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Abstract

Due to data protection and privacy laws, medical records can only be shared for research
if they are de-identified. Automated de-identification tools aim to enable cost-effective
de-identification of medical records at scale. These tools are trained on medical records
that are manually pseudonymized and often come from a single source. However, existing
tools do not generalize well to data from new sources. Bigger and more diverse datasets
are required to train more general de-identification tools. We examine approaches to
transforming medical text into a private representation without requiring manual pseudo-
nymization that simplify data protection compliant exchange of training data. Both our
automatic word-level pseudonymization and adversarially trained representation allow
training a de-identification tool to the target F1 score of 95% while preventing adversary
models from re-identifying any protected information.

Zusammenfassung

Datenschutzgesetze legen fest, dass medizinische Berichte nur in anonymisierter Form
weitergegeben werden dürfen, etwa um in der Forschung verwendet zu werden. Automa-
tische Anonymisierungswerkzeuge werden entwickelt, um kostengünstig große Mengen
medizinischer Berichte zu anonymisieren. Diese Werkzeuge beruhen auf manuell pseud-
onymisierten Trainingsdaten, die oft aus einer einzigen Quelle stammen. Vorhandene
Anonymisierungswerkzeuge funktionieren jedoch nicht zufriedenstellend auf Berichten
aus neuen Quellen. Daher werden größere und vielfältigere Datensätze benötigt, um
allgemeingültige Anonymisierungswerkzeuge zu trainieren. Wir untersuchen Ansätze
zur Transformation medizinischer Berichte in eine private Repräsentation, die ohne ma-
nuelle Pseudonymisierung auskommen, und dadurch datenschutzkonformen Austausch
von Trainingsdaten vereinfachen. Sowohl unsere automatische Pseudonymisierung auf
Wortebene als auch unsere auf adversarial training basierende Repräsentation erlauben
es, ein Anonymisierungswerkzeug auf den Zielwert von 95% im F1-Maß zu trainieren, und
verhindern dabei, dass Gegenspieler-Modelle geschützte Informationen wiederherstellen.
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1 Introduction

As more and more information is collected in electronic health records, it becomes
attractive for large-scale medical studies to make use of this data. Processing and sharing
of health data are regulated by data protection and privacy laws such as the European
General Data Protection Regulation (GDPR, 2016) and the Privacy Rule of the American
Health Insurance Portability Accountability Act (HIPAA, 1996). While GDPR requires
explicit consent by patients for their data to be processed (except when public health is
concerned), HIPAA allows records to be shared if they are de-identified (sanitized) to
protect patient confidentiality.

Much of the valuable information in health records can be found in their free text
portion, the clinical narrative. To de-identify medical text, all protected health information
(PHI) needs to be detected and removed. PHI includes potentially identifying data of
several categories such as names, professions, geographic identifiers, and account numbers.
Manual de-identification of medical text is a time-consuming and error-prone task that
does not scale well to large sets of health records.

Trying to train a software tool for automatic de-identification leads to a “chicken
and egg problem” (Uzuner et al., 2007): without a comprehensive training set, an
automatic de-identification tool cannot be developed, but without such a tool, it is
difficult to share de-identified clinical records for research (including for training the tool
itself). The standard method of data protection compliant sharing of training data for
a de-identification tool requires humans to pseudonymize protected information with
substitutes (replacing e.g. every person name with a different person name and every
date with a different date) in a document-coherent way.

Today, a pseudonymized dataset for de-identification from a single source is publicly
available. However, tools trained on the dataset are too specific for the concrete data
and do not generalize well to data from other sources (Stubbs et al., 2017). If a medical
institution instead decides to train a de-identification tool on their raw text data, it is
conceivable that the tool would contain traces of the PHI it was trained with, making it
possible for an attacker to recover parts of the training data if the tool itself is shared. To
achieve a universal de-identification tool, many medical institutions would have to pool
their data. Preparing this data for sharing using the document-coherent pseudonymization
approach requires large human effort.

1.1 Research Question

A representation of medical text that allows training a de-identification tool while not
allowing inference of protected information would greatly simplify the collection of training

1



1 Introduction

data for a universal de-identification tool. This representation would still require humans
to annotate PHI (as this is the training data for the task) but the pseudonymization
step would be performed by the transformation to the representation. A tool trained
on the representation could easily be made publicly available because its parameters
cannot contain any protected data, as it is never trained on raw text. Simplifying the
de-identification procedure could enable large-scale medical studies that are otherwise
too costly. Based on these observations, we formulate our central research question:

How can training data for de-identification of medical text be perturbed to
allow sharing with less human effort while protecting patient confidentiality
and preventing re-identification attacks?

1.2 Contributions

In this work, we examine four approaches to sharing training data for de-identification
that bypass the human pseudonymization step by perturbing vector representations of
words. Our key contributions are:

1. A baseline de-identification model trained on raw text data that does not use
explicit character features and achieves an F1 score of 97.74%, which is comparable
to the state of the art.

2. An automatic word-level approximation of pseudonymization by substitution that
allows training a de-identification model to an F1 score of 96.75%.

3. An adversarially trained representation for medical text tokens that allows training
a de-identification model to an F1 score of 97.4% while preventing an adversary
model to re-identify sentences or build a lookup table of representations for known-
plaintext attacks.

1.3 Outline

This thesis is composed of 8 chapters. Following the introduction in Chapter 1, we
present related work regarding de-identification, sanitizing medical datasets, and privacy-
preserving machine learning in Chapter 2. Chapter 3 introduces background concepts
including machine learning for natural language processing (NLP) and word represen-
tations. We present our methodology in Chapter 4. In Chapter 5, we describe our
experimental approaches for which we present results in Chapter 6. The approaches and
results are discussed in Chapter 7, including their connection to the related work and
possible future work. Chapter 8 concludes the thesis by summarizing our contributions.
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2 Related Work

This chapter summarizes related work on the de-identification task, data release, and
privacy-preserving machine learning.

2.1 De-Identification of Medical Text

De-identification is an NLP task that is related to named entity recognition (NER).
In 2006, 2014 and 2016, three shared tasks on de-identification were organized by the
American i2b2 group. The organizers performed manual pseudonymization on clinical
records from a single source to create the datasets for each of the shared tasks (Stubbs
and Uzuner, 2015).

In the first two shared tasks, submitted approaches are based on hand-crafted rules,
gazetteers, and machine learning methods such as boosting, conditional random fields
(CRFs), and support vector machines. The machine learning models use features such
as lexical cues (e.g. “was the previous word ‘Dr’?”), templates for phone numbers and
addresses, part-of-speech tags, and gazetteer or dictionary information. Similar approaches
are also summarized in a survey (Meystre et al., 2010). In the 2016 shared task, a deep
learning based system (Liu et al., 2017) delivered the best results.

Up to the 2014 shared task, the organizers emphasized that it is unclear if a tool trained
on the provided datasets will generalize to medical records from other sources (Uzuner
et al., 2007; Stubbs et al., 2015). The 2016 shared task featured a sight-unseen track
in which existing systems were evaluated on records from a new data source. The best
system achieved an F1 score of only 79%, proving that de-identification systems at the
time were not able to deliver sufficient performance on completely new data (Stubbs
et al., 2017).

Dernoncourt et al. (2017b) achieve state-of-the-art performance in de-identification
with a deep learning model. Their model achieves F1 scores of 97.85% on the i2b2 2014
dataset and 99.23% on their own, larger dataset. It uses pre-trained word embeddings
and task-specific character embeddings. The output sequence is optimized with a CRF
layer. After experimenting with their architecture, they conclude that the character
embedding layer is more important to the model performance than the pre-trained word
embeddings. However, the word embeddings show benefits when compared to rule-based
models e.g. when recognizing profession names that are in the same embedding space
region but might not occur in a hand-crafted dictionary. Using transfer learning from a
model trained on a larger dataset, they were able to further improve their scores on the
i2b2 2014 dataset (Lee et al., 2017). It is possible to reach an 98% F1 score on the i2b2
dataset by using document position information as an additional input (Zhao et al., 2018),
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which will, however, most likely deteriorate generalization performance to instances of
medical text with different structures. In a later work, Dernoncourt et al. use the same
architecture for a generic NER model (Dernoncourt et al., 2017a), which underlines the
similarity between the de-identification and NER tasks.

De-identification can be interpreted as a preprocessing step for further information
extraction because only de-identified data is allowed to be shared. Such information
extraction tasks include NER of condition and treatment names (Uzuner et al., 2010;
Pradhan et al., 2014) or the classification of relationships between conditions, tests, and
treatments (Uzuner et al., 2011). A survey (Meystre et al., 2008) summarizes information
extraction approaches at the time. In 2012, the free-text part of electronic health records
was still considered an underused source of data (Jensen et al., 2012).

In Dernoncourt et al.’s models, Wikipedia-pre-trained GloVe word embeddings (Pen-
nington et al., 2014) perform better than embeddings that were trained on the i2b2
dataset. In NER tasks focusing on medical entities, training embeddings on unlabeled
medical text works well (Wu et al., 2015), possibly because they cover the medical domain
vocabulary better.

2.2 Sanitizing Medical Datasets for Release

Sanitizing sensitive data by replacing names with ID numbers went wrong numerous
times in recent years. Examples include the New York Times identifying an AOL search
user by her queries (Barbaro et al., 2006) and the Netflix prize data being linked to
IMDB profiles to infer users’ religious, political and sexual preferences (Narayanan and
Shmatikov, 2008). The research on sanitizing datasets for release has mostly focused on
structured (tabular) data. Privacy models are used to defend from inferring sensitive
attributes from quasi-identifiers. In medical datasets, quasi-identifiers can include e.g. a
patient’s weight or diagnoses.

Inferring the membership of a person’s record in a dataset (membership disclosure)
is often already a bad outcome even if their detailed information is not accessible. For
example, if a person’s data is revealed to be part of a dataset of heart disease patients,
sensitive information is known about them (they seem to have a heart condition) without
any access to their specific record.

Privacy models such as k-anonymity (Sweeney, 2002) and `-diversity (Machanavajjhala
et al., 2007) are susceptible to homogeneity inference using insensitive attributes (Kifer,
2009). Additionally, k-anonymity fails in sparse, high dimensional settings (Aggarwal,
2005). Differential Privacy (Dwork, 2006, 2008) is a model that limits the difference
between neighboring databases (i.e. databases in which one item is missing or added)
and therefore the influence that single items can have on query results. It is currently
the most popular privacy model in research and industry.

An overview of the application of differential privacy to electronic health records is
given by Dankar and El Emam (2012). Most mechanisms achieve differential privacy by
adding noise to results. A further survey (Gkoulalas-Divanis et al., 2014) summarizes
algorithms for publishing data from health records. Newer approaches include creating
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synthetic data for release with generative adversarial networks (Tripathy et al., 2017;
Beaulieu-Jones et al., 2017; Zhang et al., 2018).

We know of no theoretic framework for private release of high-dimensional, sequential
data such as text. Replacing all personal information with pseudonyms like in the i2b2
datasets seems to be a good first step. The PHI categories defined by HIPAA are however
not complete: e.g. phrases like caused by Hurricane Sandy are not protected by HIPAA.
They can lead to date information even though all literal dates like October 2012 are
removed (Stubbs and Uzuner, 2015). This example of natural disasters is protected in
the additional i2b2 categories but it may still be possible to infer protected attributes
from the i2b2 datasets1.

While rule-based de-identification models sometimes work on the document level and
take e.g. previously mentioned names into account, the deep learning models mentioned
above operate only on the sentence level. This means that the models achieve the same
performance even if trained on a shuffled set of sentences. Shuffling sentences for data
release is another simple method that makes it difficult to identify relationships in the
data, especially in large datasets containing data from hundreds or thousands of patients.

2.3 Privacy-Preserving Machine Learning

As machine learning models have become increasingly powerful and are now applied to
process all kinds of data, including data with private information, privacy-preserving
machine learning has emerged as a trend in recent years. When not trained with privacy
in mind, models will learn secrets from the training data, e.g. credit card numbers are
remembered by language models (Carlini et al., 2018), which can be catastrophic if the
model parameters are shared.

Privacy can be achieved at two stages: at the data level or the model level. If the
training data already fulfills a privacy criterion, the trained model will not violate that
criterion. Adversarial learning (Goodfellow et al., 2014) can be used to obtain a private
representation of the data. If the model is trained with raw data, the influence of a single
training sample on the parameters needs to be limited so that the model does not learn
any secrets. This overview focuses mostly on data level approaches.

Minimax filters (Hamm, 2015) are used in a data level approach that models a three-
party game: contributors apply a filter to their data, a central aggregator learns a
target task using this representation, and an adversary tries to identify contributors by
the representation. An optimal filter minimizes inference and maximizes utility on the
target task. When adding noise to the representation, the approach satisfies differential
privacy (Hamm, 2017).

