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Abstract

Implicit motives are unconscious intrinsic desires that cannot be measured with ex-
plicit methods such as self-report inventories. Usually, these motives are measured
with projective methods such as the Operant Motive Test (OMT). During the OMT,
participants are shown ambiguous stimuli in the form of simple drawn pictures of per-
sons in di�erent situations. The participants are asked to think up stories about what
happens in the pictures and answer the provided questions. Trained psychologists
label the answers to one of the three main motives, power, achievement, a�liation, or
an additional zero level. The motives allow psychologists to predict behavior, educa-
tional and academic success, and long-term development. A restriction of the OMT
is the long-lasting and expensive evaluation process. The objective of this thesis
is to simplify this process by applying methods of machine learning to the classi-
�cation problem. We use a dataset of labeled OMT answers to compare di�erent
text representation methods, including extensive pre-trained language models, and
di�erent classi�cation methods. Especially the pre-trained language models proved
their utility and showed to approach human-like performance in the classi�cation of
the answers of the OMT.
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1 Introduction

Motives select, direct and energize human behavior (McClelland 1988). Therefore,
motives determine, in which sphere of life an individual spends e�ort, time, and hope
in order to pursue a happy and ful�lling life.

The most obvious way to achieve this ful�lling life would therefore be to listen care-
fully to the inner self, detect the own, inner motives, and act accordingly. This is
often unfeasible, as humans are often forced or distracted by situational in�uences
and act contrary. Another problem of this approach is the composition of motives:
Psychologists di�erentiate between to types of motives: explicit and implicit. As
the names indicate, the explicit motives are present for introspective, while implicit
motives are in general unconscious desires and needs. Humans can therefore not
simply listen to their inner self and act accordingly and detect all inner needs. These
motives can be detected by psychologists, which rely on written text or told stories
of the subjects. As modern computers can learn from textual data and perform nu-
merous text-related tasks, we aim to automatize the detection of the motives.

To measure, detect and explore human motives, researchers developed various tests
intending to access them. The methods can be divided into two categories: intro-
spective self-report inventories and projective tests. The introspective inventories
utilize self-report questionnaires and reports from life records, obtained in rating
scales such as the Likert scale. This is considered a highly subjective procedure and
su�ers from multiple limitations, such as a lack of adequate self-insight or downright
dissimulation of subjects. The latter, projective tests, are designed to let a person
respond to ambiguous stimuli to reveal hidden emotions and internal con�icts pro-
jected into the stimuli. These tests have origins in psychoanalysis and rely upon the
fundamental assumption of humans having conscious and unconscious attitudes and
motivations, already postulated by Sigmund Freud, known as the founder of psycho-
analysis, already in the 19th and early 20th century.

The Operant Motive Test (OMT, Kuhl et al. 1999) is a motive measure that utilizes
projective methods and is the objective of this thesis. The test consists of at least
15 ambiguous stimuli that are presented to subjects. These subjects are asked to
answer the following questions for each stimulus:

• Who is the main person and what is important for the main person?

• How does this person feel?

• Why does the person feel this way?

• How does the story end?
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The OMT and other projective tests are based on the assumption that subjects
develop spontaneous emotions and needs from an inner necessity. From these spon-
taneous reactions, written down in short answers to the four questions, psychologists
conclude di�erent manifestations of the three motives power, a�liation, and achieve-
ment.
Up to this day, the OMT is manually analyzed and evaluated by trained professional
psychologists, which results in a time- and cost-intensive evaluation, which further-
more results in a decline of on research in the area.

Meanwhile, recent advances in the area of Natural Language Processing (NLP) and
especially text classi�cation (TC) allow machine learning algorithms and deep neu-
ral networks to be utilized in tasks like language translation, grammatical analysis,
sentiment analysis, language understanding tasks and many more with improving
performance, approaching and even surpassing human-level performance in a variety
of these tasks(Young et al. 2017). NLP is also utilized in psychology-related �elds.
Classi�ers are trained to detect signs of dementia, can detect emotions, and are uti-
lized to predict the degree of suicide risk in social network posts. However, human
motives and motivation are today not in focus of the NLP community(Johannÿen
et al. 2018).

This thesis is intended to remedy the resource-intensive evaluation process of the
OMT and contribute to the motive research with NLP. The objective is to automate
the evaluation of the OMT with automated TC using methods of machine learning.

Due to the design of the OMT, answers often turn out short. The TC quality often
su�ers from short and spontaneous written texts, due to a lack of semantic informa-
tion, and noise. Hence, in this thesis, we apply multiple TC methods that proved
their utility in various other tasks
Beside models that are considered a standard in TC (S. Wang et al. 2012), topic
models (Gildea et al. 1999) as well as language models are utilized as an attempt to
gain additional knowledge from the data in the classi�cation process. Topic models,
in this context, refers to �probabilistic models of a corpus that not only assigns high
probability to members of the corpus but also assigns high probability to other `sim-
ilar documents' (Blei et al. 2003), language modeling is the process of learning the
joint probability function of sequences in a language (Bengio et al. 2003).

Based on this, the following questions arise, which determine the methodology of
this work:

1. Can methods of machine learning learn to attribute motives to the answers of
the OMT?

2. Do sentence representations, derived from Language Models, yield the potential
to improve the classi�cation of the answers of the OMT?
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3. Do Topic Models yield the potential to improve the classi�cation of the answers
of the OMT?

To address these questions, we utilize a dataset of OMT answers, created at the
Universität Trier. As our baseline, we consider the so-called zeroR classi�er; a classi-
�er with minimal domain knowledge assigning each instance to the most commonly
occurring class. We train models based on machine learning, including di�erent
data transforming techniques and classi�cation algorithms. To address the second
research question, we will apply two di�erent contextual embedding methods, in-
cluding a State-of-the-art (SOTA) deep neural network architecture, to the given
problem. To address Question 3, we use Latent Dirichlet Allocation (LDA) (Blei
et al. 2003) to enrich features with TMs. The performance and improvements are
measured in F1 score, the harmonic mean of precision and recall (see also Chapter
3.2).

The structure of this thesis is as follows: First, we introduce related work in the
area of TC, short text classi�cation, and NLPsych (Johannÿen et al. 2018), which
describes the usage of machine learning to predict psychological traits in Section
2. Thereafter in Chapter 3, the theoretical background of the OMT and applied
techniques is presented. Section 4, details the methodology, followed by an evaluation
in Section 5 and discussion of results in Section 6. Finally, we present our conclusion
in Section 7.
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2 Literature Review

In this chapter, we present models and research in relevant NLP-tasks. A focus is
set on language models and topic models for short text classi�cation, as these are
the foundations of this thesis. Additionally, we give a brief overview of NLPsych, the
domain where this thesis is associated with. This chapter claims not to be a complete
representation of research, but will present milestones and SOTA in relevant NLP-
tasks.

2.1 Text Classi�cation

Text classi�cation is of booming interest in the last decades, due to the increased
availability of documents and texts in digital form and numerous needs to organize
them (Sebastiani 2002). The dominant approach to organizing documents today is
text classi�cation with machine learning. The automated classi�cation of text be-
came a major sub�eld of information systems in the 1990's This is mainly due to the
more powerful hardware and the increased interest (Sebastiani 2002). TC is utilized
in many di�erent contexts, ranging from document �ltering, metadata generation,
word sense disambiguation, sentiment analysis or NLPsych1.

Mainly two di�erent approaches have shown to be useful. In the 1980's, the most
popular approach for TC has been knowledge engineering (Sebastiani 2002). In
knowledge engineering, experts in the particular topic built a set of manually de�ned
logical rules, a disjunctive normal form. This disjunction of conjunctive formulas are
the rules that determine the membership to a category. This requires well-de�ned
and distinguishable categories. Also, the knowledge engineering approach to TC is
often confronted with the knowledge acquisition bottleneck. The knowledge engineer,
who manually de�nes the rules in cooperation with a domain expert, has to rede�ne
rules, what, if the set of categories changes, might be connected to a time-consuming
work. Furthermore, these classi�ers can not be ported to a di�erent domain, so for
every use case at least two experts, the knowledge engineer and the domain experts
(in some cases they might be the same person) have to create new rules and train a
new classi�er. So this system does not scale well and might even break down with
new categories. Nevertheless, this approach showed some good results in TC like
Hayes et al. (1990) with their CONSTRUE system showed, a commercial TC system
build for the Reuters news agency, which was able to classify news into 674 categories
and detect the presence of over 17,000 companies.

This work focuses on the second approach to TC, the machine learning (ML) ap-
proach, which became the most important already in the 1990's in the research
community (Mitchell 1997). This approach focuses on building the classi�er itself
that learns automatically the characteristics of the categories derived from labeled

1A neologism created from the conference CLPsych and NLP, see also Chapter 2.4
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instances of them (Sebastiani 2002). So the classi�er, also called learner, learns it-
eratively from labeled documents, which characteristics belong to which class. With
the learned characteristics, unlabeled documents can be classi�ed afterward.

