UH
_i_ti_
[2% Universitdit Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

BACHELORTHESIS

Language processing techniques for searching on
Transparenzportal Hamburg

vorgelegt von

Katrin Caragiuli

MIN-Fakultit

Fachbereich Informatik

Sprachtechnologie (LT)

Studiengang: B. Sc. Mensch-Computer-Interaktion
Matrikelnummer: 6534868

Erstgutachter: Prof. Dr. Chris Biemann

Zweitgutachter: Dr. Lothar Hotz

Abstract

Information Retrieval (IR) systems have greatly improved over the last years. Search engines
offer access to millions of documents within seconds. However, the variety of these documents
and unspecific user inputs still pose some problems that restrict the number and quality of
returned documents. Natural language processing (NLP) is often applied to specifically deal with
linguistic difficulties. The Transparenzportal Hamburg employs a search engine for a collection
of administration documents. This thesis researches NLP methods to improve the search results
on the Transparenzportal from the user’s perspective. The focus lies on queries that return only
a few results or none. To minimize queries with spelling mistakes, the Levenshtein distance is
applied as a spell-check. Also, decompounding is used to tackle queries with long and ambiguous
query tokens. Especially for compounding languages such as German, compound words pose a
major problem in IR. Both the Levenshtein distance as well as decompounding are evaluated
with a small experiment set and compared to a control experiment. They improve the search
results with statistical significance and, therefore, should be added to the Transparenzportal.

Outline

1 Introduction
2 Related Work

3 Foundations

3.1 Transparenzportal
3.2 Solr . .. e e e
3.2.1 Solrprocessing
322 Solrparameters e e e
4 Methods
4.1 Language Processing Techniques
4.1.1 Levenshteindistance,
4.1.2 Decompounding
42 ASVToolbox e
42.1 LevenshteinTool
422 BaseformTool
43 nDCG e
5 Experimental Design
5.1 Procedure
5.2 TestSet e e e e e e
5.2.1 Query Log Analysis
5.2.2 Experiment Test Collection
5.3 Prototype and Web Application
6 Evaluation and Discussion
6.1 Statistical analysis. Lo
6.2 DataEvaluation
6.3 Application e
7 Summary and Conclusion
8 Outlook
Bibliography

16
16
18
18
21
22

25
25
26
27

28

29

32

III

1A%

1 Introduction

In this day and age, there is hardly any question that could not be answered by trying Google. The
human brain filters out a huge portion of our sensory impressions, intending to not overstimulate
the individual. Similarly, search engines try to make a selection and ranking of the most relevant
data for the user. That is crucial since search engines, in general, have access to a vast number
of datasets. However, translating an information need into a query still requires some kind of
knowledge of the user about search engines and the search engine in use particular. This includes
for example, whether the search engine applies synonyms. If searching on the internet was that
easy, we would not have to google tomorrow’s weather for our grandparents.

This thesis focuses on ad hoc retrieval on the Transparenzportal Hamburg! (TP), a search engine
that provides access to documents of public interest concerning the city of Hamburg. It origins
from the Transparenzgesetz? (transparency law) (2012). Before the adoption of this law, the
requests regarding public matters of Hamburg had to go through a complex application process.
Since the TP was realized to simplify this request process, it is of importance that all relevant
documents for a query are returned.

Document retrieval is faced with several difficulties, two of which are the main focus of this
thesis. One major issue is posed by the highly specialized dataset of the TP. The vocabulary used
in the documents might either not be familiar to the user, or lead to spelling errors and typing
mistakes (which will be used interchangeably from here on). However, the TP does not apply
spell-check, which is why faulty queries like Elpphilharmonie are ineffective. Another obstacle
is imposed by the German language itself. The lack of consensus and the amount of ambiguity
regarding some word forms make it difficult to provide every document for a query. For instance,
compound words in German are prone to escalating. Donaudampfschifffahrtsgesellschaftskapitdn
is a popular example, which means captain of the Danube Steam Shipping Company>. Besides,
the use of hyphens to connect words is not standardized. Wi-fi and Wifi are both correct and
denote the same thing, but can be written differently nevertheless. Consequently, some search
queries are only able to return a few results.

These are difficulties that contribute to the fact that many queries on the TP only match few
or even no documents. On the one hand, it could be the case that there are simply no more
documents corresponding to the query. On the other hand, the queries or the index could not
be well-formed enough to retrieve the desired documents. Given this problematic, this thesis
aims to identify queries with low result outcomes and apply two language processing techniques
to improve the number of relevant search results. First, a spell-check is applied by using the
string-edit metric Levenshtein distance to detect similar words [17]. Second, a decompounding
algorithm is used to split compounds and add the constituents to the search. The applied
techniques are each individually tested against the original TP algorithm and evaluated with
an Information Retrieval (IR) specific formula, the Normalized Discounted Cumulated Gain
(nDCG). The ASV-Toolbox is used for the application [2].

1. http://transparenz.hamburg.de
2. https://www.hamburg.de/transparenzgesetz/ (last accessed 12-08-2019)
3. https://en.wiktionary.org/wiki/Donaudampfschifffahrtsgesellschaftskapit%C3% A4n(last accessed 12-08-2019)

http://transparenz.hamburg.de
https://www.hamburg.de/transparenzgesetz/
https://en.wiktionary.org/wiki/Donaudampfschifffahrtsgesellschaftskapit%C3%A4n

The overall structure of this thesis takes the form of nine chapters, including this introductory
chapter. First, the Information Retrieval (IR) background concerning natural language processing
techniques is presented. Second, the technical foundations are laid out, including a description
of the Transparenzportal. Chapter four begins with a summary of the Levenshtein distance and
decompounding technique. It then goes on to describe the AVS toolbox that is going to be used
to carry out the experiments and the evaluation method nDCG. The fifth chapter lays out the
experimental design, including the creation of the test collections. Chapter six presents the
results of the experiments. A seventh chapter is included to discuss a possible application of the
evaluated techniques in the TP. The last chapters contain the Summary and Conclusion and lastly
the Outlook.

2 Related Work

Without search engines, finding what one is looking for on the internet would be nearly impossible.
Modern information retrieval techniques go way beyond simple string matching but have to
consider several challenges that natural languages present. This chapter introduces state-of-
the-art techniques for improving document search results which sets this thesis into relation to
previous, widely acknowledged works.

Essential knowledge of information retrieval is covered comprehensively by Manning et al. in
[20]. This involves the steps a search engine has to take to process a search query. This process
is illustrated in Figure 2.1. Firstly, the user starts a search query, for example, for How manydays
until Chrismas?. This search query then is modified by the search engine before eventually
retrieving results from the database.

Those modification steps are described in [20], page 32, including tokenization, stemming and
decompounding. Tokenization is the basis for further linguistical processing. It splits the input
into so-called tokens. In the case of the given example, "How manydays until christmas" would
get split into the tokens [Howmanyl Idaysl luntill IChrismasl I?I. Stemming describes the process of
reducing a word to its word stem, intending to match all related words. Applied to the tokenized
example, the stemming result would be [Howmany! Iday! luntill IChrismasl 1?1, with days being
reduced to day. This is a standard approach in IR, for example used by Google [33], and is also
applied by the Transparenzportal (TP). In addition, a spell-check would be applied at this point.
This could be done by implementing the Levenshtein-Distance, invented by V.I Levenshtein [17].
This technique detects string similarities. Chrismas would then be exchanged with Christmas.
In [20], page 46, Manning et al. also mention how compound-splitting can be beneficial for
systems that deal with the German language. Amongst other things, it could be used in English
to separate words that were accidentally combined by the user by leaving out a whitespace
character. In the given example, Howmany would be separated into How and many.

Obviously, the query input is not the only text that has to be handled. The same techniques as
mentioned above can be applied to the texts that eventually form the index. This index is usually
realized through an inverted index, a standard data structure in IR. An inverted index is a data
structure that contains a mapping from keywords to documents, as described by Carstensen et al.
in [5], page 588.

Apart from the standard techniques, other different approaches have to be applied to expand a
search grammatically, but also semantically. A way to achieve a semantic refinement of a query
is to expand it. Croft et al. differentiate query expansion between automatic and semi-automatic
expansion, the latter meaning that user interaction is involved. This bachelor thesis will focus
on automatic query expansion. Furthermore, Croft et al. point out that the use of synonyms,
respectively a thesaurus alone does not suffice to conquer the challenges that query reformulation
creates [9], page 200.

However, the search engine does not only look for matching results but also adds a score to
each document, depicting how much it fits the query. This score is then part of the ranking
process, that ideally presents the documents with the highest scores on top. Additional rules can
be applied, for example which sorting, ascending or descending, should be applied to documents
with the same score. The TP handles this by sorting by name alphabetically.

USER SEARCH
ENGINE

----------------- ,
| tokenization %
] Transformation -

)
|
;
! spell. correction |
i spell.correction | TTTTTOTEIUT
! stemming : Documents
]
)
|

! decompounding

Index
Creation

Transformation

4.[i GO!} Search
Request o
User > i
[Response

e

pd

Index
H .
2 Bosiiiii Searchl Server
z - x
Evaluation o g— ;
' Modification
]
Results Page |
Iscoring |
' ranking |

Figure 2.1: A flow chart of how a search engine might process a user query. The user starts a
query, the search engine transforms the input with tokenization, spell. correction,
stemming and decompounding and retrieves results from the inverted index. The
same techniques are applied to the documents that form the index. The results that
are returned from this index get displayed on the website and the user can choose
to modify their input and place another query.