A neural implementation of a similar approach that was originally used for domain
adaptation is the domain-adversarial neural network (DANN) (Ganin et al., 2016). To
extrapolate from a source to a target domain, the DANN learns a domain-invariant
intermediate representation of its inputs. This representation allows a model to learn a

1The data use agreement permits attempting this.
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target task while preventing an adversary from identifying a sample’s original domain.
A gradient reversal layer is used in the backward pass to worsen the intermediate
representation for the adversary2.

Gradient reversal based adversarial learning has recently been applied to learning
anonymized representations. Li et al. (2018) and Elazar and Goldberg (2018) train adver-
sarial models to learn a representation of text that obscures the author’s demographics.
Elazar and Goldberg find that while the adversarial components in their models typically
cannot learn the adversarial tasks in simultaneous training with the target task model,
adversaries achieve better results when trained on a frozen representation. Feutry et al.
(2018) introduce an improved alternating training procedure for anonymization.

Adversarial learning can further be used to e.g. censor identifying parts of an im-
age (Edwards and Storkey, 2015). Using adversarially perturbed word embeddings can
make a text classification model more robust (Miyato et al., 2016).

Federated learning (McMahan et al., 2016) is an approach that works by distributing
a machine learning model to contributors that each send back parameter updates based
on a summary of their private data. The raw private data is never transmitted.

The semi-supervised knowledge transfer approach (Papernot et al., 2016) requires
contributors to train teacher models on their private data. A central student model is
then trained on unlabeled data by imitating the predictions of the teacher ensemble.

On the model level, a differential privacy accountant can be applied to limit the effect
a single sample has on the parameters (Shokri and Shmatikov, 2015; Abadi et al., 2016).
When a large amount of contributors participates, it is possible to learn differentially
private language models with this approach (McMahan et al., 2017).

2The gradient reversal layer can be replaced with two adversarial losses, see supplementary material
to Ganin et al. (2016)
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3 Background

This chapter provides an introduction to the core concepts used in this work: the de-
identification task, deep learning for natural language processing, and pre-trained word
representations.

3.1 The De-Identification Task

De-identification of medical text is an NLP sequence tagging task that has similarities to
named entity recognition (NER). Given a sequence of words like

Mr. Smith was admitted to St. Thomas on 2018/07/27,

de-identification labels all occurrences of protected health information (PHI) with the
appropriate categories:

Mr. [Smith]Patient was admitted to [St. Thomas]Hospital on [2018/07/27]Date.

Difficulties of this task include lexical overlap of PHI and non-PHI words (e.g. Parkin-
son, which can be both a last name and a disease) and out-of-vocabulary PHI, like
uncommon names or words with spelling mistakes (Uzuner et al., 2007). Misspellings and
ungrammatical style occur in medical text because it is generally typed quickly, either by
doctors themselves or by assistants who transcribe a doctor’s dictation, and it is usually
not proofread (Neamatullah et al., 2008). Additionally, medical text may contain bulleted
or numbered lists and tabular data and is sometimes word-wrapped to a fixed line length.

A difference of de-identification in comparison to classic NER is the typically higher
number of label categories. The CoNLL-2003 dataset (Tjong Kim Sang and De Meulder,
2003), an NER benchmark that is still widely used today, includes only four types of
entity categories that need to be distinguished: persons, organizations, locations, and
other. De-identification often spans dozens of labels. As the CoNLL-2003 dataset is
derived from a corpus of newswire text, it also should be mostly grammatically correct
and not contain many spelling mistakes.

Further, de-identification does not include an other label that is applied to any named
entity outside of the main categories. It is important that not all other named entities
are labeled because they can include condition or treatment names that are vital for the
utility of a de-identified record. For example, in the sentence

I asked her to double her atenolol in the morning,

7



3 Background

“atenolol” is a named entity but not PHI, so it should not be labeled as such in the
de-identification task.

De-identification shared tasks were run in 2006 (Uzuner et al., 2007), 2014 (Stubbs
et al., 2015), and 2016 (Stubbs et al., 2017). The micro-averaged F1 score (Section 3.2.7)
is the main evaluation metric for the task. The shared task organizers suggest 95%
as a rough estimate of a target F1 score for systems that reliably de-identify medical
text (Stubbs et al., 2015).

3.1.1 The 2014 i2b2/UTHealth Dataset

The i2b2 2014 dataset (Stubbs and Uzuner, 2015) was released as part of the 2014
i2b2/UTHealth shared task track 1 and is the largest publicly available dataset for
de-identification today3. It contains 1304 free-text documents describing diabetic patients.
The main difference to the 2006 shared task dataset is the inclusion of longitudinal
records, i.e. multiple records per patient. The dataset spans 296 patients, on average
4.4 records per patient. To create the i2b2 dataset, raw medical records from a single
source were prepared using manual annotation of PHI entities that were then replaced
with suitable pseudonyms (e.g. person names were replaced with other person names,
dates were offset by a random amount but date intervals were retained, misspellings were
replaced with similar misspellings of the pseudonym).

The i2b2 dataset uses the 18 categories of PHI defined by HIPAA as a starting point
for its own set of PHI categories. In addition to the HIPAA set of categories, it includes
(sub-)categories such as doctor names, professions, states, countries, and ages under 90.
Figure 3.1 lists the full set of i2b2 PHI categories.

Of the 1304 documents, 790 are used for training and 514 are used for testing. In total,
the dataset contains 28,872 PHI tags.

• Name (patient, doctor, username)
• Profession
• Location (room, department, hospital, organization, street, city, state, country, ZIP, other)
• Age (over 90, under 90)
• Date
• Contact information (phone, fax, email, URL, IP address)
• IDs (Social Security number, medical record number, health plan number, account number,

license number, vehicle ID, device ID, biometric ID, ID number)
• Other

Figure 3.1: Categories and subcategories of protected health information in the 2014
i2b2/UTHealth dataset, redrawn after Stubbs and Uzuner (2015).

3The dataset for the 2016 CEGS N-GRID shared tasks track 1 is not yet available as of October 2018.

8



3.2 Deep Learning for Natural Language Processing

Entity Token

Prediction Std Bin Std Bin

She works in [software engineering]Prof. 1/0/0 1/0/0 2/0/0 2/0/0

She works in software engineering 0/0/1 0/0/1 0/0/2 0/0/2

She [works]Prof. in software engineering 0/1/1 0/1/1 0/1/2 0/1/2

She works in [software]Org. engineering 0/1/1 0/1/1 0/1/2 1/0/1

She works in software [engineering]Prof. 0/1/1 0/1/1 1/0/1 1/0/1

She works in [software engineering]Org. 0/1/1 1/0/0 0/2/2 2/0/0

She works in [software]Prof. [engineering]Prof. 0/2/1 0/2/1 2/0/0 2/0/0

She works in [software]Org. [engineering]Prof. 0/2/1 0/2/1 1/1/1 2/0/0

Table 3.1: True positives / false positives / false negatives of de-identification predictions
when evaluated with the standard (std) and binary (bin) variants of the entity
and token evaluations. The first row is the target annotation.

3.1.2 Evaluation

In the de-identification shared tasks, there are two main types of evaluations that each
have their own way of counting true positives, false positives, and false negatives in
predictions. The entity (or strict) evaluation requires tags to match the exact offsets in
the original text. The token evaluation tests the presence or absence of PHI predictions
in whitespace-separated tokens. Both evaluations have binary variants in which the
predicted category of PHI is disregarded. Table 3.1 shows the differences between the
entity and token evaluations and their binary variants on a set of example predictions.

3.2 Deep Learning for Natural Language Processing

Deep learning (or deep neural networks) is a machine learning technique originally inspired
by neural computation in the brain. This section is based on the works by Goodfellow
et al. (2016, Chapters 5–10), who provide a great introduction to deep learning, as well
as Goldberg (2017), who gives an overview over its use in NLP.

3.2.1 Machine Learning and Deep Learning

Machine learning algorithms are algorithms that learn from data. They tune their own
parameters θ4 in order to improve a performance score. With enough experience, they
are ideally able to generalize to new, unseen data. With machine learning, we can tackle

4We use a similar notation to Goodfellow et al. (2016): italics x denote scalar variables or functions,
bold lowercase italics x denote vectors, and bold uppercase italics X denote matrices.
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problems that are too difficult for human-written programs (Goodfellow et al., 2016,
Section 5.1).

A key characteristic of machine learning algorithms is that they are domain agnos-
tic, as they work on real-valued vectors. The same algorithm can be used to process
representations of text, images, video, genetic information, or other data.

Machine learning algorithms can be broadly divided into supervised and unsupervised
algorithms by the types of data they learn from.

A supervised learning algorithm receives input features X and the corresponding
outputs y to learn a function f(x) that approximates the real output y. The algorithm
optimizes its parameters θ to minimize a loss function (e.g. mean squared error) that
measures the quality of the approximation. This optimization is often based on the
stochastic gradient descent algorithm. The most common supervised learning tasks are
classification, in which an input is mapped to a known set of class labels {1, . . . , k}, and
regression, in which an input is mapped to a real-valued output vector.

An unsupervised algorithm receives unlabeled inputs X and extracts structural infor-
mation from the data. Unsupervised tasks include clustering and outlier detection.

Deep learning models use a deep chain of differentiable operations that extract suitable
features from the raw input data and then transform them to generate a prediction.
These operations are called layers. The input is passed into the input layer, after which
an arbitrary number of hidden layers is applied. The last layer is called the output layer.

In comparison to classic machine learning approaches, deep learning requires a much
smaller amount of manual feature engineering. The resulting models can have millions or
billions of parameters. To train a deep learning model, the back-propagation algorithm
is used to compute the gradient with respect to the parameters of each layer, so that
stochastic gradient descent can be applied.

Deep learning began to show promising results in fields like image processing in the early
2000s. A large contribution to its popularity in NLP was made by Collobert and Weston
(2008), who presented a unified deep learning architecture for NLP tasks like language
modeling and NER. Three years later, they showed that their deep learning based method
was able to match or outperform (when re-adding some manually engineered features)
the previous state of the art in several tasks (Collobert et al., 2011).

The following subsections introduce core concepts of deep learning for NLP.

3.2.2 From Sparse to Dense Representations

To use text data in machine learning, it has to be transformed into a real-valued vector
representation. In contrast to image data that can be represented as pixel values, there is
no natural raw representation for text data as text is inherently “discrete, compositional,
and sparse” (Goldberg, 2017, Section 1.1, emphasis in original).

Feature engineering for text is most often applied to single words, windows of words,
or full documents. An example of a simple engineered document feature is a Boolean
value indicating the presence or absence of a certain word, e.g. cat. The usefulness of a
feature depends on the concrete task: the cat feature might be useless in a sentiment
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Sparse representation 3D dense representation

Word s1 s2 s3 s4 d1 d2 d3

cat 1 0 0 0 −0.13 0.42 0.26
dog 0 1 0 0 −0.16 0.33 −0.04
play 0 0 1 0 0.82 −0.12 0.39
playing 0 0 0 1 0.89 −0.08 0.37

Table 3.2: Sparse and dense representations for four example words.

analysis task while it could prove extremely useful if the task is to classify whether a
text talks about pets.

Indicator features can be used to represent words as sparse one-hot vectors with size of
the vocabulary in which all entries are 0 except the one corresponding to the respective
word, which is 1. This representation does not capture similarities between words: cat and
dog are conceptually similar (in so far as in they are both nouns and animals that are often
kept as pets) but have the same vector distance5 as the clearly conceptually more different
pair cat and playing. If a new word is added to the vocabulary, an extra dimension needs
to be added to the features as well. Even with a reasonable vocabulary size of e.g. 10 000,
the feature vectors become huge and cause the curse of dimensionality (Goodfellow et al.,
2016, Section 5.11.1) to come into play.

Deep learning methods for NLP rely on dense (or distributed) representations that
reflect word similarities. These representations allow for better generalization: if a model
has sufficient information about cat but has seen dog only a few times, it can still make
adequate predictions about dog if the words have similar representations (Goldberg, 2017,
Section 8.1).

Table 3.2 illustrates the difference between sparse and dense representations. While it
is possible to hand-craft a dense representation using features like “to which degree can
it be used as a noun?” or “how animal-like is it?”, these representations are typically
obtained through unsupervised training on an auxiliary task using large, general-purpose
datasets (see Section 3.3). The concrete dense representation in the table is a made up
example but a similar representation could result from training.

The sparse feature s1 can be interpreted as “is cat?”, analogously for s2 through s4.
If the dense features are obtained through training, they do not allow such an obvious
interpretation. Up to a certain limit, the three existing dimensions are capable to represent
additional words.