For classic machine learning, we present four di�erent popular approaches: Naïve
Bayes (NB, Ikonomakis et al. 2005), SVM (Cortes et al. 1995), Nearest Neighbor
Classi�er and Decision Trees.
NB approaches are widely applied in text classi�cation tasks due to their simplicity,
but results are often inferior to other classi�ers. Nevertheless, they can be a useful
baseline, especially in combination with shorter text instances (S. Wang et al. 2012)
and there are di�erent strategies to improve the performance (S.-B. Kim et al. 2002;
Schneider 2010).
The SVM is a so-called large margin classi�er. The purpose of SVM is to linearly
separate n-dimensional space into two classes. In the context of text classi�cation,
this is often a very high dimensional feature space, where the SVM shows robustness
against (Allahyari et al. 2017). SVM often yield best results in last decades in TC
tasks (Sebastiani 2002), even though it might lack good recall scores (Ikonomakis
et al. 2005).
Another family of classi�ers are the Nearest Neighbor Classi�ers. These are proximity-
based classi�ers based on distance measures like cosine similarity. The idea behind
this strategy is, the closer two instances are, the more likely they are similar to each
other. The test instance's labels are inferred from the class labels of similar docu-
ments in training set (Allahyari et al. 2017).
The last group of machine learning classi�ers presented here are Decision Trees.
These are hierarchical trees of the training instances. The data is divided hierarchi-
cally by attribute values of its dates. Each node of the tree is a test of some attribute
of the training instance, so each branch, descending from this node corresponds to
this value. The classi�cation is done by (i) beginning at the root node, (ii) testing
the attribute and (iii) moving down the branch corresponding to the value of the
attribute. In TC, the conditions are usually terms in the text documents (Allahyari
et al. 2017).
Ensemble methods (Zhou 2012) use a multitude of classi�ers. Bagging classi�ers
train a subset of the training data in parallel on multiple classi�ers. Afterwards,
all individual predictions are aggregated, either voted or averaged, to form a �nal
predictor. An often applied implementation of this principle is the Random Forest
by Breiman (2001), where decision trees and random feature selections are utilized.
In Boosting, a strong classi�er is built from several weaker classi�ers. This classi�ers
are trained sequentially to decrease error rates. A well known implementation is
AdaBoost (Freund et al. 1996).

Since the accessibility of data and the computational power in general are still in-
creasing, deep learning methods (Bengio et al. 2017) received increased interest also
in TC. Especially Convolutional Neural Networks (CNN, LeCun et al. 1998), and Re-
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current Neural Networks (RNN, Elman 1990) are applied TC-tasks, although these
architectures are often not introduced and developed for TC or NLP in general.
W. Yin et al. (2017) compared CNN and recurrent architectures, such as Long Short-
term Memory(LSTM, Hochreiter et al. 1997) and Gated Recurrent Unit (GRU, (Cho
et al. 2014a)) in context of NLP. Their study detected that CNN yield great results
in short texts while RNN excel in tasks where word dependencies are important,
e.g. sentiment analysis. These deep learning methods (Bengio et al. 2017) achieved
SOTA results in many TC areas (Conneau et al. 2016).

X. Zhang et al. (2015) demonstrated better results from di�erent neural architectures
compared to a traditional Bag-of-Words (BOW) model on various datasets and tasks,
even though they did not adjust their machine learning model whilst adjusting the
neural networks multiple times. In a comparison of classic machine learning methods
and level convolutional networks, a combination of term frequency�inverse document
frequency (tf-idf) document representation and a linear classi�er is still competitive
on di�erent datasets (X. Zhang et al. 2015). Tf-idf is an extension of the BOW
approach, where each word is weighted by the term frequency times the inverse of
the document frequency (see also Chapter 3.2). So even if deep neural networks are
powerful architectures that achieve high performance, not only in TC tasks, classic
methods often obtain comparable results, if the right features are utilized (Joulin
et al. 2016), while maintaining interpretability.

2.2 Short Text Classi�cation

As online communication and e-commerce become more important as well as more
frequent, a new genre of text growth: short texts. These texts consist of �a dozen
words to few sentences� (Song et al. 2014). Characteristics are sparseness, large-scale,
non-standardization and immediacy, so it is often di�cult for traditional approaches
in TC to deal with short texts. The previously described methods often fail to
achieve the desired accuracy, because they rely on shared context, enough word co-
occurrences, and the word frequency (Song et al. 2014). Most of the sources of short
text are not reviewed (posts in social networks and forums like Twitter and Reddit,
short messages, valuations, recommendations, and the answers of the OMT) and
written with less care than e.g. newspaper article or books.
This results in more misspellings, more usage of slang, more abbreviations and, par-
ticular in German, the disregard of capitalization. In the context of text mining
spoken, the language in short texts is very noisy (R. Zhang et al. 2013). As a con-
sequence, the size of the vocabulary of text corpora increases, there is higher chance
of out-of-vocabulary (OOV) or characters in new documents and sparseness of the
vector representations. Methods to handle noisy texts are e.g. shown by Subrama-
niam et al. (2009). To increase the classi�cation results, it is important to choose
feature items and reduce the spatial dimension and noises. When we speak of better
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results in this section, we refer to an improved accuracy and/or F1 score on relevant
datasets, such as Twitter Corpus2 with 6 to 20 words per document on average.

TC is processed generally in vector space model under the assumption that the re-
lationship between words is independent and texts are not correlated (Song et al.
2014). These semantic expressions are usually weaker in short texts, so research
often focuses on additional semantic analysis. For leveraging semantic information
multiple approaches exist, well known representatives are Latent Semantic Analy-
sis (LSA, also referred to as Latent Semantic Indexing, LSI, Dumais et al. 1988),
Probabilistic Latent Semantic Analysis (pLSA, Hofmann 1999), and Latent Dirich-
let Allocation (LDA, Blei et al. 2003). These so-called probabilistic TM are used in
di�erent ways to improve the results of TC. Topic models, especially LDA assume
that each document consists of multiple topic distributions (Blei et al. 2003). Here,
the length limitations in short text prevent a good topic representation as it is hard
to express multiple topics on few words (Li et al. 2018).
Researchers developed di�erent strategies to still use topic models to increase the
classi�cation performance of short texts. Zelikovitz et al. (2000) introduced �Trans-
ductive LSI�, where transductive describes a singular value decomposition that is
applied not only on training data but, since it is an unsupervised algorithm, also on
any available test data to improve the classi�cation results. In the context of classi�-
cation, �LSI returns the nearest neighbors of a test example in the new space, even if
the test example does not share any of the raw terms with those nearest neighbors�
(Zelikovitz et al. 2000). The accuracy of the transductive learner outperformed the
basic nearest neighbor algorithm. In real-world applications, a limitation of this ap-
proach might occur that is already mentioned by the authors: This model is limited
to tasks where you have su�cient time for the classi�cation process to train a new,
improved model and to tasks that provide many data at once. However, in many
contexts, it might be possible to have insu�cient labeled, but many unlabeled data
where this model showed promising results.
Another approach to reduce sparsity of short texts is a framework proposed by Phan
et al. (2008). The main idea is to collect a large-scale external data collection, a
so-called universal dataset to each classi�cation task and then performing a topic
analysis for this dataset with the above-mentioned topic analysis models. One ad-
vantage of this approach compared to the �rst is that a universal dataset works for
every classi�cation task in the related domain, so the dependence on huge datasets
is reduced. Thus, this framework is more �exible. As the authors mentioned, the
accuracy improvement is not impressive, but reduced dependency from large labeled
data collections, as they could achieve nearly the same accuracy with the univer-
sal dataset approach using �ve times less labeled training data (4,500 compared to
22,500). A related approach is presented by B.-k. Wang et al. (2012), who uses an
LDA model to build a so-called �strong feature thesaurus� to achieve better results in
short text classi�cation. All these approaches use an external data source to enrich

