
Master Thesis

Comparative Argument Mining

Mirco Franzek
Matrikelnummer: 6781911

MIN-Fakultät

Fachbereich Informatik

Studiengang: Informatik

Erstgutachter: Prof. Dr. Chris Biemann

Zweitgutachter: Dr. Alexander Panchenko

Contents i

Contents

1. Introduction: An Open-Domain Comparative Argumentative Machine 1

2. Background 2
2.1. Related Work . 2

2.2. Domain-Specific Comparative Systems . 4

2.3. Machine Learning Methods . 8

2.3.1. Performance Measures . 8

2.3.2. Neural Networks . 9

2.3.3. Decision Trees and Gradient Boosting 11

2.4. Vector Representations for Documents . 12

2.4.1. Bag-of-words and Bag-of-ngrams . 12

2.4.2. Mean Word Embeddings . 13

2.4.3. Sentence Embeddings and InferSent 13

2.4.4. HypeNet and LexNet . 15

3. Building a Data Set for Comparative Argument Mining 17
3.1. Common Crawl Text Corpus . 17

3.2. Prestudies . 18

3.2.1. First Prestudy: Sentence Sampling and Guidelines 18

3.2.2. Second Prestudy: Sentence Preprocessing and Rephrasing of the

Guidelines . 22

3.2.3. Discussion . 25

3.3. Main Study . 26

3.3.1. Sentence Sampling Method and Domain Selection 26

3.3.2. Domain Subset: Brands . 29

3.3.3. Domain Subset: Computer Science 30

3.3.4. Domain Subset: Random . 32

3.3.5. Discussion . 33

4. Classification of Comparative Sentences 35
4.1. Classification Algorithm Selection . 35

4.2. Features . 36

4.3. Classification Experiments . 38

4.3.1. Baselines . 38

4.3.2. Results . 39

ii Contents

4.3.3. Error analysis . 43

4.3.4. Discussion . 46

4.4. Evaluation with the held-out data . 47

4.4.1. Results . 47

4.4.2. Discussion . 51

5. Conclusion and Future Work 53

A. Detailed Classification Results 55
A.1. Feature Experiments . 55

A.2. Final Held-Out Experiments . 58

Bibliography 61

Eidesstattliche Versicherung 67

1

1. Introduction: An Open-Domain
Comparative Argumentative Machine

This thesis discusses the topic of comparative argument mining. Comparative argument

mining is a subfield of argument mining, a recent research topic in natural language pro-

cessing.

The goal is to develop a system which is able to decide if a given sentence compares

two known objects and, if it does, which object wins the comparison. For instance, given

the sentence “In my mind, Python is better than Java!”, the system should answer that the

sentence is comparative and that Python won the comparison.

Such a system can be useful in several ways. First, it enables machines to understand

statements of such sentences. Secondly, this knowledge can be used in (commercial) ap-

plications, like opinion mining or online comparison portals. As presented in Section

2.2, these portals usually rely on information from databases. The system presented in

this thesis could be used to generate new knowledge automatically from forum posts,

comments, tweets and the like. Furthermore, this new knowledge would include the

thoughts and opinions of their authors. This stands in contrast to the pure factual in-

formation from databases. For instance, the system could find out that many people

complain about the telephone support of insurance company X, while they praise the

support of company Y - an information rarely found on comparison portals.

The thesis is structured into three main parts. The first part discusses recent publi-

cations in argument mining and explains the needed concepts from natural language

processing and machine learning.

Because comparative argument mining is a novel field, no suitable data set for this task

currently exists. The second part describes the creation of a data set with data crawled

from the web and crowdsourcing methods to label the data. The result is a data set

with 7199 sentences, containing comparisons of 271 distinct object pairs. Each sentence

is annotated with one of three classes (BETTER, WORSE, NONE) which reflects whether the

sentence is comparative and whether the first mentioned object in the sentence won the

comparison.

The third part uses this data set to train machine learning models on several feature

representations in order to predict the correct class. As the final evaluation, all features

are tested on held-out data.

2 2. Background

2. Background

2.1. Related Work

In the following, publications on argument mining are presented. If appropriate, the f1

scores achieved in these publications are presented as well. It must be noted that the f1

scores are not comparable with each other.

A general introduction on the research topic argument mining was given in [Lippi and

Torroni, 2016]. The authors introduced five dimensions to describe argument mining

problems: granularity of input, the genre of input, argument model, the granularity of

target and goal of analysis. Furthermore, the typical steps of argument mining systems

were described. First, the input is divided into argumentative (e.g. claim and premise)

and non-argumentative parts. This step was described as a classification problem. Sec-

ondly, the boundaries of the argumentative units must be identified; this was understood

as a segmentation problem. Thirdly, the relations between argumentative units must be

identified. For instance, claims and premises might be connected with a support or a attack
relation.

A system, which is capable of recognising comparative sentences and their components

such as the compared entities, the property which is used to compare the entities and the

direction of comparison, was presented in [Fiszman et al., 2007]. The evaluation showed

that the outcome has a high quality (f1 score of 0.81). However, the presented system was

specific to the domain of studies on drug therapy. The system used patterns generated

from hand-selected sentences, as well as domain knowledge. Therefore, the methods

cannot be transferred easily to the problem of this thesis.

In [Park and Blake, 2012], the authors presented another domain-specific approach on

argumentative sentence detection. The problem was formulated as a binary classification

task. As in [Fiszman et al., 2007], the features were tailored for medical publications. The

authors conducted a pilot study with 274 comparison sentences extracted from abstracts

and 164 comparison sentences from full text articles. The sentences were analysed in or-

der to extract 35 features (six lexical features, 27 syntactic features and two miscellaneous

features). For instance, a lexical feature capturing the appearance of “versus” or “vs.” was

developed, while a miscellaneous feature checked if the subject of the comparison is in

plural.

A recent publication on comparative argument mining is [Gupta et al., 2017], in which

a set of rules for the identification of comparative sentences (and the compared entities)

was derived from syntactic parse trees. With this set of rules, the authors achieved a

2.1. Related Work 3

f1 score of 0.87 for the identification of comparative sentences. The rules were obtained

from 50 abstracts of biomedical papers. Such being the case, they are domain dependent.

The challenges occurring while processing texts from social media were described in

[Šnajder, 2017]. In addition to the noisiness of text, missing argument structures and

poorly formulated claims were mentioned. It is expected that the text used in this thesis

will have the same shortcomings. Additionally, [Šnajder, 2017] emphasized that analyz-

ing social media texts can provide reasons behind opinions.

In addition to the challenges mentioned above, [Dusmanu et al., 2017] also pointed to

the specialized jargon in user-generated content like hashtags and emoticons. With this

in mind, [Dusmanu et al., 2017] classified tweets about the “Brexit” and “Grexit” either

as argumentative or as non-argumentative. In addition to the features that were used

in publications mentioned in this section, new features covering hashtags and sentiment

were added. They achieved a f1 score of 0.78 (using logistic regression) for the classifica-

tion. It must to be mentioned that the data set is small (1887 tweets) and the domain is

rather specific.

Publications dealing with the identification of argument structures are of relevance for

this thesis, as they provide valuable insights on the suitability of features and algorithms.

The authors of [Aker et al., 2017] summarised and compared features used in other

publications for identification of argumentative sentences. In addition to the algorithms

used in the publications, a convolutional neural network (as described in [Kim, 2014])

was tested. Two existing corpora and six different classification algorithms were used.

The comparison resulted in the insight that structural features and random forests worked

the best.

A two-step procedure to identify components of arguments (such as claim and premise)

and their relationships (like “premise A supports claim B”) is presented in [Stab and

Gurevych, 2014]. The identification step is formulated as a multi-class classification. For

the identification of argumentative components, a f1 score of 0.72 was reported.

How different datasets represent the argumentative unit of a claim was analysed in

[Daxenberger et al., 2017]. After an analysis of the data sets and their annotation scheme,

the authors conducted two experiments. In the first one, each learner was trained and

evaluated (10-fold cross-validation) on each dataset one after another. On average, the

macro f1 score for the identification of claims was 0.67 (all results ranging from 0.60 to

0.80). No significant difference between the results of logistic regression and the neural

networks was found. In isolation, lexical features, syntactical features and word embed-

dings were most helpful. Structural features turned out to be the weakest. The second

experiment was conducted in a cross-domain fashion. For each pair of data sets, one was

used as the training set and the other one as the test set. The average macro f1 score was

0.54. In this scenario, the best feature combination outperformed all neural models. The

4 2. Background

authors assumed that there might not be enough training data for the neural models. As

a last point, the authors noted that all claims share at least some lexical clues.

The role of discourse markers in the identification of claims and premises were dis-

cussed in [Eckle-Kohler et al., 2015]. A discourse marker is a word or a phrase which

connects discourse units. For instance, the word “as” can show a relation between claim

and premise: “As the students get frustrated, their performance generally does not im-

prove”. A similar function is expected for words like better, worse or because in this

thesis. The authors showed that discourse markers are good at discriminating claim and

premises. If claim and premise are merged into one class “argumentative”, this can be

used to identify argumentative sentences. The f1 score is not presented, but the accuracy

is between 64.53 and 72.79 percent.

2.2. Domain-Specific Comparative Systems

Comparison portals are a possible application for comparative argument mining. Many

comparison portals can be found on the internet. It is not unusual to see a television

commercial of these comparison portals, which suggests that they are used frequently

every day.

Most portals are specific to a few domains and a subset of properties, for example,

car insurances and their price. Comparisons are only possible between objects of the

domains and predefined properties. Source of the data is usually databases. Humans are

involved in gathering, entering and processing the data.

Comparison portals only compare and deliver facts. Because of that, they can only

hint to choose X over Y based on the facts collected. However, an insurance company X
might be the best in the comparison (for instance, best price), while the internet is full of

complaints about its poor service.

Examples of comparative portals are Check24.de1, Verivox.de2, Idealo.de3, GoCompare.com4,
and Compare.com5 just to name a few.

As an example, Check24.de is able to compare a wide variety of different objects like

several insurance companies, credit cards, energy providers, internet providers, flights,

hotels and car tires. After the user entered some details (based on the object type),

Check24.de shows a ranking of different providers. The user can choose different prop-

erties to re-rank the list. For instance, to compare different DSL providers, the user has

to enter the address , how fast the internet should be and if telephone and television are

wanted as well (see Figure 2.2.1). The user can then sort the results by price, speed, and

grade (Figure 2.2.2).

1https://check24.de (checked: 13.04.2018)
2https://verivox.de (checked: 13.04.2018)
3https://idealo.de (checked: 13.04.2018)
4https://gocompare.com (checked: 13.04.2018)
5https://compare.com (checked: 13.04.2018)

https://check24.de
https://verivox.de
https://idealo.de
https://gocompare.com
https://compare.com

2.2. Domain-Specific Comparative Systems 5

Figure 2.2.1.: Check24.de asks for some data before comparing different DSL contracts

Figure 2.2.2.: Check24.de DSL contract comparison result. The contracts can be sorted by
domain-specific criteria.

6 2. Background

The other sites work similarly. All in all, they provide more of a ranking than a com-

parison.

Another interesting type of website are question answering portals like Quora.com6 or

GuteFrage.net7. Although comparisons are not their primary goal, a lot of comparative

questions are present on those sites. On Quora.com, more than 2.380.000 questions have

the phrase “better than” in their title. If “Ruby” and “Python” are added, 10.100 questions

remain.8 Same is true for the German site GuteFrage.net, though, the numbers are smaller

than on Quora.com.9

More interestingly are systems which can compare any objects on arbitrary properties,

like Diffen.com10 and Versus.com11.

Versus.com aggregates freely available data sources like Wikipedia or official statistic

reports. For example, the comparison of “Hamburg vs. Berlin” uses Wikipedia for the

number of universities, worldstadiums.com for the availability of sport facilities and

the Economist for the Big Mac Index. Presumably, human processing is involved as the

possible comparisons are limited. For instance, a comparison of Hamburg and Darm-

stadt is not possible as Darmstadt is not available on Versus.com12. Likewise, “Ruby
vs. Python” is not possible, Versus.com suggests to compare “Rome vs. Pyongyang” in-

stead. Although Versus.com shows how many users liked the objects, it does not give a

clear statement which one is better. For instance, it is not possible to check automatically

whether Hamburg or Berlin is better for a short city trip. The user must manually search

all valid properties like the number of museums, theaters, the price of public transport

tickets and so on.

Similar to Versus.com, Diffen.com aggregates different data sources (see Figure 2.2.3

and Figure 2.2.4). All in all, the aggregated information is similar to Versus.com. The

comparison is also tabular. Besides the automatically aggregated data, users can add in-

formation on their own. Diffen.com does not enforce any restrictions on the objects of

comparison, but it faces the same problem as Versus.com as objects are missing. A com-

parison between Darmstadt and Hamburg is likewise not possible: all cells for Darmstadt

in the table are empty.