Jerry R. Hobbs described the phenomenon of the "topic drift", which should in later terms gain
significance for information retrieval on the internet [28]. The so-called "query drift" describes
the dilemma, that query expansion, when done suboptimal, may sway the results in a completely
different direction than initially intended by the user. Mitra et al. describe some techniques to
avoid a (hard) query drift, in [21]. They state that the most evident approach would be to improve
the search results at the top of the list.

Another approach would be to consult the query logs of a search engine. Albakour et al. have
taken to using query logs to avoid the cost of involving user interactions. By analyzing a huge
set of search logs, they are able to train different algorithms with a technology called "AutoEval"
and produce query modification suggestions [1]. T. Joachims also uses clickthrough data to
successfully train a learning algorithm to improve search retrieval quality [14].

For all these actions taken to improve IR, an evaluation technique has to be applied to confirm
their effectiveness. Manning et al. [20], page 5, characterize the fundamental methods in IR
called "precision" and "recall". Precision defines the percentage of documents returned that are
relevant and recall defines the percentage of relevant documents that are returned. They conclude
that recall needs to be above a certain threshold while the number of false positives should be
kept as low as possible. Given the fact that C. Carpineto and G. Romano found out that about
54% of the users view only one results page, and 53% only enter one query, the measures taken
in this thesis will concentrate on increasing the recall, while measuring the precision of the top
returned documents.

4

Considering the work done to date, this thesis applies a selected number of techniques to influence
and evaluate the search results of the Transparenzportal. First of all, a spell-check will be applied
by using the the Levenshtein-Distance. Second, decompounding will be used to take advantage
of the grammatical nature of the German language. This thesis only focuses on queries with less
than 5 results. As a result, query drift is not the main concern but will be adressed by trying to
improve the top results and manually evaluating the relevance of the search results and evaluating
it. This thesis cannot make good use of the session information in the query logs, since the
session information has not been recorded. However, the query logs are analyzed to extract the
different categories of search queries and use them to evaluate the search engine adjustments
made. It also aims to implement two different natural language processing techniques by trying
to avoid obvious IR mistakes. The chosen evaluation method is the Normalized Discounted
Cumulated Gain (nDCG), which is described by Manning et al. as becoming more and more
popular and will be explained later in this thesis [20]

3 Foundations

The previous chapter gave an insight into the state of the art of query processing and query
refinement. Consequently, the technologies that form the foundation of the Transparenzportal
(TP) are laid out in the following chapter. Therefore, the Transparenzportal is introduced in
detail to set this thesis in context. Furthermore, the TP mechanisms for Solr query (and index)
processing are explained, including the parameters that are set for the live system.

3.1 Transparenzportal

The Transparenzportal Hamburg (TP) is the result of the Transparenzgesetz Hamburg (2012),
a law that obliges the town administration of Hamburg to make administrative data accessible
to the public. Apart from this, it also contains the data that has previously been made public in
the Open Data Portal Hamburg. On the first of October 2014, the Transparenzportal went live
and has since then collected more than 100,000 documents ! The displayed data includes, for
instance, geography data, building permits, and contracts. All data that falls within the scope of
the disclosure obligation has to be stored for 10 years>.

The data can be accessed through a search which is realized using an expanded version of
The Comprehensive Knowledge Archive Network® (CKAN). CKAN is a data management
system written in Python with an Apache Solr* index and a Postgres database. The Solr index
makes it possible to search the data and additionally offers filter possibilities that are the basis
for the expanded search. It provides harvesting possibilities to receive metadata from e.g.
ALLRIS? (a citizen information system) and also provides the Transparenzportal Application
programming interface (API). To be able to perform a full-text search over the documents, the
Apache Tika™ Stoolkit is used. It extracts the text of everydocument to render it indexable. The
Transparenzportal website itself is implemented in the design of hamburg.de and therefore does
not use the CKAN interface.’

3.2 Solr

Solr (pronounced "solar") is an enterprise open-source search server, similar to Elasticsearch®,
that uses Apache Lucene. Created in 2004 by Yonik Seeley, Solr is used as a search engine by a
variety of companies, for example Netflix [30], page 4.

1. http://transparenz.hamburg.de/transparenzgesetz-hamburg/11931448/transparenzportal/ (last accessed 02-08-
2019)

. https://www.hamburg.de/bkm/transparenzportal/ (last accessed 20-07-2019)

. https://ckan.org/ (last accessed 02-05-2019)

. https://lucene.apache.org/solr/ (last accessed 03-04-2019)

. https://www.cc-egov.de/de-de/produkte/allris (last accessed 04-04-2019)

. https://tika.apache.org/ (last accessed 01-03-2019)

. https://media.ccc.de/v/31c3_-_6582_-_de_-_saal_2_-_201412281600_-_das_transparenzportal_hamburg_-
_lothar_hotz (last accessed 24-04-2019)

8. https://www.elastic.co/de/products/elasticsearch (last accessed 02-03-2019)

~N N B W

6

http://transparenz.hamburg.de/transparenzgesetz-hamburg/11931448/transparenzportal/
https://www.hamburg.de/bkm/transparenzportal/
https://ckan.org/
https://lucene.apache.org/solr/
https://www.cc-egov.de/de-de/produkte/allris
https://tika.apache.org/
https://media.ccc.de/v/31c3_-_6582_-_de_-_saal_2_-_201412281600_-_das_transparenzportal_hamburg_-_lothar_hotz
https://media.ccc.de/v/31c3_-_6582_-_de_-_saal_2_-_201412281600_-_das_transparenzportal_hamburg_-_lothar_hotz
https://www.elastic.co/de/products/elasticsearch

Solr creates an inverted index that is used to search through documents. Tokenizers and filters
are applied to the index and the search query to expand the query and therefore generate better
results. In the case of the Transparenzportal, a tokenizer is applied to break the input query
up into tokens. Afterwards, a number of filters is applied to manipulate the query tokens, e.g.
on that adds synonyms to the query. The following analyzers are used: Whitespace Tokenizer,
Synonym Filter, Word Delimeter Filter, Lower Case Filter, Snowball Porter Filter and ASCII
Folding Filter. The following subsection will explain these filters in detail.

3.2.1 Solr processing

The way data is processed in Solr has a huge impact on the chance of success for the search
results.

In German, all nouns are capitalized. Consequently, if a German noun, Bauplan (building plan),
for instance, is not converted to lowercase in the index, a search for bauplan might not detect the
corresponding documents.

The data that is added to the Transparenzportal is mostly unstructured, for example pdfs contain-
ing protocols of board meetings. To be able to search through this data, Apache Tika is used
to extract the content. The resulting text then has to be processed; this step is called analysis.
During the analysis, a number of tokenizers and filters are applied. On each step of the way, a
stream of tokens is produced and processed, with the end result being a number of terms that are
then ready to be indexed. Solr creates a so-called inverted index this way, which maps terms to a
list of documents in which they occur, comparable to the index in a book [27], page 47.

For the Transparenzportal, a bundle of successive steps are defined for different field types. The
first step is a tokenizer that produces a stream of tokens. The end result of the last Token Filter
are the terms that are indexed. Regarding the query input string, the following tokenizers and
filters are applied at query time.

The Whitespace Tokenizer splits the text at the whitespace, the output is a token stream. After-
wards, the Synoym Filter takes action, with the help of a text file that contains all words that
are synonymous with each other. The TP has not filled this text file with new synonyms yet but
has taken over the synonyms from the Open Data Portal. Given the fact that the Whitespace
Tokenizer leaves delimiters in place, the Word Delimiter Filter is applied afterwards. Taking the
example wi-fi, it gets resolved to wi and fi. The Lower Case Filter then transforms the text to
lower case. Afterwards, the Snowball Porter Filter, the stemming filter, is applied. Stemming
means, that every word gets reduced to their word stem form, for example spielerisch (playfully)
to spiel (play). At the end, the ASCII Folding Filter is applied, so that words with accented and
not accented characters are valued as the same, e.g. Eugene and Eugene. The Unicode words get
converted to ASCIL.’

To illustrate the process, take for example the query Olympische-Spiele Hamburg (olympic
games Hamburg) . As Table 3.1 shows, the query gets processed to olymp spiel hamburg at query
time. Every row holds the output of the corresponding filter, every column denotes their position
in den token stream.

9. http://www.pathbreak.com/blog/solr-text-field- types-analyzers-tokenizers-filters-explained(last accessed 2019-
02-02)

http://www.pathbreak.com/ blog/solr-text-field-types-analyzers-tokenizers-filters-explained

WhiteSpace Synonym WordDelimiter LowerCase SnowballPorter ASCIlIFolding
Tokenizer Filter Filter Filter Filter Filter

Figure 3.1: The sequency of applying tokenizers and filters to the input query. The filters are
applied in the following order, after the Whitespace Tokenizer: Synoym Filter,
Word Delimiter Filter, LowerCase Filter, Snowball Porter Filter and ASCII Folding

Filter.
’ token position \ 1 \ 2 \ 3 ‘
White Space Olympische-Spiele | Hamburg
Word Delimiter | Olympische Spiele OlympischeSpiele | Hamburg
Lower Case olympische spiele olympischespiele | hamburg
Snowball Porter | olymp spiel olympischespiel hamburg
ASCII Folding | olymp spiel olympischespiel hamburg

Table 3.1: This Table illustrates the tokenization and filter application on Olympische-Spiele
Hamburg (olypic games Hamburg) at index time. The result is the query tokens
olymp, spiel olympischespiel and hamburg.

A similar process has to be applied to the document texts at index time, see Figure 3.2. The
biggest difference is, that no synonym filter is started, as it would bloat the index. Another small
difference shows in the Word Delimiter Filter, where words (and numbers) are not catenated.
This means that wi-fi would not only resolve in wi and fi, but also in in wifi. The same happens
with numbers. This way, words that could be written with or without a delimiter get matched on
the same word, for example the queries for wifi, WiFi, wi-fi and wi+fi would all match.'?