2https://trec.nist.gov/data/tweets/
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the sparse features in di�erent ways and so highlight their semantic features that are
otherwise, due to their shortness, very sparse. A limitation that might in�uence the
transfer to our scenario is the nature of the answers of the OMT, as described in
Section 3.1: Most of the research tries to classify texts to topics the documents are
directly talking about:: military, politics, and sport (i.e. Q. Chen et al. 2017, B.-k.
Wang et al. 2012), while in the OMT classi�cation, we classify latent motives, which
are not explicitly mentioned (see Chapter 3.1). So, collecting data on the topic power
might work well when we assume the participants talk about power explicitly. As
they are not discussing the topic power, it is not reasonable to expect an increased
performance in numbers.
Other works focus on improving the quality of topic representations without exter-
nal data. In their work, Li et al. (2018) compared di�erent approaches to improve
topic representation over short texts like the Dirichlet Multinomial Mixture (DMM,
Nigam et al. 2000). In a cluster task, J. Yin et al. (2014) showed promising results
with this model. The approach of the Bigram Topic Model (Gri�ths et al. 2005),
is to try keeping more semantical information than conventional TMs. As most of
them are based on a BOW-representation, they lose sequences, and therefore a lot of
semantics during processing. The Bigram Topic Model is based on the assumption
that words, which occur often together (the bigrams) tend to belong more likely to
the same topic. Thus, their conditional distribution is based on latent topics and
the previous word. This approach is extended by Wallach (2006). She explored a
hierarchical generative probabilistic model that incorporates n-gram statistics and
bigram topic model. Cheng et al. (2014) went even further to overcome the sparsity
and the rarity of word co-occurrence. As they propose, the frequency of words in
individual short texts plays a less discriminative role than in lengthy text, making it
hard to infer which words are more correlated in each document (Hong et al. 2010).
Thus, they trained their Biterm Topic Model over the corpus, they avoid the problem
of sparse pattern based on bi-terms and could improve previous related benchmarks.
As TMs, no matter what architecture they use, focus on global information, some
tried to combine them with embedding methods (e.g. Mikolov et al. 2013b; Pen-
nington et al. 2014), which focus on local context (Li et al. 2018) to get the best
of both methods (Moody 2016; Niu et al. 2016; Liu et al. 2015). The Latent Fea-
ture Dirichlet Mixture Model (LF-DMM) (Nguyen et al. 2015) uses a mixture of two
distributions, the Dirichlet polynomial and word embedding instead of the Dirichlet
distribution for topic-word like the DMM. In their research, Li et al. (2018) compared
the DMM, biterm topic model, and LF-DMM with their normal settings as well as
with added word embeddings. Results showed that the LF-DMM does not perform
well with short texts in comparison. The DMM however, is highly dependent on the
length of texts, as it is not reasonable to assume only one topic in longer short texts.
The biterm topic model, especially with additional word2vec features (Mikolov et al.
2013b) yields even better results in given tasks.
One of the current best approaches is short text classi�cation is achieved by the Topic
Memory Network (TMN) (Zeng et al. 2018), a model composed of three components,
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a neural topic model that infers topics in a given corpus, a topic memory mechanism
that maps the inferred topics to classi�cation features and a classi�er, which is an
added neural network, e.g a CNN or RNN, for classifying the derived features.

2.3 Language Models

Language models can be de�ned as �function that puts a probability measure over
strings drawn from some vocabulary� (Manning et al. 2008). The models can be uti-
lized for speech recognition, machine translation, part-of-speech-tagging and many
more applications. Word embeddings are trained like a language model and utilized
in many TC tasks.
In general, the objective of LM is to approximate the possibility of a word wn given
its context, formally P (wn|w1, . . . , wn−1). Thus, LMs are trained to learn the se-
quences of words occurring in the corpus and project the sequences into numerical
representation that yield information about its contexts, the word embeddings, many
NLP-tasks, especially TC bene�t from the obtained representations.
A fundamental language model is a count-based model or n-gram language model.
The output of such a model is the most likely word based on the frequency of the
previous n words. This is a very simple approach, which yields di�erent limitations,
primarily the handling of unseen words and the sparsity of the model. Di�erent
smoothing techniques (see e.g. S. F. Chen et al. (1999)) can improve the robust-
ness of these models. The n-gram LMs are in general inferior to neural language
models, thus this thesis focuses on the latter. The models, also called continuous
space language model, help to remedy the data sparsity problem of n-gram LM and
the course of dimensionality, meaning that the number of possible sequences grows
exponentially with increasing vocabulary. Words are represented in a distributed
way, more precisely as a non-linear combination of weights in a neural network.
Bengio et al. (2003) proposed a probabilistic model as one layer feed-forward neural
network, still with the same objective, to approximate the probability of a word given
n previous words, where n is a prede�ned parameter, called hyperparameter. Typi-
cally, this so-called window size is chosen within �ve to ten words, so distant context
has no explicit in�uence on the language model (Mikolov et al. 2010). Recurrent
Neural Language Models use their recurrent states to overcome this de�ciency and
cover longer contexts (Mikolov et al. 2010).
A major advance in the �eld was the release of pre-trained models. Well known
and widely applied are word2vec (Mikolov et al. 2013b) and GloVe (Pennington et
al. 2014). While word2vec utilizes local context for embeddings, GloVe is based on
global corpus co-occurrence statistics. Both of these models produce representations
for words with interesting properties, e.g. the cosine distance between to word vec-
tors is a useful relatedness measurement in the vector space (Mikolov et al. 2013a).
For instance, the nearest neighbor of a target word refers to the word vector with
the highest similarity to the target word, and these neighbors tend to be related in
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(a) Distances between comparatives

and superlatives

(b) Distances and directions between

gender speci�c terms

Figure 1: Roughly equal vector distances representing similar nuances necessary to
distinguish related terms in the GloVe model (Pennington et al. 2014)

their meaning. In the pre-trained GloVe model3, the nearest neighbors of the term
�frog� are �frogs�, �toad�, �litoria�, and �leptodactylidae�, related animals. Further-
more, distances between gender-speci�c terms are very similar; taking the vector
representation of king and adding the distance between the words man and woman
results in a position near the word queen, which is visualized in Figure 1b. Also, com-
paratives and superlatives of adjectives tend to have similar distances (see Figure 1a).

A further improvement in the �eld of word embeddings was achieved by Facebook
AI Research. Their embedding model, fastText4, extended the word2vec approach
by using subword information (Bojanowski et al. 2017). While word2vec and GloVe
use word as smallest entities, fastText uses character n-grams (see Chapter 3.2.5).
In this way, the model handles rare words and unknown words of an unseen corpus
in general better. This is an advantage, especially in morphologically rich languages
(Bojanowski et al. 2017), like German, because unknown words with a stem (e.g.
changed by in�ections) in the vocabulary can often be represented by the character
n-grams. Additionally, fastText, as well as GloVe and word2Vec, can be used as pre-
trained model, so e.g. be trained on a larger corpus to learn not only the sequences
of the given corpus but of a vast amount of sequences in the given language. Thus,
these pre-trained models are often utilized as input for downstream tasks, such as
TC (Kowsari et al. 2019).

The limitations of such models are the sole vector representation of each word. For
ambiguous words, such as tank, which refers to an armored military vehicle as well as
to a container for liquids. For such words, all possible contexts are combined into one
single vector representation. Furthermore, machine learning models often require a

3https://nlp.stanford.edu/projects/glove/
4https://github.com/facebookresearch/fastText

10



�xed length representation, thus, word vectors are often combined into a sentence or
document vector by summing or averaging all word vectors (Le et al. 2014), which
loses the positional information, the local context. Le et al. (2014) published the
paragraph vector model, a �xed length representation of sentences, paragraphs and
even documents, which takes word order into consideration. Natural language often
yields long term connections to former or future words or sentences, thus di�erent
methods focus on embeddings, which represent longer context. These contextualized
representations represent the context in which they appear, so the representation
of a word is changing dynamically with changing context. Context2Vec (Melamud
et al. 2016), using bidirectional LSTM (biLSTM), is an early proposal of contextual
representation the foundation of other works.
Another representative is the Embeddings from Language Models (ELMo) repre-
sentation (Peters et al. 2018) that provides character-based, deep contextual word
representations, learned from internal states of deep biLSTMs. Additionally, the
authors reported increasing performance on �ne-tuning for speci�c NLP-tasks, even
though the pre-trained model does perform well in these downstream task without
the �ne-tuning. This is referred to as �type of domain transfer for the biLM [bidirec-
tional Language Model]� (Peters et al. 2018). In experiments, several benchmarks
in downstream NLP-tasks, such as the SQuAD5 by adding ELMo to the previous
SOTA deep neural networks.
Bidirectional Encoder Representation from Transformer (BERT) (Devlin et al. 2019)
provides contextual representation and transfer learning with a di�erent architecture.
While ELMo uses deep biLSTM representation and task-speci�c architectures in-
cluding additional features, the so-called feature based approach in transfer learning
(Devlin et al. 2019), BERT focus on �ne-tuning. This implies minimal task-speci�c
parameters and �ne-tuning of all pre-trained parameters. Instead of LSTM, a multi-
layer Transformer encoder (Vaswani et al. 2017) is the main component of the ar-
chitecture. While ELMo uses a bidirectional language model, BERT's objective is
a masked language model (Taylor 1953), where tokens from the input are randomly
masked and the model is trained to predict these tokens based on the context and a
next-sentence-prediction objective. Fine-tuning on a task is implemented by adding
a task-speci�c layer on top of the pre-trained model and �ne-tune the model and clas-
si�er simultaneously. With this architecture, BERT achieved SOTA performance in
many tasks, including classi�cation related tasks like GLUE6. Interesting to notice
is that BERT requires only a single additional classi�cation layer to achieve SOTA,
while former word or contextual embeddings were fed into deep neural networks for
TC.

