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Abstract

Continuously learning from a data stream in NLP applications, is an important
challenge for deep neural models. This thesis studies the applicability and the be-
haviour of deep neural models in a setting where the training data comes from a
continuous data stream. We propose adaptive learning strategies for neural para-
phrase generation which are based on incremental, transfer and active learning.
We simulate a continuous data stream by dividing an existing dataset randomly
into subsets and feeding these subsets to the model iteratively. We demonstrate
that integration of a deep neural model with a continuous data stream, is pos-
sible and practical. Experimental results show that the neural model is able to
adapt to the continuous data stream, increasing its’ performance through time.
Additionally, one of the proposed incremental learning strategies is able to outper-
form traditional supervised learning, increasing the overall BLEU score by 2.76.
Moreover the model is able to learn much faster with incremental learning than
traditional supervised learning, former outperforming the latter with only 60 per-
cent of the dataset. We also make an analysis of transfer learning for paraphrase
generation, to show if knowledge transfer is possible for paraphrase generation.
We conduct experiments in order to determine what aspects of the neural network
are actually transferred. Moreover we test four different transfer methods which
are designed for specific use cases. The experimental results on transfer learning
show that success of the knowledge transfer depends on the context and size of
the source and target datasets. We show that when the transfer is successful, both
hidden layers and word embeddings are transferred. The results regarding the dif-
ferent transfer methods show that restricting the model on target dataset leads
to poor performance especially in incremental setting. Sampling methods we used
for active learning are proven to be ineffective on the paraphrase generation task
leading no improvements on both overall BLEU score and training data usage. We
also show that in a case of concept drift, the model is able to successfully adapt to
the new training data despite the fact that it is previously trained on a different
dataset.
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Chapter 1

Introduction

Generally, machine learning applications build models depending on training data
which is gathered collectively by using a specific data acquisition tool. This process
introduces a number of problems regardless of quality and amount of the gathered
training data. First of all, the data acquisition process itself can cost lots of time and
money since the data has to be labelled by human workers. Moreover if the domain
in which the training data is collected from is very specific, for example medical
text, certain number of domain experts might be needed. In the cases where the
domain experts cannot be employed, gathering necessary amount of data to build a
model can be impractical or impossible. Secondly, training on previously gathered
large datasets with traditional supervised learning can be very computationally
expensive. Thirdly and most importantly, data distribution of the domain where
the target application operates can change which leads to existing training data
to become outdated. Since the model is not trained with the changed data coming
from the environment, it performs poorly. This phenomenon is called concept drift
in the literature [Zliobaite, 2010]. In this case more training data has to be gathered
and the model has to be re-trained with the new data, both of which can be again
impractical or impossible depending on the resources at hand.

These mentioned problems make us to think about a data acquisition process
where the training data is collected interactively and iteratively with a model which
adapts to the continuous data stream. In the proposed design, the model is trained
continuously with each iteration of data acquisition process instead of training by
traditional supervised learning with large amount of data. The model not only
aims to automatically adapt to new training data without any retraining from
scratch, it also interacts with human users by providing suggestions to users and
making use of user feedback as a form of input to train. With this human-in-the-
loop paradigm, necessity of collecting a large dataset in advance is eliminated and
a functional model (even though it is not fully optimal to use) is created very fast,
at the same time. This paradigm is called adaptive learning. Figure 1.1 shows the
basic workflow of suggested data acquisition process. The goal is to create a model
which has comparable or better performance than a model trained with traditional
supervised learning at the end of data acquisition process. Figure 1.2 shows a real
world human-in-the-loop data acquisition system for text simplification.
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Figure 1.1: Human in the loop data acquisition.

Main focus of this thesis is the behaviour of deep neural models in the human-in-
the-loop settings which is described above. Different learning strategies for training
deep neural models are studied and experiments with different training methods
are conducted in order to investigate their effectiveness in continuous data streams.
Additional learning strategies are also proposed in order to overcome some of the
problems which are introduced by the human-in-the-loop setting. Although human-
in-the-loop data acquisition can help with the problems which are described in the
beginning of this section, it also introduces some other problems in the context
of modelling. As a starting point, it is shown that a deep neural model in fact
can adapt and improve with the continuously increasing data and then different
learning strategies are studied, each of which addressing a different problem in
the human-in-the-loop setting. Instead of traditional supervised learning, incre-
mental learning is studied in order to obtain adaptivity to incoming data without
forgetting previous knowledge. Learning strategies that are proposed, are mainly
concerned with how the model processes the incoming data.

Incremental learning is shown to be able to create a relatively good and usable
model, way before the model is exposed to all of the training data. Experiments
with transfer learning are done in order to simulate a concept drift scenario where
a general model comes across to new training data with different nature. With the
same experiments, a situation in which the system does not have enough resources
to collect significant amount of data, is also simulated. It is also shown that with
transfer learning, it is possible to create a model which is normally impossible to

3



Chapter 1. Introduction

be created with the available data. Additionally, different active learning strategies
are studied in order to reduce the data that is needed to build a satisfactory model.
At the end, experiments in which these strategies are combined together, are done
and their results are reported.

Figure 1.2: An interactive human-in-the-loop application for text simplification
[Yimam and Biemann, 2018]. Target words to be simplified are highlighted and
user is provided with a list of candidate words to choose from. Candidate words
are generated and ranked by the system/model.

Paraphrase generation is chosen as the target application. Paraphrase genera-
tion is the problem of generating different texts from a source text while retain-
ing the meaning. It has various application areas in Natural Language Processing
(NLP) like dialogue systems where it is used for building more natural conversional
agents, information retrieval where it is used for enhancing retrieval process, nat-
ural language generation where it is used for generating training data for different
NLP tasks and text summarization where it is used for replacing a text with a sim-
pler paraphrase of it. Generating the text ”President Trump strongly denied any
wrong doing in this matter.” from the text ”POTUS firmly denied any fault in this
subject.” would be a good example of paraphrase generation. It is a challenging
problem because of many different reasons. There are more than one way to para-
phrase a source sentence and the quality of generated paraphrase depends on many
things like context information, lexical and semantic diversity and so on. Therefore
the problem is not only concerned with language generation, it also deals with lan-
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1.1. Thesis Organization

guage understanding. Another problem which is introduced by picking paraphrase
generation as our target application is out of vocabulary words.

Deep neural models for NLP problems is built on predefined and specific vocab-
ularies which are usually constructed from the training data. These vocabularies
cannot be changed or expanded during or after training. Since the model does not
know the words which are not seen in the training, unknown words can lead to poor
performance. This is an open problem in NLP and all neural models suffer from
it but in our case it is more problematic because of the setting which is studied
and nature of the problem. In our setting data comes to the system continuously
and the model is trained continuously therefore adapting model strictly depends
on the vocabulary which it started training with. Additionally paraphrase gen-
eration is not a classification or regression task, it is a generation task therefore
we do not know target texts (paraphrases) for our source texts beforehand, they
are generated by users. These two mentioned reasons cause our model to be more
prone to out of vocabulary words since there will be more of them compared to the
traditional supervised setting. There are two possible solutions for this problem.
First solution is to use pre-trained word embeddings for our neural net instead of
training our own word embeddings. These pre-trained word embeddings are built
on very large corpuses so they would cover a lot of out of vocabulary words for
our training data. Second solution is to design a data acquisition process similar
to [Yimam and Biemann, 2018] where the system suggests paraphrase candidates
which are created from large, existing resources and make the user choose from
theses suggestions. Even though this puts restrictions to the users, it ensures that
the target paraphrases are built from a known vocabulary. Since the vocabulary
is known beforehand the model can train its own word embeddings. In this thesis
the latter solution is simulated.

The human-in-the-loop process described in this section is simulated by divid-
ing a large existing dataset into subsets and feed the model with these subsets
iteratively. In each iteration, the model gets a new batch of data and updates itself
according to it. The model is trained with these batches using different learning
strategies and it is evaluated on a separate test set at the end of each iteration, in
order to observe the model’s behaviour through time.

According to our knowledge there is no work studying neural paraphrase gen-
eration in the human-in-the-loop settings especially concerning the adaptivity of
neural models. Moreover this work seems to be first to try incremental learning and
active learning for neural paraphrase generation. This thesis also builds on to ex-
isting transfer learning research for neural paraphrase generation by experimenting
with different methods of transfer and analysing the transfer process.

1.1 Thesis Organization

This thesis is organized as follows; the rest of this chapter provides the research
questions that are investigated in this work and a review of the state-of-the-art
works on neural paraphrase generation, human-in-the-loop learning, transfer learn-
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Chapter 1. Introduction

ing and active learning. In Chapter 2, the main methodology and technical details
regarding our deep neural model are explained which are followed by the descrip-
tion of main ideas behind the learning strategies. Chapter 3 describes the details of
the learning strategies, the datasets and evaluation metric used in this work. It also
explains the experimental setups in detail with their corresponding reasonings. In
Chapter 4, results of the experiments are presented, the findings are explained and
a discussion on the overall findings of the thesis is provided. The two last chapters
give the conclusion and an extensive list of future work.

1.2 Research Questions

This thesis is going to aim to investigate whether deep neural models can be com-
bined with adaptive learning, human-in-the-loop paradigm for paraphrase genera-
tion task. The basic research questions can be summarized as below:

• Can deep neural models effectively adapt and gradually perform in a contin-
uous data stream for paraphrase generation?

Considering the fact the deep neural models need a lot of training data to
perform well, is it possible to integrate this type of models into the human-
in-the-loop setting? The model is expected to learn and adapt continuously
since retraining large models over and over again through time, is not de-
sirable. The main goal is to determine whether such models can be applied
to real world applications which have similar setting to ours. If the answer
is yes, what should be the training scheme (how to make use of incoming
data stream) for such models? Basically we would like to know if continuous
learning is possible for neural paraphrase generation.

• Can the model achieve better or comparable performance than traditional
supervised learning by leveraging the data stream?

Can adaptive learning improve performance by adding more generalization
power? Can the model achieve better or comparable performance with less
data? It is also possible that training a deep neural network in adaptive
manner may have a negative effect, if so it will be insightful to understand
the reason why. Understanding how deep models behave under this training
paradigm is an interesting and challenging question.

• What are the possible challenges/limitations introduced by system and model
in this setting and what are the possible learning strategies that can be used
for dealing with these challenges?