WhiteSpace WordDelimiter LowerCase SnowballPorter ASCIlIFolding
Tokenizer Filter Filter Filter Filter

Figure 3.2: The sequency of applying tokenizers and filters to the index documents. The filters
are applied in the following order, after the Whitespace Tokenizer: Word Delimiter
Filter, LowerCase Filter, Snowball Porter Filter and ASCII Folding Filter.

Table 3.2 illustrates the the query "Olympische-Spiele Hamburg". As Table 3.1 shows, the
query gets processed to "olymp spiel olypischespiel hamburg" at index time. The difference in
processing regarding the Word Delimiter Filter will be adressed later in this thesis.

10. https://lucene.apache.org/core/4_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/
WordDelimiterFilter.html (last accessed 11-08-2019)

https://lucene.apache.org/core/4_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/WordDelimiterFilter.html
https://lucene.apache.org/core/4_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/WordDelimiterFilter.html

token position | 1 [2 E

WT Olympische-Spiele | Hamburg
SF Olympische-Spiele | Hamburg
WDF Olympische Spiele Hamburg
LCF olympische spiele hamburg
SPF olymp spiel hamburg
AFF olymp spiel hamburg

Table 3.2: A Table that illustrates the tokenization and filter application on "Olympische-
Spiele Hamburg" at query time. The result is the query tokens olymp, spiel, ham-
burg.

3.2.2 Solr parameters

Solr offers a variety of parameters to adjust the search results. The following section describes
the most important parameters set by the TP, to understand how the search results come about.
Listing 3.1 shows an excerpt of query parameters concerning the search are set on the Trans-
parenzportal.

"defType’: 'dismax’,
"gf’: '"name”™4 title”4 tags”2 groups”"2 text’,
"mm’: 7100%’,

"sort’: ’score desc,title_sort asc’

Listing 3.1: An excerpt of the query parameters set on the TP. The query parser DisMax,
the query fields name”4, title™4, tags”2, groups”™2 and text with boost factors
("), the minimum must match factor of 100% and the setting to sort by score
descending and title_sort ascending

When beginning to use Solr, it has to be decided which query parser to use. The QueryParser
transforms the query in a way that Solr Lucene can understand it, which can lead to quite
different search results depending on the choice [27], page 131. The TP uses the DisMax Query
parser. DisMax stands for "disjunction maximum" [27], page 140. Compared to the Standard
QueryParser it shows very few syntax errors and is suitable for simple user enquiries.!! It also
comes with the addition of a weighting function, called Query Function (qf) parameter. Through
this function, specific fields can be given a boost factor to increase the score of the corresponding
documents. The weighting given by the TP can be seen in Listing 3.1. Title and name are
basically the same, in that the name is written in lowercase letters and connected with hyphens,
e.g title=Einredeverzichtserklirung Elbphilharmonie and name=einredeverzichtserklaerung-
elbphilharmonie. The tags are added to each document at index time to aid the search. A
document concerning yourth welfare does, for that purpose, contain the tag Jugendhilfe in
Hamburg (youth welfare). Groups are assigned at the same time, they represent the categories
that can be filtered for on the TP website. Both are taken on during the import of documents into
the TP. Tags and groups will not be subject of change in this thesis.

11. https://doc.lucidworks.com/fusion-server/4.1/solr-reference-guide/7.2.1/the-dismax-query-parser.html (last ac-
cessed 2019-02-02

https://doc.lucidworks.com/fusion-server/4.1/solr-reference- guide/7.2.1/the-dismax-query-parser.html

Generally, the default handling of boolean queries is the locical OR concatenation. However,
with the DisMax query parser, this is converted to a logical AND by applying the mm parameter
with 100%. The mm clause stands for "minimum must match" and restricts the number of
queries that must match in the result document. Having set the parameter to 100% means that
for example the search for 2017 Bebauung Wandsbek-Gartenstadt would not return results if not
the exact three words appear in a document [27], pages 141-142.

Every document gets a score assigned, measured by how good they match the given query.
Consequently, the display of the search results is sorted by score descending and title ascending.
The TP uses the Default Scoring of Solr. The scoring is mainly influenced by the term frequency
and the inverse document frequency. The term frequency weights a document more if the term
appears more often in it. The inverse document frequency, however, weighs a document more if
it appears in fewer documents [11], pages 65-67.

10

4 Methods

The previous chapter describes the technologies behind the TP and specifically, how Solr is used
for the document search. With that, the context of this thesis is set. This chapter further introduces
language technologies and principles of information retrieval. These are used to complement
and improve the search results of the TP. First, Levenshtein distance and decompounding are
explained. Then, the ASV toolbox with some of its tools is introduced. Last, a measurement
technique, the Normalized Discounted Cumulative Gain (nDCG), is explained which is the
chosen evaluation measure.

4.1 Language Processing Techniques

In this section, the Levenshtein distance and decompounding are explained in detail.

4.1.1 Levenshtein distance

The Levenshtein distance (LD), is a string-edit distance metric that determines the minimal
distance between two strings. It originates from Vladimir Iosifovich [17]. The distance is defined
as the number of edit operations necessary to turn one string into another. The three available
edit operations are insertion, deletion, and substitution. Transpositions, meaning the swapping of
adjacent characters, are not included in this algorithm. For every executed operation, the value
one is added to the LD. Weighted versions of this algorithm may add different values to the
operations [23].

In dynamic programming, the distance is computed by calculating a matrix that holds the edit
distances between between prefixes of growing length. An example for the edit distance of
address and adress is shown in 4.1. The first row can be seen as only using insertion, the first
column as only using deletion operations [24]. The computation can be reduced to the following
equation:!

Lev;j = min(Li + 17Lj +1,Ls+ Csubstitution)
LifSi[i] # Sa[j] 4.1

Csubstitution =
0,else

The Equation 4.1 shows that the calculation for the LD at the position i,j in the matrix results
from the minimum of the minimum of the LD around it. The substitution value depends on
whether the two characters in question are the same (+ 0) and no operation is necessary, or
different (+ 1). A visualization of this is depicted in Figure 4.1. Creating the word address adds
up the operations insert and the deletion of the word adress adds up the operations deletions. The
calculation for the LD at the first position (A-A) results from calculating min = (2,2,9) = 0.

1. http://ntz-develop.blogspot.com/2011/03/fuzzy-string-search.html (last accessed 06-08-2019)

11

http://ntz-develop.blogspot.com/2011/03/fuzzy-string-search.html

Deletion

A|D|D|R|E]| s |s
0| 1 | 2 3| 4| 5 | 6 7 <_|m‘
Al 1| o0 |1 2 | 3] 4|5 6
D | 2|10 |1]|2]3]4]c-s
R| 3| 2|1 112 | 3/|24 Lk | U
E | 4| 3 |2 2 2] 1| 2 3 L | Dij
s |5 | 4|3 |3]3]2]1 2
s | 6 |5 a]a]al| 3] 2 1

Figure 4.1: A Levenshtein distance matrix comparing the words address and adress. The result
is a distance of one.

Different use cases for the LD have been for instance plagiarism detection [31], measuring
dialect pronounciation differences [12] or adapting the LD for error-correcting barcodes for
multiplexed DNA sequencing [4].

String matching algorithms are applied to words of certain string lengths. Not every word is
applicable for every algorithm. For example, a string problem that could arise with strings
that are too short is a false positive matching. Short strings, e.g. kale, can arise issues with
false positive matching. Applying the LD to this string would generate the results fale and sale
which are in close string distance to the original string, but are far away content-wise. To avoid
these false positives as much as possible, this thesis is going to adopt the Levenshtein tolerance
distance proposed by Meyer and Lisbach in [18], page 94, see Table 4.1.

’ query token length \ tolerated Levenshtein distance ‘

<5 0
5-8 1
9-12 2
> 12 3

Table 4.1: This table is adapted from [18], page 94. The table compares the length of a query
token and the resulting tolerated Levenshtein distance. The three conversion oper-
ations are applied to all search query tokens with more than five characters. Every
query with a length of five to eight characters is matched with a distance of one,
every word with a distance of nine to twelve is matched with a distance of two and
every string-length higher than twelve is matched with a distance of three.

4.1.2 Decompounding

Decompounding (also known as compound decomposition or compound splitting) denotes the
method of dividing compound words into their respecting constituents. A compound is a complex
word that is composed of other words. German and Scandinavian languages are some of the
languages that often use compounds [25]. They can either take shape in one word, for example,
birthday or be hyphenated, for example so-called [8], page 158. Compounding in German

12

is a very complex and diverse matter, as combinations of different word forms are possible.
An example for a noun-noun compound is for examplebehindertenbeforderung (transport for
disabled persons). A verb-noun compound, for example, is Suchmaschine (search engine) [15].

Dictionaries do not necessarily need to contain a compound to make it valid for usage in the
German language. The advertisement industry for example tends to create new compounds such
as Frischekick (translates directly to "fresh kick") [19]. As [32] describe it, a semantic relation is
sufficient in German to create a whole new noun.

In general, compound splitting does not work with compositional compounds, which means
compounds which cannot be explained by the meaning of their compound words. For instance
blackmail can be split into black and mail, however a query expansion with black and mail would
not return satisfactory results. A. Schiller describes this as over-segmentation [25]. Monz et al.
also report this disadvantage and point out the slight topic drift that arises with query expansion.
This difficulty is accepted in this thesis.

