
Master thesis

Visual Information Management with
Compound Graphs

Alvin Rindra Fazrie

4fazrie@informatik.uni-hamburg.de
Intelligent Adaptive Systems Master Program
Matr.-Nr. 6641834

First Reviewer: Prof. Dr. Chris Biemann
Second Reviewer: Dr. Alexander Panchenko
Advisor: Steffen Remus MSc.

Abstract

Traditional knowledge graph approaches for information management, which are based on
a flat graph could impose a high cognitive load on the cognitive process of a user to understand
concepts. In order to accelerate the cognitive process of a user, we design and develop a
new prototype application for information management based on organizing concepts in
a compound graph. An additional layer of abstraction is included to model generalized
hierarchies of concepts and relations between concepts in a graph. This kind of graph
representation is an added value for visualization purposes, where a user can have a better and
faster understanding of the concept given by the information management. We also include a
service-oriented architecture, in order to provide information in forms of subject-predicate-
object triples. By conducting a usability test and gathering feedback from the users, the results
show that compound graphs visualization can represent concepts better than normal graphs
and the integration of semantic services can help a user to access information and to gain new
knowledge.

Acknowledgement

First of all, I would like to sincerely thank Steffen for being my full-time thesis advisor.
His assistance and precious guidance starting from the beginning of autolinks project and this
thesis are always there for me. Whenever I need a help, he always gives his best and quick
response, and I do really appreciate a lot for all his efforts.

I would also like to thank Chris for being my first reviewer and Alex for being my second
reviewer. Their supports help me to complete this thesis and to smooth the process of the
work from the beginning of autolinks project, thesis proposal, to the very end of the thesis.

Special thanks to the Language Technology Group members in creating a suitable and
comfortable working environment during the completion of the thesis. We always have a
"coffee" time, which means it is a time to play a kicker.

Finally, I would like to thank my parents and to my partner in life, Maria Ulfah, for
their unfailing support and continuous encouragement throughout my years of study. This
accomplishment would not have been possible without them. Thank you.

1

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Research Questions . 9
1.3 Contributions . 10
1.4 Further Structure of this Thesis . 11

2 Background and Related Works 12
2.1 Literature Review . 12

2.1.1 Information Management . 12
2.1.2 Ontologies in Computer Science . 13
2.1.3 Semantic Web Technologies . 15
2.1.4 Compound Graph . 16
2.1.5 Information Visualization . 19

2.2 Related Works . 20
2.2.1 General tools for Information Management 20
2.2.2 Graph-based Information Visualization tools 21
2.2.3 Text Annotation Tools . 24

3 System Overview 27
3.1 Architecture of the System . 27
3.2 autolinks from User Perspective . 28
3.3 Visual Information Management . 30
3.4 Broker . 37
3.5 Technology Stacks . 37

4 Backend 40
4.1 Broker . 40
4.2 Triples . 46
4.3 Semantic Services . 49
4.4 Information Extraction . 50

5 Information Management Visualization 54
5.1 Knowledge Graphs . 54

5.1.1 Building a Knowledge Graph . 56
5.1.2 Merging Nodes Scenarios . 58
5.1.3 Creating Relations Scenarios . 59

5.2 An Algorithm for Knowledge Graph Extraction 60
5.3 Compound Graphs Motivation . 63
5.4 A Layout Algorithm for Compound Graphs 66
5.5 Further Main Features in autolinks . 69

5.5.1 Semantic Services . 70

2

5.5.2 Query Exploration . 70
5.5.3 Document Exploration . 71
5.5.4 Annotation Exploration . 72
5.5.5 Discontinuous Annotation . 74

6 Qualitative Evaluation 76
6.1 Evaluation Setup . 76
6.2 Feedback Details . 77
6.3 Feedback Summary . 80

7 Conclusion and Future Work 83
7.1 Conclusion . 83
7.2 Future Works . 84
Bibliography . 86

Bibliography 86

Appendices 91

A Questionnaire 92

B Feedback 96

3

List of Figures

2.1 DIKW Pyramid Model . 12
2.2 Semantic Web Technologies Layer Cake [Domingue et al., 2011]. 15
2.3 Compound graphs used in the data visualization on biological pathways.

Figure taken from [Dogrusoz et al., 2005]. 16
2.4 An example of a compound graph with adjacency and inclusion edges. 18
2.5 Reference model for visualization [Nazemi, 2014]. 19
2.6 Storyfinder is a user based information management tool, which enables us to

add entity from the web document [Remus et al., 2017]. 23
2.7 new/s/leak is a data extraction tool, to provide important entities and the

relationship based on the documents collections [Yimam et al., 2016]. 23
2.8 new/s/leak 2.0 annotates new entities, which were not detected by the NER

[Wiedemann et al., 2018]. 24

3.1 autolinks Architecture . 27
3.2 autolinks User Interface with ’B Cell’ as an example query 28
3.3 autolinks login interface . 31
3.4 Knowledge graph canvas . 32
3.5 Circlenav Button . 32
3.6 Main navigation . 33
3.7 Service list . 33
3.8 Document list . 34
3.9 Annotation Types . 34
3.10 Upload a document . 35
3.11 Document Lens . 35
3.12 Bottom Grid Controller . 35
3.13 Search bar . 36
3.14 Properties of Nodes / Edges . 36

4.1 Service endpoints . 41
4.2 User endpoints . 41
4.3 NLP endpoints . 42
4.4 An annotation node ’T cell’ with details view 43
4.5 Storage endpoints . 45
4.6 Maintenance endpoints . 46
4.7 RDF example in Turtle format [Harth et al., 2011] 47
4.8 A sentence example extracted from cTAKES- components, Figure taken from

[Savova et al., 2010] . 51

5.1 Entities as nodes . 54
5.2 Relations as edges . 55
5.3 An example of knowledge graph ’BCR’ . 57
5.4 Drawing relations to a node in different hierarchy 60

4

5.5 Hierarchies from flat graph . 64
5.6 More complex hierarchies for compound graphs 65
5.7 Hierarchies based on properties . 65
5.8 Two knowledge graphs generated by two queries in the search bar 71
5.9 Annotation nodes . 73
5.10 Discontinuous annotation 1 . 74
5.11 Discontinuous Annotation 2 . 75

6.1 Does autolinks help you to access information? 77
6.2 Do you think that compound graphs represent concepts better than normal

graphs? . 78
6.3 Does the integration of semantics services help your research findings? 78
6.4 Do you think that autolinks hinders / blocks you to get information? 79
6.5 Compound graphs are ineffective compared to normal graphs 79
6.6 What are the best features shown in the autolinks? 80

5

List of Tables

5.1 Visual states of nodes and edges . 56
5.2 Endpoints lists of semantic services . 70
5.3 Sentences based on the annotation types . 72

Listings

4.1 Server response of analyze endpoint . 42
4.2 Server response of interpret endpoint . 43
4.3 BCR resources example . 48

6

1 Introduction

In this internet era, people could get information easily with search engines. They will
give us a ton of hyperlinks clustered by multiple pages by entering a single query to the input,
and then we could select a specific link we think the most relevant. The process of learning
takes time sometimes. After the chosen web page rendered, we need to read through a page to
get specific information related to the query given and sometimes we still have to deal with
some hyperlinks to get further information. Even worse, many websites nowadays exploit the
curiosity gap of the reader1, offering just enough information to tease readers to be curious and
not enough to satisfy the reader’s curiosity, without clicking through another linked or related
content. This clickbait phenomenon becomes so normal today2 and it makes our time to study
longer than before. To provide a quick researching platform, we develop autolinks3.

autolinks, ’automatic proactive researching’, is a tool that provides a platform for quick
researching based on a text or a sentence by visualizing the results together with their semantic
relations. autolinks optimizes these concerns and is intended to make the learning process
faster and more efficient. Instead of reading papers, websites, and other resources to understand
a specific term, this machine will do it for us. From a text or a sentence given by the user, it
will extract the information from multiple resources and visualize the core related information
with the most convenient approach. The information is visualized by a force-directed graph, a
graph, which contains nodes for the information and edges for the semantic relation so that it
will ease the reader to understand how pieces of information correlate each other. Together
with the implementation of compound graph concept, autolinks enables graphs to be inside
of a node for the sake of a better categorization with an aim to improve and accelerate users’
cognitive process in understanding concepts given in the knowledge graphs.

autolinks uses Natural Language Processing (NLP) components. NLP takes a responsibility
to understand a given text and to comprehend which information from the sources have a
relation to the given text and correlate each other. The reader could evaluate the results given
and update them with the desired value. Bundled with this capability, autolinks accelerates
the process of researching and understanding during the study.

1.1 Motivation

The motivation of this thesis comes from the idea to develop a compound graph-based
information management prototype application, which provides different information needs
of users by retaining their (global, personalized) knowledge, connecting their knowledge in
context, and providing the source of information, called provenance. Provenance becomes
vital in autolinks as it makes the difference in bottom-up information management from the

1. https://thefinancialbrand.com/55342/content-marketing-strategy-curiosity-gap-clickbait/
2. https://theoutline.com/post/4716/how-everything-on-the-internet-became-clickbait
3. https://uhh-lt.github.io/autolinks/

7

top-down information management tools. It acts as an external brain for users for the reason
that users can remember what they have read and go back to it. It also enables the users to
associate what they have created or edited with the original source of information.

The compound graph enables the data visualization to have an outer abstraction layer
containing nodes as concepts and edges as relations between concepts in a knowledge graph,
in order to accelerate the cognitive process of a user. This kind of graph representation has an
added value for visualization purposes to enable users to have a better and faster understanding
of the concept given by the information management. Knowledge graphs are composed of
semantic triples relations, such subject-predicate-object triples so that users are able to explore
and do research for certain entities and understand about their relations and categorizations in
knowledge graphs.

Information Management with Compound Graphs
With Information Management (IM), users can manage their research findings to reduce

complexity and organize information. Derived from ontologies concept, we provide knowl-
edge graphs for knowledge representations with nodes to represent concepts and edges to
represent relations between the concepts. The management enables users to edit, delete, or add
new concepts and relations so that users can create their own concepts and environments.

One of the novelties in our information management is that we implement compound
graphs for adding another abstraction layer to model concepts with generalized hierarchies.
This graph model is applied in order to reduce the cognitive load of the user so that the user
could get better and faster understanding of the concepts.

Triples
Resource Description Framework (RDF), as one of complementary technologies to express

the semantics of the metadata in semantic web [Candan et al., 2001], is a general-purpose
language [Domingue et al., 2011] initially designed as a metadata data model from a family
of World Wide Web Consortium (W3C) specifications, to describe information from a web
resource with supports both statement and resource-centric views. The RDF models can be
treated as sets of triples and as sets of resources/properties [Candan et al., 2001]. RDF is used
in knowledge management and information management applications.

Inspired by the RDF specification as sets of triples, we design semantics triples, which
are basically RDF Triples with extensions. We call it triples to emphasize that we use it
for drawing nodes and edges with an additional extension. This extension enables us to
have recursive resources so that our resource could also contain another resource. Then by
recursive resource, we are able to generate another abstraction layer of the concepts, which is
called compound graphs. This compound graphs enable autolinks to have multiple levels of
compound nodes as parents and normal nodes within compound nodes.

Query and Document Explorations
Doing research findings on the internet is a process that we want to identify as soon as

possible all the relevant information from websites. In reality, this process takes time since
there are tons of irrelevant information inside. It also happens when we read the documents.

8

Our main task here is to minimize the irrelevant information, so we have a better information
access.

For this reason, autolinks provides query and document exploration, where we can model
and enhance the information, which is contained in the document text. These features are
provided in order to accelerate the speed of doing research findings, where we provide
only relevant information in the knowledge graph. The knowledge graph can be created by
entering a single query in the search bar or by clicking an annotated text in the main text field
within the document lens. All annotations in the document lens are the result of information
extraction from the processed documents. We need to upload documents beforehand, and this
machine will analyze throughout document contents and return its analyzed results with entity
annotations to be displayed in the document lens.

Information Visualization and Language Technology
Information visualization is a study in computer science, which focuses on constructing

visual representation to amplify cognition [Card et al., 1999, p. 6], whereas the cognition
here is further proposed as "acquisition or use of knowledge" [Card et al., 1999, p. 6], and the
visual representation is typically extracted from large-scale textual information. The primary
goal of information visualizations is to provide insights (discovery, decision making, and
explanation) not only figure [Nazemi, 2014].

Information visualization is a vital thing for the research and data analysis because visual
materials make data analyzing and understanding easier and prevent people from losing interest
in a concept given. To visualize the concept, knowledge graphs are used for representing
knowledge with nodes as entities and edges as relations between entities.

Language technology methods here are used to get entity annotations from the documents.
One of them is Named Entity Recognition (NER). Since our case study is mostly in the medical
domain, we use Apache cTAKES4 (clinical text analysis and knowledge extraction system)
as Natural Language Processing (NLP) modules and semantic services [Savova et al., 2010].
Apache cTAKES is an open-source NLP system for extracting the information from electronic
health records. Wiki media is used as an open knowledge base that acts as a basis for the
structured data collection.

These points become the foundation of our research. The main goal here is to provide an
information management tool that enables the user to get a rapid relevant information from
the document contents and queries, so it benefits the user in research findings.

1.2 Research Questions

Derived from the motivation and the background of problems of this work, we conduct
a usability test to evaluate whether the compound graph-based and information visualiza-
tion methods’ graph can be implemented to improve the general understanding of research
findings.

The following research questions are examined in detail:

4. http://ctakes.apache.org/

9

1. Can compound graphs boost the user’s understanding of the documents?

• How can a user interface be devised that is non-intrusive, i.e., helping users solve
their information needs faster instead of impeding them?

• How can a compound graph be a better option to represent concepts?

2. Can the integration of multiple or generically semantic services help the research
findings?

• Which benefits or improvements that generic system, Service Driven Architecture,
have compared to static design, where the information is given by one source, and
it can not be changed?

To clarify these research questions, we will conduct a usability test and gather feedback to
analyze how the compound graphs contribute to user understanding towards concepts. For this
purpose, feedback questionnaires will be provided to the users after they test this prototype.

1.3 Contributions

The main purposes of this thesis are to answer research questions by developing and
deploying autolinks ’automatic proactive researching’ prototype to explore and analyze
certain concepts and their relations. With compound graphs to model the knowledge graphs,
this tool is intended to accelerate the cognitive process of users to understand their research
findings via autolinks. State-of-the-art methods from information visualization and language
technology are explored, adapted, and integrated to develop an information management tool
with novelties extensions that benefit in research findings.

The novelties that we propose in this information management tool are the following:

1. Visualizing knowledge graphs with compound graphs model in order to give a better
representation of the concepts so that users can get faster intuition and understanding
towards the concept.

2. Extracting knowledge graph based on query and document explorations where we can
construct and evaluate the information, which is contained in the document text and
given by the semantic services.

3. Giving provenances in the extracted knowledge graphs in order to support users in
retaining their global and personalized knowledge so that users can associate information
in which they have already created or edited with the original source of information.

4. Integrating multiple semantic services to help users to have a quick access to information
and to gain as well as to build knowledge from different sources of information.

5. Enabling discontinuous annotations, for example to annotate an entity from the main
text by selecting words with different offsets so that users can annotate identical entities
even though the entities have different offsets or text lengths.

10

We conduct a usability test to get user’s feedback with an aim to evaluate our implementa-
tion. We find that compound graphs implementation gives a better concept representation than
the flat graphs and integrating multiple semantic services help users to have quick information
access in order to gain and build knowledge graphs from multiple sources of information.

1.4 Further Structure of this Thesis

In this thesis, we arrange the report into 7 chapters with some explanations in each chapter.
The writing scheme is organized as follows:

• Chapter 2 - Background and Related Work

This chapter is consisting of related works and theories that we use to support this
research.

• Chapter 3 - System Overview

Chapter three outlines the system overview, general architecture and components in
autolinks.

• Chapter 4 - Backend

This chapter contains the description about the backend.

• Chapter 5 - Information Management Visualization

This chapter contains the description about the frontend part for the information man-
agement visualization.

• Chapter 6 - Feedback

We conducted usability test and gathered feedback to evaluate our implementation.

• Chapter 7 - Conclusion and Future Work

This chapter contains the conclusion that summarizes this work, and provides recom-
mendations for the future works.

11

2 Background and Related Works

2.1 Literature Review

This chapter is divided into literature reviews and related works. Literature reviews’ section
explains various basic terms since they are required for further reference of the following
chapters. Meanwhile, related works’ section introduces some related tools to autolinks
concerning information management tools and text annotation tools. In this section, we
discuss and compare these tools with our tool: autolinks.

2.1.1 Information Management

In these days, we know that knowledge and information are the most important assets to be
managed. They have relations towards each other as described by the DIKW (data, information,
knowledge, and wisdom) pyramid model, shown in Figure 2.1, and they have been character-
ized as a chain [Zeleny, 2005, Lievesley, 2006] or framework [Chisholm and Warman, 2006].
[Zeleny, 2005] describes DIKW pyramid with appealing metaphors, which are ’know-nothing’
for data, ’know-what’ for information, ’know-how’ for knowledge, and ’know-why’ for wis-
dom.

Figure 2.1: DIKW Pyramid Model

Humans can capture data or facts in information. When people confuse data with infor-
mation, we can tell them that data is always correct, but information can be wrong. Data is
the plain symbols such as numbers or letters, which are unorganized and lack any meaning
or value [Rowley, 2007]. Information organizes data into a structure to give a meaningful
purpose or value. With information, it also allows us to expand our knowledge. As a concept,
knowledge is far more complex. Knowledge is the thing that we know and also contains
beliefs and expectation. It is principally a result from cognitive processing and validation
[Aven, 2013]. Wisdom is a shared understanding or as "knowing the right things to do"
[Lievesley, 2006]. Wisdom enables us to do decision makings or informed actions effectively
and also to reduce the decision risk. Wisdom also involves moral and ethics, such as human
intuition, understanding, interpretation, and actions [Rowley, 2007].

12

Most people might see information and knowledge as synonyms. In fact, they have different
definitions. In general, information is defined as organized data, data endowed with relevance
and purpose, or interpreted data [Terra and Angeloni, 2003]. These definitions lead to the
point where the information includes the participation from humans in order to organize the
raw data to be more meaningful. Management is to organize and control the structure to
process and deliver the information.

We can see that Information Management (IM) focuses on how we deliver the data to be
meaningful information so that the people or user who uses the information management
could get a better understanding or knowledge. The definition of knowledge, however, is
much more complex than information. Unlike the information or data, which is more easily
understood, classified and measured, knowledge is an asset or resource, which is invisible,
intangible, and difficult to imitate [Terra and Angeloni, 2003].

Focusing on the individuals that create and own the knowledge is what makes Knowledge
Management (KM) different from IM. So, it tends to be more people management, where
individual human skills and behavior are changed and improved [Terra and Angeloni, 2003].
When we do research findings on the internet, we provide a specific query to be processed in
the search engine. Then from the list of hyperlinks given, we want to know as soon as possible
the relevant information related to our needs, which later on from this information, we can
create relations among them to give a user intuition in order to get a better understanding.

The information management application is an application to process and organize the data
that contains the information. IM can also be a database, concepts, mind maps, or simply a
sheet of paper. In the case of autolinks, the information is arranged to be a collection of entities
where they have relations as edges in a node-link diagram [Battista et al., 1998]. Node-link
diagram is a common visual representation to represent entities as nodes and relations as edges
or links for the sake of readability. The circles’ shape or similar shapes for entities symbolizes
an existence or a being, while the shape of line or link depicts a connection between existences.
These entities should be editable so that a user can self organize the given results with better
information. As a basic, to understand the principles in information management, we need to
understand about the concept of an ontology.

2.1.2 Ontologies in Computer Science

From the history of the tower of Babel, we learn that people could not communicate since
everyone spoke different languages. So, this is very important that understanding is only
possible when speaking a common language. However what does it mean to speak a common
language?

“People can’t share knowledge if they don’t speak a common language.”

– Thomas Davenport (1997)

To speak a common language and to understand it, we need to share a common syntax,
which has a meaning "setting out together or arrangement of the words" [Jurafsky and Martin, 2000].
According to [Manning and Schütze, 1999], syntax is the study of the regularities and con-
straints of word order and phrase structure. Moreover, on the other hand, there also must be a
meaning agreement. So we need to define semantics. Semantics is a study of the meaning

13

of words, phrases, sentences, or documents. Taxonomy defines concepts classification; it is
a collection of concepts organized into a hierarchical structure where it has a parent/child
(broader/narrower) or super/sub concept relationships [Hlava, 2014].

