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Abstract

Abstract

This thesis presents steps toward Question Answering (QA) task for Reading Com-
prehension (RC). RC is about reading a piece of text and understanding the mean-
ing of its words. The ability to answer questions answered in a context is an es-
sential factor for RC. Therefore, it forms the question answering task in order to
generate answers to questions which might be answered in the given RC context.
QA is increasingly present in the �elds of Text Mining, Information Retrieval and
Natural Language Processing (NLP). The aim is to develop the human-like ability
to read some piece of text and then answer questions about it. In the traditional
approaches, QA task was proposed based on a structured knowledge-base or in-
formation retrieval concepts. In recent years, deep learning techniques have had
promising ways to deal with human-textual data in tasks such as QA.

As it is always the case with deep learning models, the more massive datasets
used for training and evaluation, the more accurate the results we get. Our target
is to explore and implement an end-to-end QA system on a manually generated
large-scale dataset. One such dataset is Standford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) which consists of input-question-answer triplets.
We propose to adopt the Dynamic Memory Network (DMN) approach introduced
by Kumar et al. (2016) as the core model to be implemented in this thesis. Our
improved DMN architecture will be the �rst attempt in SQuAD leaderboard us-
ing the DMN approach. We also re-implement Match-LSTM with Answer Pointer
(Wang and Jiang, 2016) and the original Kumar et al. (2016) DMN models. The
former two models, along with the baseline and our improved DMN models are
trained and evaluated on SQuAD dataset. Finally, we show that our improved
DMN model can compete with Match-LSTM and other models in the SQuAD
leaderboard.
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Zusammenfassung

Zusammenfassung

In dieser Abschlussarbeit werden Schritte zum Erstellen eines Question Answer-
ing (QA) Systems im Kontext für Leseverständnis dargelegt. In Leseverständnis
geht es um das Lesen eines Textes und das gleichzeitige Verstehen der Bedeutung
der Wörter. Die Fähigkeit Fragen in einem bestimmten Kontext beantworten zu
können ist ein essenzieller Faktor für das Leseverständnis. Das Leseverständnis
bildet daher das QA-System in einer Weise, um Antworten für Fragen zu gener-
ieren, welche eventuell im gegebenen Leseverständnis behandelt werden. QA ist
immer gegenwärtiger in den Bereichen Textmining, Information-Retrieval und Nat-
ural Language Processing (NLP). Das Ziel ist es menschenähnliche Fähigkeit für
das Lesen eines Textes und das anschlieÿende Beantworten von Fragen zu diesem
zu entwickeln. In traditionellen Ansätzen beruht das QA-System auf Konzepten
von strukturierten Wissensdatenbanken oder Information-Retrieval. In den letzten
Jahren haben Deep Learning Methoden erfolgreiche Ansätze gezeigt, um mit men-
schlichen Textdaten in Aufgaben wie QA umzugehen.

Sowie es immer der Fall mit Deep Learning Modellen ist, liefert die Verwendung
von massiveren Datensätzen zum Training und Evaluieren genauere Ergebnisse.
Unser Ziel ist es ein Ende-zu-Ende QA-System anhand eines manuell erzeugten,
umfangreichen Datensatzes zu untersuchen und umzusetzen. Eine solcher Daten-
satz ist der Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al.,
2016), welcher aus Input-Frage-Antwort Tripletts besteht. Wir schlagen vor, den
Dynamic Memory Network (DMN) Ansatz von Kumar et al. (2016) als Kern-
modell für diese Arbeit zu verwenden. Unsere verbesserte DMN Architektur wird
der erste Ansatz in der SQuAD-Rangliste sein, welcher eine DMN Methode ver-
wendet. Wir auch implementieren Match LSTM with Answer Pointer (Wang and
Jiang, 2016) und die ursprünglichen Kumar et al. DMN Modelle neu. Diese werden
zusammen mit der Baseline und unserern verbesserten DMN Modellen auf dem
SQuAD-Datensatz trainiert und evaluiert. Abschlieÿend zeigen wir, dass unser
verbessertes DMN-Modell mit Match-LSTM und den anderen Modellen in der
SQuAD-Rangliste konkurrieren kann.
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Chapter 1

Introduction

In the past, computers had superhuman capabilities to solve mathematical prob-
lems. Programs using data (as the input) run on computers to produce the output;
they were programmed using traditional ways. However, concerning complex prob-
lems such as object recognition, driverless cars, stock-market prediction, memorise
entire documents or movies in a single glance, and natural Language tasks to give
people information on any subject were very di�cult to be solved using the tra-
ditional programming. Recently, machine learning concepts made it easy to solve
these complex problems. Machine learning is a �eld of Arti�cial intelligence (AI)
to allow computers automatically learn by themselves using statistical techniques.
Unlike the traditional programming, machine learning concepts allow the data (as
the input) and the prior-known output to run on computers and then produce the
program. Lastly, this program runs on computers with new data to produce the
output. As computing systems are becoming more complex and the advances in
computer technology increase, the AI �eld became indispensable to keep up with
these developments. AI has experienced a dramatic evolution in our living appli-
cations. In the heart of these developments, the development of Natural Language
Processing (NLP) �eld, which it is revisited again in this thesis.

Reading comprehension (RC) is not an easy approach to achieve because we have
to combine natural language processing concepts and knowledge of the world. RC
is about reading a piece of text and understanding the meaning of its words. RC
should has the ability to answer questions answered in its context. Therefore, RC
forms the Question Answering (QA) task. Recently, QA is becoming an essential
task in Text mining and NLP �elds. QA should automatically allow users to get an-
swers to their questions which might be answered in the given RC context. Today,
QA appears in search engines (Google), conversational phone interfaces (Wolfram
Alpha, Apple Siri) and intelligent personal digital assistants (Microsoft Cortana).
There are two types of datasets used in the reading comprehension approach: au-
tomatically and manually generated ones. Automatically generated datasets are
arti�cially generated datasets and one of these datasets is the Cloze-style test. The
cloze-style test is the best way to create reading skills test and typically used in the
English language test in schools. The test contains complete the sentences task,
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Chapter 1. Introduction

which missing words (deletion word) in those sentences have to be �lled in. Another
example of the arti�cially generated datasets is introduced by Weston et al. (2015)
and it called Facebook bAbI dataset. In contrast to that, the manually generated
datasets are closer to our QA system goals. They are about letting users ask ques-
tions about a whole paragraph and then receive the probable answers based on
it. Usually, these manually generated datasets are small and insu�cient for train-
ing deep learning models such as MCTest dataset (Matthew Richardson, 2013).
SQuAD dataset solves this issue since it is one of the largest manually generated
datasets. It contains contexts with over 100,000 question-answer pairs on more
than 500 Wikipedia articles. SQuAD was recently introduced by Rajpurkar et al.
(2016) as a large-scale dataset for the reading comprehension approach. SQuAD
is now an invaluable dataset to train and evaluate deep neural network models for
NLP tasks. Accordingly, we decided to explore the performance of di�erent RNNs
successors concerning the domain of QA using textual data on SQuAD dataset.
Furthermore, we examine how well the semantics and syntactic of a given text can
be understood and utilized by neural networks containing memory and attention
mechanisms to answer questions posed in standard natural language by humans.

1.1 Motivation

Nowadays, challenges to keep up with the aspirations of people are getting bigger.
Therefore, working on the �eld of automatic learning with neural networks and on
large data (Big data) is rising. AI was mainly introduced to do what humans failed
or could not to do. On the subject of this thesis, consider asking some humans
to read and memorize an article on their working memory (brain memory), and
then we will ask them to answer some questions about that article. Even though
those humans are incredibly smart, they will not be able to answer most of those
questions correctly. The reason is that we can not store everything in our work-
ing memory in a few moments. The solution to this di�culty is to allow as many
glances as possible to read the article multiple time to be able to answer those
questions. Another solution is about asking them to read questions �rst before
reading the article. By this way, questions keywords will direct their attention
when they read the article afterwards. That is how it works with humans. On the
other hand, AI usually tries to simulate how our brains work in di�erent tasks like
this one. Fortunately, in neural networks, the problem mentioned beforehand has
been solved by the same solutions. For the idea of the �rst solution which it allows
as many glances as possible is called memory mechanism. Also, the idea of the
second solution which is about using questions keywords to direct the attention of
readers is called attention mechanism.

Currently, neural networks with memory and attention mechanisms exhibit pre-
cise reasoning capabilities required for QA task. In this light, we decided to explore
and present the performance of the memory networks concerning the domain of
the QA task. Following RNN, LSTM, GRU, and right up to MemNN, Dynamic

2



1.2. Research Questions

Memory Network (DMN) is becoming the state-of-the-art in this direction. DMN
is another extended version of MemNN but with dynamic memory and attention
mechanism usage. DMN is submitted for the �rst time by means of Kumar et al.
(2016) which they implemented an end-to-end trainable network using arti�cially
generated dataset called Facebook bAbI. This dataset is released by Weston et al.
(2015) in Facebook AI research-lab. Kumar et al. DMN architecture has four mod-
ules: input, question, episodic memory and answer respectively. The input module
encodes raw input text sequences (context) into distributed vector representations.
The question module similarly encodes the question sentence. Then, input and
question representations are fed into the episodic memory module. The memory
module uses the attention mechanism to choose which sentences in the input repre-
sentations are most important to focus on to answer questions. Then, it iteratively
produces a memory vector space representing all the relevant information to the
question. In the end, all the relevant information are used by the answer module to
extract the answer. Throughout this thesis, we propose a new improved version of
DMN architecture, and we called it improved DMN. Our improved DMN consists
of some improvements in two modules: the input and episodic memory. In Chapter
6, we show our experiments and results of our improved DMN regarding QA task
which it trained and evaluated on SQuAD dataset.

1.2 Research Questions

SQuAD dataset contains much more challenging questions whose correct answers
can be any sequence of tokens from the given context. Moreover, SQuAD covers
a diverse range of topics across a variety of domains. Unlike some other datasets
whose questions and answers are created automatically and arti�cially, questions
and answers in SQuAD dataset were generated by humans through crowd-sourcing.
That makes SQuAD more realistic and reliable dataset for our QA task. In addition
to, answers in SQuAD could consist of multiple words, not just a single word.
As shown in Figure 1.1, there is an example of one context from the "Teacher"
paragraph in SQuAD dataset. Each task in SQuAD consists of three-tuple (C, Q,
(As, Ae)): C refers to the context, Q refers to questions and (As, Ae) refers to
the extracted answer span to these questions. In SQuAD, the answer could be a
single word or multiple words retrieved from a list of candidates of answers. The
answer-span (As, Ae) is used to predict the probable answers in a variable length
or range of two tokens, where As refers to the answer start token and Ae refers
to the answer end token. One of the challenges in SQuAD is the lexical variation
problem because of synonyms in both the context and questions are di�erent. In
order to solve this problem, we should use an external knowledge base to match
synonyms in the context with those in questions. Another big challenge in SQuAD
is the syntactic variation problem, which it compares the syntactic structure of
the question and the context. We trained a word vector representation tool called
Glove (Pennington et al., 2014) to solve these problems.

3



Chapter 1. Introduction

Figure 1.1: A training example from the SQuAD dataset, consisting of a context,
questions and the ground truth and prediction answers (Rajpurkar et al., 2016).

Finally, Our Research Questions are:

1. RQ-1: How good is the performance of our improved DMN when evaluated
on a large-scale dataset such SQuADv1.1?

2. RQ-2: How our improved DMN can compete others architectures in SQuAD
leaderborad, especially: Match-LSTM with Answer Pointer (Wang and Jiang,
2016)?

In the following chapters, we are going to answer these questions.
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1.3. Structure of Thesis

1.3 Structure of Thesis

In this section, we provide the structure of the thesis as shown in Figure 1.2. By
outlining our research questions, they will be solved in the following chapters as
follows:

Chapter 2 discusses the theoretical background for the domain of QA task and
methods of neural networks. This chapter consists of two sections related to QA
task. The �rst section presents the traditional QA task such as information extrac-
tion and retrieval methods with the knowledge base. The second section presents
the current and recent QA task which implemented by neural systems. In the be-
ginning, we give a brief theoretical background of the biological neural network.
Afterwards, we talk about the so-called Arti�cial Neural Network (ANN) or Neural
Network (NN) and its methods that were implemented in this thesis. Throughout
this thesis, we tried many NN methods such as vanilla (RNN, LSTM, GRU),
Bidirectional-LSTM, Bidirectional-GRU and MemNN in our implementations.

Chapter 3 provides a quick feasible study of the most important researches and
attempts regarding the domain of QA task. This chapter consists of two sections:
Single-step models and Multi-step models. For the single-step models, the merging
of the question and context occur only once before generating the �nal answer.
In contrast, the multi-step models are closer to how humans think by reading the
context more than once to answer the questions.

Chapter 4 outlines and proposes the methods and technologies used to deal with
SQuAD dataset in the domain of the QA task. This chapter consists of three sec-
tions: word embedding, attention mechanism, encoder-decoder architecture and ap-
proaches respectively. Firstly, we give a brief about the word embedding technique
that is used to convert the raw data to high dimensional numerical vector space.
Afterwards, we present the attention mechanism technique and how it recently be-
came promising in most of the NLP tasks. Then, we propose the encoder-decoder
architecture that has been implemented through all the implementations in this
thesis. Finally, we propose the four approaches that were implemented and eval-
uated by SQuAD-v.1 dataset in this thesis. The four main approaches are vanilla
LSTM as a baseline model, the re-implementation of match LSTM with answer
pointer model by Wang and Jiang (2016) as a comparative model, Kumar et al.
(2016) DMN model and our improved DMN model.

Chapter 5 presents the data bank used for the evaluation in this thesis. This
chapter consists of two sections: The �rst section is about SQuAD as our evalu-
ation dataset. Following by the section that provides details of the preprocessing
stage and the important con�gurations.

Chapter 6 shows the �nal results of the four models. This chapter consists of two
sections: Technical Description and Technical Results. For Technical Description
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Chapter 1. Introduction

section, we cover the environment stu� information which was used in this thesis
such as programming languages and the type of processing unit. Then, we provide
all the results and tables of the scores achieved in the four models in the Technical
Results section.