Collobert and Weston (2008); Collobert et al. (2011) introduce an embedding layer as
the input layer of their deep learning models. The layer looks up dense representations
for input words in an embedding matrix which is trained together with the other layers.
Several kinds of pre-trained word embeddings are discussed in Section 3.3.

5e.g. cosine similarity, see Section 3.3.1
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3.2.3 Feedforward Models

Feedforward deep learning models (Goodfellow et al., 2016, Chapters 6–8) are composed
of interconnected layers in which the output of a layer is only passed into subsequent
layers, never backward. The most important layer types in feedforward models are dense
layers and activation layers. Dense layers multiply their input with a matrix of weights
and add a bias vector:

y = W>x+ b (3.1)

The output size of a layer, which is determined by the dimension of its weight matrix
and bias vector, is called the number of units, or historically neurons, of the layer. The
parameters of a dense layer are its weight matrix and bias vector; when talking about
the number of parameters, we mean the sum of the number of elements in the weight
matrix and the bias vector.

Activation layers apply a nonlinearity φ:

y = φ(x) (3.2)

The most popular activation function for hidden layers is the rectified linear unit (ReLU)
that discards any negative values:

ReLU(x) = max{0,x} (3.3)

Before ReLU became popular, sigmoid functions like the logistic sigmoid σ and the
hyperbolic tangent were often used. Their saturation behavior makes gradient-based
learning difficult, so applying them is now generally advised against (Goodfellow et al.,
2016, Section 6.3.2), except for use in output layer activation (see Section 3.2.7) and
recurrent models (Section 3.2.4).

The sequence of a dense layer and an activation layer is often called a single layer. A
feedforward model with an input layer and one dense and activation layer that acts as
the output layer is called a perceptron network. When more hidden layers are added, it
is called a multi-layer perceptron (MLP). Two visualizations of an MLP with a single
hidden layer are shown in Figure 3.2.

Famously, MLPs with one hidden layer are able to solve the exclusive or problem
that perceptron networks cannot learn. It has further been shown that an MLP with
one hidden layer is a universal approximator, i.e. an MLP exists that can approximate
an arbitrary function arbitrarily well (Hornik et al., 1989; Cybenko, 1989). However,
this theorem has only theoretical significance as we are mainly interested in a model’s
generalization skills: for the theorem to hold, the hidden layer can act as a lookup table
and does not need to learn anything. In practice, deeper models are more powerful than
a single-layer MLP (Goodfellow et al., 2016, Section 6.4).

As feedforward models have a fixed input size and no way to access past inputs, sliding
window approaches are often used to allow them to process variable-length text data.
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x0 x1 x2 x3

h0 h1 h2 h3 h4

y0 y1

f

x

y

Figure 3.2: Left: an MLP with one dense hidden layer in the traditional representation
of connected units. Right: the MLP in a condensed layer view. The hidden
layer is now labeled with a function symbol f instead of the vector h.

3.2.4 Recurrent Models

Recurrent neural networks (RNNs) (Goodfellow et al., 2016, Chapter 10) extend feedfor-
ward models with backward connections. They can reuse the outputs of their layers in
following time steps. RNNs naturally accept variable-length sequential input data and
produce variable-length output.

A classic RNN architecture that we will use as an example in this section has one
recurrent hidden layer whose output is fed back into it in the next time step. Figure 3.3
shows such an RNN along with an unrolled visualization. A core concept of RNNs is
parameter sharing: they use the same hidden layer f in all time steps instead of learning
new models for every time step. This also enables them to generalize to new sequence
lengths (Goodfellow et al., 2016, Section 10.1).

When using recurrent layers in deep learning models, the outputs from intermediate
time steps can either be discarded or passed to further layers in the model. Many-to-one
tasks like sequence classification use models in which intermediate outputs are discarded:
for them, we are only interested in an encoding that summarizes the whole sequence
to pass it to further layers. Keeping the outputs is required in sequence tagging tasks
like NER in which we need the model to provide an output for every element in the
input sequence. Outputs are also kept if the following layer is another recurrent layer
that again processes a sequence of inputs.

A common extension to RNN models is the use of bidirectional processing in which
the hidden layer is split into a forward and backward part. The forward part processes
the sequence as-is while the backwards part processes the sequence in reverse order. The
outputs of both parts are concatenated.

For fixed-length input, feedforward models (Section 3.2.3) are preferred to recurrent
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Figure 3.3: Left: an RNN model with inputs x(t), a hidden layer f and outputs y(t).
Right: an unrolled visualization of the model. Redrawn after Olah (2015).

models because they are computationally less expensive. RNNs cannot be parallelized
as the calculation of every time step depends on the previous time step’s output. The
gradients in an RNN model are calculated with the back-propagation-through-time
algorithm which is more expensive than standard back-propagation.

While RNNs are theoretically able to capture arbitrary long-term dependencies, it is
very hard in practice to train an RNN of the above architecture to keep track of previous
inputs for more than a couple of time steps. This challenge stems from the vanishing
gradient problem: with every time step, back-propagated gradients get smaller, if they
are originally small. Analogously, the exploding gradient problem describes gradients
becoming larger through back-propagation if they are originally large (Bengio et al., 1994;
Goodfellow et al., 2016, Section 10.7).

3.2.5 Long Short-Term Memory

Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997; Gers et al., 2000)
is a recurrent architecture that tackles the vanishing gradient problem by incorporating
a gated cell state. This cell state is passed to the next time step in addition to the layer
output, allowing a stable gradient flow over long durations. The behavior of the gates to
the cell state is learned from data, so it can adapt to different time scales.

Figure 3.4 shows an LSTM block. It receives three inputs: the input from the current
time step x(t) and the previous output h(t−1) are concatenated on the lower left corner,
the previous cell state C(t−1) flows at the top and has only linear interactions. The block
has three gates: a forget gate f , an input gate i, and an output gate o that are all vectors
with entries ∈ [0, 1]. The gates’ values are calculated by deep learning layers with sigmoid
activations (σ rectangles). The forget gate decides to what extent each previous cell state
entry should be forgotten, the input gate decides to what extent each current input entry
should contribute to the corresponding cell state entry, and the output gate decides to
what extent each current cell state entry should contribute to the corresponding entry in
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Figure 3.4: An LSTM block, redrawn after Olah (2015). Deep learning layers have
rectangle shapes, vector operations have ellipse shapes.

the output vector.

A dense layer with hyperbolic tangent activation calculates the vector C̃(t) that contains
candidate values for the current cell state. The current cell state is a linear combination
of the previous cell state C(t−1) and the candidate vector.

The LSTM block’s behavior is described by the following equations6 (Olah, 2015):

f (t) = σ(Wf [h(t−1),x(t)] + bf ) (3.4)

i(t) = σ(Wi[h
(t−1),x(t)] + bi) (3.5)

C̃(t) = tanh(WC [h(t−1),x(t)] + bC) (3.6)

C(t) = f (t) �C(t−1) + i(t) � C̃(t) (3.7)

o(t) = σ(Wo[h
(t−1),x(t)] + bo) (3.8)

h(t) = o(t) � tanh(C(t)) (3.9)

A great part of the success of RNNs can be attributed to the LSTM architecture.
Its ability to capture long-term dependencies is illustrated e.g. by the character-level
language models trained by Karpathy (2015). One of his models that was trained on the
Linux kernel source code is capable of producing syntactically almost correct C code.
When analyzing the entries in the cell state at different time steps, he finds certain units
that turn on inside quotes or keep track of the current indentation level.

3.2.6 Convolutional Models

A layer type that can be used for feature extraction on grid-like structured data like
image pixel matrices but also on sequences of word representations is the convolution

6[·, ·] denotes vector concatenation, � is the element-wise multiplication operator
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layer (Goodfellow et al., 2016, Chapter 9). It performs the convolution operation with
learned kernels on its input. Deep learning models that use convolution layers are called
convolutional neural networks (CNNs).

In contrast to dense layers, convolutional layers are sparsely connected: each output
depends only on a small number of input entries which is defined by the kernel size. They
make use of parameter sharing, as the same kernel weights are used at every position.
This makes them efficient to compute (Goodfellow et al., 2016, Section 5.2).

CNNs of the time-delay neural network architecture (Waibel et al., 1990) were among
the first deep learning models to be applied to text (Collobert and Weston, 2008; Collobert
et al., 2011). These models process a sequence of word representations using 1-dimensional
convolution over the time dimension.

Recently, convolution layers have applied to sequences of character embeddings as they
can learn to extract morphological information (Chiu and Nichols, 2016; Ma and Hovy,
2016). The max-pooled convolution outputs are then often concatenated with pre-trained
word embeddings (see Section 3.3).

3.2.7 Training Deep Learning Models

This section describes characteristics of training deep learning models.

Output Layer Unlike the hidden layers of deep learning models that allow for much
architecture experimentation, the choice of output layer is often predetermined by the
task (Goodfellow et al., 2016, Section 6.2). In regression tasks, a linearly activated dense
layer is used. Binary classification is implemented with a sigmoid-activated dense layer
with one unit that outputs a Bernoulli distribution. In classification with multiple labels,
a softmax-activated dense layer is used. Softmax is a differentiable variant of argmax
that normalizes the output to sum 1 so it can be interpreted as a categorical probability
distribution (Goodfellow et al., 2016, Section 6.2.2):

softmax(z)i =
exp(zi)∑
j exp(zj)

(3.10)

A conditional random field (CRF) layer (Sutton et al., 2012) is sometimes used as an
output layer in sequence tagging. It keeps track of a transition table of labels to generate
coherent output sequences.

Loss Function The loss is a differentiable function that measures the quality of a deep
learning model’s predictions. Minimizing the loss function is the goal of training. Mean
squared error loss is often used in regression; (binary) cross-entropy loss is used in
classification tasks. It is notable that the loss function is often not the performance
measure we are ultimately interested in, e.g. if the target score is classification accuracy,
a model would still be trained using cross-entropy (Goodfellow et al., 2016, Section 8.1).

Evaluation The F1 score is often used as an evaluation metric for classification tasks,
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including sequence tagging. It is the harmonic mean between precision and recall:

precision =
true positives

true positives + false positives
(3.11)

recall =
true positives

true positives + false negatives
(3.12)

F1 = 2 · precision · recall

precision + recall
(3.13)

Micro-averaging and macro-averaging are two common variants of the F1 score. Micro-
averaging refers to calculating the precision and recall by taking the total number of
true positives, false positives, and false negatives over all documents into account. In the
macro-averaging variant, precision and recall are calculated per document (or sometimes
per class) and then averaged.

In tasks like NER and de-identification that have a strong majority class that is arguably
less important than other classes (the none class, sometimes called O class), this class is
excluded in the precision and recall calculation to make the scores more meaningful. A
model that assigns all tokens the none class achieves a 0% F1 score.

Optimization Deep learning models are typically trained with minibatches over multiple
epochs. At the start of every epoch, the training samples are shuffled and split into
minibatches (often also called batches). A minibatch is fed through the model before a
stochastic gradient descent algorithm computes a combined update to the parameters
based on the mean error of the minibatch’s samples. After all training samples are
processed once, the next training epoch begins (Goodfellow et al., 2016, Chapter 8).

Today, modern variants of standard stochastic gradient descent that feature adaptive
learning rates are preferred over the standard algorithm (Ruder, 2016). Examples include
the Adam algorithm (Kingma and Ba, 2014) and Nadam (Dozat, 2016), a variant
incorporating Nesterov momentum.

Regularization Regularization is applied to machine learning models to manipulate their
bias/variance trade-off. A good regularizer should reduce the variance more than it
increases the bias (Goodfellow et al., 2016, Section 5.4).

Applying parameter norm penalties to a model generally reduces its tendency to over-
fit (Goodfellow et al., 2016, Section 7.1). Early stopping (Goodfellow et al., 2016, Sec-
tion 7.8) is a regularizer that determines the optimal number of training epochs by
observing the loss progression on a validation set. Dropout (Srivastava et al., 2014) is
a regularizer specific to deep learning models that sets entries of weight matrices to
zero according to a random variable to prohibit entries from conspiring to memorize
the training data. For recurrent connections, variational dropout (Gal and Ghahramani,
2016) that applies the same dropout mask throughout all timesteps is preferred to using
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new random masks in every step. Gradient normalization (Pascanu et al., 2013) is often
used in recurrent models to help avoid the vanishing or exploding gradient problem.

Regularizers that increase model robustness include dataset augmentation (Goodfellow
et al., 2016, Section 7.4) and adversarial training (Goodfellow et al., 2016, Section 7.13).

Hyperparameters Any non-weight parameters of a model (i.e. parameters that are not
learned with stochastic gradient descent) are called hyperparameters. These include
the number and sizes of hidden layers, the minibatch size, the learning rate, dropout
probabilities, and potentially many more. Hyperparameters are often tuned manually
or using a grid or random search, evaluating each configuration’s performance on a
validation set. Only the model with the best validation set performance is evaluated on
the test set (Goodfellow et al., 2016, Section 11.4). This makes sure that the model is
not tuned specifically for the test set, which may result in artificially high test scores.