Moreover, to have a formal knowledge representation, we need rules and knowledge about
the concepts to support a common language of design [Kramer et al., 2015]. This rule is
expressed in an ontology. Ontology is a central concept in philosophy, and it primarily denotes
the study of existence. One famous ontology study is Aristotle’s categories (384 BCE -
322 BCE) that enumerates all the possible kind of things that are possible to be a subject
or predicate of a proposition. The compound word ontology comes from 2 Greek words,
"Onto", which means the existence of being real, and "Logia", which means science or study
[Knowles, 2005]. When people say "What is the ontological status of [category]?", it is just a
way of saying "Is [category] real?".

The concept of ontologies as computational artifacts has recently been used in Artifical
Intelligence and Computer Science. Especially in information systems, ontologies are a
conceptual model of what "exist" in some domain [Gruber, 1993]. This conceptual model rep-
resents knowledge as a set of concepts within that particular domain with an aim to understand
the relationships between these concepts [Hoekstra, 2009]. The concepts involve some formal
namings, types, properties, and interrelationships (both for the taxonomic and non-taxonomic
relationship) of the entities. To represent ontologies in CS, knowledge graphs can be used.
We have nodes to represent concepts and edges for both directed or undirected edges to
represent relations between the concepts. According to [Guarino and Giaretta, 1995], the
same ontological theory may lead to different conceptualizations as the theory of distinctions
among the entities (objects, events, regions...) or among the meta-level categories (concept,
property, quality, role...) which may be relevant for knowledge representation and acquisition
[Guarino, 1995].

The definition of ontologies in computer science are usually fixed by some authorities. In
our case, they are created with a bottom-up approach, not the top-down approach. Traditional
information management with top-down approach starts at the most general concept to specific
concept and has some issues where the ontologies in the traditional information management
are manually defined beforehand and fixed by design. This approach has a knowledge
bottleneck where the concepts given in ontologies will never be complete. From time to time,
there will always be new concepts or new insights into the ontology. These changes always
happen, so that there are definitely issues with this kind of ontologies.

There is no system, which is perfect and we can conclude that there is a need for human
involvement in order to self organize the data in our information management tool. So what we
propose is a bottom-up approach, which is an entity-based. In opposite to top-down approach
where everything has been defined and starts at the most general concept, our approach is that
building an ontology can start from the text and create a kind of an entity graph directly from
the given text. This process starts at the most specific concept, like a rabbit is a mammal, a
mammal is an animal, and so on. We can build our own knowledge by defining it manually or
we include existing knowledge bases for initialization then we can start to create entities and
we can put relations to those entities.

14

2.1.3 Semantic Web Technologies

Web documents are now in the 3rd generation. From Web 1.0, which then we only had
static web pages for information consumption, we moved to the 2nd generation, which is
Web 2.0, where we have interactive web pages and also templates for accessing database
information.

Various characteristic features provided by Web 2.0, which are distinguished from classical
Web technologies are Community where it allows the contributors to have a collaboration and
information sharing; Mashups where certain services from multiple websites can be extracted
to experience and understand the data; AJAX - Asynchronous Javascript + XML where it is
the basis of technology to introduce asynchronous communication for more responsive pages
[Breslin et al., 2011].

In the 3rd generation, Semantic Web Technologies become a basis for Web 3.0 as an
intelligent web where websites nowadays have intelligent infrastructure services behind the
web. We have adaptive web pages, which implement netbots, information extraction, machine
learning, natural language processing, etc. Semantic web technology also becomes a basis for
modern information management. To understand semantic web technology, we can take a
look at the semantic web technology stack [Domingue et al., 2011]:

Figure 2.2: Semantic Web Technologies Layer Cake [Domingue et al., 2011].

From the figure 2.2, we can start from the lowest level where it has Unicode for text
encoding and URIs (Uniform Resource Identifier) for the resource’s reference and for defining
a simple and extensible schema for unique worldwide identification of abstract/physical
resources. The identification includes Web identifiers such as Uniform Resource Locators
(URLs) or books and publications (ISBN, ISSN), and Object Identifier (DOI).

At a higher level, XML, namespace, and schema mechanisms provide syntactic descriptions
for the structured objects. After this layer, five semantics layers are introduced: Resource
Description Framework (RDF), Web Ontology Language (OWL), Rule Interchange Format
(RIF), and layers of proof and trust. This layer type has significant functions to prevent

15

an upper layer from re-using functionality from the lower layer and allow an application,
which only comprehends a layer below to interpret parts of definitions at a higher layer
[Domingue et al., 2011].

Resource Description Framework (RDF) becomes the foundation of resources represen-
tation in autolinks. RDF5 is a basic data model for the semantic resource description on the
World Wide Web. The interlink-relation of binary properties terms forms a directed graph and
this terms can be described using Uniform Resource Identifier. Three components shape an
RDF Triples, the subject is an RDF URI reference or a blank node, the predicate is an RDF
URI reference, and the object is an RDF URI reference, a blank node, or a literal.

RDF triples are implemented to emphasize that we use it for creating nodes, edges and the
relations since RDF triples provide subject, predicate, and object tuples, which later on will be
extracted for the visualization purpose. autolinks implements RDF triples with an extension,
we call it semantic triples. The extension allows a resource to be again a list of resources. The
recursion is necessary in order to facilitate compound graph implementations, so that we have
graphs inside a node.

2.1.4 Compound Graph

Graph theory in mathematics and computer science is the study of graphs. Using math-
ematical structures to model the pairwise relations between objects. The graph G = (V,E)
consists of a set of vertices (v ∈V), nodes, or points, which are connected by a set of edges
(e ∈ E), arcs, or lines [Trudeau, 1993]. The graph could be called an undirected graph, where
there is no distinction from the edge direction towards two vertices, and it is called a directed
graph, where its edges have directions towards a vertex.

Figure 2.3: Compound graphs used in the data visualization on biological pathways. Figure
taken from [Dogrusoz et al., 2005].

5. https://www.w3.org/TR/rdf-primer/

16

For the implementation of source vertices and target vertices visualization, autolinks
implements directed graphs. In a directed graph or digraph G = (V,E), the direction of the
edges is normally drawn as an arrow pointing towards the target vertices. The concept of the
edges direction e = (s, t) ∈ E is s→E t, where s is the source and t is the target of the edge
e = (s, t).

In the field of bioinformatics, the extracted data is required to be visualized in the state,
which is not only coherently organized but also needs to be displayed by characteristics.
The nodes will be clustered based on their strongest relations, their association to the same
categories, or similar properties. To visualize this kind of abstraction, some graph models
can be used. However, to represent complex relational information with the classical graph
model is not sufficient because in the classical model we have large numbers of information
visualized by nodes representation and this node numbers is the challenge that we need to
reduce. Therefore, several classical graph model extensions have been proposed.

The clustered graph model is an extension of a classical graph model with partition.
However, grouping or nesting partition in clustered graphs is only allowed for one level
[Dogrusoz et al., 2009] so that the quality of results produced is unsatisfactory. Another
model introduced by Harel [Harel, 1988] is the higraph model, which is a far more general
model compared to the clustered graph model. The higraph model is a very general model for
representing complex relationships [Harel, 1988]. The higraph model can represent inclusions,
intersections, and adjacency relationships. This intersection relationship is the one that makes
this model challenging to design and implement.

An intermediate model between clustered graphs and higraphs introduced by Sugiyama
and Misue [Sugiyama and Misue, 1991] is called compound graphs. Compound graphs
are more general than clustered graphs since this model allows to draw graphs with, both
adjacency and inclusion relationships between nodes with multilevel nesting/abstractions
[Bertault and Miller, 1999]. Figure 2.3 shows an example of a compound graph from the field
of bioinformatics to display biological pathway information, which is a series of molecular
reactions within a cell.

A compound graph is denoted as C = (V,E,F) [Dogrusoz et al., 2009]. It consists of nodes
V , the pair (V,E) forming the adjacency edges E or a (directed) graph, and the pair (V,F),
to which we refer as the inclusion edges I. The inclusion graph T = (V,F) is a rooted tree,
where the hierarchical structure of a compound graph is stored. It is assumed that E ∩F is
empty, which means a node cannot be connected to its children or parents by an adjacency
edge.

17

Figure 2.4: An example of a compound graph with adjacency and inclusion edges.

V = {c1,c2,c3,c4,A,B,C,D,E,F}
E = {{c1,c2},{c1,c4},{c2,c3},{B,C},{B,D},{E,c5},{A,F}}
F = {c1A,c2B,c2C,c2D,c3E,c4c5,c5F}

An example compound graph relationship with adjacency edges and inclusion edges is
illustrated in Figure 2.4. Starting from the adjacency edges in Figure 2.4 (a): We can see,
that edges denoted as e = {s, t} ∈ E are drawn to indicate that there is a relation between the
source node or predecessor denoted as s and the target node or successor denoted as t. This
type of edges is direct adjacency relations in the compound graph illustrated in Figure 2.4 (c),
that is why it is called as adjacency edges.

Edge e = {s, t} ∈ E is called as intra-graph edge, if s ∈V Gi , t ∈V G j , and i = j. If i 6= j,
then we call e as an inter-graph edge. Figure 2.4 (b) illustrates the another type of relations,
which is an inclusion relations, where e = {s, t} ∈ I. It represents a nesting relations between
source and target nodes meaning that source s contains target t and we call this kind of edge
type with inclusion edges. This type of edge draws compound relations. When a node contains
a graph, it is called a compound node, otherwise, it is called a leaf or non-compound node
[Dogrusoz et al., 2009]. Children nodes are the graphs that are located inside a compound

18

node and if a compound node still has other nodes, which are located inside its children nodes,
we call them as descendant nodes. In opposite to descendant nodes, parent graphs that are
higher than one level above of the current nodes hierarchy are called ancestor nodes. In Figure
2.4 (c), we can see that node F is the descendant node of node c4 and vice versa node c4 is the
ancestor node of node F.

In Figure 2.4 (b), root graph (G0) is a graph, which locates in the top of hierarchy. This
graph only contains nodes, which have no owner/parent graph and it is resided at the 0th level
of the parent-node-child-graph tree structure. These nodes are called outermost compound
nodes since they have the minimal depth and the compound node, which are located as
a subgraph with maximal depth are called an innermost compound node. This iterative
parent and children nodes’ concept is what compound graphs differ from normal graphs.
Normal graphs need more nodes and relations to make parent-children level relations than the
compound graphs. Compound graphs reduce unnecessary nodes and edges and replace them
with a single parent node to represent a higher / lower level concept in the ontology.

To realize the compound graphs visualization, we need to implement the layout algorithm
for knowledge graphs, which is compatible with compound graphs. We chose Compound
Spring Embedder (CoSE) as a layout algorithm, which is based on a force-directed layout
scheme. This layout algorithm will be further explained in the chapter of Information
Management Visualization.

2.1.5 Information Visualization

According to [Card et al., 1999, p. 6], information visualization is about transforming
data into interactive graphical representations, which afford to amplify human cognition
and support the process of information acquisition. In information visualization, human
perception’s aspect and the processing of visual information play a significant role.

Figure 2.5: Reference model for visualization [Nazemi, 2014].

Data, task and the human perception and interaction involvements are the abstract views
of information visualization structure [Nazemi, 2014]. Figure 2.5 illustrates the visualization
reference model with its steps of transformation. This model is a primary foundation to
comprehend the model of information visualization.

19

Data transformation is the first step of the reference model. Starting from the series of raw
data formats with their structured sets of relations as a data table, it will be easier to visualize
[Card et al., 1999]. A data table, which is represented by rows of variables as sets of values
combines relations with their metadata description. The next step is the visual mappings
to map the data tables to visual structures. In this visual structure, the visualization should
support the human to interpret faster, to differentiate graphical entities, or to make fewer
errors [Card et al., 1999, p. 23] so that the critical information will be well perceived by the
human.

The final step after mapping the data model to visual structures is the loop of interaction be-
tween human and visual forms [Card et al., 1999, p. 31]. This step involves the manipulation
of static graphical presentation to create different views of visual structures. This reference
model introduces the processes of transformation starting from raw data to visual structures,
the view manipulations involving location probes, viewpoint controls, and distortion, and
human operations back the steps of transformation [Nazemi, 2014].

The work of information visualization is definitely highly related to visual analytics and it
is a sub-discipline of visual analytics, but they apparently have some differences and gain their
own established definitions. Visual analytics proposed by Thomas and Cook is the science
of analytical reasoning facilitated by interactive visual interfaces [Thomas and Cook, 2006].
[Keim et al., 2010] augment the definition of visual analytics to be a combination of automated
analysis techniques with interactive visualizations for an adequate understanding, reasoning,
and decision making on the extensive and complex datasets. Based on this definition, the use
of analysis techniques and interactive information visualizations are needed, giving a higher
priority to data analytics from the beginning and through all iterations of the sense-making
loop [Keim et al., 2008].

2.2 Related Works

We introduce some of the related works to autolinks regarding information management
tools and text annotation tools. As it has already been mentioned in the information man-
agement section, information management can be anything as long as it is used to organize
any information to be more understandable and accessible. Information management ranges
from offline approaches such as concepts maps or mindmaps [Remus et al., 2017] to online
approaches such as Content Management Systems, Wikis [Kaufmann, 2017], and Document-
Cloud6.

2.2.1 General tools for Information Management

Learning new things is our nature as humans. The process of learning takes daily and
we also memorize the information from the learning process for later reference. Forgetting
things is also a human nature since the human memory also has limitations and sometimes
the memory is not maximally utilized in an effective way and the information is not well-
organized. In order to improve the performance of learning, there are some methods needed

6. https://www.documentcloud.org

20

to improve the human cognitive process. One of the methods is to implement an information
management approach in order to organize the information ordered and easily accessible with
attractive visual representation.

Concept Maps and Mind Maps
A concept map [Novak, 1998, Novak et al., 1984] is a top-down knowledge representation

tool showing the relationships between concepts, a perceived regularity in objects or events
which are designated by a label. The more general concepts are placed at the top and the
more specific concepts are placed at the bottom, with ’cross-links’ relationships among
concepts [Novak, 1998]. A mind map [Buzan, 1974, Buzan and Buzan, 1976] is a color-
rich and image-centered diagram to visually organize information. This map uses a radial
diagram to represent semantic and branches to show relations between of learned material
[Eppler, 2006]. Other approaches to information management are available such as conceptual
maps and visual metaphors.

Concept maps, mind maps, and other tools such as conceptual maps and visual metaphors,
[Eppler, 2006] are some offline approaches in information management. These approaches
use information visualization to represent concepts and have been compared regarding their
application parameters to get the advantages and disadvantages of these four visualization
formats. Mainly, the advantages of these tools are to organize and to understand information
faster and better, see [Eppler, 2006] for further comparisons.

DocumentCloud
Document cloud is a web service for creating and publishing document collections. This

tool is designed for journalists to annotate and to scan text documents. The documents are
analyzed using Named Entity Recognition (NER) provided by OpenCalais7, a web service for
giving access to extensive information about entities in the text.

Content-Management Systems and Wikis
Content Management Systems (CMS) enable websites to become editable in the browser

so that the content of the websites can be easily changed and supplied with new pieces of
information. Wikis is one of the essential examples of CMS for information management. This
feature provides collaborative editing of web pages within the browser, and by this feature,
wikis are often to be a project to build a collection of articles on the topic of knowledge
management, e-learning, and so forth [Stein and Blaschke, 2009].

2.2.2 Graph-based Information Visualization tools

Some of the related tools for bottom-up construction of a problem-oriented ontology we
have are Storyfinder [Remus et al., 2017, Kaufmann, 2017], Networks of Names [Kochtchi, 2013,
Kochtchi et al., 2014], or new/s/leak [Yimam et al., 2016]. Other tools such as FacetAtlas,
PivotPaths, and SaNDVis, which are graph based information visualization tools to explore
and analyze large network data, are also presented in this subsection.

7. http://www.opencalais.com/

21

FacetAtlas
FacetAtlas [Cao et al., 2010] enables the multifaceted visualization technique for visually

analyzing rich text corpora. Multiple facets/topics of information which are extracted from an
article such as symptom, treatment, cause, diagnosis, prognosis, and prevention are clustered
by internal (in-facet) and external (cross-facet) relationships. The clusters with its relationships
are intended to make users understand the cross-document and inter-corpus relationships as
well as to organize the results of information retrieval. It also provides rich interactions such
as highlighting, filtering, and context switching. The capability of the system in the healthcare
domain conducted be the authors proves that this system is able to accurately cluster and
visually deliver the diseases dependence, symptoms, and treatments.

PivotPaths
PivotPaths [Dörk et al., 2012] is an interactive visualization to explore faceted information

resources. The strolling method is purposed as the use of interactive visualization to navigate
various information spaces, which contain multiple facets and relations, such as authors
and their journal articles in relation to publication date and category, via visual cues and
interactive pathways. Then the viewer can explore them to make comparisons among facets
and resources, and follow animated transitions among pivot operations.

SaNDVis
Social Networks and Discovery Visualization (SaNDVis) presented by [Perer et al., 2011]

is a visual analytics tool that supports relationships among discovery tasks. This tool uses
SaND and SanDGraph for data mining and model building, and to retrieve the results for
queries of the social graph. As a people-centric visual analytics tool, the relationship discovery
in this tool focuses on searching and finding people-centric tasks instead of documents. The
tasks involve expertise location, team building, team coordination in the enterprise.

Storyfinder
Storyfinder is a user based information management, which enables us to add entities from

web documents. This application consists of a browser plugin and a web server backend with
the combination of natural language processing techniques and visual analytics. It aims at
highlighting and managing the information from a web page [Remus et al., 2017]. Natural
Language Processing (NLP) components play a role to analyze the web pages and to extract
named entities and keywords from the web pages and store them for further reference.

22

Figure 2.6: Storyfinder is a user based information management tool, which enables us to
add entity from the web document [Remus et al., 2017].

new/s/leak
new/s/leak, the network of searchable leaks, is a data extraction tool, to provide important

entities and the relationship based on the documents collections. This tool is a powerful
tool for searching and exploring large amounts of data in a short time so that it can help
journalists to get quick access to essential entities such as people, organizations or place, and
their relationships. new/s/leak uses NLP preprocessing steps such as named entity tagging,
time expression extractions, entity networks, relations, and metadata [Yimam et al., 2016].

Figure 2.7: new/s/leak is a data extraction tool, to provide important entities and the rela-
tionship based on the documents collections [Yimam et al., 2016].

The new version of new/s/leak 2.0, an open-source software for content-based searching of
leaks to supports journalist investigating information from the unstructured larget text collec-
tions with multi-lingual data supports [Wiedemann et al., 2018]. In this version, new/s/leak
2.0 supports automatic language detection and language-dependent information extraction
for about 40 languages. Not only entities are visualized in this version but also keywords
for efficient exploration. new/s/leak 2.0 also supports manual and automatic text annotation.
Manual annotation enables whitelisting new words to be annotated entities and it also could

23

blacklist unwanted annotations, which have been automatically preprocessed or manually
annotated.

Figure 2.8: new/s/leak 2.0 annotates new entities, which were not detected by the NER
[Wiedemann et al., 2018].

Network of Names
The Network of Names [Kochtchi et al., 2014] identifies and explores relationships be-

tween individuals and organizations based on information extracted from a text corpus of
newspaper articles. This tool extracts the names and the relationships between elements from
the unstructured text. The identification process of people and organizations is performed in
the preprocessing step using named entity recognition, and the relationships will be displayed
in a web-based interactive visualization. Similar to autolinks, the visualizations use a node-
link diagram in which nodes are the representation of entities and the edges between nodes
are the representation of entities’ relationships. The relationships are labeled in order for the
system to learn the patterns and apply the labels to the similar relationships in other texts.

Network of the Day
Network of the day [Benikova et al., 2014] is a web-based interactive visualization that

presents important terms of a single day incorporated with the information from the days
before in a graph-based visualization. The extraction of important terms in Network of the
Day is also processed using Named Entity Recognition and comes from online sources such
as tweets from Twitter and articles from news sites. Similar to the Network of Names, the
extracted element utilizes a clustering algorithm to cluster the related terms via sentence-level
co-existence. The related terms are then displayed in the web-based visualization.