Chapter 7 discusses the thesis approach, all the experiments implemented and
the gap in results between the four models. In this chapter, we have two sections:
conclusion and future work. For the conclusion section, we propose conclusions of
the theoretical and technical stages at the same time as an open discussion. More-
over, we show the scienti�c contribution points of the thesis by summarizing the
results achieved. For future work section, we share our future work from what we
have done in this thesis and then discussing potential future works.

Figure 1.2: Structure of the thesis.

6



Chapter 2

Theoretical Background

2.1 Traditional Question Answering

First of all, have a minute and think about most humans problems in real life. They
could be cast into a form of question answering. With the enormous revolution
in modern technology, everything has to be automatic. Consequently, the target
of our QA system is to answer questions posed in natural language by humans
automatically. QA is becoming one of the most rising tasks in �elds such as NLP
and Text Mining. Nowadays, the QA task can work on any dimension of data and
di�erent semantic complexity levels. The simple level could be questioned about
Name, Date, Time and currency about a few sentences. The complexity level could
appear in open-ended questions with grammatical co-references or in�nity answers
such as �What is the meaning of life?�. Therefore, the QA task has no limits by
default. Thus far, QA is still an active research �eld looking for researchers.

QA system can be divided into non-factoid or factoid QA. In non-factoid QA
system, users can ask the system about any question such as in Google search
engine. Non-factoid QA system should automatically retrieve all probable answers
by extracting causal relations from the knowledge base. The answer in non-factoid
QA system could be more complex such as descriptions, opinions, articles, long
story and so on, so forth. In contrast to that, factoid QA system allows users to
ask about concise facts which might consist of person name, organization name,
numeric expression, Date, Time and so on, so forth. Then, factoid QA system
retrieves facts words in answers. Factoid QA system is considered as a subset of
the non-factoid QA. Following questions are a simple example of factoid QA which
questions can be answered with a short text expressing a personal name, temporal
expression, numbers, currency or location based on a few sentences that lead to
these answers:

• Where are the Pyramids located? Egypt.

• What currency is used in China? Yuan.
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Last but not least, the traditional QA system �rst has been addressed using Infor-
mation Extraction and Retrieval methods. After the signi�cant progress of Arti�-
cial Neural Network (ANN), it motivated researchers to examine and implement
QA system based on ANN.

2.1.1 Information Retrieval

Concerning the domain of the QA task, two modules could be used in the tradi-
tional QA: preliminary analysis of context text sequences (Information Extraction)
and query processing (Information Retrieval) (Jurafsky and Martin, 2000). Infor-
mation retrieval (IR) deals with the structured representation analysis which has
been extracted from the so-called Information Extraction method. The primary
task of IR is to retrieve the information that user needs as text sequences. IR is
considered the low-level information extraction and one of the famous systems of
IR is the Google search engine. Google engine allows a user to enter his input
(Question, word or sentence) then the engine analyses the input to extract struc-
tured information. Then, this engine searches with this information to retrieve the
answers back to the users using the IR method. As shown in Figure 2.1, a user
searched "Where are the great pyramids located?". Then, the Google engine gave
answers back to the user. However, the IR in the Google engine is a non-factoid
QA system; it could consider as IR of complicated questions. This process depends
on query based-summarization (Jurafsky and Martin, 2000) concept to retrieve all
possible information to the user. Contrary to the less complicated system which
is implemented by the factoid QA system based on IR, the factoid QA system
retrieves a short answer based on facts. By searching for the relations between
questions and context, the candidate sentences that might contain answers will
be retrieved. Afterwards, by �ltering these sentences, we can rank the candidate
words (answers) from each sentence to retrieve the answer with the highest rank.

Information Extraction (IE) is a method for extracting the structured informa-
tion from the unstructured one. IE is also used for understanding relevant parts of
texts and try to gather all possible information to retrieve more optimal answers.
Afterwards, the IR method can be used to develop an intelligent QA system by
identifying the relations between words in question and context text sequences.
Named Entity Recognition (NER) (Finkel et al., 2005) is used to classify each
word in the context to a speci�c name entity such as Person, Organization, Loca-
tion, Date, Time, Money, Profession and others. After linking all of these named
entities, we can then extract the information that could help to answer questions,
and most of these answers are named entities. The relations between named enti-
ties could be extracted by using Part Of Speech (POS) Tagging term (Toutanova
et al., 2003) or sometimes called grammatical tagging. POS is used for mapping
each word in the context to the corresponding POS tag such as VBD, VBG, VBZ,
and others. POS plays a critical role in the grammatical tagging stage and how
to apply the morphology (Lemma) term in a word. Morphology term is used for
studying the meaning of each word and relationships between words in a sentence.
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Figure 2.1: Example of Information Retrieval results using Google Engine.

After using morphology term, we should �nd the right format of the word such
as: the word root (de�ne the word tense: present, past and future), pre�x (a, an,
the, in, il, etc.), su�x (s,ed, st, er, not, etc.) and the stem of word. The stem of a
word refers to a part of the word without any extra addition such as the stem of
the word "Wait": "Waits", "Waited", "Waiting", "Waiter" or others.

Regarding traditional QA systems, Jurafsky and Martin (2000) proposed a QA
system with the best architecture of information retrieval method. As shown in
Figure 2.2, the architecture consists of documents and three modules: Question
Processing, Passage Retrieval and Answer Processing, respectively. Documents are
outside the architecture because these documents are considered as an external
dataset. After attaching documents, users can ask some questions about the story
of each document. The QA system takes these questions and starts the �rst module
which is called Question Processing. This module consists of two steps: Query For-
mulation and Answer Type Detection. Query Formulation step is used for getting
queries which contain all question keywords. However, Answer Type Detection step
is used for extracting the answer type such as: Why, When, Who, Which, How,
Where. Then, the QA system enters the second module which is called Passage
Retrieval. This module consists of two steps: Document Retrieval and Passage
Retrieval. Documents Retrieval step is used for mapping and indexing each docu-
ment with the corresponding questions given by users. In the end, the QA system
uses these indexed documents to retrieve answers back to the relevant documents.
On the other hand, Passage Retrieval step is used for retrieving most likely pas-
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sages that might lead to answer the question from each document. The top-ranked
passages do not necessarily contain the answer to the question, because these doc-
uments have not an appropriate unit to rank. Therefore, Jurafsky and Martin have
�xed rank scores for passages. After collecting queries from the �rst module and
retrieving passages based on the highest scores from the second module, they fed
into the Answer Processing module. In the end, the Answering Processing module
is used for extracting the probable answers for each question from the �nal candi-
date's passages based on the �xed score-rank.

Figure 2.2: Question Answering System based on Information Retrieval (adapted
from Jurafsky and Martin (2016).

Most of QA systems are focused on factoid QA system. Facebook bAbI (Weston
et al., 2015) is one of the QA datasets often used in factoid QA system. As we
mentioned earlier, the factoid QA can be answered with simple facts expressed in
a short answer which extracted from the context given. In Facebook bAbI dataset,
the answer should be a single word. As shown in Figure 2.3, there are di�erent tasks
on Facebook bAbI such as Single Supporting Fact and Two Supporting Facts. In
the single supporting fact example, it means that the QA system needs to track
only one fact to answer the question. As shown in the single supporting fact ex-
ample, QA system needs to track the fact "Mary" to retrieve the location of Mary
as the answer. However, in Two Supporting facts, QA system needs to track two
facts to answer the question. As shown in the two supporting facts example, QA
system needs �rst to track the fact "football" then found "Who picked up the
football". Afterwards, QA should track the fact "John" to retrieve the location of
John which it is the location of the fact "football". Supporting facts term refers to
the position number of the sentence that might lead to answer the question. Thus,
fact word refers to sentence and factoid term refers to the sentence id (if and only
if, dataset provided the supporting facts). Supporting facts ids might be provided
to pay attention in the sentences might lead to the answer.
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Figure 2.3: A training example from the Facebook bAbI dataset, consisting of a few
sentences, question and the truth answer based on the supporting facts introduced
by Weston et al. (2015).

On the other hand, the non-factoid QA system is considered as the narrative form
of the QA system that needs more knowledge processing. Answers could be ex-
pressed in a long sentence without any supporting facts such as SQuAD dataset,
as shown earlier in Figure 1.1.

2.2 Current Question Answering

Recently, most of QA systems were implemented based on Neural Networks. In this
section, we present brie�y the history of the neural systems starting from Biological
Neural Networks right up Memory Neural Networks (MemNNs). Moreover, we
present which neural networks work well with the sequential textual data. In this
thesis, we present a variation of RNN generations such as Long Short-TermMemory
(LSTM), Gate Recurrent Unit (GRU) and Memory Neural Network (MemNN).

2.2.1 Neural Systems

2.2.1.1 Biological Neural Network

The brain is composed of approximately 1011 interlinked elements called neurons.
They communicate along using electrical signals. As shown in Figure 2.4, neurons
can receive, process or transmit the information in one direction. Like a thor-
oughfare used for transmitting information from point A to point B. Because of
having di�erent kinds of information, the brain activates diverse sets of neurons
and routes from neuron A to neuron B. Each neuron has a body with branches
called dendrites, which receive signals from other neurons through a kind of �ber
pipeline called axon. Other neurons receive electrical signals through this axon.
By this way, neurons can transmit electrical signals in the human nervous system.
Electrochemical devices called synapses are responsible for transmitting electrical
signals between neurons. Synapses are located at the meeting point between the
axon of ingoing signals (Emitting neuron) and the dendrite of outgoing signals (Re-
ceiving neurons). When neurons send signals, it called pre-synaptic neurons and
post-synaptic for receiving signals. For transmitting the ingoing electrical signals
to other neurons, a gate should be opened on the dendrite of receiving neurons
using neurotransmitters. This gate allows energetic ions to �ow in or out through
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the axon based on the voltage di�erence (activation level). These ions generate
the activation level of the neuron, which is used to decide the potential of the
neuron to send or receive these electrical signals. When the activation level of a
neuron is larger than its threshold, the neuron become active (on-�re), and then
it could propagate signals. By this way, neurons can communicate with each other
for sending and receiving information in the brain. For more details can be taken
from Chapter 3 in (Floreano and Mattiussi, 2008) book.

Figure 2.4: Biological Neural Network, credited to Floreano and Mattiussi (2008).

2.2.1.2 Arti�cial Neural Networks (ANNs)

An Arti�cial Neuron Networks (ANNs) or sometimes called Neural Networks (NNs)
are mathematical models inspired by the biological neural networks computations.
They try to simulate the human nervous system for sending, receiving and pro-
cessing information regarding the computer science �eld. However, ANNs are a
bit di�erent from their biological counterparts. Because, what works best in the
brain, does not necessarily have to be best in arti�cial neural systems. As Floreano
and Mattiussi (2008) proposed in his book Chapter 3, ANNs consist of several
units called neurons, that communicate with each other. As we mentioned earlier,
the neuron becomes active if its activation level is larger than its threshold. The
threshold is the simple one in the activation functions family in neural systems.
The threshold refers to a speci�c value that each neuron has to exceed it to be
active then could be �red to the next stage. As shown in Figure 2.5, when we
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process input neurons Xn along with neurons weights Wn in a neural network,
the activation function is calculated by getting the summation of the input and
its weight (Xi * Wi) for each input unit. Afterwards, we could add the bias value
1 b to the summation result z. Then, the new Z �ts into the activation function
g(Z). If the activation function used is the threshold, we should set the threshold
value beforehand. Lastly, we use the result of the activation function to predict
the output neuron Y. As shown in Figure 2.6, there are many other kinds of ac-
tivation functions such as Sigmoid, Softmax, Tanh, and recently Recti�ed Linear
Unit (ReLu).

Figure 2.5: Example of the activation function in ANNs: Summation function z
sums three input with their weights; then by adding the bias value b, we can get
the Big Z. Then we can calculate the activation function g(Z) to extract the output
Y.

Figure 2.6: Common activation function types: a, sigmoid function that outputs
values between (0 to 1); b, hyperbolic tangent or tanh function that outputs values
between (-1, 1); c, recti�er or ReLU function that outputs x values in range of
max(0, x).

1Bias: b is a constant value, it allows the function to move the line up or down to �t the
prediction with the data better as de�ned in a linear function (y = ax + b).
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Figure 2.7: Generic neural network architecture, taken from Floreano and Mattiussi
(2008).

As shown in Figure 2.7, the simplest Feed-forward ANN such as Multilayer Per-
ceptron (MLP) network is composed of three layers: Input, Hidden and Output
respectively. The data is �owing from the input layer to the output layer through
the hidden layer in one direction. In the input layer, each unit could communicate
with an external environment that provides the neural network with more features
related to the inputs. The hidden layer is located in the middle between the input
and output layers. Overall, the signi�cant role of the hidden layer is extracting
the most important features from the input data and then �ts them into the out-
put layer. This hidden layer could be more than one layer based on the problem
complexity, and then it called Deep Neural Networks (DNNs) or most of the times
called deep learning. So far, It is still hard to �gure out how many hidden layers
we should have to solve any problem in ANNs. However, researchers found that to
solve a linear problem, there is no need to create a hidden layer, and the activation
function will be implemented in the input layer. It means that to build ANNs,
we have to know the complexity of the problem to decide the number of neurons
should be created in each layer (Input, Hidden and Output). Afterwards, we can
decide if we should use hidden layers and how many layers should we have? In
the end, the output layer is used for generating the output to solve the problem.
It predicts the result based on the collected information from the previous layers.
After getting the �nal output, we collect the error cost between the predicted and
the target outputs, and then we go through the back-propagation stage. This stage
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is about updating the weights in the network and trained the network again until
getting a small error.