The various compound kinds also differ in whether they contain an interfix or not. An interfix is
a phoneme that appears within a compound word as a connector, for instance for grammatical
reasons. Some possible German interfixes are -s-, -(e)n-, -es-, -e-, -er-, -ens- [16], page 86. For
example, Prdsidentschaftswahl (presidential election) contains an interfix "s", Prdsidenschaft +
s + wahl. This has to be kept in mind when dealing with compound splitting [26].

Research on decompounding in compounding languages has discovered the positive impact that
decompounding can have in IR. Braschler et al. report that decompounding results in higher
text retrieval improvement than stemming [3]. A study by Chen et al. found an improvement of
German monolingual retrieval by 11.47% with decompounding [8].

4.2 ASV Toolbox

The ASV Toolbox is a collection of natural language processing tools created by Chris Biemann,
Uwe Quasthoff, Gerhard Heyer and Florian Holz [2]. ASV is an acronym for Automatische
Sprachverarbeitung in German (Natural Language Processing). It contains twelve independent
tools that are also available as single modules. It is written in Java and all tools can be assessed
via a GUI version or incorporated into a project with Java Archives (.jar files). In particular, the
tools Levenshtein and Baseforms are relevant for this thesis.

4.2.1 Levenshtein Tool

The Levenshtein Tool was created by Stephan Schubert. It contains the option to return a list of
alternative words given a word, the required distance and the corresponding Directed Acyclic
Word Graph (DAWG). The DAWG can either be chosen from a selection of 15 pre-trained
DAWG for a number of languages, including German or English, or a self-created graph can be
added from file. Additionally, the tool offers the possibility to create a custom DAWG.

For our implementation, we make use of a custom created DAWG. A DAWG is a smallest
suffice automaton of words, also known as an Acyclic Deterministic Finite Automata (ADFDA)
[7], page 87. It is, in effect, a finite state automaton that accepts words as input [10], page 3.
The construction of said DAWG is performed by using the ASV Toolbox. The training of the
DAWG requires a word list, with each word in its own row. Given this DAWG and a weight,

13

the ASV Toolbox returns a list with all possible alternative words, sorted in alphabetically order
ascending.

4.2.2 Baseform Tool

Regarding decompounding, this thesis uses the Baseform Tool of the ASV Toolbox by Thomas
Eckart and Dirk Goldhahn. It is designed to split noun compounds at offers four different options:
compound noun decomposition, compound noun training, baseform training and baseform
reduction. The compound noun decomposition is going to be used in this thesis. It can either be
used with an own classification tree, or thr pre-trained German tree. In this case, the German tree
is going to be used for time reasons.

The tool is implemented by using a Compact Patricia Trie (CPT). PATRICIA is an acronym for
practical algorithm to retrieve information coded in alphanumeric [22]. A Trie is a data structure
for storing strings, where each prefix is a node. A compact version of this tree is a Patricia Trie,
where nodes without a branch are combined [rais1993limiting].

To split a word into its constituents, CPT classifiers recursively traverses the word from both
ends. They split the words until no segmentation is possible anymore. The interfixes mentioned
in Chapter4 are getting pruned and the constituent words reduced to their base form by applying
a part-of-speech-independent base form reducer[35].

4.3 nDCG

The Normalized Discounted Cumulative Gain (nDCG) [13] is a measurement to asses the quality
of search results. It possesses a few advantages in comparison with other ranking measurements.
First, it allows a ranking grade that expands beyond binary [34]. Especially in the context of
information retrieval, this characteristic is of importance. While documents might be graded
as relevant or irrelevant, many documents fall into the category of ,,somewhat relevant* or
,somewhat irrelevant®, which needs to be considered when evaluating an IR system.

Second, the nDCG integrates the position of each document in the final score. The DCG, which is
part of the nDCG calculation, is based on the assumption that the higher the rank of a document
is, the higher up it should appear in the result list[34]. The ,,discounted gain* denotes the
decreasing weight of the position of each document [13]. These discounted gains are eventually
cumulated.

The DCQG is calculated in the following way:

p

DCG, = _
p i;logz(z—H)

relevance;

4.2)

The nDCG is generated by normalizing the DCG. The DCG is first calculated and then divided
by an ideal DCG, the iDCG. The iDCG is calculated by assuming an ideal ranking. For this
thesis, the ideal is adopted that a result list with only good documents is ideal. Without this
normalization, the DCG would just a number that is difficult to compare with other results. The
nDCG results in a number between zero and one, with one signifying ideal results and zero

14

signifying that no relevant results were returned. Anything in between is reflected on the score
between zero and one.

The nDCG is calculated in the following way:

DCG,
iDCG,

nDCG,, = (4.3)

To illustrate the calculation of Equation 4.3, Table 4.2 shows an example calculation. Every
returned document for the fictional query airport security is graded by relevance on a scale of
three to zero, where zero means nonexistent and three means good result. The score for each
result is calculated an the adds up to the DCG. Lastly, it gets normalized by dividing through the
ideal DCG.

| rank | query result | relevance | score |
1 airport security system 3 9.97
2 airport cleaning service 1 2.1 DCG 17.05
3 airports do not have enough 3 4.98 iDCG 29.38
security ’ nDCG \ 0.58 ‘
4 - 0 0.00
5 - 0 0.00

Table 4.2: The table contains a column for the rank of the document (1-5), the query result in
form of the document title, the graded relevance of the document and the calculated
relevance score. Three documents with the relevance of tree, one and three are
returned. The last two query results are nonexistent and are graded a zero. They re-
sult in a combined DCG score of 17.05. Divided by the iDCG of 29.38, the nDCG
results in 0.58. The iDCG is calculated by assuming that the best possible results
would be five documents with the relevance of 3.

15

5 Experimental Design

The previous chapter described methods with whom the document search of the Transparenzpor-
tal (TP) may be improved. Following on that, this chapter dives into how exactly these methods
can be applied to the TP search. Furthermore, the evaluation of the impact of those methods on
the quality of search results is designed. Therfor, the collection and processing of test data from
actual query logs is described. Then, the prototype for evaluating the search result changes is
shown.

5.1 Procedure

The general idea behind the experiment setup is as follows. For every language processing
method (including a control experiment), every query result gets manually evaluated regarding
the fit to the query. The results are individually evaluated on a scale of good, okay, bad and
nonexistent. To guarantee a homogenous evaluation, all tests are carried out by one person, the
author. This could lead to a confirmation bias, which cannot be avoided given the test setup. The
expanded queries are given query weights. This should ensure that documents that match the
original query get ranked at the top, by assigning them a higher weight than the others.

For the Levenshtein distance (LD), the Cartesian product is calculated and added to the query
with a logical OR. Every query that is not the original query gets assigned a weight of 0.5, as
in[8], page 157. For instance, the query Immobilienmarktbericht (property market report) is
expanded in the following way:

(immobilienmarktbericht)'°° OR (immobilienmarktbericht)*> OR (immobilienmarktbereicht)*-
OR (immobilienmarktberichts)?> OR (immobilienmarktberichte)> OR (immobilenmarktberichte)®-
OR (immobilienmarktberichten)’> OR (immobilienmarktberichtes)®

The LD gets only applied at query time. The aim is to improve the query input of the user to
match documents in the database. Before creating these alternatives and adding them to the
query, the question remains whether the Levenshtein distance should be applied before the Solr
tokenizers and filters processing steps described in Chapter 3, or afterward. The application of
the Levenshtein distance would be considerably less effective if applied after stemming. This
is the reason why the LD gets applied to the original query, and not the stemmed version. The
alternatives are calculated and added to the query before handing it over to Solr.

The addition of the alternative queries to the original query has to be handled carefully since the
query should not become too complex. Given the case of a one-word query, the alternatives are
just added to the original query as a logical OR. For queries with more than one word, the Carte-
sian product of all words generated by LD is used as the query. It returns query combinations of
all possible search words, including the original query. To ensure that the documents matching
the original query are ranked higher, the original query gets assigned a weight of 100. All other
queries get the same weight of 0.5. Combinations of queries as in the following example arise:

(georeferenzierte AND rasterdaten) %

OR (georeferenzierte AND rasterdaten)®> OR (georeferenzierte AND rasterkarten)’

16

OR (georeferenzierte AND laserdaten)®> OR (georeferenzierte AND wasserdaten)
OR (georeferenzierte AND halterdaten)’.

Regarding decompounding, an easy approach would be to add the decompounded parts to the
query. However, given the Solr "minimum must match" requirement of 100%, just adding
the compound parts to the query is not effective. When searching for immobilienmarktbericht
(property market report), the query would not benefit from immobilie (property) , markt (market)
and bericht (report), as it would look like this: Immobilienmarktbericht AND immobilie AND
markt AND bericht, which would be entirely in contrast to our goal. Also, forming the Cartesian
product the same way as with the Levenshtein query expansion would be equally counterproduc-
tive. Instead, subsets with the decompounded parts are formed. Additional weights are applied
to be able to rank queries that contain more of the decompounding parts higher than the ones
with less decompounding parts. It is assumed, that the former would be more relevant for the
query. As a heuristic, a query got assigned a weight corresponding to the number of query tokens
in it. For example, a query with three query tokens gets a weight of three. Regarding the query
Immobilienmarktbericht, the expanded query then looks like this:

(immobilienmarktbericht)'%° OR (immobilie)'® OR (markt)'® OR (immobilie AND markt)*°
OR (bericht)'"? OR (immobilie AND bericht)*? OR (markt AND bericht)*® OR
(immobilie AND markt AND bericht)*

Before being able to start the experiments, an alteration of the Solr parameters has to be made. It
was originally planned to use the exact Solr parameters from the Transparenzportal to be able to
implement the methods as unproblematic as possible, given successful results.. However, the
DisMax query parser does not offer an uncomplicated option to apply weights to query tokens. It
is only possible to indicate whether a query token has to be included or whether it is optional
for the search. A reasonable approach to tackle this issue was to use the Extended DisMax
(eDisMax) query parser instead. As the name implies, the eDisMax query parser extends the
DisMax query parser and therefore can be used interchangeably. The general procedure for
evaluating the query results is listed below:

1. For every query, the resulting documents are shown in the web application.

2. Every document gets evaluated on a scale ranging from good to bad. If a document has
already been evaluated, the response is retained.

