to get to the right address :)

Would definitely recomment to anyone looking for a clean, cozy place to stay.

Thank you so much, Lu!

Great location, comfort and Aaron is a very accomodating person.

The above reviews are already split into sentences but still include special characters such
as ! , and :). The above sentences also include names and capitalized letters. Both of these
characteristics are removed in the next preprocessing steps.

train station minute walk away train line station

city center make convenient

place clean nice location

totally grid amazing looking

think hostess accommodating welcoming caring willing make stay truly enjoyable

Pre-processing involves removing stop words, removing special characters and normalizing.
Spelling mistakes have explicitly not been removed. The full dataset contains five million of
the processed sentences. These represent a randomly selected subset of the full dataset. The
size should still be large enough to claim that this is a large data set.

3.2 LDA and ABAE Implementation

This section explains what actual implementation of LDA and ABAE are used in the ex-
periments. Scikit-learn is an open source Python library that offers a wide variety of well
reviewed and tested machine learning implementations [Pedregosa et al., 2011]. Scikit-learn
implements LDA in Numpy and Scipy primitives and provides support for some evaluation
metrics. The LDA implementation in Scikit-learn uses Variational Inference based on the
work of [Hoffman et al., 2013]. Out of the box, the LDA implementation offers the following
parameters2:

under https://spacy.io/
2The parameter name and descriptions are taken from the official Scikit-learn documentation for LDA

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
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n_components : int, optional (default=10)

The number of topics. In the literature, this is referred
to as K

doc_topic_prior : float, optional (default=None)

Prior of document topic distribution theta. If the value is None,
defaults to 1 n_components. In the literature, this is called alpha.

topic_word_prior : float, optional (default=None)

Prior of topic word distribution beta. If the value is None, defaults to
n_components. In the literature, this is called eta.

learning_method : ‘batch’ | ‘online’, default=’online’

’batch’: Batch variational Bayes method. Use all training data in
each EM update.
Old ‘components_‘ will be overwritten in each iteration.

’online’: Online variational Bayes method. In each EM update, use
mini-batch of training data to update the ‘‘components_‘‘
variable incrementally. The learning rate is controlled by the
‘‘learning_decay‘‘ and the ‘‘learning_offset‘‘ parameters.

batch_size : int, optional (default=128)

Number of documents to use in each EM iteration. Only used in online
learning where this be used as a degree of noise for the gradient.

The LDA implementation in Scikit learn offers many parameter choices for optimiza-
tion. The relevant parameters for the experiments are "n_topics", "learning_method",
"batch_size", "topic_word_prior" and "doc_topic_prior". Since the experiments aim at
answering how the gradient update impacts the results of clustering with LDA the parameters
not tied to the optimization are ignored. I deliberately focus on only those parameters because
the literature and theory suggest a direct impact on the resulting topics. The relationship has
been examined in literature [He et al., 2017, Hoffman et al., 2010]. The batch size works as
a proxy for noise in the gradient update. The smaller the size the higher the noise for each
gradient update. The topic priors α and β are varied for a few experiments since the main
focus of this work is gradient updating mechanism.

For the ABAE implementation, the following experiments will use a Pytorch solution
described in [Mitcheltree et al., 2018]. The ABAE’s underlying optimization problem was
solved with ADAM and learning rate of 0.001, the question of the optimizer and a learning
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rate of the ABAE implementation will not be touched upon in this thesis. With LDA and
ABAE explained the focus shifts to evaluating those two different models. The question of
how good a model is can be answered in many different ways. The following section will
explain two approaches for evaluating topics models.

3.2.1 Perplexity

One of the classical unsupervised topic modeling evaluation metrics is perplexity. From an
information theoretic perspective, the perplexity is a straightforward extension of the intro-
duced cross-entropy term [Murphy, 2013]. Perplexity or hold-out log likelihood is the inverse
probability of the test set normalized by the number of words in the vocabulary. Perplexity
treats the topic model as a language model, in this context language model refers to the words
used in the vocabulary. The perplexity of a language model q given a stochastic process p is
defined as [Murphy, 2013]:

perplexity(p, q) , 2H(p,q) (3.1)

Where H is the cross-entropy defined in the Information Theory section of this thesis.
Perplexity is very similar to plain cross-entropy of the vocabulary and the generated topics.
The additions to cross-entropy is simply a different interpretation. Perplexity is interpreted
as the weighted average number of choice a random variable has to make. This implies
that comparing for two distributions the perplexity gives a weighted average of how many
more choice the one distribution has make [Murphy, 2013]. Because of this, perplexity is
also referred to as the branching factor. Furthermore, the exponentiation also sets off the
logarithm in cross-entropy making the perplexity easier to interpret as the result is in linear
space. Low perplexity results are preferred over high perplexity as low perplexity means that
the target distribution is has a similar encoding as the original distribution [Murphy, 2013].