Neither Versus.com nor Diffen.com provides a comprehensible reason why an object

is better than another one. They merely aggregate facts and bring them face to face. De-

spite the aggregation approach of both systems, many meaningful comparisons are not

possible or not helpful (like “Hamburg vs. Darmstadt”, “Java vs. C#”, “Dr Pepper vs. Orange
Juice”). Also, the user can not define the properties for the comparison. The sites provide

6https://quora.com (checked: 13.04.2018)
7https://gutefrage.net (checked: 13.04.2018)
8Checked via Google on 11.12.2017. Search phrase: "better than" site:quora.com and ruby
python "better than" site:quora.com

9334.000 for "besser als" site:gutefrage.net and 78 for ruby python "Besser als"
site:gutefrage.net

10https://diffen.com (checked: 13.04.2018)
11https://versus.com (checked: 13.04.2018)
12Checked on 14.05.2018

worldstadiums.com
https://quora.com
https://gutefrage.net
https://diffen.com
https://versus.com

2.2. Domain-Specific Comparative Systems 7

Figure 2.2.3.: The comparison of “Hamburg vs. Berlin” on Diffen.com

Figure 2.2.4.: The comparison of “Hamburg vs. Berlin” on Versus.com

8 2. Background

every information available for the objects. For instance, Versus.com shows 42 properties

for “Hamburg vs. Berlin” but only 35 for “Hamburg vs. Munich”.

To summarise, a lot of different comparison portals exist and are widely used. Espe-

cially the domain-specific portals do a good job, but inflexibility dearly buys the perfor-

mance. First, the portals can only compare objects on predefined properties. Second, the

data acquisition is not fully automatic. Domain-unspecific systems are good at aggregat-

ing information but do not provide a reasonable explanation to prefer X over Y.

Adding information like comments and product reviews can enrich the comparison

with reasons and opinions, such as “Ruby is easier to learn than C” or “Python is more
suitable for scientific applications than Erlang as many libraries exist”.

2.3. Machine Learning Methods

The goal of Chapter 4 was to find the most appropriate category for each sentence of the

data set created in Chapter 3. This was understood as a classification problem and solved

using several machine learning methods. The following sections describe these methods.

The descriptions are based on [Mitchell, 1997], [Friedman et al., 2009] and [Goodfellow

et al., 2016].

2.3.1. Performance Measures

Several ways exist to evaluate classification models. A simple measure is accuracy, which

is defined as the fraction of correct predictions:

Acc =
correct predictions
total # of predictions

Accuracy is only suitable if all classes have the same size. For instance, a data set with

950 positive examples and 50 negative examples will get an accuracy of 95% if it always

predicts the positive class.

Precision, recall and f1 score are measures to check the classification performance on data

sets with imbalanced classes. The measures are calculated per class.

The precision of a classifier with regards to class c is defined as:

P(c) =
of true positives

true positives + # false positives

Precision is the ratio between correctly predicted examples for class c and all predicted

examples of class c.

The recall of a classifier with regards to class c is defined as:

R(c) =
of true positives

true positives + # false negatives

2.3. Machine Learning Methods 9

If only one out of 1000 examples was classified as c, and the classification was correct,

the precision for c is one, while the recall is near zero. Likewise, if all examples are

classified as c, the recall is one, while the precision is zero.

The f1 score balances precision and recall. It is defined as the harmonic mean:

f1(c) =
2PR
P+R

2.3.2. Neural Networks

Neural networks are a powerful, widely used machine learning method for classification

and regression. The basic building block of neural networks is the neuron (also called

cell). A neuron takes m input values and produces n output values:

~y = φ

(
m

∑
i=0

wixi

)
where wi is a weight, φ is the activation function and ~y is the a vector of size n. The

weights are the trainable parameters of a neuron. The perceptron, presented in [Rosen-

blatt, 1958], is the simplest form of a neuron. The perceptron φ is defined the heaviside
step function, which returns one if the sum is greater zero and zero otherwise. Hence, a

single perceptron is a linear, binary classifier.

The multilayer perceptron is a neural network build with multiple layers of neurons

inspired by the perceptron. In contrast to the perceptron, a differentiable function is used

as the activation function φ (for example sigmoid or rectied linear activation function13). This

is required because the backpropagation algorithm used for updating the weights makes

use of derivatives. A detailed description on backpropagation is given in Section 4.5.2 of

[Mitchell, 1997].

Figure 2.3.1 shows an example with one hidden layer of size three. The neurons of

the first layer (input layer) do not calculate anything, each neuron outputs the associated

input value. These values are fed into each neuron of the second (hidden) layer, which

produces an output as described above. The output is then fed into the neuron in the last

layer (the output layer). The interpretation of the output depends on the used activation

function. For binary classification, the network in Figure 2.3.1 would use the sigmoid
function. The output value is then interpreted as the probability of the input ~x to belong

to the positive class. For multi-class classification, the output layer would have as many

neurons as classes are present, and use the softmax function as the activation function.

Neural networks as in Figure 2.3.1 are called feed-forward (artificial) neural networks (ANN).
The data flows sequentially from the input layer through the hidden layers until they

reach the output layer.

In contrast to this, recurrent neural networks (RNN) may contain loops. This means that

the output of layer h at time t is part of the input of layer h at time t+1. Figure 2.3.2 shows

13see page 170 of [Goodfellow et al., 2016]

10 2. Background

x0

x1

y

w1

w2

w3

w4 w5

w6

w7

w8

w9

h0

h1

h2

Figure 2.3.1.: Multilayer perceptron with one hidden layer. The network takes two inputs and
produces one output. Larger input and output layers as well as more and large hidden layers
are possible as well.

this for three time steps.

x

h0

y

x

h0

y

x

h0

y

x

h0

y

t t+1 t+2

Figure 2.3.2.: Schematic view of an RNN. The right side shows the RNN unfolded for two time
steps.

In this way, the network can take information from the past into account. This is useful

if the inputs to the network are sentences. Each word in a sentence can be seen as a time

step. Information about preceding words is often important to understand a sentence

correctly. However, the simple RNN is not good at learning dependencies between words

which are far away from each other in the sentence.

A frequently used type of recurrent neurons are long short-term memory (LSTM) blocks

as presented in [Hochreiter and Schmidhuber, 1997]. LSTMs have a state, which enables

them to learn long distance dependencies (up to 1000 time steps). On each time step,

gates decided based on the current input (time t) and the previous input (time t-1) if data

should be read, written or deleted from the state. The gates work similar to neurons as

2.3. Machine Learning Methods 11

each gate has a own set of weights and an activation function.

2.3.3. Decision Trees and Gradient Boosting

Decision trees are machine learning methods that can be used to classify14 a data set by

the repeated application of simple rules. Each rule splits the data into a subset, on which

further rules are applied until no more rules are available. This is the same as traversing a

tree until a leaf node is reached. An example tree for the binary classification of a sentence

(comparative or not) is shown in Figure 2.3.3. The rules and their order are learned from

the data set. The first rule (the root of the tree) should split on the attribute which is

most useful for classification, while the second level of the tree should use the second

best attributes and so on.

Sentence
contains “better”

false

NOSentence is a
question

true

YESNO

true false

Figure 2.3.3.: Simple decision tree to check if a sentence is comparative or not.

Several algorithms like ID3 (presentend in [Quinlan, 1986]) or CART (presented in

[Breiman et al., 1984]) can be used to create a decision tree. A general introduction to

decision tree methods is given in Chapter 3 of [Mitchell, 1997].

Boosting is a technique to combine a set of weak learners into one good learner. The

predictions of a weak learner are only slightly better than random guessing. For instance,

a weak classifier should get an accuracy slightly over 50% for a data set with 100 positive

and 100 negative examples.

The main idea behind gradient boosting is to fit the weak learner sequentially on modi-

fied versions of the data. In the end, the predictions of all weak learners Gm are combined

to produce the final prediction:

G(x) = sign

(
M

∑
m=1

αmGm(x)

)
14Decision trees can also be used for regression

12 2. Background

The values for αm are computed by the algorithm and determine how much the weak

learner Gm contributes to the prediction.

Boosting can be used with various machine learning algorithms and is suitable for

regression as well as classification tasks. The boosting method used in this thesis is gra-
dient boosting15 with decision trees as learners. In gradient boosting, Gm+1 is fitted on the

residuals of Gm. Thus, each tree tries to improve on the training examples on which the

previous learner was weak on.

A frequently used implementation of gradient boosted decision trees is XGBoost16, as

presented in [Chen and Guestrin, 2016].

2.4. Vector Representations for Documents

Because many machine learning algorithms, especially neural ones, work with numeric

values as input, text must be transformed into a numerical representation. Several known

methods are described in the following sections.

2.4.1. Bag-of-words and Bag-of-ngrams

The bag-of-words model is a simple vector representation for documents. All words in

the corpus are collected into a vocabulary V . A document j is represented by a vector ~dj

of size |V|, where ~dj,i is the frequency of word Vi in the document j (the term frequency
tf(i, j)).

The model is fast to calculate but does not take any sequence, word frequency or gram-

mar information into account. For instance, “the” appears in almost every English text,

while “psychology” is seldom. However, seldom words are more important for the mean-

ing of a sentence as frequent ones. This is not reflected in ~dj, as “the” is likely to get a

higher value than “psychology”. Another problem is that the vectors are as long as the

vocabulary (typically thousands of words) and sparse, which adds more parameters to

learn.

The first problem can be reduced by using n-grams (hence, bag-of-ngrams) instead of

words. The vocabulary V will contain all sequences of n consecutive words appearing

in the corpus instead of single words. In this way, some sequence information is kept.

The second problem can be solved by removing very frequent words like “the” or “can”
(often called stop words) and by using a weighting function for the remaining words.

A commonly used weighting function is term frequency, inverse document-frequency (tf-idf).
With tf-idf, ~dj,i is calculated as:

~dj,i = tfi,j × log
N
ni

15A detailed description is given in chapter ten of [Friedman et al., 2009].
16https://github.com/dmlc/xgboost (checked 14.05.2018)

https://github.com/dmlc/xgboost

2.4. Vector Representations for Documents 13

where N is the total number of documents and ni is the number of documents in which

the word (or n-gram) i appears. Tf-idf takes the frequency of words into account. Fre-

quent words which appear in many documents will get a low weight, while words which

appear seldomly get a high weight.

The other problems, sparsity and length, remain. They are solved in other vector rep-

resentations.

2.4.2. Mean Word Embeddings

Word embeddings are dense, low-dimension vector representations of words. They are

learned by neural networks. The basic idea is to train an neural network on a suitable

task. The weight matrix (embedding matrix) of a defined hidden layer contains the word

embeddings after the training.

The matrix is initialized with random values. After the network was trained, each

column represents one word in the vocabulary V and each embedding has as many com-

ponents as the hidden layer has neurons. This leads to word vectors which are much

smaller than |V|.
A method to learn word embeddings with feed-forward neural networks was pre-

sented in [Bengio et al., 2003]. The network was trained to predict the most likely next

word given a number of preceding context words. This exploits the distributational hy-
pothesis ([Harris, 1954]) which states that words which appear in similar contexts have

a similar meaning. For instance, the network will see that the context “feed the” is often

followed by words like “cat” or “dog”, but never by “chair”. In the end, the similarity

between the learned vectors of related words (like cat and dog) is much higher than the

similarity between unrelated words (like cat and chair).

Two popular methods to create word embeddings (extending the basic idea) are word2vec
(presented in [Mikolov et al., 2013]) and GloVe (presented in [Pennington et al., 2014]). In

this thesis, GloVe vectors of size 300 were used.

The word embeddings can be used to create a dense, low-dimension vector represen-

tation of a document. This is done by taking the average of all word vectors in the doc-

ument. In doing so, each sentence is represented by a “centroid word”. The efficiency of

this method for several tasks has been demonstrated in [Wieting et al., 2015].

2.4.3. Sentence Embeddings and InferSent

Bag-of-words and mean word embeddings lose sequence information. However, the

sequence of words in a sentence is important for the meaning. For example, the sentence

“I like cats, not dogs” has a different meaning than “I like dogs, not cats”, but both sentences

will get the same bag-of-words and mean word embedding vector.

Sentence embeddings aim to learn embeddings for pieces of text instead of single

words. In this way, sequence information is taken into account. Several methods have

14 2. Background

been proposed to create sentence embeddings (for instance, FastSent [Hill et al., 2016]

and SkipTought [Kiros et al., 2015]). In this thesis, InferSent as presented in [Conneau

et al., 2017] is used.

InferSent learns sentence embedding in a similar way as word embeddings are learned.

A neural network is trained on the Stanford Natural Language Inference (SNLI) data set

([Bowman et al., 2015]). SNLI contains 570,000 English sentence pairs. Each pair is la-

belled as entailment, contradiction or neutral. Some examples are presented in Table 2.4.1.

The authors assumed that the “semantic nature” makes the data set suitable for learning

universal sentence embeddings.

Table 2.4.1.: Example sentences from the Stanford Natural Language Inference (SNLI) data set.
Taken from https://nlp.stanford.edu/projects/snli/ (checked: 14.05.2018)

Premise Hypothesis Label

A soccer game with multiple
males playing.

Some men are playing a sport. Entailment

A man inspects the uniform of a
figure in some East Asian coun-
try.

The man is sleeping Contradiction

A smiling costumed woman is
holding an umbrella.

A happy woman in a fairy cos-
tume holds an umbrella.