2.2.1.3 Recurrent Neural Networks (RNNs)

Recurrent Neural Network (RNNs) are ANNs models introduced by Elman (1991)
to allow us working with sequences of data. The primary key of RNNs is to store the
past information of the previous sequences and passes it to the next sequences. Re-
cently, RNNs used remarkably in NLP tasks such as (language modeling, machine
translation), Text mining and Image Captioning tasks. Usually, humans think by
sequentially way (step by step), and their thoughts have persistence in the brain
memory. It means that they use the past information in their brain memory in
any task instead of thinking from scratch. In ANN, it works on all information
independently, which it means that there are no relations between the input and
the output data. The traditional ANNs show low performance in sequential tasks
such in the NLP �eld. Unlike, RNNs use short loops (memories) to loop over the
previous information and store this information for any incoming need to use. By
this way, the output is becoming depended on the input data. RNNs architecture
consists of three cells: input, recurrent, and output respectively. The input and
output cells are working same as in the traditional ANNs. For recurrent cells, each
cell extracts the important information from the input cells then passes them to
the next cell and so on, so forth. RNNs are called recurrent because it use the same
network for each input sequence. As we have mentioned earlier, the main point of
using RNNs is that they have recurrent cells (short memories) between the input
and the output cells. The recurrent cell is considered as a single hidden layer using
(Sigmoid, Tanh, Softmax or ReLU) activation functions. As shown in Figure 2.8,
a simple recurrent neural network that consists of input xt, output ot and a loop L
between them. L loop stores information from one recurrent cell and then passes
it to the next cell in the next recurrent network. As shown in Figure 2.9, when we
unrolled the loop, we found that RNNs look like multiple copies of the traditional
ANNs.

These copies are linked as a sequence to sequence or linked-list until reach to the
last recurrent cell. The recurrent cell is known as the hidden state of the memory
that calculated based on the previous hidden stats. Because of that, RNNs are
introduced to work with sequences of data such as speech, text or image sequences
data. RNNs work successfully if the gap between sequences is small. For example,
to predict the missing word in this text "I was sick. I went to missing-word.";
RNNs will use an external knowledge base to predict that the missing word most
probably is "Hospital". Because the gap between the relevant information "sick"
and the target "missing-word" is small, there are no complex relations between
sequences and RNNs do not need more past information. Unlike, if the gap is long,
RNNs theoretically can work with long data sequences (long-term dependencies).
However, if we use RNN to predict the missing word as we did in the former ex-
ample, but using a long history like "I was sick. ... (other text sequences) ... I went
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Figure 2.8: A simple Recurrent Neural Network with loops, drawn in the style of
Olah (2015) in his article .

Figure 2.9: An unrolled Recurrent Neural Network, drawn in the style of Olah
(2015) in his article.

to missing-word", it will fail to predict the missing word. At the last recurrent
cell, it assumes that the missing word is probably the word of place or location
based on remembering the previous words. Therefore, to predict this word, RNNs
should look further back at all text sequences until �nds sick word to predict that
the word should be the place "Hospital". Unfortunately, in practice, RNNs show
low performance for remembering the past information for long-term dependencies.
The reason is that RNNs are su�ered from the problem of vanishing gradient de-
scent. In another meaning, RNNs cannot solve the problem of vanishing gradient.
Because of that, if the gap between the relevant information and the target to pre-
dict is very large, RNNs will show low performance. This problem was introduced
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and explored by Bengio et al. (1994). Hochreiter and Schmidhuber (1997) solved
this problem by implementing Long Short-Term Memory (LSTM) as an improved
version of RNN that able to work with long-term dependencies. LSTM combats
the problem of vanishing gradient descent during the back-propagation stage by
�xing gradients steep as enough as the network needs. Therefore, LSTM can work
with the long-term dependencies.

2.2.1.4 Long Short-Term Memory Networks (LSTMs)

LSTM is addressing the vanishing gradient problem. Thus, it can work with long-
term dependencies by using the gating mechanism. In LSTM, retrieving the in-
formation of the previous input text sequences for a long time is now possible by
learning the parameters for each gate. The major component of LSTM is the gat-
ing mechanism to add, update and output the information. The cell gate is a local
memory that has all the information �ltered by others gates used in LSTM and
then passes the information to the next recurrent network. It is also responsible
for passing the information without any change between the repeating recurrent
networks using linear functions. As shown in Figure 2.10, LSTM has three main
gates: forget gate ft, input gate it and output gate ot.

Figure 2.10: A simple Long Short-Term Memory Network, drawn in the style of
Olah (2015) in his article.

In the beginning, the �rst gate is the forget gate ft which is used to ignore the less
important information from the previous hidden state ht−1 and keep the important
information in the cell state ct−1 as shown in Equation 2.1. The forget gate uses a
Sigmoid function σ that outputs the previous hidden state ht−1 and input data xt
between (0 and 1)2. As we mentioned earlier, in LSTM, the cell gate (local mem-

2The value of 0 means ignore this data (not important) and value of 1 means store this data
in the cell gate (most important)
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ory) updates its data using linear functions such as multiplication or addition. By
calculating the forget gate ft, then we multiply it by the previous cell gate (ft∗ct−1),
and then we wait for the new information to be added in the cell gate using the
input gate. The second gate is used to �lter the new information from the input
data xt and add the new important information to the cell state ct, and it is called
input gate it. Using the input data xt along with the previous hidden state ht, we
can calculate the input gate. It uses a Sigmoid function σ to output the information
between (0 and 1) representing the new important information values, as shown
in Equation 2.2. Then, it uses a Tanh function to create the candidate's vector c̃
contains the new important information from the input data that should be added
in the cell gate as shown in Equation 2.3.

We can consider this candidates vector as new hidden states should be added in
the cell gate. By using a Tanh function, the output of this function will be between
(-1 and 1). Then, we can update the cell gate again by multiplying the input gate
it with the candidates c̃ like (it∗c̃). The �nal cell gate ct can be now calculated by
adding the updated cell gate from the forget and input gates as shown in Equation
2.4. The last gate is about extracting only the most important information that
should be outputted to the �nal hidden state in this recurrent network, and then
passes to the next network, and it is called the output gate ot. This gate uses a
Sigmoid function σ to output the information between (0 and 1) representing the
most important information should be outputted from the �nal cell gate ct, as
shown in Equation 2.5. Afterwards, it uses a Tanh function to output the impor-
tant relevant information from the �nal cell gate ct between (-1 and 1) values. In
the end, we multiply the output of the output gate and Tanh function (ot∗tanh(ct))
to output the �nal hidden state ht shown in Equation 2.6, and then passed to the
next recurrent network.

ft = σ3(Wf
4 � 5[ht−1, xt] + bf ) (2.1)

it = σ(Wi � [ht−1, xt] + bi) (2.2)

c̃ = tanh(Wc � [ht−1, xt] + bc) (2.3)

ct = ft ∗ ct−1 +
6it ∗ c̃ (2.4)

ot = σ(Wo � [ht−1, xt] + bo) (2.5)

ht = ot ∗ tanh(ct) (2.6)

The �nal hidden state of the �nal recurrent network contains the most important
information might help to solve tasks such as QA task. Recently, LSTM shows a

3σ is the sigmoid function that de�ned as σ(t) = 1 / (1 + et))
4W is the weight value and it might be di�erent for each gate.
5� is the element-wise multiplication of vectors.
6+ is the element-wise addition of vectors.
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great performance compared to the vanilla RNN in the long-term dependencies
case7 by solving the problem of vanishing gradient descent.

2.2.1.5 Gate Recurrent Unit Network (GRU)

GRU is introduced by Chung et al. (2014) as another improved version of RNNs
with some more di�erences. GRU is quite similar to LSTM performance and be-
havior. Unlike LSTM, GRU does not have the cell gate as a memory to store the
relevant information. Moreover, GRU does not have the output gate as in LSTM,
because it does not need another nonlinearity function to output the �nal state.
As shown in Figure 2.11, GRU has two gates only: update gate and reset gate.
The update gate ut keeps only the important information from the previous hid-
den state (recurrent network) or adds the new relevant information from the input
data. GRU used the update gate for adding and updating information to the hid-
den state, instead of using separate gates such as forget and input gate in LSTM.
On the other hand, reset gate rt is used for combining the new information from
the input data xt to the previous hidden state, and then extracting the �nal hidden
state of this network. In GRU, the cell state and the hidden state are merged into
one state called hidden state ht−1.

Figure 2.11: A simple Gate Recurrent Unit Network, drawn in the style of Olah
(2015) in his article.

Firstly, the reset gate uses a Sigmoid function to get all values between (0, 1) using
the input data xt along with the previous hidden state ht−1 as shown in Equation

7If we �xed the input gate all to 1's, the forget gate all to 0's (you always ignore the previous
information) and the output gate to all to 1's (you output the whole information). Therefore, we
will get back to the standard RNN architecture. It means that we will add all information and
output all possible information.

19



Chapter 2. Theoretical Background

2.7. Following by the update gate, it uses a Sigmoid function to output values be-
tween (0, 1) to update the input data with the value one as shown in Equation 2.8.
Afterwards, we use a Tanh function after multiply the reset gate and the previous
hidden state like (ht−1∗rt) to output the new candidates of the hidden state h̃ as
shown in Equation 2.9. The last step is to calculate the �nal hidden state that
will be passed to the next recurrent network. First, we multiply the information
we decided to ignore it like (1 - ut) by the previous hidden state ht−1. At the same
time, we also multiply the update gate ut and the �nal candidates of the hidden
state h̃ to be sure that we extracted the most important information. In the end,
we add both hidden state calculations to get the �nal hidden state as shown in
Equation 2.10. In many tasks, both LSTM and GRU yield the same performance
and behavior. GRU does not need long-sequences data to generalize the model. On
the other hand, for a long-sequences data, LSTM might lead to better performance
and results.

rt = σ(We � [ht−1, xt]) (2.7)

ut = σ(Wu � [ht−1, xt]) (2.8)

h̃ = tanh(W � [rt * ht−1, xt]) (2.9)

ht = (1− ut) ∗ ht−1 + ut ∗ h̃ (2.10)

2.2.1.6 Memory Neural Networks (MemNNs)

Memory networks (MemNNs) are a newly proposed variant of RNNs with a global
memory potential. MemNN was introduced by Weston et al. (2014) to have an
external global memory. In LSTM, the cell gate is considered as local memory,
and it addressed the shortcomings of RNN concerning vanishing gradient problem.
However, with long input sequences, a bit long and compartmentalized memory
became necessary. In order to solve this issue, we can add multiple LSTM and
each cell gate as an independent memory in each LSTM. This solution is much
computations expensive and shows low performance. Recently, MemNN allows us
to read and write to its global memory for all text sequences. Moreover, we can
increase the memory size. MemNN consists of a memory m8 with many hops k
and four components. Each memory hop kt is considered as a dense vector.

MemNN has four main components: input, update (generalization), output and re-
sponse respectively. In the input component, the raw input sequence (In our thesis,
the input is text: sentences and words) is being encoded to convert the text to spare
vector representation using the Bag9-of-words (BoW) model. BoW model is used
for extracting information from the input text sequences based on the occurrence
of words in each sentence. The update component in the MemNN looks like input
gate in the LSTM that it is used for adding new input information given, and then

8Memory contains all the relevant information vector as an array of strings indexed based on
the memory hop index kt.

9It is called a "bag" of words, because this model ignores the ordering or structure of words,
and this is the limitation of this model.
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updating old memories from the previous component10. The update component
called generalization step, because it could store and generalize its memories per-
hop for many reasons such as reasoning over multiple sentences more than once
to get the probable response (answer for the question in our case). Following by
the output component, it is used for reading the memory hops mk that contain all
the relevant information and outputting the new output based on a score function.
The new output is produced based on the new input information from the input
component with the updated memory per-hop mk from the update component.
The score function determines the degree of matching the input information and
the updated memory information. The last component is the response component
that used for producing the �nal response based on the new output. We talk about
a QA system in this thesis, however, in this case, the response component could use
RNN or one of its classes (LSTM or GRU) to extract the answer to the question as
multiple words. Last but not least, MemNN shows great performance in QA task.
Recently, many models were implemented concerning the domain of the QA task
based on MemNN architecture. In Chapter 4, we present the Dynamic memory
network (DMN) which is another extended version of MemNN.

10If we have much data and the memory became full, you can replace or forget one of the
memory hop mk like the forget gate in LSTM does.
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Related Work

Before DMN, Recurrent Neural Network (RNN) classes such as Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) has been used for language
systems such QA system. LSTM contains an external local memory cell to allow us
to store the important information. Afterwards, Chung et al. (2014) was introduced
Gate Recurrent Unit (GRU) as another improved version of RNN using the gate
mechanism. GRU does the same behavior as LSTM with less one gate and fewer
computations expensive (less memory state). Further development in this area
led to Memory Network (MemNN) (Weston et al., 2014) which it is the recent
class of RNN family but contains a global memory block. MemNN in the recent
neural network experiments has achieved high performance in QA applications
using Facebook bAbI dataset (Weston et al., 2015). However, in MemNN, the input
module encodes sentences independently not in a sequence, and thus it shows low
performance in other NLP tasks. Following the release of SQuAD (Rajpurkar et al.,
2016), it is now possible to train end-to-end neural network models with large-scale
QA dataset. We categorize these models into two broad groups based on how to
produce the �nal answers. The QA models for encoding the question and context,
and then extracting the useful information to answer the given question could be
divided into two categories: single-step and multi-step models. In the single-step
models, the merging of the question and context occur only once before generating
the �nal answer. The single-step models mainly focus on the attention mechanism
technique. Unlike the single-step models, the multi-step models are closer to how
humans think by reading the context more than once to extract and retrieve the
answer. This category mainly focuses on the memory mechanism technique along
with the attention mechanism technique.

3.1 Single-Step Models

The most popular single-step models are mainly based on attention mechanism
techniques. Wang and Jiang (2016) were implemented Match-LSTM with Answer
Pointer model concerning the domain of QA task. Their model used their old
Match-LSTM model (Wang and Jiang, 2015) to match the context and question
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words by using the attention mechanism. They used a soft attention mechanism to
pay attention on question keywords against the context. Then, they used another
attention mechanism type called Pointer Networks (Vinyals et al., 2015) to ex-
tract all possible tokens from the context as the answer. Furthermore, Xiong et al.
(2016b) have presented the Dynamic Co-attention Network (DCN) model. DCN
consists of two encoders (Context, Question) and dynamic pointing decoder model.
They used co-attention encoders for paying attention to the question against the
context and the context against the question. Instead of using a simple calculation
(such as summing or averaging) to combine individual attention into �nal atten-
tion. After they retrieved all question-context interactions, there might be several
probable answer tokens in the context. Therefore, they used a dynamic pointing
to generate the answer span by getting the prediction of (As, Ae) tokens. This
technique is used to recover the maximum answer spans corresponding to incor-
rect answers. After each iteration, the dynamic pointing decoder updates its state
based on the results of the co-attention encoder and the prediction of answer span
and then produces a new prediction span and so on, so forth. Following, Cui et al.
(2016) proposed the Attention-over-Attention Neural Networks (AoANN) model
to match between question and context. They used AoANN for paying attention
over the question against the context, and then they did another attention over
the �rst attention to extract the most important information of each attention.