2.2.3 Text Annotation Tools

Text annotation tools are the tools that annotate text with annotation types such as part-of-
speech, named entity (person, organization, location, etc.) or grammatical dependencies in
order to analyze and synthesize the information within the text. At the moment, autolinks

24

provides annotation types in the biomedical domain and extends the tools that will be men-
tioned in this chapter, which only provide standard annotations. The annotation extension
in autolinks is discontinuous annotation feature where annotating texts are possible within
different spans.

WebAnno
Annotating documents is a time-consuming task, and it is not a low-cost process. Some

tools of linguistic annotations in the past were developed using proprietary formats for data
exchange and require local installation effort. WebAnno was developed [Yimam et al., 2013]
to provide a web-based annotation tool so that users can use directly with internet access. It is
interoperable in multi-data formats, supports annotations in a various level of linguistics, and
provides quality management using agreement of inter-annotator.

GATE Teamware
GATE Teamware [Bontcheva et al., 2013] is a web-based annotation framework. It is an

open source and supports collaborative annotation of texts, where it enables users to work on
complex corpus annotation projects collaboratively. Different user roles such as annotator,
manager, and administrator are provided. This cloud-based text annotation service will do a
preprocessing step for documents, and the user can start with the pre-annotated text.

BRAT
[Stenetorp et al., 2012] developed the first web-based open source annotation tool, which is

based on a client-server architecture and supports collaboration in the annotation for multiple
annotation layers on a single document [Yimam et al., 2013]. In the beginning, this tool was
developed as an extension of the stav text annotation visualizer [Stenetorp et al., 2011] to
visualize the annotations for the BioNLP shared task 2011.

tagtog
tagtog is a web-based annotation framework and a multi-user tool that supports both

manual and automatic annotation. Users can use dictionaries or train machine-learning
models to annotate using the web editor or the API in the automatic annotations mode. It
also supports different document formats and also supports biomedical domain articles from
known repositories such as PubMed so that it can be utilized to annotate biological entities
(such as genes) and concepts (such as Gene Ontology terms) from a complete text document
[Cejuela et al., 2014].

The afore mentioned information management and text annotation tools implement lan-
guage technology methods, so does autolinks. We implement NLP modules such as medical
NER provided by Apache cTAKES. With service-oriented-architecture in our architecture,
we deliver multiple wiki services to provide data for the knowledge graph creation. autolinks
differs from the aforementioned tools mainly concerning visualization layout and extension
of annotation feature. Compound graphs as the visualization layout give a better hierarchy
visualization and a better concept representation.

25

Discontinuous annotation is an extension of traditional annotation feature where it enables
to annotate entities manually in different text offsets. This feature at some point is necessary
since standard annotations cannot always work if some identical terms are located in different
offsets or have different text length. A simple example might be B cell and B - cell terms in a
sentence and these terms are basically the same things, but in normal annotations, they are
different entities.

Besides, provenance is also a feature that distinguishes our bottom-up information man-
agement tools from the other top-down ontology tools. In this bottom-up approach, we can
build and update our own knowledge from the sources such as semantic services and uploaded
documents. With provenance, a single concept entity will have its traceable sources where we
can associate the information within the entity with its original source of information.

In this chapter, we have discussed the information management tools with visual repre-
sentations in the node-link diagram form with force-directed graph layout. The layout is
where concepts are represented by nodes and relations are represented by edges. Finally, we
extend systems like the tools that have been introduced in this chapter, where flat graphs
are the standard of visualization, with compound graphs implementation and discontinuous
annotation implementation for the text annotation tools.

26

3 System Overview

This chapter describes the general system overview of the autolinks. We commence
this chapter with the system architecture section and then explain autolinks from the user
perspective section. After that, we briefly introduce our visual information management
system and its components, and then we also briefly introduce the backend, which comprises
of the broker, which handles the communication between a client and the services, and the
database. In the last section of this chapter, we describe the technology stack used behind
autolinks.

3.1 Architecture of the System

Figure 3.1: autolinks Architecture

The architecture of autolinks is depicted in Figure 3.1. The system architecture has two
major parts: backend and visual information management (frontend). The backend consists of
broker, services, and data storage.

A broker component in the middle of Figure 3.1 acts as a bridge to coordinate the com-
munication between frontend, for forwarding requests, and services and data storage, for
transmitting results and exceptions. With broker components, service-oriented architecture
could be enabled in autolinks; thereby, we can plug many semantic services and other services
for NLP modules, data extraction, and data management. Semantic services in the backend
generate results of triples based on a query or entity exploration in the document, and then
the results will be stored first in the database and will be forwarded to the frontend. Once
the triples have already been generated by the semantic services and have been stored in the
database, the next communication is done only between frontend and database for the resource
that has already been extracted.

27

Meanwhile, the visual information management frontend provides the visualization of
knowledge graphs and manage the knowledge graphs to be editable or user-based. The
resources extracted by semantic services become the foundation to build the knowledge
graph, and the recursive pattern of nested resources becomes a basis of the implementation of
compound graphs.

3.2 autolinks from User Perspective

Figure 3.2: autolinks User Interface with ’B Cell’ as an example query

From the user perspective, autolinks will lead the user to the main interface after login (see
Fig. 3.2), which displays a canvas for the knowledge graphs. The Figure above shows two
example graphs ’B cell’ on the top left and on the right generated by two different semantic
services. In the lower left, we can see an annotation container, which contains two annotation
resources, ’B cells’ and ’cells’ visualized as annotation nodes.

We can see in the example, there are nodes as entities and edges as relations, which
construct the knowledge graphs. One of the nodes, ’B cell’, is a concept or an entity, which
has a part-of relation to BCR entity. The BCR itself is a compound node since it contains
children nodes such as B-cell receptor and Antigen. From the example given, we can describe
some of the node types starting from (1), which is an outermost service compound node. This
node is principally a compound node, which contains the knowledge graphs generated by a
particular semantic service. Every knowledge graph provided by semantic service always
has an outermost service compound node, since this node is extracted from the outermost
resource identifier. The label of service compound node characterizes the semantic service.

28

We can see that in the graph view, we have two outermost service compound nodes, "2304
’B cell’" and "Wikidata objects ’B cell’ (limit 1|10)". The ’2304’ number is the number of
resource identifier generated by the demo semantic service, and "Wikidata objects" is the
name of endpoint generated by SPARQL semantic service. Each semantic service has its own
characteristics.

The number (2) is a normal node, which we call it as an entity ’B Cell’ in this example. This
standard node is the children of "2304 ’B Cell’ service compound node and it is in the lowest
hierarchy of the service compound node since it does not contain anything. However, this
node is a vital component to represent concepts and to draw relations among the concepts. The
’BCR’ node (3) is also another compound node in the lower hierarchy level. This compound
node is the children node of "2304 ’B cell’" service compound node and in the same hierarchy
of the ’B Cell’. Since this node has the same hierarchy level with the ’B Cell’ node, the direct
relation or the edges can be drawn from the ’BCR’ to ’B Cell’.

The "Wikidata objects ’B cell’ (limit 1|10)" node (4) is another outermost service compound
node in the collapsed mode of the compound node. In autolinks, the implementation of
compound graphs has a unique feature in which it is possible to expand and collapse the
compound nodes. This feature helps a user to expand and collapse the compound parent nodes
for better management of knowledge graphs complexity [Dogrusoz et al., 2018]. The results
of knowledge graphs may vary depending on the source of semantic service. From one query
or one entity in the text, a semantic service may produce different knowledge graphs with the
others. Also, knowledge graphs in autolinks is editable and user-based so that the results also
may vary for each user.

The nodes in number (5) are the annotations resources visualized as annotation nodes inside
an annotation container. These nodes are special nodes and different from other nodes since
these nodes are not allowed to have relations or to merge with other nodes. This annotation
container and resources will be explained in further details in the chapter visual information
management. From the user perspective, we have some other core implementations besides
knowledge graphs in autolinks, which are described as follows:

• Document lens
A document that is uploaded in the autolinks is extracted and analyzed in the backend,
and the backend will give its interpretation to the frontend. Once the document is already
interpreted, the frontend then will show the document lens at the bottom of the graph
canvas. The main text component in the document lens is then shown in sentencewise.

• Named-entity recognition / Medical entity recognition
A document text that has already been interpreted will have annotated texts in each
sentence. The offsets of annotation are received from the annotation properties that
are extracted by the NLP interpret endpoint. The properties contain the offsets, types,
analyzer, and entity properties such as id, code, preferred text, and others. In Figure
3.2, we can see that annotated entities are highlighted with blue color in the document
lens. These entities are recognized by Named-entity recognition (NER), a subtask of
information extraction, to classify categories of the entities such as a person, organiza-
tion, and locations. The NER also detects the location of entities index from the string
position. In autolinks, we use a Medical Entity Recognition (MER) provided by Apache
cTAKES.

29

• Entity linking
To build knowledge graphs, we need two vital components, which are nodes and edges.
The edges have a significant role to draw relations and to give meanings among entities.
Drawing relations in autolinks has some different scenarios and will be discussed in
further details in the chapter of visual information management.

• Editable and user based
Every entity and its relations in autolinks have properties. The semantic services in
the backend provide properties on every entity with metadata that contains a label, a
description, an alias, and others. One of the metadata, label, is used for changing the
name of the nodes; Not only label but also other metadata are fully editable. This
user-based approach enables users to have their own personalized knowledge graphs in
autolinks.

• Source of Information / similar sources
autolinks gives an extra knowledge to the knowledge graphs. Each entity is bundled with
provenances (traceable sources) so that the user knows any source of information, which
has a relation to that entity. This knowledge enables the user to jump to a particular
document or knowledge graphs, which are related to the entity and have been previously
seen by the user.

• Expansion from knowledge bases
Some entities in the knowledge graphs are the results of expansion from the semantic
services. It means that even though those entities do not exist both in the document
and in its interpretation, they are still shown in the knowledge graphs since they have
relations to the entities, which exist both in the document and the knowledge graphs.

3.3 Visual Information Management

In this section, we briefly introduce the visual information management as a frontend client
in the autolinks architecture. This frontend client is bottom-up information management and
becomes the core part of the compound graph implementation. A bottom-up approach is
chosen for the reason that autolinks helps users to construct their own personalized ontologies.
At the moment, autolinks works in the biomedical domain and since autolinks is based on a
service-oriented architecture where the service can be added or removed, thereby, autolinks
may also work in other domains in the future.

30

Figure 3.3: autolinks login interface

From the user’s point of view, autolinks is a web-based information management appli-
cation. For demonstration purposes, this application is available at the server8 of Language
Technology Group, Universität Hamburg, and can be run locally in user’s machine via docker.
In order to make autolinks work, a user needs to run at least five docker containers, which are
MySQL, broker, cTAKES-NLP, elasticsearch, frontend container, and at least one semantic
service container. More semantic service containers can be added in order to make the results
of the knowledge graph more diverse. After running those containers, users can open the
application via a web browser with the port provided by the autolinks frontend container.

Figure 3.3 displays the login screen of autolinks. Since the autolinks architecture is
designed as a multi-user system, user registration in autolinks is required in order to enable
personalized information management and to ensure privacy purposes that only a particular
user, which has privilege has access to his own knowledge graphs.

The authentication of users in autolinks is executed by using a username and a password.
If a user has already registered to autolinks, he could immediately log in; otherwise, he can
create a new user account on the registration page. The access data will be saved in the
browser session, and thereby, users do not have to re-login if the browser is closed. After login,
autolinks displays an empty graph canvas and users can start to build their own personalized
knowledge graphs.

Components in the Frontend

To build knowledge graphs, users need to comprehend how to operate this application.
There are some components in the visual information management needed to be understood
and performed by the users. Those components in the frontend are described as follows:

8. http://ltdemos.informatik.uni-hamburg.de:8093

31

• Graph Canvas

Figure 3.4: Knowledge graph canvas

A library of the network graph for analysis and visualization, Cytoscape.js, triggers
the graph canvas. The Cytoscape.js core needs to be initialized by calling a Cytoscape
function, cytoscape(), then a DOM container element is required as a document ele-
ment parameter. This canvas is the HTML element where the knowledge graphs are
visualized.

• Circlenav Button

Figure 3.5: Circlenav Button

Circle navigation is the starting button that users see after login and it is laid in the
right corner of the graph canvas. This navigation button will expand once clicked and
display buttons for toggling the main navigation, bottom grid controller, search bar, and
document upload modal.

• Main navigation

32

Figure 3.6: Main navigation

The main navigation is the main component to operate autolinks. This component has
three main menus, which are vital for the query and document exploration features. The
first menu is the service lists, which show the current active semantic services. The
second menu is the document lists, which display the list of documents that have already
been analyzed. The third menu is the annotation types menu, which is only activated
once users select a document in the document list menu. Users can analyze what entities
type in the text by enabling one or more annotation types in the annotation types menu.

• Service List

Figure 3.7: Service list

Service list is a menu that displays the active semantic services and the annotation
search. The services that are currently active in the autolinks are Wiki service and
Demo service. Wiki service provides access to Wikimedia indices such as Wiki data,
Wiktionary, and Wikipedia, meanwhile, The demo service is only for demonstration
and testing purposes.

The annotation search service helps users to retrieve the annotation resources that are
related to a query given. With an annotation resource, users could call other related

33

annotation resources with the same label, but different offsets in a document or users
could call knowledge graphs constructed by a particular semantic service, which have
the same label to the annotation resource.

• Document List

Figure 3.8: Document list

In the main navigation, documents are stored and listed in the document lists menu.
There is an option also to enable or disable the document lens in the middle of graph
canvas. Selecting a document in the document list will trigger the annotation types
menu to display. This annotation types menu is located below the document list menu.

• Annotation Types

Figure 3.9: Annotation Types

Annotation types are the result of document exploration feature. The uploaded document
is analyzed to extract the medical entity information from texts in the document by
using Medical Entity Recognition (MER). MER is a type of Named Entity Recognition
that works in detecting the words, which are related to the biomedical domain. We can
enable a specific annotation type or enable multiple annotation types at a time for a
single sentence shown in the document lens.

34

• Upload document dialog

Figure 3.10: Upload a document

This upload document is a feature to upload a document. At the moment, we limit
the size of the document to 10kb, which composes around 1-10 sentences. autolinks
currently only receives .txt file extension and it has an option of overwriting a file via
document upload modal. This option is to overwrite a same-named document that has
already been previously uploaded with the latest document. If we choose to overwrite
a file, the old file will be replaced; otherwise, autolinks will give a warning that the
document has already been uploaded. Once the document is successfully uploaded, it
will appear in the document list in the main navigation.

• Document Lens

Figure 3.11: Document Lens

The document lens contains the main text, which becomes the user focus. The extracted
and analyzed documents are shown sentencewise. Then the user can navigate to a
particular sentence number by clicking the left/right arrow navigation or enter the
selected sentence number in the indicator input. A yellow highlight on the text ’T cells’
indicates that a user is hovering on the annotation nodes related to ’T cells’ annotation
on the text.

• Bottom Grid Controller

Figure 3.12: Bottom Grid Controller

35

Bottom grid controller is a component in autolinks that allocates buttons for external
functionalities. These external functionalities can be view manipulations (Location fit-
ting, Location Fixing), clearing canvas, and viewpoint controls (magnifying or changing
the viewpoint by zooming or panning). Extra space in the bottom grid controller is
meant as an area for other future features buttons.

• Search bar

Figure 3.13: Search bar

Search bar enables query exploration. By entering a query, a knowledge graph can be
visualized based on their selected semantic services. autolinks search bar does not only
support for a single query from a single semantic service but also multiple queries from
multiple semantic services.

• Side navigation (Nodes/Edges details)

Figure 3.14: Properties of Nodes / Edges

The nodes/edges details are placed in the side navigation, which is meant to display the
details or the nodes/edges including metadata and sources. The metadata in the side
navigation is entirely user-based and editable. In the metadata menu, users can add new
metadata values or change the label of the node by adding label text as metadata key
and desired value as metadata value and then clicking the update button. The sources
menu is principally the provenances that we have already mentioned in the introductory
chapter; we can select sources of nodes/edges information from the uploaded documents
or semantic services.

36

3.4 Broker

Broker is responsible for forwarding information between a client and services and to
handle user data and authentication. A single broker can manage multiple services, and these
services provide information as resources triplets through a broker. autolinks implements
Service-oriented Architecture or Service-Driven Architecture. With this architecture, it
enables the user to plug in or remove services in the autolinks runtime.

Modules in the Broker
Modules available in the broker are service, user, NLP, storage, and maintenance.

• Service

In general, service module provides a list of active semantic services and returns a list
of resources for the knowledge graph extraction.

• User

User module manages user authentication from the registration of a user, information of
a user, deletion of a user, and user update.

• NLP

NLP module analyzes the text from uploaded documents and extracts the information
within the text to obtain significant entities such as people, places, or organizations and
their relations.

• Storage

The storage module is vital to read and write of user data. The process of editing
resources and documents is also done in this service. To annotate a new entity, we can
use addannotation endpoint via this service.

• Maintenance

Maintenance module is the property to handle the availability of the broker and to
handle the error of the prototype. User data and the storage can be reset via this service.

3.5 Technology Stacks

In this section, we introduce the programming languages and frameworks used in the
autolinks’ architecture both the backend and the frontend. We focus only on the main
components without minor libraries and explain the reasons upon their selection.

37

Backend: Broker and Semantic services
We use Node.js9 for the autolinks backend implementation. By its event-driven, non-

blocking I/O model, Node.js was chosen since this model makes Node.js lightweight and
efficient. The input/output model is normally a blocking I/O model where in this blocking
method, a scenario from a user needs to be finished first before performing another scenario
from another user. In a non-blocking I/O, we can initiate a scenario to be independently
carried out, thereby, the server could handle multiple requests at the same time.

Node.js is built as an asynchronous event-driven Javascript runtime on Chrome’s V8
Javascript engine and bundled with npm10 (Node package manager) that loads modules or
packages from the third parties, which make the development efficient and faster. This package
manager for Javascript allows to manage dependencies of the project and modularize the
project.

For the development of autolinks API, we use swaggerUI11 for the design, development
and the first approach of documentation. This tools supports multiple programming languages
for the client and server code and manage to have proper documentation for REST services
testing. This tool enhances the experience of the developer with interactive documentation of
API. This tools also enforces to have a standardization for the API architecture; thereby, our
service implementations must follow interfacing policies such as parameter and return type.

Since at the beginning of development, autolinks focuses on the medical domain. For
this reason, Natural Language Processing module that could recognize information from the
medical perspective needs to be used. In this case, we chose Apache cTAKES12.

Apache cTAKES (clinical Text Analysis and Knowledge Extraction System) is an open-
source natural language processing module for information extraction from electronic medical
record clinical text. The reasons why we choose Apache cTAKES are not only that it is an
open source and 100% free project but also that it has a great performance since it could
process 50,000 clinical records per hour in the database or file-stored batches to create rich
linguistic and semantic annotations that can be used for the decision support systems in the
medical research.

Apache cTAKES was built upon Apache UIMA13 (Unstructured Information Management
Architecture), a framework that facilitates the analysis of unstructured content such as text,
audio, and video. This framework enables the modularization for Apache cTAKES so that it
can be customized to use any component, which is compatible in Apache UIMA.

We store resource triples data and annotation data into MySQL14 database and for the user
data, we use SQLlite3 due to experimental reason. Storing a large number of data will affect
the database performance. In this case, we need to use indexing tools to make indexing data
much quicker. An indexing tool that we use is Elasticsearch15.

9. https://nodejs.org/
10. https://www.npmjs.com/
11. https://swagger.io
12. http://ctakes.apache.org/
13. https://uima.apache.org/
14. https://www.mysql.com/
15. https://www.elastic.co/products/elasticsearch

38

The backend services, visual information management client, and the database are con-
tainerized by Docker16. Docker is a platform to build, ship and run applications in local and
cloud. It provides scalability and independence of Operating System and actual implementa-
tion.

Visual Information Management
The client, visual information management, is developed fully in JavaScript with frame-

works and library both for the development of front-end web application and for the develop-
ment of a compound graph in knowledge graphs.