Neutral

Figure 2.4.1.: Generic training scheme of InferSent. Six sentence encoder variants were tested.
(Adapted from [Conneau et al., 2017])

The architecture of the neural network is presented in Figure 2.4.1. Two separate en-

coders are used to encode the text and the hypothesis. The embeddings u and v are

combined into a feature vector which contains the concatenation, the element-wise prod-

uct and the element-wise difference of u and v. This vector, containing information from

both sentences, is then fed into a fully connected layer and a softmax layer which outputs

the probabilities of each label.

The authors tested six architectures for the sentence encoder: LSTM ([Hochreiter and

https://nlp.stanford.edu/projects/snli/

2.4. Vector Representations for Documents 15

Schmidhuber, 1997]), GRU ([Cho et al., 2014]), BiLSTM with mean/max pooling ([Col-

lobert and Weston, 2008]), self-attentive networks ([Liu et al., 2016], [Lin et al., 2017]) and

hierarchical ConvNet ([Zhao et al., 2015]).

Twelve transfer tasks17 were used to test the quality of the embeddings. For each task

and encoder architecture, the embeddings were used as features. Logistic regression was

used as the classification algorithm.

The embeddings generated by the BiLSTM with max pooling and an embedding size

of 4096 yielded the best accuracy for SNLI and the transfer tasks. Also, the embeddings

were better than other state-of-the-art sentence embeddings like SkipThought.

A pretrained model for InferSent is available on GitHub18. This model was used in

Section 4.2.

2.4.4. HypeNet and LexNet

HypeNet, presented in [Shwartz et al., 2016], is a method to detect hypernym relations

between words. It combines distributional and dependency path based methods to create

a vector representation for sentences, which are used as features for the hypernymy de-

tection. LexNet, presented in [Shwartz and Dagan, 2016], is a generalisation of HypeNet,

which is able to detect multiple semantic relationships between two words.

The dependency paths add information about joint occurrences of the two words,

while the distributional methods add information about the words in separate contexts.

Word embeddings are used as distributional features.

For each term pair, all dependency paths were extracted. Each edge was represented

as lemma/POS/dependency label/direction. An example is given in Figure 2.4.2.

Figure 2.4.2.: Dependency parse of the example sentence parrot is a bird, where the relation-
ship between parrot and bird is of interest. This path is represented as X/NOUN/nsubj/<
be/VERB/ROOT/- Y/NOUN/attr/> (Adapted from [Shwartz et al., 2016]).

parrot

ADJ

is

VERB

a

DET

bird

NOUN

nsubj det

at t r

The paths were encoded using an LSTM. The average of all encoded paths was used

as the path information for the word pair. The combination of distributional and path

17For example: binary classification (sentiment analysis, product reviews, subjectivity/objectivity, opinion
polarity), multi-class classification (question type), entailment and semantic relatedness, semantic textual
similarity, paraphrase detection and caption-image retrieval.

18https://github.com/facebookresearch/InferSent (checked: 13.05.2018)

https://github.com/facebookresearch/InferSent

16 2. Background

information outperformed state-of-the-art techniques.

The task at hand is different from the detection of semantic relations. The relation of

two nouns19 with respect to hypernyms is unambiguous. Bird is a hypernym for parrot in

all cases. Yet the task is not to search for hypernyms or any other semantic relation. It is

not possible to assign the correct class by only looking at the objects. For example, there

might be sentences saying that Python is better than Ruby, while others say it is not.

However, it is expected that the dependency path between the objects of interest adds

valuable information. In this thesis, the idea on how to extract and encode paths between

two words is reused.

19The situation might be different if proper nouns are used as well. Fruit is an hypernym for apple, but not
for the company Apple.

17

3. Building a Data Set for Comparative
Argument Mining

Due to the novelty of argument mining (and especially comparative argument mining),

the supply of data sets is small. Thus, a new data set had to be created.

The data set was designed to answer two questions. First, does a sentence compare

two known objects? And secondly, if it does, is the first-mentioned object better or worse

than the second-mentioned, according to the sentence context?

The data set was created with data from CommonCrawl1 and labelled using the crowd-

sourcing platform CrowdFlower2. As described in detail in the following chapters, the

annotators were asked to assign one of four (and later three) classes to a sentence in which

the objects of interest were highlighted.

The final data set has 7199 sentences, each containing one of 271 distinct object pairs.

Each sentence was annotated by at least five annotators.

3.1. Common Crawl Text Corpus

The sentences for the crowdsourcing task were obtained from a CommonCrawl data

set. CommonCrawl is a non-profit organisation which crawls the web and releases the

crawled data for free use.

The data used in this thesis was already preprocessed (see [Panchenko et al., 2018]).

The data contains only English text. Duplicates and near-duplicates were removed, as

well as all HTML tags. The texts were split into sentences.

To make the data set manageable, an Elasticearch3 index was created. The index con-

tains 3,288,963,864 unique sentences.

To get an idea if enough comparative sentences are in the index, it was queried for all

sentences containing one of the words “better” or “worse”, as those words often indicate

a comparison. This query returns 32,946,247 matching sentences. Querying for “is better
than” returns 428,932 sentences. Those numbers show that there are enough sentences in

the index to create a data set for the given task.

1https://commoncrawl.org (checked: 23.02.2018)
2https://www.crowdflower.com (checked: 23.02.2018), now called Figure Eight
3Elasticsearch is a open-source search engine. https://www.elastic.co/ (checked: 21.05.2018)

https://commoncrawl.org
https://www.crowdflower.com
https://www.elastic.co/

18 3. Building a Data Set for Comparative Argument Mining

3.2. Prestudies

In preparation to the main crowdsourcing task, several questions had to be answered:

1. How to extract sentences from the index? (How should the query look like?)

2. How to preprocess those sentences? (How to highlight the objects of interest?)

3. Which classes should be assigned to the sentences?

4. How to phrase the guidelines?

Two prestudies were conducted to answer those questions.

3.2.1. First Prestudy: Sentence Sampling and Guidelines

The first prestudy had two goals. First, it should assess if the sentence selection method

returns enough comparative sentences. Secondly, the design of the study as described

below had to be validated. On that account, a crowdsourcing task with 100 sentences

was conducted.

The sentences for the crowdsourcing task must have a high probability of being com-

parative so that enough positive examples for the machine learning part are present. To

ensure this, a list of cue words which indicate comparison was compiled by hand. For

the prestudies, these words were “better”, “worse”, “inferior”, “superior” and “because”.

Comparable objects were needed as well. A list of object pairs was selected by hand

(see Table 3.2.1). The pairs were selected in a way that they span a wide range of different

domains, such as programming languages, countries and pets. The idea behind this is

that pets may be compared differently than programming languages. In this way, there

will be different comparison patterns in the data.

Table 3.2.1.: Object pairs for the annotation prestudies. The index was queried for sentences
which contain both objects and a cue word (better, worse, superior, inferior or because), to generate
sentences for the prestudies.

First Object Second Object # Sentences

Android iPhone 100
beef chicken 100
BMW Mercedes 100
cat dog 100
car bicycle 100
football baseball 100
Ruby Python 100
summer winter 100
USA Europe 100
wine beer 100

Not all comparisons will contain one of the cue words mentioned above. Two different

queries were used to overcome the coverage problem. 750 sentences were obtained using

3.2. Prestudies 19

Listing 3.1 (75 for each pair) and 250 using Listing 3.2 (25 for each pair). The second query

will also match not-anticipated sentences such as “I like X more than Y since Z.”.

Listing 3.1: The first query used to extract the sentences for the prestudies from the Elasticsearch
index. OBJECT_A and OBJECT_B are placeholders for the first and second object.

1 {

2 "query":{

3 "bool":{

4 "must":[

5 {

6 "query_string":{

7 "default_field":"text",

8 "query":"(better OR worse OR superior OR inferior OR

↪→ because) AND \"<OBJECT_A>\" AND \"<OBJECT_B>\""

9 }

10 }

11]

12 }

13 }

14 }

Listing 3.2: The second query for the prestudies (shortened). This query does not search for the
cue words.

1 [...]

2 "query_string":{

3 "default_field":"text",

4 "query":" \"<OBJECT_A>\" AND \"<OBJECT_B>\""

5 [...]

Table 3.2.2 shows some sentences obtained with this method. The objects of interest

are printed in italics.

Table 3.2.2.: Sample sentences extracted with the queries from listings 3.1 and 3.2.

Sentence Cue Words Used

He’s the best pet that you can get, Better than a dog or cat. Yes
Android phones have better processing power than iPhone Yes
10 Things Android Does Better Than iPhone OS Yes
Dog scared of cat No
In fact, many ’supercars’ will use BMW or Mercedes engines. No

For each sentence, the annotators were asked which of the classes describes the sen-

tence best (see Figure 3.2.1 and Table 3.2.3). The classes BETTER, WORSE and NO_COMP

directly refer to the questions stated at the beginning of this chapter. The class UNCLEAR

was added to capture all sentences which are comparative but do not fit into the classes

BETTER or WORSE. For instance, if both objects of interest appear in the sentence, but they

20 3. Building a Data Set for Comparative Argument Mining

are not compared against each other.

Figure 3.2.1.: An example for questions presented to the annotators in the first prestudy.

Table 3.2.3.: The classes for the first and second prestudy. They correspond to the answers the
annotator could select in Figure 3.2.1

Class Description

BETTER The first object in the sentence (OBJECT_A) is better than the second one
(OBJECT_B)

WORSE The first object is worse
UNCLEAR Neither BETTER nor WORSE fits, but the sentence is comparative
NO_COMP The sentence is not comparative or the sentence is a question

In each sentence, the first object of interest was replaced with OBJECT_A, while the

second one was replaced with OBJECT_B (see Table 3.2.4). The idea behind this was

to enable the annotators to quickly see which objects should be taken into account for

assigning a class. Also, they should not be biased by personal preference. For example,

in sentence two of Table 3.2.4, the annotator might be confused which of the objects are

of interest, yet the replacement makes it clear that he should ignore “C#” and “VB”.

Each annotator saw five sentences to annotate per page. He was also able to look

into the annotation guidelines anytime he wanted. To filter out low-quality annotators,

twelve sentences were selected as test questions. Each participant took a quiz with eight

test questions before the actual annotation process. One out of five sentences was a test

question as well. The annotator had to keep an accuracy of 70% on the test questions,

otherwise he was removed from the task.

Figure 3.2.2 shows the class distribution of the annotation results. As 45 sentences are

comparative, the selection procedure worked satisfactory.

3.2. Prestudies 21

Table 3.2.4.: Examples of uncertain sentences for the first prestudy. The annotators could not
agree on one class for this sentences.

Sentence BETTER WORSE UNCLEAR NO_COMP

1 While OBJECT_A is slightly faster, OB-
JECT_B utilises memory better

1 1 1 0

2 Your C# and VB devs can suddenly
easily write web apps and your OB-
JECT_A and OBJECT_B devs can too -
with the added bonus of much better
performance.

0 0 2 2

3 The only reason OBJECT_A is used
over OBJECT_B, is because of li-
braries..

0 1 1 1

4 for json: i also think its better to just
use OBJECT_A, OBJECT_B, perl and
transform it

1 0 1 1

Figure 3.2.2.: The results of the first prestudy. As 45 sentences are comparative, the selection
procedure worked satisfactory.

BETTER WORSE UNCLEAR NO_COMP
0

20

40

60

80

100

15

8

22

55

22 3. Building a Data Set for Comparative Argument Mining

The confidence of the annotations was acceptable (see Table 3.2.5). Only for eight sen-

tences, no class got the majority of votes. However, only 37 sentences got a clear result.

Table 3.2.5.: Annotation confidence for the first prestudy. The confidence is calculated as judg-
ments for majority class / total judgments. Less than 51 percent confidence means no class got the
majority of votes, while 100 percent means that all annotators voted for the same class.

Confidence Sentences % of data set

100% 37 37
91-99% 0 0
81-90% 0 0
71-80% 5 5
61-70% 50 50
51-60% 0 0
0-50% 8 8

Some uncertain sentences are shown in Table 3.2.4 together with the number of deci-

sions per class. As one can see in sentence two, annotators often were not able to distin-

guish between NO_COMP and UNCLEAR. This is true for the majority of cases were more

than one class was assigned.

Fourteen out of 55 participants took part in an exit survey to rate the task. The overall

satisfaction was rated with 3.2 out of 5. While the instructions (4.5), difficulty (4.4) and

payment (3.8) got acceptable to good ratings, the test questions (2.9) were criticised. Also,

32 of 85 potential annotators failed the quiz. A second prestudy was conducted to address

the discovered problems.

3.2.2. Second Prestudy: Sentence Preprocessing and Rephrasing of the
Guidelines

Two-hundred sentences were annotated in the second prestudy. Some aspects were iden-

tical to the first prestudy. As the sentence selection process worked fine, the same 1000

base sentences were used in the second prestudy. Each sentence was annotated by three

annotators. The annotators saw five sentences per page, one being a test question. They

had to pass a quiz of eight test questions and had to keep an accuracy of 70% on the

test questions during the annotation procedure. The classes were the same as in the first

prestudy (see Table 3.2.3).

To address the shortcomings mentioned above, the task design was changed in several

aspects. As the pair “Ruby vs. Python” requires knowledge in computer science, the need

was expressed in the title of the task. To address the problem with the confusion between

UNCLEAR and NO_COMP, the wording on this classes was changed (see Figure 3.2.3).