Later, Seo et al. (2016) proposed Bi-Directional Attention Flow (BIDAF) model to
implement a question-ware and context representations. They proposed an updated
attention mechanism that their attention layer did not summarize the question and
context information into a �xed-vector as what Xiong et al. (2016b) did in their
DCN model. Alternatively, they let the attention vector to go through the modeling
layers. Then, in the end, they summarized all these attention layers, and thus they
reduced any information loss. Recently, Kumar et al. (2016) proposed Dynamic
Memory Network (DMN) model as an extended version of MemNN concerning
the domain of QA. In their DMN model, they modi�ed the attention mechanism
to automatically decide which information in the input is most important to keep
safe and which should ignore against the question. Kumar et al. calculated the gate
attention scores then modi�ed the GRU network by replacing the gate attention
with the update gate in the GRU. They used their modi�ed attention mechanism
to extract the contextual vector, and then they updated the memory using vector.
Then, they used the �nal memory state to generate the answers. Finally, again
Wang et al. (2017) updated their model and proposed Gated Self-Matching model
for QA task. They used gated attention based on GRU to obtain the degree of
matching the question and context. Then, they used another attention mechanism
called self-matching attention to matching the context again against itself to im-
prove the contextual vector of the �rst attention. In the end, they used the pointer
networks again to �nd all possible tokens positions in the context which they might
be the answer or part of it. Then, they extracted the answer-span based on these
positions.
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3.2 Multi-Step Models

For the multi-step model, Weston et al. (2014) proposed MemNN, which they used
a long-term memory component to store information and an inference component
for reasoning over context. They used many memory-hops to allow reasoning over
the context more than once to extract the probable answers. Later, Kumar et al.
(2016) improved over MemNN by introducing an end-to-end trainable network
called Dynamic Memory Networks (DMN). DMN has four modules: input, ques-
tion, episodic memory and answer. In the episodic memory module, they used
the memory mechanism after implementing the attention mechanism to update
the memory per-hop with the most important information extracted from the at-
tention mechanism. Then, they combined all memory states for each episode to
generate the �nal memory state. Then, they used the �nal memory to extract
the answer. By using memory mechanism, they allowed their QA system to read
the context more than once to �nd the probable answer to the given question.
Recently, Pan et al. (2017) proposed the Multi-layer Embedding with Memory
Networks (MEMNN) based on MemNN. Instead of using single embedding layer
for context and question, they used multi-layer of word embedding to extract the
word-level and char-level embedding. Then, they almost used the same architecture
of MemNN. However, they used the pointer networks to �nd all possible tokens
potions in the context, and then generate the answer span.

Throughout this thesis, we examine and re-implement the Match-LSTM with An-
swer Pointer model which is introduced by Wang and Jiang (2016). This model
consists of the encoder that encodes the context (input text sequences) and ques-
tion and then merges both using Match-LSTM layer. On the other hand, the
decoder extracts the optimal answers between the boundary answer span (As, Ae)
tokens using Pointer Networks. Then, the output of these pointer networks is used
to extract the probable answers after getting the hidden relationships between
the context and question. Finally, in the following chapters, we propose the former
model along with Kumar et al. (2016) DMN model and our improved DMN model.
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Approaches

In this chapter, we propose the four models which are implemented throughout the
thesis. All implementations are trained and evaluated on SQuAD dataset that it
will be described in detail in Chapter 5. We present these models in details as fol-
lows: baseline, Wang and Jiang (2015) Match-LSTM with Answer pointer, Kumar
et al. (2016) DMN and our improved DMN. DMN approach was not evaluated on
the SQuAD leaderboard so far, and therefore it would be the �rst try using the
DMN architecture on SQuAD dataset. First of all, we describe the technique of
word embedding methods which is about using word vector representations for pro-
cessing any textual data. In this thesis, we used Glove (Pennington et al., 2014)
as the word embedding method in all implementations with di�erent dimension
size. Last but not least, we describe the attention mechanism technique which is
about determining the best locations of data to pay more attention and doing fur-
ther analysis to solve the language tasks such as Machine Translation and Question
Answering. In the QA task, these locations contain the most important information
might use to answer questions by �nding locations of the highest words probability
related to the question.

4.1 Word Embedding

Word embedding has become the main �rst step towards implementing any NLP
and text mining tasks. Word embedding technique encodes each word in the input
text sequences into a unique integer. Then, it trains words against their neigh-
bor words in the same sentence to get the relations between words in the vector.
Word2vec is a word embedding technique and refers to word to vector represen-
tations. Word2vec is a small unsupervised neural network with two layers (Input
and Output), but it is not a deep network. The input layer contains sequences of
words, and the output layer produces a set of vectors space. As is known for deep
neural networks, they can understand only a numerical format. Therefore, by using
word embedding method such as Word2vec, we can map each word in a text to
a numerical vector in a continuous space. Before, the one-hot encoding method is
used for mapping words into a boolean vector with high dimension vector. Each
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element in the one-hot vector maps to a unique word in the corresponding vocab-
ulary. It means that the dimension of the one-hot vector equals the vocabulary
size. Because of that, the dimension of the word embedding vector is lower than
the dimension of the one-hot vector. The target of the word embedding technique
is to collect vectors of similar words together in one low dimension vector space
such as (give, live). The more large data we have, the more accurate guesses about
the word meaning we get. The introduction of the word embedding technique is
credited to Bengio et al. (2003). They have proposed a language model based on a
probabilistic model over words and is divided into two parts. First, they mapped
each word into a numerical vector by selecting the corresponding token in the vo-
cabulary �le. Second, they kept all vectors of words into one vector and then used
a probabilistic model to get the �nal matrix of all words. Recently, most of word
embedding techniques can use one of two architectures to produce representations
of words as shown in Figure 4.1. Either using surrounding words representations to
predict a target word and it is called Continuous Bag of Words (CBOW) Mikolov
et al. (2013a) or using one word representations to predict the target surrounding
words and it called Skip-gram Mikolov et al. (2013a). Mikolov et al. (2013b) again
improved the performance of Bengio et al. (2003) model by proposed a model to
map words into a high dimensional vector based on the Skip-gram model (sur-
rounding words in the input texts). Recently, Skip-gram architecture became the
core model of most word embedding techniques.

Mikolov et al. (2013b) model extracted the semantic and syntactic of words and
then generated relationships between words. These relationships can be under-
stood from the famous example of Word2vec: "word2vec(king) - word2vec(man)
+ word2vec(woman)" which yields the embedding vector of word2vec(queen). In
this thesis, we trained the input text sequences using the Glove method which
is introduced by Pennington et al. (2014) as a pre-trained word embedding tech-
nique. Glove also is a small unsupervised neural network with two layers (Input
and Output). The input layer contains input text sequences, however the output
layer processes these sequences word by word to produce the vector representa-
tions. In Glove version 1.2, we have four di�erent pre-trained word vectors, and
then we decided to work with the Glove package with the 6B vector that it contains
(Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 300d vectors,
822 MB download)). Glove term stands for global vectors because these global
vectors of words are extracted directly based on words co-occurrence in the data.
Thus, we do not need to improve or learn these vectors again. Regarding any QA
system, the raw data is passed as an input text sequences (sentence by sentence
and word by word). After using the Glove method, we create the global vectors
of words as embedding lookup-tables, and all words values often are in 0 values.
Afterwards, these embedding vectors are fed into the network as input layer units.

26



4.2. Attention Mechanism

Figure 4.1: Continuous Bag-of-Word (CBOW) and Continuous Skip-gram, taken
from Mikolov et al. (2013a).

4.2 Attention Mechanism

Attention mechanism is a technique to produce a vector representation about all
information in the input text sequences. This vector is often a dense vector using
Softmax function. Bahdanau et al. (2014) have proposed an attention mechanism
for a machine translation task to improve the performance of its Encoder-Decoder
architecture. Before attention mechanism, in machine translation task, we were
reading the input text sequences and understanding the meaning of its words,
and then encoded the information of these sequences into a �xed-length vector.
Input text might be one sentence or more, and each sentence might contain several
words. Thus, compressing all information into one �xed-length vector leads to
losing information and low performance. Earlier, RNN had problems dealing with
such long-term dependencies because of the vanishing gradient problem. Then,
LSTM and GRU solved these problems using the gating mechanism potentials.
However, applying LSTM or GRU in machine translation task with long sentences
is still showing low performance without using attention mechanism techniques.
By using encoder-decoder architecture, the encoder encodes the raw input text
and then compresses all information into a �xed-length vector (the �nal hidden
state). Afterwards, the decoder decodes the �xed-length vector by reversing the
input sentence by sentence and word by word using the vocabulary �le. Then,
it produces the translation output words. This reversing process might work well
with the language in the same structure (�xed word order) such as the translation
from English to German or English to French or vice versa. Fixed word order term
means that the position of the �rst word in English is most probably the same
position of the �rst word in German.
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For example:

• English: I am Ibrahim

• German: Ich bin Ibrahim

However, if we try to translate from English to Japanese, it de�nitively does not
work well. The reason is that during the reversing process in the decoder, the
position of the �rst word of English could be the position of the last word in
Japanese.

Brie�y, the issue with this encoder-decoder architecture without using attention
mechanism is that after encoding the input text sequecnes, the network compresses
all the relevant information (sentences) into a �xed-length vector. Bahdanau et al.
(2014) solved this problem by allowing the decoder to pay attention over any part
in the input text sequences. That means, they share all the �nal hidden states
for each word in the input text rather than compress all information in a �xed-
length vector (the �nal hidden state). As shown in Figure 4.2, they calculated the
alignment method at for each word XT in the input text by getting the correlation
value. This value expresses how each hidden state of each word in the input text
correlates with each word in the target text. Afterwards, they normalized these
values often by means of a Softmax function to produce the probability scores,
and sometimes they called attention weights. Lastly, they produced the contextual
vector by getting the summation of normalized scores and the �nal hidden state
for each word in the input text. In Bahdanau et al. attention mechanism, they
allowed the decoder to output words based on the combination between all input
words states (attention weights) as a contextual vector, not just the �nal hidden
sate. Recently, attention has two di�erent mechanisms: Soft attention and Hard
attention. Bahdanau's attention is a soft attention mechanism. Soft attention is
a di�erentiable mechanism and it often uses Softmax 1 to generate the attention
weights (probability scores) over the input text sequences. In contrast to that, hard
attention is a non-di�erentiable mechanism such as a binary way (0 or 1) or (ON
or OFF) not in range like the soft attention technique. By this switch way, hard
attention can determine which information to pay attention to it and ignore the
rest. In the end, Kumar et al. (2016) have introduced a new attention mechanism
based on the GRU gates, and they called modi�ed AttGRU. In Section 4.4.3, we
present this attention mechanism in details.

1Softmax function is a di�erentiable mechanism too, that it produces values between (0, 1).
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Figure 4.2: Bahdanau's Attention Mechanism (Bahdanau et al., 2014).

4.3 Encoder-Decoder Architecture

The encoder-decoder architecture for RNNs is the most standard and e�ective
mapping models (Cho et al., 2014). It processes (encodes) a sequence as an input
and generates (decodes) another sequence as an output. As shown in Figure 4.3,
this is the generic architecture used in all implementations throughout this thesis.
As we mentioned, we use SQuAD dataset as our evaluation dataset. It contains
several paragraphs, and each paragraph consists of (Context, Question, Answer)
triplets. We fed this raw input data into the word embedding technique such as
Glove6B with 100 or 300 dimensions, and then we branch the embedding vector
out into input and question word vector representations. Afterwards, we fed both
word vector representations into the encoder. The encoder encodes the context and
question vector representations (word by word) separately, and then it extracts the
contextual vector. This vector contains all relevant words might lead to the answer.
Finally, we fed this contextual vector into the decoder to decode the output and
extract the �nal answers as a segment of text (span: as, ae). Where, as refers to
the position of the start answer token and ae refers to the position of the end
answer token. All the words between these two tokens in the original context are
considered to be the answer.
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Figure 4.3: Our Generic encoder-decoder architecture for seq2seq model.

4.4 Approaches

4.4.1 Baseline Model

As a baseline model, we implement a simple seq2seq (vanilla) LSTM model with a
simple attention mechanism, before going deeper into more complex models. Ac-
cording to Figure 4.3, we process the context and questions into two embedding
layers (Glove6B for word-collections), then we pass the outputs of the embedding
layers as inputs into the encoder that consists of two LSTM layers for each. Then
we merge the two LSTM into the Bahdanau attention mechanism to generate the
contextual vector (knowledge representation). In this model, we implement Bah-
danau's attention on the question for each word against context to allow each word
in the context has a hidden representation re�ecting its relation to the question
words. Afterwards, the decoder decodes the contextual vector using another LSTM
to extract the output sequences. Finally, we generate the most probable answer
(span: as, ae) from the �nal output sequences.
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4.4.2 Match LSTM with Answer Pointer Model

Wang and Jiang (2016) have proposed this model based on their Match-LSTM
model used for predicting textual entailment (Wang and Jiang, 2015). Brie�y,
as shown in Figure 4.4, they used two LSTM to process the context or Passage
P and question Q. Then, they used a soft attention mechanism to calculate the
alignment method of the question. As we described in Section 4.2, the alignment
method extracts weight vector representations as attention weights. These vector
representations contain the degree of matching information in each word in the
context against the question words. After calculating the attention weights of the
question, they combined it with the �nal hidden state of each word in the context
to extract the contextual vector. Then, they fed this vector into LSTM to form
their Match-LSTM layer.

Wang and Jiang also used the Ptr-Net model introduced by Vinyals et al. (2015)
to generate the output from the matched input text sequences (context) using the
vocabulary �le. Ptr-Net used another attention mechanism as a pointer to select
words positions from the input sequence. Then, Ptr-Net chooses the most probable
answer tokens in the context after getting their hidden representations re�ecting
their relation to the question words. In the answer pointer layer, there are two
answer models could be outputted. The �rst model is the sequence model, which it
generates the �nal answer as a sequence of words from the whole sentence contains
the matched answer. On the other hand, the second model is about producing the
answer between two tokens (span: (answerstart, answerend)), it called the boundary
model. All the words between these two tokens in the original context are consid-
ered to be the answer. In practice, the advantage of this span prediction is that
we can predict a very long answer spans without getting irrelevant information,
in contrast to the sequence model. Last but not least, the boundary model is the
model we examined and implemented in this thesis to be as a comparative model
to our improved DMN. As shown in Figure 4.4, Wang et al. have proposed a model
that consists of three layers:

1. LSTM preprocessing layer preprocesses the context and the question using
di�erent LSTM.

2. Match-LSTM layer tries to match each word in the context against the ques-
tion words based on the contextual vector extracted by the attention mech-
anism.