5Stanford Question Answering Dataset, were accomplished https://rajpurkar.github.io/

SQuAD-explorer/
6https://gluebenchmark.com/
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2.4 NLPsych, Motivation and Emotions

According to Johannÿen et al. (2018), NLPsych yields the potential to access psyche,
understand cognitive processes and detect mental health conditions. NLPsych covers
many di�erent domains like mental health detection systems, which includes i.e.
suicide attempts, crisis and dementia, dream language, and motivation and emotion.
The focus of this section is on the latter.
Pool et al. (2016) is set on a SVM for an emotion detection system. As training data
they utilized Facebook posts, as labels, they utilized the corresponding Facebook
reaction feature, also known as emoticons and tested it on three di�erent emotion
datasets. Similar works with these three datasets with di�erent approaches are from
S. M. Kim et al. 2010; Strapparava et al. 2008; Danisman et al. 2008.
Budhkar et al. (2018) used, similar to this thesis, topic models and language models
to detect dementia. Another topic, more related to emotions than motivation, is
hate-speech, which is de�ned as any communication that disparages a person or
a group on the base of some characteristics such as race, color, ethnicity, gender,
sexual orientation, nationality, religion, or other characteristic (Schmidt et al. 2017).
A hate-speech detecting system is introduced by Serrà et al. (2017) and Warner et al.
(2012), a survey is shown by Schmidt et al. (2017).
The most related work in terms of the speci�c domain is Johannÿen et al. (2019),
where the OMT is evaluated using linguistic features like type-token-ratio and ratio
of spelling mistakes. Additional, features derived from the linguistic inquiry and
word count (LIWC, Wolf et al. 2008) are used and classi�ed with a logistic model
tree. The machine learning model achieved an F1-score of 80.1, approaching the
human pairwise agreement of 85.33% (Johannÿen et al. 2019). Furthermore, �ndings
showed a signi�cant correlation between the predicted power motive and bachelor
thesis grades. To our knowledge, there are no other scienti�c works on operant
methods utilizing machine learning.
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3 Background

3.1 OMT Theory

The OMT, originally developed by Kuhl et al. (1999) is a projective test to measure
the motives of a person. It is an extension of the thematic apperception test (TAT)
by Murray (1943) that aims to classify the answers of participants to one of three
main motives. This sections provides an introduction to motives and motivation
from a psychological point of view as well as an overview of methods to measure
them, the projective methods.

3.1.1 Motives & Motivation

To understand the meaning of the term motives, it is important to delimit it from
motivation. Motivation is a current process, activated through stimulation of a mo-
tive to strive for a goal. It is a combination of personal and situational in�uences
as well as the anticipated results (Heckhausen et al. 2005), illustrated in Figure 2.
The situational in�uences (Part 2. in Figure 2) are possibilities, chances, and in-
centives and will change from time to time. The personal in�uences are stable over
time. These in�uences can be split into three subsystems: (i) The universal be-
havioral trends and needs of mankind. This includes physical needs (food, water,
etc.) and perceived self-e�cacy. The physical needs are very similar for individu-
als, while the perceived self-e�cacy can di�er a lot. (ii) The motive dispositions,

Figure 2: Model of determinants and
course of motivated action (Heckhausen et
al. 2005)

also called implicit motives, which are
di�erent from person to person. The im-
plicit motives are relatively stable but
unconscious needs (McClelland 1980)
representing a�ective preferences that
evolved through leaning and experience
(McClelland 1988). A�ective preference
describes the habitual readiness of an
individual to expose oneself to similar
stimuli. Implicit motives are a key fac-
tor to explain, why individuals di�er in
actions, but an individual's actions are
consistent through di�erent situations.
Furthermore, individuals will be ener-
gized in situations corresponding to their
implicit motives. An example of an ac-
tivated implicit motive is an individual
who has an implicit motive to master new challenges: The individual will feel ener-
gized when assigned a challenging task. The unconscious nature of implicit motives
results in the problem of measuring and determining them. Projective tests, such as
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the TAT and the OMT are a useful tool to access implicit motives and are further ex-
plained in Section 3.1.2. (iii) The third factor is the goals or explicit motives. These
goals are shaped by social norms, tangible rewards, and the beliefs of individuals
about themselves, the self-concept (McClelland 1988). In contrast to implicit mo-
tives, explicit motives are self-attributed, actively pursued, and also verbally present
values, goals and the self (Heckhausen et al. 2005).
Implicit and explicit motives are disjunct concepts and therefore necessarily in align-
ment. Often they are active in di�erent circumstances, so there cannot be a con�ict
between them. Nevertheless, there are situations where an explicit motive overrides
an implicit and vice versa. This process results in inner con�icts, and chronicle
discrepancy between implicit and explicit motives do compromise well-being (Mc-
Clelland et al. 1989) and can result in health issues (Heckhausen et al. 2005).

3.1.2 Implicit Motive Measures

To measure implicit motives, ordinary questionnaires are not suitable: The motives
are usually not actively accessible for a subject. Thus, they are inferred from imag-
inative verbal or textural material. These methods are called projective tests and
enable a psychologist to measure motives indirectly. The tests are called projec-
tive, because, according to the theory, subjects project implicit motives into the seen
scenery and their imagined story.
In the majority of projective tests, subjects are asked to imagine a story to a pre-
sented, ambiguous stimulus, such as presented in Figure 3, an example from the TAT.

Figure 3: A so-called TAT card; an exam-
ple of the stimuli presented to subjects in
the TAT (Heckhausen et al. 2005).

The resulting stories are further evalu-
ated for motive content. Most research
focus on the three basic motives, need
for power, need for a�liation, and need
for achievement (see Chapter 1).
The TAT (Murray 1943) is one of the
�rst projective tests. The �rst ver-
sion was designed already in the 1930s
to reveal underlying dynamics of the
subjects personality, and published as
�[a] method for investigating fantasies�
(Morgan et al. 1935). As the title re-
veals, the main subject of the TAT was
to investigate hidden fantasies, �since
the exposition of such hidden fantasies
is one of the fundamental aims of anal-
ysis� (Morgan et al. 1935).
Therefore, a series of pictures is presented to the participant, each of them depicting
a di�erent event with the instructions to interpret each event, to give an imaginary
reconstruction of the happenings that led to this event and the �nal outcome. In
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contrast to questionnaires, these methods are based on an individual's sensitivity
to motivational theme, while questionnaires rely on stable self-assessment. Figure 3
shows such a picture, which is often used to measure the activation of the achieve-
ment motive. In the TAT, each picture is related to one of the main motives. If
the description or imagined story of the subject contains achievement related ter-
mini or formulations (e.g refers to a good grade, to extraordinary achievements like
inventions or mentions achievement related long term goals), the authors concluded
a strong achievement motive in the subject, respectively one of the other motives for
other pictures.
Even though the TAT has been utilized for a long period of time and is still in use,
it has several limitations. The imagined stories can be very long. This results in two
issues: First, the test itself and the evaluation process become very time consuming,
and second, the informative content of the written stories decreased after six pictures.
Thus, in most application, only six pictures are used to maintain reliability (Atkin-
son 1958). Furthermore, while writing down imagined stories, complex processes can
overwrite the implicit content of the story, e.g. the desired self-presentation in�u-
ences the story, so that implicit motives are not perceptible (Kuhl et al. 1999). Beside
that, the TAT showed variable reliability, thus no acceptable test-retest correlation
could be achieved (Heckhausen et al. 2005).

3.1.3 The Operant Motive Test

The OMT is, similar to the TAT, a projective test to measure implicit motives. The
OMT applied several innovations to address the limitation of the TAT, but still uti-
lize the positive aspects of imagining a story: First, instead of six, the OMT utilizes
at least 15 pictures. The general idea remains still the same as in the TAT: subjects
are encouraged to imagine a story for the presented pictures. The di�erence is that
the OMT asks the subjects for brief answers to the four questions (see Chapter 1)
as spontaneous as possible. This less time consuming process enabled (Kuhl et al.
1999) to utilize the signi�cant higher number of pictures. Additionally, spontaneous
answers are linked more directly to implicit motives (Baumann et al. 2005).
Another change is the usage of simple drawings instead of photographs, which yields
more neutral stimuli to facilitate the subjects identi�cation with the depicted char-
acter (see Figure 4). In contrast to the TAT, each picture is utilized to stimulate
each motive, even though each picture tends to stimulate one of the main motives
more than the others. So instead of rating the activation of one motive from 1 to -1,
each answer is labeled with one of the three motives.
To each of these motives (Kuhl et al. 1999) added levels of a�ective valence ranking
from 1 to 5 to distinguish the motives even further. Level 1 represents self-regulating
a�ect, 2 incentive driven, 3 self-driven, 4 active avoidance and 5 passive avoidance
(see Kuhl et al. (1999)). If no motive could be assigned, there is an additional zero
motive and level, annotated as 0 for both, level and motive. All in all, there are 4
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(a) A�liation (b) Achievement (c) Power

Figure 4: Ambiguous pictures utilized in the OMT. Each of them is suitable to
activate all motives, not solely the mentioned, but the chosen examples tend to
stimulate the mentioned motive (Kuhl et al. 1999).

times 6 di�erent possibilities. Even though it is possible to assign a�liation, power,
or achievement with the valence level 0, in practice these cases rarely occur.

