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We can only see a short distance ahead,

but we can see plenty there that needs to be done.

– Alan Turing
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Abstract

The motivation for artificial language generation is often explicitly modeled and not de-

rived from human motivation. Language generation in humans is primarily motivated

by information exchange. This work applies a similar objective to an artificial language

generation system. We design and implement a Neural Network architecture that de-

scribes the content of images and retrieves them solely based on the generated descrip-

tions. This way we simulate a simple conversation about images. The main objective of

our model is information exchange in form of successful image retrieval. While doing

this we impose the constraint that produced image descriptions should be as similar to

human generated language as possible. In the end, we can show a strong increase in

information exchange while losing some grammatical correctness in the generated de-

scriptions.
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1 What artificial conversational systems lack
and how to fix it

Artificial replication of human behavior and reasoning is one of the main goals of Ma-

chine Learning (ML) and Artificial Intelligence (AI). It is no surprise that research into

replicating human’s unique ability to speak and to converse is popular among scientists.

The close relation between thoughts and words deeply connects humans to language.

Turing [119] famously defined the ability to hold a complex conversation as AI. While

this point is heavily debated [105], it is safe to say that our language makes us human.

Any artificial system capable of human language will be received human-like by us in a

certain way.

1.1 Why do conversational systems fail?

An impressive amount of research into conversational systems both in the scientific [63,

83] and the commercial sector [1, 66] could make one believe that the challenge of con-

versational systems is already close to being solved. Sadly, quite the contrary is the case.

To show the reason for this and to motivate this thesis, a short history of conversational

systems is needed.

1.1.1 A short history about conversational systems

The very first conversational systems were rule-based pattern matching systems like

Weizenbaum’s Eliza in 1966 [127] or Simmons’ question-answer system in 1970 [108].

The idea that human language and reasoning can be modeled, once enough hand-crafted

Figure 1.1: A short conversation with Eliza [127]. Eliza is a mock Rogerian psychothera-
pist with a simple rule-based answering scheme, developed in 1966.
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rules are created was strongly researched until the sudden rise of interest in Neural Net-

works (NNs). Figure 1.1 shows a short conversation with Eliza, one of the first chatbots.

Rule-based approaches often work great for expert systems, to understand simple com-

mands or to simulate intelligent behavior. Due to unwanted, unavoidable interaction be-

tween too many created rules, these approaches can probably never achieve human lan-

guage performance. Human language has such a complex nature that handmade rules

alone cannot recreate it. Rule-based methods are still the dominant technique in commer-

cial applications (Siri, Alexa, Cortana, etc.) since they are predictable and retraceable.

In 2015, the first sequence-to-sequence model was presented by Vinyals and Le [123].

They propose, to train a model to predict the most likely sentence based on a given in-

put sentence. This approach was inspired by machine translation [114], has since been

replicated multiple times [78, 106, 111, 131] and is now considered the state-of-the-art

architecture for conversational agents.

Many studies base their research on top of the sequence-to-sequence architecture. He

et al. [45], for example, try to increase the quality of the conversations by introducing a

Dynamic Knowledge Graph Network. Many studies use Reinforcement Learning (RL)

[29, 70] to increase the quality of conversations by defining their own measurements of

how successful a conversation is. This is questionable since a hand-crafted metric for

scoring the quality of a conversation is needed. Evaluating the quality of a produced

sentence or a whole conversation, however, is still an open research problem, difficult to

solve, due to the complex nature of language and conversations.

Mathur and Singh [83] offer a thorough survey about the history and the current state

of conversational systems.

This quick overview of conversational systems is meant to show where this thesis is sepa-

rating itself from the commonly used approaches for dialogue generation. In our opinion,

the motivation for most of the existing approaches to communication is ill-formulated,

because the motivation for language generation is explicitly modeled.

The motivation to create language, however, does not lie in the creation of language

itself. Language generation should not be motivated by its own generation but by a truly

important and useful goal-state. Mathur and Singh [83] capture this nicely when they

state that especially sequence-to-sequence models "can theoretically never solve the problem
of [language] modelling" since "the objective function that is being optimized does not capture
the actual objective achieved through human communication, which is typically longer term and
based on exchange of information rather than next step prediction."

The generation of artificial conversations is trying to mimic human behavior. In order

to mimic human behavior, one should first closely examine the human motivation for
said behavior.
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Figure 1.2: At an earlier stage in evolution, information exchange through language could
directly increase the chances of survival. The feedback can be in form of lan-
guage, actions or non-actions.

1.1.2 Why do humans communicate?

The primary, evolutionary motivation for human communication is information exchange

[60]. It allows bigger and stronger social structures and has a strong cultural impact since

it allows knowledge and information to be shared. It allows defining clear rules and

structures, to give precise information about certain topics and to pass knowledge over

generations [43].

Many animals use communication, but only the homo sapiens developed highly sophis-

ticated and complex language systems, tailored to their environment [12], in order to

optimize information exchange and ultimately increase survival chances.

1.1.3 How is communication defined in this thesis?

Since information exchange seems to be the main driver for the development of human

communication and language, it is chosen as the primary motivation for communication.

For this study, a successful communication is therefore defined as the following:

1. One system creates a series of tokens with the intention of communicating an internal state/
knowledge/ thought.

2. A second, separated system, receives these tokens and is able to understand them, to recreate
the internal state.

3. Both systems receive feedback on how well the second system could recreate the original
state, representing the level of success of the communication.

If both systems can do their designated task well enough, information from one system

can be exchanged to another system and with that, a simple conversation emerges. A

simplified, possible scenario of a conversation is shown in Figure 1.2.



4 1 What artificial conversational systems lack and how to fix it

1.2 Communication with human motivation

This thesis is proposing the idea and the implementation of a system that is capable of

natural language communication, driven by human-like motivation factors. The two key

requirements of this system are:

1. Conversation between two artificial systems or agents is inspired by the human motivation
of information exchange.

2. Communication takes place in human understandable language.

The focus of this work lies in the idea that the main drive for communication is not

simply to produce language but that language is the means to an end, similar to the hu-

man motivation of language and communication. It is a key aspect of this thesis that the

objective to produce language is not simply the production of language but the exchange

of information, similar to Steels [112].

1.2.1 How can human motivation be modeled?

To give artificial systems exactly the same motivation for language as humans are given

by evolution, complex simulations would be needed that try to model the environment,

the internal human state and the interactions between humans. This is computationally

infeasible at the present date and ethically questionable. Giving an artificial system evo-

lutionary motivation would include the drive to survive as long as possible and to repli-

cate its genetic material as much as possible. A simpler and safer approach is needed.

In order to create a situation, where two systems have to exchange information via

language, the Image Captioning-Retrieval (ICR) problem is proposed. This problem is

derived from the Image Retrieval (IR) problem that describes the task of finding the clos-

est match to a query image in a large database of images. By adding the constraint that

the system has to produce a natural language search query in order to find the closest

matching image, the ICR problem is described. Figure 1.3 shows this in a simple and

abstract way.

The problem of ICR can be split into Automated Image Description (AID) and Natural

Language Image Search (NLIS). AID describes a given image with a sentence in natural

language. NLIS uses descriptions or search queries as input and tries to retrieve the

closest or if possible the same image out of a range of candidate images.

The next section will show, why the ICR problem is well suited to simulate simple

conversations.

1.2.2 Can Image Captioning-Retrieval offer human-like motivation?

It is proposed that ICR can offer the needed motivation to exchange information in natu-

ral language. By creating a feedback loop from the retrieval performance of the NLIS,
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[16]

Figure 1.3: The ICR problem: The image is first described and then retrieved among a
number of candidate images.

both systems can be optimized, based on the quality and amount of information ex-

changed. If the AID system describes the image well enough and the NLIS system is able

to retrieve the correct or a very similar image, information was successfully exchanged.

The success of the communication can now be measured mathematically, by ranking

the candidate images based on the NLIS system’s belief, similar to Hodosh et al. [50]. The

success is proportional to the belief/probability for the correct image. By quantifying the

quality of the communication and by using it as feedback, both systems can be trained to

maximize it. The system should learn to generate a successful conversation, by generat-

ing and understanding an image description. The motivation for this task comes mainly

from the objective of information exchanged.

Providing the motivation for information exchange through communication alone is

not the complete solution, though. If the objective of the system is simply to optimize in-

formation exchange, the system will invent its own optimized language. The constraint,

that information should not simply be exchanged in any language or code but in human

language is a non-trivial challenge and another reason for ICR as the system of choice.

Thanks to extensive datasets with annotated images, AID allows grounding the inter-

nal representation of the system (images) to human understandable language or descrip-

tions. The system can be trained to produce descriptions in the desired human language.

Once the AID system is grounded, reusing it for different tasks, while the mapping from

image pixels to words stays intact, should be possible.
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1.2.3 Possible use-cases

The main application for a conversational system is the usage as a new interface for

interacting with artificial systems. Right now, keyboard, computer-mouse, controller

and touch-display are the most commonly used hardware to interact with one’s devices.

Adding a language interface to devices will open a whole new market for language con-

trolled gadgets; similar to the revolution of touch-displays. Since voice-to-speech and

speech-to-voice systems are getting close to human performance [4, 33, 42], language

control basically introduces voice control.

There are many situations, where voice control will increase safety (car control), us-

ability (device control) and simply convenience (smart homes, smart assistants, gaming).

The production of properly motivated conversation-like interaction loops between two

systems could be the foundation of more sophisticated systems. It is our hope that once

the principle framework for communication is better understood and modeled, more

complex conversations (back-and-forth) can be built upon it. The image retrieval game

could, for example, be expanded to a question-answer game about the images.

When two systems are able to communicate in human language with each other, they

build the baseline for a system that can communicate with humans. The NLIS system has

been trained to receive natural language input, to process this input in a meaningful way

and to associate it with a fitting image. By changing the objective of detecting the correct

image to a different action-space, various systems can be created.

A system capable of acting as an API between human and machine, via language,

needs a deep understanding of natural language. To create language systems that are

complex enough to do so, a thorough training process, with a concrete and meaningful

goal state, is necessary. This work aims to lay the foundation for that.

If the proposed feedback loop allows successful communication, with human-like mo-

tivation, it would be a small step closer to real human-machine communication with

natural language.

1.2.4 Additional applications

The created subsystems can be used independently for various tasks.

AID can be used to label articles from online shops for example. An application for

visually impaired people can also be imagined, where the system describes images or

videos taken by the person. In general, the idea of artificial commentators or narrators

could be realized in the future. The automated captioning of taken photos is another

possible application. AID allows enriching the textual content of an image in form of

annotations or keywords. This can help with text-based image search.

NLIS can mainly be used to query images with natural language, which would allow

image search without any form of annotations or keywords needed. Search algorithms

based on image content can be very useful.
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1.3 Content, contribution and research question

This chapter gives a broad overview of the following study, names the key contributions

and the research questions.

1.3.1 Content

Our work is separated into three main chapters with the same internal structure. The

three chapters respectively represent AID in Chapter 4, NLIS in Chapter 5 and ICR in

Chapter 6. Each of these chapters contains a thorough literature research about the re-

spective topic (Sections 4.1, 5.1, 6.1), followed by the in-depth explanation of the most

promising approaches (Sections 4.2, 5.2, 6.2). After that, the experimental setup is de-

scribed (Sections 4.3, 5.3, 6.3). The results, compared to related work (Sections 4.4, 5.4,

6.4), and a discussion about the chosen approach finish each chapter (Sections 4.5, 5.5,

6.5).

The three chapters are preceded by Chapter 2 about basic NN techniques and Chap-

ter 3, where the used dataset is analyzed descriptively. Chapter 7 finally concludes the

whole study.

1.3.2 Contribution

The main contributions of this thesis are:

• The simple and straightforward formulation for artificial communication with human-

like motivation.

• A broad and thorough survey over AID, NLIS, and ICR, including the most recent

ideas and approaches.

• The replicative implementation and evaluation of state-of-the-art AID and NLIS

models.

• The implementation and evaluation of an ICR system that communicates, moti-

vated by the objective of information exchange.

1.3.3 Research questions

From a scientific point of view, the main research question of this thesis is:

• Are the architecture and implementation proposed in this study capable of solv-

ing the ICR problem in a way that simple conversations driven by information ex-

change emerge?

The main research question includes three sub-questions:
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• Can AID be solved well enough that it can capture the most important features of

an image and transform them into natural language?

• Is it possible to train a NLIS system to find the same or similar images with only

the generated description as input?

• Can both the AID and NLIS system be optimized simultaneously by the feedback

of how successful the retrieval was?
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2 Neural Network techniques

This chapter covers high-level Neural Network (NN) concepts, needed to understand

the following chapters of this work. If the reader is familiar with these concepts this

chapter can either be skipped for now and revisited when needed, or it can be used as a

refreshment of knowledge.

2.1 Neural Networks

NNs are non-linear, universal function approximation systems. This means, theoreti-

cally, they can approximate any possible function. Since any process can be formalized

as function, NNs have the potential to model any process and make predictions about

what the outcome of this process might be under novel conditions or inputs. In practice,

this is only possible once enough high-quality training data is provided and the system

is trained on it sufficiently. Even in that case, the optimal solution of any problem is al-

ways theoretical and might not be found due to sub-optimal solutions. NNs have shown

fascinating results both in science and in commercial products.

There is a large amount of literature on NNs in the form of books [41, 44, 102], papers

[34, 103] and in countless very informative and intuitive blogs [37, 56, 84, 88]. For deeper

understanding of the mathematical concepts of gradient descent, forward- and backprop-

agation, error functions and learning optimization, these sources are recommended.

NNs are functions, projecting an input x onto an output ŷ. Both input and output can

have arbitrary numeric shapes and dimensions. The projection from x to ŷ can be seen as

a forward propagation of the input through the network. All input values are multiplied

with weighted connections w between neurons, they are summed up and an activation

function is used to output the state of the next neuron. The activation function is thus

defining, how much of the current activation is propagated to the next node. One of the

most frequently used activation function nowadays is the Rectified Linear Unit (ReLU)

function. The ReLU function is the same as max[0, x], where x is the input to the function.

This process is repeated until the output layer of the network is reached and ŷ is gen-

erated. Figure 2.1 shows how the activation is propagated forward for one step through

a network.

Mathematically, a NN simply performs multiple matrix multiplications, starting with

the input matrix X and the first weight matrix of the network W in→1 (Eq. 2.1). The activa-

tion function fact is applied (Eq. 2.2) and the current state S of the network is transformed
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Figure 2.1: A visualization of the process leading from the input of a neuron to its output.
X can either stand for the input of the network or for the activation of the
previous layer of the network and the output can either be propagated to the
following layer or could be the final output of the network.

into the activation state, A. A is multiplied with the next weight matrix of the network

(Eq. 2.3). This process is repeated until the state Sout of the network is reached and the

output Ŷ is generated by applying the output function fout. The output function fout often

differs from the activation function fact. Classic activation functions are for example the

Sigmoid function, returning a value between 0 and 1 or the Softmax function, yielding a

normalized distribution over a number of output nodes.

S1 = XW in→1 (2.1)

A1 = fact(S1) (2.2)

S2 = A1W1→2 (2.3)

A2 = fact(S2) (2.4)

... (2.5)

Sout = Aout−1Wout−1→out (2.6)

Ŷ = fout
(
Sout) (2.7)

Once Ŷ is generated, it can be compared to the target Y and a prediction error can be

calculated. In order to minimize this error, an error or loss function L is defined, mapping

the current weights of the network θ to the average error. Equation 2.8 calculates the

average error L. L itself depends on the learning task, but it always calculates the error

between a single target yi and the outcome of the neural network f that is dependent on

a single input xi and its current weights θ.
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L(θ) =
1
n

n

∑
i=1

L
(
yi, f (xi, θ)

)
(2.8)

A common loss function L is the Mean-Squared Error (MSE), shown in Equation 2.9.

The prediction y for a single sample is subtracted from the target ŷ and squared. This is

repeated for a batch of samples, to generate an averaged error.

L(y, ŷ) = (y− ŷ)2 (2.9)

In order to decrease the error, the partial derivative of the loss function L, with respect

to every single weight θi, connected to an output neuron, of the error function is calcu-

lated and the gradient of it is determined. Descending on the gradient in small steps,

governed by a defined learning rate, each weight is adapted and slowly and steadily the

error of the model is decreased. This process is called gradient descent.

This gradient can only be calculated for the weights connected to the output neurons.

When calculating the gradient for a weight not directly connected to an output neuron,

the previously calculated error of all the following units is summed and used instead of

the real error. This process is called backpropagation since it needs to start at the end of

the network and work its way back to the input layer.