3.3 Pre-Trained Word Embeddings

Distributed word representations were popular before their use in deep learning models.
The term word embeddings was introduced by Bengio et al. (2003) who trained a neural
language model. Today, there are several kinds of word embeddings available that are
trained on large quantities of unlabeled text. Using pre-trained embeddings is a transfer
learning technique: even if the embeddings were trained on an auxiliary task on a different
dataset, they encapsulate knowledge about the structure of language that makes it easier
to achieve good results on the target task with smaller amounts of data (Goldberg, 2017,
Chapter 10).

The following subsection introduces some characteristics of working with word embed-
dings. Then, we briefly introduce the classic word embedding algorithms Word2vec and
GloVe as well as two modern approaches to word embeddings that each use subword
features to provide embeddings even for unknown words. For each algorithm, the authors
published a set of pre-trained embeddings that are compared in Table 3.3.

3.3.1 Working with Word Embeddings

When working with word embeddings, we are interested in measuring embedding similarity
and using linear relationships for word analogy tasks.

Embedding Similarity The cosine similarity metric is often used to measure the similarity
between two embedding vectors (Goldberg, 2017, Chapter 10). It takes values between −1
(meaning the vectors are pointing in opposite directions) and 1 (the vectors are pointing
in the same direction). The cosine similarity is calculated as the dot product of two L2

normalized vectors:

simcos(u,v) =
u · v
‖u‖‖v‖

(3.14)
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It is common to store L2 normalized word vectors in an embedding matrix M to skip
the normalization step in similarity computations. The similarity of a word w to all other
words in the embedding matrix can then be calculated as the dot product of the matrix
M and the word embedding M[w]:

simcos(w,M) = M ·M[w] (3.15)

Linear Relationships When trained on large datasets, embeddings capture linear rela-
tionships in the vector space, which is somewhat surprising because it is not always a
direct goal of the training7 (Mikolov et al., 2013c). For example, the capital relationship
can be approximated as the vector between the capital of a country and the country
name in the embedding space:

capital = vec(Berlin)− vec(Germany) (3.16)

When adding the relationship vector to a different country name, the resulting vector is
typically close to the actual embedding of its capital:

vec(France) + capital ≈ vec(Paris) (3.17)

3.3.2 Word2vec

Word2vec (Mikolov et al., 2013a,b) is a predictive word embedding method. In its skip-
gram variant, the algorithm trains a language model that predicts context words from an
input. As a faster alternative to (hierarchical) softmax over all possible words, it uses
negative sampling to transform the task into a binary classification task, i.e. the model
learns to distinguish between real and fake word-context pairs. To obtain the embeddings,
the classification layer is stripped from the model, leaving only the embedding layer
whose weights are the embedding matrix.

3.3.3 GloVe: Global Vectors for Word Representation

GloVe (Pennington et al., 2014) is an embedding algorithm that trains word embeddings
on a co-occurrence matrix of words. It produces embeddings that outperform Word2vec
on word similarity tasks and NER. The authors released several sets of pre-trained word
vectors, including a set of 400 000 vectors trained on the English Wikipedia and Gigaword
corpus that we use in this work.

3.3.4 FastText

FastText (Bojanowski et al., 2016) is an embedding method that takes subword informa-
tion into account. This resolves one drawback of Word2vec and GloVe: when using these
algorithms, morphologically similar words do not necessarily have similar representations
(e.g. disastrous, disaster). FastText uses character n-grams as input features for the

7It is a goal for the GloVe algorithm (Section 3.3.3).
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Embeddings Dimensions # Training tokens Handles unknown words

GloVe 300 6B No
FastText 300 16B Yes
ELMo 1 024 800M Yes

Table 3.3: Attributes of the pre-trained embeddings used in this work.

skip-gram task and calculates word embeddings as the sum of their character n-gram
embeddings. This allows the model to generate embeddings even for out-of-vocabulary
words like rare words or misspellings.

In 2018, the FastText team released a set of one million 300-dimensional vectors trained
on the English Wikipedia (Mikolov et al., 2018).

3.3.5 ELMo: Deep Contextualized Word Representations

Embeddings from language models (ELMo) (Peters et al., 2018) is a recent embedding
method that generates embeddings as a function of a whole sentence instead of a single
word. Due to the whole sentence being used as context, the verb play and the noun play
will have different embeddings. Also, play will have a different embedding when it is used
in a sports context than when it is used in a theater context.

The authors trained a two-layer bidirectional LSTM language model with subword
features that are obtained from convolutions of character embeddings. The ELMo em-
beddings are a weighted sum of the LSTM layers’ outputs with task-specific trained
weights. Simple deep learning models that use ELMo representations were able to beat
the previous state of the art in several NLP tasks.
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We are using an experimental approach to tackle the research question defined in
Section 1.1. This chapter describes the methodology that is applied throughout our
experiments.

Data Preprocessing We use the 2014 i2b2/UTHealth dataset (Section 3.1.1) that is
provided as a set of XML documents with standoff annotations. To use it in deep
learning models, we apply tokenization, assign the standoff labels to the matching tokens,
and split the documents into sentences. Our models operate on sentences instead of
whole documents because deciding if a token is PHI is in most cases possible only from
tokens and their sentence context, which is shown by sentence-based state-of-the-art de-
identification models (Dernoncourt et al., 2017b; Liu et al., 2017). Since some PHI occurs
mid-word, even aggressive tokenization will not always split the PHI into a separate token.
Sentence splitting poses a challenge in ungrammatical medical notes that include bulleted
lists, tabular data, and manually word wrapped lines. We use additional heuristics to
perform sentence splitting. Their shortcomings are most notable when PHI sequences are
inadvertently split into two sentences. More details about the preprocessing can be found
in Appendix A.

Prediction Postprocessing To evaluate our models’ predictions using the official evalua-
tion script8, we transform the predictions back into the original XML format with standoff
annotations. The postprocessing steps are described in more detail in Appendix A.

Evaluation We use the micro-averaged F1 score (see Sections 3.1.2 and 3.2.7) from the
binary token-based evaluation including only the HIPAA categories of PHI as our main
metric for de-identification performance. Using this metric allows us to compare our
results to Dernoncourt et al. (2017b) who deem it the most important metric: deciding if
an entity is PHI or not is generally more important than assigning the correct category
of PHI, and only HIPAA categories of PHI are required to be removed by American law.

Practical Upper Bound Our tokenization and sentence splitting is responsible for an
upper bound on de-identification performance. In the entity-based evaluation, 94.25% is
the highest possible binary HIPAA F1 score on the i2b2 test set using our preprocessing.
However, for the token-based evaluation (which is most important to us), the highest
possible F1 score is 99.45%.

Training, Validation, and Test Set While we are developing the models and tuning the
hyperparameters, we use a fixed, relatively large validation set that has no overlapping

8https://github.com/kotfic/i2b2_evaluation_scripts
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patients with the training set. We use the test set only for the final evaluation. At this
time, we combine the training set and validation set and use a smaller validation split.

Implementation To conduct our experiments, we implemented a software library for
de-identification in the Python programming language9. Experiments are defined in a
YAML10 configuration format. When experiments are run, they output a detailed training
and testing history including results from the i2b2 evaluation script. For hyperparameter
search, concrete YAML configurations can be generated from templates. The source code
of our software library is available on GitHub11.

Dependencies We use spaCy12 (Honnibal and Montani, 2017) for text preprocessing,
including tokenization and sentence splitting. Our deep learning models are implemented
with the Keras framework13 (Chollet et al., 2015) using the TensorFlow14 (Abadi et al.,
2015) backend. We use a CRF layer implementation from the Keras community contribu-
tions repository15. Additionally, we use Numpy16 for matrix operations such as cosine
similarity computations, and Matplotlib17 for plotting.

9https://python.org
10http://yaml.org
11https://github.com/maxfriedrich/deid-training-data
12https://spacy.io
13https://keras.io
14https://tensorflow.org
15https://github.com/keras-team/keras-contrib
16https://numpy.org
17https://matplotlib.org
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5 Experiments

In this chapter, we present our experiments. Our representation approaches for exchange
of training data for de-identification are compared in Table 5.1.

5.1 De-Identification Baseline

The goal of our baseline experiment is to achieve similar performance to the state-of-
the-art de-identification model by Dernoncourt et al. (2017b) without relying on explicit
character features. Sharing training data that includes character features could result in
PHI being easy to re-identify.

Dernoncourt et al.’s model achieves an F1 score of 97.85% in the binary HIPAA
evaluation on the i2b2 test set. In their ablation study, they evaluate a model that relies
only on GloVe word embeddings (Pennington et al., 2014) and no character features which
scores around 88%. We try to reach the common target score for reliable de-identification
models, an F1 score of 95%.

5.1.1 Model Selection

In this subsection, we describe the model selection process that leads to our final models.

Basic Architecture Our de-identification models use a bidirectional LSTM-CRF archi-
tecture (see Sections 3.2.4 and 3.2.7) that has proven to work well for sequence tagging
tasks, including NER (Huang et al., 2015; Lample et al., 2016) and de-identification (Der-
noncourt et al., 2017b; Liu et al., 2017). The inputs are an embedding sequence that is

Approach Representation Hyperparameters

5.1 � Raw −

5.2.1 Replace all PHI with random vectors −
5.2.2 Add noise to all PHI Noise scale
5.2.3 Move all PHI to neighbors # neighbors

5.3 Adversarially trained, invariant to # neighbors,
moving one PHI token to neighbor representation size

Table 5.1: Comparison of the representations in our experimental approaches. The ap-
proach marked with � tackles the de-identification task without data protection
concerns.
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obtained from an embedding algorithm and an optional casing feature. The output is a
sequence of probability distributions. Our models use CRF output layers whose outputs
can be interpreted as probability distributions over the classes. They are optimized using
the categorical cross-entropy loss function with balanced class weights (PHI tokens are
weighted around 13.5 times higher than non-PHI tokens). We apply an early stopping
regularizer that monitors validation loss with patience 5.

Hyperparameter Optimization We are exploring the hyperparameter space shown in
Table 5.2. It is based on Dernoncourt et al.’s model as well as the findings by Reimers and
Gurevych (2017) who evaluated over 50 000 hyperparameter configurations for various
sequence tagging tasks including NER. We focus on the hyperparameters that have a
large influence on sequence tagging performance according to Reimers and Gurevych:
pre-trained embeddings, additional inputs, batches, and dropout. The remaining hyper-
parameters such as the number of LSTM units per direction and layer, the choice of
CRF output and Nadam optimizer as well as the gradient normalization configuration
are kept fixed. As the space shown in Table 5.2 spans thousands of combinations, we use
a random search instead of a grid search to explore the space, optimizing for the binary
HIPAA F1 score on a validation set.

Embeddings We evaluate GloVe, FastText and ELMo embeddings (see Section 3.3).
GloVe embeddings are used by Dernoncourt et al. (2017b) in their de-identification
model. They have no way of embedding out-of-vocabulary words. FastText and ELMo
are capable of producing embedding vectors for out-of-vocabulary tokens using subword
information while still keeping similar words like names or professions close together in
the vector space.

Casing Feature We evaluate the casing feature by Reimers and Gurevych (2017) as an
additional input. The feature maps words to a one-hot representation of their casing
(numeric, mainly numeric, all lower, all upper, initial upper, contains digit, or other).

Batches In sequence tagging tasks, it is common to use relatively small batch sizes
because multiple labels are learned for each sentence. As Dernoncourt et al. (2017b) use
a batch size of 1, we include this value in our hyperparameter space.

Dropout Reimers and Gurevych achieve the best results when using variational dropout
as well as naive dropout (see Section 3.2.7) after LSTM layers. We additionally evaluate
the effect of dropout on the input embeddings.

5.1.2 Final Model

Our bidirectional LSTM-CRF models are capable of learning the de-identification task.
We find that the architecture is mostly insensitive to its hyperparameters. Detailed results
of our hyperparameter search can be found in Appendix B.