Implicit motives, as evidenced e.g. in Schüler et al. (2015), Kuhl et al. (2003), Weg-
ner et al. (2014), and Hofer et al. (2005), allow for characterization of behavior,
subsequent success in academical and professional life and personal long term devel-
opment. The OMT already reduced costly and time-consuming annotation, which
is a major reason for the decline of motive research. With our attempt to automate
the annotation, we hope to further reduce this process to support motive related
research in the future.

3.2 Relevant Machine Learning Concepts

Machine learning tasks are usually divided into two categories: supervised and unsu-
pervised. In supervised learning, we have access to the input and the desired output.
The supervised algorithm tries to map the input to the output and thereby built a
generalizing model, which should map new, unseen inputs of the same kind to an
output. In unsupervised tasks, as there is no such output. Nevertheless, unsuper-
vised algorithm can be utilized to gain additional knowledge from the input, which
can be utilized in the supervised classi�cation process. This approach is known as
semi-supervised task.
Chapter 2 provides a general overview of di�erent approaches in classi�cation tasks.
In this chapter, we present the concepts of classi�cation algorithm, features, models,
and metrics utilized in the classi�cation of the answers of the OMT.
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3.2.1 Classi�cation Task

The task of assigning a category or class to an instance of a given dataset can for-
mally be described as 〈dj, ci〉 ∈ D×C where D is the domain of the given data and
C = {c1, . . . , c‖n‖} is the set of classes. The underlying problem can more precisely
formalized by the unknown target function φ̂ : D × C 7→ {T, F} that the function
φ : D×C 7→ {T, F} approximates.T, F refer to the boolean variables True and False,
φ is the classi�er which should coincide with φ̂ as much as possible. The classes C
shall be symbolic and thus carry no further meaning. All knowledge is extracted
from the data and can therefore be called content-based classi�cation.

There are basically two di�erent types of TC: You either map each instance dj ∈ D
to exactly one class ci ∈ C. If there are only two classes, each instance di ∈ D
needs to be assigned to either ci or its complement c̄i. This is considered a binary
classi�cation.
Assigning exactly one class c1, . . . , cn ∈ C with n > 2 to each dj ∈ D is called mul-
ticlass classi�cation or the non-overlapping case, because classes do not overlap, so
there are no instances that are classi�ed to more than one class. In the other case,
more than one class can be assigned to each instance, called multilabel categoriza-
tion or the overlapping case. Multilabel-classi�cation allows the assignment of any
combination of labels to a instance, so it is a task of exponentially combinatorial
di�culty, resulting 2|C| possible assignments.
This work applies multiclass classi�cation, due to the design of the OMT and the
focus on classifying solely the motives, not the a�ective levels.

3.2.2 Classi�cation Algorithms

This introduce the classi�cation algorithm we applied to the given problem and their
theoretical foundations.

Support Vector Machine

SVMs are a group of supervised learning algorithm, utilized for both classi�cation
and regression. SVMs are binary classi�er, so to solve a multi-class problem, there
are two di�erent approaches: The one-vs-rest approach, where each hyperplane sep-
arates a class from all other classes and the one-vs-one approach (Knerr et al. 1990),
where each classi�er is trained to separate class ci ∈ C from every other class indi-
vidual, resulting in |C|×(|C|−1)

2
classi�ers.

In practice, the one-vs-rest approach is often utilized, as results are equal to the
one-vs-one approach, but computation times is noticeably lower, especially on a in-
creasing number of classes C (Rifkin et al. 2004). Thus, we focus on the one-vs-all
approach.
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The SVM is a so-called large margin classi�er. Given a set of n datapoints, the goal
is to linearly separate the datapoints, given their class hyperplane. The SVM selects
the hyperplane with the largest margin. As Figure 5 indicates, the optimal hyper-

Figure 5: A SVM on a linearly separable problem in a two-dimensional space. The
support vectors, marked with gray squares, de�ne the largest margin of separation
of the two classes (Cortes et al. 1995).

plane lays between the optimal margin, the margin with that maximizes distances
between the classes.

Given a transformed dataset XTrain of n points of the form {(~xi, yi)|i = 1, ..., n; yi ∈
{−1, 1}}, with ~xi ∈ XTrain, the p-dimensional vector and yi, the according label 1 or
-1, a SVM determines the most appropriate separating hyperplane between the two
classes.

Let ~w be a normal vector to the hyperplane. ~xi is a p-dimensional feature vector and
b is the distance between ~w and the hyperplane orthogonal to ~w, called bias. The hy-
perplane is described by the set of points satisfying sep(x) = 0 with sep(x) = ~w ·~x−b.
For every ~xi a label yi ∈ {−1, 1} is assigned, depending on sep(~xi) being higher or
lower than 0. By minimizing the generalization term 1

2
||~w||22 we maximize the mini-

mum distance from all examples to the hyperplane and increase the generalization of
the model. By ensuring every xi is assigned to the right label, the hyperplane with
the largest margin is selected.

To handle feature spaces, which are not perfectly linearly separable, the hinge loss
functionmax(0, 1−yi(~w·~xi−b)) is applied. The function returns 0 when ~xi is classi�ed
right, otherwise the distance from the margin is returned. We further utilize the slack
variable ξ to allow non-perfect classi�cation. C is a trade-o� parameter between
allowing false classi�cation and minimizing the loss. It is a hyperparameter that has
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to be selected beforehand. The optimization problem is described as:

minimize
1

2
||~w||22 + C

∑
xi∈X

ξi

subject to yi(~w · ~xi + b) ≥ 1− ξi|∀~xi ∈ XTrain

The formulated optimization problem, called the primal, can be solved e�ciently.
Application sometimes use the optimization problem in its dual form. The normal
vector ~w with a Lagrange multiplier α can be described as

~w =
∑

~xi∈Xtrain

αiyi~xi,

the linear combination of training examples. Now, the dual optimization problem is
described as follows:

maximize for α :
∑

~xi∈XTrain

αi −
1

2

∑
~xi∈XTrain

∑
~xj∈XTrain

αiαjyiyj〈~xi, ~xj〉,

with 〈~xi, ~xj〉, the pairwise dot product of two vectors. In the dual formulated prob-
lem, the margin is de�ned by the subset of all points, where α 6= 0, laying exactly
on the margin or, if ξ ≥ 0, within.

For classi�cation problems, which are not linearly separable, the so-called kernel trick
is applied: All dates are projected into a higher dimensional space, formally:

φ : Rd1 → Rd2 , ~x 7→ φ~x, with d1 < d2.

In the higher dimensional space, the number of possible linear separations increases
(Cover's Theorem, Schölkopf et al. 2001). Therefor, the SVM can linearly separate
most problems, even though they are not linearly separable by default. To solve the
transformation e�cient, there are di�erent kernel tricks applicable, like the polyno-
mial kernels or radial bases function.

Naïve Bayes

NB classi�er are based on Bayes' Theorem that describes the probability of an event
based on prior knowledge of conditions related to the event. Naïve refers to the sim-
pli�ed assumption of conditional independence between every pair of features given
the class. We focus on Multinomial Naïve Bayes (MNB), because this implementa-
tion yields often best results in TC tasks (S. Wang et al. 2012).

Formally, Bayes' theorem states the following relationships for the classes y and
dependent feature vectors xi, . . . , xn, where n is the number of features. In case of
TC often the count of unique token of a corpus (see also Chapter 3.2.3):

P (y|x1, . . . , xn) =
P (y)P (x1, . . . , xn|y)

P (x1, . . . , xn)
.
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Assuming P (di|y) is independent from all other dj ∈ D, the relationship of classes
and instances of D is simpli�ed to:

P (y|di, . . . , dn) =
P (y)

∏n
i=1 P (di|y)

P (di, . . . , dn)

In the training process P (di, . . . , dn) is constant. Thus, the classi�cation rule is
de�ned as follows

P (y|x1, . . . , xn) ∝ P (y)
n∏
i=1

P (xi|y)

ŷ = argmaxP (y)
n∏
i=1

P (di|y),

where ŷ is the inferred label. P (y) is the relative frequency of class y. P (xi|c), the
probability of feature i appearing in a sample mapped to class y.

MNB implements the algorithm for multinomially distributed data. This distribu-
tion is parameterized by vectors Θy = (Θy1, . . . ,Θyn) for each yi ∈ y, with n the
number of features. Θyi is P (xi|y) , the probability of a feature i appearing in a
sample of class y.

Θc is estimated as the relative frequency count:

Θ̂yi =
Nyi + α

Ny + αn
,

with α, the smoothing parameter to prevent zero probabilities in further computa-
tions and for features not present in learning examples. Nyi is the number of times
feature i appears in a sample of class y, Ny is the total count of all features for class
y.
The MNB classi�er is known to be robust against irrelevant features, such as words
that occur frequently in every class, cancel each other out in the probability com-
putations. Additionally the MNB is a very fast to compute. A negative aspect of
the algorithm is that it cannot handle continuous representations well, as it relies on
already known, discrete features.