It is important to determine what kind of existing learning strategies that can
used to perform better in the human-in-the-loop setting. This is particularly
important since the setting itself imposes some challenges. How can the model
deal with challenges like limited resources and concept drift? Additionally
training deep neural models continuously introduces challenges of its own
like overfitting and underfitting depending on the training data.
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1.3. Related Work

Considering the lack of research in this area, with these questions answered,
it might be possible to enhance the performance of deep neural models (shorter
training time and/or better paraphrases) in paraphrase generation task and create
a framework on adaptive learning for future research.

1.3 Related Work

Deep learning based approaches have been quite successful in various NLP tasks
including language modelling [Sriram et al., 2017], automatic speech recognition
[Hannun et al., 2014] and neural machine translation [Cho et al., 2014]. Main idea
behind deep learning is learning future representations of the dataset instead of
depending on hand crafted features engineered by domain experts. Deep neural
models is capable of discovering hidden representations and relationships inside the
data which are not possible to be discovered by feature engineering. In the case of
NLP, deep neural models are capable of capturing lexical, semantical and contex-
tual relationships between textual data points which makes them quite successful.
Nowadays, almost all of the state-of-the-art models used in NLP applications are
based on deep learning.

For the task of paraphrase generation, deep learning is already proven to be
extremely successful by the work which has been done in past few years. Especially
with the development of sequence to sequence learning [Sutskever et al., 2014], a
lot of research has been emerged, building models for paraphrase generation using
this framework. [Prakash et al., 2016] introduces a sequence to sequence model
based on stacked LSTM’s with residual connections. The authors use residual
connections between stacked LSTM networks in order to address exploding and
vanishing gradient problems for LSTM based models. They have experimented on
different large scale datasets to show the effectiveness of their model which can
produce meaningful, semantically and grammatically correct paraphrases. They
also show that with residual connections, the LSTM based model can learn how to
retain important words better. A lightweight variant of this model is used in this
thesis.

[Gupta et al., 2017] uses deep generative models coupled with LSTM’s in se-
quence to sequence framework, in order to generate paraphrases. They modify the
model by conditioning the generative model with source sentence in order to en-
hance performance. They have managed to outperform state-of-the-art methods
for paraphrase generation and generated a baseline for the Quora Question Pairs
dataset which we use in this thesis. Additionally they evaluate their model with
human evaluation which suggest the model can create good and relevant para-
phrases. This work is particularly interesting since the resulting model can also
link unseen concepts which are related to the original sentences.

[Li et al., 2017] uses a very interesting approach, applying recently popularized
deep reinforcement learning to paraphrase generation. Their approach uses two
components, a generator which is a sequence to sequence model, responsible for
creating paraphrases, and an evaluator which is a deep matching model, responsible
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Chapter 1. Introduction

for recognizing paraphrases. Main idea is the evaluator enhancing the performance
of the generator. They propose this framework as a solution for lack of evaluation
metrics for paraphrase generation. Their approach outperforms the state-of-the-
art methods in paraphrase generation in both human evaluation and automatic
evaluation.

Interactive data acquisition tools for NLP tasks has been worked on quite ex-
tensively in recent years. Many different tools are designed and implemented in
order to enhance the ability to collect and use complex text data. They make use
of multiple visualizations, correction mechanisms and machine learning based feed-
back loops. [Trivedi et al., 2017] develops an interactive user interface for enabling
NLP tasks on clinical text which requires domain expertise. [Yimam et al., 2016]
develops a tool for applying interactive, human-in-the-loop machine learning to
biomedical entity and relation recognition. They demonstrate the effectiveness
of their approach by simulating human-in-the-loop data acquisition with three
experiments and prove their concept for adaptive learning. Following this work,
[Yimam and Biemann, 2018] creates an adaptive learning system for text simplifi-
cation which is integrated with a machine learning model. The system effectively
makes use of the model in the data acquisition process, creating a feedback loop
with human workers. They have done a real-time data acquisition using the Ama-
zon MTurk crowdsourcing platform. They showed successful integration of their
model and its adaptiveness through time by evaluating the model’s performance
and showing its improvement over time. This thesis is inspired by this particular
work, replaces the model used with a deep neural model and studies its behaviour.
For the adaptive, continual learning in neural networks [Parisi et al., 2018] gives
an extensive review on the subject, covering different number of techniques (some
of them are utilized in this thesis) to achieve adaptive learning. In this thesis,
adaptive learning is studied in the context of both applicability in real world and
learning capability.

In the case of transfer learning, it has been already established that knowledge
transfer is possible and quite effective in computer vision. Recently, there has been
substantial work on its possible applicability on the field of NLP also. An extensive
look on knowledge transfer for different NLP tasks is provided in [Mou et al., 2016].
They do systematic experiments on different NLP problems to determine what kind
of aspects of natural language and network layers are transferable. They show that
knowledge transfer is possible between different datasets of same task and seman-
tically similar tasks even though improvement from transfer learning depends on
the datasets and the tasks at hand. [Zoph et al., 2016] successfully applies transfer
learning to neural machine translation, gaining significant increase in the perfor-
mance for translation of low-resource languages. [Brad and Rebedea, 2017] uses
transfer learning for neural paraphrase generation, effectively boosting the perfor-
mance. Even though they successfully show that knowledge transfer is possible for
neural paraphrase generation they do not study different ways to transfer. In this
thesis, a layer-by-layer analysis is conducted for studying the performance of dif-
ferent transfer methods and what part of the network is being transferred. Finally,
[Yoon et al., 2017] studies different transfer schemes for creating personalized lan-
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1.3. Related Work

guage model from a general model. Building on these previous works, a detailed
investigation of transfer learning in neural paraphrase generation, is provided.

For active learning, as far as our knowledge is concerned, there is no previ-
ous work done for paraphrase generation. [Shen et al., 2017] successfully applies
active learning for name entity recognition based on different sampling strategies.
[Zhao, 2017] uses a sampling strategy based on a combination of model uncer-
tainty and representativeness of data points, applying it on short-text classification.
[González-Rubio et al., 2012] successfully applies it on interactive machine transla-
tion. Even though it has never been applied on paraphrase generation, these works
show that active learning can be used for a variety of NLP tasks. In this thesis,
some of the sampling strategies that are proposed in these works are applied to
paraphrase generation.
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Chapter 2

Methods

This chapter provides necessary background knowledge about the fundamental
methods that are used in this thesis. First the main ideas behind the deep neural
model that is used for paraphrase generation, are briefly explained. After that, the
learning strategies/approaches that are used in this work are explained.

2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of neural network models designed
for processing sequential data. The data is sequential which means it is processed
in time steps by the model. This notion of time step does not have to mean literal
concept of time that is used in real life. For example, it can be the position in the
sequence (which is exactly the case for NLP). Since the length of a sequence can
be really long, the model uses parameter sharing instead of optimizing separate
parameters for each time step. This parameter sharing paradigm helps the model
to generalize to different sequences by learning relationships between different time
steps and different sequence lengths. Figure 2.1 shows a simple RNN and its expan-
sion with respect to time. As it can be seen from the figure, the network produces
an output in every time step.

Recurrent neural networks have numerous variants usually constructed by us-
ing different ways for connecting network layers or introducing additional compu-
tational mechanisms in order to increase generalization capability.

2.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a variant of RNNs that adds extra compu-
tational mechanisms to the network in order to avoid the vanishing and exploding
gradient problems. These computational mechanisms include a memory cell and
a set of logical gates. With these modifications, the model is able to remember
information for long periods of time much better than vanilla RNNs.

Especially in NLP, this is an important aspect since natural language contains
context relationships between words which can be observed at different time steps.

10



2.2. Long Short-Term Memory

Figure 2.1: Recurrent neural network expanding through time steps [Zhao, 2017].

LSTM adds a memory cell ct for every time step t. At each time step t, a single
unit works with the input state xt, the hidden state ht−1 and the memory state
ct−1 to calculate the hidden state ht and the memory state ct. The memory cell
has three computational mechanisms: input gate i, forget gate f, and output o.
These gates are also trained meaning that their weights are updated with gradient
descent with respect to time. It is known that learning these gates helps with
gradient explosion.

Figure 2.2 shows a basic LSTM cell. Equations for calculating the elements of
an LSTM cell are [Paszke, 2016]:

it = σ(Wxixt+Whiht−1 + bi) (2.1)

ft = σ(Wxfxt+Whfht−1 + bf ) (2.2)

ot = σ(Wxoxt+Whoht−1 + bo) (2.3)

cint = tan(Wxixt+Whiht−1 + bi) (2.4)

ct = ft � ct−1 + it � cint (2.5)

ht = ot � tan(ct) (2.6)

Parameters of the above equations are:

• Wx and Wh : Weights for input x and hidden state h respectively.

• σ( ) and tan( ): Element-wise sigmoid function and hyperbolic tangent func-
tion.

• �: Element-wise multiplication.

• b: Bias parameter.
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Figure 2.2: A typical LSTM cell [Paszke, 2016].

2.3 Sequence to Sequence Model Architecture

First introduced by [Sutskever et al., 2014] neural sequence to sequence framework
consists of two components, encoder and decoder. Encoder creates a low dimen-
sional representation of the source sequence called the thought vector. It aims to
capture semantical and contextual relationships of the source sequence. Then the
thought vector is fed into decoder which produces a high dimensional target se-
quence. The process is shown in Figure 2.3. Main idea of the encoder-decoder pair
is to create a mapping between words and vectors, in other words capturing the
meaning as numerical vectors. By design, both encoder and decoder should be a
recurrent neural network or a variant of it. In the model that is used in this work,
stacked LSTM’s are used for both encoder and decoder. During the decoding pro-
cess, generation of new words depends on the word generated before by decoder.
The decoder starts generating the target sequence when it recognizes the ’EOS’
(end-of-sentence) character in the source sequence. EOS character is usually ap-
pended to the end of source sequence. The model maximizes the log probability of
the target sequence given the source sequence.
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Encoder

Decoder

Woman plays with dog

Woman and dog playing

Figure 2.3: Sequence to sequence learning with encoder-decoder framework.