3. After every query is done, the nDGC for every query is calculated.

The evaluation of information retrieval systems is driven by assessing information retrieval
effectiveness. Manning et al. emphasize that the relevance of a result should be rated regarding
the expressed information need, and not the query [20], page 152. Hence, the results of the
experiments are evaluated as good if the document matches the information need. For example,
if the query immobilienmarktbericht actually returns the property market report of the town
Hamburg, it is evaluated as a good result. If it is just mentioned in a document, the content of
the information given about it determines wether an evaluation is going to be okay or bad. A
document that only contains a query word in the Appendix is clearly bad. Considered for the
evaluation were the title of the document, the fulltext, and the original document. Unfortunately,
a lot of URLS for the original documents were outdated and therefore not accessible. If none of
the former sources explain the match, the tags and groups are consulted.

17

The training word list used in this case is derived from the TP full texts, so the sum of the texts
of all documents contained in the TP. When creating this list, two different factors have to be
taken into consideration. First, most user queries on the TP contain only nouns or combinations
of nouns. Second, the whole point of creating a custom DAWG is to be able to catch those words
that are peculiar for the TP. Otherwise, using a pre-trained DAWG for German would suffice. An
example of those nouns is be Baumkataster (tree register). A simple regular expression applied
to the full text corpus extrudes all nouns. A part-of-speech-tagger would resultd in a similar
result, a regex is used i this case as a simpler measure. To verify the correctness of this custom
DAWG, the ASV toolbox GUI is used, a screenshot of the tool is shown in Figure 5.2, using the
misspelled input baumkatster (misspelled "tree register"). With a distance of one the spelling
baumkataster is proposed, which is correct.

5.2 Test Set

This section describes the creation of the test set used in the experiments. The test set should
contain a selection of queries with few search results, to be able to assess the improvements of
the language processing techniques. As the first step, the logs of the TP are analyzed to extract
all queries. Afterward, an experiment test collection is created based on the original queries in
the query logs.

5.2.1 Query Log Analysis

All TP logs were collected from October 2014 to August 2018. This analysis is the first step to
identify user queries that produce less than five results, and which are, therefore, applicable for
the following experiments.

5.2.1.1 Collected Data

From 2014 on, user queries were recorded in the following form:

0.0.0.0 - - [04/Jun/2018:11:47:25 +0200]

"GET /?g=S-Bahn+Verkehrsvertrag
&sort=score+desc%2Ctitle_stringtasc

&esg_not_all_versions=true HTTP/1.1" 200 15463
"http://transparenz.hamburg.de/"

"Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko"

As shown in the listing above, the recording starts with an Internet Protocol (IP) address and
the time of access. The IP address, however, cannot be assigned to specific users, because no
unique IP addresses are stored. Instead, there is a range of IP addresses that signifie whether the
query has been placed from inside the cities administration network, and the IP address 0.0.0.0
that signifies access from the outside. In addition, the logs contain the query itself, the kind of
sorting was applied, whether the user chose to search within the newest TP data set and other
information, including which web browser was used.

18

All queries are analyzed collectively to prevent the domination of time-dependent query terms.
Even though the queries from 2014 might differ greatly from the ones from 2018, it does not
diminish their value for the evaluations in this thesis.

5.2.1.2 Analysis

The following analysis is based on the analysis steps proposed by Anne Chardonnens and Simon
Hengchen [6]. In their paper, they differentiate between five analysis steps for large log files:
collecting, parsing, grouping, cleaning, and clustering, as described in Chapter 2.

5.2.1.3 Collecting

The recorded Solr logs are not limited to user query logs, but also contain error logs and
recordings regarding feed requests. As a result, the whole log set contains 14 GB of data.

5.2.1.4 Parsing

Since the collection of data is not needed in its entirety, a parsing step needs to be applied. First,
all logs that did not contain queries (GET /?7q= and GET dataset?q) are removed. This includes
the feeds requests, as they would skew the distribution significantly. Second, only the IP address,
the timestamp and the query tokens of each query are kept. Also, it is not differentiated between
the individual IP address origins. In preparation for the next steps, the timestamps are cut off
at the minute mark. This step only keeps logs that contain queries, hereinafter called "query
logs".

5.2.1.5 Grouping

In the next step, search queries that should not be counted more than once are grouped. A python
script was applied, making use of the "group by" function of the python package Panda' [6]. The
aim of this step is to take out requests that otherwise unnecessarily inflate the query count of
specific queries. This serves the purpose to avoid counting the same input of one user multiple
times, as it might be the case with a frustrated user. Also, this way the heavy influence of bots on
the query count can be diminished, including production tests from the TP developers themselves.
For example, one of the most used queries when testing the TP is Kindergarten. It was used
165,339 times out of 330,808 in 2017.To be able to identify those queries, a heuristic is applied:
search quries recorded within one minute are treated as identical . Silverstein et al. use a cutoff
of five minutes, however in this case one minute seemed justified after examining the query logs
[29].

Before going through the cleaning process, only the actual queries and the corresponding
timestamps are kept. In addition, the value one was added to every query, representing the query
count. An excerpt of what the data locked like at this point is shown in Table 5.1, the plus signs
and %C3%BC encoding show that a cleaning step is necessary. The query stoferkamp+ shows

1. https://pandas.pydata.org/ (last accessed 06-06-2019)

19

that the user added an unnecessary whitespace, probably out of accident. Overall, the search
data was reduced to 796.249 queries (33.5 MB).

| timestamp \ query | count |
2014-10-12 06:34:00 stoferkamp+ 1
2014-10-12 06:35:00 Stoferkamp 1
2014-10-12 06:35:00 | Baugenehmigung+Eimsb%C3%BCittel 1

Table 5.1: This table contains the result of the third step of the query log analysis, the group-
ing. An excerpt of the query log data is shown with three queries, their timestamps
and their query count, sorted ascending by timestamp. The queries are stoferkamp+
(count 1), Stoferkamp (count 1) and Baugenehmigung+Eimsb%C3%BCttel (count

1).

5.2.1.6 Cleaning

Due to URL encoding, the remaining query logs had to go through a cleaning process. It is, for
instance, not possible to use a whitespace directly in an URL. Instead, whitespaces are encoded
with a plus sign (+) or with %20%. Without this process, the queries stoferkamp+ and Stoferkamp
would not be counted as the same queries when applying the clustering. Besides, all data was
converted to lowercase, as shown in Table 5.2.

’ timestamp \ query \ normalized query \ count ‘
2014-10-12 06:34:00 | stoferkamp+ stoferkamp 1
2014-10-12 06:35:00 | Stoferkamp stoferkamp 1
2014-10-12 06:35:00 | Baugenehmigung+Eims%C3%BCttel | baugenehmigung eimsbiittel 1

Table 5.2: This table contains the result of the fourth step of the query log analysis, the
cleaning. An excerpt of the query log data is shown with three queries. Each
query contains the timestamp, the normalized query and the query count, sorted
ascending by timestamp. The queries are stoferkamp+, normalized: stoferkamp
(count 1), Stoferkamp+, normalized: stoferkamp (count 1) and baugenehmi-
gung+eimsb%C3%BCttel, normalized: baugenehmigung eimsbiittel (count 1).

5.2.1.7 Clustering

In the last step, all normalized queries that are equal are clustered as one and, in the same step,
the query counts are summed up, see Table 5.3. Overall, 74,174 queries are left (2.1 MB). The
result obtained from this preliminary analysis of the log files is a file that contains all queries
ever made on the TP plus the number of search requests for each query. The top three queries
were fliichtlinge unterkunft (refugees accommodation), textitzuwendungen (contributions) and
textitolympische spiele (olympic games). When looking at the queries, it becomes apparent that
most of them are not very specific. In the next section it is described how search words with less
than five results are extracted from this list.

2. https://tools.ietf.org/html/rfc3986 (last accessed 01-05-2019)

20

https://tools.ietf.org/html/rfc3986

normalized query | count |

stoferkamp 2
baugenehmigung eimsbiittel 1

Table 5.3: This table contains the result of the fifth step of the query log analysis, the clus-
tering. An excerpt of the query log data is shown with three normalized queries
and their query count, sorted ascending by timestamp. The log data that has been
cleaned to remove url-encoding, transformed to lowercase and clustered to combine
equal queries.The queries are stoferkamp (count 2) and baugenehmigung eimsbiittel
(count 1).

5.2.2 Experiment Test Collection

By the end of the query log analysis, a list consisting of all queries and their corresponding
query count is created. For an excerpt from this list, please see the Appendix. It contains 74,175
unique queries. Given that this thesis concentrates on queries that produce less than 5 results,
a further processing step has to be applied. As a result, the derived query list is reduced to
23,239 search terms. However, it still holds several queries that are just numbers (2,384 in total),
therefore another optimization step has to take place to remove them. The reason for removing
the numbers is that there is no indication of what the user was originally looking for, and they
are therefore irrelevant for the following experiments. In the end, the derived query list consists
of 20,782 search terms, which is about 28% of the initial result list.