A noteworthy drawback to perplexity is, that it has been shown not to correlate with
human judgment [Chang et al., 2009]. The authors argue that researchers employ a variety
of metrics of model fit, such as perplexity or held-out likelihood, which measures are useful
for evaluating the predictive model, but do not address the more explanatory goals of topic
modeling. As stated in the introduction of this thesis, topic modeling can be employed to
explore topics for a set of texts. Measuring the perplexity does not gauge the semantic
coherence of the generated topics. The authors argue that the latent space, the space of
topics, behind the model is independent of the perplexity. Other work aims at exactly this,
finding the semantic coherence of generated topics [Douven and Meijs, 2007].

3.2.2 Semantic coherence

Besides the classical topic modeling evaluation metrics like perplexity, there is a class of
metrics that aim at gauging coherence. As eluded to in the previous section there has
been a wide criticism of perplexity as a score for evaluating topic models since they fail to
capture the binding power of topics. By the binding power of topics I mean the ability of
a topic model, such as LDA, to generate topics that do not only perform well on the test-
set but also generate topics where the words have a semantic relation to the other words

30



in the topic. This is apparent to humans as we can see words in a semantic context and
identify of words. Though this is a trivial task for a human it is a hard problem for a
topic model. Coherence can be explained as a probabilistic metric that gauges the degree of
belonging together [Douven and Meijs, 2007]. The literature emphasizes that not measuring
the internal representation of topic models is at odds with their presentation and development
[Mimno et al., 2011]. Topic coherence t is represented with the M most probable words for
each topic. The m most probable words are arranged in descending order of their collapsed
probability. The concept of coherence has been used in many different contexts. The usual
choice for a measure of coherence is mutual information.

3.2.3 Pointwise mutual information

The simplest metric for semantic coherence is pointwise mutual information which is the doc-
ument frequency in relation to the co-document frequency. This formalized as D(v) is the
document frequency of word type v and D(v, vi) is the co-document frequency. The docu-
ment frequency can be thought off as the number of documents with least one token or work
type v. The co-document frequency is the number of documents in which v and v

′
appears.

With this definition, the semantic coherence can be described as [Mimno et al., 2011]:

C(t;V (t)) =

M∑
m=2

m−1∑
l=1

log
D(v

(t)
m , v

(t)
l ) + 1

D(v
(t)
l )

(3.2)

A smoothing addition of +1 is added to avoid taking the natural logarithm of 1. Pointwise
mutual information or PMI is a common choice for gauging coherence, it is important to
note, however, that coherence is always tied into the pairings of words. This implies that
the resulting PMI is depended on how the number of words used for word pairings. The
word pairings are limited to two for all experiments in this thesis. This is one factor that is
consciously neglected though I expect this to have an influence.

3.3 Experiment List

With the full description of the Latent Dirichlet Allocation, Variational Inference, ABAE and
evaluation metrics this subsection explains the experiments that aim at exploring the link
between gradient updated and the result of topics models. The experiments are tailored to
answer the following research questions in more detail.

1. Does the gradient-based estimation influence the results of topic models? [Blei, 2014]
show that LDA perplexity depends on the number of cluster K but do not investigate
the details of ELBO optimization and influence on perplexity.

2. Since the model’s perplexity depends on K as well as the details of ELBO estimation,
how does this hold for the semantic coherence of estimated topics? This experiment
has a similar scope than the perplexity experiment but this time evaluated in terms of
PMI.
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3. This question is two-fold. Can the claim of superior semantic coherence of [He et al., 2017]
be replicated with a different dataset. Does the higher semantic coherence hold up even
when the ELBO is optimized with different algorithms and batch size. Furthermore the
role of priors on the results are investigated to ensure that the LDA performance is due
to poorly chosen priors.