AngularJS17 was chosen to be the front-end web application framework since this frame-
work has already been in a stable release compared to the newer version of angular, which
was in inconsistent releases. Node.Js is implemented for the front-end server as a middleware
to utilize the API from the backend with npm as the package manager.

autolinks was built as an HTML5 canvas-based application for drawing the knowledge
graphs for performance reason, unlike other web applications, which are based on SVG/DOM
objects to draw knowledge graphs. We need to make sure the framework that we used is
compatible with the utilization of HTML5 canvas. Even though the newer version angular is
getting more popular now and also its contender, which is ReactJS becomes the most popular
front-end framework to be used. It does not mean they are the best choice for developing an
HTML5 canvas-based application since they have different natures such as the implementation
of Virtual DOM in ReactJS. Compared to the newer version of angular, AngularJS has a better
learning curve so that it makes the development of autolinks project faster.

The core of visual information management is the compound graph. This kind of graph
was enabled to be extracted for the creation of knowledge graphs by the implementation of
Cytoscape.js18. Cytoscape.js [Franz et al., 2016] is an open-source JavaScript-based graph
library. Its most common use case is as a visualization software component, so it can be used
to render interactive graphs in a web browser. It also can be used in a headless manner, useful
for graph operations on a server, such as Node.js. Cytoscape.js provides a JS application
programming interface (API) to enable software developers to integrate graphs into their
data models and web user interfaces. What makes Cytoscape.js different from any other
visualization libraries is that Cytoscape.js supports numerous graph theory use-cases such as
directed graphs, undirected graphs, mixed, loops, multigraphs, compound graphs, and other
kinds of graphs.

Most network visualization libraries have a limitation to draw a more generalized hierar-
chies model and only supports clustering edges and nodes in one level. On the other hand,
Cytoscape supports compound graph, which becomes the basis of autolinks visualization.
This kind of graph enables multi-level of grouping or generalization.

16. https://www.docker.com/
17. https://angularjs.org/
18. http://js.cytoscape.org/

39

4 Backend

In this chapter, we explain the backend of autolinks. The backend is responsible for
Information Extraction (IE) and data storage. The information extraction is processed by NLP
modules managed by the broker and the results of information extraction will be stored in
the database. The broker also returns the server response with triples format to be visualized
in the information management for the purpose of knowledge graphs visualization. In the
following sections, the purposes and the features of the backend will be discussed in more
details.

4.1 Broker

autolinks implements a service-oriented/driven architecture, and to enable that we use a bro-
ker component. The broker component is responsible for the coordination of communication
among multiple services, such as for forwarding requests, as well as for transferring results
and exceptions. Our broker is also responsible for managing user authentication, services,
NLP modules, storage management for resources and documents, and also maintenance.
These modules are explained as follows:

Service
The service module manages the connected semantic services and notifies the visual

information management about a list of active semantic services. These active semantic
services then generate a list of triples’ resources for the knowledge graph extraction in the
frontend. Other functionalities of this module are distributed at some module endpoints and
they can be seen at Figure 4.1. From these endpoints, only some endpoints are used by the
visual information management. Starting from GET service/listService endpoint, it gives the
active semantic services to the visual information management. The active semantic services
will then be visualized in the autolinks main navigation.

The POST service/call endpoint is the key to build the knowledge graphs. This endpoint
returns the triples to the visual information management, and the information management
will extract the triples to be nodes as entities and edges as relations. This endpoint requires
the service name, version, path, method, offsets detail and context. We need to specify the
offset length of the context in the offsets data value and the query given by the user in the text
value of the context. Every time a user enters some queries in the search bar, each query will
be posted to the context value in a single request to the server and this endpoint will be called
according to the number of queries given.

40

Figure 4.1: Service endpoints

User
User module manages user authentication from the registration of users, information of

users, deletion of users, and update of users. GET user/info endpoint gives the details about
the current logged in user starting from the id, name, active status, registration time and last
seen time. For the user registration, at the moment autolinks only requires name and password
and it is done via POST user/register endpoint. For deleting a user, it can be executed via
GET user/delete endpoint and for updating a user authentication data, it can be performed via
POST user/update endpoint.

Figure 4.2: User endpoints

NLP
NLP module analyzes the text from uploaded documents and extracts the information

within the text. A standard NLP module extracts significant entities such as people, places, or
organizations, In autolinks, we extract more specific entities in the medical domain such as
anatomical site mention, medication mention, procedure mention, and also token annotations
such as punctuation token, numeric token, and word token. There are two main endpoints
in the NLP module, which are GET /nlp/analyze/did and POST /nlp/interpret/did. Analyze
endpoint requires a document identifier to extract the information from the chosen document.
This process involves Named Entity Recognition (NER), which will be explained more details
in the information extraction subchapter. After the NER and relation extraction processes, this

41

endpoint returns the annotation responses, which are composed of properties, discontinuous
offset (doffset), type and analyzer of entities. It starts from splitting the document text in
sentencewise, sentence by sentence then it returns the annotations of that sentence, entity by
entity.

Figure 4.3: NLP endpoints

The properties provide details of the entity including the identifier, concept unique identifier,
unique type identifier, preferred text, and others. Below is the example of analyzing endpoint
response from the ’T cell’ annotation.

1 {
2 "properties": {
3 "id": "0",
4 "cui": "C0039194",
5 "tui": "T025",
6 "code": "57184004",
7 "score": "0.0",
8 "typeID": "6",
9 "generic": "false",
10 "polarity": "0",
11 "historyOf": "0",
12 "conditional": "false",
13 "uncertainty": "0",
14 "codingScheme": "SNOMEDCT_US",
15 "disambiguated": "false",
16 "preferredText": "T-Lymphocyte",
17 "discoveryTechnique": "1"
18 },
19 "doffset": {
20 "offsets": [
21 {
22 "from": 54,
23 "length": 7
24 }
25]
26 },
27 "type": "AnatomicalSiteMention",
28 "analyzer": "CtakesNLP"
29 }

Listing 4.1: Server response of analyze endpoint

Listing 4.1 displays the details of ’T cell’ entity. From the example given, ’T cell’ has
properties such as a concept unique identifier = C0039194, a type unique identifier = T025, a
preferred text = "T-lymphocytes", etc. For the offsets, it starts from the string position 54 with
length of the string 7. Type key here is the annotation type and this key plays a significant role

42

for the visual information management since with this type key, the frontend could identify
which annotation types that the user wants in the document.

From the example above, the ’T cell’ has an annotation type ’Anatomical Site Mention’
given by the apache cTAKES Natural Language Processing as the analyzer. With this type
value, the user could enable the ’Anatomical Site Mention’ as the annotation type and the ’T
cell’ annotation will then be shown/highlighted in the document text.

The NLP interpret endpoint provides the process of information extraction at the annotation
of entity by providing the annotations at a given offset/doffset. It requires not only the
document identifier but also the chosen text offsets for both offset-from and text length.
The process of this endpoint extracts the information from the offsets given and returns
its interpretation to the information management. The interpretation result produces the
annotation resources with metadata and provenances (traceable sources). This annotation
resources will then be visualized as annotation nodes in the graph view and they will be
located inside a special container namely annotation container. An example of annotation
node ’T cell’ with opened details (metadata and sources) view is shown in Figure 4.4. The
annotation nodes and the annotation container will be discussed futher in the chapter visual
information management.

Figure 4.4: An annotation node ’T cell’ with details view

Metadata in annotation resources are fully editable. It consists of the properties of the
annotation nodes given by the cTAKES NLP and a label, which is used for node labeling.
Provenances, which are the traceable sources in autolinks support users to have an extra
knowledge where the information comes and has relations. The concept of provenances in
autolinks is mainly to provide the source of origin of the nodes and it is located on the sources
menu in the side navigation of the nodes details. With sources, a concept / a node has an
ability to access its sources of information for both documents and semantic services. Users
can jump to the related document with its specific sentence or users can rebuild the knowledge
graphs from the related semantic service.

1 "sources": [
2 "annotation::CtakesNLP:AnatomicalSiteMention:1:54:61",

43

3 "service::Demo/demo/0.0.2/post/?q=T%20cells"
4]

Listing 4.2: Server response of interpret endpoint

Sources from semantic services and sources from a sentence in the document have different
structures key given by the interpret endpoint, shown in the Listing 4.2. Semantic service
source key starts from "service::" string, followed by the name of the service, path, version,
method, and closed by the value of the query given by the users. The document source key
starts from "annotations::" string, followed by name of the NLP analyzer, annotation type,
document identifier, starting offsets, and closed by the end value of offsets.

Storage
The storage module is a vital part of reading and writing of user data. The process of

editing resources and documents is also performed via this module. GET /storage/document
endpoint is used for getting the list of uploaded documents with or without the details of
the documents. The details of the documents consist of a document identifier, a filename, a
mime-type, an encoding, and an analyzed status. To upload a document, we can use POST
/storage/document endpoint with an option to overwrite or to not overwrite the old uploaded
file.

After a new document is uploaded, the document is analyzed by GET /nlp/analyzed/did
endpoint and interpreted by POST /nlp/interpret/did endpoint. After these process finished,
we can modify the document and the content with the rest of available endpoints. GET
/storage/document/did is used for getting the content, info, or analysis of the documents. The
content parameter provides the document to be downloaded; the info parameter shows the
details of the documents; and the analysis parameter returns the analyzed responses about
the annotations type, offsets, and properties of an entity in the document content. Finally, to
update the analysis of a document, we can use POST /storage/document/did endpoint and to
delete a document, it can be done via DELETE /storage/document/did.

44

Figure 4.5: Storage endpoints

The storage module handles not only documents but also handles the triple resources com-
posed by the subject, predicate, and object for the knowledge graph creation. The resources can
be added, edited, or deleted by only a single endpoint, which is POST /storage/resource/edit
endpoint. This endpoint specifically requires an old resource and a new resource for a change
in the model. For creating a new resource, the parameter "before" as an old resource needs
to be set to null in the request body. For removing a resource, the "after" parameter needs to
be set to null in the request body, and for editing, both parameter "before" and "after" needs
to be set to old resource and new resource with same resource id. The editing process in
this endpoint is typically applied to update the compound/parent id and the metadata of the
resource.

To support the implementation of provenances concept, GET /storage/resource/search and
GET /storage/resource/get endpoints are provided in autolinks. GET /storage/resource/search
is an endpoint to find resources based on a search query and return their full resources or only
sources properties. The similar approach also can be performed via GET /storage/resource/get
endpoint. With this endpoint, we can get the desired resource with a source key. This source
key is important to find the related knowledge graphs and related sentence in the desired
document so that the users know the sources of information from a single concept or node.

Annotating a new entity in the document text with an existing annotation type or a new
annotation type can be performed via POST /storage/document/did/addannotation endpoint.
This endpoint requires a document identifier, an annotation type, an offset, properties and an
analyzer in the request body. With this endpoint, a user can have more annotated entities in
the document text with more affluent annotation types.

Maintenance
Maintenance is the module to handle the availability of the broker and for error handling.

45

Whenever the error comes produced by the bug from both backend and visual information
management, it can be handled by this module. This module is mainly to reset the autolinks
database.

Figure 4.6: Maintenance endpoints

4.2 Triples

Semantic triples or simply triples is an ordered 3-tuple of <subject, predicate, object> in
Resource Description Framework (RDF). The subject could be a URI or a blank node; the
predicate is a URI; and the object could be a URI, a blank node or a literal. This blank node is
an unnamed resource, where it is regularly applied for a structured value representation. In
autolinks, we specifically only use a subset of RDF(triples) and we do not use a blank node,
list or properties.

As it has already been mentioned in the previous paragraph, the representation of triples is
in the Resource Description Framework (RDF). The RDF is a general-purpose language for
information representation in the web. This data model consists of a statement set, wherein
each of it contains a subject, a predicate, and an object.

Resource Description Framework
The Resource Description Framework (RDF) is a language for the representation of

resources. This resource can be anything such as a web page, an entire website or anything
that contains information on the web [Candan et al., 2001]. It enables the exchange, reuse,
and encoding of structured metadata and allows the interoperability of metadata to support
common conventions of semantics, syntax, and structure.

Variety of applications that implements RDF concepts involve Resource Discovery where
RDF enables search engines to identify resources on the web efficiently. Cataloging the RDF
enables users to describe the content and the relationships in particular web site or digital li-
brary; Intelligent Software Agents where RDF facilitates knowledge exchange and sharing and
supports software agents to filter, find, and merge data intelligently [Candan et al., 2001].

RDF has many formats, and one of the popular formats is turtle format. Terse RDF Triple
Language (Turtle) format is an RDF serialization syntax, which constructs a Notation 3 (N3)
syntax subset, a shorthand non-XML serialization for RDF models[Domingue et al., 2011].
Since N3 is designed with human-readability in mind, it is far more readable and compact
than XML RDF notation.

46

Figure 4.7: RDF example in Turtle format [Harth et al., 2011]

An example of RDF in turtle format is depicted in Figure 4.7, describing group music
"ABBA". We can see that in turtle, one can use abbreviations after the @previx. This previx
is used to abbreviate the URIs and is aimed to have a better readability of the graph pattern.
We can see that the syntax is @previx abbr ’:’ <URI>, where the URI is in an angle brackets,
and each triple is separated by a dot ’.’ and for the new property in the repeating subject, it
can be separated by semicolon ’;’.

From the example given, we can see that the subject is ’http://www.bbc.co.uk/music/artists/
d87e52c5-bb8d-4da8-b941-9f4928627dc8#artist’, which has some properties or predicates
’rdf:type’, ’foaf:name’, ’foaf:homepafe’, ’mo:image’, ’mo:member’, ’mo:musicbrainz’, ’mo:wikipedia’,
and ’owl:sameAs’. We can notice that each property is seperated by ’;’ and each of them be-
longs to the mentioned subject. The objects are ’ABBA’, ’mo:MusicArtist’, ’mo:MusicGrozp’,
’http://www.abbasite.com/’ and the rest of the URLs. To understand that this RDF is explain-
ing about group music ’ABBA’, we can take a look at the <subject, predicate, object> relation
wherein ’http://www.bbc.co.uk/music/artists/d87e52c5-bb8d-4da8-b941-9f4928627dc8#artist’
is a subject, ’foaf:name’ is a predicate, and ’ABBA’ is an object in which the ’ABBA’ ob-
ject is a partial content of the mentioned subject. The other properties such as ’rdf:type’ ->
’mo:MusicArtist’, and ’rdf:type’ -> ’mo:MusicGroup’ also contribute for the explanation.

Service Resources
As it is already mentioned in the chapter of Background and Related Works, autolinks

implements a subset of RDF with an extension to facilitate compound graph implementation.
This schema allows the resources of triples to accommodate other resources inside a parent
resource. The parent resource is the one that acts as the compound node where graphs could
be put inside this type of node. Resources in autolinks are as follows:

• Resource: list-of-resources | <subject, predicate, object> triple | descriptor

• Subject: Resource

• Predicate: Resource

• Object: Resource

47

One resource, which has a value of <subject, predicate, object> triples represents two nodes
with the relations. Subject forms the source node, object forms the target node, and one full
triples resource is principally a three resources, which have a string value or a descriptor, and
a triple <subject, predicate, object> shapes its relation, and this triple is basically the edges, so
the edges can be created once it knows where the source node is and where the target node
is.

A resource again can be a list of resources, a string descriptor, or a triple resource. Once
it has a value of resources list, this resource is called a parent resource, and it shapes the
compound node. The recursive process of resources forms children nodes and their relations
inside this compound node. A single string resource, which has a descriptor or string value is
interpreted as a single node without any relation.

To give more explanation about how a resource with a list of resources value could facilitate
the compound graph implementation, we present a simple example of ’BCR’ resources
provided by the demo service:

1 {
2 "rid": 11357,
3 "value": [
4 {
5 "rid": 11355,
6 "value": {
7 "subject": {
8 "rid": 11347,
9 "value": "B-cell receptor",
10 "cid": 11357,
11 "metadata": {},
12 "sources": [
13 "service::Demo/demo/0.0.2/post/?q=B%20cell"
14]
15 },
16 "predicate": {
17 "rid": 11349,
18 "value": "binds",
19 "cid": 11357,
20 "metadata": {},
21 "sources": [
22 "service::Demo/demo/0.0.2/post/?q=B%20cell"
23]
24 },
25 "object": {
26 "rid": 11340,
27 "value": "Antigen",
28 "cid": 11357,
29 "metadata": {},
30 "sources": [
31 "service::Demo/demo/0.0.2/post/?q=B%20cell"
32]
33 }
34 },
35 "cid": 11357,
36 "metadata": {},
37 "sources": [

48

38 "service::Demo/demo/0.0.2/post/?q=B%20cell"
39]
40 }
41],
42 "cid": 11359,
43 "metadata": {
44 "label": "BCR"
45 },
46 "sources": [
47 "service::Demo/demo/0.0.2/post/?q=B%20cell"
48]
49 }

Listing 4.3: BCR resources example

From the Listing 4.3, we present the structure of semantic triples in Javascript Object
Notation (JSON) format. Each resource structure has four primary keys, which are a resource
identifier (rid), a compound/parent identifier (cid), a value, and metadata, and also an additional
key, which is sources. Everytime a user calls a service, unique rids are generated, and cids are
generated according to rids of resource parents.

In the example, we could see that the parent resource identifier has a numeric value 11357.
What makes this resource represent the compound node is in its value. It has a value key
where the value is an array or a list of resources. Moreover, we can take a look at the bottom
part of the Listing where we can see a cid, metadata, and sources. It has a cid of particular
value since this example is only a subset of more extensive resources. Moreover, the structure
of the whole resources if we show all of them could be even more profound from the ancestor
resources to the descendant resources.

This resource forms a compound node called ’BCR’ since it has a label value ’BCR’ in
the metadata. The source key provides the provenances (traceable sources) where we can
identify the relation of this resource to any related service or document that has been created
or edited by the users. Inside of ’BCR’ resource value, we have one child resource since it
only contains one array value. In this resource value, we have a subject, predicate, and object
triple format that forms the source node ’B-cell receptor’, the target node ’Antigen’, and the
relation ’binds’ between those nodes. From the example given, we can see that the resource
principally describes ’B-cell receptor binds Antigen’.

4.3 Semantic Services

Recently, service-oriented architecture (SOA) has progressively been adopted as the most
approaches for developing advanced and complex distributed systems by combining reusable
parts and likely distributed components known as services. This software engineering ap-
proach demands procedures to be automated and semi-automated to accomplish. Due to the
requirements for services location and searching, also choosing the appropriate ones and
assembling them into complex processes in the SOA, semantics is used as a key to obtain a
more advanced level of service-orientation automation in order to enable the benefits of data
search, integration, and analysis [Pedrinaci et al., 2011]. Those aspects consequently led to
the standardization of Semantic Web Services’ research and development. The standardization

49

involves ontologies and algorithms’ developments to discover, select, compose, and execute
services automatically or semiautomatically.

Semantic web service or semantic service have been seen as tools to provide an infras-
tructure for semantic web agents. It is a software system powered by semantics that delivers
a piece of business functionality through standardized protocols and computer networks
[Domingue et al., 2011]. autolinks’ semantic services identify entities and their relations
from available service sources, such as Wikimedia indices, then extract and annotate those
entities with their relations in RDF format. The service also produces semantic metadata for
each resource by using Natural Language Processing components. The annotation resources
or nodes given by semantic services provide provenances (traceable sources), the ability to
connect related documents or related knowledge graphs.

Semantic services, which are available in autolinks at the moment are wiki service and
demo service. Wiki service gives access to Wikimedia indices: such as Wikidata, Wiktionary,
and Wikipedia. Demo service is only for demonstration and testing purposes.

4.4 Information Extraction

One of the backend server responsibilities is to do an information extraction. We extract
the information from the documents uploaded by the users and provide the analysis and
interpretation. The analysis process extracts the text from the uploaded documents and
returns the whole analysis including annotation types, properties such as canonical form,
capitalization, num position, part of speech tagging, and token number, discontinuous offset
where it has multiple offsets giving the start and the length of the offset, and the analyzer.

The interpretation process interprets each offset inside the uploaded document and returns
the annotation resources based on the selected offset. These annotation resources will be
inserted into a special container called annotation container. This particular container is a
non-editable container and relations cannot be performed towards this type of container. Each
annotation resource affords unique properties such as resource identifier, value, metadata, and
sources. The value is a descriptor composed by the analyzer, annotation type, document id,
start and end offsets in a string.