Some annotators of the first prestudy complained that the test questions were not fair.

In fact, they contained some special cases so that did not represent the whole data set ap-

propriately. In the second prestudy, more (51 instead of 12) test questions were used. The

3.2. Prestudies 23

Figure 3.2.3.: The new annotator view for the second prestudy. The objects are highlighted by
colour.

new test questions covered easy and hard cases. Explanations for the harder test ques-

tions were added. The annotator saw those explanations after he failed the test question.

The sentence preprocessing was adjusted. Instead of replacing the object, :[OBJECT_A]
or :[OBJECT_B] was appended. The colon and square brackets emphasise where the ob-

ject of interest ends and the suffix begins. The idea behind this was that the removal of

the objects also removed some context from the sentences, which might be useful to clas-

sify them correctly. In addition, the objects were shown in a different colour than the rest

of the text.

The class distribution of the 200 sentences is presented in Figure 3.2.4. As in the first

prestudy, a sufficient amount of the sentences are comparative. The confidence of the

annotations (see Table 3.2.6) was better than in the first prestudy. However, the confu-

sion between UNCLEAR and NO_COMP is still the main problem. Compared to the first

prestudy, the amount of sentences where all annotators agreed on one class increased

from 37% to 62%. Table 3.2.7 shows some of the uncertain sentences.

Table 3.2.6.: Annotation confidence for the second prestudy. The confidence is calculated as
judgments for majority class / total judgments.

Confidence Sentences % of data set

100% 124 62.00
91-99% 2 1.00
81-90% 2 1.00
71-80% 5 2.50
61-70% 57 28.50
51-60% 2 1.00

0-50% 8 4.00

24 3. Building a Data Set for Comparative Argument Mining

Figure 3.2.4.: The results of the second prestudy.

BETTER WORSE UNCLEAR NO_COMP
0

20

40

60

80

100

56

22

28

95

Table 3.2.7.: Examples of uncertain sentences for the second prestudy. The annotators could
not agree on one class for these sentences.

Sentence BETTER WORSE UNCLEAR NO_COMP

Ruby:[OBJECT_A] and
Python:[OBJECT_B] perform signifi-
cantly better.

0 0 2 2

Unfortunately, when it comes to po-
tential projects Ruby:[OBJECT_A]
suffers because it’s similarity to
Python:[OBJECT_B]

1 2 1 0

Not to mention that the
iPhone:[OBJECT_A] and An-
droid:[OBJECT_B] phones deliver a
far superior user experience overall

1 0 1 1

Google shouldn’t have mandated an infe-
rior map app on the iPhone:[OBJECT_A]
(as opposed to Android:[OBJECT_B]).

1 1 0 1

3.2. Prestudies 25

Thirty-five out of 125 annotator candidates failed the initial quiz. Twelve annotators

were removed during the annotation process as they answered too many test questions

wrong.

Twenty-two annotators took the exit survey. The overall satisfaction increased to 3.7

out of 5. The test question fairness was now rated with 3.7 instead of 2.9. The rating for

the payment slightly increased to 3.9, yet the payment was not changed. Furthermore,

the rating for the instructions decreased to 3.9 and for the difficulty to 3.5. The change in

numbers can be explained by the increased amount of sentences, which introduce new

cases which are not directly reflected in the annotation guidelines.

3.2.3. Discussion

Only a small fraction of the annotators took the exit surveys in both prestudies. Still,

they gave valuable hints to improve the study design. Yet, the increased confidence of

the annotations is the more important signal.

Using two comparable objects and cue words to query the index returns a satisfying

amount of comparative sentences.

The changes in the second prestudy were well received by the annotators. In the end,

they improved the quality of results as there are more cases where all annotators agreed

on one class.

The distinction between UNCLEAR and NO_COMP was an issue. This illustrates that the

choice of a class is subjective to some degree.

Due to an error in the creation of the crowdsourcing task, the sentences were not shuf-

fled. This means that the first 100 sentences of the second prestudy were the same as the

100 sentences of the first prestudy. Another problem was the bias: all sentences contained

only the pairs Ruby vs. Python and Android vs. iPhone. Because the goal of the prestudy

was mainly to assess the sentence selection method and the guidelines, this does not

invalidate the results. These problems were removed in the main study.

All in all, the prestudy was successful. There are only few cases where no agreement

on the class could be achieved. The prestudy showed that the task at hand is not easy,

but feasible.

26 3. Building a Data Set for Comparative Argument Mining

3.3. Main Study

The insights from the prestudies influenced the design of the main study.

The definition of classes changed (see Table 3.3.1). UNCLEAR was renamed to OTHER,

NO_COMP to NONE. Those names are a better description for the classes. Eventually, af-

ter the first 2250 sentences were finished the class OTHER was dropped completely (see

Section 3.3.2). The change was reflected in the annotation guidelines as well.

Table 3.3.1.: The final classes for the main study.

Class Description

BETTER The first object in the sentence is better than the second object
WORSE The first object is worse
NONE Neither better nor worse fit

Instead of one big task, several tasks per domain were created. All tasks used the same

annotation guidelines. Each sentence was at least annotated by five annotators.

3.3.1. Sentence Sampling Method and Domain Selection

The sentence selection process was similar to the prestudy. The pairs and the cue words

(see Figure 3.3.1) changed. The cue words were generated using JoBimText4, a software

package for distributional semantics. JoBimText was queried for the words most similar

to better and worse, so that more comparisons were captured by the selection process.

Figure 3.3.1.: It is expected that these cue words appear frequently in comparative sentences,
which makes them suitable keywords for queries on the index.

better
easier
faster
nicer
wiser
cooler

decent
safer

superior
solid

terrific
worse

harder
slower
poorly
uglier
poorer
lousy

nastier
inferior

mediocre

Three domains were selected for the object pairs. The domains were chosen in a way

that a majority of people might be able to decide whether a sentence contain a comparison

or not. Also, a wide range of comparison patterns should be included in the data.

The most specific domain was “computer science concepts”. It contained objects like pro-

gramming languages, database products and technology standards such as Bluetooth

and Ethernet. Many computer science concepts can be compared objectively. For in-

stance, one can compare Bluetooth and Ethernet on their transmission speed. Some ba-

sic knowledge of computer science was needed to label sentences correctly: to compare

4http://ltmaggie.informatik.uni-hamburg.de/jobimviz/ (checked: 28.02.2018)

http://ltmaggie.informatik.uni-hamburg.de/jobimviz/

3.3. Main Study 27

Eclipse and NetBeans, the annotator must know what an Integrated Development Envi-

ronment (IDE) is and that both objects are Java IDEs. The need for this knowledge was

communicated to the prospective annotators. The objects for this domain were manually

extracted from “List of ...” articles from Wikipedia.

The second, broader domain was “brands”. It contains objects of different types (for

instance car brands, electronics brands, and food brands). As brands are present in ev-

eryday life of people, it is expected that anyone can label the majority of sentences con-

taining well known brands such as “Coca-Cola” or “Mercedes”. As with computer science,

the objects for this domain were extracted from “List of ...” articles from Wikipedia.

The last domain was not restricted to any topic. For each one of 24 randomly selected

seed words, ten similar words were extracted using JoBimText. The seed words (see Fig-

ure 3.3.2) were created using randomlists.com5. Listing 3.3 shows the result6 for the

seed word “Yale”. Duplicates or too broad terms (like university) were removed manually.

Figure 3.3.2.: These seed words were used to create pseudo-random pairs for the Random do-
main.

book
car

carpenter
cellphone
christmas

coffee
cork

Florida
hamster
hiking

Hoover
Metallica

NBC
Netflix
ninja

pencil
salad
soccer

Starbucks
sword

Tolkien
wine
wood
XBox
Yale

Listing 3.3: The JoBimText response for “Yale”. These objects can be compared in a meaningful
way.

1 [...]

2 "results":

3 [{"score":701.0,"key":"yale#NP"},

4 {"score":245.0,"key":"harvard#NP"},

5 {"score":151.0,"key":"princeton#NP"},

6 {"score":135.0,"key":"mit#NP"},

7 {"score":135.0,"key":"cornell#NP"},

8 {"score":121.0,"key":"stanford#NP"},

9 {"score":116.0,"key":"university#NP"},

10 {"score":111.0,"key":"nyu#NP"},

11 {"score":111.0,"key":"university#NN"},

12 {"score":109.0,"key":"dartmouth#NP"}]

In the following, this domain is called random. Some example pairs for all domains are

5https://randomlists.com (checked: 25.01.2018)
6http://ltmaggie.informatik.uni-hamburg.de/jobimviz/ws/api/stanford/jo/
similar/harvard%23NP?numberOfEntries=10&format=json (checked 25.01.2018); Some
unimportant fields were removed for brevity

randomlists.com
https://randomlists.com
http://ltmaggie.informatik.uni-hamburg.de/jobimviz/ws/api/stanford/jo/similar/harvard%23NP?numberOfEntries=10&format=json
http://ltmaggie.informatik.uni-hamburg.de/jobimviz/ws/api/stanford/jo/similar/harvard%23NP?numberOfEntries=10&format=json

28 3. Building a Data Set for Comparative Argument Mining

shown in Table 3.3.2.

Table 3.3.2.: Example object pairs for the main study. These pairs were used to extract sentences
from the Elasticsearch index.

Brands Computer Science Random

Microsoft vs. Apple Java vs. Python baseball vs. hockey
Nikon vs. Leica Eclipse vs. Netbeans fishing vs. swimming
Coca-Cola vs. Pepsi OpenGL vs. Direct3D SUV vs. minivan
Nike vs. Adidas Integer vs. Float Kennedy vs. Nixon
Ibuprofen vs. Advil USB vs. Bluetooth plastic vs. wood
Ford vs. Honda Oracle vs. MysQL Harvard vs. Princeton

Especially for the domains brands and computer science, the object lists were long

(4493 brands and 1339 for computer science). The frequency of each object was checked

using a frequency dictionary to reduce the number of possible pairs. All objects with a

frequency of zero and ambiguous objects were removed from the list. For instance, the

objects “RAID” (a hardware concept) and “Unity” (a game engine) were removed from

the computer science list as they are also regularly used nouns.

The remaining objects were combined to pairs. For each object type, all possible com-

binations were created. For brands and computer science, the type was the URL of the

Wikipedia page. For the random domain, the seed word was used. This procedure guar-

anteed that only meaningful pairs were created.

The index was queried for entries containing both objects of each pair. For 90% of the

queries, the cue words were added to the query. All pairs were the query yielded at least

100 sentences were kept.

From all sentences of those pairs, 2500 for each category were randomly sampled as ex-

amples for the crowdsourcing task. To check the sentence selection method once again, a

small, random subset of the sentences was labelled by the author prior to the crowdsourc-

ing task. These labels were discarded for the crowdsourcing task. The label distribution

of the 742 sentences is presented in the Figure 3.3.3. As the numbers are similar to the

prestudy, the procedure is still valid.

3.3. Main Study 29

Figure 3.3.3.: Result of 742 manually labelled sentences. The labelling was done to see what
result could be expected from the crowdsourcing task and if the sentence sampling method
still works.

BETTER WORSE OTHER NONE
0

100

200

300

400

500

126

61

92

463

3.3.2. Domain Subset: Brands

For the Brands domain, 2335 sentences were annotated. The sentences contained objects

of 36 pairs. As shown in Table 3.3.3, the annotators could agree on one class for the

majority of the sentences.

Table 3.3.3.: Annotation confidence for the domain Brands. The confidence is calculated as
judgments for majority class / total judgments.

Confidence Sentences % of data set

100% 1719 71.30
91-99% 0 0.00
81-90% 34 1.41
71-80% 337 13.98
61-70% 8 0.33
51-60% 256 10.62

0-50% 57 2.36

The class distribution is presented in Figure 3.3.4. The amount of comparative sen-

tences is lower (24.45%) than in the prestudy. The reason for this is seen in the abandon-

ment of the OTHER (UNCLEAR) class.

Even with the renaming of UNCLEAR to OTHER and the rephrasing of the descrip-

30 3. Building a Data Set for Comparative Argument Mining

Figure 3.3.4.: Class distribution for sentences of the domain Brands

BETTER WORSE NONE
0

250

500

750

1000

1250

1500

1750

2000

404

167

1764

Brands

tion, the class was too confusing for the annotators. The class was too similar to NONE

(NO_COMP). Eventually, all sentences labelled as OTHER were merged into NONE. This de-

cision was made after 750 sentences were labelled for each domain. First machine learn-

ing experiments also showed that OTHER is not distinguishable from NONE for all tested

features and algorithms.

For the first 750 sentences (with four classes), 47% failed the initial quiz (357 out of

755). During the annotation process, 13% answered to many test questions wrong. The

numbers improved after the class OTHER was removed: only 25% failed the initial quiz

and 8% were removed during the annotation process.

150 annotators took the exit survey to rate the task on a scale from one to five. Over-

all, the task was rated with 3.7. The instructions got a rating of 4.0, the fairness of test

questions 3.5, the difficulty 3.6 and the payment 3.7.7 Broken down, the four-class task

(67 participants) got a rating of 3.5, the three-class task (83 participants) 3.8.