Models that use two recurrent layers score 0.3 percentage points higher than models
using one layer, so we define two LSTM layers as our model depth. Since there is no
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Category Hyperparameter Values

Inputs Pre-trained embeddings FastText, ELMo, GloVe
Casing feature Yes, no
Batch size 1, 16, 32, 64

Architecture Number of LSTM layers 1, 2
LSTM units per direction and layer 128 (fixed)

Training Input embedding dropout 0, 0.05, 0.1, 0.25, 0.5
Variational dropout 0.1, 0.25, 0.5
Dropout after LSTM 0.1, 0.25, 0.5
Optimizer Nadam (fixed)
Optimizer gradient norm clipping 1.0 (fixed)

Table 5.2: Hyperparameter space for the baseline model.

clear best embedding type in our hyperparameter evaluation, we continue to evaluate
all three types of pre-trained word embeddings. The casing feature adds 0.4 percentage
points to the F1 score for GloVe and does not degrade FastText and ELMo, so we keep
it for further experiments. A minibatch size of 32 achieved good results, conforming to
Reimers and Gurevych’s findings for NER. We find that a reasonable configuration for
input dropout, variational dropout, and after LSTM dropout is (0.1, 0.25, 0.5). Figure 5.1
shows the final model architecture.

5.2 Perturbing Protected Health Information Tokens

The experiments described in this section use perturbed training data with the goal
of finding a representation of the data that is reasonably private and allows training a
de-identification model. Testing is still performed with the unperturbed data.

We do not use ELMo embeddings in our further approaches because they are expensive
to compute and we only expect them to achieve minor improvements in de-identification
performance compared to the non-contextual types of pre-trained embeddings.

5.2.1 Random Embeddings

In our random embeddings experiment, we aim to find out to which degree PHI tokens can
be identified solely from the sentence context and the casing feature without embedding
information about the tokens in question. We loop over all PHI tokens in the training set
except punctuation marks and replace their embeddings with random vectors that share
the mean and standard deviation of the respective embedding matrix. As the replaced
embeddings contain no information about the original tokens, we replace them with new
random vectors in every training epoch. This experiment serves as a lower bound for
perturbation strategies.
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Output · · ·

CRF · · ·

LSTM 2 · · ·

LSTM 1 · · ·

Embedding

Casing feature

Token input Mr. Smith was · · ·

· · ·

Figure 5.1: Visualization of the final baseline model architecture. Sequences of squares
denote real-valued vectors. Backward LSTMs are omitted for legibility.

5.2.2 Additive Noise

Adding random noise to numerical data is a natural way to obfuscate it. However, in
high dimensional spaces such as word embedding spaces, points are far away from each
other and almost all of them are located at some edge of the space (Aggarwal et al.,
2001; Domingos, 2012). This means that even high amounts of additive noise (multiples
of the standard deviation of the embedding matrix) may not change the cosine distance
neighborhood of a point, making it easy to re-identify.

In this experiment, we aim to find a fitting amount of noise that changes an embedding’s
cosine similarity neighborhood while still producing realistic-looking vectors (i.e. they
should not stray too far from other elements in the embedding space). Then, we train a
de-identification model on embeddings with additive noise. Embeddings of PHI tokens are
perturbed by drawing a value for each embedding dimension from a Gaussian distributed
random variable with a single fixed standard deviation and adding the resulting vector to
the original embedding. The noise is added only once before training; we do not generate
new noisy embeddings between training epochs.

5.2.3 Automatically Pseudonymized Data

As a further perturbation method, we evaluate a naive automatic approximation of
pseudonymization by substitution. Before training, we randomly move all PHI tokens to
the position of one of a fixed number N of their neighbors in an embedding space, as
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5.3 Adversarial Learning of a Private Representation

determined by cosine distance in a pre-computed embedding matrix.
In GloVe, only tokens that exist in the pre-computed embedding matrix are moved to

their neighbors. The unknown token is not modified as it does not contain any information
(except that the token in question is not part of the precomputed matrix).

We evaluate the privacy properties of the approach using a bidirectional LSTM
adversary with a single output unit. It is trained on the tasks of distinguishing pairs of:

• a pseudonymized sequence and the original sequence

• a pseudonymized sequence and a minimally modified original sequence (with only
one occurrence of PHI moved to one of its neighbors).

For the minimally modified original sequence, we keep the number of neighbors fixed at
N = 5 to avoid augmented sentences being too unrealistic.

5.3 Adversarial Learning of a Private Representation

The previously discussed approaches are highly dependent on manually tuned representa-
tion parameters like the amount of noise and neighbor space, that, if set incorrectly, may
allow for easy re-identification. In this experiment, we evaluate an adversarial learning
based approach that automatically tunes the representation parameters to protect against
adversary models.

Architecture Our approach uses a model that is composed of three components: a
representation model, a de-identification model, and an adversary. An overview of the
architecture is shown in Figure 5.2. The representation model maps a sequence of word
embeddings to an intermediate vector representation sequence. The de-identification
model receives this representation sequence as an input instead of the original em-
bedding sequence. It retains the casing feature as an additional input. As before, the
de-identification model outputs a sequence of class probabilities. The representation is
also used as an input to the adversary that tries to infer information about the original
embedding sequence.

Representations We evaluate two types of representation models: a feedforward and
an LSTM model. Both apply Gaussian noise with zero mean and trainable standard
deviations to their inputs and outputs. The models learn a standard deviation for each
of the input and output dimensions.

We try different representation sizes to explore the trade-off between de-identification
and adversary performances. In contrast to the approaches from Section 5.2 that only
perturb PHI tokens, the representation models in this approach process all tokens to
represent them in a new embedding space.

Adversaries In existing gradient reversal approaches (Ganin et al., 2016; Feutry et al.,
2018; Elazar and Goldberg, 2018), the learned representation is invariant to some attribute
of the input. Similarly, our representation should be invariant to small input changes,
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Mr. Smith was · · ·

· · ·

Representation Model

· · ·

De-Identification Model

· · ·

Adversary Model

Token input

Embedding

Representation

Output Adversary output

Figure 5.2: Simplified visualization of the adversarial model architecture. Sequences of
squares denote real-valued vectors, dotted arrows represent possible additional
real or fake inputs to the adversary. The casing feature that is provided as a
second input to the de-identification model is omitted for legibility.
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5.3 Adversarial Learning of a Private Representation

like a single token being replaced with a neighbor in the embedding space. The number
of neighbors N controls the privacy properties of the representation.

Additionally, we need our representation to contain a random element because we want
to share the output representations as well as the representation model itself. An attacker
should not be able to create a lookup table of representations for exact sentences, i.e. the
representation must be immune to known-plaintext attacks.

To achieve these goals, we use two adversaries that are trained for the following tasks:

1. Given a representation and an embedding sequence, decide if they were obtained
from the same sentence.

2. Given two representation sequences (and their cosine similarities), decide if they
were obtained from the same sentence.

Figure 5.4 shows the two adversaries with their respective inputs. The first adversary’s
objective is a discriminatory formulation of an inverse representation model and causes
representations for similar inputs (replacing any protected token with one of its N
neighbors) to be indistinguishable. The second adversary’s objective causes repeated
representation computations for the same sentence to differ by a high enough degree to
make it impossible to build a lookup table of representations. We obtain the representation
sequences for the second adversary from copies of the representation model with shared
weights. We generate real and fake pairs for adversarial training using the automatic
pseudonymization approach presented in Section 5.2.3, limiting the number of replaced
tokens to one per sentence.

The adversaries are implemented as bidirectional LSTM models. We confirmed that
bidirectional LSTM models are able to learn the adversarial tasks on randomly generated
data and raw word embeddings in a preliminary experiment. To use the two adversaries
in our architecture, we average their outputs.

Training We evaluate two training procedures: DANN training (Ganin et al., 2016) and
the alternating approach by Feutry et al. (2018).

In DANN training, the three components are trained conjointly, optimizing the sum of
losses. Training the de-identification model modifies the representation model weights to
generate a more meaningful representation for de-identification. The adversary gradient
is reversed with a gradient reversal layer between the adversary and the representation
model in the backward pass, causing the representation to become less meaningful for
the adversary.

The training procedure by Feutry et al. (2018) is shown in Figure 5.3. It is composed of
three sequential phases:

1. The de-identification and representation models are pre-trained together, optimizing
the de-identification loss Ldeid.

2. The representation model is frozen and the adversary is pre-trained, optimizing the
adversarial loss Ladv.

29



5 Experiments

1. 2. 3. a) 3. b)

Figure 5.3: Visualization of Feutry et al.’s training procedure. The adversarial model
layout follows Figure 5.2: the representation model is at the bottom, the left
branch is the de-identification model and the right branch is the adversary.
In each step, the thick components are trained while the thin components
are frozen. Steps 1 and 2 are trained until stable. Then training alternates
between one epoch and step 3a and one epoch of step 3b.

3. In alternation, for one epoch each:

a) The representation is frozen and both de-identification model and adversary
are trained, optimizing their respective losses Ldeid and Ladv.

b) The de-identification model and adversary are frozen and the representation is
trained, optimizing the combined loss Lrepr = Ldeid + λ|Ladv − Lrandom|.

In the first two phases, we monitor the respective validation losses for early stopping to
decide at which point the training should move on to the next phase. The alternating
steps in the third phase each last one training epoch. We determine the early stopping
epoch using only the combined validation loss (Item 3b).

Gradient reversal is achieved by optimizing the combined representation loss while the
adversary weights are frozen. The combined loss is motivated by the fact that the
adversary performance should be the same as a random guessing model, which is a lower
bound for anonymization (Feutry et al., 2018). The term |Ladv − Lrandom| approaches 0
when the adversary performance approaches random guessing18. λ is a weighting factor
for the two losses; we select λ = 1.

Application To apply the model in practice, a central model provider would train the
three parts of the model on an initial PHI-annotated dataset, e.g. the i2b2 2014 data.
This initial training should confirm that the learned representation allows training a de-
identification model while being robust to the adversaries. The model provider would then
publish the representation model along with their choice of pre-trained word embeddings.
Medical institutions would use the representation model to transform their PHI-labeled
data into a private representation, which is then sent back to the central model provider
with the respective labels. This transformation replaces the manual document-coherent
pseudonymization that is typically performed to share training data for de-identification.

18In the case of binary classification: Lrandom = − log 1
2
≈ 0.6931.
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5.3 Adversarial Learning of a Private Representation

The model provider would then update the existing de-identification model or train a new
model using all available representation data. Periodically, the pipeline of representation
model (possibly in a version without additive noise) and de-identification model would
be published so it can be used by medical institutions on their unlabeled data.
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Mr. Smith was · · ·

· · ·

Mr. Collins was · · ·

· · ·

Representation Model

· · ·

Adversary Model

Mr. Smith was · · ·

· · ·

Mr. Collins was · · ·

· · ·

Representation Model Representation Model

· · · · · ·

Adversary Model

copy

Figure 5.4: The two adversaries used in our adversarial model architecture with example
inputs. Red boxes denote automatically pseudonymized fake inputs. We
assume an LSTM representation model in which a single changed element in
the input sequence influences all elements in the output sequence. The target
label in the adversarial tasks is 0 (negative) in both cases as the two input
sequences are not equal.
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6 Results

In this chapter, we present the results of our experiments from Chapter 5.

6.1 De-Identification of Raw Data

Table 6.1 shows the HIPAA binary token-based de-identification scores on the i2b2 2014
test set of our ELMo, FastText, and GloVe models that each use the best hyperparameter
configuration from our optimization. We averaged the results out of 5 runs per model
and compare them to the state of the art (Dernoncourt et al., 2017b) as well as a naive
word list baseline and the practical upper bound. The word list baseline is computed
by creating a mapping from tokens in the training set to their most common labels and
using it to predict the test set (the none class is predicted for tokens that do not occur
in the training set).

All three models comfortably beat the target score of 95% that is required for a
reasonable de-identification system (see Section 3.1). The ELMo model comes closest to
the state-of-the-art result by Dernoncourt et al., falling short by around 0.1 percentage
points. The FastText and GloVe models achieve slightly lower scores.

All models are strongest at recognizing dates and ages, followed by names (presumably
the most important category), IDs, and contact information with F1 scores above 90%.
For location and profession tags, the models achieve F1 scores below 90%. The profession
category is the category with the lowest individual F1 score. A table that lists our models’
de-identification scores per category of PHI in comparison to the word list baseline and
upper bound can be found in Appendix C.

Figure 6.1 shows our models’ de-identification performance on the test set when using
different fractions of the training documents. For each split, we reserve 20% of the split’s
documents for validation and early stopping. All three models achieve the target F1 score
of 95% when using only half the training set. Scores slightly below 94% that can be
achieved with a 10% split of the training set would have beaten most of the teams that
participated in the 2014 de-identification shared task (Stubbs et al., 2015).