3.2.3 Text Feature Extraction

Machine learning classi�ers as mentioned above cannot use raw text as input. There-
fore it is necessary to transform the input to di�erent representations, which are so-
called features. In this section, we focus on features that can be directly extracted
from the textual data, in opposite of following sections, where complex transforma-
tion and calculation are utilized to create features.
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There are numerous possibilities on creating features out of text, like word count
models, number of spelling mistakes, co-occurring of words, or the number of utilized
adjectives in a text, to name a few. Each of these features might yield information
with respect to the classi�cation task. An exhaustive search through all possibilities
is therefore not practicable, so the approach of this thesis is to focus on features that
proved their usability in TC tasks, namely the BOW and the tf-idf representations
of textual data.

Bag of words (BOW)

BOW is a count-based vector representation of a document or collection of docu-
ments. The feature utilized is the occurrence of each word. BOW is fast to compute
but does not pay attention to the varying importance of terms in a document and
relatedness of terms, but it is still a considerable model and utilized as baseline in
TC tasks.
In the BOW-model, each document d of a corpus D is represented as |V |-dimensional
vector, where V is the total number of unique terms, called the vocabulary of corpus
D. This example will elaborate on the simplicity and e�ectiveness of the BOWmodel:

Assuming we have a corpus D consisting of the four documents �I like cats�, �I like
dogs�, �cats i like�and �cats hate dogs�. For simplicity, we assume each document is
processed in upper-case letters, so that the resulting vocabulary
VD = {I, LIKE,CATS,DOGS,HATE}. The documents get transformed into an
|VD|-dimensional vector, where each position represents one term of VD. In this ex-
ample, the �rst value of the resulting vector represents the occurrence of the term
�I�. Each occurrence of this term in a document increases the value by one, while
all other values remain zero, as shown in Table 1. This model does not take respect

I LIKE CATS DOGS HATE
I LIKE CATS 1 1 1 0 0
I LIKE DOGS 1 1 0 1 0
CATS I LIKE 1 1 1 0 0

DOGS HATE CATS 0 0 1 1 1

Table 1: BOW representation of example corpus D

of the order of the word. The documents �I like cats�and �cats i like�are represented
identically.
The BOW model does not only ignore the order of words, it also assumes that all
words yield the same information value for the classi�cation task, as there is no
weighting or any other highlighting involved. As the mentioned example elaborates,
documents with di�erent meanings but composed of the same words obtain identical
vector representation, which seems to be insu�cient. But in a lot of classi�cation
tasks, the representation are su�cient: Assuming the TC task is to classify docu-
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ments into two classes, animal related or not animal related. In this special case, the
identical representation of the two sentences is su�cient, as they both are related
to the topic animals. The good results of this approach on various tasks indicates
that for many TC tasks simple occurrence and co-occurrence of words is already
discriminative for classes. The model can also be extended and use n-grams in a
similar way, which enables the model to consider at least minimal local context.
Applied to the classi�cation of the answers of the OMT, there are some pitfalls that
might in�uence the utility of this approach, already discussed in Chapter 2: The vec-
tor representation with BOW are very sparse, as there are answers containing less
than ten words while the vocabulary contains more than 70,000 words. The sparsity
makes it di�cult to classify them su�cient, as word occurrences and co-occurrences
will be very rare. Additional, noise in the data reduces the usability of the approach
as well.

Term frequency-inverse document frequency

Tf-idf is a weighting method for BOW features, frequently applied in information
retrieval and text mining. The method enables a highlighting of indicative and im-
portant terms for a document while reducing the in�uence of frequent, less important
words.
This weighting can be useful for several reasons: If a speci�c term appears frequently
in the corpus, it is unlikely for this term to be signi�cant for a single document. If a
term appears frequently in a document (high document frequency), than it is reason-
able to assume this term is important for the speci�c document, especially if the term
does not appear frequently in other documents (the document frequency). Based on
this logic, tf-idf weights words based on their occurrence statistics.

To elaborate this, assume a collection of books as document corpus. Each book is
very likely to contain the term 〈and〉, thus, it has a very high document frequency.
If the corpus contains a scienti�c book about 〈litoria〉, a genus of frogs native in
Australia, this book is likely to contain the term 〈litoria〉 very often (high word fre-
quency). Additional, the term is very unlikely to occur in many other books of the
corpus (low document frequency). Thus, the term is assumed to be more indicative
for this book than the term 〈and〉.

Tf-idf consist of two parts: The term frequency (tf) measures how frequently a term
occurs in a document. The inverse document frequency (idf) measures how relevant
a term is in context of the whole corpus. We obtain the idf of a term by dividing the
number of documents in the corpus by the count of documents where term t occurs,
formally:

idf(t) = log
1 + n

1 + df(t)
+ 1

with n ∈ N , the number of documents and df(t) the count of documents that contain
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t. The 1 is added for smoothing the idf. The tf-idf value of a term t in a document
D is de�ned as

tf − idf(t,D) = tf(t,D) ∗ idf(t)

While tf-idf representation often yield better results as BOW, noisy and short text
can limit the approach. The tf in very short texts will be one for every word while
the idfs might also be more similar compared to the example with books mentioned
above. Misspellings will also be misleading, because both tf and idf will handle
them as independent tokens.

3.2.4 Topic Models

TMs are statistical models for discovering abstract topics occurring in a collection
of documents. In general, these statistical methods discover hidden semantic struc-
tures in a document. The topics can also be described as clusters of similar words,
because words that occur often together in documents refer to the same kind of
concepts and will therefore be clustered into the same topic. As there are many dif-
ferent approaches to model latent topics on text collections, this thesis focus on the
frequently utilized LDA as well as promising approaches to short text classi�cation,
the TMN.

Latent Dirichlet Allocation

LDA was developed not explicitly to �nd latent topics, but to �nd short descriptions
of the members of a collection, mainly for large text collections. These short de-
scriptions of the members should inherit the essential statistical relationships of the
collection for basic tasks, such as TC. Thus, LDA is also considered a dimensionality
reduction technique.

Given a corpus ofm documentsD = {d1, . . . , dm}, where each document is a sequence
of N words, denoted as d = (w1, ..., wN). The basic assumption of LDA is that
each document is a random mixture over K latent topics. These topics are each
characterized by a distribution over all words in the corpus. Figure 6 illustrates the
in�uence of variables on the texts. The variable names are de�ned as follows:

• α, the parameter of the Dirichlet prior on the per-document topic distribution

• η the parameter of the Dirichlet prior on the per-topic word distribution

• β the word distribution for topic k

• θi the topic distribution for document i

• zij the topic for the j-th word in document i

• wij the speci�c word
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Figure 6: Graphical model of LDA (Blei et al. 2003)

This plate notation represents replicates. The outer plate, or box, represent docu-
ments, the annotation D is the quantity of documents. The inner box represents the
repeated choice of topics and words within a given document. The order of words,
and therefore of the topics inside of a document is of no further interest in this model.
Important to notice at this point is that the W in Figure 6, representing the words
in a document, is grayed, because it is the only observable variable in the model.
LDA assumes the following generative process for each word in each document:

• Choose N ∼ Poisson(ξ)

• Choose θ ∼ Dir(α)

• For each of the N words wn:

� Choose a topic zn ∼Multinomial(θ).

� Choose a word wn from p(wn|zn, β), a multinomial probability conditioned
on the topic zn

As only the words are observed in the model, the parameters α and η are estimated
to infer which topic distribution θ and word distribution β have most likely generated
the documents. In applications, these are hyperparameter to be de�ned beforehand.

The posterior distribution of the hidden variables is in general intractable to com-
pute, but a variety of approximate inference algorithm can be considered for LDA.
These algorithms focus either on Markov chain Monte Carlo sampling (Gri�ths et al.
2004) or variational inference (Ho�man et al. 2010).
We use the Online variational Bayes method (Ho�man et al. 2010), which is based
on stochastic optimization and converges to a local optimum, not necessarily to a
global optimum. It is shown to approximate the posterior as good as other varia-
tional Bayes methods, but converges faster and is able handle streaming document
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collections. LDA is an unsupervised algorithm. If we �t it on a corpus, we obtain
the approximated word distribution of every topic. With this distribution, we can
infer of which topics the new document is composed of, based on its observed words.
Thus, we can transform a document into a |K|-dimensional vector, where each posi-
tion ki represents the proportion of this topic present in the document.
This vector is further utilized as classi�cation feature, as we assume documents of
the same class to be composed of similar topics.

Topic Memory Network

The TMN is a neural network built to overcome the problems in handling short text
in NLP-tasks such as TC. The basic idea of the TMN is to use indicative words for
classi�cation of new instances based in discovered latent topics in seen documents,
similar to LDA. To encode the latent topic representations, memory networks (We-
ston et al. 2014; Graves et al. 2014) are applied.
The model consists of three components, namely a Neural Topic Model (NTM), a
topic memory mechanism, and a classi�er. The three components can be updated
simultaneously via a joint learning process.