3. Answer pointer layer uses the Pointer Network (Ptr-Net) mechanism to ex-
tract the answer by pointing the candidate words positions from the context.
Then, It generates the answer in two ways: sequence or boundary model.
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Figure 4.4: Match-LSTM with Answer Pointer model is credited to Wang and Jiang
(2016). The �nal answer is selected either as: a, sequence (word by word) or b, the
answer is selected as a segment of text called boundary of (answerstart, answerend).

4.4.3 Kumar et al. Dynamic Memory Network model

The limitations of MemNN architecture motivated Kumar et al. (2016) to propose
another extend version of MemNN with a new structure called Dynamic Memory
Network (DMN). The shortcomings of the Bag-of-Words model which it ignores the
ordering of words and losses the semantics of words are some of these limitations. In
addition to that, computing the score for each memory is expensive, and when we
have a huge memory, it will be a signi�cant limitation. Kumar et al. DMN model
addressed these limitations. DMN architecture consists of four modules: input,
question, episodic memory and answer. As shown in Figure 4.5, the raw input
data trained by one of pre-trained word embedding methods or using randomly
high dimensional numbers in the range between (-1, 1). Afterwards, these pre-
trained word vectors fed into the input and question modules. Then, the input and
question vectors are encoded separately using one of the RNN classes to produce
the �nal hidden representations for each of them. These representations contain all
information extracted from the input and question modules. The episodic memory
module consists of two mechanisms: Attention and Memory. This module uses the
�nal representations outputted from the input and question modules through its
mechanisms to extract the most important information might lead to answer the
question. Finally, they used this information used by the answer module along with

32



4.4. Approaches

the question vector representations to generate answers.

Figure 4.5: Generic Dynamic Memory Networks architecture introduced by Kumar
et al. (2016).

Input Module The input module encodes input text sequences (sentence by
sentence and word by word) using one of the RNN classes. This module encodes
the sentence SI (word by word w1,....,wI) until reaching the end-of-sentence (EOS)
token and then extracts the �nal hidden state at each word. If the input text se-
quences contain several sentences, the input module retrieves the �nal hidden rep-
resentations at each of the EOS tokens. In the end, the �nal hidden representations
fed into the episodic memory module and they called them fact representations Sf .

Question Module The question module encodes the question sentenceQI (word
by word w1,....,wI) using one of the RNN classes. The question often is a single
sentence. Then, it extracts the �nal hidden state Qt at each word. These �nal
hidden representations along with the fact representations of the input module are
fed into the episodic memory module. Additionally, the question module shares
their �nal representations with the episodic memory module as well as the answer
module.

Episodic Memory Module The episodic memory module consists of two com-
ponents: the attention mechanism and memory mechanism as shown in Figure 4.5.
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The role of this module is to collect the relevant information from the fact repre-
sentations which might lead to answer the question given. For each episode, Kumar
et al. used the attention mechanism to iterate over the fact representations Sf to
�nd the important information to focus on leading to the answer. They extract
the contextual vector that contains all the relevant information about the context
against the question. Then, the memory mechanism updates the memory using
the contextual vector per episode and the previous memory state. They used the
question representations to initiate the previous memory state at the �rst mem-
ory episode. After updating the memory at the last episode, they generate the
�nal memory state which it contains the most important information to answer
the question given. In the end, they forward the �nal memory state to the answer
module to extract the probable answer.

Answer Module The answer module produces the �nal probable answers based
on the �nal memory state of the episodic memory module along with the �nal hid-
den representations of the question module. For expecting a short answer (Single-
word), we could use a simple function such as Softmax. On the other hand, for a
long answer (Multiple-word), we could use one of the RNN classes such as LSTM
or GRU.

As shown in Figure 4.6, this is an example of Kumar et al. DMN model using
input sentences and a single sentence as a question from Facebook bAbI tasks
(Weston et al., 2015). As we mentioned before, DMN architecture consists of four
main modules, as well as the new module for the semantic memory. The semantic
memory module contains the word embedding method such as Glove (Pennington
et al., 2014) as pre-trained word vector representations. DMN works as follows:
the input module, question module, episodic memory module and answer module
respectively.

In this following paragraphs, we explain the functionality of each module according
to Kumar et al. DMN implementation.

4.4.3.1 Input Module

The input often is a list of sentences, and each sentence is a list of words. Kumar
et al. used Glove vectors as word embedding method to get the word vector rep-
resentations of the raw input sentences. As we mentioned in Chapter 2, the best
way to encode the sequential input is via one of the RNN classes. Kumar et al.
decided to use GRU in their DMN experiment. They used a single GRU to encode
the input text sequences. The �nal hidden representations of the GRU is de�ned
as in Equation 4.1:

ht = GRU(xt, ht−1) (4.1)

Where the xt is the input word at each time step t and the ht−1 is the previously
hidden state that the GRU updates it at each time step until reaching to EOS
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Figure 4.6: Real example of a list of sentences as the input and single sentence as
the question from the Facebook bAbI tasks using Kumar et al. (2016) DMN.

token. As shown in Figure 4.6, the example shows that there are several sentences
St where t = 8. Therefore, The �nal hidden representations of GRU should be
eight vector representations. Then, they fed the �nal hidden representations into
the episodic memory module as the fact representations Sf .

4.4.3.2 Question Module

Kumar et al. decided to use another GRU for the question module. Similar to
what they did in the input module, they encoded the question sentence (word by
word), and then they generated the �nal hidden representations. The �nal hidden
representations Qt at each time step t is de�ned as in Equation 4.2:

Qt = GRU(xt,Qt−1) (4.2)

Where the xt is the question word at each time step t and the Qt−1 is the
previous hidden state for the question at each time step t. Last but not least, they
fed the �nal question representations Qt along with the fact representation from
the input module into the episodic memory module. They initiated the previous
memory at the �rst memory episode by Qt. In addition to, they fed the question
representations into the answer module to extract the probable answers to this
question.
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4.4.3.3 Episodic Memory Module

In this module, Kumar et al. tried to collect the relevant information from the fact
representations along with the question representations and the previous mem-
ory state to answer the question given. By iterating over the fact representations,
in each iteration which is called episode, they retrieved the relevant information
that might lead to answer the question and stored it in the memory. They kept
this information safe even if it does not answer the question in the �rst iteration;
because it could help them to �nd more information might lead to the probable
answer in the next iterations. Afterwards, they updated the memory by this in-
formation and then they produced the �nal memory state at the end of the last
episode. This module mainly composed of two GRUs. The outer GRU is used to
update the memory with the most important information and then generates the
�nal memory state over a sequence of episodes. The inner GRU is used to form
the contextual vector per episode ei. This contextual vector contains the relevant
information of the context against the question. In each iteration, they determined
whether each of the fact representations Sf is important 2 to lead to the answer
using attention mechanism. In the inner GRU, they used a gate mechanism as their
new attention mechanism technique. Then, they modi�ed the update gate in the
inner GRU with this gating mechanism. Their modi�ed attention GRU (AttGRU)
produced the contextual vector ei per episode. Finally, the outer GRU used this
contextual vector along with the previous memory mi−1 to update the current
memory, and this is the process of the memory mechanism.

For a long story in the language tasks such as QA system, it shows high perfor-
mance when we use multiple memory episodes (hops) to iterate over the input
multiple time. The idea behind using multiple memory episodes is that sometimes
the one-hop does not retrieve all the relevant information needed to answer the
question given. As we mentioned in Section 1.1, humans can not store everything
in their brain memory in a few moments. Because of that, they might need as
many glances as possible to answer the question. These glances are the multiple
memory episodes. During this process, humans used some keywords in the question
to direct their attention to retrieve the relevant information, and this is the process
of attention mechanism. Moreover, by using multiple episodes, we can also address
transitive inference3, and sentiment analysis4 tasks. As shown in Figure 4.6, to
answer the question, Kumar et al. needed two episodes to get the sentence that
might lead to the answer. They retrieved the candidate sentence with the highest
probability score, which generated by the attention mechanism. The question that
was asked in the real example in Figure 4.6 is "Where is the football?". At the

2Important here means if the information in each fact (sentence) representations is relevant
to the answer.

3Transitive inference is the ability to extract facts from premises, e.g. �Ibrahim is taller than
Benjamin� and �Daniel is shorter than Benjamin�, then the fact is, �Ibrahim is taller than Daniel�.

4Sentiment Analysis is the ability to determine whether a piece of writing is positive, negative
or neutral (e.g. to get the reader's opinion).
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�rst memory episode, the highest probability score is the seventh sentence "John
put down the football" with (1.0) score. However, the question was asking about a
location, not a person using (interrogative word: Where). Therefore, by using an-
other memory episode, it let the attention mechanism iterated over the input once
again using the information of the �rst episode. The candidate sentence of the �rst
episode was "John put down the football"; thus, at the second memory episode, it
should �nd the location where John was. After paying attention to sentences, the
sixth sentence "John went to the hallway" has the highest score with (0.9). Finally,
the memory mechanism updated its memory with the �nal new information, and
then extracted the answer from the �nal memory which is "hallway".

Attention Mechanism Kumar et al. used a new type of attention mechanism
called modi�ed AttGRU using a gate mechanism. At each memory episode, they

got the similarities zi
t between the fact representations Sf as

←→
Fi , question hidden

representations q and previous memory statemi−1 as shown in Equation 4.3. Then,
they used a score function Z to produce the scalar scores based on the similarities
results. This score function is a simple two Feed-Forward NN that it uses the
Tanh function to get the output of the scalar score between (-1, 1) as shown in
Equation 4.4. Then, it uses the Softmax function to normalize the scores and get
the probability score for each sentence, and then the attention gate g should be
generated as shown in Equations 4.5 and 4.6.

zt
i = [
←→
Fi ◦ q ◦mi−1; |

←→
Fi − q|; |

←→
Fi −mi−1|] (4.3)

Zt
i = W (2) tanh(W (1)zt

i + b(1)) + b(2) (4.4)

gi
t = softmax(Zt

i) (4.5)

softmax(Zt
i) =

exp(Zt
i)∑

Mi

k=1
exp(Zt

k)
(4.6)

Afterwards, they extracted the contextual vector ei by replacing the update
gate in the inner GRU with the attention gate that they generated gi

t at each
memory episode. They called it Modi�ed GRU which it weighted by the attention
gate gi

t as shown in Equation 4.7. In the end, the �nal contextual vector is the
�nal hidden state of the inner GRU et = hi

t.

hi
t = gi

tGRU(
←→
Fi , h

t
i−1) + (1− gi

t)hti−1 (4.7)

Memory Mechanism The memory mechanism is used for updating the memory
per episode with the new candidate sentences. After getting the contextual vector
et per episode, they used it alongside the previous memory state mt−1 to update
the current memory. The �nal memory state is the �nal hidden state of the outer
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GRU as shown in Equation 4.8. The initial state of this GRU is the initial state of
the memory which is initialized to the question vector m0 = q.

mt = GRU(et,mt−1) (4.8)

Finally, the �nal memory state mTm is then passed to the answer module to
generate the answer, where Tm is the index of memory episodes.

4.4.3.4 Answer Module

In this module, they generated the answer from the �nal memory state mTm out-
putted by the memory module. There are two ways to generate the answer, either
to generate a short answer (Single-word) or long answer (Multiple words in a span:
(answerstart, answerend)). For the short answer, we can use the linear Softmax
function for generating the answer as shown in Equation 4.9.

yt = softmax(W(m)mTm) (4.9)

For the long answer, Kumar et al. used another GRU for generating a multiple
word answer and then used the linear Softmax function as shown in Equation 4.10
and 4.11. The initial state of this GRU is the last memory state mTm . Moreover, at
each time step t the input of the GRU is the concatenation of the question vector
q and previously predicted output yt−1, and the previous hidden state equals at−1.

at = GRU([yt−1, q], a
t−1) (4.10)

yt = softmax(W(a)at) (4.11)

Kumar et al. DMN architecture have shown high performance compared with other
memory networks using Facebook bAbI dataset. It is a small and arti�cial gener-
ated dataset. Kumar et al. did not evaluate their DMN model using a large-scale
dataset such as SQuAD. After many tries over Kumar et al. DMN, Xiong et al.
(2016a) improved the original DMN model. They used Facebook bAbI dataset
as well to evaluate their model, and their improved model showed high perfor-
mance using this dataset. Brie�y, their improvements were in two modules: input
and episodic memory. In the input module, they used a component called sen-
tence reader to encode the words into a sentence using positional encoding schema.
This schema used to save the order of the words in each sentence. Moreover, they
used another component called input fusion layer to encode sentences by using a
bi-directional GRU instead of a single GRU to get all the information from the
sentences before and after. In the episodic memory module, they tried the ReLU
function instead of the GRU to update the memory. They used ReLU to get untied
memory update and process this step faster. After examining and re-implementing
Kumar et al. DMN, we propose our improved DMN with some improvements over
Kumar et al. DMN in Section 4.4.4. The most signi�cant addition is that we eval-
uated our improved DMN on a large manually generated dataset such as SQuAD
v1.1.

38



4.4. Approaches

4.4.4 Our improved Dynamic Memory Network model

In this section, we present our improved DMN over Kumar et al. DMN architec-
ture. In the beginning, the �rst simulation of the re-implementation of Kumar et al.
DMN can be taken from Appendix A. Afterwards, we tried several improvements
over this simulation until we reached to the most e�ective improvements to form
our improved DMN. First of all, we had a comparison between the Long-Short
Term Memory Network Hochreiter and Schmidhuber (1997) and Gate Recurrent
Unit Network (GRU) Chung et al. (2014). We concluded that both performed sim-
ilarly, but GRU is less computationally complicated and less expensive. However,
LSTM showed good results with the long sentences but it is more computation-
ally expensive. GRU is less computationally and less expensive since it consists
of only two gates instead of three gates as in LSTM. Moreover, both LSTM and
GRU models perform better than the standard RNN model because they are us-
ing a gating mechanism to combat the vanishing gradient problem Hochreiter and
Schmidhuber (1997) in the standard RNN. Our improved DMN is evaluated using
SQuAD v1.1 and it would be the �rst try using the DMN approach in SQuAD
leaderboard. After many attempts and experiments, our improvements are in two
modules: the input and episodic memory.