6.2 De-Identification with Private Representations

In this section, we present the results of our experiments that use private representations
to train a de-identification model (Sections 5.2.1 to 5.2.3 and Section 5.3).
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6 Results

Model Precision (%) Recall (%) F1 (%)

ELMo 98.20 97.29 97.74
FastText 97.73 97.61 97.67
GloVe 97.98 97.27 97.62

Dernoncourt et al. (2017b) 98.32 97.38 97.85

Word list 81 .04 55 .90 66 .16
Upper bound 99 .32 99 .56 99 .44

Table 6.1: Average precision, recall, and F1 scores of our de-identification models in
comparison the state-of-the-art model by Dernoncourt et al., a word list
baseline, and the upper bound based on our preprocessing. The best result for
each column is highlighted with a bold font.
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Figure 6.1: F1 scores of our models when using training sets of different sizes.
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Model Precision (%) Recall (%) F1 (%)

FastText 88.38 5.64 10.60
GloVe 86.76 22.54 35.78
GloVe/UNK 95.92 26.41 41.42

Table 6.2: Precision, recall, and F1 scores of our de-identification models when trained
on sequences with PHI replaced with random embeddings. The best result for
each column is highlighted with a bold font.

6.2.1 Random Embeddings

The results for the random embeddings experiment are shown in Table 6.2. When PHI
tokens in the training set are replaced with random vectors, the GloVe model achieves the
best performance on the unperturbed test set. The GloVe/UNK entry in the table refers
to an additional experiment with the GloVe model where tokens that do not occur in
the GloVe embedding matrix retain their embedding (which is the same for all unknown
tokens). This further improves the GloVe model’s test score.

Appendix C includes a detailed evaluation of this experiment per category of PHI.
The GloVe model with unknown embeddings achieves an F1 score of 78% in the name
category, which is higher than the word list baseline’s score (see Table C.1). All other
scores are below the word list baseline.

6.2.2 Additive Noise

The results of our additive noise experiment are shown in Figure 6.2. The left diagram
illustrates the effect of adding noise of different scales to FastText and GloVe embeddings
that occur as PHI tokens in the i2b2 corpus. We measure the cosine similarity rank of
the original (sorting all words from the embedding matrix by their cosine distance to the
noisy embedding, see Section 3.3.1).

Scales of noise up to 0.1, which is around double of the standard deviation of the
embedding matrices, do not influence the cosine similarity ranks; the original embedding
is still the closest neighbor in almost all cases. At higher noise scales, the similarity to
the original decreases rapidly. The additive noise moves the vectors to different regions
of the embedding space.

The right diagram shows that de-identification performance also drops with added
noise. Even at a noise scale of 0.1 in which the cosine neighborhood of embeddings is not
changed, the F1 score is below the target for both models.

6.2.3 Automatically Pseudonymized Data

The results of the automatic pseudonymization experiment are illustrated in Figure 6.3.
The left diagram shows that for both FastText and GloVe, moving training PHI tokens
to random tokens from up to their N = 200 closest neighbors does not significantly
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Figure 6.2: Left: percentage of top 5 and top 1 cosine similarity matches of the origi-
nal word when adding Gaussian noise to 1 000 randomly selected FastText
and GloVe embeddings. Right: de-identification performance with additive
Gaussian noise.

reduce de-identification performance. F1 scores for both models drop to around 95% when
selecting from N = 500 neighbors and to around 90% when using N = 1 000 neighbors.
With N = 100, the FastText model achieves an F1 score of 96.75% and the GloVe model
achieves an F1 score of 96.42%. The detailed evaluation tables for both FastText and
GloVe can be found in Appendix C.

The right diagram shows the results of our adversarial evaluation. For both types of
embeddings, the trained adversary achieves test accuracies of around 60% independently
of the choice of N .

It is notable that models that were trained on automatically pseudonymized data
outperform the corresponding model that was trained on raw data in F1 score in several
categories of PHI. The FastText model beats the respective raw data model in the
profession, location, age and contact categories (see Table C.3). The automatic pseudo-
nymization GloVe model outperforms the raw data model in the name, location, and
date categories (see Table C.4). However, the overall binary HIPAA F1 scores do not
improve when using automatic pseudonymization.

6.2.4 Adversarial Learning of a Private Representation

In our adversarial learning experiment, we do not achieve satisfactory results with the
conjoint DANN training procedure: in all cases, our models learn representations that
are not sufficiently resistant to the adversary. When training the adversary on the frozen
representation for an additional 20 epochs, it is able to distinguish real from fake input
pairs on a test set with accuracies above 80%. This confirms the findings by Elazar and
Goldberg (2018).

With the training procedure by Feutry et al. (2018), we are able to train a representation
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Figure 6.3: Left: F1 scores of our models when trained on automatically pseudonymized
data where PHI tokens are moved to one of different numbers of neighbors
N . Right: adversary accuracy on the task of distinguishing real from fake
original/pseudonymized sentence pairs. An accuracy of 1 is plotted for N = 1
(i.e. no pseudonymization).

that allows training a de-identification model while preventing an adversary from learning
the adversarial tasks, even with continued training on a frozen representation. We select
the LSTM representation model over the dense model because it allows 0.4 percentage
points higher de-identification F1 scores on average.

Figure 6.4 shows our de-identification results when using adversarially learned repre-
sentations. A higher number of neighbors N means a stronger invariance requirement for
the representation. For values of N up to 1 000, our FastText and GloVe models are able
to learn representations that allow training de-identification models that reach the target
F1 score of 95%. However, training becomes unstable for N > 50 when using GloVe and
N > 500 when using FastText embeddings. Then, training results in representations that
are not robust to the adversary, which is shown in the diagram on the right side.

Our choice of representation size d ∈ {50, 100, 300} does not influence de-identification
or adversary performance, so we select d = 50 for further evaluation. For d = 50 and
N = 100, the FastText model reaches an F1 score of 97.4% and the GloVe model reaches
an F1 score of 96.89%.

The adversarially trained FastText model beats the FastText model trained on raw
data in the contact category. The GloVe model does not beat the corresponding raw data
model in any category. It is most significantly weaker in the profession category. The
detailed evaluation tables can be found in Appendix C.
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Figure 6.4: Left: de-identification F1 scores of our models using an adversarially trained
representation with representation size d = 50 and different numbers of
neighbors N for the representation invariance requirement. Right: mean
accuracy on the two adversary tasks. The validation accuracy lines show the
maximum accuracy around the best epoch according to the combined loss as
an attempt to visualize representation stability.
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7 Discussion

In this work, we presented a baseline de-identification model as well as four approaches
(of which two show promising results) to sharing training data for de-identification that
require less human effort than manual pseudonymization by substitution.

Our baseline model achieves near-state-of-the-art results without relying on explicit
character features. We find that both random word embeddings and word embeddings
with additive Gaussian noise are unsuitable for training a reasonable de-identification
model. Our naive automatic approximation of pseudonymization allows training a de-
identification model while being robust to an adversary model that tries to trace pseu-
donymized sequences back to their originals. We introduced an adversarial model that
learns an intermediate vector representation of medical text that is useful for training a
de-identification model while preventing adversarial models from re-identifying original
sequences or building a lookup table of representations.

In this chapter, we discuss our approaches regarding their de-identification performance
and privacy properties. We briefly discuss our approaches’ relationship to the related
work and present directions for future work.

7.1 De-Identification Performance

In this section, we discuss the de-identification performance properties of our models.

Baseline De-Identification Our ELMo model is the best de-identification model, followed
by the FastText and GloVe models. ELMo embeddings encapsulate the sentence context,
making them more expressive than the non-contextual embedding types.

Reimers and Gurevych (2017) find that GloVe performs better than FastText in their
NER benchmark. This is no contradiction to our result as the i2b2 2014 dataset in
all likelihood contains more out-of-vocabulary tokens (that GloVe cannot embed) than
their datasets. FastText’s approach to embedding unknown words (word embeddings are
the sum of their subword embeddings) proves useful on datasets with misspellings and
ungrammatical text. However, FastText beats GloVe only by 0.05 percentage points on
the i2b2 test set. The casing feature (which improves GloVe be 0.4 percentage points in
the hyperparameter optimization) makes up for GloVe’s missing embeddings for unknown
words.

Analyzing our baseline models’ predictions on the test set reveals that the models typically
make wrong predictions for the same instances of PHI. Table 7.1 shows some wrong
predictions from each of our models that are unique to the respective model19. Most

19We show similar sentences to actual wrongly predicted sentences from the i2b2 test set.
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Model Prediction • and Target �

ELMo • Per [Bruce Protocol]Hospital she exercised 9 minutes
� Per Bruce Protocol she exercised 9 minutes

• He is a veteran
� He is a [veteran]Profession

FastText • Works in [commercial]Organization [diving]Profession
� Works in [commercial diving]Profession

• Patient was seen in the walk-in clinic at MHC yesterday
� Patient was seen in the walk-in clinic at [MHC]Hospital yesterday

GloVe • Discussed with patient at [lenght]Hospital surgery
� Discussed with patient at lenght surgery

• Started walking around Pittstown about 3.5 miles
� Started walking around [Pittstown]City about 3.5 miles

Table 7.1: Some de-identification errors that are unique to the respective model. Note
that “lenght” is a spelling mistake that occurs in the i2b2 2014 test set.

notably, the GloVe model makes mistakes that can be avoided by using subword features.
Slight misspellings have embeddings close to the correct spelling in ELMo and FastText.
Also, entity names that clearly belong to a specific category (like city names with the
suffix “-town”) have meaningful embeddings in ELMo and FastText. Some of the ELMo
and FastText models’ mistakes could be avoided by using a dictionary of professions,
hospital names, and medical terms as an additional data source, e.g. “Bruce Protocol” is
a standard cardiac diagnostic test that would occur in a medical dictionary.

Random Embeddings It is not possible to train a de-identification model with sentences
where all PHI is replaced with random vectors. The GloVe model with retained unknown
embeddings is strongest because the unknown embedding itself is a hint to tokens being
PHI (e.g. uncommon names).

Additive Noise There is no scale of Gaussian noise that can be added to PHI tokens
that sufficiently perturbs their cosine similarity neighborhood while allowing training a
de-identification model.

Automatically Pseudonymized Data Our naive automatic word-level pseudonymization
approach allows training reasonable de-identification models when selecting from up to
N = 500 neighbors.

Figure 7.1 shows four examples for automatically pseudonymized sentences that were
generated by moving PHI tokens to one of their N = 100 neighbors in the FastText
embedding space. While the first three sentences are coherent and could be the result of
a human pseudonymization step, the unrealistic last sentence hints at the limitations of
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7.2 Data Protection Compliance

• Bob John continues to feel well
• She is a fulltime historian photographer
• TReated with RAI February September 2071 2080
• Transferred in January October to the HMS Q-ship after presenting to the

Florida Miami-Florida Hospital Hosp Orlando Merlina

Figure 7.1: Examples of automatically pseudonymized sentences using FastText embed-
dings and N = 100 neighbors.

this naive approach. The token “HMS” was seemingly moved too far because “Q-ship”
is not a realistic hospital name, and the tokens “Florida” and “Hospital” were only
perturbed by a small degree. However, as deep learning models do not see the actual
words but only their representations (that are neighbors in the embedding space), using
the automatically pseudonymized data does not dramatically deteriorate de-identification
performance. Rather, models trained on automatically pseudonymized data beat their
counterparts that were trained on raw data in some categories of PHI due to their higher
robustness.

Adversarially Learned Representation Our adversarially trained vector representation
that is invariant to word changes allows training reasonable de-identification models when
using up to N = 1000 neighbors as an invariance requirement.

The adversarial de-identification results beat the automatic pseudonymization results
because the representation model can act as a task-specific feature extractor. Additionally,
the representations are more general as they are invariant to word changes. The de-
identification model is trained on sentences that are augmented to a smaller degree
than in our automatic pseudonymization experiment (only one PHI token is moved to a
neighbor in adversarial training instead of all PHI tokens).

7.2 Data Protection Compliance

In this section, we discuss the privacy properties of our approaches.

Embeddings When looking up embedding space neighbors for words, it is notable that
many FastText neighbors include the original word or parts of it as a subword. This
is due to FastText’s method of using the sum of subword embeddings in embedding
calculation. For tokens that occur as PHI in the i2b2 training set, on average 7.37 of
their N = 100 closest neighbors in the FastText embedding matrix contain the original
token as a subword. When looking up neighbors using GloVe embeddings, the value is
0.44. This may indicate that FastText requires stronger perturbation (i.e. higher N) than
GloVe to sufficiently obfuscate protected information.
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Figure 7.2: Left: cosine similarity rank of the original word when adding Gaussian noise
to 1 000 randomly selected FastText and GloVe embeddings. Right: cosine
similarity to any closest neighbor in comparison to the mean similarity for
FastText and GloVe.

Additive Noise Figure 7.2 shows properties of additive Gaussian noise to FastText and
GloVe embeddings. Both the L2 normalized FastText and GloVe embedding matrices
have means of around 0 and standard deviations of around 0.06. At a noise scales up to
0.1 for FastText and 0.15 for GloVe, the cosine neighborhood is mostly unchanged but
de-identification models do not reach the 95% F1 score target. This may be caused by
the Gaussian noise moving embeddings to remote regions of the vector space: the cosine
similarity to any closest neighbor continually drops when adding noise, quickly falling
below the mean value of the respective embedding type.