3.3.3. Domain Subset: Computer Science

For the Computer Science domain, 2425 sentences (containing one of 42 pairs) were anno-

tated. The confidence of the annotations (Table 3.3.4) is satisfactory. The class distribution

(Figure 3.3.5) is better, as more sentences are comparative.

As with the domain Brands, 48% failed the initial quiz for the task with four classes.

7The numbers are the average of the survey results for each task created on CrowdFlower, weighted by the
number of participants.

3.3. Main Study 31

Table 3.3.4.: Annotation confidence for the domain Computer Science. The confidence is calcu-
lated as judgments for majority class / total judgments.

Confidence Sentences % of data set

100% 1698 70.02
91-99% 0 0.00
81-90% 25 1.03
71-80% 369 15.22
61-70% 18 0.74
51-60% 246 10.14

0-50% 69 2.85

Figure 3.3.5.: Class distribution for sentences of the domain Computer Science

BETTER WORSE NONE
0

250

500

750

1000

1250

1500

1750

2000

581

248

1596

Compsci

25% dropped out during the annotation process. Again, the numbers improved after

OTHER was removed. Only 15% failed the quiz and 7% were removed during the anno-

tation process.

One hundred and six annotators took the exit survey. The task was rated with 3.9. The

instructions8 got a rating of 4.2, test question fairness 4.1, difficulty 3.9 and payment9 3.9

as well. The four-class task (27 participants) got a rating of 3.5, the three-class task (79

participants) 3.9.

8The instructions were the same for all tasks.
9All tasks had the same payment.

32 3. Building a Data Set for Comparative Argument Mining

3.3.4. Domain Subset: Random

The Random domain contains 2439 sentences with 167 pairs. The confidence values (Ta-

ble 3.3.5) and class distribution (Figure 3.3.6) are satisfactory.

Table 3.3.5.: Annotation confidence for the domain Random. The confidence is calculated as
judgments for majority class / total judgments.

Confidence Sentences % of data set

100% 1753 71.87
91-99% 0 0.00
81-90% 16 0.66
71-80% 362 14.84
61-70% 7 0.29
51-60% 252 10.33
0-50% 49 2.01

Figure 3.3.6.: Class distribution for sentences of the domain Random

BETTER WORSE NONE
0

250

500

750

1000

1250

1500

1750

2000

379

178

1882

Random

As with the other domains, the first 750 sentences (with OTHER) performed worse than

the rest: 44% dropped out during the quiz, 16% were removed during the annotation

process. For the three-class scenario, the numbers improved to 14% (quiz) and 7% (anno-

tation task).

Ninety-seven participants rated the task with 3.6 (four classes: 3.1, 29 participants;

three classes: 3.9, 68 participants). The instructions got a rating of 4.0, test question fair-

ness 3.8, difficulty of the task 3.8 and payment 3.5.

3.3. Main Study 33

3.3.5. Discussion

Table 3.3.6 summarises the confidence of the annotations on all three domains. The an-

notators could agree on one class for the majority of the sentences. Just for 169 sentences

(2.35%), no class got the majority of votes.

Table 3.3.6.: Annotation confidence for all domains. The confidence is calculated as judgments
for majority class / total judgments.

Confidence Sentences % of data set

100% 5111 71.00
91-99% 0 0.00
81-90% 75 1.04
71-80% 1057 14.68
61-70% 33 0.46
51-60% 754 10.47

0-50% 169 2.35

Table 3.3.7 shows some examples on uncertain sentences. The first two sentences are

comparative. Knowledge is needed to label the first sentence correct. A decision for the

second sentence is hard because the context is missing. For instance, it depends on the

use case if the hardness of stone is better or worse than the hardness of metal.

It is unclear if Groovy and Java are compared in sentence three. On one hand, one can

understand this sentence in a way Groovy is easier than Java. On the other hand, it can be

understood in a way that Groovy supports Java programmers.

The fourth sentence does not explicitly states that one is better than the other.

Table 3.3.7.: Examples of uncertain sentences of the main study. The annotators could not agree
on one class for these sentences.

Sentence # BETTER # WORSE # NONE

1 Goodnight NetBeans:[OBJECT_A], Hello
Eclipse:[OBJECT_B]

2 2 1

2 stone:[OBJECT_A] is harder than
metal:[OBJECT_B].

1 2 2

3 The new version of the Groovy:[OBJECT_A]
programming language aims to make life
easier for programmers who work with
Java:[OBJECT_B] and SQL, the language’s de-
velopers note

3 0 3

4 Even if this juice:[OBJECT_A] isn’t your typ-
ical cider:[OBJECT_B], it’s just as good if not
better in our opinion!

2 1 2

5 Only Nevada (14.4 percent), michi-
gan:[OBJECT_A] (13 percent) and cali-
fornia:[OBJECT_B] (12.4 percent) were
worse.

2 1 2

34 3. Building a Data Set for Comparative Argument Mining

The class distribution (Figure 3.3.7) is similar to the prestudies. As expected, the ma-

jority of sentences is not comparative. The class BETTER is more than twice as big as the

class WORSE, which is expected to complicate the classification.

Figure 3.3.7.: Distribution of classes in the final crowdsourcing data set.

BETTER WORSE NONE
0

1000

2000

3000

4000

5000

1364

593

5242

All domains

In the end, the crowdsourcing task was successful. For the majority of sentences

(71.00%) the annotators could agree on one class, while the amount of unclear sentences

is small (2.35%).

35

4. Classification of Comparative Sentences

The data collected from the crowdsourcing task was used as training data for two clas-

sification problems. In the first problem, a machine learning algorithm was trained to

predict one of the three classes per sentence (see Table 3.3.1). The second problem is a

simplification of the first one as it is designed as a binary classification problem. The

classes BETTER and WORSE were merged into the class ARG.

The data was split into a training set (5759 sentences; 4194 NONE, 1091 BETTER and 474

WORSE) and a held-out set. The experiments described in this chapter were conducted

on the training set only. During the development, the experiments were evaluated using

stratified k-fold cross-validation where k equals five.

The held-out set stayed untouched until the final evaluation presented in Section 4.4.1.

If not stated otherwise, scikit-learn (presented in [Pedregosa et al., 2011]) was used to

perform feature processing, the classification and evaluation.

4.1. Classification Algorithm Selection

To find the most suitable classification algorithms, thirteen (see Figure 4.1.1) were selected

and compared. Except XGBoost1 and Extra Trees Classifier, all algorithms were used in at

least one paper presented in Section 2.1. A binary bag-of-words model computed on the

whole sentence (see Section 4.2) was used as the feature. The f1 score was used as the

measure to compare the algorithms.

Tree-based methods and linear models worked well. Support Vector Machines with

non-linear kernels assigned NONE to all sentences.

As XGBoost and Logistic Regression achieved high f1 scores, no further investigations

on the performance of other algorithms was done. A set of hyper-parameters for XGBoost

was tested using exhaustive grid search and randomized search. However, no significant

increase in the f1 score could be achieved.

In the following sections, all experiments were conducted using XGBoost with 1000

estimators.

1XGBoost is not part of scikit-learn. The implementation presented in [Chen and Guestrin, 2016] was used.

36 4. Classification of Comparative Sentences

Figure 4.1.1.: F1 score of all tested classification algorithms. A binary bag-of-words feature was
used as the baseline feature. Each algorithm was trained with five stratified folds of the data.
The black bars show the standard derivation.

XGBoost

Logistic Regression

SGD Classifier

SVM (linear)
AdaBoost

Extra Trees

Random Forest

Decision Tree
k-Neighbors

Multinomial NB

Majority Class Baseline

SVM (polynomial)

SVM (radial basis function)

SVM (sigmoid)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

4.2. Features

Several vector representations were tested as features. The simplest one was a binary bag-
of-words model realised with scikit-learn’s CountVectorizer. Another vector repre-

sentation was generated with the five-hundred most frequent part-of-speech bi-, tri- and

four-grams (called POS n-grams). The mean word embedding vector was created by calcu-

lating the mean of each word’s GloVe vector (as contained in spaCy’s en_core_web_lg2

model). The pretrained InferSent model3 was used to create sentence embedding vectors.

A boolean feature capturing the appearance of a comparative adjective (called Contains
JJR) 4 was tested as well. Part-of-speech tagging for all features was done with spaCy.

Two preprocessing steps were used to generate the input for the feature calculation.

The first preprocessing step decided if the full sentence or a part of it should be used.

The first part contained all words from the beginning of the sentence to the first object,

while the last part contained all words from the second object to the end of the sentence.

The middle part contained all words between the first and the second object.

2https://spacy.io/models/en#section-en_core_web_lg
3https://github.com/facebookresearch/InferSent (checked 13.05.2018)
4Tag JJR in the Penn Treebank (https://www.ling.upenn.edu/courses/Fall_2003/ling001/
penn_treebank_pos.html)

https://spacy.io/models/en#section-en_core_web_lg
https://github.com/facebookresearch/InferSent
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

4.2. Features 37

Table 4.2.1.: Preprocessing examples for the sentence “In my mind, Python is better than Ruby”

Step 1 Step 2 Result

Middle part untouched Python is better than Ruby
Middle part removal is better than
Full sentence distinct replacement In my mind, OBJECT_A is better than OB-

JECT_B
First part removal In my mind,

The second step was done to check the importance of the objects for the classification.

The objects either stayed untouched, were removed or replaced. Two different replace-

ment strategies were tested. First, both objects were replaced by the term OBJECT (replacement).
Second, the first object was replaced by OBJECT_A and the second by OBJECT_B (distinct
replacement). This resulted in sixteen versions of each of the features mentioned above

(four parts × four object strategies). Some examples are shown in Table 4.2.1.

Two features based on LexNet were created to encode dependency parsing informa-

tion. The original code of LexNet was used to create the string representation of paths,

as described in Section 2.4.4. An LSTM was used to create path embeddings out of the

string paths. Because the paper does not mention any details about the LSTM encoder,

different architectures and hyper-parameter values were tested. The best results were

achieved with the architecture described in Figure 4.2.1.

The addition of more layers or neurons did not increase the performance of the net-

work. This is also true for adding bidirectionality to the LSTM layer. The paths (encoded

as one-hot vectors) were used as targets for the network. Keras’5 embedding layer was

used to create word embeddings of length 100 for the string path components.

Different setups for the string path creation were tested. In the original implementa-

tion, the paths were restricted to a length of four. The directionality of edges was re-

stricted as well. The first object must be reachable from the lowest common head of the

two objects by following left edges only, the second one by following right edges. In the

following, this setup is called original. However, only 1519 sentences from the training

set got a path with these restrictions.

To overcome this problem, the restrictions were relaxed. The second LexNet setup

(called customised) limits the paths to a size of sixteen and abolishes the directionality

restriction. With this setup, only 399 sentences did not get a path.6

5A software package for neural networks. [Chollet et al., 2015]
6All sentence without a generated path got the artificial path NOPATH. The customised version of LexNet

is available at https://github.com/ablx/LexNET

https://github.com/ablx/LexNET

38 4. Classification of Comparative Sentences

Figure 4.2.1.: Architecture of the LSTM path encoder. The embedding layer created word em-
beddings for the path edges, which were fed into an LSTM with 200 neurons. The result wa
pooled (pool size of two) and fed into a softmax layer. Keras was used to implement the net-
work. The network was trained for 150 epochs with a batch size of 128 and RMSprop as the
optimizer.

Softmax

Global Max Pooling

Embedding Layer

LSTM

4.3. Classification Experiments

4.3.1. Baselines

As described in Section 2.1, there is no task which is similar enough to the one at hand

to use as a baseline. Thus, two baselines were created. The first baseline, shown in Table

4.3.1 and 4.3.3, was created by assigning classes to the data at random, respecting the

distribution of classes in the original data.

Table 4.3.1.: Random (stratified) baseline for
the three-class scenario.

precision recall f1 score

BETTER 0.19 ±0.01 0.21 ±0.01 0.20 ±0.01

WORSE 0.06 ±0.02 0.05 ±0.02 0.06 ±0.03

NONE 0.73 ±0.00 0.73 ±0.00 0.73 ±0.00

avg. 0.57 ±0.00 0.58 ±0.01 0.57 ±0.00

Table 4.3.2.: Majority class baseline for the for
the three-class scenario.

precision recall f1 score

BETTER 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

WORSE 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

NONE 0.73 ±0.00 1.00 ±0.00 0.84 ±0.00

avg. 0.53 ±0.00 0.73 ±0.00 0.61 ±0.00

The second baseline predicts all sentences as NONE. The results are shown in tables 4.3.2

and 4.3.4.

Table 4.3.3.: Random (stratified) baseline for
the binary scenario.

precision recall f1 score

ARG 0.26 ±0.03 0.26 ±0.03 0.26 ±0.03

NONE 0.72 ±0.01 0.72 ±0.01 0.72 ±0.01

avg. 0.60 ±0.02 0.60 ±0.02 0.60 ±0.02

Table 4.3.4.: Majority class baseline for the bi-
nary scenario.

precision recall f1 score

ARG 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

NONE 0.73 ±0.00 1.00 ±0.00 0.84 ±0.00

avg. 0.53 ±0.00 0.73 ±0.00 0.61 ±0.00

Scikit-learns DummyClassifer was used for all baselines.