Formally, given X = {x1, ..., xM} inputs with M short text instances. In the TMN
each input is processed into two representations: A BOW vector XBOW ∈ RV and
embedded sequence vector XSeq ∈ RL with V the vocabulary size and L, the chosen
sequence length.
XBOW is fed into the neural topic model to induce the latent topics, which are fur-
ther matched with embeddedXSeq to learn classi�cation features in the topic memory
mechanism. For TC, representations produced by the topic memory mechanism and
the embedded sequences XSeq are concatenated and fed into the classi�er to predict
classi�cation label yi for xi. The neural topic model is based on the variational auto-
encoder (Kingma et al. 2013), involved with a continuous latent variable z ∈ RK as
the intermediate representation, with K the number of topics. In the NTM genera-
tion, it is assumed that the corpus of documents has a topic mixture θ represented as
K-dimensional distribution, created via Gaussian softmax construction (Miao et al.
2017). Similar to LDA, each topic is also described by a word distribution φk over
V . x is generated as follows

• Draw latent variable z ∼ N(µ, σ2)

• θ = softmax(fθ(z))

• For the n-th word in x:

� Draw word wn ∼ softmax(fΦ(θ))

with f∗(·) as neural perceptron that linearly transforms inputs, activated by a non-
linear transformation. The authors proposed recti�ed linear units (ReLU Nair et al.
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2010) as activation functions. As the prior parameter z, µ and σ are, similar to LDA,
unknown. They are estimated from the input data as:

µ = fµ(fe(XBOW )), logσ = fσ(fe(XBOW )).

To infer the approximated posterior distribution, variational inference (Blei et al.
2017) is utilized with the loss function LNTM = DKL(q(z)||o(z|x)) − Eq(z)

[
p(x|z)

]
with q(z), a standard Normal prior, p(z|x) and p(x|z) as probabilities to describe
encoding and decoding process.
In the topic memory mechanism, to map latent topics from the NTM to features for
classi�cation, is inspired by memory networks. Two memory matrices are designed,
a source memory S and a target memory T , both with dimensionality K ×E, K as
number of topics and E as the chosen embedding size. Two ReLU-activated neural
perceptrons produce these matrices with the topic-word weight matrix WΦ ∈ RV×V

as input. The match between the k-th topic and the embedding of the l-th word in
XSeq is de�ned by:

Pk,l = sigmoid(W S[Sk;Ul] + bs).

U references the embedded xSeq here, and [Sk;Ul] refers to the concatenation opera-
tion in this model. W S and bs are parameters to learn. To combine the instance-topic
mixture θ with P , the integrated memory weights are de�ned as

ξk = θk + γ
∑
l

Pk,l

with γ as prede�ned coe�cient. By weighting the target memory matrix T with ξ,
we obtain R, the output representation of the topic memory mechanism as:

Rk = ξkTk.

The match between latent topics and word sequences can be performed multiple
times, called hops. The concatenation of R and U are utilized for the classi�cation
task. The model is trained via joint learning, so the entire model with its three
components is updated simultaneously by de�ning the loss function to be updated
as

L = LNTM + λLCLS.

LNTM refers to the loss of the neural topic model while LCLS refers to the classi�ca-
tion loss. λ is the trade-o� parameter to control model and classi�er.
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3.2.5 Language Models

Formally, a language model �is a function that outputs a probability measure over
strings drawn from some vocabulary� (Manning et al. 2008). A language model
derives the probability P (wi|w1, ..., wi−1) of a given word wi given a sequence of pre-
vious words (w1, ..., wi−1).
As sophisticated word representations also require knowledge about the context of
a word, it is a logical consequence that word embeddings and language models are
deeply connected. The embeddings are trained like language models. In this sec-
tion, we will describe at �rst the word2vec (Mikolov et al. 2013b) model that is the
foundation of utilized models in this thesis: Paragraph Vectors and fastText.

Word Embeddings

Word Embeddings are a projection of words or phrases to vectors into numerical rep-
resentations. In contrast to the previously mentioned BOW-approach, the distances
between these representations provide information about linguistic similarity. It is
possible to measure the similarity of words.

We will �rst brie�y describe the two word2vec models, namely Skip-gram and Con-
tinuous bag of words, as both fastText and paragraph vectors are based on the
word2vec architecture. Word embeddings are trained in language models and can be
perceived as weights of the hidden layer in a neural network.

Skip-gram is an architecture for learning vector representations of words from large
corpora with e�cient training methods, as it does not rely on dense matrix multi-
plication (Mikolov et al. 2013b). Thus, it can be trained on huge text corpora. The
training objective is to learn a vector representation of the target word w(t), which is
appropriate to predict its surrounding words w(t−c), . . . , w(t−1), w(t+1), . . . w(t+c), also
called window with window size n, the observed context. The architecture of the
model is illustrated in Figure 7. The size of the windows is not �xed, but a window
of c = 4 is often applied and proposed in Mikolov et al. (2013b). The objective is to
maximize the average log probability

1

T

T∑
t=1

∑
−c≤j≤c, j 6=0

log p(wt+j|wt). (1)
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Figure 7: The word2vec model architectures, CBOW (left) and Skip-gram (right).
CBOW predicts a word given its context, while Skip-gram predicts the context words
given the target word (Mikolov et al. 2013a).

Continuous bag of words (CBOW), utilizes a contrary approach: Instead of max-
imizing the log-likelihood to predict surrounding words, the model increases the
likelihood of surrounding words at predicting the target words, also visualized in
Figure 7. Formally, the training objective is to predict the target word wt based
in the given words by maximizing the average log probability of the target word wt
given its window

1

T

T−k∑
t=k

log p(wt|wt−k, . . . , wt+k). (2)

fastText (Joulin et al. 2017) is based on the word2vec architecture. The model
can be trained using either the Skip-gram or the CBOW architecture. The major
di�erence between fastText and other embedding techniques such as word2vec is
that fastText uses character n-grams. In comparison, word2vec and other embedding
methods such as GloVe (Pennington et al. 2014) use words as atomic entities of a
document.
In fastText, each word w is represented as the sum of its character n-grams. The
word �apple �is represented by the sum of the character n-gram token

<ap, app, ppl, ple, le>,

considering three as size of character n-grams. < and > are special boundary symbols
for start and end of the word to distinguish pre�x and su�x from normal n-grams.
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Additionally, the special sequence < apple > is added with the boundary symbols to
delimit it from the the sequence in other words, such as in apples.

The use of character n-grams provides several advantages. Assume a word wn that
is not in the training data, so an OOV token. In the BOW model it cannot be
represented as vector, because if we increase the vocabulary size, all vectors have to
be adjusted and the classi�er has to be trained again. In word2vec, were we uti-
lize continuous representations, we can embed the OOV, but we have no knowledge
about the token and its context. Therefore, without a new training cycle, we cannot
embed the token appropriately.
In practice, the word2vec model, either embed the OOV token into a sparse area of
the vector space or a zero vector can be utilized to embed these words. In this way,
all OOV token share a property: They have no relationship to other words in the
model. The most obvious way to overcome the issue would be to train the model
on the new data, but that can be unfeasible for many reasons, like the work with
continuous data. In fastText, even OOV token can be embedded and yield useful
information about the context of the token, if character n-grams, the word consists
of, are already in the vocabulary of the model. Especially in noisy corpora, where
new instances with similar characteristics such as described in Chapter 2.2) are very
likely, we consider this as a big advantage.

To further use word embeddings in downstream tasks, we need all documents to
have representations in the same dimensions, as most classi�ers and neural networks
need input in �xed dimension. As every word is embedded into an n-dimensional
space, and each document consists of multiple words, simply concatenating each word
representation would result in representations of di�erent dimensionality. There are
multiple ways to address this issue, we present three fundamental approaches: (i)
setting a maximum sequence length. If a document contains more words, truncate the
extra words. If the document is shorter, pad the missing positions e.g. zeros vectors,
(ii) adding all vectors into one of the same dimension as the word embeddings or (iii)
averaging all vectors into a document representation of the same dimension as the
word embeddings.

Contextual Embeddings

Paragraph Vector is a model that allows us to learn contextual vector represen-
tation of sentences and longer text instances like paragraphs (here referring to an
arbitrary text entity, like a sentence or a document).
Every paragraph is mapped to a unique vector, stored in a matrix D, every word
is mapped to unique vector in matrix W , which are trained to represent informa-
tion about their local context, similar to word2vec. Word vectors and the paragraph
vector are combined (averaged or concatenated) to predict the next word in the para-
graph. The paragraph vector can be thought of another word in the training process
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Figure 8: Paragraph vector frameworks: 8a is based on CBOW architecture, 8b is
based on the Skip-gram architecture (Le et al. 2014).

that is shared across all contexts in a paragraph, but not across paragraphs. Hence
it can be described as memory of what is missing in the actual context compared to
the complete paragraph. Therefore the model is named Distributed Memory (PV-
DM) shown visualized in Figure 8a. Formally, the training objective is identical to
Equation 2 with a slightly di�erent composition of the context.
The word vectors are shared across paragraphs and learn to represent local context
across the corpus. After the training process, the word vectors have similar proper-
ties as vectors trained with word2vec.