After narrowing the query list down to all relevant queries, the next step is to take this as the
basis to create a smaller set for the experiments. Given that the results of the queries are to be
manually evaluated depending on their fit regarding the queries, taking all 20,000+ queries into
account would not be feasible. On the one hand, the intended list has to be reasonably large to
get adequate results. On the other hand, it has to be possible to test this list by one person within
a reasonable time frame. Manning et al. provide an overview of evaluation methods in IR stating
that 50 information needs are a sufficient minimum [20], page 152. Starting from this, a set of
approximately 100 queries is aimed to be extracted from the original list.

This test set has to also exclusively contain queries with at least roughly predictable search results.
A query such as projektgrundsditze (project principles) does not convey the kind of documents
that should be returned. That is one of the reasons why, despite being the simplest way, just
taking the top 100 queries of the original list is not attainable. Regarding this experiment list,
a few restrictions have to be made. In summation, three categories were used to classify the
different kinds of queries. These categories are not exclusive, which means a query only gets
sorted in its most meaningful category, even though more than one would fit.

Firstly, not all search terms indicate the intention of the user well enough and therefore have to
be excluded. For example, a search for hamburg griin (hamburg green) could signify that the user
expects results concerning the party Die Griinen (The Greens), as well as green areas and parks.
All search terms that are too obscure to work with, as they do not belong to the search scope
of the TP, for example, kruzifixkiller (crucifix killer) , are also sorted into this category. The
second category is called "proper nouns / locations". Proper nouns and locations, for instance
roggenkamp, are quite impossible to optimize (if not misspelled), and therefore are irrelevant for
this thesis. The last category intention clear includes the remaining terms that are understandable
in their search intention, e.g. Grundstiicksmarktbericht (property market report).

21

| number | category

21 (10%) | intention unclear
98 (44%) | proper nouns / locations
101 (46%) | intention clear

Table 5.4: Sorting the 220 most searched queries from the small set into three different groups:
21 (10%) intention unclear, 98 (44%) proper nouns/ locations and 101 (46%)
intention clear

Before the categorization process can take place, the initial query list is sorted by query count in
descending order. Then, the first 220 terms of the small result list are manually examined and
sorted into the three categories, taking into account the search results and the comprehensibility
of the search result itself. This smaller query list, like the original list, is sorted in descending
order by query count. A different approach would be to select these terms randomly from the
initial result list, however taking the queries that occur most often makes the improvements more
meaningful. The results are presented in Table 5.4. All queries that contain spelling mistakes
are deemed comprehensive and sorted in the category "intention clear". A frequent example of
a spelling mistake is, for example, the noun elbphilarmonie. The Elbphilharmonie? is a very
expensive landmark of Hamburg and therefore of great public interest - but prone to spelling
errors, nonetheless. In summation, 7% of all queries contain spelling mistakes.

Consequently, the experiment list includes all terms with clear intention, in the sum 101 terms.
Proper nouns and locations are not added to this set, because they are too specific. For example,
the search for "intermisvertrag" cannot be improved, as it is a proper noun that needs to appear
in the resulting documents.

5.3 Prototype and Web Application

To implement the modification of the queries according to the chosen techniques, a prototype
was implemented in Java. In addition, a simple web application was created to evaluate the
result.

The prototype is realized as a Java project that builds a connection to a Solr slave. Solr can be
organized in a master-slave architecture, where a Solr slave is a copy of the original index. This
requires a master server that contains the indexed documents and one or more slaves that copy
this index. The slave created for this thesis was created in July 2018 and therefore contains
a snapshot of the TP content at this time. The TP is continually extended as more and more
documents are added to the index. The slave nonetheless represents an almost identical copy of
the TP Index at the time of the experiment: July 2019.

Figure 5.1 offers an overview over the general architecture.

The prototype in the center of the figure makes search requests to Solr with a distinct query per
request. It receives a list in return with all search results regarding this query, ranked by score.
The prototype connects to a mysql database and offers a Representational State Transfer (REST)
API for the web application.

3. https://www.elbphilharmonie.de/en/

22

https://www.elbphilharmonie.de/en/

Web Application

display
resulis
save resulfs &
evaluation
start
Prototype search »
check for evaluations = * return results
for query Solr
Database ‘ Slave
query |

Figure 5.1: This graph depicts the way the experiments are carried out, from a technical point
of view. The prototype holds the query test list and makes search requests to
Solr. Solr returns a list of documents that are then shown on the web application,
together with any already existing evaluations. The following evaluation of these
documents are stored in a database, and the process is repeated with the next query
from the test list.

Every experiment follows the same scheme. The prototype contains the test list with all queries,
as described in section 5.3 In the first step, the web application starts the experiment. A simple
"start" button triggers the handling of the query term on top of the search list. Afterward, each
query token gets modified respectively. After modifying the query tokens, they are forwarded to
Solr. This means that the modified query then has to go through the filter and tokenizer process.
The display of the resulting documents is realized through a web application, a screenshot is
shown in Figure 5.2. Every document can be evaluated as good, okay, bad or nonexistent. Before
showing the results, the prototype checks with the database whether an evaluation already exists
for the query - document combination. If yes, the evaluation gets pre-filled. In the last step, the
query, the resulting documents, and the evaluations get stored in the database.

23

Start

Query

Index:

: immobilienmarktbericht

Title: Bad Okay

Immobilienmarktbericht Hamburg 2018 ® Good X

Fulltext:

[Gutachterausschuss fur Grundstiickswerte Die in den Kapiteln 1 — 6 enthaltenen Daten dienen der Marktiibersicht und sind nicht

zur Verkehrswertermittiung geeignet. Die vollstandige Ausgabe mit den zur Wertermittlung erforderlichen Daten Kapitel 7 erhalten

Sie kostenpflichtig unter gutachterausschuss@gv.hamburg.de IMMOBILIENMARKTBERICHT HAMBURG 2018 Landesbetrieb ..

+ Show More

URL:

http://daten-hamburg.definfrastruktur_bauen_wohnen/immobilienmarktberichte/IMB2018.pdf, http://metaver.de/trefferanzeige?

docuuid=33E6807B-9C10-4B3C-A769-B50E4D10D55F

Title: Bad Okay
s Good X

Immobilienmarktberichte Hamburg
Fulltext:

[Freie und Hansestadt Hamburg Baubehérde Gutachterausschuss fir Grundstiickswerte in Hamburg Geschaftsstelle des

Figure 5.2: This figure shows a screenshot of the web application with the query immo-

24

bilienmarktbericht, the position in the test list (0) and the first results. For every
resulting document, the title, full text and URL are shown. The evaluation of each
document is implemented with radio buttons (bad, okay, good, nonexistent.

6 Evaluation and Discussion

An experiment was conducted to determine whether the Levenshtein distance and decompounding
can improve the search results of the Transparenzportal. Both techniques were applied separately
to the same data set. During the experiments, it became apparent that specific characters could
not be used in queries as they would always return zero results, due to the Solr version. After
comparing with the Transparenzportal (TP) website itself, it became clear that the bug has been
fixed there and the queries in question return good results. Therefore the two queries, that contain
"&", were removed from the experiment list. As an additional complication, the query fischerei
biologisch Gutachten alster (fishery biological report alster) produced so many queries, due to
the Cartesian product, that it broke Solr. This query also was excluded from the test set.

This chapter is subdivided into three sections. First, the statistical analysis of the results with the
aid of a t-test is presented. Second, the general evaluation of the data and the discovered findings
is described. The third section provides an insight into a possible implementation in the TP.

6.1 Statistical analysis

To be able to compare the results statistically, a two-tailed paired t-test is applied. A t-test is a
measure to compare the means of two dependent sets, for example, used in case-control studies.
The control set in this case is the experiment on the test set without any modifications. The
null hypothesis assumes that there is no difference between the mean of the control sample and
the manipulated sample. The alternative hypothesis assumes that there is a difference between
the true mean of the manipulated sample and the comparison value of the control sample. The
significance level « is set to 0.05, which is most commonly used. The p-value is calculated as
two-tailed, to not assume an effect in any direction.

Levenshtein: The mean nDCG for the control sample results in 0.2105, the mean for the
Levenshtein sample is 0.2917. The degrees of freedom are set to 97. This results in a test statistic
of -3.9375. The p-value is 0.0002 and the critical two-tail t-value is measured at 1.9847

The critical t-value is greater than the test statistic, and the p-value is less than o 0.05. Therefore
the difference between the two sets is significant.

Decompounding: The mean nDCG for the control sample was measured to 0.2105, the mean
for the decompounding sample is 0.4623. The degrees of freedom are set to 97. This results in
the following values. This results in a test statistic of -16.1289. The p-value is 3.3138E-29 and
the critical two-tail t-value is measured at 1.9847

The critical t-value is greater than the test statistic, and the p-value is less than ®0.05. Therefore
the difference between the two sets is significant. Both tests result in statistical significance. The
null hypothesis is rejected. Therefore, it is assumed that both techniques improve search results
of queries with originally five or fewer search results.

25

6.2 Data Evaluation

Both experiments reach statistical significance. However, some effects have been observed
during the experiments that need to be included in the final evaluation.

First of all, the Levenshtein distance has proven to be great to compensate for ambiguities in
the German language. For example, the nouns Potential and Potenzial denote the same thing
(potential), both versions, with a "t" or "z", being formally correct. Even though none of the
examined queries contain a street name, it is obvious that the Levenshtein distance would greatly
improve findings for different streets with the endings "-strale" and "-strasse". This aspect was
unfortunately not considered when creating the experiment list and all locations were removed,
as explained in Chapter 5.2.2. Further experiments would certainly be able to confirm the benefit
of the Levenshtein distance on street names. At the same time, decompounding would probably
have a negative effect given that they are proper nouns. A compromise has to be found.