Automatically Pseudonymized Data We identified some privacy weaknesses of our auto-
matic pseudonymization approach. For a last name like Wolf, neighbors in the embedding
space will include other animal names and not common last names. In this case, it could
be possible to infer the original name if there are only a limited number of people that
might appear in the dataset, e.g. the population of a small town.

If multiple sentences contain animal names (or any other similar names), they will
likely come from the same original document, undoing the privacy gain from shuffling
training sentences across documents. It may be possible to infer the original name using
the overlapping neighbor spaces. To counter this, we can re-introduce document-level
pseudonymization, i.e. moving all occurrences of a PHI token to the same neighbor.
However, we would then also need to detect misspelled names as well as other hints to
the actual tokens and transform them similarly to the original, which would add back
much of the complexity of manual pseudonymization that we try to avoid.

In our adversarial evaluation, the adversaries reach test accuracies of 60%. However, a
60% accuracy is also reached by a similar LSTM adversary that is trained to discriminate
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original sequences from sequences with one occurrence of PHI moved to a neighbor. This
means that the adversary can achieve its accuracy only by learning to distinguish real
from fake sentences and ignoring its pseudonymized sequence input.

Adversarially Learned Representation Our adversarial representation empirically satis-
fies a strong privacy criterion: representations are invariant to any protected information
token being replaced with any of its N neighbors in an embedding space. While it is
possible for de-identification models to achieve F1 scores of 95% using our adversarially
learned representation with up to N = 1000 neighbors, training becomes unstable for
large N .

Figure 7.3 shows a set of typical (successful) learning curves for Feutry et al.’s training
procedure. The representation model and de-identification model are jointly pre-trained
in the first phase. In the second phase, the adversary is pre-trained to reach a validation
accuracy of around 80%, which means that the pre-trained representation does not fit
our invariance requirements. At the beginning of the third training phase, both the
de-identification model and the adversary learning curves show an oscillating pattern
that is caused by the alternating training of the branches (with frozen representation
model) and the representation model (with frozen branches). Around 15 epochs into this
phase, we find an adequate representation which is indicated by the adversary accuracy
being close to the random guessing accuracy of 50%. The de-identification validation loss
is typically lower than the training loss in the alternating phase. Since the representation
and de-identification models are not trained together in this phase, the models always
need to catch up to the other model’s parameter changes (training loss is averaged over
all training samples of an epoch). When freezing the representation model and training
the adversary for an additional 60 epochs, it still does not achieve higher accuracies than
50%. Due to the added noise, the adversary does not overfit on its training set but rather
fails to identify any structure in the data.

Figure 7.4 shows the learning curves of a failed experiment run where training becomes
unstable due to the choice of N = 1000. The adversary learns to counter the representation
several times in the alternating training phase. These adversary accuracy peaks are
always followed by a peak in the de-identification model’s validation loss because the
representation is worsened for both branches to combat the adversary. Due to the
combined loss with λ = 1, the best model according to validation loss will often deliver
good de-identification results but it may not guarantee robustness to the adversary, even
if the concrete adversary test accuracy after the early stopping epoch is low. Continued
training of the adversary with a frozen representation will allow it to reach higher
accuracies.

7.3 Relationship to the Related Work

Both our model trained on raw data (Section 5.1) and our model trained on the adversar-
ially learned representation (Section 5.3) reach near-state-of-the-art (Dernoncourt et al.,
2017b) results on the i2b2 2014 dataset (Stubbs and Uzuner, 2015; Stubbs et al., 2015).
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7.4 Future Work

Our adversarial representation architecture extends gradient reversal based representation
learning (Ganin et al., 2016; Feutry et al., 2018) with a Siamese-like adversary that
receives two inputs to become invariant to input word changes. Our adversarially learned
representation is a new mechanism to privately publish (medical) text data.

7.4 Future Work

Our automatic pseudonymization approach could serve as a data augmentation scheme to
be used as a regularizer for de-identification models. Training a model on a combination
of raw and pseudonymized data may result in better test scores on the i2b2 test set,
possibly beating the state of the art.

Our automatic pseudonymization and adversarial learning approaches will most likely
be improved by using ELMo embeddings, which we did not use due to their computation
cost. In adversarial learning, it might be possible to tune the λ parameter and define a
better stopping condition that avoids the unstable characteristics with high values for
N in the invariance criterion. A further possible extension is a dynamic noise level in
the representation model that depends on the LSTM output instead of being a trained
weight. This might allow using lower amounts of noise for certain inputs while still being
robust to the adversary.

When more training data from multiple sources becomes available in the future, it
will be possible to evaluate our adversarially learned representation against unseen data.
Additionally, federated learning and the semi-supervised knowledge transfer approach for
de-identification can be reasonably simulated with multiple sources of data.
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8 Conclusion

Privacy laws require medical text to be de-identified before it is shared. De-identification
is time-consuming and costly when performed by humans, which motivates the creation
of automatic de-identification tools. Automatic de-identification requires training data,
which is typically created by substituting all protected information from raw medical
records. Today’s de-identification tools fail on unseen data. A training set from multiple
sources is required to train more general de-identification tools. We evaluated approaches
to sharing training data for de-identification that require lower human effort than the
existing approach of document-coherent pseudonymization.

As a precursor to our data sharing approaches, we developed a baseline deep learning
model for de-identification that does rely on explicit character features. It uses word
embeddings as well as a casing feature as inputs. On the i2b2 2014 test set, the model
reaches an F1 score of 97.74%, a near-state-of-the-art result.

Our automatic pseudonymization approach replaces protected information with neigh-
boring words in an embedding space. A bidirectional LSTM adversary can learn to
distinguish real from fake original/pseudonymized sentence pairs with an accuracy of 60%.
This accuracy can however also be achieved by an adversary that only distinguishes real
from fake sentences. A model trained on this augmented data with N = 100 neighbors
loses around one percentage point in F1 score when compared to the raw data baseline,
scoring 96.75%.

We presented an adversarial learning based private representation of medical text that
is invariant to any protected information word being replaced with any of its embedding
space neighbors and contains a random element. The representation allows training a
de-identification model while being robust to adversaries trying to re-identify protected
information or building a lookup table of representations. We extended existing adversarial
representation learning approaches by using two adversaries that discriminate real from
fake sequence pairs with an additional sequence input. Using the adversarially learned
representation, de-identification models reach an F1 score of 97.4%, which is closer to
the raw data baseline than to the automatic pseudonymization score. The representation
acts as a task-specific feature extractor. For an invariance criterion of up to N = 50
(GloVe) or N = 500 (FastText) neighbors, training is stable and adversaries cannot beat
the random guessing accuracy of 50%.

Our approaches, especially the adversarially trained representation, allow cost-effective
private sharing of training data for de-identification. Better de-identification tools could
help enable large-scale medical studies that improve public health.
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A Data Preprocessing and Postprocessing

In this work, we use the 2014 i2b2/UTHealth dataset that was originally published for
the 2014 de-identification shared task.

Preprocessing

General Dataset Information The training set was released in two parts during the
shared task period. At model selection time, we use the first part (training-PHI-
Gold-Set1) for training and the second part (training-PHI-Gold-Set2) for validation.
The two parts do not contain overlapping patients.

We use the test set (testing-PHI-Gold-fixed) that was released after the shared task
only for the final evaluation of each approach. At test time, we combine the two parts of
the training set and use a smaller validation split for early stopping.

Preprocessing Transformations We apply the following transformations to the data:

1. Fix annotations in a single document (180-03) where indices are offset after a
special character.

2. Tokenize the text aggressively similar to Liu et al. (2017), including splitting after
all punctuation marks and mid-word if a number is followed by text and the other
way around (e.g. “25yo” is split into “25”, “yo”).

3. Split the text into sentences using the spaCy heuristics for English with additional
rules that are based on an inspection of the training data:

• New sentences after three newline characters.

• New sentences for bulleted or numbered list items.

• New sentences after three dashes.

4. Replace tokens that make an HTML entity with the corresponding character (e.g.
“&amp;” to “&”).

5. Assign the PHI tags to the tokens and transform them into the IOB2 format (Tjong
Kim Sang, 2002).

6. Save the IOB2-annotated tokens to CSV files along with the token offsets in the
original raw text.

Preprocessing Shortcomings The tokenization misses 31 PHI tags entirely because they
occur inside a single token with another PHI tag. In these cases, only the first PHI tag in
the token is identified and transformed into the IOB2 format. Table A.1 contains three
examples of this problem.
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A Data Preprocessing and Postprocessing

Correct annotation Our annotation

[986044]Medical Record[2018]Date [9860442018]Medical Record

[25 Court Street]Street[Aberdeen]City [25 Court StreetAberdeen]Street

[M]Date[W]Date[F]Date [MWF]Date

Table A.1: Examples for missed PHI tags due to our tokenization. Note that there is
no whitespace between the PHI tags. “MWF” means the weekdays Monday,
Wednesday, and Friday.

Our sentence splitting heuristics cause 625 PHI tags to be split into two sentences. An
overview of the number of PHI tags in the original data and after our preprocessing,
including missed tags and sentence splits, is shown in Table A.2.

Train Validation Train+Val. Test Overall

Stubbs and Uzuner − − 17 410 11 462 28 872
Original data 11 893 5 512 17 405 11 462 28 867

Our B-* labels 12 142 5 652 17 794 11 729 29 523
Our I-* labels 20 220 9 414 29 634 19 873 49 507
Our O labels 522 246 233 403 755 649 487 454 1 243 103

Missed tags 22 4 26 5 31
Sentence splits 227 136 363 262 625

Table A.2: Number of PHI tags as reported in Stubbs and Uzuner (2015), as they occur
in the dataset we received, and in our tokenized IOB2 format.

Postprocessing

To evaluate our de-identification predictions with the official evaluation script, we apply
the following transformations:

1. For each tag, find the arg max of the label probability distribution and assign it
the corresponding IOB2 tag.

2. Assemble the IOB2 tagged tokens to PHI annotations that span multiple tags.

3. Output the tags in the required XML format.

We updated the official script to Python 3 to use it from within our experiment code.
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B De-Identification Hyperparameter
Optimization

Dropout

Embeddings Casing Batch size # hidd. Input Variati. After hidd. F1 (%)

ELMo Yes 32 2 0.1 0.5 0.5 97.75
GloVe Yes 64 2 0.25 0.5 0.5 97.73
FastText Yes 16 1 0.0 0.5 0.25 97.66
ELMo No 32 2 0.25 0.25 0.25 97.63
FastText Yes 64 1 0.1 0.1 0.5 97.58

FastText No 16 1 0.5 0.5 0.1 97.57
GloVe Yes 32 2 0.5 0.1 0.1 97.56
FastText Yes 64 1 0.25 0.1 0.25 97.54
FastText No 16 1 0.5 0.25 0.1 97.48
GloVe Yes 32 2 0.05 0.5 0.5 97.41

FastText Yes 32 2 0.25 0.25 0.5 97.41
FastText No 32 1 0.05 0.25 0.25 97.41
ELMo Yes 16 2 0.1 0.25 0.5 97.36
ELMo No 64 2 0.1 0.25 0.1 97.33
ELMo No 64 2 0.05 0.25 0.25 97.28

FastText Yes 32 2 0.5 0.1 0.25 97.28
FastText Yes 1 1 0.1 0.5 0.25 97.27
GloVe Yes 32 1 0.25 0.25 0.1 97.25
ELMo No 16 2 0.25 0.1 0.25 97.22
GloVe No 32 2 0.0 0.5 0.5 97.2

GloVe No 64 1 0.25 0.25 0.5 97.17
ELMo Yes 32 2 0.25 0.25 0.5 97.17
ELMo Yes 64 2 0.05 0.1 0.25 97.17
ELMo No 32 1 0.25 0.5 0.25 97.12
ELMo No 64 2 0.0 0.5 0.25 97.12

Table B.1: The 25 best hyperparameter configurations in our optimization, sorted by
validation F1 score. Note that the F1 scores are not comparable to the experi-
ment results (Chapter 6) because the optimization does not use the i2b2 test
set.
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B De-Identification Hyperparameter Optimization

Configuration Model

Hyperparameter Value ELMo GloVe FastText

Casing Yes −0.2 +0.1 +0.4
No +0.2 −0.2 −0.1

Batch size 1 −4.2 −0.7 −0.5
16 +0.2 +0.4 ±0.0
32 +0.4 +0.2 +0.1
64 +0.1 +0.4 +0.2

# hidd. 1 −0.1 −0.1 −0.1
2 +0.2 +0.4 +0.1

Input dropout 0 +0.3 −0.3 ±0.0
0.05 ±0.0 −0.5 +0.2
0.1 +0.4 −0.1 −0.4
0.25 −0.4 ±0.0 ±0.0
0.5 −3.9 +0.2 +0.5

Variational dropout 0.1 −0.4 +0.1 −0.1
0.25 +0.5 +0.3 ±0.0
0.5 ±0.0 −0.1 +0.1

After LSTM dropout 0.1 ±0.0 −0.3 −0.1
0.25 +0.4 +0.1 −0.5
0.5 −0.4 +0.4 +0.2

Table B.2: Effects per hyperparameter on the ELMo, FastText, and GloVe models,
measured as an F1 percentage point difference to the respective embedding
type’s mean F1 score. Our final hyperparameters are marked with a bold font.