2.4 Incremental Learning

Incremental learning is a learning scheme based on training the model continuously
in order to adapt to new training data without losing existing knowledge base. It is
mainly used in cases where there is a data stream, constantly providing new data
points. Incremental learning based models are mainly used to tackle problems
like data availability and low resources. Incremental learning becomes essential in
human-in-the-loop settings where the model has a feedback loop with users. Main
concern of incremental learning is adaptivity since the model is especially prone to
changes in the training data distribution, a situation called concept drift which is
explained in previous section.

Additionally the specification of how to adapt the model creates another prob-
lem. Depending on the task and data at hand, how the model should exactly deal
with the balance between old and new information has to be decided beforehand.
Many incremental learning strategies for deep neural models consists of design
decisions (hyper-parameters, network topology etc.) in order to deal with this
problem. For example, using a large learning rate can lead the model to quickly
overwrite existing knowledge with most recent data points. In this work, some of
these strategies are experimented on paraphrase generation task.

2.5 Transfer Learning

Transfer learning is based on the idea of using the knowledge gained from previ-
ously learned tasks and datasets. Usually it is used for decreasing the amount of
training data and time of a low resource task when obtaining more training data is
impractical. Moreover it is used for enhancing the generalization capabilities of an
existing model, for example adding a new label for classification in image recogni-
tion task. This is a very important use case especially if the existing model is large
since transferring knowledge eliminates the need of retraining the whole model. It
can be also used to personalize an existing large model with a new domain specific
dataset, enhancing its performance on the new domain. Figure 2.4 shows the basic
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Figure 2.4: Idea behind transfer learning.

workflow of transfer learning.

Deep neural models learn multiple hidden representations of the datasets, some
part of which are shared between different tasks and datasets. Therefore transfer
learning for deep neural models usually consists of copying layer weights across
models and applying restrictions to new model in order to preserve existing knowl-
edge. In the field of NLP, this process includes transferring learned word embed-
dings (numerical representations of words) and hidden layers (learned relationships
of the datasets like context). Depending on the target task and dataset, the method
of transfer which basically represents how the target model is trained, can signifi-
cantly change. Different methods of transfer can include changing hyperparameters,
freezing network layer or adding new layers.

2.6 Active Learning

Active learning is a learning scheme based on selecting training samples to be
annotated by using different sampling strategies. These strategies employ certain
criteria in order to create an opinion on how informative or useful a data point is
and they are called sampling methods. Informativeness of a data point can depend
on the dataset, task and model therefore selection of the sampling method is very
crucial. The criteria considered by a certain sampling method could simply be a
heuristic about the nature of dataset at hand or they can depend on the opinion
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Figure 2.5: Pool based active learning scheme.

of model about the data points or they can depend on feature representations of
the dataset like similarity measures. Usually, sampling methods combine multiple
criterions for evaluating the informativeness of a data point and some of these
criteria may require complex algorithms to be obtained.

Figure 2.5 shows the basic workflow of active learning scheme. Main purpose
of active learning is obtaining greater or similar performance with fewer labelled
training data since collecting a large, labelled training data can be difficult, costing
time and money. In our work, active learning is used as an option for enhancing
human-in-the-loop data acquisition by asking the users to annotate most difficult
samples. Additionally it is important to see if using adaptive learning can make
the model more adaptive. It is also worth studying what constitutes an informative
sample when it comes to paraphrase pairs.
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Chapter 3

Adaptive Learning Strategies

This chapter explains our approach for adaptive neural paraphrase generation.
It describes the main learning strategies that are used in detail including what
purpose do they serve in our human-in-the-loop setting. First, details of the model
which are used in the experiments are explained. Then descriptions of the datasets
and the evaluation metric are presented. For last, the learning strategies and the
experimental setups are discussed.

3.1 Model Details

In this work, a lightweight variant of the model proposed in [Prakash et al., 2016]
with bahdanau attention [Bahdanau et al., 2014] is used. The reason the exact
same model from the paper is not used is to fully explore all learning strategies
since even with a lightweight version of the model, training takes a long time. The
model keeps the same stacked LSTM based multi-layer architecture with residual
connections but using 3 layers instead of 4. Figure 3.1 shows the basic unit in the
model.

During the experiments, the model has 512 units in each LSTM layer. The
encoder and decoder use a maximum length of 100 for input and output both.
The model trains its own word embeddings with the embedding size of 512. In
all experiments, the model is trained with a batch size of 50 and an exponential
learning rate decay with the square root function.

In the cases when it improves the performance, a beam search with beam size
of 5 is used.

3.2 Datasets and Evaluation Metric

Four different datasets are used in the experiments, varying in context and com-
plexity.

The Microsoft Research Paraphrase Corpuus (MSR) [Dolan and Brockett, 2005]
is a small but very challenging dataset which contains 5800 pairs of paraphrases

16



3.2. Datasets and Evaluation Metric

Figure 3.1: Stacked LSTM based model [Prakash et al., 2016].

extracted from news sources. Since the paraphrase pairs are extracted from differ-
ent news sources, the dataset contains a lot of lexical and contextual variety. It also
contains a lot of special words and concepts. Because of these reasons, MSR corpus
is a very hard dataset to create paraphrases from even with the state-of-the-art
models with high computational resources. The dataset is separated into subsets
of 2753, 997 and 150 for training, test and validation respectively.

The Quora Question Pairs (QUORA) is a dataset consisting of question pairs
which are labeled as paraphrases. It is originally a dataset for paraphrase recogni-
tion not paraphrase generation. The positive class of dataset is filtered and 155,000
paraphrase pairs are collected. There are one to many relationships in the dataset
which means it contains multiple paraphrases for same source text. This property
makes the dataset an ideal candidate for paraphrase generation. The dataset is
separated into subsets of 119445, 22861 and 2000 for training, test and validation
respectively.

The Microsoft Common Objects in Context (MSCOCO) [Lin et al., 2014] is a
large dataset consisting of human generated image captions with 351,163 pairs. It
also has one to many relationships. MSCOCO is one of the most popular datasets
used in paraphrase generation literature. All of the dataset is used for training.

The PPDB Lexical (PPDB) [Pavlick et al., 2015] is a large dataset which con-
tains 500,000 pairs of short paraphrases and it is also very popular in paraphrasing
research. The paraphrases in this dataset are short that lack context information.
All of the dataset is used for training.
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Label Sentence Dataset

source the dvdcca then appealed to the state supreme court MSR

target the dvd cca appealed that decision to the us supreme court MSR

source why do rockets look white QUORA

target why are rockets and boosters painted white QUORA

source a blue and white bathroom with butterfly themed wall tiles MSCOCO

target an angled view of a beautifully decorated bathroom MSCOCO

source despicable PPDB

target contemptible PPDB

Table 3.1: Example paraphrase pairs from the datasets.

Table 3.1 shows example paraphrases from all the datasets used in the exper-
iments. As it can be seen from the table, the datasets are varying in paraphrase
complexity therefore it is easy to see why MSR dataset is harder to paraphrase
than the others. The MSR dataset is used as a target dataset on which the model
is built and evaluated, whereas MSCOCO and PPDB are used as source datasets
for transfer learning. The QUORA dataset is used as a source and a target dataset
in different experimental setups.

There are no evaluation metrics especially designed for paraphrase generation.
Therefore for evaluation the metric BLEU [Papineni et al., 2002] is used. BLEU
is a widely used metric for paraphrase generation even though it is designed for
machine translation. It is seen as an acceptable option for paraphrase generation
since it is shown that the score correlates well with human evaluation.

3.3 Experimental Setups

The human-in-the-loop data acquisition process is simulated by randomly dividing
a dataset into train, test and validation, taking training set’s subsets and feeding
it to the model in each iteration. After each iteration the model is trained with the
data available according to learning strategy which is experimented on and it is
evaluated iteratively with the test set. The test set is preferred to be relatively large
in order to test how well the model generalize after each iteration. The model is
trained with same amount of epochs and it starts the training with same hyperpa-
rameter configuration through the iterations in order to compare the performance
without bias. If it is necessary, parameter tuning is done on the validation set be-
forehand and the best model is taken for the experiments with learning strategies.
Every learning strategy is experimented with the same model (same architecture,
same hyperparameters etc.).
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3.4 Incremental Learning Strategies

In the continuous setting this thesis studies, the training data is limited at the
beginning. After a certain amount of time, the system is able to collect enough
data to build a stable model with supervised learning. This model then, can be
used for application purposes as long as it performs at an acceptable level. There
are two major drawbacks in this solution. Firstly, the model is not able to use
the training data which is collected after its creation. This is clearly a waste of
resources since the training data comes from a continuous stream. Secondly and
most importantly, the model would have to be trained on a regular basis just to
keep up with the new training data. This is not desirable and not practical, even
impossible depending on the circumstances. Therefore, incremental learning is a
natural option in this case.

The main concern in human-in-the-loop setting is to make continual, data-
driven learning possible since traditional supervised learning is not practical. The
model should keep learning with incoming training data which is provided by the
data stream, adapt itself to the changes in dataset without forgetting the knowledge
it learned before. Since the model is getting training data in small chunks, one of
the most important design decisions which has to made is how to process available
training data through time. In the case of neural models, learning basically means
to update model’s weights by iterations according to the training data. Because
of the very nature of gradient descent based learning the more certain data points
are used in training the more the model is going to adjust itself towards to those
data points. This could lead to a bias towards the training data which is gathered
at past, severely hurting the model’s learning capability. It is important to notice
that this can also happen within the same dataset if the dataset has high variance.
This problem would not occur if the model is trained with supervised learning
since the whole dataset would be available for the training.

As explained in previous sections, concept drift is the other big challenge that
has to be considered when learning in continuous data streams. Optimally model
should be able to pick up the statistical and conceptual changes in the incoming
training data and update its weights accordingly. The model should be able to
do this without forgetting previously learned knowledge so that it can preserve
its original functionality. After adapting to the new training data, it should still
be able to perform reasonably well when it encounters test data from the original
dataset.

It is reasonable to say that when the two problems described above are consid-
ered, adaptivity of a model is basically a tradeoff between how fast it learns the
new knowledge and how fast it forgets the old one. Any learning strategy that is
to be used in adaptive learning, should employ some measures in order to preserve
the balance between learning and forgetting. As it is said before because of the
very nature of how deep neural models learn, it is impossible to avoid either one
of them but it is possible control the rate of how fast the model learns and forgets.