3.3.1 Gradient update influence on perplexity

The first uses the described dataset to evaluate whether the resulting perplexity. One aspect of
the research question of this thesis is to investigate the link between gradient related updates
and the result of topic models. The idea behind this experiment is that the link between the
number of topics K and perplexity has already been established by [Hoffman et al., 2013].
The authors of the original paper on Variational Inference have use perplexity being sensitive
towards K. This experiment goes one step beyond the original analysis and examines whether
not only the perplexity is a function of k but also of the number of samples b used in the
gradient update. To investigate this question an experiment with the following parameters is
specified: number of clusters k ∈ 25, 50, 100, 200 and batch sizes b ∈ 10, 50, 100, 500, 1000.
The reasons for this experiment is that results have shown that the perplexity of topics models
estimated with stochastic variational inference performs poorer than the using the full gradient
[Hoffman et al., 2013].

Figure 3.1: Algorithm for variational inference [Hoffman et al., 2013]

The results suggest this intuition as the full gradient outperforms the stochastic approxi-
mated one in terms of perplexity. This experiment will be a replication of those findings on a
different data set. The dataset and implementation are described in section 3.1 and 3.2. The
difference will be that the perplexity will be shown investigated not as a function of time used
for approximating the model. The is a replication of the original work but with the addition
of gradient update type. With gradient update type I mean the difference between batch and
online update to the gradient.
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3.3.2 Number of topics influence on semantic coherence

The influence of the number of topics used in LDA and the resulting perplexity has been
established by [Hoffman et al., 2013]. The experiment in the previous section is aiming at
linking the perplexity to the gradient-based update. Now, this experiment aims at establishing
the link between the number of clusters and the semantic coherence of the resulting topics.
To examine the link between those two an experiment with k ∈ range(2, 150, 5). For every
k values the model will be computed with batch and online update. As the theory in section
2 suggests they will fit differently purely based on the gradient update. Section 2 explains
that the approximation to the gradient is noisy and never fully captures the true gradient. My
assumption here is that quality is dependent on the noise introduced by the update. In short,
the noisier the gradient update the poorer the resulting semantic coherence. This experiment
thus aims at exploring the link between the number of clusters and type of gradient update.
To explore this link empirically I will perform the described experiment with the same data
of the previous experiment but this time the evaluation metric is the coherence, not the
perplexity.

3.3.3 Gradient update influence on semantic coherence

The main question, however, is the influence of the gradient related updates and the resulting
semantic coherence of the updates. This experiment goes one step beyond the previous
analysis and examines whether not only the perplexity is a function of k but also of the
number of samples b used in the gradient update. To investigate this question an experiment
with the following parameters is specified: number of clusters k ∈ 25, 50, 100, 200 and batch
sizes b ∈ 10, 50, 100, 500, 1000. This setup can be seen as a combination of the previous
two experiments. The result of inference in probabilistic models with variational inference
is a complex problem, not only is it dependent on model-specific parameters such as the
number of topics k but also on optimization specific parameters. This experiment is where
the experiment leave the realm of established realms of research as it combines established
relations with unestablished relations.

3.3.4 ABAE is superior to LDA in semantic coherence

The authors of the ABAE original paper argued that the addition of an attention mechanism
will improve the coherence of generated topics. The authors then proposed an experiment
where the semantic coherence of ABAE generated topics is compared to the resulting topics
of LocLDA other other prominent topics modeling approaches. The LocLDA is considered
as the standard LDA implementation for this experiment. LocLDA uses a Gibbs sampling for
estimating the topics. The ABAE experiment used two different datasets to compute topics.
(1) The citysearch corpus is a well-established dataset which features over 50000 restaurant
reviews from an online platform called city search. (2) BeerAdvocate is a corpus of 1.5 million
reviews. Figure 3.2 illustrates the findings of the original ABAE paper.

The findings in the figure 3.2 show that for both datasets the ABAE has a better se-
mantic coherence than the LDA implementation used. In my opinion, the comparison is
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Figure 3.2: The semantic coherence evaluated for ABAE and LocLDA. ABAE consistently
outperforms LocLDA [He et al., 2017]

on uneven grounds since the estimation approaches are fundamentally different. The Lo-
cLDA implementation uses a sampling approach for parameter estimation while ABAE has
been using a gradient-based approach. The differences in result may, therefore, stem from
a different estimation approach. The authors of the original paper neglected this aspect in
their discussion. Therefore, this thesis will conduct a follow-up experiment that compares
a Variational Inference LDA implementation with ABAE. The previous experiments lay the
foundations for understanding the relationship between the estimation mechanism and the
resulting semantic coherence in generated topics. Given the relationship between this ex-
periment goes one step further by exploring the if different updates to the gradient of the
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Variational Inference approach results in a semantic coherence that is better than ABAE. The
experiment to test if Variational Inference LDA will be able to have higher semantic coherence
than ABAE will use the same sentence review data described for the previous experiments.
LDA and ABAE will use the same number of topics 30,60,90,120 but other than the original
experiment this experiment will use a Variational Inference LDA implementation. For the first
experiment, the stochastic approximation for the gradient will be performed on batch sizes
10,50,100,500,1000. This represents the noise in the gradient update.