By using these methods, the weights of a NN are optimized depending on the chosen

loss function and the given data. Different types of NN architectures will be presented in

the following sections.

2.2 Feed Forward Neural Networks

Feed Forward Neural Networks (FFNNs) are "classic" NNs. They are fully connected,

meaning every neuron from layer l is connected to every neuron from layer l + 1, and

they go forward, meaning in the direction from input to output. A typical input for a

FFNN is x ∈ R f , where f is a set of features, but they are not limited to this input shape.

The output can have any chosen shape. Figure 2.2 shows how FFNNs are normally visu-

alized.
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[32]

Figure 2.2: A simple FFNN with three input and two output nodes.

2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs), as the name says, have recurrent connections over

a sequence of input features. They normally receive an input sequence x ∈ Rt× f , where

t is the number of time or sequence steps and f is the number of features that represent

each step. The first time-step of x is propagated through the network just like in a FFNN.

When the second step of the sequence is used as input, the output from the previous

time-step is additionally used as input for the current time-step. This allows the network

to have an internal or hidden state over the complete sequence of inputs.

Since regular RNNs suffer from the problem of vanishing/exploding gradient [48], gated

units like Long-Short-Term Memory (LSTM) cells [49] or Gated Recurrent Units (GRUs)

[18] are often preferred [20]. The problem of vanishing/exploding gradient describes the

exponential decrease or increase of the gradients, when backpropagating them. It occurs

when the network has too many layers. In order to calculate the gradients for early

layers, multiple matrix multiplications have to be calculated. If a lot of the weights of

these matrices are either smaller or bigger than 1, the final result will move exponentially

towards either 0 or ∞, respectively.

Gate units have trainable gates that determine when to remember and when to forget

information. Intuitively, the input gate controls the amount of information entering the

cell, the forget gate controls the amount of information that stays in the cell and the

output gate controls the amount of information exiting the cell (Figure 2.3). These gates

are basically single neurons with the Sigmoid activation function, squashing the output

between 0 and 1. This limitation between 0 and 1 hinders the gradient from exploding,

which would happen, if the activation is larger than 1, and backpropagated too many

times. This gate acts as a binary switch between forgetting and keeping the information.

This way, the gradients either stay constant or they are set to zero.



2.4 Convolutional Neural Networks 13

[38]

Figure 2.3: A peephole LSTM cell. xt describes the input from all sources: input or pre-

vious layers and recurrent connections. ht is the hidden state of the network

that will be propagated to the next unit and to the next sequence step.

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are most famous for their performance in im-

age processing, especially image-classification [24, 46, 65, 109, 116] and image-detection

tasks [93]. A regular FFNN network connects every node from layer l to every node of

its succeeding layer l + 1. A CNN only connects a certain number of nodes to one of its

succeeding nodes. This is similar to applying a filter or a convolution to an image; thus

the name CNN.

This approach saves a lot of computational time, on the one hand, on the other hand,

local context becomes more important in comparison to a FFNN, where the whole input

is considered at once. Between the convolutional layers, a CNN normally has pooling

layers, decreasing the size of the image representation. After the last convolutional layer,

fully connected layers are often added, e.g. classification layer.

Figure 2.4 shows schematically, how a CNN for image classification can look like. The

input image is projected to the output layer by various convolutional, pooling and fully

connected layers.
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[21]

Figure 2.4: An abstract view on a CNN for image classification.

2.5 Autoencoders

Autoencoders, first mentioned in 1985 by Rumelhart et al. [100], map a given input into a

context space and back to the original input. By doing this, a compressed context vector

with the most important information of the input vector is created.

When using a NN as autoencoder [97], the network normally has a bottleneck in form

of a hidden layer, smaller than input or output layer. The activation of this hidden layer

is used as context vector.

Almost all autoencoders, used today, fall under either one of these four categories:

Denoising autoencoders [122], sparse autoencoders [35], contractive autoencoders [98]

or variational autoencoders [97].

2.6 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were proposed by Goodfellow et al. [36] in

2014 and have since seen an incredible amount of attention in the scientific community.

The general idea is equally simple and brilliant.

If the objective is posed, to reproduce a certain sort of available data, it has historically

been approached by applying Maximum Likelihood Estimation (MLE), to maximize the

similarity between target and generated data. The problem with this approach is the lack

of wrong samples. Training a system on what it is supposed to generate but never on

what it is not supposed to generate will result in a weak system.

GANs solve this, by continuously using the output of a generator G, during its own

development towards generating better and better samples, as negative samples. These
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negative samples, together with the original samples are used to train a discriminator

D to discriminate between real samples and generated ones. G is trained to generate

samples so that the D believes it to be a real sample.

Both systems are trained alternately and try to "beat" their counter player. This is of-

ten done in a min-max fashion, where the generator aims to maximize the error of the

discriminator and the discriminator aims to minimize its own error.

During this process, G is unaware of the real data distribution and usually uses random

noise as a starting point to learn to replicate the real data using only the feedback from

D. If G receives meaningful input (e.g. image) that is needed for the generation, it is

called a conditional GAN, since the generator creates samples, conditioned on a certain

input [87].

A recent improvement of GANs is called Wasserstein GAN (WGAN) [5, 39] and intro-

duces the usage of the Wasserstein distance, also called Earth Mover’s distance [99], as

loss function for GANs. This allows for a more stable training process and an interpreta-

tive loss function.

2.7 Word embedding models

When working with mathematical models, like NNs, words have to be transformed from

their textual form to a numerical form. A simple way to do this is by converting every

word into one-hot encoded vectors, where every word is represented by a vector e ∈
(0, 1)V , where V is the vocabulary size. Every embedding vector contains V− 1 zeros and

a single one at position i, representing the ith word of the vocabulary. The disadvantages

of this commonly used technique are that the size of the created word-vectors can become

very large and that different one-hot encoded words have no visible relation to each other.

In order to solve both shortcomings, different approaches have been proposed. In 1990

Deerwester et al. [23] proposed latent semantic analysis to create a numeric representa-

tion of documents and words by counting. More recently, Mikolov et al. [85] proposed

dense word embeddings that can be regarded as an effective, continuous approximation

of count-based distributional models. Levy et al. [69] compare the two approaches and

report that both show similar overall performances over various tasks. Due to the sim-

plicity, effectiveness, and availability of pretrained dense embedding models, they are

often chosen as word embedding models nowadays.

When using dense word embeddings, words are not embedded as discrete one-hot

vectors but as a continuous dense vector of m float values. Every vector is defined by e ∈
Rd, where d is normally much smaller than V. For this technique, words are embedded

by using a NN that works similar to an autoencoder. Words are embedded into one-hot

vectors, before they are transformed into dense embeddings via either the Continuous

Bag-of-Words (CBOW) or the Continuous Skip-gram (Skip-gram) approach. Skip-gram

trains a model to project every word onto its n neighboring words. This is done for every
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word throughout huge corpora and the resulting hidden layer is taken as new dense

word embedding. CBOW does the reverse. The neighboring words of every word are

projected on the word itself.

The size of the hidden layer can be chosen to be much smaller than the vocabulary size.

Often the word embeddings have 50, 100 or 300 dimensions. A second benefit of this

method is the fact that words with similar neighborhoods have similar representations.

Animal-words, for example, like cat or dog are likely represented by similar vectors, since

their neighboring words will often be similar. This technique is commonly referred to as

word2vec.

Figure 2.5: The CBOW model and the Skip-gram model. Words are mapped onto their

neighborhood or the other way around. The resulting hidden layers are called

dense word embeddings.

A disadvantage of word2vec is the fact that large text files (e.g. Common Crawl: 600B

tokens) contain too many different words, many of them only occurring once or twice

[136]. The resulting word2vec model becomes incredibly large and many words have

an inaccurate vector representation. Word2vec models solve this by only using words,

occurring more than t times in the given corpus. By doing this, though, many tokens are

unknown to the model.

Fasttext [11, 86] tries to solve this issue by not assigning a word-vector to every single

word but instead uses sub-information of the words to create the embeddings. This con-

cretely means, using character n-grams to make up words. Character n-grams describe

any occurrence of n consecutive characters in a text. By default, n-grams of sizes between

3 and 6 are used to build-up models. When using the model, n-grams can be recombined

to build different words. While embeddings of known words can be drawn directly from

the model, it also has the capability of computing representations for unknown words

based on their character sequence. With this method, more words can be stored while

the models stay relatively lean.
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3 The MSCOCO dataset

The Microsoft Common Objects in Context (MSCOCO) [16] dataset was used to train

and validate all three models: Automated Image Description (AID), Natural Language

Image Search (NLIS) and Image Captioning-Retrieval (ICR). The dataset contains 123,287

images of various size and content. Most images display common, everyday scenes. Each

image was annotated/described by five different individuals with the main objective to

"Describe all the important parts of the scene." [16]. Figure 3.1 shows, how the interface

for the human annotators looked like. As one can see from the instructions, the descrip-

tions are focused on the most important parts of the image.

[16]

Figure 3.1: The user interface for human annotators.

The dataset has two different splits. The 2014 split contains 82,783 training images,

40,504 validation images. The 2017 training split contains 118,287 images and the valida-

tion split 5,000 images. In addition, there are 40,775 test images with hidden annotations.

5,000 of those test images were randomly selected and annotated with 40 different cap-

tions since it was shown that many evaluation measures can have a higher correlation

with human judgment when given more, different reference sentences [120].
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Figure 3.2: Length of sentences and number of occurrences in the MSCOCO 2017 training

set.

Sentences, describing the images from the 2017 training set range from 5 to 57 words in

length, including punctuation. Figure 3.2 shows that most of the 519,753 sentences have a

length of 10 words. The number of sentences is exponentially decreasing with increasing

sentence length.

Figure 3.3: Frequency of each word is plotted against its rank in a log-log plot.

The MSCOCO 2017 training set contains 6,687,792 words. Figure 3.3 shows the fre-

quency of every word in ranked order. In order to rank the words, they are first sorted

decreasingly by frequency. The most frequent word gets the rank of 1. The rank for the

next word is calculated by adding the number of words with the previous frequency to

the rank of the previous word (Eq. 3.3). This is basically a min-sorting by frequency,

where all words with the same frequency get the lowest rank.
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rank(w f=1) = 1 (3.1)

rank(w f=2) = rank(w f=1) + occurrences(w f=1) (3.2)

rank(w f=n) = rank(w f=n−1) + occurrences(w f=n−1) (3.3)

The graph displays the typical distribution of word-occurrences in human language,

following Zipf’s law [136]. Human language contains a relatively small number of words

that are used extremely frequent. These words are visible in the upper left corner of the

graph. Some of them are marked with the word they represent. The most frequent word

"a" occurred 633,904 times alone. On the other side of the spectrum, many words occur

only once or twice. The extreme dimensions of this phenomenon are visualized in the

log-log plot in Figure 3.3.

The marked dot with word frequency of 1 represents 16,837 different words out of a

total of 37,678 unique words. This means 44.7% of all words occur only a single time. At

the same time, these 16,837 words make up only a tiny fraction (0.025%) of the total word

count of 6,687,792.

When masking every word with 4 or fewer occurrences with unknown, the number of

different words decreases to 12,203 (32.38% of 37,678 different words) while losing the

information from 39,764 words. This equals only 0.059% of the total 6,687,792 words.

This technique is often applied to keep the size of the used vocabulary tractable.
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4 Automated Image Description

This chapter covers the first of two systems needed to create a simple conversation about

images: Automated Image Description (AID). Most of the related work presented in this

chapter uses the terminology: Image Captioning (IC). This is normally done when the

created descriptions are only short sentences and caption just the most important feature

of the image. Image description is a broader term, including IC but also more detailed

descriptions. Since the ultimate goal is to create rich and diverse natural language de-

scriptions, the terminology AID has been chosen.

The following sections show how AID was and is tackled in related work (Section 4.1).

The selected approach to AID is explained in more detail in Section 4.2. Section 4.3 covers

the experimental setup, including the implementation details and the experiment design.

In the end of this chapter, the results of the experiments are displayed, compared to

similar studies (Section 4.4) and critically discussed (Section 4.5).

4.1 Related work

This section will focus mostly on how encoder-decoder architectures can be used to solve

AID, how these models are optimized in related work and how they are traditionally

evaluated.

Different approaches, like retrieval based methods [26, 82, 89, 90, 118, 132] have been

proposed to solve the AID problem, but since one goal of this thesis is to generate novel

descriptions, they are not mentioned further. For an overview of the history of AID,

the available datasets and the popular evaluation metrics Bernardi et al. [10] is recom-

mended.

4.1.1 Encoder-decoder architecture

Encoder-decoder models always follow the same general pattern (Figure 4.1):

1. Computer vision techniques are used to encode an image into a context/image vector, repre-
senting the information of the image in a condensed way.

2. The image vector is decoded into a sequence of tokens that best describe the content of the
image.
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Figure 4.1: The encoder-decoder CNN-LSTM architecture from a high-level perspective.

Encoder

Encoding in this context describes the process of embedding an image into a vector,

preferably in a lower-dimensional space. Optimally, the created vector contains a max-

imum amount of information about the image in form of a dense representation. The

result is called context vector or image vector. Different approaches have been proposed

to do this.

Farhadi et al. [31] use spatial relationships, Yang et al. [134] use corpus-based relation-

ships and Kulkarni et al. [67] applied spatial and visual attributes to the image.

Nowadays, this step is often performed with a Convolutional Neural Network (CNN)

as image encoder [17, 26, 27, 57, 61, 62, 124, 125]. All the mentioned studies use pretrained

CNNs, normally trained on the ImageNet dataset [24] for image classification. Karpathy

and Fei-Fei [57] use a Region Convolutional Neural Network to explicitly add spacial

image information and Xu et al. [130] use an attention mechanism to focus more on salient

regions in images.

Decoder

The decoding step describes the transformation of an image vector to a series of tokens

or words. It can also be implemented in various ways.

Historically, template-based models [31, 134] were commonly used. Templates, de-

signed by experts, are filled by selecting the most likely objects, actions, attributes, and

prepositions based on, for example, a Hidden Markov Model. By their nature, templates

strongly determine the structure of the generated sentences.

A more flexible approach is the use of language models. They are less constrained and

can create novel text. A language model is a probabilistic model that, given n words, will

return a probability for every word in a defined vocabulary of being the next word. This

is traditionally done with word n-grams [67, 71] or with Neural Networks (NNs) [47].

A word n-gram is a sequence of any n words, occurring in a given text. Word n-gram

models can be seen as discrete and NNs as continuous language models.

Chen and Zitnick [17], Donahue et al. [27], Karpathy and Fei-Fei [57], Kiros et al.
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[61, 62], Mao et al. [81], Vinyals et al. [124, 125] and Devlin et al. [26] all use a CNN for

encoding images and a Recurrent Neural Network (RNN) as language model. RNNs are

often implemented in form of Long-Short-Term Memory (LSTM) cells or Gated Recurrent

Units (GRUs), since they have better capability of remembering longer sequences.

The usage of NNs as encoder and decoder differs from previously used methods mainly

in the fact that no hand-crafted rules, no templates, no corpus and no predefined cate-

gories like word types or such are needed. Instead, a large annotated training dataset is

required to train the weights of the network.

4.1.2 Optimization strategies

Encoder-decoder architectures in form of CNN-RNN networks have claimed their place

as state-of-the-art architecture when it comes to AID. The leader-boards of image cap-

tioning competitions like the MS COCO 2015 Image Captioning Task [16] clearly show

this. While the architectures of the used models are similar throughout the literature,

their optimization strategies vary greatly.

Maximum Likelihood Estimation

N-grams and neural models are both commonly optimized with Maximum Likelihood

Estimation (MLE) [17, 26, 27, 57, 61, 62, 81, 124, 125]. This is normally done, by mini-

mizing the cross-entropy between a generated word probability distribution and the true
distribution. The true distribution refers to a one-hot vector of the true word.

When training a RNN, with MLE, to generate a sequence of word probabilities, two

training strategies can be applied. The first option is to apply every generated word, to

the already existing sentence, in order to create the new sentence, needed for the pre-

diction of the next word (Figure 4.2b). This approach is very time-consuming, since the

variety of words combined with the sentence length allows for an incredible amount of

different sentences, with only a small partition being correct sentences of the language.

In order to overcome this problem, teacher forcing is commonly used. Teacher forcing
describes the process, where input and target are the same sentences. Any wrong predic-

tions in the training phase have no influence on the rest of the training episode (Figure

4.2a). This allows a fast training with good results but will often lead to the exposure
bias [92]. This means, once the model is in the prediction phase, it can no longer rely on a

target sentence as input since there is none. If the model creates unseen word sequences

in this phase, it will react unpredictably. Since the model was only trained on correct

sequences, it has never learned to recover from such a situation.