In the field of semantic annotation, Information Extraction (IE) becomes one of the most fre-
quent methods to use. IE is a natural language analysis form to explore the structured informa-
tion from unstructured text and formal knowledge expressed in ontologies. The main tasks per-
formed during the process of information extraction are [Bontcheva and Cunningham, 2011]:

• Named Entity Recognition (NER), to identify and classify different types of entities
such as people, places, or organizations from natural language text.

• Coreference resolution, the process to resolve referents and to have a decision in
measuring the similarity between two language expressions to the same entity.

• Relation extraction, to identify relations between entities from natural language text.

Besides those tasks other Natural Language Processing (NLP) components such as Part-Of-
Speech (POS) taggers, semantic interpretation, and morphological analyzer are also involved
in information extraction.

50

Medical Entity Extraction
Since the beginning of the development of autolinks, autolinks focuses on the biomedical

domain and that is why Medical Entity Recognition (MER) is implemented. MER is responsi-
ble for identifying and classifying entities type in the biomedical domain such as Anatomical
Site, Disease Disorder or Medication.

For the MER implementation, Apache cTAKES is chosen to be the tool. Apache cTAKES
(clinical Text Analysis and Knowledge Extraction System) is a natural language processing
system to extract the information from electronic medical record clinical free-text. This
tool is built on the existing open-source technologies such as Apache UIMA (Unstructured
Information Management Architecture) framework and OpenNLP natural language processing
toolkit [Savova et al., 2010].

Apache cTAKES is composed by a pipelined components in a modular system by com-
bining rule-based and machine learning techniques with a purpose to enable information
extraction in the clinical narrative. Some components or annotators that are available in the
Apache cTAKES are Sentence boundary detector, Tokenizer, Normalizer, Part-of-speech
(POS) tagger, Shallow parser, and Named entity recognition (NER) annotator, including status
and negation annotators [Savova et al., 2010].

We present an example of a sentence extracted and analyzed by cTAKES in Figure 4.8 with
a sentence text ’family history of obesity but no family history of coronary artery diseases.’
where Fx is family history.

Figure 4.8: A sentence example extracted from cTAKES- components, Figure taken from
[Savova et al., 2010]

From the example above, we could comprehend about the role of each component in
apache cTAKES. Starting from the cTAKES sentence boundary detector, it predicts whether

51

a question mark, a period or exclamation mark in the sentence is in fact at the end of that
sentence.

Tokenizer component of cTAKES has two subcomponents. The first subcomponent is
basically responsible for splitting the internal sentence text between the punctuation and
space, even though the process is actually more complicated. The second subcomponent
is responsible for merging tokens for the creation of data, fraction, measurement, person,
title, and time tokens with the implementation of finite state machines for each of the types
[Savova et al., 2010].

The component of the SPECIALIST Lexical Tools19, which we call it "norm" is wrapped
around by the cTAKES normalizer. The normalization gives a representation to words that
have been normalized with respect to a lexical properties numbers, which include alphabetic
case, inflection, punctuation, spelling variants, genetive markers, diacritics, stop words,
symbols, and ligatures20. The normalizer normalizes each word to the base form. Yet in
autolinks, we do not use the normalizer component.

The cTAKES Part-of-speech tagger annotator processes the text and assigns each word
its part of speech types such as noun, verb, adjective, preposition, adverb, and others. This
annotator together with the cTAKES shallow parser is the wrappers around OpenNLP’s
modules. The shallow parser annotates the text based on their types of phrase such as Noun
Phrase (NP), Verb Phrase (VP), Prepositional Phrase (PP), Adjective Phrase (AP), or Adverb
Phrase (AdvP).

One of the essential components in cTAKES is cTAKES NER component. This component
uses a terminology agnostic dictionary look-up algorithm inside a noun-phrase look-up win-
dow. Every named entity is connected to a particular concept through from the terminology the
dictionary look-up, where the dictionary used is a Unified Medical Language System (UMLS)
subset [Philip Ogren and Chute, 2008]. This dictionary includes Systematized Nomenclature
of Medicine Clinical Terms (SNOMED CT) concept21 where it is used for the electronic con-
version of clinical health information and also as a standard in interoperability specifications
for the U.S. Healthcare Information Technology Standards Panel, and RxNorm concept22,
which presents normalized names for clinical drugs and connects its names to many drug
vocabularies commonly used in drug interaction software and pharmacy management. These
concepts are guided by the consultations from practitioners and clinical researchers. Figure 4.8
shows NER annotates obesity with disease/disorders type, UMLS CUI, and its SNOMED-CT
codes, and it annotates corona artery with anatomy type.

The cTAKES negation annotator performs the NegEx algorithm. This algorithm is a pattern-
based approach to find words and phrases denoting negation near named entity mentions.
Similar to the cTAKES negation annotator, the cTAKES status annotator implements a
comparable method to find connected words and phrases that show the status of a named
entity.

Each component performed in cTAKES has various performances. From [Savova et al., 2010],
it shows that the cTAKES sentence boundary detector and cTAKES tokenizer have an accuracy

19. http://www.SPECIALIST.nlm.nih.gov/
20. http://www.lexsrv3.nlm.nih.gov/SPECIALIST/Projects/lvg/current/docs/userDoc/index.html
21. https://www.nlm.nih.gov/healthit/snomedct/
22. http://www.nlm.nih.gov/research/umls/rxnorm/

52

0.949; the cTAKES part-of-speech tagger has an accuracy 0.936; the cTAKES shallow parser
has an F-score 0.924; the cTAKES named entity recognizer and system-level evaluation have
an F-score 0.715 for exact spans and 0.824 for an overlapping spans; the cTAKES concept
mapping has an accuracy 0.957 for exact and 0.580 for overlapping spans; the cTAKES
negation annotator has an accuracy 0.943 for exact spans and 0.939 for overlapping spans,
and the cTAKES status attributes have an accuracy for exact 0.859, and for overlapping spans
0.839.

53

5 Information Management Visualization

This chapter explains concepts of visualization in information management that allows
users to access information and gain new knowledge. The information management in
autolinks mainly focuses on how to visualize the data given by semantic services and deliver
the knowledge to the users in knowledge graphs.

5.1 Knowledge Graphs

The foundation of visualizing knowledge graphs in autolinks is based on a network concept
called a node-link diagram [Battista et al., 1998]. This visual representation is a common
representation for the knowledge graphs to draw vertices as circles or similar shapes and edges
as lines. Nodes or vertices have additional information such as entity name, organization,
location, or any other information properties. Meanwhile, links or edges have relational
attributes among nodes and can contain an arrow for the direction in the directed graph model,
or vice versa in the undirected graph model.

Compared to other alternatives for networks visual representation such as matrix-based
representations, [Ghoniem et al., 2005] said that node-link representation tends to be more
intuitive, readable, and less abstract, so that this representation is suitable for our knowledge
graph visualization.

Entities as Nodes
Nodes represent entities. In the ontology concept, an entity is something that exists

[Gruber, 1993], and it could be as a subject or as an object. In Figure 5.1, we can see that we
have two entities, which are ’B-cell Receptor’ and ’Antigen’.

Figure 5.1: Entities as nodes

The shape of circles for entities is, in fact, an ellipse shape with the same width and
height values so that it draws a circle shape. We chose the circle shape since this shape is a
convention in the node-link diagram. Other shapes that are provided by cytoscape.js are a
triangle, rectangle, round rectangle, barrel, rhomboid, diamond, pentagon, hexagon, octagon,
star, and others.

In autolinks, we include additional information such as a label as a name of the entity or
other attributes such as metadata and traceable sources in the nodes.

54

Relations as Edges
In the node-link diagram, the relations between nodes are represented as edges/links. They

are drawn with arrows shape with a direction connecting two nodes to specify which one is
the source nodes or target nodes. It indicates that relations between these entities exist.

In Figure 5.2, we can see that the edge has a label text in the middle with text "binds"
to determine the semantics of edges. It implies that the ’B-cell receptor’ has a binding
relationship to ’Antigen’.

Figure 5.2: Relations as edges

The edges in autolinks are drawn as a straight line, but the edge curve type that autolinks
uses is bezier edges. This edge type enables autolinks to have a straight edge for a single
relation between two entities and to have separated perfect curve edges for two or more
connections between entities. In the cytoscape.js library, there are other supported edges types
such as unbundled-bezier edges, segments edges, or haystack edges.

The unbundled-bezier edges type is another type of bezier edges but with manual control
points so that the curve point can be set manually with value 0.25, 0.5, 0.75. Moreover,
even smaller or larger amounts can also be arranged. The segment edges type is a series of
straight lines, and haystack edges type is a type of edges that draws bundled consecutive edges.

Visual states of nodes and edges

Nodes and edges in autolinks are designed to have four visual states. These four visual
states, which are ’Normal’, ’Focus’, ’Highlighted’, and ’Same Entities highlighted’ can be
seen in Table 5.1.

• “Normal” state is a typical representation for nodes and edges.
When there is no interaction by the user towards nodes or edges, they are displayed
without any specific effect of highlighting. Nodes are colored blue, and edges are
colored light grey.

• “Focus” state is the visual representation for a node or an edge, which becomes a focus
by a user.
This condition happens when a user clicks a particular node. Then the node will turn
to light blue with border color blue. Once the selected node is in the focus state, the
connected edges of the node will also turn to blue color. However, if the user clicks an
edge, only that edge that shifts to blue color and the connected nodes are not affected.

55

Visual States Node Edge

Normal

Focus

Highlighted

Same Entities
Highlighted

Table 5.1: Visual states of nodes and edges

• “Highlighted” state is triggered when the user hovers over a node or an edge. This
visual state is needed to visually highlight a part of knowledge graphs that are currently
investigated by a user. Similar to the focus state, the highlight state on nodes also drives
the highlight state on edges, but not the other way around.

• "Same entities highlighted" is a visual state that is activated when two or more identical
entities in the knowledge graphs exist.
This visual state helps a user to discover same entities/nodes, which are placed in
different hierarchies or knowledge graphs generated by different semantic services. This
visual state is really beneficial for users to explore nodes, which have the same labels
but in the different hierarchies.

5.1.1 Building a Knowledge Graph

As a bottom-up approach information management, ontology in autolink is defined starting
at the most specific concept. It can be done by building knowledge graphs manually or by
developing knowledge graphs that are generated by semantic services.

At the moment autolinks cannot retrieve the data of knowledge graphs, which are created
outside a service compound node. It stores the update knowledge graphs based on resource
container generated by semantic services, which later on can be retrieved from query ex-
ploration. Nodes, which are created outside a service compound node, are stored but not
yet retrievable. As a bottom-up information management tool, users are prioritized to build
their own ontologies with knowledge graphs provided from the source of information or start
from annotations extracted from documents. However, users are still able to start building the
knowledge graphs outside a service compound node, and later on, merge them to a particular
service compound node in order to make them retrievable.

56

Figure 5.3: An example of knowledge graph ’BCR’

To build a simple knowledge graph, we can start by creating a single node in autolinks with
procedures that can be seen in Figure 5.3. After login, users can begin to have interactions
towards autolinks environment. A user can click somewhere in the graph canvas and hold the
cursor for a second. It will display a green circular context menu, which is used to create a
new node in the graph canvas by selecting an add icon (see Figure 5.3 (a)). Once an add icon
is selected, a new node is created immediately in the position of the cursor.

Each node that is created and generated by semantic services is equipped with qTip buttons.
A qTip is a library of the tooltip for Cytoscape framework that can contain a collection of
buttons for a single node. These qTip buttons are shown when a node is in a focus visual state.
A user clicks a node then buttons in qTip are shown and can be selected. For a new node, we
can update the node label by clicking an edit icon button. This button will toggle the side
navigation to appear on the right side of the screen. The side navigation here is designed to
display the node details including metadata and sources.

In metadata, we can change a label value for a node to the desired value. In example 5.3
(c), we can see that a label value ’new’ is replaced by ’B-cell Receptor’. Once a user clicks
the update button, the node label will immediately be changed, and the updated value is stored
in the database.

To create another node, we can again follow the procedure from Figure 5.3 (a) to Figure
5.3 (c). Once we have at least two entities, we can start to build a more general concept of
entity. It can be done by selecting the arrows icon of one node, then select another node as a
target. After clicking the target node, this procedure will display a modal asking for merging

57

two nodes. In the example of Figure 5.3 (d), ’Antigen’ is merged with ’B-cell receptor’. This
will eventually create a compound node that contains both, ’Antigen’ and ’B-cell receptor’.

Side navigation for creating a compound node will appear from the right side of the screen
after the user confirms to merge. We need to specify the label of the more general concept of
the knowledge graph by filling the input value with the desired value and clicking a create
button. In the example of Figure 5.3 (e), we choose ’BCR’ as a compound node since B-cell
Receptor is a BCR itself and Antigen is a part of ’BCR’ that refers to an antigen receptor of
the adaptive immune system.

After the confirmation of creating a compound node, the merged nodes will be surrounded
by an additional layer of abstraction. This layer is a node with a rectangle shape, which is
called a compound node. This particular node has a rectangle shape and contains a number
of child nodes. The dimensions of a compound node are determined by the bounding box of
the children nodes. The expanded version of a compound node will show the children nodes
around the bounding box, and the collapsed version of the compound node will only show a
small single node with a rectangle shape.

After a merging scenario, we can start to draw a relation between the nodes. Figure 5.3 (f)
shows the edge connecting ’B-cell receptor’ and ’Antigen’ inside the ’BCR’ compound node.
This relation can be drawn by selecting the chain icon in the qTip buttons and draw the edge
towards another node as a target where in this case ’Antigen’ node is a target node. There are
some scenarios to draw relations and to create compound nodes in autolinks. These scenarios
are explained more details in the next subsection.

5.1.2 Merging Nodes Scenarios

In this subsection, we will explain about merging nodes scenarios. As it is already explained
in Chapter 3, in autolinks, there are limitations of drawing relations towards nodes that have a
different level of hierarchies, so that these scenarios become important since merging nodes
would lead to different results especially when involving edges in the process of merging. The
scenarios are mentioned as follows:

• Similar to the procedure of merging in the previous subsection, merging a single node
without any relation to another single node, which also has no relations will raise side
navigation to create a new compound node.

• Merging a compound node without any relation as a source to a single node as a target
will also create a new compound node so that a more general compound node will be
created and contain the source compound node and a single target node.

• Merging a single node / a single compound node without edges as the source node to
another compound node as a target means that the source node, either a single node or a
compound node, will move the source node inside that target compound node. As the
target compound node is already a general concept and contains children nodes such
as regular or compound nodes, we just need to change the compound identifier of the
source node with the resource identifier of the target compound node.

58

• Merging a single node with relation to a single node with relation will create duplicates
of those nodes inside a compound node. If either a source node or a target node has
any relation, it will be duplicated. This scenario happens because if it is not duplicated,
these nodes will be merged inside a new compound and keep the relations connecting
nodes that have different hierarchies, which are not possible in autolinks.

5.1.3 Creating Relations Scenarios

Scenarios of edge creation are discussed in this subsection. autolinks has a standard rule for
drawing relations between entities: drawing relation is only possible in one level hierarchy. To
make it more understandable, we can take an example from the previous subsection ’Building
a knowledge graph’ in Figure 5.3. B-cell receptor node can draw relations to Antigen node
and vice versa. Both of B-cell receptor and Antigen node can not draw relations towards BCR
compound node since BCR compound node is in a more general level of a hierarchy.

When we create another node ’V(D)J recombination’ as an example outside BCR com-
pound, this node is able to draw relations to BCR compound node since they are in the same
hierarchy, at the root level of the graph. However, this new node can not ’directly’ have
relations towards B-cell receptor node and Antigen node since these nodes are the children
nodes of BCR compound node and in the lower level of BCR and V(D)J recombination
hierarchy. Instead, it will lead to a different scenario that will be explained as follows:

• In the same level of a hierarchy, a single node / a compound node can draw relations to
another single node or a compound node.

• Drawing relations, from a node directly to its parent node or its ancestor nodes, is not
allowed.

• Drawing relations to a node/compound that is in a different level of hierarchies and
ancestors from a source node will create a duplication of the target node. This duplicate
will be placed in the same hierarchy of the source node so that the source node will still
have a relation towards a target node but in the same hierarchy level.

Figure 5.4 shows an example of drawing a relation from a source node to a target compound
node, which has a different hierarchy than the source node. An edge is drawn from the ’B-cell
Receptor’ node to the ’B Cell - Antigen’ compound node, which is inside ’BCR’ compound
parent node. This relation will produce a duplication of the ’B Cell - Antigen’ compound
node and it places the duplicate to the same hierarchy of ’B-cell Receptor’. As it is already
explained that it is not possible at the moment to create a direct relationship between two
different hierarchy nodes since triples <subject, predicate, object> cannot be stored in the
different resources container. Triples needs to have the same compound identifiers where it is
only possible to be inside a single resource container with a single resource identifier.

59

Figure 5.4: Drawing relations to a node in different hierarchy

5.2 An Algorithm for Knowledge Graph Extraction

We discuss in this subsection about an algorithm that extracts the service resources given by
semantic services to be visualized as knowledge graphs in the visual information management.
Using a search bar, a user can do query exploration. From the query given by the user, the
visual information management will ask a request to get resources. The server responds with
service resources that contain triples for knowledge graph extraction.

In the previous chapter, we have already seen an example of BCR resources in Listing 4.3.
The structure of the resource starts from rid. This identifier becomes the outermost service
compound that will contain children nodes either normal nodes or compound nodes. The
process of extraction can be seen in Algorithm 3.

The resources given by the semantic services are in JSON format so that the following
algorithm is using JSON convention to access a value from the data object. First, we declare
two global variables for the nodes and the edges as empty arrays. These empty arrays are used
by Cytoscape library for adding a collection of nodes and edges. Then it will check whether
the resource given is empty or not.

60

Algorithm 1: CreateKnowledgeGraphs(r := Resources)
1: newNode := []
2: newEdge := []
3: if r 6= null then
4: if r.value = Array then
5: for r.value do
6: extractResources(r) // extracting list of resources, triples, or descriptor
7: end for
8: outermostEntity := assignEntity(r, parent =’outermost’) // returning an entity

from resources
9: else if r.value = Ob ject then

10: extractResources(r)
11: outermostEntity := assignEntity(r, parent =’outermost’)
12: else
13: outermostEntity := assignEntity(r, parent =’outermost’)
14: end if
15: if outermostEntity then
16: newNode := outermostEntity
17: end if
18: f ilterNode := f ilterNodeById(newNode) // filtering duplicate nodes in a resource
19: addNode(f ilterNode) // adding nodes to graph canvas
20: addEdge(newEdge) // adding edges to graph canvas
21: end if

Once the service resource has object data such as rid,value,metadata, this resource
data will automatically be an outermost service compound node based on the resource
identifier. Then, it checks the resource value whether it is an array, an object, or a descriptor.
As long as a value of resources is an array, it will be extracted in a recursive function
namely extractResources() for each value in the array. Once the value is a resource triples
(sub ject, predicate,ob ject) and each triple has a descriptor, it will be extracted directly to be
a source node, an edge, and a target node. If it is a descriptor in the outermost compound, it
will be extracted as a single node. It is a rare case but it still possibly occurs.

In the extractResources(), new nodes and new edges will be assigned after the triple
extraction by extractTriples() function. After the new nodes and edges are assigned, the
nodes will be filtered via f ilterNodeById() by filtering the duplicate resource identifiers
inside one compound resource. There is a possibility that same nodes or same resource
identifier could appear inside one compound or in the same level of a hierarchy. These nodes
are basically one node and no need to be visualized more than one node. Finally, the filtered
nodes and the new edges are visualized in the graph canvas by the addNode() and addEdge()
functions provided by Cytoscape library.

The following algorithm is a function that recursively extracts resources that have a deeper
value of array. A resource that has an array value will be assigned as a compound, and this
compound will be passed as a parent in the next recursive extraction of each compound values.
A resource that has triples object in its value will be extracted via extractTriples() function.
This function will categorize a subject as a source node, an object as a target node, and a

61

predicate together with the source node and target node as a relation. A resource that has a
value as descriptor will be assigned directly as a single node.