4.4.4.1 Improved Input Module

In Kumar et al. DMN, they passed the input data sentence by sentence to the
encoder without using any cleaning techniques. Afterwards, they used a single
GRU to encode each sentence to generate its fact representations←→st then combine

all sentences to the �nal fact representations
←→
S . When the single GRU encode

a sentence, it cares only about the information of the previous sentences. Our
improvements in this module are de�ned as follows:

1. Sentence cleaner (clean the encoding characters and remove stopwords).

2. Encoding schema to encode words into sentences.

3. Rather of using single GRU encoder, we get all relations between sentences
using a Bi-directional GRU encoder.

We have the raw input data which it contains several paragraphs, and each para-
graph contains several contexts with some questions and answers pairs. Each con-
text contains several sentences and then we fed the input data (sentence by sen-
tence) into the encoder as shown in Figure 4.7. Sentence cleaner is the �rst im-
provement in this module which is about cleaning the data before use it. We found
that SQuAD dataset version 1.1 needs some encoding characters cleaning. The
dataset is a JSON �le and there are many di�erent encoding characters. These
di�erentiate made some issues such as in this sentence "champion Carolina Pan-
thers 24\u201310", which this sentence should be "champion Carolina Panthers
24�10". Unfortunately, these issues a�ect the answer in the end. In addition to
that, we found that many of predicted answers include stopwords. Because of that,
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we decided to clean the data from stopwords using stopwords package from Nat-
ural Language Toolkit (NLTK)5libraries. We removed stopwords such as (a, an,
the, which, like, that, is, are and others), as shown in Figure 4.8. The number of
stopwords removed was around 57 million words. By removing these words from
the raw data, the performance and results increased by 3% higher than without
removing the stopwords. After getting the predication answer-span, we interpret
the tokens from the original JSON �le dataset to retrieve the stopwords again in
the �le answer text. As shown in Figure 4.7, now we can pass both the input text

Figure 4.7: Our improvements in the input module, drawn in the style of Xiong
et al. (2016a) in their paper.

sequences and question to the next stage. Before going to the next stage, we used
Glove6B with 300 dimensions to generate the words vector representations for both
(context and question). The next improvement is about using one of the encoding
schemes such as Positional Encoding introduced by Sukhbaatar et al. (2015), GRU
or LSTM. Using positional encoding schema is easier than GRU or LSTM but less
accuracy with long sentences.

5NLTK is a set of libraries, used to build and implement symbolic and NLP programs in
Python programming language Created by Guido van Rossum (1991).
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Figure 4.8: Stop-word list from the NLTK Python package.

We decided to use a single GRU to save the position and order of words at each
sentence as shown in Equation 4.12.

st =
M∑
i=1

GRU(xt
i,wt−1

i) (4.12)

Where st is the collection of words after encoding them in each sentence. The t
is the index of sentence, i is the index of word and M is the number of words in
each sentence. Then, we pass the sentences st to the last improvement. We use a
bi-directional GRU instead of a single GRU like Kumar et al. did. Bi-directional
GRU allows us to retrieve all relations between sentences by getting all information
about each sentence before and after. In the single GRU, we can only get the in-
formation about the sentence before. As shown in Figure 4.7, bi-directional arrows
refer to forward and backward GRU cells. Then, we combine both sentences hid-
den representations to get the �nal bi-directional hidden representation as shown
in Equations 4.13, 4.14 and 4.15.

−→st = GRUforward(st, st−1) (4.13)

←−st = GRUbackward(st, st−1) (4.14)

←→st = −→st +←−st (4.15)

In th end, we can extract the context vector
←→
St by combining all the �nal hidden

representations for each sentence←→st , and then we fed
←→
St into the episodic memory

module.
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4.4.4.2 Improved Episodic Memory Module

As shown in Figure 4.9, there are two components in the episodic memory module
according to Kumar et al. DMN architecture. We have two improvements in this
module to increase the performance and results. Our improvements are de�ned as
follows:

1. Rather of using single AttGRU, we use attention Bi-directional GRU to get
all relations between sentences after using the attention mechanism.

2. Rather using GRU or ReLU to update the memory, we use a single LSTM.

As shown in Figure 4.9, after generating the �nal sentences representations
←→
St , we

iterate over these representations and extract the important information against
the question using attention mechanism. As Kumar et al. did in this module in
their DMN, we calculate the gate mechanism then we use our modi�ed attention
mechanism. Kumar et al. used AttGRU with a single GRU as attention mecha-
nism. In our improvement, we use bi-directional GRU and replace the update gate
in each GRU cell (forward and backward) with the gate mechanism that we calcu-
lated beforehand as shown in Equation 4.16. The reason of using the bi-directional
GRU that we want to extract the contextual vectors ct per each memory episode
mt based on all interactions between sentences after using attention mechanism as
shown in Equations 4.17, 4.18 and 4.19. The advantage of this improvement that
it might decrease the number of memory episodes.

In Kumar et al. example shown in Figure 4.6, they needed two memory episodes to
get the answer. However, by letting each sentence get the information of sentences
before and after, it could help to get the optimal probability score for each sen-
tence using one-hop memory. Thereby, it decreases the number of memory episodes.
When the number of memory episodes became smaller, it leads to higher perfor-
mance. As we mentioned earlier, Kumar et al. used the memory mechanism to
update the memory with the relevant information per episode. Then, the �nal
memory state is fed into the answer module. In the light of that, the last improve-
ment is about using LSTM instead of GRU or ReLU to update the memory. We
have tried using GRU and ReLU as shown in Equations 4.20 and 4.21, taking into
account the question vector is the initial memory m0 = q. We found that ReLU
shows higher performance and faster than GRU. However, we wanted to try using
LSTM as shown in Equation 4.22. We found that LSTM and GRU are doing the
same behavior, but LSTM is much better than GRU with the long sentences, and
SQuAD dataset has very long sentences. Moreover, LSTM approximately showed
the same performance as ReLU.

gi
t = softmax(Zt

i) (4.16)

−→
ci

t = gi
tGRUforward(

←→
Si , c

t
i−1) + (1− gi

t)cti−1 (4.17)
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Figure 4.9: Our improvements in the episodic memory module, drawn in the style
of Xiong et al. (2016a) in their paper.

←−
ci

t = gi
tGRUbackward(

←→
Si , c

t
i−1) + (1− gi

t)cti−1 (4.18)

←→
ci

t =
−→
ci

t +
←−
ci

t (4.19)

mt = GRU(
←→
ci

t ,mt−1) (4.20)

Where the initial state of this GRU is the initial state of the memory initialized to
the question vector m0 = q.

mt = ReLU(W t[mt−1;
←→
ci

t ; q] + b) (4.21)

Where ; is the concatenation operator, W t the weight of each hidden unit and b
is the bias (constant value).

mt = LSTM(
←→
ci

t ,mt−1) (4.22)

Where the initial state of this LSTM is the initial state of the memory initialized
to the question vector m0 = q.
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Last but not least, the �nal memory state mTm is then fed to the answer module,
where Tm is the index of memory episodes. For the question and answer modules,
we used the same structure in Kumar et al. DMN.
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Data and Processing

5.1 Stanford Question Answering Dataset

SQuAD dataset introduced by Rajpurkar et al. (2016). The paragraph in SQuAD
version 1.1 came from 536 Wikipedia articles covering a wide range of topics.
Each paragraph has several contexts, and each context had several sentences and
associated with several questions. There are 23,215 contexts and 107,785 ques-
tions in total. SQuADv1.1 consists of training and testing datasets as JSON �les.
The �rst JSON �le (32MB) for the training set contains around 87,599 question-
answer pairs. The second JSON �le (8MB) for the testing set contains around
10,570 question-answer pairs. The answer for each question is always a span of
(answerstart, answerend) tokens in the context. Regarding the training dataset, we
split this dataset into train and validation sets according to the hold-out cross-
validation technique in machine learning community of around 90%, 10% split.
The validation set used to check the reliability of the training model as a process
of the cross-validation and to avoid the over�tting problem of the training model.
However, we use the testing data to evaluate our model.

The advantages of using SQuAD are that we do not need a knowledge base to
implement QA system. In addition to that, SQuAD dataset is collected from sev-
eral Wikipedia articles which it is an open domain dataset with the real-world
complexity. In SQuAD dataset, we have three ground truth answers for each ques-
tion about a context as shown in Figure 5.1. The �rst answer predicted by NNs
models. The second and third answers predicted by humans. These truth answers
are used for evaluating our our predicted answers. In the end, we have the o�cial
evaluation script available on SQuAD source to evaluate our prediction JSON �le
of our model against the other models in SQuAD leaderboard.
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Figure 5.1: Another training example from the SQuAD dataset, consisting of a
question, context and the ground truth and prediction answers (Rajpurkar et al.,
2016).

5.2 Preprocessing and Con�guration

Concerning reading comprehension approach, QA system should have the ability
to read each word in each sentence in each context in each paragraph, and then
understand the meaning of these words. Afterwards, it should extract the relevant
information might lead to answer questions given; like humans do on any exam
papers. Following sections, we present the preprocessing stage which it consists of
four steps: tokenizing the data, create the vocabulary �le of words, mask each word
in the input data and the word embedding method such as Glove (Pennington et al.
(2014)). Then, we present some of our important con�gurations which trained by
our experiments.

5.2.1 Preprocessing

In the preprocessing stage, we convert the textual data into a numerical space.
NNs understand only numbers, so we need to transform the data into real vector
representations. Intuitively, we have di�erent dimensions of input sequences for
both (context and question), so we need to pad them into the same length by
�xing 0 in the extension length.

5.2.1.1 Tokenizing the data

After cleaning the SQuAD data as we described in Section 4.4.4 and Similar to
any NLP tasks, �rstly, we tokenize all data (context and questions). Tokenizing
the data means split each sentence into several tokens. Each token has a word,
and this word could be a text-word, a punctuation mark or a number. We use the

46



5.2. Preprocessing and Con�guration

NLTK-tokenizer Stamatatos et al. (1999) package.

5.2.1.2 Create the vocabulary

We create the vocabulary �le by counting each word occurring in the whole dataset
then we map these words to unique numbers. Let say thatW is the total number of
words in the dataset and our vocabulary is V. Which V maps W→ 0,1,2,3, ... N-1 .
Then, we encode each word to a unique number in our vocabulary. According to our
experiments, we have around 8880555 unique words in the vocabulary �le. For the
empty word, we map it to 0 such as V(' ') = 0. Afterwards, we use this vocabulary
�le to convert the textual data into a natural number. Taking into account that,
there is no maximum length for the number of sentences or the number of words in
each sentence in both (context or question). Because of that, we create a dynamic
vector space representation.

5.2.1.3 Mask the input representations

As we mentioned earlier, the dimension of sentences (context and question) often
are di�erent in length. The dimension of the sentence means the number of words
in each sentence. To solve this issue, we pad each input sequence to be in the
same length by adding 0 value for each empty word extension. There are two ways
to pad the sentence: pre-padding and post-padding. Pre-padding means that we
will add 0 value to each word extension at the beginning of the sentence vector.
Post-padding means that we will add the 0 value for each word extension at the
end of the sentence vector. Padding step is very e�ective when we decide to do the
batch processing. Batch processing is to split the training data into mini-batches
to be able to train the whole data. If we do not want to pad the input sequence
to reduce the huge waste of memory, we can use a single batch size to process
sequence by sequence. With the single batch, we do not need to do the mask
step. In our implementations, we used the whole SQuAD dataset which it is so
large. Because of that, we need to do batch processing. However, we did pad the
data sequences. Therefore, we should di�erentiate between the real words values
and the empty word values. Because of that, we create the mask vector for the
input text sequences and questions. For all recurrent operations in TensorFlow
implementation (e.g. dynamic_rnn), they need a sequence_length, so we should
mask the input sequences. As shown in Equation 5.1, we have the word with indexes
{i, j}, which i is the index of the word, and j is the index of the sentence. If Wi,j

equals to 0 which it means that it is an empty word then, the mask of word Mi,j

sets to 0 otherwise 1 which it means that it is a real word.

Mi,j =

{
1 if Wi,j 6= 0

0 if Wi,j = 0
(5.1)
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5.2.1.4 The word embedding

After masking the input representations, we want to transfer the natural num-
bers to high dimensional vector representations. We trained the input sequences
representations with the vocabulary �le using word embeddings technique such as
Glove6B with 300-dimensions (words are not randomly initialized) as described in
Section 4.1. We utilized the pretrained GloVe vectors to obtain a word vector for
each word in the context and question. All out-of-vocabulary words are mapped
to the unknown token �UNK�. Afterwards, we create the embedding vectors as the
input of our neural networks.

5.2.2 Con�guration

In this section, we present the important con�gurations that we used for our ex-
periments. Before starting the training stage, we �x some con�gurations randomly.
In the beginning, we use a random learning rate which is used for optimizing the
loss value. NNs allow us to optimize the loss value by adjusting the weights of our
model in the back-propagation stage. We start with a lower learning rate to go
slower along the slope of gradient descent. Afterwards, we can also apply other
sophisticated optimization algorithms like Adagrad (Duchi et al., 2011), Adadelta
(Zeiler, 2012) or Stochastic Gradient Descent (Robbins and Monro, 1985) apart
from our �nal choice of Adam (Kingma and Ba, 2015) for all implementations in
this thesis. To apply Adam optimizer algorithm, we should optimize the gradient
descent based on the learning rate (Pascanu et al., 2013).