Bengio et al. [8] try to solve this by introducing generated sentences during training,

but Huszar [53] shows that this will not converge to the true data distribution.
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Reinforcement Learning

Bengio et al. [8] propose a different idea to work around the exposure bias. They gradually

add a Reinforcement Learning (RL) [6, 115] reward, derived directly from the BiLingual

Evaluation Understudy (BLEU) [91] score, which measures overlap between generated

and true output (Section 4.1.3).

More studies use this technique to achieve higher evaluation measures. Liu et al.

[76], Ranzato et al. [92], Rennie et al. [96] and Liu et al. [75] use the REINFORCE [128] al-

gorithm to maximize scores like BLEU [91] or Consensus-based Image Description Eval-

uation (CIDEr) [120] (Section 4.1.3). Zhang et al. [135] do the same, but they use the

Actor-Critic framework [7, 129].

Generative Adversarial Networks

A different approach to avoid the exposure bias is the usage of Generative Adversarial

Networks (GANs) [22, 68, 72]. Instead of comparing sentences directly to the ground
truth, a discriminator is trained to judge how well image-sentence pairs fit together. The

generator is only trained to fool the discriminator. This way, the system has a more im-

plicit objective, of creating human-like captions instead of the direct objective to copy the

ground truth sentences. It should be noted here that GAN models are normally pretrained

with MLE, to decrease training time.

4.1.3 Evaluation

The question of how to score produced sentences or even dialogues is still an open re-

search topic. There are two different approaches, that are commonly seen in the related

work.

Word n-gram evaluation measures

The most widely used evaluation metrics are n-gram evaluation measures. One mea-

sures the similarity between two sentences or paragraphs by comparing their respective

occurrences of word n-grams.

The BLEU [91] score represents a modified precision of n-grams. The BLEU score is

calculated by counting all the word n-gram matches between the candidate and a ground
true sentence. Equation 4.1 shows how to calculate the BLEU score.

BLEU =
mmax

nc
(4.1)

Let mmax be the number of matches between the candidate and a ground true sentence,

with the limit at the maximum total count of the n-gram in the ground truth. Let nc be the

total number of n-grams in the candidate sentence.
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The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [73] score is very

similar to the BLEU score. It represents either the recall or the precision between candi-

date and ground truth (Equation 4.2).

ROUGEprecision =
m
nc

ROUGErecall =
m
ngt

(4.2)

Let m be the number of matches and n either the total number of n-grams in the candidate

or the ground truth sentence.

The Metric for Evaluation of Translation with Explicit ORdering (METEOR) [25]

score is the harmonic mean between the precision and the recall, where precision is

weighted 9 times more important than recall. METEOR also adds a penalty for exact

copies of the ground truth sentence.

CIDEr [120] is a weighted statistic over n-grams designed for AID. CIDEr places more

importance on n-grams that frequently occur in the true sentence describing an image

and reduces the weight of n-grams that occur across all true descriptions with a high

frequency. It provides a measure of word salience by discounting words with high over-

all frequencies and increasing the weight of special words, only occurring in a few true
sentences. Thus, it rewards rich and diverse sentences over generic ones. It was shown

that CIDEr has a higher correlation with human judgment, as compared to conventional

evaluation measures like BLEU or ROUGE [120].

Word n-gram scores are fast and easy to calculate and offer comparable metrics for vari-

ous Natural Language Processing (NLP) tasks. It should be noted here that these scores

do not automatically represent the quality of the generated sentence. Comparing the

generated sentences to multiple ground truth sentences increases the validity of evalua-

tion measures being a good representation for the quality of captions but does not make

them perfect measurements. They further only measure the similarity of words, not the

similarity of meaning.

The interpretations of n-gram evaluation measures results should be done with care.

A BLEU score of 1, for example, can only be reached by exactly copying the ground truth

sentence. Quoting Papineni et al. [91]: "The BLEU metric ranges from 0 to 1. Few translations
will attain a score of 1 unless they are identical to a reference translation. For this reason, even
a human translator will not necessarily score 1. [...] on a test corpus of about 500 sentences (40
general news stories), a human translator scored 0.3468 against four references and scored 0.2571
against two references." CIDEr on the other hand can reach values beyond one. Chen et al.

[16] offer additional information on n-gram evaluation measures and their agreement

with human judgment.
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Ranking

Hodosh et al. [50] offer a different evaluation technique for AID. They propose to evalu-

ate a system based on its capability to rank image-sentence pairs in a retrieval task. This

means the performance is measured based on how well the system can retrieve the cor-

rect caption for an image or the correct image for a caption. Hodosh et al. [50] argue that

this is a more accurate way to determine whether a system has learned the correct map-

pings from image to textual information. They also report a higher correlation between

retrieval scores and human evaluations compared to traditional evaluation measures.

Next to n-gram scores it is the most frequently used evaluation metric for AID systems.

There is some argument about whether ranking methods caption the quality of image

descriptions better than traditional evaluation measures do.

Chen and Zitnick [17], Donahue et al. [27], Kiros et al. [61, 62], Mao et al. [81], Vinyals

et al. [124] and Karpathy and Fei-Fei [57] all test their model on its image and sentence

retrieval performance. For caption retrieval this is intuitively done, by generating the

probabilities for a given image and ranking n ground truth captions based on their simi-

larity to it. For image retrieval, the probabilities for n images are generated by the AID

model and ranked based on their similarity to every single ground truth query sentence.

4.2 CNN-LSTM network

In order to build an AID baseline model, the CNN-LSTM encoder-decoder architecture

with MLE was selected and implemented. This section explains in detail how the model

works.

The AID model receives an image xim ∈ Rh×w×c, where h, w, c are the height, width

and color dimension, and a sequence of words and will output a probability distribution

for the next word. This step will be repeated until the end of sentence symbol (end-symbol)
is generated or a fixed maximum sentence length is reached.

The input image is resized and fed through a CNN with the parameters θφ that extract

the most important image features and project the image onto a vector φ(xim, θφ) ∈ Rk,

where k is the output dimension of the CNN. The respective description sentence is em-

bedded in a dense word embedding, resulting in the second model input xse ∈ Rt×d,

where t is the number of words in a sentence and d is the dimensionality of every dense

word embedding.

xse is fed word by word into a LSTM layer. φ(xim, θφ) can either be infused once at

the beginning of a training sequence or it can be added at every generation step. The

latter is more common since it allows the image information to be present at every gen-

eration step. The LSTM block is followed by a block of fully connected layers and a

final softmax layer, squeezing the model output into t probability distributions with

P(yt|xse
1→t−1, φ(xim, θφ)), where yt is the probability over the vocabulary V at timestep

t, xse is the information from the previous words and φ(xim, θφ) is the image vector.
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At training time, xse and the target y ∈ Rt×d, with the same shape as xse, are repre-

sentations of the same ground truth sentence. This is called teacher forcing. It creates

a quick and stable learning process but can lead to the exposure bias [92], described in

Section 4.1.2. xse is shifted one time-step into the future by adding a start-symbol at its

beginning. This way, word yt equals xse
t+1 and the model is trained to predict the next

word of the sentence xse. An end-symbol is appended to the y, to make input and output

have the same length. Additionally, by adding the end-symbol, the network is trained to

end every sentence with this token.

At every step t, the unfinished sentence xse
1→t−1 is combined with the image-vector

φ(xim, θφ), fed into the LSTM block and projected to produce P(yt). This is done until the

end of the sequence or until a defined, maximum sentence length is reached. Figure 4.2a)

shows a training run from an abstract perspective.

When testing the model, only φ(xim, θφ) is given to the system. The model starts, like in

the training phase, with x̂se, containing only the start-symbol, as first input and generates

P(ŷt). Depending on the selection mode (e.g. greedy pick), one word yt from P(ŷt) is

selected. The difference to the training phase is that every produced word ŷt is directly

added to the previous input x̂se
1→t−1. The previous sentence input x̂se is constantly up-

dated and serves as new input. Figure 4.2b) shows how the prediction process looks like.

This way the model is tested and used.

The classic prediction paradigm is to greedily pick the word with the highest probabil-

ity at each generation step. In order to further increase evaluation measures, different se-

lection strategies can be applied. Beam-search is classically used for this purpose, where

the N most probable words are followed instead of just the most probable. Donahue et al.

[27] empirically show that a beam width N of 3-5 shows optimal results and generally

boosts results between 1-5 percent points.

A different prediction method is to sample multiple sentences randomly by the proba-

bilities given by the softmax, and selecting the sentence with the highest log-likelihood.

When doing this, it further increases the performance to decrease the temperature pa-

rameter τ of the softmax function. By decreasing τ, the softmax is transformed further

towards a one-hot distribution and by increasing τ the distribution is gradually becoming

more uniform. Donahue et al. [27] empirically show that using 100 random samples and

τ = 0.75 yields even higher results than using the more popular beam-search approach.

However, each approach significantly increases the prediction time per image.

4.3 Experimental setup

This section gives detailed information about how the AID model was implemented and

the different experiments that were executed. Table 4.2 offers a comprehensive overview

of different hyper-parameter settings and the resulting evaluation measures. The hyper-

parameters that were adapted are marked with their respective column names in the
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Figure 4.2: a) In training, the input and the target are the same sentence, simply shifted by
one timestep. b) In the prediction phase, for not annotated images or during
testing, the generated word is appended to the unfinished input sentence and
used for the next generation step.

following sections.

Data preprocessing

Words were transformed to contain only non-capital letters and every word occurring

less than 5 times was masked as unknown. This decreases the vocabulary size in the

MSCOCO 2014 data split to 8,857 words. The vocabulary size for the 2017 split for this

setting is 10,331. Accepting every word with a minimum frequency of 10 yields 7,456

different words. The vocabulary sizes were determined based on the training datasets

only since this would be the available data in a realistic use-case. Both of these steps are

necessary to reduce the size of every single sample and to allow training in reasonable

time. Every sentence was padded or truncated at the end to have a fixed sentence length

of either 16 or 20 words, including either start- or end-symbol. All training samples in each

batch have to have the same length to process them. Since most of the sentences have a

length of 10 words, 16 and 20 was chosen as maximum length, to keep the size of the

input and output relatively small, while containing a maximum amount of information.

Each word was encoded into a one-hot feature vector.

All images were resized to have 224× 224× 3 pixels (Section 4.2) and fed through a

pretrained CNN to retrieve their respective image vector. The AID model receives only

the preprocessed image vectors. This greatly decreases the runtime of the algorithm.

Calculating image vectors on the fly is only necessary when the complete CNN is being

fine-tuned. This is very time-consuming since the same image has to be processed by the

network again every epoch.
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Figure 4.3: AID architecture of our final model.

Implementation

One-hot representations of words are first mapped to pretrained dense vectors from a

dense fasttext [86] model, pretrained on Wikipedia dumps.

Following the implementation by Donahue et al. [27] and the hyper-parameter evalua-

tion by Soh [110], a two-layered stacked LSTM architecture with multiple dropout layers

was selected to process the embedded sentence word by word. As recommended by

Donahue et al. [27], the image information was infused at every generation step, not into

the top-level LSTM but after the first (L=1) or second (L=2) LSTM layer.

Soh [110] reports, that dropout layers with a dropout rate (D) between 0.2 and 0.3

optimally hinder the model from overfitting, while leaving it with enough information

to successfully perform its task.

Residual Neural Network 50 (ResNet50) [46] was selected as CNN model. It showed

the best empirical results when compared to three other commonly used CNN architec-

tures. The pretrained weights are taken from the Keras website1.

Further, experiments to optimize the architecture of the AID model were conducted.

The final architecture is shown in Figure 4.3 and the evaluation measures of different

model designs is shown in Table 4.2.

1https://keras.io/applications/

https://keras.io/applications/
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Table 4.1: Comparing different CNN architectures. ResNet50 shows the best results re-
garding all chosen evaluation measures. VGG16 shows almost the same re-
sults, but the model is nearly five times larger than ResNet50. Our best re-
sults are in bold. P=Parameters, D=Depth, T5=Top5-Accuracy, B1-B4=BLEU1-4,
M=METEOR, C=CIDEr, RL=ROUGE_L

CNN P D T5 B1 B2 B3 B4 C M RL
Inception [116] 2.38 ∗ 107 159 0.944 0.16 0 0 0 0 0.04 0.2
Xception [19] 2.29 ∗ 107 126 0.945 0.5 0.28 0.16 0.1 0.2 0.14 0.37
VGG16 [109] 1.38 ∗ 108 23 0.901 0.63 0.44 0.3 0.2 0.61 0.2 0.46

ResNet50 [46] 2.56 ∗ 107 168 0.929 0.65 0.46 0.32 0.22 0.68 0.21 0.48

Experiment

All experiments were run either 6 or 13 epochs. As reported by Soh [110], AID models

normally learn the most during the first 5 training epochs and can hardly increase their

performance with regard to the evaluation measures afterward (Figure 4.4). N-gram mea-

sures, however, do not directly indicate the quality of the generated sentences and Soh

[110] shows examples, where the quality of the descriptions increases further even if this

is not measurable quantitatively by the used evaluation measures. For this reason, all

experiments were first conducted with 6 training epochs and once the best model was

determined, it was trained for 13 epochs. Adam [59] was used as optimizer with the

default learning rate of 0.001.

After every training episode, the whole validation dataset was used to predict a cap-

tion with greedy picking for every image and all used evaluation measures were cal-

culated with the evaluation script provided by Microsoft Common Objects in Context

(MSCOCO).

When experimenting with different parameter settings, the MSCOCO 2014 data-split

was chosen, since most of the related work uses the 2014 split, and thus allowed a di-

rect comparison of the performance of the model. Before uploading the results to the

MSCOCO test server, the model was trained on the 2017 split, since it contains more

training data, while still keeping 5,000 images for validation.

4.4 Results

The first empirical results are reported on the performance of different pretrained CNN

models. Even though ResNet50 [46] did not perform best on either the top-1 or top-5

accuracy image classification task, it produced the best results compared to VGG16 [109],

Xception [19] and Inception [116]. ResNet50 also only contains 2.56 ∗ 107 parameters,

compared to the second best-performing VGG16 with 1.38 ∗ 108 parameters. Based on

these results, ResNet50 was selected for all further experiments.

ResNet50 was combined with different decoder architectures to reach similar results as

observed in the literature. Finetuning the model on the validation dataset of MSCOCO
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Table 4.2: Showing the best performance for the MSCOCO validation 2014 dataset com-
pared to the results from Donahue et al. [27]. Our best results are in bold.
Co=CNN model, V=VGG16, R=ResNet50, F=fine-tuned CNN, L=LSTM layers be-
fore merge with image vector, D=Dropout rate, TD=Time distributed dense vector
after first LSTM, W=minimum word frequency, B1-B4=BLEU1-4, M=METEOR,
C=CIDEr, RL=ROUGE_L,

Model Co F L D TD W B1 B2 B3 B4 C M RL
Our Model R N 2 0.25 - 8 0.65 0.47 0.32 0.23 0.68 0.21 0.48
Our Model R N 2 0.25 - 5 0.66 0.47 0.33 0.23 0.68 0.21 0.48
Our Model R N 1 0.25 512 5 0.66 0.48 0.34 0.23 0.71 0.22 0.49
Our Model R N 1 0.4 1024 5 0.67 0.49 0.35 0.24 0.75 0.22 0.49
LRCN [27] V N 1 - - - 0.67 0.49 0.35 0.25 0.77 0.23 0.50
LRCN [27] V Y 1 - - - 0.70 0.52 0.37 0.27 0.84 0.24 0.51

Table 4.3: C40 results from different studies, taking part in the 2015 COCO Caption Chal-
lenge Competition. Results are acquired through uploading the captions for the
MSCOCO 2014 test dataset to the evaluation server. They are sorted by CIDEr
score. Our best results are in bold. B1-B4=BLEU1-4, M=METEOR, C=CIDEr,
RL=ROUGE_L

Model B1 B2 B3 B4 C M RL
VSA [57] 0.828 0.701 0.566 0.446 0.692 0.28 0.603
UVS [62] 0.848 0.747 0.633 0.517 0.752 0.294 0.635

Our Model 0.835 0.718 0.591 0.472 0.753 0.294 0.623
m-RNN [81] 0.890 0.801 0.690 0.578 0.896 0.320 0.668
Human [74] 0.880 0.744 0.603 0.471 0.910 0.335 0.626
LRCN [27] 0.895 0.804 0.695 0.585 0.934 0.335 0.678

2014 resulted in the model shown in Figure 4.3 and the evaluation measures displayed in

Table 4.2 for the validation dataset.