Two different incremental learning strategies which differ in how they pro-
cess the incoming training data, are proposed and experimented with. The model
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   Iteration 1

   Iteration 1    Iteration 2
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       Model
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Figure 3.2: Incremental learning with data pooling (IL1). The model uses data from
all previous iterations, hyperparameters re-initialized and weights are transferred
through iterations.

is regulated with different methods available in traditional supervised learning.
The behaviour of these two incremental learning approaches are studied and some
insights on adaptive paraphrase generation, are provided. The training and regu-
larization methods that are used, are fairly simple but they haven’t been studied
before so the finding of this thesis is thought as a foundation for more complex
approaches for adaptive learning in NLP.

3.4.1 Incremental Learning with Data Pooling (IL1)

The first learning strategy trains continuously (weights are not re-initialized be-
tween iterations, the model uses and updates the same weights) from a data pool
which contains all the data collected in previous iterations. The model uses all the
data available to it regardless how old or new the data is. Figure 3.2 shows the
basic work flow of the learning strategy. As it can be seen from the figure at the
end of each iteration, the collected data is placed in a data pool and the model
trains itself using the updated data pool. After the training process, next iteration
starts and cycle continues. The purpose of this learning strategy is mainly show
that if the neural model can constantly improve itself through time to the incoming
data. Main focus is not to forget previously attained knowledge while learning new
training data reasonably well and make model to use all the resources available.
The advantages of this learning strategy can be listed as:
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• Since the model trains on all data available at the end of each iteration, it is
unlikely to forget learned knowledge from previous iterations.

• The model has the chance to learn more difficult data points better especially
if they are encountered in early iterations. Basically instead of waiting to get
enough data to learn with supervised learning, that time can be used to work
on challenging data points seen by the model.

The disadvantages of this learning strategy are:

• Since the size of data pool is increasing linearly, the time model takes to train
at the end of each iteration and the required memory for data pool, increases
as well. This increase can be linear or exponential depending on the model.

• The model sees data points from earlier iterations way more often which
means it updates its weights according to those data points more often. This
can cause overfitting to those particular data points which can diminish the
performance of the model.

3.4.2 Incremental Learning without Data Pooling (IL2)

The second learning strategy trains continuously (weights are not re-initialized
between iterations, the model uses and updates the same weights) only from the
data of last iteration. There is no data pool that aggregates collected training data.
Figure 3.3 shows the basic work flow of the learning strategy. As it can be seen from
the figure, the model only updates itself with the most recent iteration. After the
training process, next iteration starts and cycle continues. Purpose of this learning
strategy is to create an efficient model in terms of the training time and memory.
The main focus is the adaptivity of model to new data. The advantages of this
learning strategy can be listed as:

• Since the size of data pool is constant, it is efficient in terms of time and
memory.

• The model sees all data points for equal amount of times therefore it does not
have the problem of overfitting as incremental learning with data pooling.

The disadvantages of this learning strategy are:

• Since the model trains on iterations separately it is prone to overwrite and
forget old knowledge from previous iterations.

• All training points are updated for same amount of iterations. If the number
of epochs are not large enough the model can underfit and fail to generalize.
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Figure 3.3: Incremental learning without data pooling (IL2). The model only uses
data from latest iteration, hyperparameters re-initialized and weights are trans-
ferred through iterations.

3.4.3 Incremental Learning with Network Expansion (IL-
NE)

The last learning strategy trains continuously (weights are not re-initialized be-
tween iterations, model uses and updates the same weights) and expands the neu-
ral network after certain number of iterations. In this context network expansion
means adding another LSTM layer to the network. Purpose of this learning strat-
egy is to increase adaptive capabilities of the model. Main focus is to deal with
possible concept drift which can occur during data acquisition. By adding randomly
initialized new layers when more than a certain amount of data is introduced to
the model, specialized layers focusing on the old and new information are aimed
to be created. Experiments are conducted with expansion in every third iteration.
Different experiments are done with and without freezing the first active layer in
every expansion step in order to study if restricting the model through time helps
with adaptivity.

3.4.4 Incremental Learning Baseline (IL3)

The model is also trained from ground zero (with the weights re-initialized) from
the data pool at the end of every iteration in order to create a comparable baseline.
The baseline model which is trained after the last iteration is basically the model
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Figure 3.4: Incremental learning baseline (IL3). The model is trained from scratch
for each iteration, no knowledge transfer involved.

trained with supervised learning since it uses the whole training data available.
The basic idea is to check if the incremental learning strategies achieve better
or comparable performances than last baseline model. Figure 3.4 shows how the
baseline is created.

3.4.5 Model Regularization in Incremental Learning

Simple and well known regularization techniques are used with incremental learn-
ing strategies in order to control the tradeoff between old and new information. The
regularization techniques that are used in the models are dropout, learning rate
decay and layer freezing. Learning rate and its decay is used to control how large
the weight updates are during the learning. A non-shared regularization mecha-
nism is employed where every iteration has its hyperparameters re-initialized in
order to make the model adaptive to most recent data. In other words while the
weights of the network is transferred through iterations, the decayed learning rates
are not.

In this case the assumption is a very small learning rate with high decay rate
will make the model unresponsive to the latest iterations. Exponential learning rate
decay (square root decay) is used in our experiments which means the learning rate
will decrease through iterations. Dropout is used to prevent overfitting especially
in incremental learning with data pooling where the model is updated for certain
data points way more than the rest of dataset. Also a certain number of the layers
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are freezed so that corresponding layers’ weights are not updated during training.
The idea is to make sure that some of the previously learned knowledge is not
overwritten by the incoming dataset.

3.5 Transfer Learning Strategies

During incremental learning, the model is trained at the end of each iteration
with training data specified by the chosen incremental learning strategy. Since the
model is trained continuously without reinitializing the weights in each iteration,
this is equivalent to transfer learning between iterations. In the initial experimental
setups, the training data comes from the same dataset divided into subsets provided
as iterations. This experiment setup is expanded by transferring knowledge from
a different paraphrasing dataset and start the incremental learning process with a
pre-trained model or in other words with a knowledge base.

Transfer learning from other sources are extremely relevant to the continuous
human-in-the-loop setting especially in the cases where there are no resources to
collect a large dataset. Since the training data is collected iteratively the model
would have to work with even smaller dataset at the beginning. Transfer learning
can help the model to learn better, providing a better initialization in the worst
case scenario and increase the performance in this case.

More importantly by training a model in a different dataset and using the pre-
trained model to learn a new dataset, an artificial equivalent of concept drift is
simulated no matter what transfer strategy is used. Basically in this case, there
is a model which is used for a different dataset (different statistics, distribution,
context etc.) than the one it is trained with. Only difference between this scenario
and the concept drift scenario that exists in incremental learning is, in this case
the model has access to all of the new dataset, instead of small chunks. Therefore
finding good strategies for transfer learning can help with the concept drift problem
if the transfer strategies is combined with incremental learning.

Before starting with the transfer learning from other paraphrase datasets, ex-
periments are conducted for answering these questions:

• Is knowledge transfer possible for neural paraphrase generation?

In order to answer this question, a model is trained with a large paraphrasing
dataset as a source model. Then the transfer is done from this source model
to target model with simplest way possible which is copying the weights of
every component of source model and train the target model in a supervised
manner. The performance is compared with traditional supervised learning
without transfer to see if there is any improvement.

• If answer to the first question is yes, what components of the model are being
transferred?

To see what aspects of the source model is transferred, the experiments are
run with three different settings; transfer embedding layer only, transfer em-
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bedding and hidden layers, transfer all layers including output layers. The
performances are compared to see what components lead to improvement.

• Does transfer success depend on the characteristics of the participant datasets?

In order to speculate about what properties of the datasets relevant to knowl-
edge transfer, experiments with three different source datasets and two target
datasets, are run. The transfer performances are studied to establish some
correlations between performance and properties like context, content, size
of the datasets.

After establishing knowledge transfer is indeed possible, three different transfer
strategies are proposed:

• INIT: Knowledge transfer is done by copying every component of source
model to target model.

• Freeze n-layers: Same as INIT but first n layers of the model are freezed.

• Surplus layer: Same as INIT but a surplus layer is added before output layer
and all the other layers are freezed.

Basically, proposed transfer strategies are designed for putting restrictions on
the target model, directly effecting how much the model learns from training data.
Whereas INIT puts no restrictions on the target model, surplus layer conservatively
keeps the knowledge from source model and freeze n-layers approach is thought as
a middle ground between them, making adjustments between knowledge learned
from source dataset and target dataset . With transfer learning the model deals
with a similar old vs. new knowledge tradeoff as incremental learning but with
a different scale. In this case old knowledge part of the tradeoff is much larger
and can have significant effects on the models performance. Moreover all of the
transfer strategies proposed in this chapter are designed while specific use cases
are considered. It is hypothesized that INIT is more suitable when the dataset for
target model is large and the model has to be complex whereas surplus layer is
more suitable when the dataset for target model is small and the model has to
specialize (general to specific for the same domain).

The same regularization techniques used for incremental learning strategies are
used for transfer learning strategies as well, even though their effect on the perfor-
mance can be not the same. Since it is essential to efficiently use the knowledge
learned from the source dataset in the target dataset, learning rate for the target
model becomes very important. A large learning rate might overwrite the existing
weights very quickly which means losing the information gained before. Therefore
in the experiments, a larger learning rate is used for source dataset and smaller
learning rate is used for target dataset. The same exponential learning decay that
is used in incremental learning, is kept.
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3.6 Active Learning Strategies

Active learning is perfectly suitable for human-in-the-loop setting since it aims to
enable learning with less amount of data. Not only it can reduce the cost of data
acquisition, it can also enhance the overall process since it enables the model to
learn faster which would mean earlier and more meaningful involvement with the
users. As it is explained before the core idea behind active learning is determining
the most difficult data points to paraphrase and make the users annotate those
data points. The aim is to integrate active learning into the incremental learning
with data pooling strategy and study its effects on the model’s performance. It is
hypothesized that since incremental learning with data pooling updates its weights
towards to some data points in the dataset more than others, if those points are
made sure to be most difficult data points to paraphrase, this can help the model
to train better and faster.