As an unexpected but unsurprising side effect, quite a large amount of LD alternative words were
stemmed to the original query. An example of this is given by the query Immobilienmarktbericht.
The following alternatives were found: immobilienmarktbereicht, immobilienmarktberichts,
immobilienmarktberichte, immobilenmarktberichte, immobilienmarktberichten, immobilienmark-
tberichtes. However, only immobilienmarktbereicht (property market report, with a spelling
mistake) was not stemmed and therefore is the same as immobilienmarktbericht. Nevertheless,
this does not have an impact on the usability of the LD.

As expected, the LD works great on queries with spelling mistakes. Especially the two queries
with a spelling mistake in Elbphilharmonie result in an nDCG of 1.0.

Compared to the LD, the decompounding algorithm results in a higher recall. Still, many of the
resulting documents are not relevant for the query. This results from the fact that many queries
contain the words Bericht (report), Vertrag (contract), Verzeichnis (register), Gutachten (reports)
and other, which are featured in a lot of documents. As a result, many documents concerning
completely different topics are returned. This difficulty arises from the overall nature of the
user queries. Nearly half of the analyzed queries, see Subsection ??, are proper nouns. Taking
the proper noun interimsvertrag (Interim Agreement), for example, even though a search with
decompounding returns a lot of documents for the query vertrag (contract), the user might get
confused by the profound topic drift.

At the same time, decompounding works great for simple one-word queries such as behinderten-
beforderung (transport for disabled persons). Through decompounding, the relevant document
containing both behinderten (disabled persons) and beforderung (transport) is returned. This
example shows how compounds are sometimes expected where only the constituents are used.

The decompounding approach of this thesis has also proven to be beneficial for queries that
contain a specific year. A search for immobilienmarktbericht 2017 (property market report 2017)
and 2016 waffen- und munitionstransporte (2016 arms and ammunition transports) is not able to
find the intended document, because it does not exist. The original search fails at this point to
return any other relevant documents. With decompounding, however, all other property market
reports and arms and ammunition transports were found, due to the use of subsets.

The findings indicate that the Levenshtein distance and decompounding could improve the results
for queries that otherwise only receive few results. When aiming to add these techniques to the
Transparenzportal, a few limitations of the approaches in this thesis need to be considered.

26

First of all, as mentioned at the beginning of this chapter, the query fischerei biologisch Gutachten
alster had to be excluded from the test set. The number of queries that were created by the
Cartesian product exceeded the capacity of Solr. Hence, there either needs to be a cutoff at a
specific amount of queries, or the LD should only be applied on maximum two-word-queries, or
a combination of these approaches.

Second, given the fact that the TP contains some unusual nouns, it could be of interest to use the
compound noun training tool from the Baseform Tool on a set of these nouns, to ensure that they
are split correctly.

6.3 Application

The applied natural language processing has been proven useful in improving the recall of the
Transparenzportal (TP). The experiments and the prototype were designed to easily test a small
set of queries. This chapter discusses two possible implementations for the TP at query time on
a larger scale, that can be added to the Transparenzportal: a filter and a Java solution. As the use
of both decompounding and the Levenshtein distance together have not yet been evaluated, the
following approaches are intended for either one or the other.

For the implementation, a number of criteria need to be considered. First, the solution should be
low maintenance and easily added to the TP. It needs to be expandable and update itself when
new documents are added. Second, a high degree of modularity is desired. The added elements
might not prove to be as suitable for the live system as anticipated and should be easily switched
off in the case of any problem. Third, the impact on load times and page speed needs to be taken
into account.

The first approach considers the development of a custom Solr filter. This filter is responsible
for applying the desired language processing technique. As stated in Chapter 3, the query has
to undergo several steps bevor the actual search is carried out. Consequently, this filter should
not be applied after the Snowball Porter Filter (stemming), but also not before the tokenization.
As a compromise, the new filter could be situated between the Whitespace tokenizer and the
Synonym Filter. This also prevents the modification of the synonyms, which is not desired.

As an alternative, a small service (for example written in Java) could be inserted between CKAN
and Solr. Instead of directly forwarding the user queries to Solr, CKAN could forward the query
to the service, which in turn produces alternative queries and hands them back. In the case of
the Levenshtein distance, another function could be added to this service, which automatically
updates the DAWG when new documents are added to the TP. This could be implemented, for
example, with the aid of a part-of-speech tagger to extract the nouns from the full texts.

Both approaches could easily be added to the TP. However, the custom Solr filter might be
more difficult to be kept up to date, as a new DAWG would need to be added every time new
documents enter the TP. Regarding modularity, they do not differ. The page speed would in both
cases be dictated by the loading time of the data structures. A query filter would have to load
these every time a query is processed. In contrast, the service would only need to be started
once and therefore only load the necessary data structures once. In conclusion, the addition of a
service is the better solution given these two options.

27

7 Summary and Conclusion

This thesis has investigated the gain of adding the Levenshtein distance and decompounding to
the TP. An experiment has confirmed with statistical significance that the language processing
techniques improve the recall of resulting documents for queries that did not perform well
before. It was discussed that a few adjustments would have to be made to the applied techniques
before adding them to the TP. The corresponding application possibilities have been outlined
and discussed.

Given the fact that the TP is the only source on the internet for most of these unique documents,
the more results returned, the better. For this reason, the LD, as well as the decompounding
technique, would be beneficial. They both tackle different problems: one works well with
spelling mistakes, the other works well with compounds.

A difficulty arises from the fact that a parameter is set on the TP so that every single query token
must occur in a resulting document. The LD cannot help with that, and the decompounding
approach implemented in this thesis only fixes this as a by-product by using subsets. Changing
the "minimum must match" setting to 90% could, therefore, be useful. In addition, the TP does
not remove stopwords from a query. For example, the word innerhalb is unnecessary for most
queries, because it does not convey an information need. The query Bauvorhaben innerhalb
Wandsbek (construction project within Wandsbek) does not find any documents at the moment
that contain the wordBauvorhaben and Wandsbek, if they do not also contain the word innerhalb.
This could be avoided by adding a query processing step that removes all redundant words.

Furthermore, a small inconsistency in the Solr Filters became obvious during the experiments.
The Word Delimiter Filter (WDT) does not concatenate query tokens at query time. This is a
disadvantage that should be fixed. Given the query meister-titel (championship title), a search for
meister (championship) and titel (title) would be started. However, the document that contains
the correct spelling meistertitel would not be found. The settings for the WDT Filter should be
the same for the query and for the index.

In conclusion, the presented findings suggest an improvement concerning the set of low per-
forming queries. To calculate the impact these applied techniques could have on the whole TP, a
second experiment should be carried out with a randomized test set that is created from all TP
queries. This would ensure to discover possible unexpected side-effects that might not have been
considered yet.

28

8 Outlook

The techniques applied in this thesis are only a small set of possible approaches. Taking the
findings in Chapter 6 as a starting point, a few other improvement possibilities are presented in
this chapter.

To be able to check whether the TP delivers the correct results, it could also be interesting to
include a feedback option on the search result page. A form could be added that always includes
the query itself and a comment section, to add why this particular document should have been
found. This might be a less frustrating way for the user to convey an information need than to
file an official request. This particular hurdle might be too high for most users to overcome, and
they might just abandon their search. By adding a feedback form not only could it show which
search queries lack results and are thought after. It could also signal the town of Hamburg, which
areas are not yet covered enough by official documents.

Another field of study could be the nouns that are connected with und (and). In German, nouns
that consist of nouns with the same last part can be combined. For example, Wasserverbcinde
und Bodenverbdnde (Water Associations and Soil Associations) can be merged into Wasser- und
Bodenverbdnde (Water and Soil Associations). Regardless of whether these are merged into a
fixed term or not, a user might just search for one of them. Bodenverbdinde (Soil Associations)
would return the correct results, however, if the user were to only search for Wasserverbdinde
(Water Associations), they might get no results, because the word does not exist in the index.
Therefore, these word structures could be subject to further improvement.

Another research topic could be the enrichment of the synonym file, which is not up to date at
the moment. The synonyms could be found by examining which words often appear together in
documents. Given the fact that the Levenshtein distance should not be applied to short strings,
see Chapter 3, short queries could benefit from synonyms in particular.

29

Appendix

Query Log Analysis Results

nr normalized query query count
1 fliichtlinge unterkunft 85866
2 zuwendungen 64448
3 olympische spiele 61839
4 olympia 58771
5 olymp 55617
6 elbphilharmonie 45606
7 schuldnerberatung 32103
8 busbeschleunigung 27061
9 geodaten 25319
10 fliichtlinge 17970
11 jugendhilfe 13885
12 bundesrat 11523
13 munition 11152
14 justizbehorde 8445
15 neue liberale 7351
16 radioaktivitit 6724
17 bunker 6475
18 sandbek-west 5927
19 ziegelteich 3895
20 universitétsbibliothek 3454
21 alkis 2545
22 staats- und universititsbibliothek hamburg 2325
23 vergebene vob auftrige 1841
24 genehmigung_nach_hbauo 1734
25 gtfs 1630
26 biotopkataster 1514
27 dieter lenzen 1473
28 e-commerce 1466
29 baugenehmigung 1362
30 messergebnisse zur radioaktivitit 1344
31 reinigungsplan 1238
32 haw hamburg 1161
33 220 783

Table 8.1: Most searched queries 2014-2018 (after going through the cleaning, grouping and
clustering process)

30

=
=

normalized query

query count

0N LNt W

[\ 2\ I N T (O T N I (O I O I O T O i O R e i S SN o)
O 0NN P WNNROWOWOIONWN PR WN—=O

30

Table 8.2: Most searched terms 2014-2018 with less than 5 results 2014-2018 (after going

verkehsunfille
immobilienmarktbericht
orthophoto
diisterntwiete
disk
landesgrundbesitz
hempenkamp
landesgrundbesitzverzeichnis
ortho
alkis ausgewdhlte daten
bruchkanten
shapefile
2016 waffen- und munitionstransporte
bohrarchiv
waldjugend
stralle op de elg
dimag
hauskoordinaten
dtk
baugenehmigung ohlwodren
*
alkis verwaltungsgrenzen
orthofotos
projektgrundsiitze
sponsoringbericht
citygml
virtuelle passpunkte
hausumringe
elbphilarmonie
lidar

297
237
225
117
116
95
92
90
79
73
71
68
65
59
59
58
57
52
52
51
46
45
44
42
42
38
38
37
37
35

through the cleaning, grouping and clustering process).