62



C De-Identification Evaluation

This appendix contains detailed evaluation tables for our experiments that we obtained
from the official i2b2 2014 evaluation script.

De-Identification Baseline

Category ELMo FastText GloVe Word list Upper

Token 96.04 95.87 95.29 58 .55 99 .51
Strict 89.3 89.03 87.91 8 .77 95 .36

HIPAA Token 97.43 97.21 97.04 63 .81 99 .48
HIPAA Strict 90.82 90.41 90.02 7 .3 94 .41

Binary Token 97.69 97.75 97.38 64 .47 99 .51
Binary Strict 90.97 90.97 89.97 11 .49 95 .37
Binary HIPAA Token 97.78 97.69 97.49 66 .16 99 .49
Binary HIPAA Strict 91.21 91.05 90.53 9 .22 94 .42

NAME Token 95.17 95.54 93.22 31 .57 99 .86
NAME Strict 91.43 91.32 88.51 8 .32 97 .88

PROFESSION Token 88.04 84.27 82.74 26 .37 100 .0
PROFESSION Strict 77.27 69.68 66.47 7 .66 98 .32

LOCATION Token 88.31 87.98 87.17 42 .27 99 .42
LOCATION Strict 80.95 81.43 79.08 16 .54 97 .34

AGE Token 95.15 94.9 95.37 2 .59 99 .24
AGE Strict 94.86 94.61 95.16 2 .67 99 .35

DATE Token 98.82 98.8 98.78 75 .3 99 .47
DATE Strict 91.21 91.25 91.15 8 .32 92 .61

CONTACT Token 95.04 90.13 93.74 0 .93 99 .17
CONTACT Strict 89.1 82.46 85.65 0 .0 95 .45

ID Token 92.58 91.57 90.27 1 .57 98 .76
ID Strict 85.21 83.47 82.25 0 .0 94 .62

Table C.1: F1 scores of our baseline de-identification models (non-averaged scores of a
single model per embedding type).
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C De-Identification Evaluation

Random Embeddings

Category ELMo FastText GloVe GloVe/UNK

Token 3.08 17.75 42.24 48.28
Strict 2.65 11.55 28.75 33.91

HIPAA Token 1.45 10.37 33.56 40.25
HIPAA Strict 1.09 3.41 18.87 22.66

Binary Token 3.14 18.7 51.31 54.82
Binary Strict 2.72 12.82 33.82 37.74
Binary HIPAA Token 1.46 10.6 35.78 41.42
Binary HIPAA Strict 1.12 3.79 20.75 23.99

NAME Token 9.48 43.59 75.09 78.46
NAME Strict 7.45 32.37 63.04 68.71

PROFESSION Token 0.0 0.0 0.0 3.8
PROFESSION Strict 0.0 0.0 0.0 6.8

LOCATION Token 0.07 0.27 27.35 26.69
LOCATION Strict 0.0 0.0 7.96 10.39

AGE Token 0.0 0.0 0.0 0.0
AGE Strict 0.0 0.0 0.0 0.0

DATE Token 1.88 12.98 34.12 43.3
DATE Strict 1.6 3.86 16.25 21.67

CONTACT Token 0.0 0.48 0.0 0.0
CONTACT Strict 0.0 0.91 0.0 0.0

ID Token 0.0 1.06 4.32 13.43
ID Strict 0.0 0.0 0.0 9.59

Table C.2: F1 scores of our de-identification models when trained on data where all PHI
is replaced with random vectors.
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Automatic Pseudonymization: FastText

Number of neighbors N

Category 5 10 20 50 100 200 500

Token 95.29 95.26 95.27 95.01 94.48 94.18 92.79
Strict 87.99 87.98 87.88 87.48 87.08 86.39 84.05

HIPAA Token 96.9 96.95 96.89 96.75 96.28 95.96 94.39
HIPAA Strict 89.77 90.01 89.6 89.49 89.33 88.5 85.9

Binary Token 97.09 97.25 97.34 97.01 96.69 96.49 94.9
Binary Strict 89.87 90.1 89.93 89.64 89.36 88.72 86.08
Binary HIPAA Token 97.24 97.42 97.42 97.19 96.75 96.51 94.96
Binary HIPAA Strict 90.13 90.55 90.21 90.01 89.8 89.11 86.39

NAME Token 94.42 94.51 94.96 94.77 93.78 93.77 94.37
NAME Strict 90.03 90.79 90.75 90.42 89.84 89.64 90.29

PROFESSION Token 88.01 85.89 86.96 81.88 82.11 83.99 82.32
PROFESSION Strict 73.56 70.56 74.59 66.47 68.07 72.39 69.49

LOCATION Token 87.23 86.15 85.25 84.6 83.58 83.03 79.95
LOCATION Strict 79.86 77.54 77.34 76.26 74.65 73.57 68.94

AGE Token 95.43 95.8 94.86 94.4 94.42 92.78 92.55
AGE Strict 95.36 95.27 94.62 93.89 94.16 92.49 91.85

DATE Token 98.23 98.47 98.56 98.36 98.1 97.77 95.9
DATE Strict 90.03 90.55 90.43 90.71 90.74 89.82 86.45

CONTACT Token 92.29 90.51 91.67 92.23 91.63 92.88 91.9
CONTACT Strict 84.65 81.45 83.99 73.36 74.77 75.18 68.48

ID Token 89.92 90.26 90.36 90.51 89.71 88.78 87.41
ID Strict 80.89 82.38 81.65 82.29 81.15 80.39 78.8

Table C.3: F1 scores of our de-identification model when all PHI is moved to one of a
certain number of neighbors N in the FastText embedding space.
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C De-Identification Evaluation

Automatic Pseudonymization: GloVe

Number of neighbors N

Category 5 10 20 50 100 200 500

Token 95.35 95.45 94.78 93.92 94.24 94.34 93.2
Strict 88.13 88.43 86.86 85.72 86.35 86.07 84.59

HIPAA Token 96.98 97.0 96.39 95.87 95.87 95.91 95.04
HIPAA Strict 89.86 90.01 88.62 88.0 88.19 88.04 86.57

Binary Token 97.38 97.4 97.16 96.59 96.61 96.34 95.75
Binary Strict 90.13 90.34 89.52 88.57 88.41 87.85 87.18
Binary HIPAA Token 97.44 97.44 97.17 96.4 96.42 96.42 95.69
Binary HIPAA Strict 90.38 90.42 89.83 88.44 88.65 88.35 87.03

NAME Token 93.86 94.19 93.92 93.45 93.62 94.62 93.39
NAME Strict 89.23 90.17 89.05 89.05 89.05 89.61 88.59

PROFESSION Token 82.28 86.24 83.05 80.99 82.73 83.18 78.99
PROFESSION Strict 69.69 78.01 66.47 68.75 69.36 65.55 64.46

LOCATION Token 87.61 87.35 85.71 81.46 84.03 84.09 80.51
LOCATION Strict 80.11 80.42 77.09 71.0 74.43 74.42 70.14

AGE Token 96.12 95.33 94.76 94.91 95.25 94.71 93.66
AGE Strict 95.87 94.97 94.45 94.24 94.82 94.15 92.95

DATE Token 98.78 98.81 98.61 98.19 97.97 97.79 97.02
DATE Strict 91.25 91.14 90.72 90.42 89.94 89.59 88.07

CONTACT Token 90.89 91.55 85.84 90.37 90.46 90.54 89.95
CONTACT Strict 81.48 82.49 73.01 77.92 83.33 79.81 79.82

ID Token 88.75 88.83 86.72 86.09 85.89 85.17 86.43
ID Strict 79.34 78.59 75.52 73.22 74.21 71.28 74.76

Table C.4: F1 scores of our de-identification model when all PHI is moved to one of a
certain number of neighbors N in the GloVe embedding space.
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Adversarial Representation: FastText

Number of neighbors N

Category 10 20 50 100 200 500 1 000

Token 94.97 95.08 95.25 95.23 95.25 95.12 94.5
Strict 87.3 87.79 87.98 87.8 87.93 87.51 86.53

HIPAA Token 96.48 96.75 96.82 96.82 96.8 96.77 96.16
HIPAA Strict 88.73 89.55 89.43 89.5 89.4 89.23 88.38

Binary Token 97.28 97.42 97.4 97.46 97.3 97.34 96.95
Binary Strict 89.63 90.24 90.11 90.24 90.14 89.89 89.01
Binary HIPAA Token 97.15 97.41 97.36 97.4 97.32 97.35 96.75
Binary HIPAA Strict 89.62 90.44 90.04 90.37 90.05 89.95 88.87

NAME Token 94.1 94.15 94.16 94.58 94.02 94.19 93.8
NAME Strict 89.22 90.0 89.3 89.83 89.79 89.81 89.25

PROFESSION Token 83.24 83.36 82.63 84.67 87.52 77.95 83.96
PROFESSION Strict 70.32 69.44 71.88 72.09 76.62 64.42 65.35

LOCATION Token 85.26 85.12 86.79 85.8 86.61 85.52 84.18
LOCATION Strict 77.14 77.7 80.03 78.02 78.37 76.63 75.52

AGE Token 93.02 94.72 95.04 94.54 94.58 94.62 93.6
AGE Strict 92.42 94.56 94.69 94.16 94.03 94.44 93.39

DATE Token 98.65 98.76 98.6 98.72 98.6 98.69 98.06
DATE Strict 90.59 90.93 90.55 90.9 90.62 90.59 89.53

CONTACT Token 89.89 89.61 91.53 90.44 90.04 91.96 91.86
CONTACT Strict 81.51 79.74 83.53 81.4 81.88 84.04 83.99

ID Token 89.93 89.7 89.46 89.08 89.92 90.14 89.12
ID Strict 81.61 81.09 81.18 80.29 82.21 81.78 79.35

Table C.5: F1 scores of our de-identification model when using an adversarially trained
representation of size d = 50 with invariance requirements for different numbers
of neighbors N in the FastText embedding space.
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C De-Identification Evaluation

Adversarial Representation: GloVe

Number of neighbors N

Category 10 20 50 100 200 500 1 000

Token 94.64 94.25 93.88 94.05 93.41 92.71 93.82
Strict 86.86 86.19 85.51 85.65 84.56 83.4 85.53

HIPAA Token 96.59 96.06 95.94 96.27 95.71 94.62 96.13
HIPAA Strict 89.23 88.28 88.03 88.4 87.49 85.44 88.41

Binary Token 96.99 96.87 96.51 96.85 96.3 95.61 96.51
Binary Strict 89.3 88.75 88.15 88.34 87.38 86.05 88.21
Binary HIPAA Token 97.13 96.78 96.6 96.89 96.4 95.44 96.76
Binary HIPAA Strict 89.94 89.14 88.83 89.13 88.34 86.18 89.3

NAME Token 92.58 91.88 92.19 91.79 91.57 91.38 92.15
NAME Strict 87.4 85.86 86.87 86.77 85.19 85.58 86.57

PROFESSION Token 72.7 76.92 73.48 72.84 76.11 72.54 73.94
PROFESSION Strict 58.75 60.59 55.26 55.14 59.55 55.84 56.27

LOCATION Token 85.26 85.42 82.25 83.03 81.05 81.29 80.86
LOCATION Strict 75.97 77.0 72.5 72.29 70.45 71.21 71.24

AGE Token 94.76 95.12 92.65 92.52 93.47 88.89 93.5
AGE Strict 94.53 94.96 92.6 92.15 93.58 88.59 93.28

DATE Token 98.61 98.44 98.49 98.64 98.13 97.59 98.58
DATE Strict 90.78 90.44 90.23 90.59 89.58 88.3 90.77

CONTACT Token 92.6 85.65 92.05 92.47 91.74 86.1 92.8
CONTACT Strict 85.46 77.24 85.19 84.21 84.71 72.8 85.65

ID Token 90.23 88.4 89.08 89.6 88.35 86.44 89.72
ID Strict 82.88 79.87 81.09 80.76 80.8 76.28 81.11

Table C.6: F1 scores of our de-identification model when using an adversarially trained
representation of size d = 50 with invariance requirements for different numbers
of neighbors N in the GloVe embedding space.
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als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht
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