First, we apply an exponential decay function to lower the learning rate and then
get the decayed learning rate. Afterwards, we use a function to clip the global
norm based on the decayed learning rate to �x the gradient values between two
numbers. Before starting the training step, we need to �x the maximum gradient
norm with a small value (in several experiments was 5). Gradient clipping function
(Pascanu et al., 2013) became most common in RNNs implementations. Gradients
are being calculated in the back-propagation stage through time to optimize the
loss-error. These new gradients could vanish (much decreased) or explode (much
increased). For vanishing gradients, they are multiplied by numbers less than one;
thus the �nal error gradients are smaller than one. This problem is called "Van-
ishing gradients problem". On the other hand, for exploding gradients, they are
multiplied by numbers larger than one; thus the �nal error gradients are larger
than one. This problem is called "Exploding gradients problem". Therefore, the
gradient clipping function is used for optimizing error gradients between two num-
bers to prevent them from getting larger or smaller than one. LSTMs and GRUs
solved these problems using the gate mechanism.

In the training stage, we decide to use batch processing, because we have a huge
dataset such SQuAD and it will be di�cult to train the whole data using a single
batch. Batch processing step splits the whole data into samples including input
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and labeled output based on the batch size. We can now calculate the gradient
for each sample value and each observation yielding di�erent values. Then, we get
the average of the gradient values over all samples. By this way, we can combat
vanishing and exploding gradients problems.

In the end, we should �x the number of epochs that we are going to train the model
based on it beforehand. Moreover, we should �x the number of the hidden layers.
Furthermore, we should �x the number of the evaluation layers which are used
to detect how much the training step in each epoch is good using the validation
dataset. We present all con�gurations values used for implementing each model in
the next Chapter 6.
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Experiments and Results

6.1 Technical Description

In this thesis, all implementations are conducted in Google's computational frame-
work of TensorFlow Abadi et al. (2016) using Python version 3.6. Python is a
high-level programming language for object-oriented, design pattern, functional
programming or deep learning tasks. By the time, Python shows high performance
in data sciences �eld, which it allows data scientists and developers to build and
compile their theoretical ideas into code. Nowadays, Python becomes alongside
R programming language the most powerful choices for machine learning tasks.
Back to TenserFlow, we implemented our models in this thesis using TenserFlow
version 1.7. The Tenser�ow framework has two main steps: build the graph and
run the session. In TenserFlow, we can save checkpoints for the best scores during
the training stage per epoch. In the beginning, we ran our models locally1 and ap-
proximately the epoch took around 42 mins. Because of lacking the local machine
potentials, we used a graphics processing unit (GPU) as our cluster to run the
whole dataset to speed up computations. We ran all experiments using a GeForce
GTX TITAN X Pascal GPU. Last but not least, approximately every epoch in our
models took around 20 mins, and we have logged all the results into a log folder
in the GPU.

6.2 Technical Results

As we mentioned in Section 4.3, we implement the most e�ective sequence-to-
sequence (seq2seq) architecture used for tasks with sequential data (Cho et al.,
2014). First of all, we prepared our datasets before starting the training and eval-
uation stages. As described in Section 4.4.4, we cleaned SQuAD dataset from all
the stop-words (the, a, an and others) and solved all encoding characters issues.
As described in the previous Chapter 5, SQuADv1.1 provides us with 2 JSON �les
for the training and testing datasets. According to the hold-out cross validation

1Local machine with Intel(R) Core(TM) i5-3210M CPU@2.25GHz 2.50 GHz, 8 GB RAM on
Windows 10 Pro.

50



6.2. Technical Results

theory, we have divided the training dataset into Train/Valid sets. The training
set is used to train the model to learn various features and parameters to produce
the prediction. The validation set is used to optimize the trained model in order
to increase the accuracy of the model and avoid the over�tting problem. However,
the testing dataset is used to run the optimized model and then predict the output
in the real world. By this way, we can log and compare the error analysis for each
model as long as we use the same train/valid/test sets. For evaluating our mod-
els, we use two metrics to evaluate models accuracy: Exact Match (EM) and F1
score (a softer metric). Exact match metric is used to measure the matching our
predicted answer exactly with any one of the three ground truth answers. On the
other hand, the F1 score metric is used to measure the average overlap between
our prediction and ground truth answers. Then, we use the available evaluation
script From SQuAD as the o�cial evaluation after getting the prediction answers
during the testing stage.

In the following sections, we present our results for each model. The �rst results
will be the evaluation F1 score on the validation dataset after showing the training
setup details based on the training dataset. The second results will be the evalua-
tion results on the testing dataset. We present just two runs (the �rst and �nal run)
and some of summaries of all runs results can be taken from Appendix B. Then, we
show a comparison table between all models. In the end, we present the error anal-
ysis results between our improved DMN and Match-LSTM with Answer-Pointer
model using random ∼ 100 inputs from the testing dataset.

6.2.1 Baseline Results

In this model, we use a unidirectional LSTM and it knows as (vanilla) LSTM as
we mentioned in Section 4.4.1. We tried to �gure out how the baseline model can
process a broad context and answer questions about it. Moreover, we used the
baseline to �gure out if questions can be answered by a given context in straight-
forward way. The training stage took around 9 hours on the GPU for all epochs.
All training details can be taken from Table 6.1 as a �rst run.

Epochs-number Batch-size Learning-rate Dropout-rate Hidden-units Evaluation-size

30 50 0.001 0.2 250 256

Table 6.1: Run1: training setup.

After the �rst training run, we got 49% F1 score as the best score on the
validation dataset in th end of the last epoch. The �nal evaluation results using
the testing dataset can be taken from Table 6.2.

There are various ways for improving the training model in neural networks
and closing the gap between the validation and testing results. Apart from in-
creasing the training data size because we used all the training dataset available
on SQuADv1.1, varying the parameters (dropout-rate, L2 and learning rates), or
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Epochs-number Dropout-rate F1-score EM-score

0 1 28% 22%

Table 6.2: Run1: evaluation results on the testing dataset.

making the network architecture simply broader or deeper could help to avoid the
over�tting problem. After doing some optimizations by varying the parameters
with ADAM optimization, the �nal training run details can be taken from Table
6.3.

Epochs-number Batch-size Learning-rate Dropout-rate Hidden-units Evaluation-size

30 80 0.005 0.65 250 256

Table 6.3: Final Run: training setup.

After the �nal training run, we got 56% F1 as the best score on validation
dataset. The �nal evaluation results using the testing dataset can be taken from
Table 6.4 and all remaining settings stayed the same as in the �rst run.

Epochs-number Dropout-rate F1-score EM-score

0 1 36% 34%

Table 6.4: Final Run: evaluation results on the testing dataset.

6.2.2 Match-LSTM with Answer Pointer Results

According to what we presented in Section 4.4.2, we re-implemented this model
using the encoder-decoder architecture. The training stage took around 12 hours
for all epochs on the GPU. As a �rst run, the training details can be taken from
Table 6.5

Epochs-number Batch-size Learning-rate Dropout-rate Hidden-units Evaluation-size

30 80 0.001 0.2 200 100

Table 6.5: Run1: training setup.

After the �rst training run, we got 42% F1 as the best score on the validation
dataset. The �nal evaluation results using the testing dataset can be taken from
Table 6.6.

After optimizing this model, the �nal training run details can be taken from
Table 6.7. After the �nal training run, we got 72% F1 as best score on the validation
dataset. The �nal evaluation results using the testing dataset can be taken from
Table 6.8 and all remaining settings stayed the same as in the �rst run.
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Epochs-number Dropout-rate F1-score EM-score

0 1 47% 39%

Table 6.6: Run1: evaluation results on the testing dataset.

Epochs-number Batch-size Learning-rate Dropout-rate Hidden-units Evaluation-size

50 120 0.005 0.8 200 100

Table 6.7: Run2: tuning 1th training run.

Epochs-number Dropout-rate F1-score EM-score

0 1 67% 52%

Table 6.8: Run2: evaluation results on the testing dataset.

6.2.3 Kumar et al. Dynamic Memory Network Results

In this model, we re-implemented and trained Kumar et al. (2016) DMN using
SQuAD dataset as we presented in Section 4.4.3. The training stage took around
18 hours for all epochs on the GPU. As a �rst run, the training details can be
taken from Table 6.9.

Epochs-number Batch-size Learning-rate Dropout-rate Hidden-units Attention-size Memory-hops Evaluation-size

30 32 0.001 0.9 250 300 5 256

Table 6.9: Run1: training setup.

After the �rst training run, we got 61% F1 as the best score on the validation
dataset. The �nal evaluation results of the �rst run using the testing dataset can
be taken from Table 6.10.

After optimizing the �rst Kumar et al. DMN training run, the �nal training
details can be taken from Table 6.11. After the �nal training run, we got 75% F1
as the best score on the validation dataset. The �nal evaluation results using the
testing dataset can be taken from Table 6.12 and all remaining settings stayed the
same as in the �rst run.
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Epochs-number Dropout-rate F1-score EM-score

0 1 28% 26%

Table 6.10: Run1: evaluation results on the testing dataset.

Epochs-number Batch-size Learning-rate Dropout-rate Hidden-units Attention-size Memory-hops Evaluation-size

30 80 0.005 0.6 250 300 5 256

Table 6.11: Run2: training setup.

Epochs-number Dropout-rate F1-score EM-score

0 1 34% 29%

Table 6.12: Run2: evaluation results on the testing dataset.

6.2.4 Our Improved Dynamic Memory Network Results

In this section, we present of our improved DMN model results according to what
we proposed in Section 4.4.4. We started the training stage with the same �nal
settings implemented on the Kumar et al. DMN model in Table 6.11. We just
changed the number of epochs, learning rate and the number of memory hops.
In this section, we show the results after adding our improvements in the input
module and episodic Memory module respectively.

Results with Input Module Improvements: The training details that used
to train our improved DMN after adding our improvements in this module can be
taken from Table 6.13. After the �nal training run, we got 89% F1 as the best score
on the validation dataset. The �nal evaluation results using the testing dataset can
be taken from Table 6.14.

Epochs-number Batch-size Learning-rate Dropout-rate Hidden-units Attention-size Memory-hop Evaluation-size

20 80 0.002 0.6 250 300 7 256

Table 6.13: Final run after input module improvements: training setup.
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Epochs-number Dropout-rate F1-score EM-score

0 1 47% 36%

Table 6.14: Final run after input module improvements: evaluation results on the
testing dataset.

Results with Episodic Memory Module Improvements: After implement-
ing and evaluating the input module improvements in our improved DMN model,
we implemented and evaluated the improvements of this module. The training de-
tails that used to train the model after adding our improvements in this module
can be taken from Table 6.15. After the �nal training run with our improved DMN,
we got 86.64% F1 as best score on the validation dataset. The �nal evaluation re-
sults using the testing dataset after the �nal training run can be taken from Table
6.16 and all remaining settings stayed the same as in the �rst run.

Epochs-number Batch-size Learning-rate Dropout-rate Hidden-units Attention-size Memory-hop Evaluation-size

20 80 0.002 0.6 250 300 7 256

Table 6.15: Final run after episodic memory module improvements: training setup.

Epochs-number Dropout-rate F1-score EM-score

0 1 59% 45%

Table 6.16: Final run after episodic memory module improvements: evaluation
results on the testing dataset.

In the end, Table 6.17 shows the �nal results of all model collected in one table
to present a clear comparison. We trained and evaluated all models on SQuAD
dataset, which it means that we can check the error analysis results. Regarding
hyper-parameters in this table, we can get that there are no many changes in val-
ues. We used Dropout value to avoid the over�tting problem which it determines
which information to keep and which to drop.

In Table 6.17, we can conclude that:

• In the baseline model, SQuAD dataset is a bit complex to be solved using a
simple model using RNNs classes without attention or memory mechanism.

• In the Match-LSTM with Answer Pointer model, we got these results after
re-implementing this model from scratch by ourselves, which it was so close
to their single model in SQuAD leaderboard.

• In Kumar-DMN, we can �nd that scores were not so good with the re-
implementation of Kumar et al. (2016) DMN architecture, because SQuAD
dataset is a bit more complex than Facebook bAbI dataset which it was in-
troduced by Weston et al. (2015) as the evaluation dataset for the original
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DMN. SQuAD dataset has long sentences and complex interactions between
words and sentences; so we need to add some improvements to their DMN
model to be able to retrieve probable answers.

• In our improved DMN, we can get that our improvements were e�ective
and using less epochs. Moreover, we increased the memory-hops to get more
information might lead to answer questions. Finally, our �nal scores are so
close to the Match-LSTM with Answer Pointer model and much better than
Kumar et al. DMN model.

Baseline Match-LSTM Kumar-DMN Improved-DMN

Epochs number 30 50 30 20

Batch size 80 120 80 80

Learning rate 0.005 0.005 0.005 0.002

Dropout rate 0.65 0.8 0.6 0.6

Hidden units 250 200 250 250

Evaluation units 256 100 256 256

Attention units 0 0 300 300

Memory hops 0 0 5 7

F1 score 36% 67% 34% 59%

EM score 34% 52% 29% 45%

Table 6.17: Comparison between the �nal training parameters and evaluation re-
sults for all models.

Recently, during the working on this thesis, Wang and Jiang made many improve-
ments in their Match-LSTM with Answer Pointer model and did ensembles models
from big companies with big teams. Match-LSTM with Answer Pointer model is
becoming one of the top 5 models in SQuAD leaderboard. While that, the imple-
mentations of all these models in this thesis were implemented by a single person.
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6.2.5 Error Analysis

In this section, we propose the error analysis between our improved DMN and
Match-LSTM with Answer Pointer (Wang and Jiang, 2016) models using random
∼ 100 inputs from the testing dataset. In the previous sections, we proposed some
of the error analysis results in each model using the validation dataset. For more
details results, the tables and �gures in Appendix B might be useful. However, we
wanted also to test the error using random ∼ 100 contexts from the testing dataset.
All hyper-parameters used in our improved DMN can be taken from Table 6.18.
Figure 6.1 shows the evaluation results of our improved DMN model at the end of
the best epoch. We ran this experiment with 30 epochs, but the best results were
in the epoch 10. Moreover, the loss value became NAN it means that the loss value
not a number. The reason is that there are large gradients throw the learning stage
larger than 1. Because of that, we did early stopping in the epoch 10. From Figure
6.1, we can see that the results are so close to the ground truth answers and the
results are good with long sentences. The best F1 score was 69.6% and the best
EM score was 61.5%.

Epochs-number Batch-size Learning-rate Dropout-rate Hidden-units Attention-size Memory-hop Evaluation-size

30 80 0.001 0.8 250 300 7 256

Table 6.18: Our improved DMN hyper-parameters details and then evaluated on
random ∼ 100 contexts from testing dataset.