31

Bibliography

[1]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

32

M-Dyaa Albakour, Udo Kruschwitz, Nikolaos Nanas, Yunhyong Kim, Dawei Song, Maria
Fasli, and Anne De Roeck. Autoeval: An evaluation methodology for evaluating query

suggestions using query logs. In: European Conference on Information Retrieval. Springer.
Dublin, Ireland, 2011, pp. 605-610.

Chris Biemann, Uwe Quasthoff, Gerhard Heyer, and Florian Holz. ASV Toolbox: a
Modular Collection of Language Exploration Tools. In: LREC. Marrakech, Morocco,
2008, pp. 1760-1767.

Martin Braschler and Bérbel Ripplinger. How effective is stemming and decompounding
for German text retrieval? In: Information Retrieval 7.3-4 (2004), pp. 291-316.

Tilo Buschmann and Leonid V Bystrykh. Levenshtein error-correcting barcodes for
multiplexed DNA sequencing. In: BMC bioinformatics 14.1 (2013), p. 272.

Kai-Uwe Carstensen, Christian Ebert, Cornelia Ebert, Susanne Jekat, Hagen Langer, and
Ralf Klabunde. Computerlinguistik und Sprachtechnologie: Eine Einfiihrung. Springer-
Verlag, 2009.

Anne Chardonnens and Simon Hengchen. Text Mining for User Query Analysis: A 5-
Step Method for Cultural Heritage Institutions. In: Proceedings of the 15th International
Symposium on Information Science (ISI 2017); Berlin, Germany, 13th—15th March 2017:
Everything Changes, Everything Stays the Same? Understanding Information Spaces. M.
Gide/V. Trkulja/V. Petras (Eds.) Berlin, Germany, 2017, pp. 177-189.

Christian Charras and Thierry Lecroq. Handbook of exact string matching algorithms.
Citeseer, 2004.

Aitao Chen and Fredric C Gey. Multilingual information retrieval using machine trans-
lation, relevance feedback and decompounding. In: Information Retrieval 7.1-2 (2004),
pp- 149-182.

W Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines: Information
retrieval in practice. Vol. 520. Addison-Wesley Reading, 2010.

Antonio Ferrandez, Jesus Peral, Higinio Mora, and David Gil. Architecture for Efficient
String Dictionaries in E-Learning. In: Multidisciplinary Digital Publishing Institute
Proceedings. Vol. 2. 19. article number 1251. Punta Cana, Dominican Republic, 2018.

Trey Grainger and Timothy Potter. Solr in action. Manning Publications Co., 2014.

Wilbert Jan Heeringa. Measuring dialect pronunciation differences using Levenshtein
distance. PhD thesis. Citeseer, 2004.

Kalervo Jarvelin and Jaana Kekéldinen. Cumulated gain-based evaluation of IR tech-
niques. In: ACM Transactions on Information Systems (TOIS) 20.4 (2002), pp. 422-446.

Thorsten Joachims. Optimizing search engines using clickthrough data. In: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM. Edmonton, Canada, 2002, pp. 133-142.

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Jaap Kamps, Christof Monz, and Maarten De Rijke. Combining evidence for cross-
language information retrieval. In: Workshop of the Cross-Language Evaluation Forum
for European Languages. Springer. Rome, Italy, 2002, pp. 111-126.

Andrea Krott, Gary Libben, Gonia Jarema, Wolfgang Dressler, Robert Schreuder, and
Harald Baayen. Probability in the grammar of German and Dutch: Interfixation in
triconstituent compounds. In: Language and speech 47.1 (2004), pp. 83-106.

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In: In: Doklady Akademii Nauk SSSR Soviet physics doklady 1965, p. 845-846
(Russian), English translation in: Soviet Physics Doklady, Vol. 10 location Soviet Physics
Doklady. Vol. 10. 8. 1966, pp. 707-710.

Bertrand Lisbach and Victoria Meyer. Linguistic identity matching. Springer, 2013.

Faulhaber Manja and Hilke Elsen. Neologismen in der Kosmetikwerbung. In: Mutter-
sprache: Vierteljahresschrift fiir deutsche Sprache (2016), pp. 193-207.

Christopher Manning, Prabhakar Raghavan, and Hinrich Schiitze. An Introduction to
Information Retrieval. Online edition. Cambridge University Press, 2009. ISBN: 978-1-
78216-136-3.

Mandar Mitra, Amit Singhal, and Chris Buckley. Improving automatic query expansion.
In: SIGIR. Vol. 98. Melbourne, Australia, 1998, pp. 206-214.

Donald R Morrison. PATRICIA—practical algorithm to retrieve information coded in
alphanumeric. In: Journal of the ACM (JACM) 15.4 (1968), pp. 514-534.

Eva Pettersson, Beata Megyesi, and Joakim Nivre. Normalisation of historical text using
context-sensitive weighted Levenshtein distance and compound splitting. In: Proceedings
of the 19th Nordic conference of computational linguistics (Nodalida 2013). Oslo,Norway,
2013, pp. 163-179.

Shantanu Rane and Wei Sun. Privacy preserving string comparisons based on Levenshtein
distance. In: 2010 IEEE International Workshop on Information Forensics and Security.
IEEE. Seattle, WA, USA, 2010, pp. 1-6.

Anne Schiller. German compound analysis with wfsc. In: International Workshop on
Finite-State Methods and Natural Language Processing. Springer. Helsinki, Finland, 2005,
pp- 239-246.

Barbara Schliicker. Die deutsche Kompositionsfreudigkeit. Ubersicht und Einfiihrung. In:
Das Deutsche als kompositionsfreudige Sprache. Strukturelle Eigenschaften und system-
bezogene Aspekte. Vol. 46. Linguistik - Impulse & Tendenzen. Berlin, Boston: de Gruyter,
2012, pp. 1-25.

Dikshant Shahi. Apache Solr, A Practical Approach to Enterprise Search. 1st. Springer
Science+Business Media New York, 2015.

Bashar Al-Shboul and Sung-Hyon Myaeng. Analyzing topic drift in query expansion
for Information Retrieval from a large-scale patent DataBase. In: 2014 International
Conference on Big Data and Smart Computing (BIGCOMP). IEEE. Bangkok, Thailand,
2014, pp. 177-182.

Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. Analysis of a
very large web search engine query log. In: ACm SIGIR Forum. Vol. 33. 1. ACM. Salt
Palace Convention Center, Salt Lake City, UT, 1999, pp. 6—12.

33

[30]

[31]

[32]

[33]

[34]

[35]

34

David Smiley, Kranti Parisa, Eric Pugh, and Matt Mitchell. Apache Solr Enterprise
Search Server. 3rd. Packt Publishing Ltd., 2015.

Zhan Su, Byung-Ryul Ahn, Ki-Yol Eom, Min-Koo Kang, Jin-Pyung Kim, and Moon-
Kyun Kim. Plagiarism detection using the Levenshtein distance and Smith-Waterman

algorithm. In: 2008 3rd International Conference on Innovative Computing Information
and Control. IEEE. Dalian, China, 2008, pp. 569-569.

Kyoko Sugisaki and Don Tuggener. German compound splitting using the compound pro-
ductivity of morphemes. In: 14th Conference on Natural Language Processing-KONVENS
2018. Austrian Academy of Sciences Press. Vienna, Austria, 2018, pp. 141-147.

Ahmet Uyar. Google stemming mechanisms. In: Journal of information science 35.5
(2009), pp. 499-514.

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. A theoretical
analysis of NDCG ranking measures. In: Proceedings of the 26th annual conference on
learning theory (COLT 2013). Vol. 8. Princeton, NJ, USA, 2013, p. 6.

Hans Friedrich Witschel and Chris Biemann. Rigorous dimensionality reduction through
linguistically motivated feature selection for text categorization. In: Proceedings of the
15th Nordic Conference of Computational Linguistics (NODALIDA 2005). Joensuu, Fin-
land, 2006, pp. 210-217.

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Bachelorstudiengang In-
formatik selbststidndig verfasst und keine anderen als die angegebenen Hilfsmittel — insbesondere
keine im Quellenverzeichnis nicht benannten Internet-Quellen — benutzt habe. Alle Stellen, die
wortlich oder sinngeméal} aus Veroffentlichungen entnommen wurden, sind als solche kenntlich
gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen Priifungsver-
fahren eingereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen
Speichermedium entspricht.

Hamburg, den 14.08.2019

Katrin Caragiuli

35

	Introduction
	Related Work
	Foundations
	Transparenzportal
	Solr
	Solr processing
	Solr parameters

	Methods
	Language Processing Techniques
	Levenshtein distance
	Decompounding

	ASV Toolbox
	Levenshtein Tool
	Baseform Tool

	nDCG

	Experimental Design
	Procedure
	Test Set
	Query Log Analysis
	Experiment Test Collection

	Prototype and Web Application

	Evaluation and Discussion
	Statistical analysis
	Data Evaluation
	Application

	Summary and Conclusion
	Outlook
	Bibliography