The results of Donahue et al. [27], without finetuning the CNN, could almost be repli-

cated. Only small differences can be observed in the CIDEr score, which is 0.02 smaller

than the reported value by Donahue et al. [27]. METEOR and ROUGE are 0.01 behind

the state-of-the-art paper and the rest of the scores have the same value. According to

Donahue et al. [27], finetuning the complete CNN can increase scores between 0.01 and

0.07 depending on the metric.

Using the same model, training it on the 2017 split and uploading the generated de-

scriptions to the official evaluation server results in the evaluation measures reported

in Table 4.3. The results are reported together with results from similar studies. They

are all derived through the C40 dataset provided by the 2015 COCO Caption Challenge

Competition. C40 refers to a dataset with 5,000 images annotated with 40 captions per

image [16].

Figure 4.4 shows the performance of the model reported in Table 4.2, row 3, and in

Table 4.3 during its training phase. Most of the scores only increase slightly (<0.025) after

the first training epoch. CIDEr increases the most with a difference of 0.099 from first to
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Figure 4.4: Evaluation measures calculated after every training epoch.

Figure 4.5: Badly described images

13th epoch.

Figure 4.5, 4.6 and 4.7 show example images with descriptions. Figure 4.5 shows im-

ages with wrong or very bad descriptions. The descriptions are grammatically correct,

and they might fit a different image, but they are not well suited for the image they are

supposed to describe.

Figure 4.6 shows different images with very similar, template-like descriptions. The

images all show some sort of kitchen or dining room and the respective descriptions all

sound like they could be generated with a template. In general, they are very similar and

all start with the same five words. This is also observable for similar image categories

like bathroom, street, skating or surfing images.

Figure 4.6: Very generically, template-like described images.
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Figure 4.7: Well described images.

Finally, Figure 4.7 shows images described well by the algorithm. These images also

show high evaluation measures, especially high CIDEr scores. The content of the images

is accurately described and the grammatical and syntactical structure of the sentences is

correct.

4.5 Discussion

This chapter describes, how an encoder-decoder model, trained with MLE can yield

a baseline model for AID. The model was not created with the intention to maximize

evaluation measures but to be used as pretrained model, in a larger Image Captioning-

Retrieval (ICR) network, presented in Chapter 6.

Quantitative Analysis

In Table 4.2, the validation results from our model are compared to a previously pub-

lished paper [27] that uses a similar architecture and the same loss. Looking at the ex-

perimental settings that are most similar to our settings, the differences in results is very

small (~0.01).

Our results can support the claim of Donahue et al. [27] that the infusion of the im-

age information between two stacked LSTM layers yields optimal results. We can only

partly confirm the observation of Soh [110] on the dropout rate between layers. We could

observe an even better result with a dropout rate of 0.4 compared to his proposed rate

between 0.2-0.3. Additionally, we could observe better results, when including a tempo-

ral distributed dense layer between the two LSTM layers that was concatenated with the

image information at every timestep.

Our results further strengthen the evidence for encoder-decoder architectures, trained

with MLE to generate descriptions with strong baseline evaluation measures.

A correlation between evaluation measures, especially CIDEr [120] and human judg-

ment is empirically shown by Chen et al. [16]. Table 4.3 shows the evaluation measures,

humans achieved, when asked to perform the image description task. The fact, that Don-

ahue et al. [27] achieve better results than the human baseline shows that the relationship

between human judgment and the chosen evaluation measures is not perfect. N-gram

based evaluation measures capture mostly, how similar the sentences are in wording and

not in meaning, compared to true sentences.
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A second explanation for the higher results of an artificial system compared to the

human baseline could be the definition of the task. Machines, trained to maximize the

similarity between the generated sentences and an underlying true sentence, while hu-

mans, if not explicitly told otherwise, simply describe images intuitively, without trying

to achieve a high resemblance to an already existing human description. For a human an-

notator, his description is the true description, he will not try to create a generic sentence,

that has a high chance of matching n-grams with other human descriptions.

When comparing our results to the human baseline in Table 4.3, a strong trend in the

same direction is visible. From a quantitative perspective, this can be seen as a clear in-

dicator that our model is capable of capturing the most essential image features and to

transform them into sentence representations, similar to a human annotator. The com-

parison to different related work further shows, that our approach, even if it was only

intended to be a baseline, beats other approaches or yields similar results.

Figure 4.4 shows that the evaluation measures only really improve in the first few train-

ing epochs. From the different scores, CIDEr shows the biggest improvement after the

first training epoch. This training curve is typical for MLE training with true annotations

as training input. The system quickly learns repeating patterns, like the start of sentences

with "a". The robustness of the model is questionable since it has only seen correct sen-

tences and uses greedy pick in the prediction phase. This way, little chance is given to

novel sentences, which is beneficial for the system, because it would likely not be able to

recover from unseen sequences of words. A qualitative analysis in the next section sheds

more light on the performance of our model.

Qualitative Analysis

Expecting a random selection of generated captions allows an interesting insight into

how the AID model works and where it fails. The samples in Figure 4.5 are completely

wrong descriptions for the images at hand. However, the descriptions themselves are

grammatically correct and could describe a different image very well. This means, the

model, in a way, categorizes images and then adapts the sentence only slightly based on

details in the image itself. In other words, once the system predicts the first two or three

words, the rest of the sentence is more or less determined. These results are very similar

to other studies, also training their model with MLE. Chapter 6 explains this behavior in

more detail, and show, how it could be averted.

Figure 4.6 shows a different flaw in some of the generated sentences. All the described

kitchens have very similar descriptions. It feels like they all follow a fixed template that

only allows certain words to change. Similar findings have also been reported before

when training with MLE as only loss. The model finds a general description that has

a relatively high correlation to all similar images. It finds common sentence structures

that satisfy a maximum amount of images to a maximum degree. The result yields high

correlation between output and target, but the sentences sound stiff and template like.
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Apart from these examples, most of the generated descriptions fit the image content

very well. The sentences still sound generic or stiff sometimes, but they have a correct

grammatical structure and describe the content in a meaningful and correct way.

Future work

There are different proposals to increase the quality of the generated descriptions. Some

approaches focus more on maximizing the evaluation measures while other focus on

naturalness and how human-like the sentences are.

Using attention mechanism or regional image information can increase performance [57,

130]. Donahue et al. [27] show that finetuning the complete CNN increases evaluation

measures. Another way to improve results is to use a different sampling method. In-

stead of greedy picking, beam-search or multiple-random-sampling can be used and can

increase evaluation measures by up to 0.05. This increases prediction time by a large

factor, however, making it useless for real-time applications. Using these methods will

maximize the performance achievable with MLE.

In order to further increase the quality of the generated sentences, a different loss func-

tion has to be chosen. MLE is normally still used to pretrain the network. After a certain

epoch, the objective is switched to a more implicit one. Directly optimizing a chosen eval-

uation measure with RL has shown to generate less generic captions. Another approach

is to train the model to describe an image and then retrieve it again. Since this approach

is very similar to ICR, it will be covered in more depth in Chapter 6. These approaches

can produce less generic descriptions with improved performance.

Conclusion

In conclusion, a strong baseline AID system has been created. The system can success-

fully describe given images with truly meaningful sentences. It was not our intention to

create a new state-of-the-art performance with this model but to create a baseline model

with strong word-meaning grounding that can be used as pretrained model in further

tasks.

In Chapter 6 the trained system takes its place in a larger ICR network, in order to

simulate simple conversations about images. We are confident that the pretrained model

is capable of this task.
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5 Natural Language Image Search

The transformation of an image into a series of words completes the first part of a success-

ful communication. The next step is to reverse this process. A second system receives the

created string and ranks all available images based on their similarity to the description.

The objective of the system is to rank the described image as high as possible.

Section 5.1 shows how similar studies try to solve the problem of Natural Language

Image Search (NLIS), sometimes also called Sentence-Based Image Search. Section 5.2

explains how this task can be approached with Visual-Semantic Embedding (VSE) and

a triplet ranking loss. Section 5.3 describes the experimental setup, including data pre-

processing, implementation details and experiment design. In Section 5.4 the results are

displayed and in and Section 5.5 these results are evaluated and discussed critically.

5.1 Related work

One of the earliest ideas on how to approach NLIS was to use meta-data like annotations,

keywords or descriptions of the candidate images. If those are not available, the images

have to be annotated by hand or in an automated fashion (Section 4). A query sentence

is compared to the descriptions of all possible images and an n-gram similarity measure-

ment (Section 4.1.3) is used to calculate the closest match. This is similar to text-based

image retrieval and has a long history of research [15, 117].

Most of the online search engines used this method for their image search service until

image processing techniques became reliable enough [55]. In 2011, Schroff et al. [104]

categorized images, returned by Google Images on simple search words and report the

worst class (shark) precision of only 32%. This might have been due to keyword-search

focused algorithms with little or no image processing.

Since the actual image content offers the primary source of information and because

new Machine Learning (ML) techniques like Convolutional Neural Networks (CNNs)

work very well on continuous state spaces like images, the retreat to only using keywords

or annotations is no longer necessary today. Instead, the usage of hybrid models [55, 79]

or pure image content based approaches is preferred.

5.1.1 Ranking by AID

Section 4.1.2 shows that image ranking is often used to evaluate Automated Image De-

scription (AID) Systems [50]. This is a valid approach to NLIS, but it has a big disadvan-
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tage. In order to rank candidate images based on a query sentence, the log-likelihood

for every image has to be calculated. For one image this is done by feeding the query

sentence and the image into the AID system (Section 4.2) and storing the log-likelihoods

for every true word. In order to rank a number of candidate images, this process has to

be repeated for every image. This whole image search has to be repeated for every new

query sentence. There is no possibility of preprocessing the images since the AID sys-

tem always needs the query sentence and the image as input. For a growing database of

candidate images, this is not a feasible method for NLIS.

5.1.2 Visual-semantic embedding

A common approach to image ranking is the mapping of sentences and images into a

shared VSE space, where they can easily be compared by a distance measurement like

the Euclidean Distance [9, 13] or the Cosine Similarity [113] (Figure 5.1.2).

Using this method allows the preprocessing of a large image database into vectors in

the VSE space. For the prediction, the query is simply projected into the same space and

the distance to all candidate image vectors can be calculated.

Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is used to calculate a linear projection of two vec-

tors into a common space that maximizes their correlation [51]. Since many problems are

not solvable through linear CCA projections alone, Kernel Canonical Correlation Analy-

sis (KCCA) was proposed by Akaho [2] and reused for NLIS [50]. Recently, Deep Canoni-

cal Correlation Analysis (DCCA) was proposed to overcome the need for a fixed kernel in

KCCA. In DCCA, Neural Networks (NNs) are used to project images and sentences into

a shared space. The weights of the networks are then trained to maximize the correlation

between all pairs, called the CCA loss [3, 14].

Eisenschtat and Wolf [28] propose a different loss. Instead of maximizing the correla-

tion directly, they minimize the L2 loss, to simplify the model. They map an image vector

directly onto its respective sentence vector and vice versa with symmetrical networks.

Then, they take the hidden state of the middle layer between input and output of each

network and try to minimize their Euclidean distance.

Autoencoder

A similar way to realize VSE is to formalize it as an autoencoder [17], where image vectors

are used as input and target, so that xim = yim. The model is trained to perform AID

and reverse the processes. This results in a system that transforms image vectors into

sentences and a second system that transforms sentences back to the original input vector.

NLIS can be performed by only using the second part of the network that will project a

given sentence as close as possible to its respective image vector. This can be seen as a



5.1 Related work 39

Figure 5.1: Visual-semantic embedding shown in three dimensions. The actual embed-
ding space has a higher number of dimensions than shown here.

regression problem, with the objective to minimize the distance between the generated

image vector ŷ and the true image vector xim. A problem with this approach is the fact

that the model is only trained to produce similar image vectors but not to produce distinct

image vectors with regard to the other, incorrect candidate images.

Triplet ranking loss

The most commonly used way to train a model to distinctly differ between correct and

incorrect candidates is the usage of the triplet ranking loss [30, 57, 58, 77, 94, 126]. One

triplet contains a query element (e.g. image caption), a correct candidate (e.g. correct

image) and an incorrect candidate (any other image). The objective of the model is to

decrease the similarity for any wrong query-candidate pair below a set margin compared

to the similarity of the true query-candidate pair.

Karpathy and Fei-Fei [57], Karpathy et al. [58], Ren et al. [94] and Wang et al. [126] all

use attention mechanisms to determine more or less important sub-regions in the images

and to directly connect parts of the image to certain words.

Faghri et al. [30] propose an improvement of the triplet ranking loss, by only selecting

the hardest negative sample, meaning the one wrong query-candidate pair that scored

the highest similarity, as loss for a mini-batch. Liu et al. [77] go one step further and

mine unannotated similar images from the web and use them as hard negative samples

to make the model more sensitive to details in the images.
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Wang et al. [126] also experimented with a similarity network that trained with a lo-

gistic loss to generate numbers close to 1 for well-fitting pairs and outputs close to -1 for

bad fits. They show, that this approach "fails miserably for image-sentence retrieval" [126].

5.1.3 Evaluation

The performance of ranking models is traditionally reported by the recall of the model

for different ranks. r@1, r@5, and r@10 refer to how many queries resulted in the correct

candidate being ranked within the top 1, 5 or 10 elements. The median rank is also

reported commonly. These metrics are highly dependent on the number of candidate

images at prediction time. For the Microsoft Common Objects in Context (MSCOCO)

dataset, 1,000 and 5,000 candidate images are normally chosen as candidate size.

Every image in the MSCOCO dataset is annotated with 5 different sentences. Using

1,000 images for prediction results in 5,000 different image-sentence pairs. Different ap-

proaches can be used in order to resolve this mismatch between the number of images

and descriptions. Karpathy et al. [58] only use one of the five sentences for every image.

This reduces the testing dataset to 1,000 image-sentence pairs. Similar to this approach,

one can calculate the ranks for all five sentences, separately, and take the average over

the single runs. The result should be similar to selecting only one sentence. This method

will be called average ranking.

The more common approach in similar studies is to query one image against 5,000

images and to select the highest rank of the 5 true captions. When retrieving images, the

average ranks from 5,000 sentence queries are used. Faghri et al. [30] repeat this process 5

times of 1000 images at a time, and calculate the average over all runs, thus covering the

whole test dataset of 5,000 images. If not specified, the reported ranks have been created

with this method.

5.2 VSE network with triplet ranking loss

An image xim ∈ Rh×w×c, where h, w, c are the height, width and color dimension, is

transformed into a feature representation φ(xim, θφ) ∈ Rdφ . This can be done by extract-

ing the last fully connected layer of a pretrained CNN (e.g. Residual Neural Network 50

(ResNet50) [46]) before the categorization layer. Let φ be the image encoding model, with

model parameters θφ.

Corresponding, a sentence xse ∈ Rt×d, where t is the number of words in a sen-

tence and d is the dimensionality of every dense word embedding, is transformed into

ψ(xse, θψ) ∈ Rdψ . An approach for this is to embed the sentence and to feed it through a

Recurrent Neural Network (RNN) (normally Long-Short-Term Memory (LSTM) or Gated

Recurrent Unit (GRU)). Let ψ be the sentence encoder model with model parameters θψ.
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Figure 5.2: By matrix multiplication of the embedded visual-semantic vectors, the sim-
ilarity between a batch of samples can be calculated in a single mini-batch.
The diagonal of the resulting similarity matrix describes the similarities be-
tween the correct image-sentence pairs, while all other fields describe similar-
ities between wrong pairs. In this perfect case, the corresponding image and
sentence vectors are the identical transposes of one another. Multiplying two
L2-normalized vectors results in the Cosine Similarity [113].

fim(xim, Wim, θφ) =
∥∥∥WT

imφ(xim, θφ)
∥∥∥

2
(5.1)

fse(xse, Wse, θψ) =
∥∥∥WT

seψ(xse, θψ)
∥∥∥

2
(5.2)

Both feature representations are then mapped into the shared embedding space, with

size e, by linear projection with weight matrices Wim ∈ Rdφ×e and Wse ∈ Rdψ×e. The

resulting projections are normalized with the L2-Norm to lie on the unit hypersphere.

s(im, se) = fim(xim, Wim, θφ) · fse(xse, Wse, θψ) (5.3)

The similarity between an image-sentence pair is defined as the inner product between

the two normalized vectors, resulting in the Cosine Similarity [113].