Algorithm 2: extractResources(t := Triples, p := Parent)
1: if t.value = Array then
2: for t.value do
3: compound := assignEntity(t, p)
4: newNode := compound
5: extractResources(compound.value,compound)
6: end for
7: else if t.value = Ob ject then
8: return extractTriples(t, p)
9: else

10: return newNode := assignEntity(t)
11: end if

Triples are extracted via extractTriples() function. First, this function accesses the value of
the subject, object, and predicate from the objects of JSON. Then it checks whether the value
of either subject, predicate, or object has another array value. If the value is a descriptor, this
resource will be assigned as a child node via assignEntity(). Otherwise, it will be assigned
again as a compound node that will contain other children nodes. The predicate is assigned to
new edge via assignRelation() function, which involves the value of subject, predicate, and
object as parameters.

Once the subject, object, and predicate are assigned as entities and relations. These variables
are ready to be attributed to the global variables, which are newNode and newEdge, which
later on these global variables will be executed as nodes and edges in the visual information
management. After assigning triples to global variables, the triples will again face the value
checking. Different to the array checking at the beginning of algorithm where the process of
array checking here is only for assigning the subject or object to be a compound or a single
node. This array checking will lead the triples to recursive extraction if the triples are still in
the compound form to extract the children nodes of the triples compounds.

The assignEntity() function or the assignRelation() function is basically a simple assign-
ment process for the properties of the resources and it returns a variable of object as a result,
which is ready to be shown in the graph canvas via addNode() or addEdge() function. In the
assignEntity(), these properties are the id of the nodes, resource id, the name for the node
label, metadata, path, and provenances. Before assigning the properties, it will first check
whether the resource is an outermost resource or not. Outermost resource/compound will
not have a parent property and compound identifier property since it is in the root hierarchy,
but a compound or a node definitely has a parent property. Similar to assignEntity(), the
properties that are in the assignRelation() are same as the properties in assignEntity() with
additional properties such as source and target properties. The source property for the edges
takes the source node identifier, and the target property takes the target node identifier to draw
a relation.

62

Algorithm 3: extractTriples(r := Resources, p := Parent)
1: s := r.value.sub ject
2: o := r.value.ob ject
3: p := r.value.predicate
4: if s.value = Array then
5: sub ject := assignEntity(s, p)
6: else
7: sub ject := assignEntity(s, p,child = true)
8: end if
9: if o.value = Array then

10: ob ject := assignEntity(o, p)
11: else
12: ob ject := assignEntity(o, p,child = true)
13: end if
14: predicate := assignRelation(p,s,o)
15: newEdge := predicate
16: newNode := sub ject,ob ject
17: if s.value = Array then
18: for s.value do
19: return extractResources(s)
20: end for
21: end if
22: if o.value = Array then
23: for o.value do
24: return extractResources(o)
25: end for
26: end if

5.3 Compound Graphs Motivation

A typical ontological app as it is already discussed in Chapter 2 is usually a flat graph
connected with common nodes and edges. We argue that it is not enough actually and we
need some kind of better representation, a notion of generic hierarchies. We can actually have
graphs recursively within nodes, and this concept is called compound graphs.

The following figures illustrate why flat graphs representation is not sufficient for repre-
senting concepts which have complex hierarchies. Graphs in the left of Figure 5.5 are flat.
To represent a ’rabbit’ or a ’turtle’ is an ’animal’ or to represent a ’race car’ or a ’bus’ is a
’vehicle’, it requires three nodes and two edges. In compound graph implementation, these
edges can be removed and as a replacement, two nodes will have a bounding box with a label
’vehicle’ and ’animal’. Just imagine when we have more complex hierarchies such as the
more general hierarchies and more specific hierarchies in the graphs.

63

Figure 5.5: Hierarchies from flat graph

Figure 5.6 shows the more complex hierarchies in the compound graphs. A ’mammal’ as
an example is the more general concept than a ’rabbit’, and a ’vertebrate’ is the more general
concept than a ’turtle’. In the compound graph implementation, we can quickly notice that
the ’rabbit’ is also a a ’mammal’, a ’vertebrate’, and definitely also an ’animal’. In contrast,
when we take a look at the flat graphs, we need to investigate first whether a ’rabbit’ node has
a relation to an ’animal’ node or not. This flat graphs representation decelerates our cognitive
process to understand the concept.

The more complex hierarchy in the concept, the more difficult is the flat graphs representa-
tion to comprehend. We can discuss another more complex example by adding an ’organism’
entity as a general concept of an ’animal’ and ’Belgian hare’ and ’wild rabbit’ as the specific
concepts of rabbit. Different from compound graphs representation where we can switch
the ’rabbit’ node to a compound node to accomodate the ’Belgian hare’ node and ’Wild
rabbit’ node and we can also add an additional layer of bounding box ’organism’ compound
to the ’animal’ graphs for the more general concept, In the flat graphs representation, it highly
depends on the edges as relations. We need to draw a relation from the ’animal’ node to the
’organism’ node and to draw relations from the ’Belgian hare’ node and the ’wild rabbit’ node
to the ’rabbit’ node.

With this representation in the flat graphs, it is even harder for users to notice that the ’rabbit’
and ’turtle’ are also a part of an ’organism’ and whether the ’Belgian hare’ and ’wild rabbit’
have a relation to ’animal’ and ’organism’ or not. In the flat graphs, there is no guarantee
that between nodes, which are separated by other nodes have a direct connection. To confirm
between these nodes have any meaningful relation, the user needs to do further observation
towards the flat graphs and it makes the cognitive process of the user even longer.

An option to make these kind of nodes to have a more obvious connection is that we
can draw more edges to help users to notice that there are relations among these nodes. We
can draw a connection directly from the ’Belgian hare’ node to the ’animal’ node or even
’organism’ node or we can draw a relation also from the ’turtle’ node to the ’vertebrate’ node.
But again this option is not a good solution when the concept has a deeper level of a hierarchy,
and it only makes the graph noisier and messier to be visualized. From this example, we can

64

conclude that the representation of compound graphs improve the cognitive process of the
user so that the user can quickly understand about the concepts compared to the representation
of traditional graphs.

Figure 5.6: More complex hierarchies for compound graphs

Different from flat graphs, compound graphs tackle the problems from a different perspec-
tive that happened in the flat graphs and facilitate the concepts with a more presentable look.
We can have another layer abstraction or bounding box representing organism around the
animal compound. The rabbit node can be switched to a compound that contains Belgian
hare and wild rabbit nodes. With this implementation, it is noticeable for users to see and to
understand the concepts faster without complex and crowded graph drawing.

Figure 5.7: Hierarchies based on properties

Another advantage of compound graph implementation is we can specify the hierarchy
level based on subjective preferences. Figure 5.7 shows that when there is no animal entity

65

or vehicle entity for more general hierarchy, flat graphs cannot categorize the rabbit and
turtle with their properties since the node representation should be an entity for the sake of
consistency. In compound graphs, we can classify the nodes inside a bounding box with a
label based on their identical property.

In autolinks, compound graphs implementation has a feature to expand and collapse the
compound graph itself and this feature will not be possible to be implemented in the normal
graphs. This feature aims to helps users to have a better management of complexity in the
knowledge graphs. When there are too many knowledge graphs in the graph view, we can
collapse some compound graphs to get some extra space and to improve the readability of the
knowledge graphs. If we want to revert back the compound graphs to the regular form to see
the details, we can expand them by clicking a plus button in the upper left of the compound
node. With these benefits of compound graphs, we aim to extract and visualize the data
by using compound graphs for a better representation of the concepts and to improve the
cognitive process of the user.

5.4 A Layout Algorithm for Compound Graphs

To manage knowledge graphs with compound nodes, we need to make sure to use a layout
that is suitable both for this kind of graph model and for Cytoscape.js network visualization
library [Franz et al., 2016]. Even though it is computationally more expensive, CoSE (Com-
pound Spring Embedder) - Bilkent layout [Dogrusoz et al., 2009] was chosen since this layout
produces near-perfect end results for the compound graphs. This algorithm supports com-
pound graphs handling with non-uniform sizes of the node, inter-graph edges, and clustered
and compound graph structures [Dogrusoz et al., 2009].

The algorithm behind the CoSE Bilkent layout has three significant phases with an initial-
ization phase:

1. Initialization: This initialization phase is a phase to calculate the size of initial nodes
and the values of threshold in order to determine convergence (based on nodes number)
and to perform randomly the nodes initial positioning. As reasons for the quality of
layout and also for the efficiency, some parts of the graphs, which are trees are removed
temporarily. It means that leaf nodes of root graphs are removed iteratively until there
is no such node is left. The remaining part of the graph then constructs the "skeleton"
of the graph.

2. Phase 1: This first phase is where the skeleton graph is constructed using the spring
embedder model, but at this phase the gravitational forces and application constraints
are disabled.

3. Phase 2: The leaf nodes where are removed earlier in the initialization phase are
introduced back in this phase as level by level. This phase also enables the gravitational
forces and application constraint.

4. Phase 3: The last phase is the stabilization phase, where the layout is polished.

66

The simplified algorithm is presented as follows:

Algorithm 4: CompoundGraphsLayout(GraphMgrM = (S, I,F))

1: Initialization()
2: set phase to 1
3: if layout type equals incremental then
4: set increment phase to 3
5: end if
6: while phase ≤ 3 do
7: state := maxIterCount[phase]
8: while (step > 0 or !allTressGrown) do
9: calculateSpringForces(M)

10: calculateRepulsionForces(M)
11: if phase 6= 1 then
12: calculateGravitationForces(M)
13: calculateRepulsionForces(M)
14: end if
15: calculateNodePositionsandSizes(M)
16: if phase = 2 and !allTreesGrown and step%GrowingStep = 0 then
17: growTressOneLevel(M)
18: end if
19: step + = 1
20: end while
21: phase - = 1
22: end while

Algorithm 4 is used by [Dogrusoz et al., 2009] to introduce a force directed layout algo-
rithm for undirected compound graphs, which can handle multilevel nesting with edges among
varied nesting levels and node sizes. The implementation of the algorithm is based on the
algorithm by [Fruchterman and Reingold, 1991]. The authors define the graph manager term
as M = (S, I,F) with S is the graph set S = G1,G2, ...,Gl , I as the set of inter graph edge,
and for the rooted nesting tree denoted as F = (V F ,EF). The compound graph topology in
this representation is divided into multiple graphs, which are nested within each other. The
geometry of compound nodes is represented by a rectangle, and the geometry of the nodes
could have varied shapes starting from circle, ellipse, star, etc. The size of a compound node is
associated with its children nodes and as big as the boundaries of the children nodes’ position.
The graph or compound graph that locates at the root of the nesting tree is simply called as
root graph.

The underlying simulated physical system in the layout algorithm was implemented to
satisfy the conventions of general drawing in compound graphs. This physical system
comprises "electrically charged" particles and connected via "springs" of a desired ideal
length, which are associated with the nodes and the adjacency edges in the graph. The objects
or nodes are considered to repel each other if only in the case where they are located in the
same graph and if any pair of objects that are located "too close" to each other, minor repulsion
forces are used in order to avoid overlaps between nodes. Additionally, a "gravitational force"

67

is introduced towards the center of each subgraph to keep graph components together. This
force is also used to handle multiple node sizes and is defined to be independent for the node
size or its center to the graph center in order to avoid overlaps with neighboring nodes. The
ideal length of the edges is computed according to the edge parts in between the end-nodes
borders.

In Algorithm 4, it has the calculation functions of spring, repulsion, and gravitation forces.
The spring force e = (u,v) is calculated as follows:

FS =
(λ− ‖ Pu−Pv ‖)2

η

−−→
PuPv (5.1)

In Equation 5.1, the lambda λ is the ideal edge length, mu η is the elasticity constant of
the edge and the positions of the nodes are u as Pu and v as Pv. The following algorithm is
implemented to compute the spring forces acting on each end of edges:

Algorithm 5: CalculateSpringForces(GraphMgrM)

1: for e = (u,v) ∈ EM do
2: idealLength := λ

3: if eisaninter−graphedge then
4: idealLength∗= (u.depth+ v.depth)∗NEST ING_FACTOR
5: end if
6: cu := LineSegment(u.center,v.center)∩u.boundRect
7: cv := LineSegment(u.center,v.center)∩ v.boundRect
8: Fs := (idealLength− ‖ cu− cv ‖)2/η .C→u Cv
9: Fs(u)+ = Fs

10: Fs(v)−= Fs
11: end for

The repulsion force is defined as follows:

FS =
α

‖ Pu−Pv ‖2
−−→
PuPv (5.2)

In the equation 5.2 where α is the constant of repulsion, the sizes, and positions of nodes
are calculated bottom up, the compound nodes propagate back to their children to update
bounds. The authors mentioned that when the nesting depth increases, the performance of the
algorithm decreases dramatically.

68

Algorithm 6: CalculateRepulsionForces(GraphMgrM)
1: S := {}
2: for u ∈V M do
3: S := S∪{u}
4: for v ∈V M−S do
5: cu := LineSegment(u.center,v.center)∩u.boundRect
6: cv := LineSegment(u.center,v.center)∩ v.boundRect
7: if u&v in same graph and ‖ cu− cv ‖< REPULSION_RANGE then
8: Fr := α/ ‖ cu− cv ‖2

9: Fr(u)+ = Fs
10: Fr(v)−= Fs
11: end if
12: end for
13: end for

A gravitation force, which has a fixed magnitude pushes nodes towards the center of the
bounding rectangle of a compound graph to keep children components closer together.

Algorithm 7: CalculateGravitationForces(GraphMgrM)

1: for u ∈V M do
2: center := u.ownerGraph.boundRect
3: calculate gravitation force Fg towards center
4: Fg(u)+ = Fg
5: end for

From the algorithms above we can conclude that it has three significant phases wherein
each phase has a number of iterations. In the first phase, it constructs the skeleton graph
with no subgraphs, which are trees and in this phase relativity, and gravitational forces are
deactivated. The next stage is that the trees are introduced to the graph constructed level by
level, and the full force is starting to be applied, then in the third phase, the layout is improved
by more iterations, and all forces computations are enabled.

5.5 Further Main Features in autolinks

Besides compound graphs as the core feature in autolinks, other main features that have
already been mentioned in the introductory chapter are semantic services, query exploration,
document exploration, annotation exploration, and discontinuous annotation. In this section,
we discuss those features in more details.

69

5.5.1 Semantic Services

There are some reasons why autolinks is built with service-oriented architecture. One of
the reasons is the implementation of multiple semantic services. This architecture enables
the principles of independent of vendors, products, and technologies so that this tool doesn’t
depend on the specific service. Any service can be added and removed as we want according
to the needs.

We want to design future autolinks not only working in the biomedical domain by using
medical entity recognition but also for other fields such as technology, sciences, or more
general entity recognition. Semantic services are the core feature in autolinks to get data, and
multiple semantic services enable users to get information from different sources.

Sparql Wiki Demo
/wikidata /findarticles /bar
/wikidataLimit /baz/username
/wikidataObjects /demo
/wikidataObjectsLimit10 /foo
/wikidataPlainExact
/wikidataPlainExactLimit20
/wikidataSubjects
/wikidataSubjectsLimit10

Table 5.2: Endpoints lists of semantic services

Table 5.2 displays the available semantic services with their endpoints. These semantic
services are autolinks SPARQL service, autolinks wiki service, and autolinks demo service.
Sparql service is based on an RDF query language that supports querying over diverse data
sources such as wiki data and DBpedia. Wiki service provides access to Wikimedia indices
such as wiki data, Wiktionary, and Wikipedia. The demo service is intended for demonstration
and research purpose. These semantic services generate diverse results for the knowledge
graphs.

5.5.2 Query Exploration

The feature of query exploration is the feature that uses the semantic services to generate
knowledge graphs based on queries via the search bar. What makes this feature unique
compared to other traditional search bar functionalities is that this feature facilitates generating
multiple queries in one click, so that users can explore queries such as ’B-cell’, ’T-cell’, and
others in a single operation.

To get the desired results, we need to enable at least one of semantic services or to enable
the annotation search checkbox. When the annotation search is enabled, it will generate an
annotation resource, which is related to the query. From this annotation resource, we can
access other knowledge graphs or documents that are again related to the query with the
provenances feature, which provides traceable sources for the query.

70

Figure 5.8: Two knowledge graphs generated by two queries in the search bar

Figure 5.8 displays two knowledge graphs, which are generated by two queries, ’B cell’
and ’T cell’, in the search bar. From the Figure, we can see that in autolinks, it is possible to
generate multiple knowledge graphs from multiple queries by multiple semantic services. With
this feature, we provide users with rich and diverse informations from different sources so that
users can compare the results of knowledge graphs and decide which source of information
that fits them the best.

5.5.3 Document Exploration

Document exploration helps users to explore entities in the document text. With this feature,
the uploaded documents are analyzed to extract the information within the text to get the
entities with the annotation types. The documents then will be interpreted by /nlp/interpret
endpoint to generate annotation resources from each entity in the document text.

In the visual information management, documents are processed by sentence splitter
provided by medical entity recognition, so that the documents are shown in sentencewise
inside the document lens. autolinks provides sentence navigation in the document lens for
users in order to enable users navigating to the previous or to the next sentence. A slide
number is also provided to help users having direct navigation to the desired sentence by a
number. In the main navigation, document list components provide a collection of uploaded
documents and once a user clicks the document, it will show all annotation types related to
the chosen document in the annotation types component. Some of available annotation types
generated by MER in autolinks are shown in the Table 5.3.

The sentence without annotation types shown in Table 5.3 is in the normal mode. This
normal mode is set once a user chooses a document. In the example given in the table, we use
a document, which explains about b-cells. As a user who is probably a medical student or a
doctor, we want to investigate the content of the document that we upload, and we want to
understand what kind of entities that are provided in the document. With this feature, we can
quickly recognize that annotation types available in the document are anatomical site mention,

71

Annotation
Types Sentence

-

AnatomicalSite
Mention

Medication
Mention

Procedure
Mention

PunctuationToken

NumToken

WordToken

Table 5.3: Sentences based on the annotation types

medication mention, procedure mention, and other tokenizations such as punctuation token,
numeric token, and word token.

We can enable one or more annotation types for the document, and from this example,
we can quickly understand about entities that are related to the chosen annotation type. For
anatomical site mention, we can find B cells, T cells, and killer cells; for medication mention,
we can find B cell receptors; and for procedure mention, we have BCRs in the document text.
For the tokenizations, we can also easily and quickly notice about the punctuations, numeric,
and word in the documents.

Since we can enable more than one annotation type, the combination of multiple annotation
types is possible in the sentence. As an example, we can enable medication mention and
procedure mention and then ’B cell receptors’ and ’BCRs’ will be annotated in the sentence.
Moreover, we can see a difference when we enable word token and medication mention. As
we know, word token will annotate every word in the sentence. And for ’B cell receptors’,
word token will annotate three words ’B’, ’cell’, and ’receptors’ to be three annotations. When
we enable medication mention, ’B cell receptors’ will be fully annotated as one annotation.

5.5.4 Annotation Exploration

This feature assists users to generate annotation resources from a single annotation in
the document text and explore the traceable sources related to the annotation via annotation
resources. In the graph view, these annotations resources are visualized as annotation nodes.
From a single annotation in the document text, it can interpret more than one annotation
resource with the different types of annotation. The example ’B cell receptors’ interprets
four annotation resources, which are ’B cell receptors’, ’B cell’, ’cell’, and ’receptors’. Then
from these four annotation resources, we can identify two different annotation types, which
are medication mention for ’B cell receptors’ and ’receptors’, and anatomical site mention

72

for ’B cell’ and ’cell’. We can have an additional three annotation resources if we include
tokenization type such as word token, we will have ’B’, ’cell’, and ’receptors’ additional
annotation resources.

The simpler example is shown in Figure 5.9. From ’B cell’ entity by ignoring the word
token type, it could interpret two annotation resources, which are ’B cells’ and ’cells’ with
anatomical site mention as an annotation type. In that figure, we can notice that there is
a compound node bounding the ’B cells’ node and the ’cells’ node. This bounding box is
a special node, which contains all the annotation nodes namely annotation container. We
designed this annotation container to organize the annotation nodes inside one container so
that they do not spread in all over the graph canvas. We can not draw relations to this container
or duplicate this container to the outermost service compound since this container cannot be
stored to the database.