It is hard to define a difficult or informative data point in case of paraphrase
generation just because of the fact that it is a generation task not classification
or regression. Contrary to other NLP tasks like paraphrase recognition or named
entity recognition, in paraphrase generation the model only has the source texts to
work with which limits the information it has on the dataset. For example in the
case of paraphrase recognition, the dataset contains both of the paraphrase pairs
and the annotator is only have to decide if they have the same meaning or not but
nevertheless information from both of the sentences can be used for sampling. In
this case, the sampling strategies which consist of heuristics regarding the training
data, are based on only the source texts. Three different sampling strategies are
combined with incremental learning with data pooling. Sampling techniques that
are used for the experiments are:

• Random Sampling (RS): Sentences which are going to be paraphrased by the
user are selected randomly. This is the default method for all of the other
experiments in this thesis and used as a baseline.

• N-gram Coverage (NC): Proposed in [González-Rubio et al., 2012] for inter-
active machine translation, this sampling technique focuses on selecting the
rarest data points in terms of their n-grams. In other words, this technique
aims to calculate how much new information a data point can provide. The
hypothesis is rarest sentences have to be seen more for model to learn an
accurate probability estimation.

Before the training, number of each n-gram present in the training data is
calculated and stored. Since human-in-the-loop approach is simulated, n-
gram counts of the whole dataset can be calculated beforehand but in a
real world application where new training data is constantly streamed, they
should be updated after each iteration. An n-gram is labelled as rare when
it appears less than A times in training data. Using this label, the score for
a given source sentence f, is computed as:
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C(f) =

∑N
n=1|ν<A

n (f)|∑N
n=1|νn(f)|

(3.1)

where νn(f) is the set of n-grams with size n in f, ν<A
n is the set of n-

grams of size n in f that are rare and N is the maximum n-gram order. In
experiments with incremental learning with data pooling, N = 4 is chosen as
the maximum n-gram order and a value of 10 is chosen for the threshold A.
In order to asses how well n-gram coverage represents the informativeness of
data, an experiment is conducted with reverse n-gram sampling where the
data points are chosen based on how frequent they are in the dataset in terms
of n-grams. The score for reverse n-gram sampling is calculated as:

C(f) =

∑N
n=1|ν>=A

n (f)|∑N
n=1|νn(f)|

(3.2)

where the terms are the same as n-gram sampling equation.

Since MSR dataset contains a very small number of paraphrases, active learning
strategies are only tried on QUORA dataset.
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Results

This chapter reports the results of experiments done with the proposed learning
strategies and discusses the findings. First, evaluations of each strategy are given
separately followed by the experiments which evaluate the combinations of different
strategies. At the end, an overall discussion of the results is given.

4.1 Neural Paraphrase Generation with Incre-

mental Learning

Table 4.1 presents the results of incremental learning strategies on the MSR dataset.
The model is highly sensitive to parameter tuning, failing to converge with high
learning rates. The model is trained on a validation set with different hyperparam-
eter configurations, mainly with different dropout probabilities and learning rates.
The configuration with the best performance is used in the experiments. This pa-
rameter tuning is done with supervised learning. As it can be seen from the table,
the model performs very poorly, achieving a BLEU score of 1.34 with traditional
supervised learning. This poor performance might be related to the dataset’s small
size and high complexity. Moreover a result from [Brad and Rebedea, 2017] is also
reported in order to reinforce the difficulty of MSR dataset. Their model achieved
a BLEU score of 0.09 on the MSR dataset with supervised learning.

Incremental learning with and without data pooling achieve BLEU scores of
1.41 and 1.16 respectively. It can be seen that all of the learning strategies in-
cluding the baseline, seem to improve over time, increasing their performance in a
steady fashion at every iteration even though there are anomalies in baseline and
incremental learning with data pooling, at the 4th iteration with 50 percent of the
data. It is also observed that when trained with data pooling in an incremental
manner, the model performs slightly better than supervised learning. Nevertheless
the model fails to generate meaningful and grammatically correct paraphrases in
every case.

Even though a clear pattern through iterations can be seen, the results of
this experiment is not conclusive due to model’s very poor performance. Moreover
the high variance between different runs highly suggests that the results are not
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% 20 30 40 50 60 70 80 90 100

IL1 0.1 0.92 0.94 1.56 1.13 1.11 1.26 1.37 1.41

IL2 0.07 0.15 0.21 0.47 0.77 0.99 1.04 1.19 1.16

IL3 0.12 0.27 0.6 1.32 0.96 1.08 1.24 1.26 1.34

SL - - - - - - - - 0.09

Table 4.1: BLEU scores of incremental learning on the MSR dataset. Each column
represents an iteration, first row shows what percent of the dataset is used in
that iteration. Each row except the last represents the performance of a particular
learning strategy which is described in 3.4. The last row represents the results from
[Brad and Rebedea, 2017].

meaningful and the neural network is basically modelling noise. Each learning
strategy has been run 3 times and the variance of the best performing learning
strategy which is the incremental learning with data pooling, is 0.617. This a very
high number compared to actual BLEU scores achieved by the model.

At the end it is clear that generating coherent paraphrases for MSR dataset is
impractical if it is not impossible for our model. Moreover it is not applicable to
human-in-the-loop setting since it basically produces noise in early iterations. This
severely undermines the involvement of model with the data acquisition process,
in other words the model is unable to make meaningful suggestions to the user.

Table 4.2 presents the results of incremental learning strategies on the QUORA
dataset. Other than a small grid search on the validation dataset with supervised
learning, no hyperparameter tuning is done on the model during this experiment.
In the table, IL1 represents incremental learning with data pooling where the model
is trained continuously with all the data gathered by the system. IL2 represents in-
cremental learning without data pooling where the model is continuously trained
with the data gathered in the latest iteration of the system. IL3 represents the
baseline incremental learning where the model is retrained from zero for each iter-
ation. As it can be seen from the table, in every case the model performs reasonably
well at the end of last iteration. The baseline model with traditional supervised

% 20 30 40 50 60 70 80 90 100

IL1 10.49 19.43 21.91 23.30 24.30 24.50 25.15 25.45 26.19

IL2 10.68 17.58 18.79 19.06 19.50 19.46 19.35 19.54 19.70

IL3 7.93 15.37 17.58 19.73 21.20 21.63 22.49 23.12 23.43

SL - - - - - - - - 22.90

Table 4.2: BLEU scores of incremental learning on the QUORA dataset. Each
column represents an iteration, first row shows what percent of the dataset is
used in that iteration. Each row except the last represents the performance of a
particular learning strategy which is described in 3.4. The last row represents the
results from [Gupta et al., 2017].
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% 20 30 40 50 60 70 80 90 100

0 10.68 19.13 20.45 20.83 20.44 20.47 20.78 20.31 21.11

0.3 10.49 19.43 21.91 23.30 24.30 24.50 25.15 25.45 26.19

0.5 8.48 17.05 19.62 21.58 22.93 23.26 23.92 24.58 25.09

Table 4.3: BLEU scores of incremental learning with data pooling on the QUORA
dataset with different dropout probabilities. Each column except the first repre-
sents an iteration, first row shows what percent of the dataset is used in that
iteration. First column represents the dropout probabilities. The models are eval-
uated on the test set.

learning achieves a BLEU score of 23.43 and it is able to generate meaningful,
mostly grammatically correct paraphrases. The result from [Gupta et al., 2017] is
also reported. Their model achieved a BLEU score of 22.9 on the QUORA dataset
with supervised learning. It is important to state that the training set used in
this experiment is slightly larger than the reference work. Additionally a much
larger test set is used in this work. Therefore it is not possible to make conclusive
statements regarding the comparison of two models. Nevertheless the comparison
at least shows that the model performs comparably to the other state-of-the-art
approaches.

Incremental learning with data pooling achieves a BLEU score of 26.19 at
the last iteration, outperforming other strategies including supervised learning.
Moreover it starts outperforming traditional supervised learning which uses all of
the dataset, only with 60 percent of the dataset. The model starts adapting and
improves its performance constantly through iterations. Even with using only half
of the dataset, the model can provide reasonable paraphrases.

The comparison between baseline incremental learning and incremental learn-
ing with data pooling can indicate the reasons why data pooling performs better.
From the perspective of individual iterations with both learning strategies, the
model trains with the same number of epochs and same amount of data. Only
difference between two learning strategies is, in incremental learning with data
pooling the model employs transfer learning inside the same dataset by not reini-
tializing its weights in every iteration contrary to baseline incremental learning.
In other words the model that is trained in a particular iteration, is already fine
tuned with respect to a specific portion of the dataset. The results show that the
model is able to utilize the information gained in the previous iterations.

As stated in Chapter 3, the main concern about the incremental learning with
data pooling strategy is overfitting to data points which are collected in earlier
iterations. Considering how prone the neural models are for overfitting, this would
be an expected situation but the results show that the model does not overfit
when it is trained incrementally with data pooling. Training error of the model
decreases and stabilizes through epochs. It can be hypothesized that the regular-
ization methods that are employed, are preventing the model to overfit and making
the learning process stable. In order to confirm this, an experiment with different
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% 20 30 40 50 60 70 80 90 100

0 10.59 15.27 19.20 19.69 21.60 18.69 22.37 22.86 23.09

0.3 7.93 15.37 17.58 19.73 21.20 21.63 22.49 23.12 23.43

0.5 8.19 13.34 15.33 17.09 18.36 19.05 20.09 20.94 21.54

Table 4.4: BLEU scores of incremental learning baseline on the QUORA dataset
with different dropout probabilities. Each column except the first represents an
iteration, first row shows what percent of the dataset is used in that iteration.
First column represents the dropout probabilities. The models are evaluated on
the test set.

dropout probabilities is done and the model’s behaviour in the incremental learning
setting is reported. As it is stated before the model which is used in the previous
experiment regarding incremental learning, is already fine tuned with the valida-
tion set by using supervised learning. In other words, the parameter configuration
which performed best on validation set with supervised learning, is selected for
the incremental learning experiments reported in 4.2. Therefore there is no risk of
overfitting to the test set in this experiment even if the model is evaluated on the
test set. The model selection process is already done so the test set can be used for
analyzing the effect of different dropout probabilities. Table 4.3 shows the effect of
different dropout probabilities on the incremental learning with data pooling. The
models are evaluated on the test set.

As it can be seen from the table, the model is able to learn with the dropout
probabilities of 0.3 and 0.5 while it fails to adapt when there is no dropout. Even
though training error decreases steadily in every iteration, the model can not im-
prove on the test set, overfitting over time which is the expected behaviour. The
incremental learning baseline is also trained with different dropout probabilities.
The results are shown in Table 4.4. As it can be seen from the table, the model
manages to improve its’ performance on test set even though no dropout is used.