L(θ, Bim, Bse) =
1
N

N

∑
n=1

L(im = Bimn , se = Bsei , Bim \ im, Bse \ se) (5.4)

For a batch of images, Bim = {xim}N
n=1, and corresponding sentences, Bse = {xse}N

n=1,

the batch loss is calculated by comparing every image against every sentence and vice

versa. At every loop, one image-sentence pair is seen as true pair, marked as (im, se).
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The similarity of this pair is compared to the similarities between the image and all other

sentences or the sentence and all other images respectively. A batch of sentences, without

the correct sentence, is denoted as Bse \ se and a batch of images without the correct image

as Bim \ im.

In practice, this can efficiently be done by matrix multiplication between all image-

vectors and all sentence-vectors, as shown in Figure 5.1.3. The diagonal of this similarity

matrix can be subtracted row-wise and column-wise to create the losses between all pos-

sible pairs.

The optimized parameters are defined by θ = θψ, Wim, Wse, when both image and

sentence projection are trained, or by θ = θψ, Wse, when only the sentence projection

is trained.

LSH(im, se, ˆim, ŝe) = ∑̂
se
[α− s(im, se) + s(im, ŝe)]+ + ∑̂

im

[α− s(im, se) + s( ˆim, se)]+ (5.5)

LSH is defined as the sum of hinges and describes the classic triplet ranking loss. Let α

be the margin that the similarity of all wrong image-sentence pairs should be smaller than

the similarity of the correct image-sentence pair. s(im, se) describes the similarity of the

correct image-sentence pair while s(im, ŝe) describes the similarity between an incorrect

image-sentence pair. [x]+ = max(0, x), in order to stop the loss from becoming negative.

The second term is symmetrical to the first term. In the first term, an image is fixed

and the similarity with different candidate sentences are calculated and returned. In the

second term, a sentence is fixed and all other images are looped over to calculate the

similarities.

LMH(im, se, ˆim, ŝe) = max
ŝe

[α− s(im, se) + s(im, ŝe)]+ + max
ˆim

[α− s(im, se) + s( ˆim, se)]+

(5.6)

LMH is defined as max of hinges and refers to selecting the negative sample with the

highest loss in every mini-batch. The only difference between LMH and LSH is the selec-

tion of the biggest error, maxŝe[α − s(im, se) + s(im, ŝe)]+, instead of the summation of

errors, ∑ŝe[α− s(im, se) + s(im, ŝe)]+.

5.3 Experimental setup

This section explains in detail how the NLIS experiments were executed and evaluated

with the above-described VSE network and triplet ranking loss.
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Data preprocessing

Similar to Chapter 4, all input sentences are either padded or truncated to contain 16 to-

kens, in order to guarantee same sequence lengths. No start- or end-symbol is required for

this task. Sentences are tokenized with the function provided by the Natural Language

Tool Kit (NLTK)1. In order to reduce the vocabulary size, words are lowercased, and

words with a lower frequency than 5, 10 or 16, depending on the experiment setting, are

replaced with an unknown word token. All words are encoded in one-hot vectors before

feeding them into the VSE network.

All images are transformed into image vectors by resizing them to 224× 224× 3 pixels

(Section 5.2), feeding them through the pretrained ResNet50 [46] and average-pooling the

last layer before the final classification layer. Images can either be preprocessed and the

image vectors are stored on disk, or they can be calculated on the fly. The first method

drastically decreases run time for multiple experimental setting.

Experiments with augmented images and the use of random image crops were con-

ducted based on the setup proposed by Faghri et al. [30]. Creating various versions of

every image and feeding them through the CNN increases the run time of the algorithms

immensely.

Since first experiments conducted with image augmentation and random cropping

showed no increase in performance, this approach was no longer followed, due to com-

putational constraints.

Implementation

The first layer of the sentence encoder branch embeds every word into a dense word em-

bedding. Pretrained embedding weights are taken from a fasttext [86] model, pretrained

on Wikipedia dumps. The fasttext model contains 1 million words and their respective

embeddings. The same model is also used to reduce the size of unknown words when

encoding them as one-hot vectors. If a word would be marked as unknown, due to its

low frequency in the corpus, but the fasttext model contains this word, the 10 most sim-

ilar words, calculated by the fasttext model, are considered to replace it. If any of these

words is in the vocabulary of the model, it is chosen instead.

After the embedding layer, every 300-dimensional word representation is processed

by 1,024 LSTM cells. The final output, after all 16 words were fed through the LSTM, is

projected by a final dense layer onto a 1,024-dimensional space.

Image vectors, returned by the CNN, are also projected into the same space by a single

dense layer.

The dot products between all normalized sentence embeddings and all normalized

transposed image embeddings are calculated per batch, resulting in a similarity matrix

with size n × n, where n = batch size. Figure 5.1.3 exemplifies this for a batch size of

1https://www.nltk.org/

https://www.nltk.org/
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three. The loss is calculated using either LSH or LMH and returned.

Experiments

MSCOCO 2017 split was used for all experiments. All models were trained on 118,287

images with 5 annotations each and evaluated on a held-out set of 5,000 or 1,000 images.

The evaluation with 1,000 images results in 5,000 image-sentence pairs since every image

is annotated with 5 different sentences.

Reported results were observed after 20 training epochs. Training was started with 5

epochs of LSH to generate a stable loss in the beginning. LMH was used after that for the

following 15 training epochs. When starting directly with LMH, the loss would often con-

verge against 2 ∗ α, which can be interpreted as all images and sentences being mapped

at exactly the same position. For the first 10 episodes a learning rate of 0.0002 was cho-

sen, before decreasing it to 0.00002. Hyperparameter settings and implementation are

strongly inspired by Faghri et al. [30].

5.4 Results

Similar to the last chapter, qualitative and quantitative results are reported in this section

and discussed in the next section.

Figure 5.4 shows a few example search queries from the validation set and the best

ranked image by model 7 from Table 5.1. The images with the red markings are the true
images, belonging to the query. One can see that the correct image is often within the

best 5 ranks and two times on the first rank. If the image is not within the best 5 ranks,

the image content still fits the description.

The results for different experimental settings are reported qualitatively in Table 5.1.

The parameter, required Word Frequency (WF), and whether the Word Embedding (WE)

layer and the Image Projection (IP) layer are trainable, were selected as independent vari-

ables. WF describes how often a word has to occur in all training sentences to not be

masked with unknown. WB shows if the word embedding layer was finetuned during

the training process. IP signals whether the image projection layer Wim is trained. A

number in the IP column signals how many episodes Wim was trained before its weights

were frozen. All results are reported for 1000 images and 1000 respective descriptions.

This does not influence the image retrieval ranks strongly, but it decreases the sentence

retrieval ranks compared to similar literature. Instead of querying for 1 out of 5 correct

sentences within 5,000 candidates, we always query 1 sentence out of 1000 candidates.

This is not the same way as most of the related studies evaluate their models, but it allows

a direct comparison to our Image Captioning-Retrieval (ICR) model in the next chapter.

Since our ICR model only generates 1 and not 5 descriptions, the results will be directly

comparable with the AVG rankings of our NLIS network.
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In order to determine the best model, the sums over all six retrieval ranks were com-

pared. Following this metric, higher WFs, resulting in a smaller vocabulary sizes, showed

better results than the baseline WF of 4, inspired by Donahue et al. [27]. EB had little in-

fluence on the results. The best results are observed when the IP layer was trained for 4

episodes before freezing its weights.

Table 5.2 shows the results from this work in context with similar studies. The results

from Kiros et al. [62] are taken from Faghri et al. [30], because Kiros et al. [62] do not

report results for the MSCOCO dataset. Our model could not replicate the state-of-the-art

results reported by Faghri et al. [30]. The results are similar in performance to Karpathy

and Fei-Fei [57] and Kiros et al. [62].

Table 5.1: Image ranking results for 1,000 validation images from MSCOCO 2017 valida-
tion split. For every image, one out of five captions was selected for the ranking
evaluation. Results for different experimental settings are given, sorted by the
sum of ranks. Our best results are in bold. #=Row number, WF=Word frequency
threshold, EB=Embedding layer trainable, IP=Image projection layer trainable

Sentence Retrieval Image Retrieval
# WF EB IP r@1 r@5 r@10 r@1 r@5 r@10 SUM
1 5 T T 31.32 65.90 79.92 31.28 65.52 79.22 353.16
2 5 F F 34.74 67.58 79.60 31.38 63.94 77.28 354.52
3 5 F T 31.50 67.10 80.52 31.46 66.74 80.02 357.34
4 5 T 4 31.74 67.38 80.94 31.78 66.32 80.18 358.34
5 5 F 4 31.74 67.84 80.38 31.18 67.14 80.78 359.06
6 16 F 4 32.48 67.44 81.96 31.70 66.80 81.08 361.46
7 10 T 4 32.36 68.54 81.70 33.02 67.20 80.56 363.38

Table 5.2: Image ranking results for 1,000 images and 5,000 respective descriptions from
MSCOCO 2017 split for different NLIS studies. Results are sorted by r@1 sen-
tence retrieval performance. Our best results are in bold.

Sentence Retrieval Image Retrieval
Origin r@1 r@5 r@10 Med r r@1 r@5 r@10 Med r
VSA [57] 38.4 69.9 80.5 27.4 60.2 74.8 3.0
Our Model 39.9 69.8 80.1 2.0 32.0 66.3 80.8 3.0
UVS [62] 43.4 75.7 85.8 2.0 33.0 67.2 80.6 3.0
Order [121] 46.7 88.9 2.0 37.9 85.9 2.0
2WayNet [28] 55.8 75.2 39.7 63.3
sm-LSTM [52] 53.2 83.1 91.5 1.0 40.7 75.8 87.4 2.0
EmbNet [126] 54.0 84.0 91.2 43.3 76.8 87.6
VSE++ [30] 64.6 90.0 95.7 1.0 52.0 84.3 92.0 1.0

5.5 Discussion

Similar to Chapter 4, results are discussed first from a quantitative and then from a qual-

itative perspective, in this section.
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Figure 5.3: Randomly selected queries from the validation dataset and the five most sim-
ilar images predicted by the image ranking system. The images marked red
are the true images.

Table 5.3: Direct comparison between our implementation with the implementation from
Faghri et al. [30]. Both models use the VGG19 as image encoder (CNN) and use
a single crop of the image (1C). The results from Faghri et al. [30] are between
3-5% better than ours.

Sentence Retrieval Image Retrieval
Model Img CNN r@1 r@5 r@10 Med r r@1 r@5 r@10 Med r
VSE++ [30] 1C VGG19 43.6 74.8 84.6 2 33.7 68.8 81 3
Our VSE++ 1C VGG19 35.3 69.1 80.1 3 28.7 63.2 78.4 3
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Quantitative results

Experiments with different hyperparameters show an optimal ranking performance with

a vocabulary size of 7456. Most experiments were executed with a WF of 5, follow-

ing Donahue et al. [27], resulting in a vocabulary size of 10,331. A higher minimum

WF of 10 occurrences yields a vocabulary of 7,456 words and increases the r@1 image

retrieval performance of the model by almost 2%. Decreasing the vocabulary size further

to 5950 (WF=16) shows slightly worse results than a WF of 10. This shows that, given

the complexity of the problem and the amount of data, a lower word frequency thresh-

old does not automatically increase the performance. A smaller vocabulary decreases the

complexity of the model and allows a better processing of the content that is not marked

as unknown. Additionally, creating a sufficient mapping from words to image sections

relies on enough occurrences of both. Only receiving a word 5-9 times might be too little

to allow the network to create a correct mapping.

Table 5.1 further shows that training the IP layer for 4 episodes in the beginning and

then freezing it, yields optimal results. This is likely due to the fact that training the IP

layer for too long leads to overfitting, training it not at all, leads to underfitting. Once the

image projections are frozen, after training them for a few episodes, the model can only

adapt the position of the sentence representations. This way the model has fewer degrees

of freedom and has to generalize better over the training data.

Training the EB layer did not affect the outcome of the model greatly, as rows 4 and 5

show. The pretrained embeddings are already trained on huge amounts of data. It seems

like finetuning does not really improve the quality of the embeddings any further.

Table 5.2 places our results in context with similar studies. Sadly, the state-of-the-art

results form Faghri et al. [30] could not be replicated, even though, we followed their

implementation. We could build a strong baseline model, with similar results to Kiros

et al. [62] and Karpathy and Fei-Fei [57].

Kiros et al. [62] use VSE with a triplet loss to embed images and sentences in a shared

space. The improvements from Faghri et al. [30] compared to Kiros et al. [62] are "a
novel loss, the use of augmented data, and fine-tuning"[30] of their CNN network. They

additionally use ResNet152 as image encoder.

Replicating their improved loss function and augmenting the dataset in a similar way,

our results are far from the performance reported by Faghri et al. [30]. In Table 5.3 we

tried to exactly replicate the experimental settings. Both models use the same pretrained

CNN and do not finetune it. Faghri et al. [30] only use the training data from the 2014

split, while we use the larger training-dataset from the MSCOCO 2017 split. Both models

use the same image preprocessing, where only one crop is taken from the image. This

comparison of baselines clearly shows that Faghri et al. [30] achieve higher results with

very similar experimental settings.

We are not sure, why this lack of performance is observed. The trained model is per-

forming relatively well and even beats the performance of Karpathy and Fei-Fei [57], but
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the impressive results from Faghri et al. [30] could not be replicated. This is either due to

a flaw in our implementation or due to an unattended detail in their implementation.

Our NLIS network, nevertheless, produces an acceptable ranking performance. When

querying images, more the 80% of the correct images are within the top-10 ranked images.

Around 32-33%, depending on the random selection of the validation images, are ranked

at the top-1 position. This performance should be sufficient for the ICR network, where

the NLIS system will function as performance measurement for the AID network. The

ranking performance is qualitatively evaluated in the next section.

Qualitative results

Almost all images in Figure 5.4, whether they are the true images or not, could be de-

scribed by the query sentence. Considering the image in the first row, the query does not

fit images 2, 4 or 5 well. However, the backgrounds of the images are all very similar and

all fit the description "large rock near the shore" in one way or another.

This could show, that the image encoder was not explicitly trained to detect salient

objects. The CNN was trained on the ImageNet [24] dataset to classify images. This

means it has not explicitly learned to pay special attention to what we might consider

relevant in an image. If our definition of relevance and the objective to correctly classify

the image overlap, the system will implicitly learn a form of attention towards certain

shapes or colors. In the case, where the background of images with the same category is

more informative than the actual entity, the system will focus on the background instead.

This could have happened in the first query.

Query 4 has a similar effect. The word "vegetables" is dominating the image search

and is much more important than "cutting board", the word that would actually help the

system to find the correct image.

Both of these examples should remind us, that supervised learning does not equal

thinking. Humans quickly assume some sort of general knowledge from an artificial

system. This general knowledge, e.g. detecting salient objects or the special meaning

of the word "board", when preceded by the word "cutting" instead of "management" or

"snow", cannot be assumed, however.

Query 2 shows, that the word "zebra" is very easy to find in images and is probably

highly salient both in images and in sentences. There probably is a very high correlation

between "zebra" and black-and-white stripes in a horse shape.

Queries 3, 5 and 6 show the ambiguity in the dataset and in language in general. Lan-

guage is an abstraction of our visual input and internal representation. It is never a 1-to-1

mapping but always a many-to-many mapping. In this case, many images are well de-

scribed by a single image description. This makes it hard to impossible for an artificial

system or for a human to get a perfect ranking score.

On the other hand, these queries show, how well the system generalizes and how well

the mapping from sentence to image and vice versa is learned. Small details in both the
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descriptions and the images are often not processed perfectly, but in general, the images

fit the queries very well.

Future work

Faghri et al. [30] report that through the usage of hard negatives, image augmentation

and finetuning of the image encoder, state-of-the-art ranking results can be achieved.

Many studies show, that the selection of the image encoder will determine the perfor-

mance of the resulting NLIS network. Assuming the state-of-the-art performance of

Faghri et al. [30] is replicated, additional image attention might further increase the ac-

curacy of the network. Huang et al. [52] use additional attention mechanisms and can

improve their performance. Combining these attention mechanisms with hard negative

sampling could increase the performance even more.

Liu et al. [77] use unlabeled but similar images as additional hard negative samples

and report an increase in their model performance. Adding this semi-supervised training

approach could further increase the ranking performance of a network.