Figure 5.9: Annotation nodes

Similar to annotation container, annotation nodes are also designed as a special node. We
can not draw relations from this node inside the annotation container since there is no triples
structure designed for annotation resources, so that subject, predicate, object relations are not
possible inside the annotation container. However, the nodes inside a service compound are
still able to draw relations to this annotation node by duplicating it, turn it to a normal target
node, and move the target node to the same hierarchy of the source node.

In Figure 5.9, we can also see that ’B cells’ annotation is highlighted in the yellow color. It
is a visual state of the text, which is activated once a user hovers an annotation resource, which
has a relation with an annotation. In the same sentence, there is a possibility that the same
texts appear more than once and in the resource container, same annotation nodes also could
appear many times. This visual state helps the user to distinguish from which annotation the
annotation node comes. In this case, the ’B cells’ node comes from the ’B cells’ annotation,
which has an index of the sentence, 0 - 7.

In this subsection, we can conclude that the primary purpose of an annotation node is
helping the user to explore the related sources of the desired annotation. With this function,
the user can generate knowledge graphs and jump to a sentence in particular documents, which
have a relation to the annotation. From the example ’B cells’ above, the user can explore the
knowledge graphs of ’B cells ’ and ’cells’ that have already been previously generated by the

73

user. This provenance feature is intended to help users accessing their previous knowledge
from the knowledge graphs and documents.

5.5.5 Discontinuous Annotation

In this last subsection of visual information management, we discuss about the discontinu-
ous annotation feature. With this feature, users can add more entities in the document text so
that the annotating process is not only done automatically by the medical entity recognition
but also it can be created or changed manually by the users. Different from other traditional
text annotation tools, discontinuous annotation feature enables users to annotate multiple
entities from different offsets to be a single new annotation.

As an example, Figure 5.10 shows how ’B cells’ and ’antigen’ can be annotated as a single
entity despite ’B cells’ and ’antigen’ have different offsets since it has an offset gap where the
word ’present’ exists between those entities. To manually annotate an entity, the user needs to
press the alt key while highlighting the desired text. The annotation dialog is shown once the
user releases the alt key and the user can provide the entity with an annotation type.

Figure 5.10: Discontinuous annotation 1

Besides the existing annotation types, autolinks provides a text input for a new annotation
type. It could be shown by clicking checkbox ’New type?’ and it will toggle an input that
asks for a new type so that users can give the chosen entity with a new annotation type. To
proceed with the new annotation type, the user needs to click ’OK’ button and the new type
will be stored in the database. After confirming the new annotation, the selected texts will be
immediately annotated as the new annotation in the document text.

74

Figure 5.11: Discontinuous Annotation 2

Figure 5.11 shows an annotation resource ’B cells antigen’, which is also shown imme-
diately after the user confirming the new annotation. From the Figure, we can notice that
’B cells present antigen’ text is fully annotated as a new annotation and on the contrary, the
annotation resource has a label ’B cells antigen’ without ’present’ word. From that annotation,
we can comprehend the aim of discontinuous annotation feature where we can annotate the
words in which we only need to be a single annotation even though the chosen words have
different spans.

75

6 Qualitative Evaluation

In this chapter, we present qualitative evaluation as an evaluation of whether our system
has already met the expectations and satisfied the research questions. The evaluation is
implemented as feedback questionnaires gathered from the users after conducting the usability
test. In the research questions, we argue that autolinks helps users to access information
faster with the integration of semantic services and the compound graph implementation helps
users to have a better concept representation. Twenty-one people participate in this qualitative
evaluation and they were given tasks to try features in autolinks starting from building a
knowledge graph with compound nodes, query exploration, document exploration, annotation
exploration, and discontinuous annotation.

6.1 Evaluation Setup

To evaluate the usability and the usefulness of autolinks for helping users to access infor-
mation and to comprehend concepts faster with the help of compound graphs implementation.
We conducted a usability test and we provide a user manual in our GitHub page23 to show
how to operate autolinks and perform the features available in autolinks. We ask users to do
the following steps:

1. First, the user needs to create a new account in the registration form and login to the
autolinks server.

2. To build a knowledge graph, it can be done by ’click and hold’ in graph canvas. Once a
cxtmenu appears, the user can select an add icon to create a new node. Once a node
is created, the user can draw a relation to another node by clicking the node to show a
qTip and click a link icon to create an edge. Other buttons such as an arrows button and
an edit button are respectively for merging nodes and for update the node details.

3. To do a query exploration, the user needs to enable at least one active semantic service
in the main navigation and optionally can enable annotation search and case-insensitive
option. In a single operation, the user can explore multiple queries by filling queries in
the search bar and click the search icon. This action will generate knowledge graphs
related to the given queries.

4. To do a document exploration, the user can click the circle navigation in the lower right
side, and select the upload icon button. An upload modal will pop up and the user can
select a document, enable the overwrite option, and click the upload text button. The
document then will be uploaded, analyzed, and interpreted. A new document will be
shown in the document lists; the annotation types of the document will be extracted;
the document lens will be enabled. Once annotation types menu is ready in the main

23. https://uhh-lt.github.io/autolinks

76

navigation, the user can start to explore annotation types, which are available in the
document.

5. To do an annotation exploration, the annotation resources based on the text spans can
be retrieved by clicking the desired annotation in the text. The annotation resources
are shown in the annotation nodes and will be placed inside an annotation container.
The annotation resource node will highlight the annotation text span in the document
lens once we hover it. The annotation resource helps the user to get provenances in the
node. It will show all traceable sources which have relations from the node itself to the
documents and knowledge graphs.

6. To create a new annotation and to perform discontinuous annotation, the user can hold
’Alt Key’ in the keyboard to temporarily hide all annotations and the user can start
to select a certain text or texts in the different spans to be new annotations. Once the
texts are selected, the user can release the ’Alt Key’ to open an annotation modal. The
selected texts are shown in the top of modal and the type of the new annotation can be
chosen either from existing types or a new type.

6.2 Feedback Details

By conducting a usability test, we gathered feedback that allows us to conclude how
autolinks performs. Specifically, we discuss that autolinks helps users to access information
and compound graphs represent concept better than normal graphs.

We asked users for both quantitative feedback with Likert scales and qualitative feedback.
The Likert scale is set with the scale one to five, with the scale value one, meaning that a user
strongly disagrees until the scale value five, which means a user strongly agrees.

The first question is, if autolinks is able to help users to access information. The intention of
this question is that users obtain the benefits of autolinks in general in which it could help them
to access information faster with the integration of semantic services and the implementation
of compound graphs. In Figure 6.1, we summarize our findings that 2 (9.5%) of the users
answered "totally agree", 10 (47.6%) of the users answered "agree", 6 (28.6%) of the users
answered "neutral", 2 (9.5%) of the users answered "disagree", and 1 (4.8%) of the users
answered "strongly disagree".

Figure 6.1: Does autolinks help you to access information?

77

The following question is, if compound graphs are better than the normal graphs. In this
question, users should see the difference between compound graphs and normal graphs and
understand why the compound graphs are better than the flat graphs in order to represent a
concept. In Figure 6.2, we summarize that 7 (33.3%) of the users answered "totally agree",
10 (47.6%) of the users answered "agree", and 4 (19%) of the users answered "strongly
disagree".

Figure 6.2: Do you think that compound graphs represent concepts better than normal
graphs?

Figure 6.3 shows the result of the third question, which stated about the integration of
semantic services helps research findings of the users. We argue that the integration of
semantic services could help users to get more diverse results of knowledge graphs and help
the process of research findings. From this question, We summarize that 2 (9.5%) of the users
answered "totally agree", 11 (52.4%) of the users answered "agree", 6 (28.6%) of the users
answered "neutral", 1 (4.8%) of the users answered "disagree", and 1 (4.8%) of the users
answered "strongly disagree".

Figure 6.3: Does the integration of semantics services help your research findings?

The next question asked that autolinks hinders/blocks users to get information. This
question is principally a control question, which refers to the first question. A control question
is needed to make the answers from the subjects more consistent. This question intends to
improve the validity of question regarding autolinks helps users to access the information.
The result is shown in Figure 6.4 and we summarize that 2 (9.5%) of the users answered
"totally disagree", 12 (57.1%) of the users answered "agree", 5 (23.8%) of the users answered

78

"neutral", 1 (4.8%) of the users answered "disagree", and 1 (4.8%) of the users answered
"strongly disagree".

Figure 6.4: Do you think that autolinks hinders / blocks you to get information?

The last Likert-scale question stated about the compound graphs, which are ineffective
compared to the normal graphs. This question is also a control question and mainly refer
to the second question, which is to improve the validity of question regarding compound
graphs. It can be seen in Figure 6.5 that 5 (23.3%) of the users answered "totally disagree",
12 (57.1%) of the users answered "disagree", and 4 (19%) of the users answered "strongly
disagree".

Figure 6.5: Compound graphs are ineffective compared to normal graphs

Not only gathered we quantitative feedback with Likert scales, but also we gathered
qualitative feedback by asking the opinions from the users. In general, users agreed that
autolinks is an information management tool that helps them to access information from
multiple sources and visualize the information in compound graphs.

Some of the opinions of the users about autolinks are that it is helpful to find associated
keywords or sources based on a search key; it helps to annotate medical terms via uploaded
texts; it supports compound graphs implementation and supports users to have a better
understanding of results given. However, autolinks in the current state needs to be more
intuitive and for effective usage, it needs some improvements in the results given as well as
more semantic services that help users to find more information. At the moment, Wikipedia
service is the only service that provides information, which is not that productive, as it still
provides way too much unnecessary information.

79

Those were about the opinions from users about autolinks in general. For the compound
graphs implementation, we found that most of the users agreed that compound graphs are
better in representing concepts than flat graphs, from both quantitative and qualitative feed-
back. The opinions of the users that we gathered are a compound graph helps clustering
related information of a topic together to get a clearer picture or having a clear boundary;
it reduces unnecessary nodes and edges and replace them with a single node to represent a
generalized concept in ontology; a compound graph can be expanded and collapsed in which
this feature is not found in the flat graphs so that users got a better understanding of the
concept hierarchies.

After the control question of compound graphs, we asked users which features that they
thought were the best. These features are displayed in Figure 6.6. We found that the compound
graphs are still the most favorite feature in autolinks as 11 (52.4%) of the users voted for
this feature. Query exploration becomes second as being voted by 9 (42.9%) of the users,
followed by semantic services voted by 7 (33.3%) of the users and document exploration
voted by 6 (28.6)% of the users. More details can be seen in Figure 6.6.

Figure 6.6: What are the best features shown in the autolinks?

The reason why compound graphs and query exploration features became the two most
favorite features would be that compound graphs help users to have a faster comprehension
towards the concept and query exploration helps users to access the informations not only
from a single query but also multiple queries. Semantic services became the third favorite
since this feature is also a vital feature to provide quick access to the source of information
and gain new knowledge.

6.3 Feedback Summary

The goal of feedback from the usability test is that the majority of the users agree subjec-
tively that our implementation is better than the traditional approach, from the compound
graphs and the integration of semantic services. We argue that compound graphs represent
concepts better than the normal graphs and the integration of multiple semantic services help
users get richer knowledge than only one static service.

We can summarize that our implementation has already met the expectations from the very
first result of the feedback. We found that 12 (57.1%) of the users "agree" and "strongly agree"

80

that autolinks help them to access information. This statement is strengthened by the fourth
question, which showed that 14 (66.6%) of the users answered "strongly disagree" and "agree"
for the question "Do you think that autolinks hinders/blocks you to get information?".

We also found a more confidence result from the question of "compound graphs represent
concepts better than normal graphs?" as the majority or 17 (81%) of the users answered
"agree" and "strongly agree" that compound graphs give a better representation for the
concepts compared to the normal graphs. This statement is also strengthened by the fifth
question where 17 (81%) of the users answered "strongly disagree" and "agree" towards the
statement "Compound graphs are ineffective compared to normal graphs.

In the question of "Does the integration of semantic services help your research findings?",
we found that 13 (61.9%) of the users answered "agree" and "strongly agree". So we can
conclude that the majority of the users agreed that the integration of semantic service helps
users to access information and to gain new knowledge.

We also can conclude that the results of the feedback of our usability test proved that the
design of autolinks’ user interface is not intrusive for users to access information. During the
development, we devised autolinks with a simple user interface design approach with a focus
on the extensive space for the knowledge graphs. That is why 95% of the screen in autolinks
is a graph canvas.

Besides the graph canvas, we have a main navigation on the left side only shown once it is
clicked to accommodate the functionalities of services, documents, and annotation types. A
side navigation is used for the nodes/edges details including its tracable sources, and external
features are placed in the bottom grid controller. These components are again only shown
when they are desirable by the users. We designed these components as dynamic as possible
to be a non-intrusive user interface with a toggling approach. This toggling approach enables
components, which are mentioned above can be shown only when they are needed. With this
approach, the user’s screen is designed and focused mostly on the knowledge graphs without
any static intrusive component, which is particularly not needed during the whole time of
utilizing autolinks.

However, some of the users who have no idea about autolinks before found some difficulties
when they tried to operate autolinks for the first time. We gathered those feedback as
follows:

• The first entry page should not be empty, it is confusing for the new users and makes
the purpose of the tool no clear.

• The wiki service was not enabled by default. At least one service should be enabled
directly in order to let a user get the results of knowledge graphs in the first trial.

• Interaction should be more intuitive, add guidelines inside the app.

• Semantic services at the moment provide way too much unnecessary information and
are not that productive.

From the feedback above, we realize that some improvements need to be done for autolinks.
Onboarding feature will be a solution for the users who felt that the first entry page should
have hints or guidelines about how to operate autolinks. The result of semantic service will
be a concern for future works about how to produce a better semantic result, and this issue

81

does not become the concern for this thesis. Other recommendations from the feedback for
autolinks will be discussed in the future works.

82

7 Conclusion and Future Work

In this last chapter, we would like to give conclusions and future works, which might be
useful for the better autolinks. We consider that this application system still needs enhance-
ments and more ideas to fulfill and to satisfy the user requirement. Some weaknesses still
appear, but it could be improved and maintained. The recommendations in the future works
are delivered in order to continue improving this application so that it will give more benefits
to the user in the long term.

7.1 Conclusion

We presented autolinks, a bottom-up information management tool. With this tool, users
can build their own ontology with a bottom-up approach where they can construct knowledge
graphs from sources such as texts from uploaded documents or semantic services and starting
from the most specific concept such as a rabbit or a mammal to the most generalized concept
such as an animal. With this approach also, users can model and enhance the information from
the mentioned sources, so that users can have better and personalized knowledge graphs.

We designed autolinks to help users access information and gain new knowledge faster
with the implementation of compound graphs and integration of multiple semantic services.
The user interfaces (UI) of autolinks are also devised as dynamic as possible without any static
intrusive component. The components such as main navigation, side navigation, or bottom
grid controller are modeled with a toggling approach where they are shown/hidden according
to the user’s needs.

With the implementation of compound graphs, autolinks has a unique visualization im-
plementation where the information, which is represented by graphs can be put inside of a
node. Compound graphs facilitate multi-level generalization of the concepts and reduce the
number of edges and nodes so that the knowledge graphs are clearer to be seen and easier to
comprehend.

The integration of multiple semantic services helps users in research findings. With this
feature, users can quickly access information and gain new knowledge from multiple sources
of information. Users might choose the service that they think useful and disable the other
unneeded services. With service-driven architecture, users may have options to choose
compared to static design. Moreover, new semantic services can be added to the broker
according to the needs.

We conducted a usability test and gathered feedback from the users with the aim of testing
the system and exploring the features of autoliks. We asked them about what they think about
autolinks in general, how can compound graphs give a better representation for the concepts in
their opinion, what are the best features shown in autolinks, and why those features are helpful.
The results showed that our information management tool helps users to access information

83

and compound graphs visualization has been proven to have a better representation of the
concepts than the normal graphs.

Compound graphs became the best features chosen by the users followed by query explo-
ration and semantic services features. Compared to flat graphs, compound graphs feature is
more interactive, and there is no need to draw relation/edge to describe parent and children
relation. Since relations/edges in compound graphs can be reduced, the knowledge graphs
become more organized. Compound graphs also give a more precise boundary of generalized
hierarchy since inside a compound graph, children nodes or another knowledge graphs are
grouped together according to their similarities.

Finally, the integration of semantic services also help users to gain new and various
knowledge from multiple semantic services, and we can conclude that autolinks as a bottom-
up information management tool helps users to access information from multiple sources of
information and helps users to comprehend information given by the sources of information
faster.

7.2 Future Works

Several future works are discussed in this section with expectations to make the system
better and to improve the user experience of both existing features and new features. Recom-
mendations in the future works are also gathered together with the feedback in the usability
test.

First, a human-in-the-loop approach will definitely be a priority for the next version of
autolinks. A human-in-the-loop approach enables human to evaluate the results given for
future reference. The evaluation done by the human becomes a recommender for the system
so that autolinks could receive the recommendation in order to learn and correct the mistakes
previously done to improve future results. We can take an example from this human-in-the-
loop approach in the autolinks implementation. autolinks currently is implementing the NLP
in the biomedical domain so we can say this tool is biomedical information management.
Knowledge graphs generated by semantic services do not always produce ideal results. With
the involvement of biomedical researchers or even medical doctors, the bad results can be
evaluated by them, and this evaluation will be a recommendation for autolinks for generating
better results based on the feedback given.

Then, onboarding feature, a feature that gives hints to the users how to operate the ap-
plication in the first entry page, is necessary to implement. Many users faced difficulties in
operating the application since autolinks at the moment only shows empty canvas after login.
By onboarding feature, step-by-step guide can be performed automatically after the new user
entering the start page. This feature also could be used for introducing new features published
in autolinks.

Some new features are also required to be available in the next version of autolinks such as
upload documents with richer extensions (.pdf, .docx, .odt) and document viewer feature so
that users can see the whole sentence in a read mode of the full document. With this feature,
users can select or pick a particular sentence directly from that document instead of navigating
with left and right navigation. Coloring based on annotation types is also a feature that the

84

users want. users had difficulties to recognize the type of the annotations since at the moment
autolinks annotates entity in the document lens only with a blue color. Annotation types
can actually be enabled or disabled for the purpose of knowing which annotation type the
annotation is. However, annotation types based on color are felt as a better option for the
users to recognize the type of annotation because colors are more perceptible by the human
eyes than texts.

Information sharing feature is another feature that users also think would be beneficial in
autolinks. With information sharing feature, multiple users can collaborate to build knowledge
graphs. This feature facilitates a user to make corrections towards concepts done by other
users and to annotate entities in the document texts collaboratively.

Finally, A/B testing to evaluate the results of semantic services is suggested to be performed
for future works. This testing can split the evaluation to different groups of users such as
a control group, a group that doesn’t use the app and a test group, a group that utilizes the
app. Then we can compare the results from both of the groups. This evaluation requires a
better result of semantic services. At the moment the results of semantic services are not that
productive and provide much unnecessary information.

85

Bibliography

[Aven, 2013] Aven, T. (2013). A conceptual framework for linking risk and the elements of
the data–information–knowledge–wisdom (dikw) hierarchy. Reliability Engineering and
System Safety, 111:30–36.

[Battista et al., 1998] Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. G. (1998). Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition.

[Benikova et al., 2014] Benikova, D., Fahrer, U., Gabriel, A., Kaufmann, M., Yimam, S. M.,
Landesberger, T., and Biemann, C. (2014). Network of the day: Aggregating and visualizing
entity networks from online sources. In Proceedings of the NLP4CMC Workshop at
KONVENS, Hildesheim, Germany.

[Bertault and Miller, 1999] Bertault, F. and Miller, M. (1999). An algorithm for drawing
compound graphs. In Kratochvíyl, J., editor, Graph Drawing, pages 197–204, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[Bontcheva and Cunningham, 2011] Bontcheva, K. and Cunningham, H. (2011). Semantic
annotations and retrieval: Manual, semiautomatic, and automatic generation. In Handbook
of Semantic Web Technologies, pages 78–113. Springer Publishing Company, Incorporated.

[Bontcheva et al., 2013] Bontcheva, K., Cunningham, H., Roberts, I., Roberts, A., Tablan,
V., Aswani, N., and Gorrell, G. (2013). Gate teamware: a web-based, collaborative text
annotation framework. Language Resources and Evaluation, 47(4):1007–1029.