3.3.5 ABAE is superior to LDA in semantic coherence with different priors

To make an even fairer comparison the follow-up experiment will take the LDA with the
highest semantic coherence and vary the priors α and β. Since the aim is to have a fair
comparison this experiment aims trying different priors to ensure not leaving out a major
parameters . The role of priors have been explained in the theory section, the figure on
the simplex illustrates the influence of different priors. As mentioned in the implementation
section, an uninformed prior was used in all experiments up to now. The geometric intuition
and heuristics suggests α in [1.1, 1.0/60, 50.0/K] and β in [0.1, 0.01, 0.001, 1.0/60]. This
experiment aims at giving LDA the change of using the best combination of K, batch_size,
α, and β.
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Chapter 4

Results

4.1 Gradient update influence on topic model perplexity

This section illustrates and explains the result from the first experiment. The perplexity
plotted in figure 4.1 illustrate how the perplexity of LDA estimated with variational inference
varies over a different number of topics. The lower the perplexity the better the estimated
topics model and in the chart the perplexity appears to increase with a higher number of
clusters. These results replicate the findings in where this experiment was performed on a
different data set in [Blei et al., 2003, Hoffman et al., 2013]. The same figure also illustrates
that the perplexity further depends on the batch size of the optimization algorithm.

Figure 4.1: Perplexity of LDA models with different gradient update and cluster numbers

36



The y-axis is plotted on a logarithmic scale because perplexity tends to get very large
numbers. The higher number in batch size is more stable against the higher number of
clusters. The smallest batch size performs worst and the highest batch size performs best
constantly. The results are consistent with previous findings but also introduce the influence
on the gradient update on perplexity. The next experiment will repeat the same experiment
with coherence as the evaluation metric.

4.2 Gradient update influence on semantic coherence

As the previous results suggest the perplexity depends on the number of clusters and batch
size. This experiment illustrates that this relationship also holds for semantic coherence. The
higher batch size results consistently in a higher coherence while lower batch size performs
inconsistently. The first experiment in this section portraits the impact of the estimation
algorithm. This aims at explaining the question raised in [Blei et al., 2017], where the link
between gradient related details of ELBO estimation matter for the resulting estimation.

Figure 4.2: Semantic coherence over different k values with batch update and fixed batch in
red and online update in blue

Two variational inference LDA models are estimated with different gradient update. This
shows that the two perform fundamentally different for different optimizers. Batch update
consistently performs better than online update. They both appear to have a peak of semantic
coherence around 100 topics and then decrease. For every k values besides 2 the batch update
scores higher than online. This suggests that for any relevant model the batch update for the
optimization should be preferred.
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4.3 ABAE vs LDA

This section explains the results of the replication experiment of [He et al., 2017]. The results
indicate the ABAE outperforms LDA in semantic coherence independent of optimization
strategy. The LDA results show that the batch size does matter but the best LDA result does
not outperform the ABAE results.

Figure 4.3: ABAE outperforms LDA across K and batch sizes and connected with a line

In figure 4.3 the points where combined with a line to illustrate that the slope and intercept
of the underlying relationship. The underlying functional shape shows that ABAE performs
better independent of k and batch update details. One can see the ranking of batch size
update one the different intercepts of the linear function. We can see that around k = 60
the results of the different batch updates are still volatile. This volatility decreases with
more K and ends up with a coherence ranking based on batch size. These findings are also
in line with the perplexity and batch size relation from the first experiment which adds to
evidence that the gradient update of the optimization matters for the result. The batch size
represents the noise in the estimator of the stochastic update for the gradient. The more
noise the gradient the worse the resulting perplexity and coherence. The batch_size 10 and
k = 60 presents an exception to general interpretation but this was verified with a follow-up
experiment. However, the findings refute my claim that the authors of [He et al., 2017] did
an unfair comparison. The introduced coherence enforcing measurements work and produce
consistently higher semantic coherence. The following spot checks will highlight the difference
between the two. The semantic coherence of ABAE with k = 120 is the highest in the
experiment. This is not only apparent in the pointwise mutual information but also for
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humans inspecting the top words for a generated topic. The following selection of one LDA
and one ABE aspect with the respective highest semantic coherence highlights the difference.
Each model has the top 100 words for one topic for the same k values listed below:

• ABAE k=120:
minimart minimarket delis drugstore 7eleven coffeeshop 24hr bodegas bodega chemist
grocer restuarant reataurant pharmacy resteraunt resto brasserie tesco restaurante re-
straunt cvs restos restaraunt publix supermaket playground starbuck eatery cafes laun-
dromat cafeteria lawson restorant onsite beachside deli pubs nightclub 24hrs bistro retail
24hour coffeehouse restaurants mega eleven laundrette atm hairdresser bookshop lidl
shops resturant barber carrefour activity 24h closing 24hours supermarkt poolside patis-
serie club restaurent shopper hopping closeby lido kiosk takeaway cafs recreation bars
parlour gelateria aldi vicinity butcher bank pool boulangerie clubhouse casino beach-
front municipal surrounding hawker bookstore resort neighborhood complex arrived spot
arcade swimming campground warung creperie coop tiki

• LDA k=120, batch=1000
close restaurant station near bar metro shop beach cafe several town tourist bike lot
surrounding bus major outdoor bakery supply bird connected rock castle link manager
great highway scenery shinjuku venue rail cathedral yoga bahn cbd refreshing save
penthouse playground kathleen suburb artistic transportation outlet cycling massage deli
warmer thai tahoe locally philip pizza cultural tuscany leafy nonetheless champ auckland
shin pacific resturants accessibility ancient catarina kreuzberg woken remaining namba
rambla lesson shack tavern humour rer bang medina valletta asset rode ebisu walker
shoreditch avignon monterey sec avon nation islington backwards citycenter hua dia
mick yen liberty spezia akihabara jordaan

Both topics are picked because they appear to me as shopping and food-related aspect.
The LDA topics capture a much wider range with terms as "woken", "lesson" and "manager".
Words related to actual locations as "kreuzberg" and "jordan" and "medina" only appear
in the LDA topics model, this might be a property of the model or just my selection of
topic. The yellow highlighted words all refer to the word "restaurant" but most of them are
misspelled. ABAE captures this very well and that is likely due to the attention mechanism
that enforces co-occurrences of words. This is an interesting side effect has [Murphy, 2013]
talks about ABAE’s ability to find synonyms but ABAE finds misspelling.

One might argue that the topics of the topic distribution and word topic distribution
might play a factor the result of LDA. The LDA is a conjugate prior probabilistic graphical
model and the different alpha and beta values will enforce the mass of the different Dirichlet
distribution to be close together or spread out. Figure 2.3 illustrates the different mass
distributions and Figure 2.5 the geometric interpretation of the prior. The prior has been
uniformly distributed on the previous experiment but for this element, they were chosen as
described in the experiment section.

Figure 4.4 plots the different alpha prior choice in the y-axis and beta choice in the x-axis,
the resulting coherence score is represented with the color. Each coherence score falls into
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Figure 4.4: The priors (y-scale and x-scale) do not influence the semantic coherence (colours)
as directly as the batch update and number of topics

one of the categories listed on the right side of the chart under coherence. It is apparent that
there a direct relationship between coherence and both prior parameters. It appears as if the
uninformed prior actually works quite well since no change in prior achieves a higher coher-
ence result than the previous experiment. This confirms that ABAE produces fundamentally
different results than LDA as ABAE’s worst semantic coherence is approximately the same as
the best coherence by produced by LDA.
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Chapter 5