Figure 6.1: Some of the real results after testing our improved model using ∼ 100
contexts.

The change of the loss in training and in testing (∼ 100 contexts) can be taken
from Figure 6.2 and 6.3.
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Figure 6.2: Plot of loss values in training. The x-axis depicts the step in epochs,
and the y-axis is the loss value.
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Figure 6.3: Plot of loss values in testing (∼ 100 contexts). The x-axis depicts the
step in epochs, and the y-axis is the loss value.
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For Match-LSTM with Answer Pointer model, all hyper-parameters can be
taken from Table 6.19.

Epochs-number Batch-size Learning-rate Dropout-rate Hidden-units Evaluation-size

50 140 0.03 0.6 300 100

Table 6.19: Run2: tuning 1th training run.

Figure 6.4 shows the evaluation results of Match-LSTM with Answer Pointer
model at the end of the best epoch. We ran this experiment with 50 epochs and
the best results were in the epoch 35.

Figure 6.4: Some of the real results after testing Match-LSTM with Answer Pointer
model using ∼ 100 contexts.

In the end, the loss values in Match-LSTM with Answer Pointer model were
always between (9.5 and 7.5) until the last epoch, and the best F1 score was around
43.2% and the best EM score was around 31%.
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Discussion

Throughout this thesis, we presented the Dynamic Memory Network (DMN) ap-
proach which it is the recent memory network class introduced by Kumar et al.
(2016). Afterwards, we improved this architecture, and then we evaluated our im-
proved DMN on a large-scale QA dataset called SQuAD. Kumar et al. were eval-
uated their DMN on a small QA dataset called Facebook bAbI dataset (Weston
et al., 2015). The advantage of using SQuAD dataset for evaluating our mod-
els is that this dataset is a large-scale manually generated dataset. It consists of
Wikipedia articles written by humans and questions about these articles are also
created by humans. It means that it is an open domain dataset with the real-world
complexity. Unlike, Facebook bAbI dataset which it is an arti�cially generated
dataset like any English tests in schools. Therefore, SQuAD dataset is the perfect
one for such QA task. In this thesis, we proposed the advantages of using memory
and attention mechanisms in the QA task. By implementing di�erent models, we
noted that these advantages could appear on two challenges as follows:

• The �rst challenge is about working on long sentences in SQuAD dataset
leading to low performance. To solve this problem, we used the attention
mechanism that allows us to decide which parts in the input text sequences
is most important to pay attention against the question keywords. Attention
mechanism is used to retrieve all the relevant information might lead to
answer the question, instead to compress all relevant information into a �xed-
length vector.

• The second challenge is about working on the complex semantic relations
between the sentences leading to low performance. As shown in the example
that we proposed in Section 4.4.3, to answer the question in that example,
we needed multiple memory-hops for getting all interactions or semantic
relations between sentences to answer the question. To solve this problem,
we used a memory mechanism by iterating over the sentences and getting all
semantic relations. Then, we updated the global memory per-hop to extract
the �nal memory state. It contains all relevant information might lead to
answer the given question.
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Kumar et al. DMN architecture is considered one of the �exible architecture for
reading comprehension task. It consists of four separate modules that allow us
and other researchers to understand and improve the process in any module in
their architecture. The episodic memory module processes the output representa-
tions from the input and question modules by using the attention and memory
mechanisms. In addition to that, we did not �nd a dynamic network using both
of memory and attention mechanisms in SQuAD leaderboard. Therefore, Kumar
et al. DMN architecture motivated us to improve their model and evaluate it on
SQuADv1.1 dataset instead of Facebook bAbI dataset. By improving Kumar et al.
DMN model and evaluating our improved model on SQuAD dataset, our improved
DMN would be the �rst try of DMN approach in SQuAD. In the beginning, our
brainstorming was focusing on what is the stat-of-the-art in SQuAD leaderboard.
After researching and reading most of models in SQuAD, we found that Match
LSTM with Answer-Pointer model is one of the state-of-the-art models and it is
in a high rank in SQuAD leaderboard. Therefore, we decided to examine and re-
implement this model to be as a comparative model to our improved DMN model.

In the following sections, all answers to any question in your mind might be found.
By outlining our conclusions and scienti�c contributions, we propose answers to
our research questions. In the end, we share our future work from what we have
done.

7.1 Conclusion

We examined and re-implemented Kumar et al. (2016) DMN approach and eval-
uated it on the SQuADv1.1 dataset. Afterwards, we improved two major mod-
ules in Kumar et al. DMN architecture, and they were as follows: Input module
and Episodic Memory module. Then, we evaluated our improved DMN on the
SQuADv1.1 dataset to make a comparison between Kumar et al. and our im-
proved DMN. From this comparison, we can know whether our improvements are
useful and e�ective or they improved nothing in the �nal performance. For fur-
ther evaluation, we re-implemented (Match LSTM with Answer Pointer) model
credited to Wang and Jiang (2015) as a comparative model to our improved DMN.
Then, we evaluated the former model using SQuADv1.1. From this comparison, we
can know how can our improved DMN compete with other models in the SQuAD
leaderboard such as Match-LSTM with Answer Pointer model.

Last but not least, we listed the results of the three models to show trade-o�s
between these models. Table 6.17 shows that our improved DMN outperformed
the original DMN introduced by Kumar et al. (2016) using the large-scale dataset
such as SQuAD. Consequently, our improvements increased the �nal scores by ∼
13% high. Moreover, by comparing the results of Wang and Jiang Match-LSTM
with Answer Pointer model and our improved DMN model, we found that the
results of our model are so close to the latter model. Taking into account that
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the SQuAD leaderboard was dramatically changing while i was working on this
thesis. In addition to that, most of the top entries in the SQuAD leaderboard are
ensembles models from di�erent big companies by big teams, while i have a single
model with single person e�orts.

Here, we present our conclusions regarding our improvements over the original
DMN approach, which they are in two modules as follows:

Input module:

• After cleaning encoding characters issues from the data and removing the
stopwords according to the list of NLTK package, we found the �nal scores
increased by 5% higher. It means that these improvements were so useful.
Sometimes we could not retrieve the right answer because we could not in-
terpret the word such as "24\u201310" in a sentence "champion Carolina
Panthers 24\u201310". Consequently, after cleaning the data, we can in-
terpret the right sentence which it should be "champion Carolina Panthers
24�10".

• On the other hand, by removing stopwords such as "which", "that", "the",
like", "an", "a" and so on, it became easier to get a high exact match score
than without removing stopwords. In the �rst experiments, we got several
wrong answer words such as stopwords ("the the the"). Because of that, we
decided to remove these stopwords to extract clean data to be fed into the
encoder-decoder architecture. Moreover, these stopwords often were occur-
ring a lot. The number of stopwords removed was around 57 million words.
In our SQuAD dataset, for example, the word of "the" occurred more than
40000 times. This a�ected the vocabulary size and thus a�ected the word
vector representations afterwards. However, after removing stopwords, we
found that the EM score increased by 3% higher. Then, we could extract a
meaningful answer even if it was not the optimal one not wrong answers such
as "the the the".

• Regarding using Bi-directional GRU between the sentences, it showed an in-
crease in the �nal scores because now we could get the important information
from the sentence before and after not only the sentence before as the single
GRU did. It means that we did not ignore any information and we get all
interactions and relations between sentences.

Episodic Memory module:

• Using Bi-directional modi�ed GRU with the attention mechanism also showed
an increase in the �nal scores compared to Kumar et al. DMN. Because Ku-
mar et al. used a single modi�ed GRU with the attention mechanism to
extract the context vector. As we mentioned in the Input Module, the uni-
directional network cares about the sentence before only. However, we used
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Bidirectional AttGRU or modi�ed GRU to retrieve all interactions between
sentences (before and after). By this way, we collected more useful informa-
tion in the �nal context vector and then we updated the memory to extract
the answer.

• As we mentioned earlier, we can update the memory by applying three kinds
of NN layers: LSTM, GRU, ReLU. For GRU and LSTM, the �nal scores
after updating the memory did not show many di�erences. However, we noted
that LSTM is much better for a long sentence but took more time-consuming.
Moreover, ReLU showed much better in the �nal scores and faster than using
GRU or LSTM.

In the end, by evaluating our improved DMN, we could say that using the mem-
ory mechanism alongside the attention mechanism might solve di�erent problems
concerning NLP and Text Mining tasks. Furthermore, we could say that the DMN
approach can show high performance in a large manually generated dataset such
as SQuAD, as it showed high performance in Facebook bAbI dataset. The harmo-
nious division of the DMN approach modules makes it so �exible framework to be
used, and it might raise researchers to improve it regarding QA task in the future.

Finally, based on our conclusions, the answers to our research questions can be
taken from Table 7.1.

Results Summary

Question Answer Status

RQ 1 - Our improved DMN showed �nal score 59%.
- Our improvements were so useful and e�ective.
- Our model outperformed Kumar et al. DMN on
SQuADv1.1.

4

RQ 2 - By comparing our improved model with Match
LSTM model, Our model was so close to the latter
model and by improving it, it could compete other
models in SQuAD leaderboard.

4

Table 7.1: Summary of answers to research questions.

As a summary:

• We conclude that our improved DMN can be an appropriate model to solve
the question answering task for reading comprehension.

• We conclude that by merging the memory and attention mechanisms by the
way that Kumar et al. introduced, is a promising way to solve complex NLP
tasks.
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7.2 Future Work

After submitting this thesis, some research questions have been raised and need
to be answered. Due to the limited time-scope of the master thesis, we could not
improve our improved DMN model scores more. The most important open ques-
tion might be in our minds is "How high is the performance of our improved DMN
against Kumar et al. DMN evaluated by Facebook bAbI dataset?". Unfortunately,
we had not the time-space to explore and evaluate our improved DMN using Face-
book bAbI dataset. However, we can give a temporary answer to this question by
looking at the results shown in Table 6.17. From this table, we can get that our im-
proved DMN model outperformed Kumar et al. DMN model evaluated by SQuAD
dataset. As we mentioned earlier, that SQuAD dataset is one of the largest reading
comprehension datasets and manually generated by humans with real-world com-
plexity. In contrast, Facebook bAbI dataset is arti�cially generated dataset with
short sentences. From here, we can conclude that our improved DMN might if not
must outperform Kumar et al. DMN using Facebook bAbI dataset.
By the end of July 2018, Rajpurkar et al. (2018) proposed SQuADv2.0, that
the signi�cant di�erence to SQuADv1.1 is that SQuADv2.0 combines existing
SQuADv1.1 data with over 50,000 unanswerable questions. The answer to each
question does not necessarily be involved in the context. It is a big challenge task
in NLP, and we plan to evaluate our improved DMN using SQuADv2.0 in the
future. As investigated, we thought about doing �ne-tuning of the word vector
representations extracted from the word embedding method before using them.
Moreover, we thought about exploring the results if we try to use the attention
mechanism on both directions (question against context and context against ques-
tion) to be as a Bi-directional attention mechanism. In the end, we would like to
test our improved DMN model in the real-life systems such as "Detecting com-
mon opinions among online customer reviews" or "Finding alternative sources for
answering the same question" and others.
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Complete Simulation Figures

In Figure A.1, we show the �rst simulation of Kumar et al. (2016) DMN architec-
ture and It was our proposal architecture.
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Figure A.1: Our �rst simulation of the re-implementation of Kumar et al. (2016)
DMN architecture.

67



Appendix B

Additional Tables and Figures

In this chapter, all tables and �gures that express our results after the �nal opti-
mization of our improved DMN model are provided.

As shown in Figure B.1, we show the �nal results after using the validation
set to evaluate the trained model. As we mentioned in Section 5.1, we split the
training dataset into training and validation sets.

Figure B.1: The �nal results after evaluating our improved DMN using the valida-
tion set.
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The change of the loss values in training and validation can be taken from
Figures B.2 and B.3. For a clear comparison between the change of loss values, we
combined the two �gures into a single �gure, and then we proposed Figures B.4
and B.5.

Figure B.2: Plot of loss values in training. The x-axis depicts the step in epochs,
and the y-axis is the loss value.
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Figure B.3: Plot of loss values in validation set. The x-axis depicts the step in
epochs, and the y-axis is the loss value.
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Figure B.4: Bar-plot of loss values in training and validation sets. The x-axis depicts
the step in epochs, and the y-axis is the loss value.
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Figure B.5: Plot of loss values in training and validation sets. The x-axis depicts
the step in epochs, and the y-axis is the loss value.
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In Table B.1, we listed all results per epoch of our improved DMN model.
First, we trained our model using the training set and then we validated it using
the validation set.

73



Appendix B. Additional Tables and Figures

Epochs-number Train Loss Valid Loss F1-score EM-score

1 6.79 6.15 32.02% 22.7%

2 5.41 5.31 42.80% 32.83%

3 4.69 4.64 51.60% 41.64%

4 4.13 4.02 60.12% 49.57%

5 3.87 3.46 64.48% 55.17%

6 3.42 3.04 69.83% 60.10%

7 2.68 2.76 73.20% 63.67%

8 2.42 2.49 75.23% 66.11%

9 2.18 2.21 78.10% 69.71%

10 1.97 2.09 78.79% 70.30%

11 1.84 1.94 80.14% 71.94%

12 1.72 1.84 79.98% 72.27%

13 1.65 1.68 81.86% 74.70%

14 1.75 1.66 82.96% 75.92%

15 1.48 1.58 82.93% 75.95%

16 1.44 1.54 83.21% 76.22%

17 1.39 1.42 84.36% 77.07%

18 1.31 1.39 84.15% 77.74%

19 1.26 1.35 84.55% 77.97%

20 1.24 1.31 85.19% 78.70%

21 1.21 1.29 85.42% 80.19%

22 1.18 1.25 84.58% 78.41%

23 1.16 1.19 85.75% 79.50%

24 1,16 1.17 85.64% 79.33%

25 1.14 1.18 85.80% 79.64%

26 1.07 1.15 86.02% 79.85%

27 1.05 1.14 86.66% 80.93%

28 1.04 1.10 86.65% 80.80%

29 1.03 1.08 86.47% 80.71%

30 1.02 1.10 86.64% 80.81%

Table B.1: Final results of our improved DMN evaluated on the validation set.
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