Conclusion

We created a NLIS model that successfully maps similar image-description pairs together

in a latent, shared space. The goal performance set by Faghri et al. [30] could not be

reached. Instead, our performance is similar to other strong baseline studies. A qualita-

tive analysis additionally shows, the network learned a meaningful correlation between

descriptions and images that should allow the further usage of the NLIS model in our

ICR network in Chapter 6.
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6 Image Captioning-Retrieval

Chapters 4 and 5 show how Automated Image Description (AID) and Natural Language

Image Search (NLIS) can be approached on their own. In order to satisfy our research

question, they are combined in this chapter. In the Image Captioning-Retrieval (ICR)

task, an image is described in natural language, the generated description is compared to

a number of candidate images and the original or most similar image is retrieved. This

does not only satisfy the requirements for a simple form of communication, but it also

allows for an optimization of the AID system by the ranking performance of the NLIS

system. In human terms, this would relate to someone reformulating their sentence,

until a second person understands the meaning of the sentence.

6.1 Related work

The task of ICR has been approached before. The focus, however, always lies on the

generation of sentences resembling human speech and not the information exchange in

general. Related research is presented in the following sections.

6.1.1 Autoencoder

Section 5.1.2 mentions the usage of an autoencoder for bi-directional image description

and retrieval. It was shown by Salakhutdinov and Hinton [101], how an autoencoder

can be used to embed documents into bit-codes. Krizhevsky and Hinton [64] and Yan

et al. [133] do the same with images and show that using 32, 64 or 128 bit layers in the

hidden state allow a fast and accurate Image Retrieval (IR). Extending this embedding

to a one-hot embedding of the size of the vocabulary would allow to embed images into

sentences and back into images. In order to create natural language embeddings, the sys-

tem would need additional feedback from a labeled dataset when generating the hidden

representation, the description.

In the previously mentioned work by Chen and Zitnick [17] exactly this is done. Image

vectors are inputted and the model is trained to produce image descriptions based on the

ground truth sentences with Maximum Likelihood Estimation (MLE). Then the original

image vector is reproduced based on this hidden representation. They generate the image

vector not only after the sentence is completed but after every generated word and then

feed the partially complete image vector back into the language generation layer. By

doing this, they are trying to add a visual memory to the sentence generation steps. The
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already mentioned flaw of this approach is the fact that only correct image-sentence pairs

are utilized for the recreation of the image vector. Thus, a lot of training data, namely the

wrong image-sentence pairs, are neglected.

6.1.2 Triplet Loss

The in Section 5.2 described triplet-ranking-loss cannot only be used to optimize an im-

age ranking system but also a complete ICR system. Instead of using only human anno-

tations, the descriptions generated by an AID network can be used instead.

The produced probability distributions of single words, generated by the AID system,

have to be transformed into a discrete distribution, representing single words. One could

feed the NLIS system directly with probability vectors, but that would make the NLIS

system unusable for further tasks since it is trained on distributions and not on discrete

words. It also defeats the purpose of generating language and not a high dimensional

representation of an image instead.

When the softmax, representing a single word probability distribution, is transformed

into a discrete hardmax (argmax), the complete ICR network is no longer differentiable.

This means, the ranking results from the NLIS network cannot be used to optimize the

AID network. Since this is a necessary property of the ICR network, a work-around is

needed.

Dai et al. [22], Liang et al. [72], Ren et al. [95] and Liu et al. [77] use Reinforcement

Learning (RL) and treat the rank of the correct image as a negative reward. They all use

this approach, in order to optimize evaluation measures in an adversarial framework.

The NLIS network functions as discriminator network, trying to differentiate between

generated and true samples. When using RL, there is no need for a continuous, differen-

tiable function, so argmax can be used to greedily pick words. The only thing RL needs,

is a reward after each episode. On the downside, RL needs much more training time, and

if there is an alternative way, to solve a problem with gradient based loss optimization, it

normally outperforms RL.

A different work-around is to transform each word probability distribution into a dis-

tribution as close as possible to a discrete distribution while still being differentiable.

Gumbel [40], Jang et al. [54] and Maddison et al. [80] show how to use the gumble

softmax trick to transform probability distributions into continuous distributions, closely

resembling one-hot vectors. Shetty et al. [107] apply this trick to train their AID model in

an adversarial fashion. With the gumble softmax trick, it is possible, to calculate a loss,

based on the output of the discriminator and directly backpropagate this loss, to optimize

both the AID and the NLIS network.
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Figure 6.1: The ICR system from a high-level perspective.

6.2 Image Captioning-Retrieval network

The AID system from Chapter 4 is combined with the NLIS system described in Chap-

ter 5 to result in our ICR network. The network can be trained from scratch, or the sub-

systems can be pretrained as described in their respective chapters. Figure 6.1.2 shows

the architecture of our ICR model.

In order to overcome the problem of discrete word representations, the gumble softmax

trick [54] is used to transform probability distributions into pseudo-one-hot-representations.

The original Gumbel-Max trick [40] is a simple and efficient way to draw samples

from a categorical distribution with class probabilities π. g ∈ (0, 1) is called the gumble

distribution and is calculated from u, drawn from a Uniform distribution between 0 and

1.

u ∼ Uniform(0, 1) (6.1)

g = −log(−log(u)) (6.2)

z = one hot
(

argmax
i

[gi + log(π)]

)
(6.3)

Since argmax is non-differentiable, the continuous softmax function is used as an ap-

proximation. τ is the temperature of the softmax. The smaller τ is, the closer the distri-

bution is to a one-hot encoding. yi is the k-dimensional resulting word distribution.

yi =
exp((log(πi) + gi)/τ)

∑k
j=1 exp((log(πi) + gi)/τ)

for i, ..., k (6.4)

Figure 6.2 shows, how a distribution is transformed into a softmax, an argmax and a
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Figure 6.2: The same distribution in different transformations.

gumble softmax distribution.

A second challenge is the sampling of novel sentences. The system needs a complete

input sentence xse, to be able to determine the probability for every sub-sentence xse
t1 :ti

.

This means it is not possible to sample word by word on the fly and pass the final sen-

tences to the NLIS system. Consequently, a sentence first has to be predicted for a certain

image, with the prediction technique used in Section 4.2. Then this sentence can be used

as input sentence xse together with its corresponding image vector, φ(xim, θφ). The AID

model then basically produces the same sentences again but without interrupting the

sampling process of words. When the resulting sentence vector ŷ is transformed with the

gumble softmax activation function, one word is randomly chosen based on the prob-

abilities and is transformed into a high probability close to one. This means, the word

with the highest probability will not be picked every time, as it would be the case when

picking greedily. All other words will receive a very low probability, close to 0.

Let γ(ŷ) be the gumble softmax output. Together the original image vector φ(xim, θφ)

and γ(ŷ) are fed into the NLIS network to output a similarity matrix, containing similari-

ties between every image and every sentence. From this similarity matrix, either the sum

of hinges loss or the max of hinges loss (Section 5.2) can be calculated and used to train

the whole network or only specific layers of it. The matrix also yields the rank for every

image and sentence.

6.3 Experimental setup

The same preprocessing steps from previous chapters were executed. All input sentences

have a sentence length of 16 and the WF is set to 9 since this yielded optimal results in

Chapter 5.

Microsoft Common Objects in Context (MSCOCO) 2017 split was used for training

and validation. In one training epoch, 20,000 images are randomly selected from the

training dataset and annotated by the current AID network. As explained in Section 6.2,

descriptions for images first have to be created in a separated prediction phase by the

AID model. In a second step, these sentences are used as input sentences for the ICR

system. Only this way, the AID system can create novel sentences and pass them to the

NLIS system without interrupting the computation.
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Our AID network has only been pretrained on correct sentences. Starting training

with only self-generated sentences right from the start leads to an instant decrease in

performance since the model has no time to adjust to the new and different input. To

counter this issue, novel self-generated descriptions are slowly added to the ground truth

sentences. This means, the ICR system randomly selects one description from a list of

descriptions, containing both ground truth sentences and generated sentences. At the

beginning of training, all ground truth sentences are added to their respective description

list. At every epoch, the newly generated descriptions are added to their respective list.

When the length of the list is greater than a defined value (INF=5, 10, 15), a random

sentence is dropped from the list. This way, novel sentences are slowly infused into the

list of true sentences.

Depending on the experiment setting, the embedding layers (EM), the image projection

layers (IP) or the complete NLIS network (IR) were frozen and excluded from training.

After the training phase, all 5,000 validation images are annotated by the AID system

and 1,000 of the resulting annotations, together with their respective images, were pro-

cessed by the NLIS model to return the ranking performance of the model. Evaluation

measures for all 5,000 created descriptions are calculated and stored.

Besides the previously used MLE loss for the AID system that can only be calculated

when true descriptions for the images are available, a second, different loss was defined.

This loss, called Sentence-Entropy loss (ENT) by us, is defined as the entropy over the

sum of all word probabilities. This loss is supposed to reduce the repetitions of words

in a sentence. If the probability for the same word is high in many words, the sum over

these probabilities will have a very low entropy. If all words have different probabilities,

the sum is more spread out and has a higher entropy. This loss is not minimized but

maximized in order to increase the entropy over all words, and thus the information

content of sentences.

For many experiments, true image-sentence pairs (TP) were added to the output from

the AID network. If this is the case, 64 image-sentence pairs from the AID system and 64

true image-sentence pairs directly from the dataset are concatenated and then forwarded

to the NLIS network in one mini-batch. If this is not the case, 128 image-sentence pairs

were produced by the AID system and passed to the NLIS system in one mini-batch.

Both methods result in a 128× 128 similarity matrix for one mini-batch.

The model was trained for 50-60 epochs with Adam as optimizer. The learning rate

is set to 0.0002 for the first 20 epochs and then decreased to 0.00002 for the rest of the

training process.

6.4 Results

The results from various experimental settings are presented in this chapter. The exper-

iments can be separated into two categories, one where the image ranking is the only or
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Figure 6.3: Same experimental design with different pretrained AID models. The one
model is pretrained for 4 episodes, the other one for 10 episodes. The second
model, pretrained for 10 epochs, performs very badly.

Figure 6.4: Mean rank (low is good) is plotted per epoch. When all layers are trained to
increase ranking, performance plummets at some point.

the most dominant objective, and one where an increase of the n-gram based evaluation

measures of the generated sentences is considered the main goal.

Optimizing image ranks

We experimented with two different pretrained AID networks. One was trained for 10

epochs and one for 4 epochs. Figure 6.4 shows, that the model pretrained for 10 epochs

performs very badly and results in a r@1 ranking performances close to 0 after a few

episodes. The model pretrained for 4 epochs performed much better and was selected

for all further experiments.

The first set of experiments was designed to solely optimize information exchange

from the AID system to the NLIS network. This means all layers were trainable and

the ranking loss from the NLIS system was used to optimize the complete ICR network.

Figure 6.4 shows that this method resulted in an increase in ranking performance but
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Figure 6.5: Best training runs. Blue line represents row 5 and orange line represents row
3 from Table 6.1

Table 6.1: Ranking retrieval results for different experimental settings. TP=True
Pairs, IR=Image Ranking network trainable, IP=Image Projection layer trainable,
INF=Infusion list size, ENT=Entropy loss used, ImSum=Sum over all image scores,
C=CIDEr

Sentence Retrieval Image Retrieval
TP IR IP INF ENT r@1 r@5 r@10 r@1 r@5 r@10 ImSum C
F T F 10 T 34.7 72.1 86.9 33.2 69.7 83.7 186.6 0.061
F F F 10 T 40.8 77.8 89.9 38.8 76.3 88.9 204.0 0.101
T T 17 10 T 44.4 79.9 90.5 40.8 79.1 89.7 209.6 0.049
T F T 10 T 47.6 84.2 93.6 43.1 81.8 92.5 217.4 0.094
T F T 10 F 44.8 82.5 93.1 43.9 82.9 90.9 217.7 0.097
T F T 15 T 46.2 86.4 93.6 46.0 83.0 93.0 222.0 0.083

Pretraining Baseline 32.4 68.5 81.7 33.0 67.2 80.6 180.8 0.742

an unstable training process. After a certain epoch, the performance drops drastically.

The self-generated image descriptions also change completely at this point.

Freezing the image projection layers from both networks after a certain training epoch

stabilizes the training process. Completely freezing the NLIS network yields the best

ranking results (Figure 6.4). Table 6.1 shows different experiment settings and the result-

ing ranking scores as well as the Consensus-based Image Description Evaluation (CIDEr)

score for the evaluation sentences.

The table shows that the usage of true image pairs (TP) always increases the ranking

performance of the network. The best experimental setting could improve image r@1

results by 10,9% compared to our baseline from training the NLIS with the true descrip-

tions. CIDEr scores for all experiments decrease from 0.72 to around 0.01.

Figure 6.5 shows a selection of images and different annotations. The first annotation,

PT, is the annotation generated by the AID system, after pretraining. GT shows three

of the five ground truth captions, only the AID system was trained on. The last sentence

(ICR) is the generated description from our best performing model, from Table 6.1.



58 6 Image Captioning-Retrieval

Figure 6.6: Using MLE and ranking loss together in order to improve n-gram evaluation
measures and diversity of generated descriptions.

Optimizing n-gram evaluation measures

The models, optimized only with the loss from our NLIS network, show a clear improve-

ment in ranking scores but also a strong decrease in sentence evaluation measures. In

order to improve image ranking as well as sentence evaluation measures, a set of experi-

ments was designed. The results shown in Figure 6.4 are taken from the most successful

model in this regard. In order to achieve slightly better evaluation measures, the NLIS

network was frozen from the beginning. There were no new image descriptions infused,

but only the true descriptions were used. The model was optimized based on MLE loss

and ranking loss combined.

The resulting model achieves slightly higher languages scores (CIDEr +0.035) and gen-

erates more unique sentences. The percentage of generated unique sentences increased

by more than 7 points. The number of unique sentences is calculated by dividing the total

number of generated sentences by the number of uniquely generated sentences. This can

be a strong indicator of how diverse the generated sentences are. Models trained only

with MLE often suffer from a high number of repeating sentences [77, 107].

The image retrieval performance of this model only reaches a r@1 of 5.0 for 1,000 can-

didate images. The evaluation measures are calculated with 4,992 images from the vali-

dation dataset of the MSCOCO 2017 split.

6.5 Discussion

The results are analyzed and discussed in this section. In the end, possible future work

and a conclusion are presented.
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Figure 6.7: Next to every image, the description generated by the pretrained AID model
(PT), three of the ground truth descriptions (GT) and the descriptions, gener-
ated after training the AID model together with the NLIS model (ICR).
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Optimizing image ranks

Figure 6.5 shows our main findings. The sentences created after the pretraining are gram-

matically correct and describe the image content more or less accurately. Generated de-

scriptions show less grammatical structure after the AID system was trained to maximize

the ranking performance, but the content of the sentence describes the image in much

more detail and correctness. The increase in information can not only be observed in

the ranking scores, shown in Table 6.1, but also in the generated image descriptions in

Figure 6.5.

The generated sentences after ICR training often contain repeating words, and they do

not contain the end-symbol anymore. Both of these effects are likely due to the pretraining

of the system. During the pretraining phase, only correct sentences were used as input

for the model. In the ICR training phase, new sentences are generated and used for train-

ing. Additionally, since the gumble softmax trick is a statistical sampling method, the

word with the highest probability is not always picked, as it has been before with greedy

picking. This means the system encounters new situations that it has to deal with. Since

it was trained with teacher-forcing, it has developed little robustness against these novel

situations. The repetition of the same word seems to be an indicator of this. When plot-

ting the average number of different words per sentence (Figure 6.5), one can see that

during training the repetition of words becomes less frequent. The average occurrences

is calculated by dividing the number of words by the number of different words. A

sentence with every word occurring only a single time would thus get the occurrence

score of 1. Figure 6.5 shows the word occurrences for the two models from row 4 and

5 in Table 6.1. While in both runs, word repetitions are decreasing during training, the

Entropy-loss, described earlier (orange graph), can significantly decrease the number of

repetitions. This does not greatly influence the overall ranking scores (Table 6.1). Repeti-

tions are unusual for human speech, but the encoding of meaning into repetitions by an

artificial system is quite likely. E.g. the more dominant an object is, the more often it is

repeated in the sentence.

Even though, the grammatical correctness of the sentences decreases with the ICR

training process, the grounding of used words stays intact. This means, the network

still describes parts of the image with the words, learned in the pretraining phase. This

is highly relevant for a system trying to mimic human language. It means that the sys-

tem does not forget the correlations from image parts to words, even when trained on a

different task. This is not only the case when the NLIS is frozen. When this part of the

network is trainable, however, the training process is less stable. In the two experiment

runs, plotted in Figure 6.4, this is clearly visible. In the episode, where the ranking per-

formance drops, the system suddenly creates completely different words and sentences

for images. This indicates it is no longer grounded to the human meaning of words.