Incremental learning without data pooling achieves a BLEU score of 19.70 at
the last iteration. The results show that even though the model improves its BLEU
score in first 4 iterations it fails to adapt afterwards achieving similar BLEU scores
for last 5 iterations. The model has the highest score in last iteration like the
other learning strategies but increase in performance is not notable. Moreover at
the last iteration, incremental learning without data pooling performs worse than
both incremental learning baseline and incremental learning with data pooling.

At the end of the last iteration, both the baseline incremental learning and
incremental learning without data pooling have models which are trained the same
number of epochs. The baseline model is outperformed by the model trained with
incremental learning without data pooling in the first 3 iterations but starting
with the 4th iteration, it begins to outperform the other. This is an expected
result because the continuous model has better weight initialization when there is
not enough training data for the model to learn properly.

Both of the incremental learning strategies that are proposed, use transfer
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learning in the same dataset only difference being the resources they transfer from.
Incremental learning with data pooling not only uses more training data to transfer
between iterations, it also updates its’ weights towards to certain parts of the
datasets more. It can be argued that the reason behind the low performance of
incremental learning without data pooling is the fact that it is not updating the
model’s weights enough, hence underfitting to the whole dataset. An experiment
with different number of epochs per iteration is done in order to test this theory.
The models are evaluated on the test set. The same argument from the experiments
with different dropout probabilities, applies here as well. The results are shown in
Table 4.5.

As it can be seen from the table, the number of epochs used in training does not
effect the performance significantly. The model trained with number of epochs of
5, 10 and 15, scored BLEU scores of 19.70, 19.69 and 19.82 respectively at the last
iteration. Training error analysis of the model clearly shows that the model is able
to learn pretty fast since the training error continuously decreases and converges in
every case. This might be attributed to size of the training data in each iteration
considering the fact that the model can fit itself to the small dataset faster.

Since the model is not underfitting when it is trained with training data from
separate iterations, low perplexity of the training clearly shows this, it would be
insightful to look at other aspects of the model’s behaviour. Another explanation
of the low performance of incremental learning without data pooling could be
ineffectiveness of knowledge transfer from the same dataset. It is important to
point out that the notion of low performance indicates the model’s inability to
adapt rather than the BLEU score at the last iteration. There is a possibility
that the model is completely unable to transfer the knowledge it gained from
the previous iterations. In order to test this hypothesis, the model is trained in
a supervised manner without data pooling and with reinitializing (no transfer
between iterations). Table 4.6 shows the results.

As it can be seen from the table, incremental learning performs better than
supervised learning in every iteration. This shows that continually training the
model and transferring the weights through iterations has an effect on model’s
performance. It can be easily seen that the model is able to use some part of
the previous knowledge. From the analysis on incremental learning without data

% 20 30 40 50 60 70 80 90 100

5 10.68 17.58 18.79 19.06 19.50 19.46 19.35 19.54 19.70

10 17.07 18.62 18.83 18.54 18.76 19.12 19.15 19.45 19.69

15 18.96 18.07 18.47 18.46 18.87 19.05 19.11 19.15 19.19

Table 4.5: BLEU scores of incremental learning without data pooling on the
QUORA dataset with different number of epochs. Each column except the first
represents an iteration, first row shows what percent of the dataset is used in that
iteration. First column represents the number of epochs. The models are evaluated
on the test set.
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% 20 30 40 50 60 70 80 90 100

BLEU 10.15 12.87 12.65 16.03 15.82 16.19 16.62 16.77 16.35

Table 4.6: BLEU scores of supervised learning without data pooling on QUORA
dataset. Each column represents an iteration and each iteration trained separately.

pooling, it can be hypothesized that even though the model is able to utilize past
information, it gradually forgets it. In other words the model overwrites the weights
which are fine tuned in previous iterations.

4.2 Neural Paraphrase Generation with Transfer

Learning

Table 4.7 presents the results of transfer learning on the MSR dataset. QUORA
and PPDB-Lexical datasets are used as source datasets. Both source datasets are
trained for 10 epochs and with the same hyperparameter configuration. No addi-
tional parameter tuning has been done for neither of the settings. Previously fined
tuned model configurations which are described in previous section, are used for
the target datasets.

As it can be seen from the table, transfer learning improves BLEU score with
every transfer method for both source datasets except one particular setting. When
transferred from the QUORA dataset, the model improves its BLEU score by
9.7 at the best case which is a very significant improvement since the original
model could not produce acceptable paraphrases at all. When transferred from
PPDB even though the model is still unable to generate acceptable paraphrases,
it improves its BLEU score only by 1.74 at the best case which is an unexpected
result. Our results on transfer learning from PPDB-Lexical dataset do not coincide
with the results of [Brad and Rebedea, 2017] where they report a BLEU score of
10.29 for transfer from PPDB-Lexical to MSR. One possible explanation for this

Transfer Method Source Dataset

QUORA PPDB

INIT 8.9 3.08

Freeze 1 layer 10.04 1.73

Freeze 2 layers 8.74 2.46

Surplus layer 8.32 2.32

Embedding only 2.38 0.73

Supervised Learning 1.34 1.34

Table 4.7: BLEU scores of different transfer learning methods on the MSR dataset.
First row represents the source datasets. Rest of the rows represent transfer meth-
ods which are described in 3.5 and corresponding BLEU scores.

33



Chapter 4. Results

Transfer Method Target Dataset

QUORA-120K QUORA-24K

INIT 22.71 13.46

Freeze 1 layer 21.73 14.80

Freeze 2 layers 21.56 12.93

Surplus layer 19.37 12.08

Embedding only 21.89 12.57

Supervised Learning 23.43 10.49

Table 4.8: BLEU scores of different transfer learning methods on the QUORA-120K
and the QUORA-24K datasets when MSCOCO dataset is used as source. First row
represents the target datasets. Rest of the rows represent transfer methods which
are described in 3.5 and corresponding BLEU scores.

inconsistency would be the lack of parameter tuning for source datasets in our
experiments. Since the source model for PPDB-Lexical is not fine tuned, it might
not perform well in the MSR. Another explanation could be the difference in
models used for paraphrase generation task but this explanation is very unlikely
since our model is able to generate results that are comparable to state-of-the-
art architectures even though it is a fairly simple model. In retrospect, the result
that using QUORA dataset as source leading to better performance than using
PPDB-Lexical, is not surprising. Even though the PPDB-Lexical dataset is larger,
it contains no context information unlike the QUORA dataset. Moreover QUORA
and MSR datasets have similar domains (more common words and topics, etc.)
which should lead to better performance.

The transfer method which performs best for the QUORA to MSR transfer, is
freeze 1 layer. When the QUORA dataset is used as source, rest of the transfer
methods performs similarly, INIT improving the BLEU score by 6.52, freeze 2 layers
improving by 6.36 and surplus layer by 5.98. For the PPDB-Lexical dataset, the
best transfer method is INIT. Freeze 1 layer improves the BLEU score by 1, freeze
2 layers by 1.73 and surplus layer by 1.59. When only the trained word embeddings
are transferred, the model improves by 1.04 with the QUORA dataset as source.
This result shows that hidden layers are not the only aspect of the model that is
transferable. When PPDB-Lexical dataset is used as source, transferring the word
embeddings actually hurts the performance. This result is quite inconsistent with
other transfer learning experiments and it lacks an explanation.

Table 4.8 presents the results of transfer learning on the QUORA dataset from
the MSCOCO dataset. Pre-trained source model shares the same hyperparame-
ter configuration with previous source models and it is trained for 5 epochs. The
results show that transferring MSCOCO to QUORA dataset is not effective, more-
over it decreases the performance. All of the transfer methods perform worse than
traditional supervised learning without transfer. Among the transfer methods only
INIT has a comparable performance to supervised learning with a BLEU score
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% 20 30 40 50 60 70 80 90 100

RS 10.49 19.43 21.91 23.30 24.30 24.50 25.15 25.45 26.19

NGC 11.61 14.96 17.58 18.91 20.45 21.58 21.93 23.00 23.69

RNGC 5.71 14.76 19.35 20.46 21.10 21.79 22.70 22.14 22.43

Table 4.9: BLEU scores of active learning on the QUORA dataset. Each column
represents an iteration, first row shows what percent of the dataset is used in
that iteration. Each row except the last represents the performance of a particular
sampling strategy which is described in 3.6.

of 22.71 whereas supervised learning achieves a BLEU score of 23.43. This is an
unexpected result since it suggests that MSCOCO dataset has no useful knowledge
which can help with the training of QUORA dataset. It can be argued that this
is a similar problem to the knowledge forgetting problem which is observed with
incremental learning without data pooling. It can be hypothesized that since there
is enough training data to learn from, the transferred knowledge is overwritten by
the target task. In order to investigate this behaviour better, a subset of QUORA
dataset with the size of 24,000 paraphrase pairs are randomly selected (data from
the first iteration in incremental learning setup) and knowledge transfer is applied
from the MSCOCO to this subset. The original dataset contains approximately
120,000 paraphrase pairs. Results show that transfer learning performs better in
this case, improving the BLEU score by 4.31. All of the transfer methods improve
the model’s final score and freeze 1 layer approach performs the best.

Transferring output layers makes no significant improvements to the perfor-
mance for both QUORA and MSR target datasets.