4.3. Classification Experiments 39

4.3.2. Results

The classification results of the best performing feature configurations in the three-class

scenario are presented in figures 4.3.1 (f1 score), 4.3.2 (precision) and 4.3.3 (recall). Each

feature was tested and evaluated using five stratified folds. The black bar shows the

standard derivation. All scores were calculated with scikit-learn’s metric module. All

features except the LexNet (original) features used the middle part of the sentence and left

the objects untouched. In the LexNet features, the objects were replaced with Objecta and

Objectb. LexNet (original) used the full sentence.

Figure 4.3.1.: F1 score for the three-class scenario using XGBoost. The grey bar shows the
weighted average. The feature names (see Section 4.2) are presented on the x-axis, the f1 score
on the y-axis. The black bar shows the standard derivation.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall BETTER WORSE NONE

The best feature (bag-of-words) yielded a score 24 points above the baseline. The worst

feature (LexNet (original)) was still eight points above the baseline. Bag-of-words (f1 score

0.848) and InferSent (f1 score 0.842) delivered almost identical results. The boolean fea-

ture that captures comparative adjectives in the middle of the sentence yielded a f1 score

over the baseline as well. However, it did not assign any examples to the class WORSE.

Despite the fact that only 1519 sentences got a path embedding for LexNet (original), the

feature is able to predict some sentences correctly. This indicates that this feature setup

is reasonable and would work probably work well if more examples were present. An

experiment with only the 1519 sentences confirmed this, as the feature was then able to

achieve an f1 score of 0.75.

40 4. Classification of Comparative Sentences

Figure 4.3.2.: Precision for the three-class scenario using XGBoost. The grey bar shows the
weighted average. The feature names (see Section 4.2) are presented on the x-axis, the precision
score on the y-axis. The black bar displays the standard derivation.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall BETTER WORSE NONE

Figure 4.3.3.: Recall for the three-class scenario using XGBoost. The grey bar shows the
weighted average. The feature names (see Section 4.2) are presented on the x-axis, the recall
score on the y-axis. The black bar shows the standard derivation.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall BETTER WORSE NONE

4.3. Classification Experiments 41

Figures 4.3.4 (f1 score), 4.3.5 (precision) and 4.3.6 (recall) show the results for the binary

classification.

As with the three-class scenario, InferSent (f1 score 0.886) and the bag-of-words (f1

score 0.882) performed best and achieved almost equal results. They are closely followed

by mean word embeddings. In summary, all vector representations worked well and got

similar f1 scores. The feature LexNet (original) was again the worst, yet the score was ten

points above the baseline.

Figure 4.3.4.: F1 score for the binary scenario using XGBoost. The grey bar shows the weighted
average. The feature names (see Section 4.2) are presented on the x-axis, the f1 score on the
y-axis. The black bar displays the shows derivation.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall ARG NONE

42 4. Classification of Comparative Sentences

Figure 4.3.5.: Precision for the binary scenario using XGBoost. The grey bar shows the weighted
average. The feature names (see Section 4.2) are presented on the x-axis, the precision score on
the y-axis. The black bar displays the standard derivation.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall ARG NONE

Figure 4.3.6.: Recall for the binary scenario using XGBoost. The grey bar shows the weighted.
The feature names (see Section 4.2) are presented on the x-axis, the binary score on the y-axis.
The black bar displays the standard derivation.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall ARG NONE

4.3. Classification Experiments 43

4.3.3. Error analysis

Figure 4.3.7 displays the confusion matrix for the best lexical feature in the three-class

scenario (InferSent, also the best feature overall), while figure 4.3.8 shows the confusion

matrix for the best syntax feature (customised LexNet). The confusion matrices of each

fold per feature were summed up to create the figures.

Figure 4.3.7.: Confusion matrix for the In-
ferSent feature using XGBoost in the three-
class scenario.

BETTER WORSE NONE

Predicted label

B
E

TT
E

R
W

O
R

S
E

N
O

N
E

Tr
ue

 la
be

l

805 45 241

82 160 232

163 64 3967

Figure 4.3.8.: Confusion matrix for the cus-
tomised LexNet feature using XGBoost in the
three-class scenario.

BETTER WORSE NONE

Predicted label

B
E

TT
E

R
W

O
R

S
E

N
O

N
E

Tr
ue

 la
be

l

647 50 394

136 68 270

197 44 3953

As presented above, WORSE was the hardest class to recognise. The matrices show that

WORSE was more often confused with NONE than with BETTER. This is contrary to the

expectations. The classes BETTER and WORSE should represent argumentative sentences.

It was expected that the distinction between argumentative and not-argumentative is

clearer. In total, 1311 sentences were incorrectly classified in the three-class scenario.

Both features made the same errors on 607 sentences. The InferSent feature made 220

additional errors, while the LexNet feature made 484. Surprisingly, the majority of errors

was made on sentences with a high confidence. Four-hundred-twenty-five of the shared

errors were made on sentences with a confidence of one. InferSent made 156 errors on

highly confident sentences, while LexNet made 356. Examples on errors made solely by

the InferSent feature are given in Table 4.3.5. The first two sentences look comparative,

but they are questions. As stated in the guidelines, all questions should be labelled as

NONE, but InferSent frequently classified questions as comparative. Sentences three and

four are comparative, but have no clear winner of the comparison. However, only sen-

tences with clear winners should be labelled as BETTER or WORSE. InferSent was not able

to learn this restriction. Sentence six contains three negative words. Sentence seven is

hard to classify, as it does not contain any cue word.

Table 4.3.6 shows examples for errors exclusively made by the LexNet feature. As

44 4. Classification of Comparative Sentences

Table 4.3.5.: Example sentences for errors made by XGBoost in the three-class scenario with the
InferSent feature. The objects of interest are printed bold. Confidence shows the confidence of
the annotators and is calculated as judgments for majority class / total judgments.

Sentence Predicted Gold Confidence

1 Is Python better than Perl? BETTER NONE 0.6
2 Is Microsoft better because of Apple? BETTER NONE 1.0
3 Microsoft is the devil but Sony truly isn’t any

better.
WORSE NONE 1.0

4 Python is much better suited as a "glue" lan-
guage, while Java is better characterized as a
low-level implementation language.

BETTER NONE 1.0

5 Its Azure PaaS/IaaS platform hasn’t over-
taken Amazon yet in market share, but Mi-
crosoft has enjoyed nine straight quarters of
growth at 10 percent or better

NONE WORSE 1.0

6 arrrggghh...Python is a terrible language -
only Perl sucks worse.

WORSE BETTER 1.0

7 Good to see again a Renault ahead of a Fer-
rari.

NONE BETTER 1.0

described in Section 4.2, 399 of the sentences did not get a dependency path. However,

only 36 of the wrongly classified sentences did not have a path.

It is salient that the LexNet feature made errors on fairly simple sentences like the first

one in Table 4.3.6. While InferSent’s errors can be coarsely grouped, the errors made

by LexNet seem more random. It is assumed that the amount of training data for the

neural network encoder is not big enough to create expressive embeddings. However,

the overall result of LexNet indicates that a encoder trained on more data will likely

yield good results.

Sentences that were wrongly classified by both features are presented in Table 4.3.7.

Both features predicted the same class for 477 of the 607 shared errors.

The shared errors are similar to the errors made exclusively by InferSent. Again, they

can be coarsely grouped, for instance into questions (sentence one in Table 4.3.7) or sen-

tences without a clear winner (sentence four).

In the binary scenario, 1183 errors were made. Both features made the same errors

on 380 sentences. LexNet made 520 unique errors, while InferSent made 283. However,

739 errors were already made in the three-class scenario, only 444 errors were new. All

in all, the analysis of the errors made in the binary scenario did not gave any new in-

sights. Again, the majority of errors was made on sentences with a high confidence. The

errors made exclusively by LexNet seem random again, while the shared errors and the

errors made by InferSent have similar sources (e.g. questions, no clear winner, complex

sentences).

4.3. Classification Experiments 45

Table 4.3.6.: Example errors made by the classifier in the three-class scenario with the LexNet
feature. The objects of interest are printed bold. Confidence shows the confidence of the anno-
tators and is calculated as judgments for majority class / total judgments.

Sentence Predicted Gold Confidence

1 Right now Apple is worse then Microsoft
ever was.

BETTER WORSE 0.8

2 california is a much harder place to practice
law than is South carolina.

NONE WORSE 1.0

3 google+ starts out far faster than facebook,
Twitter

NONE BETTER 1.0

4 In FPGAs, Integer or fixed-point math can of-
ten run 10 to 100 times faster than Floating-
point computations.

NONE BETTER 1.0

5 Your iphone is a much better display than
your desktop/laptop

NONE BETTER 0.8

Table 4.3.7.: Example errors made by InferSent and LexNet in the three-label scenario. The
objects of interest are printed bold. Pred. IF shows the predicted class of the InferSent feature,
Pred. LexNet the prediction of the LexNet feature. Conf. shows the confidence of the annotators
and is calculated as judgments for majority class / total judgments.

Sentence Pred. IF Pred. LexNet Gold Conf.

1 Is a BMW 3 series $15,000 better than
a Ford Focus?

BETTER BETTER NONE 1.0

2 Google is the main player now, Mi-
crosoft are just plain inferior in Mo-
bile

NONE NONE BETTER 1.0

3 Yeah, Nvidia’s OpenCL is not good
and CUDA is way better.

NONE BETTER WORSE 1.0

4 Python grew out of the need for a
"better" Perl.

WORSE NONE BETTER 1.0

5 Groovy code often looks and feels
like Java code, but is almost always
simpler and easier to use.

NONE NONE BETTER 0.4

46 4. Classification of Comparative Sentences

4.3.4. Discussion

Section 4.3.2 only shows the results for the best performing configuration of each feature.

This is, for all cases, the middle part of the sentence. Sentences which are not formed

after this pattern caused wrong predictions, as presented in Section 4.3.3.

Using the full sentence worked second best. Adding the first and/or last part of the

sentence did not increase the f1 score at all, no matter if the same or another represen-

tation type than the one for the middle part was used. The first and second part alone

never got an f1 score above the baseline.

Replacing or removing the objects did not increase the score significantly. In most

cases, the difference in the f1 score between no replacement/removal and the best re-

placement/removal strategy was only reflected in the third or fourth decimal place.

Hence, the concrete objects are not important at all for the classification. This is also sup-

ported by the fact that adding the word vectors of the objects as features did not increase

the result for any feature.

An interesting observation is that the simple bag-of-words model performs equal or

better than the more complex models. The simple feature Contains JJR (which is only one

boolean value) is able to distinguish argumentative and non-argumentative sentences in

a pleasing way, yielding an f1 score fourteen points above the baseline.

The f1 scores for LexNet path embeddings show that this is a reasonable way to encode

sentences. The original setup found only paths for 26% of the sentences, yet it yielded an

f1 score eight points above the baseline. The customisation made it even more powerful.

No combination of vector representations increased the score in any way. It was ex-

pected that a combination of LexNet features and one of the other features like InferSent

will increase the f1 score, as they encode different information (lexical and syntactial).

However, this was not the case. Appending the LexNet vectors to the InferSent vectors

reduced the scores.

As expected, the smallest class in the data set caused the biggest problems. Precision,

recall and f1 score of WORSE have a high standard derivation for most features. Look-

ing at the confusion matrices in Figure 4.3.7 and Figure 4.3.8, WORSE was confused with

NONE for the majority of cases. Intuitively, a confusion between WORSE and BETTER was

expected, since both classes should reflect argumentative sentences in general.

Another interesting observation is that the three-class scenario and the binary scenario

made mistakes on the same sentences. In fact, the majority of mistakes made by the

binary scenario were made by the three-classes scenario as well.

4.4. Evaluation with the held-out data 47

4.4. Evaluation with the held-out data

4.4.1. Results

The held-out data set contains 1441 sentences (1048 NONE, 273 BETTER, 119 WORSE). The

classifier was trained on the complete data set used during development (5759 sentences).

The path embeddings for the held-out data were generated with the same neural net-

work architecture as shown in Figure 4.2.1.

The results for the three-class scenario are presented in Figure 4.4.1 (f1 score), Figure

4.4.2 (precision) and Figure 4.4.3 (recall).

Figure 4.4.1.: F1 score for the three-class scenario using XGBoost with the held-out data. The
grey bar shows the weighted average. The feature names (see Section 4.2) are presented on the
x-axis, the f1 score on the y-axis.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall BETTER WORSE NONE

48 4. Classification of Comparative Sentences

Figure 4.4.2.: Precision for the three-class scenario using XGBoost with the held-out data. The
grey bar shows the weighted average. The feature names (see Section 4.2) is presented on the
x-axis, the precision score on the y-axis.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall BETTER WORSE NONE

Figure 4.4.3.: Recall for the three-class scenario using XGBoost with the held-out data. The
grey bar shows the weighted average. The feature names (see Section 4.2) are presented on the
x-axis, the recall score on the y-axis.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall BETTER WORSE NONE

4.4. Evaluation with the held-out data 49

The results for the binary scenario are presented in Figure 4.4.4 (f1 score), Figure 4.4.5

(precision) and Figure 4.4.6 (recall).