When training with a different pretrained AID model, that was trained for 10 and not

4 episodes, grounding was also lost quickly (Figure 6.5). It seems that an AID system
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Figure 6.8: Average occurrences of different words in sentences. A word occurrence of 1
means no word appears more than once in a sentence. The smaller the number
the more repetitions are in a sentence.

trained for around 4 episodes presents an optimal starting point for our ICR network.

These results are counter-intuitive since it was assumed that more pretraining would

strengthen the grounding and improve further training. A possible explanation for this

phenomenon could be that the model trained for 10 episodes was trained for too long on

correct sequences and could not transit to self-generated sentences anymore.

Regarding the first image in Figure 6.5, one can see, that the description after the ICR

training includes "an old locomotive" instead of only "a train". The description also con-

tains "wires overpass", describing the electrical wires over the train, even though this infor-

mation was not present in any of the 5 human annotated sentences. This shows that the

model is no longer explicitly trained on the true sentences but has a much more implicit

objective. In order to optimize the ranking performance, additional, highly distinct im-

age information was transformed into words. The fifth image in Figure 6.5 shows similar

increases in content and detail description. The information that the elephant is "walking
through some river" is crucial to distinctly rank this image over other elephant images.

In the fourth picture, the new description is less general. The pretrained system is

producing a generic sentence, more or less fitting to any tennis scene. The description,

generated after the ICR training is more accurate in its context. The same is true for

image number 2 and 3. In general the image content is described in more detail and in

more accuracy. The sentences are less grammatical than before, however.

These findings are satisfying and show that our objective trains our system to transfer

information rather than to copy sentences. The fact that the created sentences are still

grounded to human meaning and still show some human-like structure show that our

language system, once pretrained, keeps its relations between objects and words intact.

Our main goal of increasing the amount of exchanged information is clearly reached.
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Optimizing n-gram evaluation measures

Similar studies [22, 77, 107] normally define their objective as the optimization of descrip-

tion evaluation measures and the increase of diversity and naturalness of their generated

sentences. Figure 6.4 shows the changes in evaluation measures and in the number of

unique, generated sentences of our best approach with this objective. Even though eval-

uation measures increase only slightly, there is a 7% increase in the number of generated

unique sentences. This implies that the additional ranking loss, combined with MLE

loss can improve both evaluation measures and diversity among the descriptions. The

ranking performance suffers heavily in this experimental setting. This is due to the nec-

essary freezing of the ranking weights and the MLE loss. The network can neither adjust

the generated sentences well enough nor can it adjust the ranking parameters. All other

experimental settings resulted in a strong decrease of all n-gram evaluation measures.

Future work

Our model can further be trained with unlabeled data. Since the loss is derived directly

from the ranking performance, descriptions are not necessary for training after the tran-

sition phase form true to self-generated descriptions. A training with more novel and

different images will likely increase the ranking performance and thus the sentence qual-

ity further. Since plain, unlabeled images are available in large magnitudes on the web,

the amount of training data is immense. It would be very interesting to observe the result

after training our model with a large unlabeled dataset.

In order to force the system to produce better grammar, the generated sentence could

be fed into an n-gram or Long-Short-Term Memory (LSTM) language model. This model

would be trained on a large corpus and would penalize unknown n-gram or sentence

structures.

Similar, this could be done in an adversarial fashion. The generated and ill-formulated

sentences would be used as wrong samples and human sentences as correct ones. The

discriminator is trained to distinguish wrong sentences, whereas the generator, our AID

system in this case, is trained to fool the discriminator. This way, the AID system has to

replicate the general form and structure of human sentences in order to fool the discrimi-

nator. This should highly increase the grammatical correctness of generated descriptions.

A different approach to counter the problem of bad grammar and multiple word rep-

etitions in sentences can be found in RL. Liu et al. [77] also optimize their AID network

with a NLIS system. Next to this, they optimize the CIDEr score of the generated sen-

tences with RL. This way, the model is not as constrained as to when training with MLE,

but language typical structures, like ending sentences with ".", stay intact. RL also allows

to simply add the result of a grammar checker or language checker of the generated sen-

tences to the reward. This way, grammatical errors are punished and avoided. RL offers

simple methods to constrain the outcome of the model in a favorable way.
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Research in these directions is highly promising and should be pursued further.

Conclusion

We clearly show how training an AID network with a more implicit objective like the

ranking results from our NLIS network can improve the amount of information cap-

tured in the generated sentences. The newly generated sentences are not grammatically

perfect but showed a strong trend towards normal human-generated sentences. More

importantly, after training our ICR model, generated descriptions capture more distinct

details of images and describe more aspects of the images. The ranking performance was

increased by a large margin. The language grounding of different words and concepts

stays intact during training. Pretraining the AID model for a few episodes on the true
descriptions is enough to build up a strong grounding between entities on images and

words.

When strictly constraining the model to create valid, grammatically correct sentences,

we could observe a slight improvement of sentence quality and diversity, when combin-

ing MLE loss and image ranking loss.
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7 Final conclusion

In our endeavor to simulate simple conversations about images, we constructed and pre-

trained speaker and listener as two single systems at first. The speaker was implemented in

form of an Automated Image Description (AID) network, trained with Maximum Likeli-

hood Estimation (MLE). The listener was realized in form of a Natural Language Image

Search (NLIS) model, trained with a triplet-ranking-loss.

Combining both systems and training them with the objective of optimizing informa-

tion exchange in the form of a successful Image Retrieval (IR) was realized in Chapter 6.

A clear increase in ranking performance can be observed when only training the AID

network with the ranking loss provided by our NLIS network. The improved informa-

tion exchange is not only visible in the ranking performance but also in the generated

descriptions themselves. Even though they lose some of their grammatical correctness

and language-typical structure, their information content increases. This is clearly visible

in the form of more accurate, more detailed and more distinct descriptions.

The created subsystems show strong baseline performances in their respective fields

and can further be used for various tasks. The research questions stated in Section 1.3.3

will now be answered.

• Can AID be solved well enough that it can capture the most important features of

an image and transform them into natural language?

We were able to create an AID system with similar performance to related work that,

like our approach, use MLE as primary loss. The generated descriptions are grammat-

ically correct and capture the most important features of the image accurately in most

cases. A grounding between words/phrases and their representations in images could

successfully be created.

• Is it possible to train a NLIS system to find the same or similar images with only

the generated description as input?

Even though our model does not achieve state-of-the-art performance, it is neverthe-

less capable of correctly correlating image and sentence contents. We created a well func-

tioning and scalable model to rank images based on query sentences and vice versa. Es-

pecially qualitative results show that even if the correct image is not ranked at the top-1

position, most of the highest ranked images satisfy the search query. There is room for

improvement when it comes to detailed information in images and descriptions, but for

our purpose the NLIS model performs sufficiently.
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• Can both the AID and NLIS system be optimized simultaneously by the feedback

of how successful the retrieval was?

With our system architecture, it was not possible to optimize both ranking performance

and sentence quality at the same time. We could either observe a strong increase in rank-

ing performance or a slight increase in sentence quality. In both cases, the other metric

suffered during the training process.

• Are the architecture and implementation proposed in this study capable of solving

the Image Captioning-Retrieval (ICR) problem in a way that simple conversations

driven by information exchange emerge?

This work was designed to simulate simple conversations driven by information ex-

change. This was successfully implemented and resulted in an increase of detail and

information in the created image descriptions. Our AID system adapted its generation

process in such a way that the NLIS network could rank the candidate images with a

higher accuracy. The amount of information in the description and thus the conversation

could be increased.

While more information was embedded in the descriptions, the generated words were

still grounded in the human meaning of the words. The correlation between words and

certain entities that was learned in the pretraining phase stayed intact. Generated sen-

tences are still human-readable even though they loose grammatical correctness.

This loss of grammatical structure was expected but still underestimated. We believe

that an additional sentence quality loss combined with the experimental settings to in-

crease the ranking scores will yield both an increase in ranking performance and a high

grammatical quality.

Overall, our proposed architecture and implementation were capable of creating sim-

ple conversations about images in human-readable syntax motivated primarily by the

objective of information exchange.

This work has strengthened our belief that language generation and comprehension are

not processes learnable by the explicit goal of one or the other. Language offers a map-

ping from a high dimensional to discrete space. It offers the exchange of complex infor-

mation in an equally complex but agreed-upon system. An explicit modeling of language

is likely not possible. More effort should be placed in implicitly modeling, with objec-

tives like information exchange in order to solve tasks, requiring content, that can only

be transferred by language. The proposed language game in this work builds one of the

most basic games there is: describing and finding an image.

More sophisticated games, like solving riddles, answering questions, walking through

a maze or executing commands can all be implemented based on language instructions.

These games all have to be designed in a way that succeeding is a direct implication of
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information exchange. If this approach is used, while language grounding and correct

grammar are enforced and guaranteed for, we will have a real chance of solving the

problem of language generation and comprehension in a more complete and satisfying

way.



68 7 Final conclusion



69

Bibliography

[1] Abdul-Kader, S. A. and Woods, J. (2015). Survey on chatbot design techniques in

speech conversation systems. International Journal of Advanced Computer Science and
Applications, 6(7):72–80.

[2] Akaho, S. (2001). A Kernel Method For Canonical Correlation Analysis. In Interna-
tional Meeting of the Psychometric Society, Osaka, JP.

[3] Andrew, G., Arora, R., Bilmes, J., and Livescu, K. (2013). Deep canonical correlation

analysis. In International Conference on Machine Learning, volume 28, pages 1247–1255,

Atlanta, US.

[4] Arik, S. Ö., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y., Li,

X., Miller, J., Raiman, J., Sengupta, S., and Shoeybi, M. (2017). Deep voice: Real-time

neural text-to-speech. Computing Research Repository, abs/1702.07825.

[5] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein Generative Adversarial

Networks. In International Conference on Machine Learning, volume 70, pages 214–223,

Sydny, AU.

[6] Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). Deep

reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38.

[7] Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements

that can solve difficult learning control problems. Transactions on systems, man, and
cybernetics, 5:834–846.

[8] Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled Sampling for

Sequence Prediction with Recurrent Neural Networks. In Conference on Neural Infor-
mation Processing Systems, volume 28, pages 1171–1179, Montréal, CA.

[9] Bentley, J. L. (1975). Multidimensional Binary Search Trees Used for Associative

Searching. Communications of the Association for Computing Machinery, 18(9):509–517.

[10] Bernardi, R., Cakici, R., Elliott, D., Erdem, A., Erdem, E., Ikizler-Cinbis, N., Keller, F.,

Muscat, A., and Plank, B. (2016). Automatic Description Generation from Images: A

Survey of Models, Datasets, and Evaluation Measures. Journal of Artificial Intelligence
Research, 55(1):409–442.



70 Bibliography

[11] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching Word Vectors

with Subword Information. Transactions of the Association for Computational Linguistics,

5:135–146.

[12] Boroditsky, L. (2017). How language shapes the way we think.

https://www.ted.com.

[13] Burba, F., Ferraty, F., and Vieu, P. (2009). k-Nearest Neighbour method in functional

nonparametric regression. Journal of Nonparametric Statistics, 21(4):453–469.

[14] Chandar, S., Khapra, M. M., Larochelle, H., and Ravindran, B. (2016). Correlational

neural networks. Neural Computing, 28(2):257–285.

[15] Chang, S. K. and Hsu, A. (1992). Image information systems: where do we go from

here? Transactions on Knowledge and Data Engineering, 4(5):431–442.

[16] Chen, X., Fang, H., Lin, T., Vedantam, R., Gupta, S., Dollár, P., and Zitnick, C. L.

(2015). Microsoft COCO Captions: Data Collection and Evaluation Server. Computing
Research Repository, abs/1504.00325.

[17] Chen, X. and Zitnick, C. L. (2015). Mind’s eye: A recurrent visual representation for

image caption generation. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2422–2431, Boston, US.

[18] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., and Bengio,

Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical

Machine Translation. Computing Research Repository, abs/1406.1078.

[19] Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolu-

tions. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1800–1807,

Honolulu, US.

[20] Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). Empirical evaluation of

gated recurrent neural networks on sequence modeling. Computing Research Repository,

abs/1412.3555.

[21] Cornelisse, D. (2018). An intuitive guide to convolutional neural networks.

https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-

networks-260c2de0a050.

[22] Dai, B., Fidler, S., Urtasun, R., and Lin, D. (2017). Towards Diverse and Natural

Image Descriptions via a Conditional GAN. In International Conference on Computer
Vision, pages 2989–2998, Venice, IT.

[23] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R.

(1990). Indexing by latent semantic analysis. Journal of the Association for Information
Science and Technology, 41(6):391–407.



Bibliography 71

[24] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A

Large-Scale Hierarchical Image Database. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, Miami Beach, US.

[25] Denkowski, M. and Lavie, A. (2014). Meteor universal: Language specific trans-

lation evaluation for any target language. In Ninth Workshop on Statistical Machine
Translation, pages 376–380, Baltimore, US.

[26] Devlin, J., Cheng, H., Fang, H., Gupta, S., Deng, L., He, X., Zweig, G., and Mitchell,

M. (2015). Language Models for Image Captioning: The Quirks and What Works. In

Conference on Empirical Methods in Natural Language Processing, pages 100–105, Lisbon,

PT.

[27] Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan, S., Guadarrama, S.,

Saenko, K., and Darrell, T. (2017). Long-Term Recurrent Convolutional Networks for

Visual Recognition and Description. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(4):677–691.

[28] Eisenschtat, A. and Wolf, L. (2017). Linking Image and Text with 2-Way Nets. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 1855–1865, Honolulu,

US.

[29] English, M. and Heeman, P. A. (2005). Learning Mixed Initiative Dialog Strategies

By Using Reinforcement Learning On Both Conversants. In Conference on Human Lan-
guage Technology and Empirical Methods in Natural Language Processing, pages 1011–1018,

Vancouver, CA.

[30] Faghri, F., Fleet, D. J., Kiros, R., and Fidler, S. (2018). VSE++: Improved Visual-

Semantic Embeddings. In Proceeding of the British Machine Vision Conference, Newcastle

upon Tyne, UK.

[31] Farhadi, A., Hejrati, M., Sadeghi, M. A., Young, P., Rashtchian, C., Hockenmaier, J.,

and Forsyth, D. (2010). Every Picture Tells a Story: Generating Sentences from Images.

In European Conference on Computer Vision, pages 15–29, Crete, GR.

[32] Feng, W. (2017). Learning apache spark with python.

http://web.utk.edu/ wfeng1/spark/fnn.html.

[33] Gibiansky, A., Arik, S. Ö., Diamos, G. F., Miller, J., Peng, K., Ping, W., Raiman, J., and

Zhou, Y. (2017). Deep voice 2: Multi-speaker neural text-to-speech. In International
Conference on Neural Information Processing Systems, pages 2962–2970, Long Beach, US.

[34] Goh, A. T. (1995). Back-propagation neural networks for modeling complex systems.

Artificial Intelligence in Engineering, 9(3):143–151.



72 Bibliography

[35] Goodfellow, I., Lee, H., Le, Q. V., Saxe, A., and Ng, A. Y. (2009). Measuring Invari-

ances in Deep Networks. Advances in Neural Information Processing Systems, 22:646–654.

[36] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural
Information Processing Systems, volume 27, pages 2672–2680, Montréal, CA.

[37] Gorman, B. (2017). Introduction to neural networks.

http://blog.kaggle.com/2017/11/27/introduction-to-neural-networks.

[38] Graves, A., Mohamed, A., and Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 6645–6649, Vancouver, CA.

[39] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017).

Improved Training of Wasserstein GANs. In Advances in Neural Information Processing
Systems, volume 30, pages 5767–5777, Long Beach, US.

[40] Gumbel, E. J. (1954). Statistical theory of extreme values and some practical applications;
a series of lectures. U.S. Government Printing Office, Washington, US.

[41] Gurney, K. (1997). An introduction to neural networks. Taylor & Francis, Inc., Bristol,

UK.

[42] Hannun, A. Y., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R.,

Satheesh, S., Sengupta, S., Coates, A., and Ng, A. Y. (2014). Deep Speech: Scaling up

end-to-end speech recognition. Computing Research Repository, abs/1412.5567.

[43] Harari, Y. N. (2015). Sapiens: a brief history of humankind. Harper, New York City, US.

[44] Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall PTR,

Upper Saddle River, US.

[45] He, H., Balakrishnan, A., Eric, M., and Liang, P. (2017). Learning Symmetric Collab-

orative Dialogue Agents with Dynamic Knowledge Graph Embeddings. Computing
Research Repository, abs/1704.07130.

[46] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image

Recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–

778, Las Vegas Valley, US.