4.3 Neural Paraphrase Generation with Active

Learning

Table 4.9 presents the results of active learning on the QUORA dataset. In the
table, RS, NGC and RNGC represent random sampling, n-gram coverage and
reverse n-gram coverage respectively. Reverse n-gram which is the exact opposite of
n-gram coverage is also experimented as a sampling strategy. Its score for a sentence
is defined as 1 subtracted by n-gram coverage score of the sentence. The reason for
this is to determine how well n-gram coverage reflects the informativeness of source
paraphrases. As it can be seen from the table none of the sampling strategies is
able to outperform random sampling. While random sampling achieves a BLEU
score of 26.19 at the last iteration, n-gram and reverse n-gram coverage sampling
achieve 23.69 and 22.43 respectively. Moreover they are unable to learn any faster
than random sampling. Random sampling outperforms the others at all iterations
except the first.
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% 20 30 40 50 60 70 80 90 100

IL1-NE 11.12 19.83 22.20 22.05 23.47 23.70 23.32 24.46 25.05

IL2-NE 10.14 17.23 17.77 16.00 16.23 16.40 16.06 16.42 15.83

IL2-NE2 9.45 17.44 18.05 17.81 18.48 18.67 17.81 18.21 18.06

IL1 10.49 19.43 21.91 23.30 24.30 24.50 25.15 25.45 26.19

IL2 10.68 17.58 18.79 19.06 19.50 19.46 19.35 19.54 19.70

Table 4.10: BLEU scores of incremental learning with and without network ex-
pansion (see 3.4 for details) on the QUORA dataset. Each column represents an
iteration, first row shows what percent of the dataset is used in that iteration.
IL2-NE2 represents incremental learning without data pooling and without layer
freezing.

4.4 Neural Paraphrase Generation with Network

Expansion

Table 4.10 presents the results of incremental learning with network expansion on
QUORA dataset. In the table, NE represents the settings where the first active
layer of the network is freezed after each expansion. NE2 represents the settings
where no freezing is done. IL1 and IL2 represents incremental learning with and
without data pooling, respectively. As it can be seen from the table, incremental
learning with and without data pooling achieve BLEU scores of 25.05 and 15.83
at the last iteration.

In the case of incremental learning with data pooling, the model gradually
increases its performance except when a new layer is added (iterations 4 and 7).
On the other hand, in the case of Incremental learning without data pooling, the
model improves until the first extra layer is added (iteration 4). After that point
on, adaptiveness of the model diminishes almost completely.

When the model’s layers are not freezed with network expansion, in incremen-
tal learning without data pooling, the model’s behaviour does not change much,
meaning it still loses its adaptiveness while its overall performance increases by
2.23.

4.5 Combining Different Strategies

Results of the experiments done with MSR dataset shows that the model fails to
learn the dataset properly with incremental or supervised learning but the model
is able to generate acceptable sentences when transfer learning is used. Since it is
not possible to analyse the performance of incremental learning on MSR dataset
as it is, the model is trained with both transfer and incremental learning. A source
model is trained on another dataset and used as a knowledge base for target model.
Target model is then trained incrementally using different transfer methods. With
this experiment setup a concept drift situation is also simulated since a model
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that is trained on one particular dataset, is getting exposed to a different dataset.
Table 4.11 presents the results of incremental learning with data pooling with
different transfer methods. The QUORA dataset is used as source dataset in this
experiment and for target model, the same hyperparameter configuration used in
previous experiments (which is determined by using the validation set) is kept.

As it can be seen from the table, all the transfer methods steadily improve their
performances through iterations which is an expected behaviour from previous ex-
periments. Every transfer method except the surplus layer outperforms traditional
supervised learning. Best performing transfer method is INIT with a BLEU score
of 11.20 whereas supervised learning achieves 10.04. Freezing the first layer and
first two layers achieves BLEU scores of 10.37 and 11.03 respectively. Additionally,
the best transfer method outperforms supervised learning with only 80 percent of
the dataset which is a result that is consistent with previous experiments.

Transferring by adding a surplus layer and freezing the rest does not work well,
achieving a BLEU score of 6.57 underperforming even the supervised learning.
Training error analysis of the method clearly shows why it is not performing well.
Training error of the model with surplus layer stabilizes much slower and at a
much larger value than other transfer methods. Moreover, it is observed that the
paraphrases that are generated by the model during training, are dominated by
the source dataset. In other words the model dominantly chooses words from the
source dataset. At the end it is clear that the model underfits to the MSR dataset
when it transfers with a surplus layer.

Table 4.12 presents the results of transfer method INIT with different incremen-
tal learning strategies. QUORA dataset is used as source dataset in this experiment
as well.

As it can be seen from the table while incremental learning with data pooling
and baseline incremental learning improve their performance through iterations,
incremental learning without data pooling is unable to adapt. Results of incre-
mental learning on MSR dataset is quite consistent with the results on QUORA
dataset. Model’s behaviour with different incremental learning strategies are simi-
lar in both datasets. Only notable difference between two sets of experiments is the

% 20 30 40 50 60 70 80 90 100

INIT 5.23 6.28 6.90 8.31 8.97 8.93 10.39 10.70 11.20

Freeze 1 layer 4.23 5.99 6.74 7.77 8.71 9.09 9.29 10.14 10.37

Freeze 2 layers 5.06 5.94 7.36 7.74 8.88 8.86 10.15 10.77 11.03

Surplus layer 1.44 3.61 3.86 4.74 4.89 5.37 5.12 6.12 6.57

SL - - - - - - - - 10.04

Table 4.11: BLEU scores of incremental learning with data pooling trained with
different transfer methods on the MSR dataset. Each column except the first rep-
resents an iteration, first row shows what percent of the dataset is used in that
iteration. Last row represents supervised learning.
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% 20 30 40 50 60 70 80 90 100

IL1 5.23 6.28 6.90 8.31 8.97 8.93 10.39 10.70 11.20

IL2 5.05 3.36 3.96 4.35 4.32 3.93 4.29 4.27 4.274

IL3 5.09 5.90 6.43 7.57 8.52 8.79 9.86 9.98 10.02

SL - - - - - - - - 10.04

Table 4.12: BLEU scores of different incremental learning strategies trained with
INIT transfer method on the MSR dataset. Each column except the first represents
an iteration, first row shows what percent of the dataset is used in that iteration.
Last row represents supervised learning.

underfitting in incremental learning without data pooling on MSR dataset. The
model is unable to learn well on training data without pooling, producing large
training errors during training. It can be hypothesized that reason for this is small
size of the dataset and there is simply not enough data in one iteration for model
to learn properly.

Table 4.13 presents the results of incremental learning with data pooling with
INIT and freeze 1 layer transfer methods. MSCOCO dataset is used as source and
QUORA dataset is used as target. The same hyperparameter configuration from
the previous experiments, is kept.

As it can be seen from the table, the model is able to gradually increase its
performance in both cases. At the last iteration, the model achieves BLEU scores
of 24.85 and 24.35 using transfer methods INIT and freeze 1 layer respectively.
Results are consistent with previously reported transfer learning experiments where
the model without transfer is outperforming the model with transfer. As reported
in section 4.1.1, incremental learning with data pooling achieves a BLEU score of
26.19 without any transfer.

4.6 Discussion

All the experiments which are conducted regarding incremental learning, show that
incremental learning with data pooling has the best performance. Even though the
baseline incremental learning (which is basically supervised learning) also increase

% 20 30 40 50 60 70 80 90 100

INIT 13.64 17.03 20.10 21.14 22.34 22.78 23.77 24.41 24.85

Freeze 1 Layer 14.80 17.58 19.33 20.68 21.87 22.19 23.52 23.80 24.35

IL1 10.49 19.43 21.91 23.30 24.30 24.50 25.15 25.45 26.19

Table 4.13: BLEU scores of incremental learning with data pooling trained with
transfer methods INIT and Freeze 1 layer on the QUORA dataset. Each column
except the first represents an iteration, first row shows what percent of the dataset
is used in that iteration. Last row represents incremental learning without transfer.
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its performance through time, the difference between BLEU scores clearly shows
that continuously training the model leads to a better tuned and more data efficient
model. Table 4.14 presents some selected paraphrases generated by the model on
the QUORA dataset. As it can be seen from the table, the model is able to generate
grammatically correct paraphrases with lexical variety but there are cases where it
fails to capture the original meaning. On both datasets, incremental learning with
data pooling is able to outperform traditional supervised learning without seeing
100 percent of the dataset. It is also important to notice the fact that baseline
incremental learning and incremental learning with data pooling trains for same
number of epochs. Therefore their total training times are approximately the same.

Before the experiments, main concern regarding to the incremental learning was
overfitting but the results show that overfitting is avoided because of the regular-
ization mechanisms. Especially the dropout mechanism effectively prevents overfit-
ting and makes incremental learning with data pooling possible. Once overfitting
is removed from the equation (of course it is impossible to completely eliminate
overfitting), it is not hard see why incremental learning with data pooling works
better. By continuously training through iterations, the model starts the next it-
erations with better weight initializations and previous knowledge regarding the
dataset. In other words transfer learning is applied between the same dataset (this
is also correct for incremental learning without data pooling). Positive effect of
incremental learning is evident if learning curve of the model is analyzed. During
the experiments it was observed that for each iteration the training and valida-
tion errors in the beginning are lower than previous iterations. Another interesting
aspect of this learning strategy is the amount of increase in BLEU score through
iterations. Rate of performance gain is higher in the early iterations than late iter-
ations on both datasets. One would expect similar increases in BLEU scores on the
MSR dataset since it is a very hard dataset to paraphrase. Training and validation
errors are much higher on MSR than on QUORA therefore there should be more
room for the model to learn in the MSR (stabilizing in later iterations).

Incremental learning without data pooling does not perform well regarding both
final BLEU score and adaptivity which is an expected outcome. The behaviour of
this learning strategy was similar in all experiments (on both datasets, with net-
work expansion, transfer learning and different configurations). The model starts
improving in first half of the iterations and adaptivity severely diminishes after
that point. The interesting finding is the fact that model learns separate iterations
rather quickly but fails to improve its performance in test set which suggests catas-
trophic forgetting between iterations. In the end incremental learning without data
pooling does not seem to be a suitable training strategy for paraphrase generation.

With the findings on incremental learning, it can be concluded that the an-
swer to the first research question, ”Can deep neural models effectively adapt and
gradually perform in a continuous data stream for paraphrase generation?”, is yes.
The results show that with incremental learning baseline and incremental learn-
ing with data pooling, a deep neural model can be successfully integrated into
human-in-the-loop setting for paraphrase generation. The results also demonstrate
the adaptivity of incremental learning with data pooling and its superiority over
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Label Sentence

source What are the causes of the fall of the roman empire?

target What were the most important causes and effects of the fall of the roman empire?

generated What are the causes of the collapse of roman empire?

source What are the best new car products or inventions that most people dont know about?

target What are some mindblowing vehicles tools that exist that most people dont know about?

generated What are some mindblowing vehicle accessories that exist that most people don’t know about?

source How does a long distance relationship work?

target How are long distance relationships maintained?

generated How can I maintain my long distance relationship to the best of my ability?

source What do you think is wrong with indian schools and education?

target What is wrong with the current indian education?

generated What do you think of indian school of education?