Figure 4.4.4.: F1 score for the binary scenario using XGBoost with the held-out data. The grey
bar shows the weighted average. The feature names (see Section 4.2) are presented on the x-
axis, the f1 score on the y-axis.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall ARG NONE

50 4. Classification of Comparative Sentences

Figure 4.4.5.: Precision for the binary scenario using XGBoost with the held-out data. The grey
bar shows the weighted average. The feature name (see Section 4.2) are presented on the x-axis,
the precision score on the y-axis.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall ARG NONE

Figure 4.4.6.: Recall for the binary scenario using XGBoost with the held-out data. The grey bar
shows the weighted average. The feature names (see Section 4.2) are presented on the x-axis,
the recall score on the y-axis.

InferSent
Bag-Of-Words

Word Embedding

LexNet (customized)
POS n-grams

Contains JJR

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Overall ARG NONE

4.4. Evaluation with the held-out data 51

4.4.2. Discussion

As in Section 4.3.2, bag-of-words and InferSent got almost equal results for both scenar-

ios. The scores of LexNet features got a significantly lower f1 score.

All features except LexNet benefited from the increased size of the training data, yet

the increase of the f1 score is not larger than one or two points.

LexNet did not generalise at all. The original setup predicted NONE to all examples

in the three-class scenario, thus it got the same f1 score as the baseline. It was able to

predicts a small portion to ARG in the binary scenario, so that the f1 score was one point

above the baseline. The customised version predicted all classes, yet the results were 27

points below the baseline for the three-class scenario and 38 points below in the binary

scenario.

The problem was the size of the data set. LexNet created 2344 unique paths for the

5759 examples in the training data and 593 unique paths for the 1441 examples in the

held-out data. As a result, one path represented only a few sentences. Training and

held-out had only 81 paths in common. The same is true for the customised setup, were

even more paths were created (4339 for the training data and 1263 for the held-out data).

Training and held-out only shared 228 paths. So, from LexNets point of view, training

and held-out data are highly dissimilar.

This problem can be reduced with a larger data set. The Wikipedia corpus used in

[Shwartz et al., 2016] is magnitudes larger: it contains 4,682,000 articles.7 The ratio be-

tween paths and sentences are much smaller in a corpus of this size.

The results with the training data alone (Section 4.3.2) can be explained by the fact

that the paths of all training examples were learned simultaneously. In contrast to this,

the held-out embeddings were learned without information from the training set. The

performance of the LexNet feature increases if the path embeddings are learned on the

whole data (training and held-out; see Figure 4.4.7 and Figure 4.4.8).

7Wikipedia Dump from 2015, https://en.wikipedia.org/wiki/Wikipedia:Size_of_
Wikipedia (checked 15.5.2018)

https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

52 4. Classification of Comparative Sentences

Figure 4.4.7.: F1 score for the LexNet feature in the three-class scenario. This time, path em-
beddings were learned on all sentences (training and held-out). XGBoost was trained on the
training data and tested on the held-out data.

LexNet (customized)

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Overall BETTER WORSE NONE

Figure 4.4.8.: F1 score for the LexNet feature in the binary scenario. This time, path embeddings
were learned on all sentences (training and held-out). XGBoost was trained on the training data
and tested on the held-out data.

LexNet (customized)

LexNet (original)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Overall ARG NONE

53

5. Conclusion and Future Work

This thesis dealt with the problem of comparative argument mining. The first part dis-

cussed the creation of a labelled data set which contains a wide range of comparative

sentences.

The second part discussed how to create a machine learning system which is able to

classify the sentences in the created data set. Gradient boosted decision trees turned out to

be the best classifier for this task. Various simple (like bag-of-words) and complex fea-

tures (like sentence embeddings) achieved f1 scores at least ten points over the baseline.

As presented in Section 4.3.2, the f1 score was greatly increased by some preprocessing

steps. It turned out that the words between the two compared objects are most important.

Features calculated with only these words outperformed all features calculated with the

whole sentence. The concrete compared objects were not important at all. The removal

of the objects from the sentences did not alter the results.

The simplification from a three-class problem to a binary problem (by merging the

comparative classes BETTER and WORSE into one class ARG) increased the performance.

The final evaluation on unseen data showed that most features generalise well. All

in all, the classification works satisfactory. For the three-class scenario, InferSent yielded

an average f1 score of 0.85 (0.77 for BETTER, 0.42 for WORSE and 0.92 for NONE), closely

followed by bag-of-words. InferSent, bag-of-words and mean word embeddings were the best

features in the binary scenario. All yielded the same f1 scores (0.89 on average, 0.79 for

ARG and 0.92 for NONE).

Some aspects were not covered in this thesis. Section 4.3.3 described the problem that

the classifier was not able to learn the special case that questions should always belong

to the class NONE. Future work could either remove this restriction or include a feature to

identify questions. As described in Section 3.3, the data set was created on the sentence

level. Because of this, no context information is available for the classification. However,

the context can hold important information. For instance, the presented system does not

work with a sentence like “This is better than Java.” because the second object is missing.

The preceding sentence might contain the object which is referenced by “This”. This

would require coreference resolution1.

Section 4.3.2 showed that the features based on LexNet yield acceptable results. It

is expected that the results would increase if more data is available to create the path

1See Chapter 21, page 708ff. of [Martin and Jurafsky, 2009]

54 5. Conclusion and Future Work

embeddings. In [Shwartz et al., 2016] and [Shwartz and Dagan, 2016], the systems were

trained on a Wikipedia corpus, which is magnitudes larger than the 7199 sentences from

the corpus created in this thesis. One (costly) approach for future work is to annotate

more data. Another approach could sample new sentences from the index, by using

patterns like “is better than” or “is worse than”. The quality would not be as good as with

manually labelled data, but this might be compensated by the neural network if it is

trained long enough.

The results in Section 4.4.1 show that several features generalise well. The f1 score for

unseen data is comparable to the scores during the development phase. Yet, the system

was not tested in a real world application. For example, a comparison search engine that

takes two objects as the input and returns all comparisons. In a next step, the search

engine could inspect the retrieved companions and extract compared properties and the

like.

55

A. Detailed Classification Results

A.1. Feature Experiments

The following shows the classification result for each feature. Each feature was tested

with five stratified folds. The result is presented as the average out of five folds with

standard derivation. The class ARG is the union of BETTER and WORSE.

Table A.1.1.: Bag-of-words feature (three-class scenario). The presence of all unigrams in the
corpus are represented as binary features.

precision recall f1 score

BETTER 0.79 ±0.02 0.70 ±0.03 0.74 ±0.01

WORSE 0.62 ±0.06 0.36 ±0.05 0.46 ±0.05

NONE 0.89 ±0.01 0.95 ±0.01 0.92 ±0.00

average 0.85 ±0.01 0.86 ±0.00 0.85 ±0.01

Table A.1.2.: Bag-of-words feature (binary scenario). The presence of all unigrams in the corpus
are represented as binary features.

precision recall f1 score

ARG 0.78 ±0.03 0.79 ±0.03 0.78 ±0.0)

NONE 0.92 ±0.01 0.92 ±0.01 0.92 ±0.01

average 0.88 ±0.01 0.88 ±0.01 0.88 ±0.01

Table A.1.3.: InferSent (sentence embeddings) feature (three-class scenario).

precision recall f1 score

BETTER 0.78 ±0.03 0.71 ±0.03 0.74 ±0.02

WORSE 0.60 ±0.03 0.28 ±0.05 0.39 ±0.04

NONE 0.89 ±0.00 0.96 ±0.01 0.92 ±0.00

average 0.84 ±0.01 0.86 ±0.01 0.84 ±0.01

56 A. Detailed Classification Results

Table A.1.4.: InferSent (sentence embeddings) feature (binary scenario).

precision recall f1 score

ARG 0.82 ±0.02 0.75 ±0.01 0.79 ±0.01

NONE 0.91 ±0.00 0.94 ±0.01 0.92 ±0.00

average 0.89 ±0.01 0.89 ±0.01 0.89 ±0.01

Table A.1.5.: Mean word embeddings (three-class scenario). All GloVe word vectors of a sen-
tence were summed up and divided by the number of words in the sentence.

precision recall f1 score

BETTER 0.70 ±0.03 0.73 ±0.02 0.72 ±0.01

WORSE 0.45 ±0.09 0.15 ±0.04 0.22 ±0.05

NONE 0.89 ±0.00 0.95 ±0.01 0.92 ±0.00

average 0.82 ±0.01 0.84 ±0.00 0.82 ±0.00

Table A.1.6.: Mean word embeddings (binary class scenario). All GloVe word vectors of a
sentence were summed up and divided by the number of words in the sentence.

precision recall f1 score

ARG 0.77 ±0.03 0.78 ±0.02 0.77 ±0.02

NONE 0.92 ±0.01 0.91 ±0.01 0.91 ±0.01

average 0.88 ±0.01 0.88 ±0.01 0.88 ±0.01

Table A.1.7.: Part-of-speech n-gram feature (three-class scenario). The presence of the 500 most
frequent part-of-speech bi-, tri- and four-grams were represented as binary features.

precision recall f1 score

BETTER 0.61 ±0.03 0.56 ±0.02 0.58 ±0.02

WORSE 0.20 ±0.05 0.09 ±0.03 0.12 ±0.04

NONE 0.86 ±0.01 0.93 ±0.01 0.89 ±0.00

average 0.76 ±0.01 0.79 ±0.01 0.77 ±0.01

Table A.1.8.: Part-of-speech n-gram feature (binary scenario). The presence of the 500 most
frequent part-of-speech bi-, tri- and four-grams were represented as binary features.

precision recall f1 score

ARG 0.69 ±0.02 0.68 ±0.01 0.69 ±0.01

NONE 0.88 ±0.00 0.89 ±0.01 0.88 (0.01)

average 0.83 ±0.01 0.83 ±0.01 0.83 ±0.01

Table A.1.9.: Contains JJR feature which represents the presence of a comparative adjective in
the sentence (three-class scenario).

precision recall f1 score

BETTER 0.56 ±0.02 0.61 ±0.02 0.58 ±0.01

WORSE 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

NONE 0.85 ±0.00 0.92 ±0.01 0.88 ±0.00

average 0.72 ±0.00 0.79 ±0.01 0.75 ±0.01

A.1. Feature Experiments 57

Table A.1.10.: Contains JJR feature which represents the presence of a comparative adjective in
the sentence (binary scenario).

precision recall f1 score

ARG 0.75 ±0.03 0.55 ±0.02 0.63 ±0.01

NONE 0.85 ±0.00 0.93 ±0.01 0.89 ±0.01

average 0.82 ±0.01 0.83 ±0.01 0.82 ±0.01

Table A.1.11.: LexNet path embeddings with a maximum length of four and restrictions of the
edge direction (three-class scenario). This setup is equal to the original setup in [Shwartz and
Dagan, 2016]

precision recall f1 score

BETTER 0.66 ±0.04 0.21 ±0.02 0.31 ±0.03

WORSE 0.44 ±0.14 0.04 ±0.01 0.08 ±0.02

NONE 0.76 ±0.00 0.98 ±0.00 0.86 ±0.00

average 0.72 ±0.01 0.76 ±0.00 0.69 ±0.01

Table A.1.12.: LexNet path embeddings with a maximum length of four and restrictions of
the edge direction (binary scenario). This setup is equal to the original setup in [Shwartz and
Dagan, 2016]

precision recall f1 score

ARG 0.73 ±0.02 0.21 ±0.01 0.33 ±0.01

NONE 0.77 ±0.00 0.97 ±0.00 0.86 ±0.00

average 0.76 ±0.01 0.76 ±0.00 0.71 ±0.00

Table A.1.13.: LexNet path embeddings with a maximum length of sixteen and no restrictions
of the edge direction (three-class scenario).

precision recall f1 score

BETTER 0.68 ±0.02 0.54 ±0.04 0.60 ±0.02

WORSE 0.34 ±0.06 0.15 ±0.01 0.21 ±0.02

NONE 0.86 ±0.01 0.96 ±0.01 0.90 ±0.00

average 0.78 ±0.00 0.81 ±0.00 0.79 ±0.00

Table A.1.14.: LexNet path embeddings with a maximum length of sixteen and no restrictions
of the edge direction (binary scenario).

precision recall f1 score

ARG 0.74 ±0.01 0.65 ±0.01 0.69 ±0.01

NONE 0.87 ±0.00 0.92 ±0.01 0.89 (0.00)

average 0.84 ±0.00 0.84 ±0.00 0.84 ±0.00

58 A. Detailed Classification Results

A.2. Final Held-Out Experiments

average wie bei classification report

Table A.2.1.: Bag-of-words feature (three-class scenario). The presence of all unigrams in the
corpus are represented as binary features.

precision recall f1 score

BETTER 0.76 0.75 0.76
WORSE 0.54 0.33 0.41
NONE 0.90 0.95 0.92
average 0.85 0.86 0.85

Table A.2.2.: Bag-of-words feature (binary scenario). The presence of all unigrams in the corpus
are represented as binary features.

precision recall f1 score

ARG 0.81 0.77 0.79
NONE 0.91 0.93 0.92
average 0.89 0.89 0.89

Table A.2.3.: InferSent (sentence embeddings) feature (three-class scenario).

precision recall f1 score

BETTER 0.79 0.75 0.77
WORSE 0.55 0.34 0.42
NONE 0.90 0.95 0.92
average 0.85 0.86 0.85