Conclusion and future work

5.1 Conclusion

This work argues that inference plays a major role in explaining the details of probabilistic
models, especially the Latent Dirichlet Allocation. The theory section discussed variational
inference along with the ELBO and stochastic variational inference. The experiments of this
work aim at replicating [Hoffman et al., 2013] and [He et al., 2017] while conducting further
experiments aiming at questions raised in [Blei et al., 2017]. The relationship between the
number of clusters and resulting LDA perplexity have been replicated in this work. Further-
more, the link between the number of topics and perplexity has been extended to the seman-
tic coherence of the topics. This work was able to show the link between different EBLO
optimizing strategies and resulting perplexity and semantic coherence of LDA. Parameters
such batch and online updates produce noticeably different results. This work successfully
replicates the findings of [He et al., 2017] where ABAE has received better coherence scores
than a sampling-based LDA implementation. The comparison between sampling-based and
gradient-based optimization may influence the results. To avoid an unfair comparison this
work compared variational inference LDA against ABAE in terms of semantic coherence. The
ABAE implementation consistently produces higher semantic coherence in topics indepen-
dent of estimation technique. The conclusion of [He et al., 2017] therefore still holds that
the additional attention mechanism increases the perceived and measured semantic coher-
ence. The attention mechanism of ABAE makes the pointwise mutual information part of
the optimization problem. Here the connection between measuring metric and the optimiza-
tion might be too tight as optimization and evaluation aim at the same quantity. Evaluating
both models in term other metrics might yield in a different result as recent work suggests
[Chang et al., 2009]. The findings in this thesis showed that optimizing the ELBO a complex
problem that requires similar attention as maximum likelihood-estimation and that ABAE
consistently produces higher semantic coherence. This work is, therefore, able to contribute
to the broader question of topics modeling as an unsupervised machine learning model. The
data glut of the 21st century will rely on unsupervised methods and natural language pro-
cessing to discover latent structure in large data sets. This work showed that not only do
the method matter but also the optimization for scaling unsupervised methods to very large
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datasets.

5.2 Future Work

After fully discussing the methodology, experiment and results in the last section of this work
will discuss future work. This thesis has focused on introducing the intricacies of ELBO
estimation of LDA for topic modeling. The attention of this thesis was deliberately set on
topic models for natural language. However, the probabilistic machine learning approach is a
broad framework can be used for any other machine learning model. The future work is split
into three parts.

5.2.1 Variational Inference beyond LDA

LDA has been a useful model to investigate the details of ELBO based optimization for
latent variable models. As discussed, the optimization of ELBO is dependent on step size,
samples for gradient update and update approach. This thesis established that the result of
LDA is dependent on details of optimization processes of ELBO, it is worthwhile to explore
this connection in other. Frameworks like Edward or Pymc4 allow solving a broader class of
probabilistic machine learning problems with Variational Inference [Tran et al., 2016]. Many
other fields also use latent variable models to discover the relation [Gelman et al., 2004].
Since this thesis established that the result of LDA is dependent on details of optimization
processes of ELBO, it is worthwhile to explore this connection in other models that use ELBO
based optimization. The class of probabilistic graphical models is vast and certainly include
candidates for future work. Since LDA is a supervised model, an interesting class would be
supervised models and to see if the connection between perplexity and semantic coherence
still holds [Wainwright and Jordan, 2008].

5.2.2 Theoretical understanding of the tradeoff in ELBO optimization

This thesis was able to empirically established the connection between the gradient up-
date and resulting semantic coherence of topics and perplexity. Though there exists some
theoretical understanding of this is the case there is no full treatment of this problem
[Hoffman et al., 2013, Rainforth et al., 2018]. One interesting area of work could be to es-
tablish the theoretical framework for finding the ideal step size and batch size for classes of
problems. [Blei et al., 2017] calls for similar research and highlights that ELBO optimiza-
tion requires more research for developing a framework to understand the trade-offs between
different gradient optimization techniques.

5.2.3 Other optimizers of ELBO

Beyond the section on alternatives to KL-divergence and Mean-Field Variational Family, there
are much more alternatives. There is an emergence in research that aims at reformulating ex-
isting gradient based optimization processes such as Root Mean Squared Error (RMSprop) to
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optimize ELBO called (VPROP)[Emtiyaz Khan et al., 2017]. Other approaches such as Au-
tomatic Differentiation Variational Inference (ADVI) have been implemented in well reviewed
frameworks such as Stan 1. Black Box Variational Inference (BBVI) is a further candidate
for an alternative approach to ELBO estimation which has been implemented in BayesFlow
2. The underlying principle of variational inference remains the same in all these framework,
however the details of the gradient based optimization differ greatly. This thesis has shown
that small changes to the gradient based estimation processes can have a significant impact
on the resulting topics of LDA, changing major assumptions with ADVI and BBVI is certainly
a worthwile investigation. The existing implementations invite for revisiting the questions of
this thesis but with a different framework to see if the results were due to the Scikit learn
approach.

1Stan offers full Bayesian statistical inference with MCMC sampling (NUTS, HMC), approximate Bayesian
inference with variational inference (ADVI) penalized maximum likelihood estimation with optimization (L-
BFGS) and can be found at http://mc-stan.org/

2Edward was merged into Tensorflow and is now part of their core API. Details can be found at
https://github.com/tensorflow
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