[47] He, X. and Deng, L. (2017). Deep Learning for Image-to-Text Generation: A Techni-

cal Overview. IEEE Signal Processing Magazine, 34(6):109–116.

[48] Hochreiter, S. (1998). The Vanishing Gradient Problem During Learning Recurrent

Neural Nets and Problem Solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(2):107–116.



Bibliography 73

[49] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Compu-
tation, 9(8):1735–1780.

[50] Hodosh, M., Young, P., and Hockenmaier, J. (2013). Framing Image Description as

a Ranking Task: Data, Models and Evaluation Metrics. Journal of Artificial Intelligence
Research, 47:853–899.

[51] Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4):321–

377.

[52] Huang, Y., Wang, W., and Wang, L. (2017). Instance-Aware Image and Sentence

Matching with Selective Multimodal LSTM. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 7254–7262, Honolulu, US.

[53] Huszar, F. (2015). How (not) to Train your Generative Model: Scheduled Sampling,

Likelihood, Adversary? Computing Research Repository, abs/1511.05101.

[54] Jang, E., Gu, S., and Poole, B. (2016). Categorical Reparameterization by Gumbel-

Softmax. Computing Research Repository, abs/1611.01144.

[55] Jing, Y. and Baluja, S. (2008). VisualRank: Applying PageRank to Large-Scale Image

Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30:1877–1890.

[56] Kang, N. (2017). Multi-Layer Neural Networks with Sigmoid Function— Deep

Learning for Rookies. https://towardsdatascience.com/multi-layer-neural-networks-

with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f.

[57] Karpathy, A. and Fei-Fei, L. (2017). Deep Visual-Semantic Alignments for Generat-

ing Image Descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence,

39(4):664–676.

[58] Karpathy, A., Joulin, A., and Fei-Fei, L. F. (2014). Deep Fragment Embeddings for

Bidirectional Image Sentence Mapping. In Advances in Neural Information Processing
Systems, pages 1889–1897, Montréal, CA.

[59] Kingma, D. and Ban, L. (2014). Adam: A Method for Stochastic Optimization. Com-
puting Research Repository, abs/1412.6980.

[60] Kirby, S. (2007). The evolution of language. Oxford Handbook of Evolutionary Psychol-
ogy, pages 669–681.

[61] Kiros, R., Salakhutdinov, R., and Zemel, R. (2014a). Multimodal Neural Language

Models. In International Conference on Machine Learning, volume 32, pages 595–603,

Beijing, CN.

[62] Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014b). Unifying Visual-Semantic Em-

beddings with Multimodal Neural Language Models. Computing Research Repository,

abs/1411.2539.



74 Bibliography

[63] Klopfenstein, L. C., Delpriori, S., Malatini, S., and Bogliolo, A. (2017). The Rise of

Bots: A Survey of Conversational Interfaces, Patterns, and Paradigms. In Conference on
Designing Interactive Systems, pages 555–565, Edinburgh, UK.

[64] Krizhevsky, A. and Hinton, G. E. (2011). Using very deep autoencoders for content-

based image retrieval. In European Symposium on Artificial Neural Networks, Bruges,

BE.

[65] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with

Deep Convolutional Neural Networks. In International Conference on Neural Information
Processing Systems, pages 1097–1105, Lake Tahoe, US.

[66] Kuligowska, K. (2015). Commercial Chatbot: Performance Evaluation, Usability

Metrics and Quality Standards of Embodied Conversational Agents. Professionals Cen-
ter for Business Research, 2:1–16.

[67] Kulkarni, G., Premraj, V., Dhar, S., Li, S., Choi, Y., Berg, A. C., and Berg, T. L. (2011).

Baby talk: Understanding and generating image descriptions. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1601–1608, Washington, US.

[68] Kusner, M. and Hernández-Lobato, J. M. (2016). GANS for Sequences of Discrete

Elements with the Gumbel-Softmax Distribution. In Conference on Neural Information
Processing Systems, Barcelona, ES.

[69] Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving distributional similarity with

lessons learned from word embeddings. Transactions of the Association for Computational
Linguistics, 3:211–225.

[70] Li, J., Monroe, W., Ritter, A., Jurafsky, D., Galley, M., and Gao, J. (2016). Deep Re-

inforcement Learning for Dialogue Generation. In Conference on Empirical Methods in
Natural Language Processing, pages 1192–1202, Austin, US.

[71] Li, S., Kulkarni, G., Berg, T. L., Berg, A. C., and Choi, Y. (2011). Composing Simple

Image Descriptions Using Web-scale N-grams. In Conference on Computational Natural
Language Learning, pages 220–228, Portland, US.

[72] Liang, X., Hu, Z., Zhang, H., Gan, C., and Xing, E. P. (2017). Recurrent Topic-

Transition GAN for Visual Paragraph Generation. In International Conference on Com-
puter Vision, pages 3382–3391, Venice, IT.

[73] Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of summaries. In

Association for Computational Linguistics, pages 74–81, Spain, ES.

[74] Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays, J., Perona, P.,

Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft COCO: Common Objects

in Context. Computing Research Repository, abs/1405.0312.



Bibliography 75

[75] Liu, S., Zhu, Z., Ye, N., Guadarrama, S., and Murphy, K. (2016). Optimization of im-

age description metrics using policy gradient methods. Computing Research Repository,

abs/1612.00370.

[76] Liu, S., Zhu, Z., Ye, N., Guadarrama, S., and Murphy, K. (2017). Improved Image

Captioning via Policy Gradient optimization of SPIDEr. In International Conference on
Computer Vision, pages 873–881, Venice, IT.

[77] Liu, X., Li, H., Shao, J., Chen, D., and Wang, X. (2018). Show, tell and discrimi-

nate: Image captioning by self-retrieval with partially labeled data. Computing Research
Repository, abs/1803.08314.

[78] Luan, Y., Ji, Y., and Ostendorf, M. (2016). LSTM based Conversation Models. Com-
puting Research Repository, abs/1603.09457.

[79] Luo, B., Wang, X., and Tang, X. (2003). World wide web based image search engine

using text and image content features. Society for Optical Engineering, 5018:123–131.

[80] Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The Concrete Distribution: A

Continuous Relaxation of Discrete Random Variables. Computing Research Repository,

abs/1611.00712.

[81] Mao, J., Xu, W., Yang, Y., Wang, J., and Yuille, A. L. (2014). Deep Captioning with

Multimodal Recurrent Neural Networks (m-RNN). Computing Research Repository,

abs/1412.6632.

[82] Mason, R. and Charniak, E. (2014). Nonparametric Method for Data-driven Image

Captioning. Transactions of the Association for Computational Linguistics, 2:592–598.

[83] Mathur, V. and Singh, A. (2018). The rapidly changing landscape of conversational

agents. Computing Research Repository, abs/1803.08419.

[84] Mazur, M. (2015). A step by step backpropagation example.

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/.

[85] Mikolov, T., Chen, K., Repositoryado, G. S. C. R., and Dean, J. (2013). Efficient

estimation of word representations in vector space. Computing Research Repository,

abs/1301.3781.

[86] Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and Joulin, A. (2018). Advances

in Pre-Training Distributed Word Representations. Language Resources and Evaluation.

[87] Mirza, M. and Osindero, S. (2014). Conditional Generative Adversarial Nets. Com-
puting Research Repository, abs/1411.1784.

[88] Olah, C. (2018). Colah’s blog. http://colah.github.io/.



76 Bibliography

[89] Oliva, A. and Torralba, A. (2001). Modeling the Shape of the Scene: A Holistic Rep-

resentation of the Spatial Envelope. International Journal of Computer Vision, 42(3):145–

175.

[90] Ordonez, V., Kulkarni, G., and Berg, T. L. (2011). Im2Text: Describing Images Using

1 Million Captioned Photographs. In Advances in Neural Information Processing Systems,

pages 1143–1151, Granada, ES.

[91] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A Method for Au-

tomatic Evaluation of Machine Translation. In Association for Computational Linguistics,

pages 311–318, Philadelphia, US.

[92] Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016). Sequence level training

with recurrent neural networks. In International Conference on Learning Representations,

San Juan, PR.

[93] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks. In International Conference on Neural
Information Processing Systems, volume 1, pages 91–99, Montreal, CA.

[94] Ren, Z., Jin, H., Lin, Z., Fang, C., and Yuille, A. (2017a). Multiple instance visual-

semantic embedding. In Proceeding of the British Machine Vision Conference, London,

UK.

[95] Ren, Z., Wang, X., Zhang, N., Lv, X., and Li, L.-J. (2017b). Deep Reinforcement

Learning-Based Image Captioning with Embedding Reward. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1151–1159, Honolulu, US.

[96] Rennie, S. J., Marcheret, E., Mroueh, Y., Ross, J., and Goel, V. (2017). Self-Critical

Sequence Training for Image Captioning. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1179–1195, Honolulu, US.

[97] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation

and approximate inference in deep generative models. In International Conference on
Machine Learning, volume 32, pages 1278–1286, Beijing, CN.

[98] Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011). Contractive auto-

encoders: Explicit invariance during feature extraction. In International Conference on
Machine Learning, pages 833–840, Bellevue, US.

[99] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The Earth Mover’s Distance as a

Metric for Image Retrieval. International Journal of Computer Vision, 40(2):99–121.

[100] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge, US.



Bibliography 77

[101] Salakhutdinov, R. and Hinton, G. (2009). Semantic hashing. International Journal of
Approximate Reasoning, 50(7):969 – 978.

[102] Schalkoff, R. J. (1997). Artificial neural networks. McGraw-Hill Higher Education,

New York City, US.

[103] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
networks, 61:85–117.

[104] Schroff, F., Criminisi, A., and Zisserman, A. (2011). Harvesting Image Databases

from the Web. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4):754–

766.

[105] Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences,

3(3):417–424.

[106] Shang, L., Lu, Z., and Li, H. (2015). Neural Responding Machine for Short-Text

Conversation. In International Joint Conference on Natural Language Processing, volume 1,

pages 1577–1586, Beijing, CN.

[107] Shetty, R., Rohrbach, M., Hendricks, L. A., Fritz, M., and Schiele, B. (2017). Speak-

ing the Same Language: Matching Machine to Human Captions by Adversarial Train-

ing. In International Conference on Computer Vision, pages 4155–4164, Venice, IT.

[108] Simmons, R. F. (1970). Natural language question-answering systems: 1969. Com-
munications of the Association for Computing Machinery, 13(1):15–30.

[109] Simonyan, K. and Zisserman, A. (2014). Very Deep Convolutional Networks for

Large-Scale Image Recognition. Computing Research Repository, abs/1409.1556.

[110] Soh, M. (2016). Learning CNN-LSTM Architectures for Image Caption Generation.

https://cs224d.stanford.edu/reports/msoh.pdf.

[111] Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J.-Y., Gao, J.,

and Dolan, B. (2015). A Neural Network Approach to Context-Sensitive Generation of

Conversational Responses. Human Language Technologies, pages 196–205.

[112] Steels, L. (2015). The Talking Heads experiment: Origins of words and meanings. Lan-

guage Science Press, Berlin, DE.

[113] Subhashini, R. and Kumar, V. J. S. (2010). Evaluating the performance of similar-

ity measures used in document clustering and information retrieval. In International
Conference on Integrated Intelligent Computing, pages 27–31, Bangalore, IN.

[114] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with

neural networks. In Advances in Neural Information Processing Systems, pages 3104–3112,

Montréal, CA.



78 Bibliography

[115] Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT

Press, Cambridge, US.

[116] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-

houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1–9, Boston, US.

[117] Tamura, H. and Yokoya, N. (1984). Image database systems: A survey. Pattern
Recognition, 17(1):29 – 43.

[118] Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80 Million Tiny Images: A Large

Data Set for Nonparametric Object and Scene Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(11):1958–1970.

[119] Turing, A. M. (1950). Computing machinery and intelligence. Mind, 49:433–460.

[120] Vedantam, R., Zitnick, C. L., and Parikh, D. (2015). CIDEr: Consensus-based image

description evaluation. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 4566–4575, Bosten, US.

[121] Vendrov, I., Kiros, R., Fidler, S., and Urtasun, R. (2015). Order-Embeddings of Im-

ages and Language. Computing Research Repository, abs/1511.06361.

[122] Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and

composing robust features with denoising autoencoders. In International Conference on
Machine Learning, pages 1096–1103, Helsinki, FI.

[123] Vinyals, O. and Le, Q. V. (2015). A Neural Conversational Model. Computing Re-
search Repository, abs/1506.05869.

[124] Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2014). Show and Tell: A Neural

Image Caption Generator. Computing Research Repository, abs/1411.4555.

[125] Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2017). Show and Tell: Lessons

Learned from the 2015 MSCOCO Image Captioning Challenge. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(4):652–663.

[126] Wang, L., Li, Y., and Lazebnik, S. (2017). Learning Two-Branch Neural Networks

for Image-Text Matching Tasks. Computing Research Repository, abs/1704.03470.

[127] Weizenbaum, J. (1966). ELIZA - A Computer Program for the Study of Natural Lan-

guage Communication Between Man and Machine. Communications of the Association
for Computing Machinery, 9(1):36–45.

[128] Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms for Con-

nectionist Reinforcement Learning. Machine Learning, 8(3-4):229–256.



Bibliography 79

[129] Witten, I. H. (1977). An Adaptive Optimal Controller for Discrete-Time Markov

Environments. Information and Control, 34:286–295.

[130] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and

Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual

attention. In International Conference on Machine Learning, volume 37, pages 2048–2057,

Lille, FR.

[131] Xu, Z., Liu, B., Wang, B., Sun, C., and Wang, X. (2017). Incorporating loose-

structured knowledge into conversation modeling via recall-gate LSTM. In Interna-
tional Joint Conference on Neural Networks, pages 3506–3513, Anchorage, US.

[132] Yagcioglu, S., Erdem, E., Erdem, A., and Cakici, R. (2015). A Distributed Represen-

tation Based Query Expansion Approach for Image Captioning. In International Joint
Conference on Natural Language Processing, volume 2, pages 106–111, Beijing, China.

[133] Yan, C., Xie, H., Yang, D., Yin, J., Zhang, Y., and Dai, Q. (2018). Supervised Hash

Coding With Deep Neural Network for Environment Perception of Intelligent Vehi-

cles. Transactions on Intelligent Transportation Systems, 19(1):284–295.

[134] Yang, Y., Teo, C. L., Daumé, III, H., and Aloimonos, Y. (2011). Corpus-guided Sen-

tence Generation of Natural Images. In Conference on Empirical Methods in Natural Lan-
guage Processing, pages 444–454, Edinburgh, UK.

[135] Zhang, L., Sung, F., Liu, F., Xiang, T., Gong, S., Yang, Y., and Hospedales, T. M.

(2017). Actor-Critic Sequence Training for Image Captioning. Computing Research
Repository, abs/1706.09601.

[136] Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort. Addison-Wesley,

Boston, US.



80 Bibliography



Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und

ohne fremde Hilfe angefertigt und mich anderer als der im beigefügten Verzeichnis angegebe-

nen Hilfsmittel nicht bedient habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröf-

fentlichungen entnommen wurden, sind als solche kenntlich gemacht. Ich versichere

weiterhin, dass ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren eingere-

icht habe und die eingereichte schriftliche Fassung der auf dem elektronischen Speicher-

medium entspricht.

Hamburg, den Unterschrift:


	What artificial conversational systems lack and how to fix it
	Why do conversational systems fail?
	A short history about conversational systems
	Why do humans communicate?
	How is communication defined in this thesis?

	Communication with human motivation
	How can human motivation be modeled?
	Can Image Captioning-Retrieval offer human-like motivation?
	Possible use-cases
	Additional applications

	Content, contribution and research question
	Content
	Contribution
	Research questions


	Neural Network techniques
	Neural Networks
	Feed Forward Neural Networks
	Recurrent Neural Networks
	Convolutional Neural Networks
	Autoencoders
	Generative Adversarial Networks
	Word embedding models

	The MSCOCO dataset
	Automated Image Description
	Related work
	Encoder-decoder architecture
	Optimization strategies
	Evaluation

	CNN-LSTM network
	Experimental setup
	Results
	Discussion

	Natural Language Image Search
	Related work
	Ranking by AID
	Visual-semantic embedding
	Evaluation

	VSE network with triplet ranking loss
	Experimental setup
	Results
	Discussion

	Image Captioning-Retrieval
	Related work
	Autoencoder
	Triplet Loss

	Image Captioning-Retrieval network
	Experimental setup
	Results
	Discussion

	Final conclusion
	Bibliography
	Eidesstattliche Erklärung