A.2. Final Held-Out Experiments 59

Table A.2.4.: InferSent (sentence embeddings) feature (binary scenario).

precision recall f1 score

ARG 0.80 0.78 0.79
NONE 0.92 0.93 0.92
average 0.89 0.89 0.89

Table A.2.5.: Mean word embeddings (three-class scenario). All GloVe word vectors of a sen-
tence were summed up and divided by the number of words in the sentence.

precision recall f1 score

BETTER 0.69 0.71 0.70
WORSE 0.43 0.17 0.24
NONE 0.89 0.94 0.92
average 0.81 0.84 0.82

Table A.2.6.: Mean word embeddings (binary-class scenario). All GloVe word vectors of a sen-
tence were summed up and divided by the number of words in the sentence.

precision recall f1 score

ARG 0.80 0.78 0.79
NONE 0.92 0.93 0.92
average 0.89 0.89 0.89

Table A.2.7.: Part-of-speech n-gram feature (three-class scenario). The presence of the 500 most
frequent part-of-speech bi-, tri- and four-grams were represented as binary features.

precision recall f1 score

BETTER 0.59 0.62 0.60
WORSE 0.32 0.11 0.16
NONE 0.87 0.92 0.89
average 0.77 0.80 0.78

Table A.2.8.: Part-of-speech n-gram feature (binary scenario). The presence of the 500 most
frequent part-of-speech bi-, tri- and four-grams were represented as binary features.

precision recall f1 score

ARG 0.73 0.72 0.72
NONE 0.90 0.90 0.90
average 0.85 0.85 0.85

Table A.2.9.: Contains JJR feature which represents the presence of a comparative adjective in
the sentence (three-class scenario).

precision recall f1 score

BETTER 0.56 0.58 0.57
WORSE 0.00 0.00 0.00
NONE 0.85 0.94 0.89
average 0.72 0.79 0.76

60 A. Detailed Classification Results

Table A.2.10.: Contains JJR feature which represents the presence of a comparative adjective in
the sentence (binary scenario).

precision recall f1 score

ARG 0.76 0.55 0.64
NONE 0.85 0.94 0.89
average 0.82 0.83 0.82

Table A.2.11.: LexNet path embeddings with a maximum length of four and restrictions of the
edge direction (three-class scenario). This setup is equal to the original setup in [Shwartz and
Dagan, 2016]

precision recall f1 score

BETTER 0.00 0.00 0.00
WORSE 0.00 0.00 0.00
NONE 0.73 0.99 0.84
average 0.53 0.72 0.61

Table A.2.12.: LexNet path embeddings with a maximum length of four and restrictions of
the edge direction (binary scenario). This setup is equal to the original setup in [Shwartz and
Dagan, 2016]

precision recall f1 score

ARG 0.28 0.01 0.02
NONE 0.73 0.99 0.84
average 0.61 0.72 0.62

Table A.2.13.: LexNet path embeddings with a maximum length of sixteen and no restrictions
of the edge direction (three-class scenario).

precision recall f1 score

BETTER 0.16 0.35 0.22
WORSE 0.05 0.13 0.07
NONE 0.58 0.27 0.37
average 0.46 0.28 0.32

Table A.2.14.: LexNet path embeddings with a maximum length of sixteen and no restrictions
of the edge direction (binary scenario).

precision recall f1 score

ARG 0.18 0.49 0.26
NONE 0.44 0.15 0.22
average 0.37 0.24 0.23

61

Bibliography

[Aker et al., 2017] Aker, A., Sliwa, A., Ma, Y., Lui, R., Borad, N., Ziyaei, S., and Ghobadi,

M. (2017). What works and what does not: Classifier and feature analysis for argument

mining. In Proceedings of the 4th Workshop on Argument Mining, pages 91–96, Copen-

hagen, Denmark. Association for Computational Linguistics.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural

probabilistic language model. Journal of machine learning research, 3(Feb):1137–1155.

[Bowman et al., 2015] Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A

large annotated corpus for learning natural language inference. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

632–642. Association for Computational Linguistics.

[Breiman et al., 1984] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984).

Classification and Regression Trees. Wadsworth.

[Chen and Guestrin, 2016] Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree

boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 785–794. Association for Computing Ma-

chinery.

[Cho et al., 2014] Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On

the properties of neural machine translation: Encoder-decoder approaches. In Pro-
ceedings of SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics and Structure in
Statistical Translation, Doha, Qatar, 25 October 2014, pages 103–111, Doha, Qatar. Asso-

ciation for Computational Linguistics.

[Chollet et al., 2015] Chollet, F. et al. (2015). Keras. https://keras.io.

[Collobert and Weston, 2008] Collobert, R. and Weston, J. (2008). A unified architecture

for natural language processing: Deep neural networks with multitask learning. In

Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008),
Helsinki, Finland, June 5-9, 2008, ACM International Conference Proceeding Series,

pages 160–167, Helsinki, Finland. Association for Computing Machinery.

[Conneau et al., 2017] Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bordes, A.

(2017). Supervised learning of universal sentence representations from natural lan-

guage inference data. In Proceedings of the 2017 Conference on Empirical Methods in Natu-

https://keras.io

62 Bibliography

ral Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pages

670–680, Copenhagen, Denmark. Association for Computational Linguistics.

[Daxenberger et al., 2017] Daxenberger, J., Eger, S., Habernal, I., Stab, C., and Gurevych,

I. (2017). What is the essence of a claim? cross-domain claim identification. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017, pages 2055–2066, Copenhagen, Den-

mark. Association for Computational Linguistics.

[Dusmanu et al., 2017] Dusmanu, M., Cabrio, E., and Villata, S. (2017). Argument min-

ing on twitter: Arguments, facts and sources. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark,
September 9-11, 2017, pages 2317–2322, Copenhagen, Denmark. Association for Com-

putational Linguistics.

[Eckle-Kohler et al., 2015] Eckle-Kohler, J., Kluge, R., and Gurevych, I. (2015). On the

role of discourse markers for discriminating claims and premises in argumentative

discourse. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 2236–2242, Lis-

bon, Portugal. Association for Computational Linguistics.

[Fiszman et al., 2007] Fiszman, M., Demner-Fushman, D., Lang, F. M., Goetz, P., and

Rindflesch, T. C. (2007). Interpreting comparative constructions in biomedical text.

In Biological, translational, and clinical language processing, BioNLP@ACL 2007, Prague,
Czech Republic, June 29, 2007, pages 137–144, Prague, Czech Republic. Association for

Computational Linguistics, Association for Computational Linguistics.

[Friedman et al., 2009] Friedman, J., Hastie, T., and Tibshirani, R. (2009). The Elements of
Statistical Learning – Data Mining, Inference, and Prediction, volume 2 of Springer series in
statistics. Springer.

[Goodfellow et al., 2016] Goodfellow, I. J., Bengio, Y., and Courville, A. C. (2016). Deep
Learning. Adaptive computation and machine learning. MIT Press. http://www.

deeplearningbook.org.

[Gupta et al., 2017] Gupta, S., Mahmood, A. S. M. A., Ross, K., Wu, C. H., and Vijay-

Shanker, K. (2017). Identifying comparative structures in biomedical text. In BioNLP
2017, Vancouver, Canada, August 4, 2017, pages 206–215, Vancouver, Canada. Associa-

tion for Computational Linguistics.

[Harris, 1954] Harris, Z. S. (1954). Distributional structure. Word, 10(2-3):146–162.

[Hill et al., 2016] Hill, F., Cho, K., and Korhonen, A. (2016). Learning distributed repre-

sentations of sentences from unlabelled data. In NAACL HLT 2016, The 2016 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography 63

Language Technologies, San Diego California, USA, June 12-17, 2016, pages 1367–1377, San

Diego, California, USA. Association for Computational Linguistics.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long

short-term memory. Neural Computation, 9(8):1735–1780.

[Kim, 2014] Kim, Y. (2014). Convolutional neural networks for sentence classification. In

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pages 1746–1751, Doha, Qatar. Association for Computational Lin-

guistics.

[Kiros et al., 2015] Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Tor-

ralba, A., and Fidler, S. (2015). Skip-thought vectors. In Cortes, C., Lawrence, N. D.,

Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pages 3294–3302. Neural Information

Processing Systems Conference.

[Lin et al., 2017] Lin, Z., Feng, M., Santos, C. N. d., Yu, M., Xiang, B., Zhou, B., and

Bengio, Y. (2017). A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130.

[Lippi and Torroni, 2016] Lippi, M. and Torroni, P. (2016). Argumentation mining: State

of the art and emerging trends. ACM Trans. Internet Technol., 16(2):10:1–10:25.

[Liu et al., 2016] Liu, Y., Sun, C., Lin, L., and Wang, X. (2016). Learning natural lan-

guage inference using bidirectional lstm model and inner-attention. arXiv preprint
arXiv:1605.09090.

[Martin and Jurafsky, 2009] Martin, J. H. and Jurafsky, D. (2009). Speech and language pro-
cessing: An introduction to natural language processing, computational linguistics, and speech
recognition. Prentice Hall series in artificial intelligence. Prentice Hall, Pearson Educa-

tion International, 2nd edition.

[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J.

(2013). Distributed representations of words and phrases and their compositionality. In

Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., pages 3111–3119, Lake Tahoe, Nevada, United States.

Neural Information Processing Systems Conference.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine learning. McGraw Hill series in computer

science. McGraw-Hill, Boston.

64 Bibliography

[Panchenko et al., 2018] Panchenko, A., Ruppert, E., Faralli, S., Ponzetto, S. P., and Bie-

mann, C. (2018). Building a web-scale dependency-parsed corpus from commoncrawl.

In Proceedings of the Eleventh International Conference on Language Resources and Evalua-
tion, LREC 2018, Miyazaki, Japan, May 7-12, 2018, Miyazaki, Japan. European Language

Resources Association.

[Park and Blake, 2012] Park, D. H. and Blake, C. (2012). Identifying comparative claim

sentences in full-text scientific articles. In Proceedings of the Workshop on Detecting Struc-
ture in Scholarly Discourse, pages 1–9. Association for Computational Linguistics.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,

B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Pas-

sos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). Glove:

Global vectors for word representation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1532–1543, Doha,

Qatar. Association for Computational Linguistics.

[Quinlan, 1986] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning,

1(1):81–106.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: a probabilistic model for infor-

mation storage and organization in the brain. Psychological review, 65(6):386.

[Shwartz and Dagan, 2016] Shwartz, V. and Dagan, I. (2016). The roles of path-based

and distributional information in recognizing lexical semantic relations. CoRR,

abs/1608.05014.

[Shwartz et al., 2016] Shwartz, V., Goldberg, Y., and Dagan, I. (2016). Improving hyper-

nymy detection with an integrated path-based and distributional method. In Proceed-
ings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, volume 1. Association for

Computational Linguistics.

[Šnajder, 2017] Šnajder, J. (2017). Social media argumentation mining: The quest for de-

liberateness in raucousness.

[Stab and Gurevych, 2014] Stab, C. and Gurevych, I. (2014). Identifying argumentative

discourse structures in persuasive essays. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 46–56, Doha, Qatar.

Association for Computational Linguistics.

Bibliography 65

[Wieting et al., 2015] Wieting, J., Bansal, M., Gimpel, K., and Livescu, K. (2015). Towards

universal paraphrastic sentence embeddings.

[Zhao et al., 2015] Zhao, H., Lu, Z., and Poupart, P. (2015). Self-adaptive hierarchical

sentence model. In Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 4069–

4076, Buenos Aires, Argentina. AAAI Press.

66 Bibliography

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudi-

engang Informatik selbststandig verfasst und keine anderen als die angegebenen Hilf-

smittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen –

benutzt habe. Alle Stellen, die wörtlich oder sinngemaß aus Veroffentlichungen entnom-

men wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die

Arbeit vorher nicht in einem anderen Prufungsverfahren eingereicht habe und die ein-

gereichte schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ich bin mit einer Einstellung in den Bestand der Bibliothek des Fachbereiches einver-

standen.

Hamburg, den

	Introduction: An Open-Domain Comparative Argumentative Machine
	Background
	Related Work
	Domain-Specific Comparative Systems
	Machine Learning Methods
	Performance Measures
	Neural Networks
	Decision Trees and Gradient Boosting

	Vector Representations for Documents
	Bag-of-words and Bag-of-ngrams
	Mean Word Embeddings
	Sentence Embeddings and InferSent
	HypeNet and LexNet

	Building a Data Set for Comparative Argument Mining
	Common Crawl Text Corpus
	Prestudies
	First Prestudy: Sentence Sampling and Guidelines
	Second Prestudy: Sentence Preprocessing and Rephrasing of the Guidelines
	Discussion

	Main Study
	Sentence Sampling Method and Domain Selection
	Domain Subset: Brands
	Domain Subset: Computer Science
	Domain Subset: Random
	Discussion

	Classification of Comparative Sentences
	Classification Algorithm Selection
	Features
	Classification Experiments
	Baselines
	Results
	Error analysis
	Discussion

	Evaluation with the held-out data
	Results
	Discussion

	Conclusion and Future Work
	Detailed Classification Results
	Feature Experiments
	Final Held-Out Experiments

	Bibliography
	Eidesstattliche Versicherung