Table 4.14: Selected example paraphrase pairs from the QUORA dataset.

supervised learning and baseline incremental learning, in this particular setting.
Moreover the second research question ”Can the model achieve better or comparable
performance than traditional supervised learning by leveraging the data stream?”
can also be partially answered since it is successfully shown that incremental learn-
ing learns better and faster on two different paraphrase datasets.

Results of the experiments which are done regarding transfer learning are not
conclusive. While transfer learning improves BLEU score for MSR dataset signif-
icantly in some cases, it does not work well for the QUORA dataset, even de-
creasing the performance. In the case of the MSR dataset, one of our findings is
inconsistent with [Brad and Rebedea, 2017], regarding the effect of transfer from
PPDB-Lexical dataset. While they report significant improvements, our experi-
ments showed little to none improvement and even decrease in performance when
only word embeddings is transferred. One can argue that the reason for our find-
ings is the poor performance of source model since no parameter tuning is done
for the source models, but the difference between reported BLEU score is too high
which makes this explanation highly unlikely. Our initial expectation of high per-
formance from the QUORA as a source dataset, is confirmed to be right. It is
assumed that the transfer would be successful since the two datasets are similar
(similar domain, similar words etc.) and transfer from the QUORA resulted in a
significant improvement in BLEU score. In the case of QUORA dataset, transfer
from the MSCOCO only works if a small subset of the dataset is used as target.
It can be concluded that when the model has access to enough data, transferred
knowledge becomes irrelevant pretty quickly even though the MSCOCO dataset is
almost twice as big as the QUORA dataset. It can be also seen that when transfer
learning works, hidden states (network weights) are not the only aspect of source
model that is being transferred. Word embeddings are also transferrable.

Regarding to different methods, applying restrictions to the model during trans-
fer does not work as intended. The transfer is usually more successful when the
model is less restricted but performances of four different transfer methods are close
to each other. Our findings agrees with [Mou et al., 2016], showing that transfer
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learning for NLP tasks highly depends on the task, model and datasets. Since it
is possible to create a model that is impossible to get created without transfer,
our findings on transfer learning can partially answer the third research question,
”What are the possible challenges/limitations introduced by system and model in
this setting and what are the possible learning strategies we can use for dealing
with these challenges?”. In a situation where there is a very small and challenging
dataset and no way to obtain more data, transfer learning can be the solution
depending on the task and the datasets.

Most interesting finding regarding transfer learning is; when incremental learn-
ing is combined with transfer learning, the idea of specialization does not work at
all for LSTM based models for paraphrase generation. In our experiments it can
be seen that the more transfer method restricts model’s training the worse the
performance when the model is continuously trained. Since the QUORA dataset
is way larger than the MSR dataset, adding a new layer to the model and freezing
rest of the network seemed to be a good idea since there was a large and fine tuned
general model to transfer from. Making only one layer to specialize on the MSR
dataset looks like a natural option but this transfer methods fails miserably by
underfitting to the MSR dataset. If the transfer is possible for supervised learning,
contrary to surplus layer, other transfer methods works well when they are trained
with incremental learning with data pooling, learning faster and better than tradi-
tional supervised learning. Therefore our findings on incremental transfer learning
completes the answer of our second research question.

Results of active learning show that proposed sampling strategies are not ef-
fective for neural paraphrase generation. It is possible that the poor performance
of n-gram coverage might be related to the fact that no information from target
paraphrases is used for sampling [González-Rubio et al., 2012]. Even though this
is a possible explanation, the results of n-gram and reverse n-gram coverage clearly
show that rarity of a particular sentence does not reflect that sentence’s informa-
tiveness. Despite the fact that the two heuristics are exact opposite of each other,
their performance is similar. This finding reinforces the idea that n-gram coverage
is not a suitable to be used in a sampling strategy.

In general, sampling strategies bias the training data by selecting specific para-
phrases. This can lead to misrepresentation of the original training data distribu-
tion, resulting in poor performance especially the sampling strategy is not reflective
of the informativeness. Random sampling does not have this problem since it ran-
domly selects the training data. It can be hypothesized that this is why it performs
better than other sampling strategies.

Basic idea behind network expansion during incremental learning was to intro-
duce some flexibility to model and slow down the forgetting behaviour observed
during training. This does not work as intended since expanding the network had
no positive effect on neither of the incremental learning strategies. Expanding the
network without freezing the other layers shows some promising results and needs
more investigation.

Results of the experiments where a concept drift is simulated, show that the
model is able to adapt to the new training data even if it is from a different data
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distribution. In both of the cases, incremental learning with data pooling is able to
improve its performance through iterations. Every transfer learning method except
the surplus layer, is able to facilitate this behaviour. On QUORA dataset, even
though the model is not able to outperform the case where there is no concept drift,
it is still able to create acceptable paraphrases. Moreover this underperforming
behaviour is not only expected because of the very nature of concept drift, it
is also consistent with the experimental results of transfer learning on QUORA
dataset.
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Chapter 5

Conclusion

This thesis studies neural paraphrase generation in settings where the training data
is collected from a continuous data stream. A continuous, human-in-the-loop data
acquisition process is simulated with existing datasets. A data driven and adaptive
learning paradigm is proposed for training the model. A deep neural model based
on stacked LSTM’s is implemented and its behaviour is analyzed under different
learning strategies. It is shown that integration of the model with the simulated
data stream is possible and it improves the performance of paraphrase generation
task. Since the research on adaptive neural models for NLP tasks is quite limited,
actual applicability of the concept is the main focus of this thesis. The work in
this thesis can be considered as a proof of concept regarding adaptive models in
continuous, human-in-the-loop settings.

Three different incremental learning strategies (including an incremental learn-
ing baseline to make meaningful comparisons) are proposed and experimented with,
in order to show the model’s ability to work in human-in-the-loop settings. Experi-
ments with two different datasets have been conducted using iterative evaluation to
monitor the learning process. Although one of the incremental learning strategies
underperforms and fails to adapt through time, the other strategy is shown to be
quite successful regarding both adaptivity and overall performance. Experiments
also demonstrate that the successful incremental learning strategy outperforms the
baseline with less amount of data. At the end, the practicality of adaptive learning
over supervised learning is clearly demonstrated by the experiments.

For the cases where large amount of training data is not available, the effect
of transfer learning on paraphrase generation is investigated. The possibility of
knowledge transfer for neural paraphrase generation is questioned and an analysis
is done in order to determine what aspects of the network are being transferred. It
is shown that for paraphrase generation, the transfer is successful when the target
dataset is small. It has a negative effect on performance when the target dataset is
large. It is also shown that while the transfer of the output layers does not make any
difference, both hidden layer weights and word embedding weights have an impact
on performance during transfer. Additionally, four different transfer methods are
proposed to be employed in different specific use cases. Initial hypothesises which
are considered during the design of transfer methods fail since the experiments
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show that restricting the model’s learning ability during transfer leads to poor
performance.

In order to utilize the human-in-the-loop setting better by selecting the best
samples to be annotated, three different active learning strategies for are proposed.
It is clear from the experimental results that n-gram coverage of a sentence does
not represent the informativeness of that sentence in paraphrase generation.

Finally the proposed learning strategies are tested in a setting where a concept
drift occurs. A previously trained model encounters new training data which does
not come from the original dataset the model is trained with. Proposed learning
strategies are combined in order to deal with this problem. The results show that
in the case of a concept drift, the model is able to adapt to the new training data
with incremental learning with data pooling.
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Future Work

There are many research questions regarding adaptive neural models for NLP which
are not addressed in this thesis due to the time limitations. This section gives an
overview of the future work which can address the remaining research questions.

The experiments that are done in the thesis only simulate a human-in-the-loop
data acquisition process. Since the only part that can be simulated is the iterative,
continuous nature of the process, the actual human input on model’s predictions
are not utilized in the experiments. First and most important future work would be
integrating the neural model to a real word human-in-the-loop data acquisition tool
like [Yimam and Biemann, 2018]. It is important to study the impact of interactive
human evaluation and correction on the model.

Parallel to the first future work, a human evaluation of the paraphrases that
are generated by the model, is also important. Considering the fact the BLEU is an
automatic metric which is not designed for paraphrase generation, incorporating
the human evaluation of the suggested paraphrases could be helpful to decide when
to stop the data acquisition. Extending the user interface to provide exactly that
would be an improvement to the data acquisition tool.

As it is stated in the first chapter, when paraphrasing source sentences, the
users choose from a list of paraphrase suggestions created by the model and external
resources. With this way it is ensured that the paraphrases created by human users
come from a vocabulary which is known by the model. Even though it introduces
restrictions to the users, this has to be done since the model cannot change it’s
vocabulary after the training is started. To tackle this problem, very large pre-
trained word embeddings like GloVe [Pennington et al., 2014] or Word2Vec Google
News [Mikolov et al., 2013] can be used. This can improve the performance and
make the model more robust.

Regardless the way of how the vocabulary is created, there will always be
some words that are not in the vocabulary. Especially in a setting where the
training data is constantly streamed into the model, out of the vocabulary words
are inevitable. A mechanism to intelligently handle out of vocabulary words, like
[Madhyastha and España-Bonet, 2016] , should be integrated into the whole data
acquisition process.

Transferring from different datasets in the same domain is not always effec-
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tive especially if the target dataset is large enough. This assertion can be false
when the transfer learning is done from different tasks as it is demonstrated in
[Brad and Rebedea, 2017]. As future work the effect of transferring from different
tasks for example entailment generation, can be investigated. This might be an
important improvement on the current framework since it might be not possible
to find a different dataset in the same domain if the domain is very specific.

Finally, since the research on active learning for paraphrase generation is non
existent, it is a natural future work for this thesis. The sampling methods which
are studied in this thesis, are shown to be unsuccessful therefore new sampling
methods for neural paraphrase generation is still an open research question.
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Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using RNN
encoder-decoder for statistical machine translation. CoRR, abs/1406.1078.

[Dolan and Brockett, 2005] Dolan, B. and Brockett, C. (2005). Automatically con-
structing a corpus of sentential paraphrases. In Third International Workshop
on Paraphrasing (IWP2005). Asia Federation of Natural Language Processing.
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