[Breslin et al., 2011] Breslin, J., Passant, A., and Vrandečić, D. (2011). Social semantic
web. In Handbook of Semantic Web Technologies, pages 467–506. Springer Publishing
Company, Incorporated.

[Buzan, 1974] Buzan, T. (1974). Using Both Sides of the Brain. Dutton: New York.

[Buzan and Buzan, 1976] Buzan, T. and Buzan, B. (1976). The Mind Map Book: How to
Use Radiant Thinking to Maximize Your Brain’s Untapped Potential.

[Candan et al., 2001] Candan, K. S., Liu, H., and Suvarna, R. (2001). Resource description
framework: Metadata and its applications. Special Interest Group on Knowledge Discovery
and Data Mining (SIGKDD) Explorations Newsletter, 3(1):6–19.

[Cao et al., 2010] Cao, N., Sun, J., Lin, Y.-R., Gotz, D., Liu, S., and Qu, H. (2010). Facetatlas:
Multifaceted visualization for rich text corpora. IEEE Transactions on Visualization and
Computer Graphics, 16(6):1172–1181.

[Card et al., 1999] Card, S. K., Mackinlay, J. D., and Shneiderman, B., editors (1999). Read-
ings in Information Visualization: Using Vision to Think. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

86

[Cejuela et al., 2014] Cejuela, J. M., McQuilton, P., Ponting, L., Marygold, S. J., Stefancsik,
R., Millburn, G. H., Rost, B., and the FlyBase Consortium (2014). tagtog: interactive
and text-mining-assisted annotation of gene mentions in plos full-text articles. Database,
2014:1–8.

[Chisholm and Warman, 2006] Chisholm, J. and Warman, G. (2006). Experiential Learning
in Change Management. In Silberman, Melvin L. The Handbook of Experiential Learning.
Jossey Bass.

[Dogrusoz et al., 2005] Dogrusoz, U., Giral, E., Cetintas, A., Civril, A., and Demir, E. (2005).
A compound graph layout algorithm for biological pathways. In Pach, J., editor, Graph
Drawing, pages 442–447, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Dogrusoz et al., 2009] Dogrusoz, U., Giral, E., Cetintas, A., Civril, A., and Demir, E. (2009).
A layout algorithm for undirected compound graphs. Information Sciences, 179(7):980 –
994.

[Dogrusoz et al., 2018] Dogrusoz, U., Karacelik, A., Safarli, I., Balci, H., Dervishi, L., and
Siper, M. C. (2018). Efficient methods and readily customizable libraries for managing
complexity of large networks. Public Library of Science (PLOS) ONE, 13(5):e0197238.

[Domingue et al., 2011] Domingue, J., Fensel, D., and Hendler, J. A. (2011). Handbook of
Semantic Web Technologies. Springer Publishing Company, Incorporated, 1st edition.

[Dörk et al., 2012] Dörk, M., Riche, N. H., Ramos, G., and Dumais, S. T. (2012). Pivotpaths:
Strolling through faceted information spaces. IEEE Transactions on Visualization and
Computer Graphics, 18:2709–2718.

[Eppler, 2006] Eppler, M. J. (2006). A comparison between concept maps, mind maps, con-
ceptual diagrams, and visual metaphors as complementary tools für knowledge construction
and sharing. Information Visualization, 5(3):202–210.

[Franz et al., 2016] Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O., and Bader, G. D.
(2016). Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics,
32(2):309–311.

[Fruchterman and Reingold, 1991] Fruchterman, T. M. J. and Reingold, E. (1991). Graph
drawing by force-directed placement. In Software Practice and Experience 21, volume 21,
pages 1129–1164.

[Ghoniem et al., 2005] Ghoniem, M., Fekete, J., and Castagliola, P. (2005). On the readability
of graphs using node-link and matrix-based representations: A controlled experiment and
statistical analysis. Information Visualization, 4(2):114–135.

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology specifica-
tions. Knowl. Acquis., 5(2):199–220.

[Guarino, 1995] Guarino, N. (1995). Formal ontology, conceptual analysis and knowledge
representation. Int. J. Hum.-Comput. Stud., 43(5-6):625–640.

[Guarino and Giaretta, 1995] Guarino, N. and Giaretta, P. (1995). Ontologies and knowledge
bases: Towards a terminological clarification. In Towards very Large Knowledge bases:
Knowledge Building and Knowledge sharing, pages 25–32. IOS Press.

87

[Harel, 1988] Harel, D. (1988). On visual formalisms. Communications of the ACM,
31(5):514–530.

[Harth et al., 2011] Harth, A., Janik, M., and Staab, S. (2011). Semantic web architecture. In
Handbook of Semantic Web Technologies.

[Hlava, 2014] Hlava, M. M. K. (2014). The TaxoBook: Principles and Practices of Building
Taxonomies. Morgan Claypool, San Rafael, CA.

[Hoekstra, 2009] Hoekstra, R. (2009). Ontology representation design patterns and ontologies
that make sense. In Proceedings of the 2009 Conference on Ontology Representation:
Design Patterns and Ontologies That Make Sense, Amsterdam, The Netherlands. IOS
Press.

[Jurafsky and Martin, 2000] Jurafsky, D. and Martin, J. H. (2000). Speech and Language
Processing: An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition.

[Kaufmann, 2017] Kaufmann, M. (2017). Storyfinder: Graphen zur Verbesserung des
Textverstandnisses auf Webseiten. MA Thesis, TU Darmstadt, Germany.

[Keim et al., 2008] Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., and
Melançon, G. (2008). Visual Analytics: Definition, Process and Challenges. In Kerren,
A., Stasko, J. T., Fekete, J.-D., and North, C., editors, Information Visualization - Human-
Centered Issues and Perspectives, number 4950 in Lecture Notes in Computer Science
(LNCS), pages 154–175. Springer.

[Keim et al., 2010] Keim, D., Kohlhammer, J., Ellis, G., and Mannsmann, F. E. (2010).
Mastering the Information Age. Solving Problems with Visual Analytics. Eurographics
Association, Goslar, Germany.

[Knowles, 2005] Knowles, E. (2005). Oxford Dictionary of Phrase and Fable. Oxford
reference online premium. Oxford University Press.

[Kochtchi, 2013] Kochtchi, A. (2013). Networks of Names: Obtaining Lombardi’s Narrative
Structures by Combining Visual Analytics and Language Technology. MA Thesis, TU
Darmstadt, Germany.

[Kochtchi et al., 2014] Kochtchi, A., Landesberger, T., and Biemann, C. (2014). Networks of
names: Visual exploration and semi-automatic tagging of social networks from newspaper
articles. Computer Graphics Forum, 33(3):211–220.

[Kramer et al., 2015] Kramer, J., Roschuni, C., Zhang, Q., Zakskorn, L., and Agogino, A.
(2015). Design talking: An ontology of design methods to support a common language of
design. In Proceedings of the International Conference on Engineering Design (ICED’15),
volume 2, pages 285–294, Milan, Italy.

[Lievesley, 2006] Lievesley, D. (2006). Data information knowledge chain. Health Informat-
ics now. Swindon: The British Computer Society.

[Manning and Schütze, 1999] Manning, C. D. and Schütze, H. (1999). Foundations of Statis-
tical Natural Language Processing. MIT Press, Cambridge, MA, USA.

88

[Nazemi, 2014] Nazemi, K. (2014). Adaptive Semantics Visualization. Springer International
Publishing, Switzerland.

[Novak, 1998] Novak, J. D. (1998). Learning, creating, and using knowledge : Concept maps
as facilitative tools in schools and corporations / j.d. novak. Journal of E-Learning and
Knowledge Society, 6.

[Novak et al., 1984] Novak, J. D., Gowin, D. B., and Kahle, J. B. (1984). Learning How to
Learn. Cambridge University Press.

[Pedrinaci et al., 2011] Pedrinaci, C., Domingue, J., and Sheth, A. P. (2011). Semantic web
services. In Handbook of Semantic Web Technologies. Springer Publishing Company,
Incorporated.

[Perer et al., 2011] Perer, A., Guy, I., Uziel, E., Ronen, I., and Jacovi, M. (2011). Visual
social network analytics for relationship discovery in the enterprise. 2011 IEEE Conference
on Visual Analytics Science and Technology (VAST), pages 71–79.

[Philip Ogren and Chute, 2008] Philip Ogren, G. S. and Chute, C. (2008). Constructing
evaluation corpora for automated clinical named entity recognition. In Proceedings of
the Sixth International Conference on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco.

[Remus et al., 2017] Remus, S., Kaufmann, M., Ballweg, K., Landesberger, T., and Biemann,
C. (2017). Storyfinder: Personalized knowledge base construction and management by
browsing the web. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM ’17, pages 2519–2522, Singapore, Singapore.

[Rowley, 2007] Rowley, J. (2007). The wisdom hierarchy: representations of the dikw
hierarchy. Journal of Information Science, 33(2):163–180.

[Savova et al., 2010] Savova, G., Masanz, J., Ogren, P., Zheng, J., Sohn, S., Kipper-Schuler,
K., and Chute, C. (2010). Mayo clinical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and applications. Journal of the American
Medical Informatics Association, 17(5):507–513.

[Stein and Blaschke, 2009] Stein, K. and Blaschke, S. (2009). Corporate wikis: A compara-
tive analysis of structures and dynamics. Proceedings of 5th Conference on Professional
Knowledge Management, pages 77–86.

[Stenetorp et al., 2012] Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., and
Tsujii, J. (2012). Brat: A web-based tool for nlp-assisted text annotation. In Proceedings
of the Demonstrations at the 13th Conference of the European Chapter of the Association
for Computational Linguistics, EACL ’12, pages 102–107, Avignon, France.

[Stenetorp et al., 2011] Stenetorp, P., Topić, G., Pyysalo, S., Ohta, T., Kim, J.-D., and Tsujii,
J. (2011). Bionlp shared task 2011: Supporting resources. In Proceedings of the BioNLP
Shared Task 2011 Workshop, BioNLP Shared Task ’11, pages 112–120, Portland, Oregon.

[Sugiyama and Misue, 1991] Sugiyama, K. and Misue, K. (1991). Visualization of structural
information: automatic drawing of compound digraphs. IEEE Transactions on Systems,
Man, and Cybernetics, 21(4):876–892.

89

[Terra and Angeloni, 2003] Terra, J. C. and Angeloni, T. (2003). Understanding the dif-
ference between information management and knowledge management, international
conference on management of technology (iamot) conference. TerraForum Consultores,
Toronto, ON, Canada, M4L 3S5.

[Thomas and Cook, 2006] Thomas, J. J. and Cook, K. A. (2006). A visual analytics agenda.
IEEE Computer Graphics and Applications, 26(1):10–13.

[Trudeau, 1993] Trudeau, R. J. (1993). Introduction to Graph Theory (Corrected, enlarged
republication. ed.). New York: Dover Publications.

[Wiedemann et al., 2018] Wiedemann, G., Muhie, S., and Biemann, C. (2018). New/s/leak
2.0 – multilingual information extraction and visualization for investigative journalism:
10th international conference, socinfo 2018, st. petersburg, russia, september 25-28, 2018,
proceedings, part ii. pages 313–322.

[Yimam et al., 2013] Yimam, S. M., Gurevych, I., Eckart de Castilho, R., and Biemann, C.
(2013). Webanno: A flexible, web-based and visually supported system for distributed an-
notations. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 1–6, Sofia, Bulgaria.

[Yimam et al., 2016] Yimam, S. M., Ulrich, H., Landesberger, T., Rosenbach, M., Regneri,
M., Panchenko, A., Lehmann, F., Fahrer, U., Biemann, C., and Ballweg, K. (2016).
new/s/leak – information extraction and visualization for investigative data journalists. In
Proceedings of ACL-2016 System Demonstrations, pages 163–168.

[Zeleny, 2005] Zeleny, M. (2005). Human Systems Management: Integrating Knowledge,
Management and Systems. World Scientific.

90

Appendices

91

92

A Questionnaire

93

94

95

B Feedback

What do you think about autolinks in general?

It is an app which helps to find associated keywords or sources based on a search key.
It is my first time using it and I think it would be useful for finding related information
regarding a topic.
Biomedical App that helps to annotate medical terms via uploaded texts.
Information Management that supports compound graphs implementation.
Help getting information.
This app is a biomedical information management that implements compound graph
and it helps users to have a better understanding of the results given.
Doing annotations from the medical or biological related document.
I did not understand what it does. It does nothing but show me blue bubbles above
some words or characters of my text.
Good concept of knowledge representation and exploration
Autolinks in it’s current state is a nice demo application for showing compound
graphs. However, for effective usage it needs some polishing as well as more seman-
tic services that help the user to find more information. Right now the wikipedia
service is the only service that is provided and using it to find information isn’t that
productive, as it provides way to much (unnecessary) information.
The application in general feels very smooth. Dragging compound graphs, nodes and
edges works very well. Also, the highlighting of the entities is great as well as creat-
ing new edges. However, I dont like that I can for example drag a compound graph
above another compound graph. There should be some "collision" detection, so that
this won’t happen. If something like this is implemented, the merging procedure could
also be reworked. If I drag for example one node above another node, they should be
merged automatically by creating a new compound graph. Regarding the creation of
new edges: After creating a new edge, the next thing a user will do is changing the
label. Therefore, after creating a new edge something like a popup should show up,
enabeling the user to give the edge a new name.
It helps users to get information from multiple sources and visualize the information
with unusual graphs.
it needs to be more intuitive.
it is interesting, but some use-cases are needed.
information management tool that implements compound graphs
Helping users to build knowledge graphs from the semantic services.
Text annotation tool from the uploaded document
Compound graphs concept representation for the biology and medicine domain.
Just like what alvin said, this app implements network graph framework and NLP in
the biomedical domain

96

Why do you think that compound graphs give a better representation for the concepts in
your opinion?

If I understand it correctly, compound graphs are a bunch of graphs in brackets. It
helps clustering related information of a topic together to get a clearer picture or
having a clear boundary.
Compared to flat graphs, a compound / a parent node gives a clearer hierarchy.
Compound graphs reduce unnecessary nodes and edges and replace them with a single
parent node to represent a higher level concept in ontology.
It encapsulates children graphs.
I like the feature of expanding and collapsing in the compound graphs and in this
feature is not possible in the normal graphs.
Implementing compound graphs I think is also reducing the numbers of nodes and
edges compared to the normal graphs.
I have no idea what compound graphs are and I did not see any graph in the program.
compound graphs make hierarchy level in the knowledge graphs become easily seen
and noticeable.
they are able to visualize hierarchies while still being a graph.
Gives clearer level of parent-children relations.
I need to compare with flat graphs. But it looks easy understand concepts at the first
glance.
help to more compactly represent the information.
A better concept representation than the normal graphs.
Flat graphs give more relations to the graphs in order to represent concepts.
compound graphs reduce the number of edges so that the concept in the knowledge
graphs is easier to see and to comprehend.
Giving a rectangle shape for the parent graph.
More interactive compared to the normal graphs and no need to draw relation/edge to
describe parent and children relation.

97

Tell us why those features are helpful for you?

The search bar with Wiki enabled helps to pull useful information with their relations.
I have a background in the medicine and these features help me to relate medical
terms with the types faster.
It’s very unusual to have and gives a faster comprehension towards the concept.
Help me to find any information
I have given an answer for compound graphs and for query exploration, it really helps
the users for finding knowledge graphs that they want and document exploration also
really helps especially for medical students to find biomedical terms.
I am interested about the machine learning implementation in the medical domain.
How it annotates the text and how we can add another annotation by ourselves.
This feature help me to explore new knowledge given by the semantic services even
though at the moment the results are incomprehensible.
I think semantic services are the most important feature of this tool. By using these
services the user can quickly access and gain new knowledge.
The compound graphs are also necessary to display the different and complex con-
cepts. They make it easy to understand and visualize hierarchies.
Semantic services help me to combine the information from different sources.
easy to search for required information.
let represent complex graphs in a more compact way.
Integration of semantic services help me to have diverse knowledge graphs.
Search bar for query exploration helps me to get knowledge graphs easier.
Document exploration supports user to get medical annotations in the text.
Better representation. It has an expand and collapse feature.
This compound graphs is unique and rarely seen in the most graph-based app.

98

What kind of services would you like to see? e.g.: (SPARQL) Services for Linked Data,
webqueries, or automatic inference.

I am not familiar with the terms. For information searching, I would suggest a larger
repository of data and a more sophisticated coverage on relations.
I don’t know about these things.
Probably services for linked data gives more data to process.
None.
Larger repository of data would be needed, maybe services that understand about
medical world, so they can give accurate results of biomedical knowledge graphs.
automatic inference.
Have no idea about this.
(no idea, sorry, i think wikipedia might be the most important one).
Probably wikipedia is the good choice.
automatic inference.
N/A.
webqueries or google maybe.
I don’t know about this.
No idea.
webqueries.
services for linked data

Would you see information sharing feature should be implemented?

Yes
I can see the benefit of information sharing on these graphs, especially for a team
brainstorming session.
It’s a nice to have when we can work together in the same graphs.
There are always advantages to have a collaboration.
I think, information sharing is needed to have not only personalized knowledge but
also for a certain group of people.
Yes, I think by impelementing the information sharing feature, everyone involves in
the same knowledge graphs could evaluate the works done by the others.
I think this is also a good feature to be implemented.
i am not so sure about this. defining your own knowledge graphs may have the prob-
lem, that these graphs are personalized and therefore maybe not understandable for
other users.
I agree that information sharing feature could enable sharing knowledge.

99

Suggestions / Recommendations

The Wiki search was not enabled by default. I think it should be enabled in order to let
user experience the search bar functionality. (The search bar is the first thing I saw and
explored)
The app needs to give better results for the graph.
I think, it should not only in the biomedical domain, but also in other domains such as
Engineering or Science.
no.
Results from the semantic services need to be improved.
I think that this app still has a lot to improve. The knowledge graphs are still far
from perfect and in the document lense, there are still medical terms that are not yet
annotated.
directly login after registration (not register and then login separately), call “overwrite
files” “yes/no”, not “true/false”.
The visualization is still incomprehensible, but I think I have already got the idea to
which direction this app will be
I’d like to be able to "close" a compound graph so it becomes a single node. Then I
want to expand the node to the compound graph. In this way I can easily maintain
clarity (Übersichtlichkeit) in my knowledge graph.
interaction should be more intuitive. add guidelines/helps link at least. Allow to
annotate text.
add some start-up hints and samples and tutorials.
Onboarding feature in the start page would be helpful.
At least one service needs to be activated by default. It is better to have different
colors for different annotation types in the document text.
Upload a larger file / pdf file should be possible.
Different color for different types.

100

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudiengang
Intelligent Adaptive Systems selbstständig verfasst und keine anderen als die angegebenen
Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen –
benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen
wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher
nicht in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte schriftliche
Fassung der auf dem elektronischen Speichermedium entspricht.

Hamburg, den December 5, 2018

Alvin Rindra Fazrie

101

Erklärung zur Veröffentlichung

Ich stimme der Einstellung der Master Thesis in die Bibliothek des Fachbereichs Informatik
zu.

Hamburg, den December 5, 2018

Alvin Rindra Fazrie

102

	Introduction
	Motivation
	Research Questions
	Contributions
	Further Structure of this Thesis

	Background and Related Works
	Literature Review
	Information Management
	Ontologies in Computer Science
	Semantic Web Technologies
	Compound Graph
	Information Visualization

	Related Works
	General tools for Information Management
	Graph-based Information Visualization tools
	Text Annotation Tools

	System Overview
	Architecture of the System
	autolinks from User Perspective
	Visual Information Management
	Broker
	Technology Stacks

	Backend
	Broker
	Triples
	Semantic Services
	Information Extraction

	Information Management Visualization
	Knowledge Graphs
	Building a Knowledge Graph
	Merging Nodes Scenarios
	Creating Relations Scenarios

	An Algorithm for Knowledge Graph Extraction
	Compound Graphs Motivation
	A Layout Algorithm for Compound Graphs
	Further Main Features in autolinks
	Semantic Services
	Query Exploration
	Document Exploration
	Annotation Exploration
	Discontinuous Annotation

	Qualitative Evaluation
	Evaluation Setup
	Feedback Details
	Feedback Summary

	Conclusion and Future Work
	Conclusion
	Future Works
	Bibliography

	Bibliography
	Appendices
	Questionnaire
	Feedback