In the PV-DBOW model (Figure 8b), no context words are utilized as input. The
model utilizes solely the unique paragraph vector to predict contexts words, which
are randomly sampled from the paragraph. In this model, the word order in the
paragraph is not discarded and has no in�uence on the paragraph vector. Thus,
it is called a distributed bag of words model. Furthermore, the model ignores word
vector computation and only updates weights of the paragraph vector. Thus, it is
less memory consuming in the training process. The training objective, predicting
the context of the given target word (here the paragraph vector for the complete
paragraph) is similar to the Skip-gram objective in Equation 1.

Both architectures are usually trained using stochastic gradient descent. The gradi-
ent is obtained via backpropagation (Rumelhart et al. 1986).
After the training process, we can extract the unique paragraph vectors from matrix
D to further utilize them in downstream tasks. To obtain paragraph vectors for new,
unseen documents, the model creates new paragraph vectors as rows in matrix D
and repeats the training process with gradient descent. In this inference stage, all
other weights of the model (i.e. the classi�er weights and the word vector weights)
are not upgraded and remain �xed. Thus, we can embed new, unseen documents
based on the learned word vectors and obtain paragraph representations.
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A drawback of Paragraph Vector is its computational complexity. First, as the
model requires unique paragraph vectors for every document, the number of pa-
rameters grows with the size of the training corpus can easily grow to large to be
manageable, and second, compared to previous models, the inference stage to ob-
tain representations of unseen documents is time consuming, especially compared to
previous models.

BERT

To explain BERT, we �rst explain the attention mechanism and the Transformer
architecture brie�y. This architecture is based on the encoder-decoder architecture,
which we use as the starting point to present the BERT model.

Encoder-decoder models
These models, often applied in sequence-to-sequence tasks, such as language trans-
lation, consist of basically two neural networks. The �rst, the encoder, processes
an input sequence and generates a �xed-length intermediate representation. The
decoder generates output from this representation. Often, RNN are used for both,
encoder and decoder, e.g in an early approach by Cho et al. (2014b), shown in Fig-
ure 9. The encoder receives the input sequence (x1, . . . , xn) and compresses the �rst

Figure 9: Encoder-Decoder Model with RNNs (Cho et al. 2014a)

word into a �xed-length vector called hidden state h̄1. Subsequently, for each word
xi with i ∈ [2;n] is compressed into a hidden state h̄i, taking xi and the last hidden
state h̄i−1 into account. Formally, this can be described as

h̄i = f(h̄i−1, xi)

with f(∗), a non-linear activation function. This recurrent process is applied until
i = n. The last hidden state, h̄s captures the entire input sequence into account and
is called thought vector c.

The decoder now predicts a new sequence of length t from the thought vector. For
each step i ∈ [1; t], the decoder creates a hidden state hi and an output yi. Each
following decoding considers the last output yi−1, the thought vector c and the last
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hidden state hi−1, or formally

hi = f(hi−1, yi−1, c).

Finally, the hidden state h1 is fed into an activation function g(x) = softmax(x) to
output the probability distribution

P (yi|yi−1, ..., y1, c) = g(hi, yi1 , c).

The encoder and decoder are trained jointly by minimizing the conditional log like-
lihood

min− 1

N

N∑
i=1

logP (yi|xi; Θ)

with N the number of training examples and P (yi|xi; Θ) the probability of output
yi given input xi and a set of parameter Θ.

Attention
In encoder-decoder models, the strict separation of encoding and decoding results in
a single point of communication, the �xed-length thought vector c. Regarding how
humans read and understand texts, this seems not to be intuitive. Typically, we try
to focus on important sentences in documents and important words sentences. From
this standpoint, the described encoder-decoder model is sub-optimal, as it takes all
previous words as context, even though some parts of a sequence are more connected
to each other than others.
Here, the attention mechanism comes into place. We can di�erentiate between global
attention that looks back in to the input sequence in the decoding step, and self-
attention that weights the relevance of parts in the input. The use global attention
is therefore limited to encoder-decoder models while self-attention is less restricted.

Global attention (Luong et al. 2015) means, in simple terms, that the decoder
pays attention to parts of the encoded sequence, which can be perceived as mem-
ory. Between the hidden states and the output of the decoder, an intermediate state
is build with an activation function of the input of the corresponding hidden state
and the context vector of the encoder. The context vector is a weighted sum of
the input states and an attention weight for each input. Formally expressed, an
encoder-decoder model with word embedding input X = (x1, . . . , xi), the hidden
states h̄1, ..., h̄n of the encoder, the hidden states h1, ..., hi of the decoder and output
y1, ...yt is extended by intermediate states h̃1, formally:

h̃i = tanh(Wc[ci;hi])

with Wc, a learned parameter and ci, the context vector. So in other words, the
context vector ci and the hidden state hi are passed into another layer with a non-
linear activation function. The context vector ci is a weighted sum of the input
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states. Formally

ci =
n∑
j=1

aijh̄j

with aij, the attention weight. This weight scores the j-th source state for the i-th
decoding step and is de�ned as

aij = softmax(fattn(hi, h̄j)),

where fattn is a placeholder for di�erent attention functions (see e.g. Luong et al.
2015). Even though this addresses the single point of communication, the thought
vector connecting encoder and decoder, it is still lacking a lot of context, namely all
context words xn+i. First, this was addressed by using a separate forward and back-
ward encoder, often both LSTM (together called biLSTM), which output is shallowly
combined in the end.

Self-attention lets the sequence attend to its complete context and weights the
relevance of the respective parts of the input, which outputs are later combined.
This model is therefore not limited to encoder-decoder models, even though it is of-
ten applied in such. Lin et al. (2017) proposed the self-attentive model for sentence
embeddings. The main idea is not to apply attention to source and target states like
global attention, but to weight the parts of the input according to their importance.
Let S = (w1, ..., wn) be a sequence of n word embeddings. In their model, Lin et
al. compute the hidden state h at time step i as concatenation of a forward and
backward LSTM, formally every hidden state is de�ned by

hi = [
−→
h i;
←−
h i].

All hidden states together are de�ned as

H = (h1, h2, ..., hn).

By linearly combining the n hidden states in H, the sequence can be transformed
into a vector representation. Computing this linear combination requires the self-
attention mechanism. With the input H, it outputs a single vector of weights a:

a = softmax(ws2tanh(Ws1H
T ))

Ws1 is a weight matrix of shape da × 2u, where u is the hidden unit number for
each unidirectional LSTM and da, an arbitrary hyperparameter. ws2 is a vector of
parameters with size da. The hidden states H are then summed up according to the
weight, provided by a for the vector representation m. Lin et al. (2017) claim, that
this vector representations usually focuses on a speci�c component in a sentence, but,
as many sentences are build of more than one component, this representation is not
su�cient to represent the sentence. Thus, multiple hops of attention are performed
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to extract r di�erent parts of the sentence. ws2 is extended to an r × da, noted as
Ws2. Thus, the resulting vector a becomes a matrix, annotated as A. Formally,

A = softmax(Ws2tanh(Ws1H
>)),

with softmax() as function along the second dimension of the input. The embedding
vector m becomes an r× 2u embedding matrix C. Now, we get the r weighted sums
by multiplying the annotation matrix A and LSTM hidden states H, resulting in the
sentence embedding

C = AH

Finally, a penalization term P reduces the redundancy in A over multiple hops to
ensure the model focuses on di�erent parts of the input sequence. Formally,

P = ||AA> − I||2F

where || • ||2f is the squared Frobenius norm of a matrix.

The Transformer

Vaswani et al. (2017) build a model solely based on attention, without any recurrence
or convolution, which were the dominant approaches in many NLP-tasks. To com-
bine self-attention and global attention is a logical consequence: The global attention
mechanism encourages the decoder to increase the weight of important parts of the
input sequence each output step, while the encoder does not bene�t from global at-
tention. Self-attention on the other hand aids the encoding part of encoder-decoder
models.

The underlying architecture of a Transformer is also an encoder-decoder model shown
in Figure 10. The encoder is composed of a stack of N sub-layers. Each of these sub-
layers computes the Multi-Head Attention followed by a position-wise fully connected
feed-forward network. Each of these cells is surrounded by a residual connection (He
et al. 2016), combining the past result with new computations and normalizing the
output. The output of the last layer is the input of the top-next layer, the output of
the �nal layer is the decoder's input.
The decoder is of the same stack size as the encoder. The shape is also nearly
identical with an additional sub-layer that performs Multi-Head Attention over the
output of the encoder stack. Furthermore, the self-attention sub-layer is modi�ed to
a masked multi-head attention sub-layer; the masking in addition with the o�set by
one position in the output ensures that prediction for position i can only depend on
outputs < i.

The Transformer uses two types of attention, both shown in Figure 11. Both use
the concept of separated responsibilities (Daniluk et al. 2017) and thus process three
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Figure 10: Transformer architecture (Vaswani et al. 2017)

vectors, keys K ∈ dk, values V ∈ dv = dk and queries Q ∈ dq. The scaled dot-product
attention is an extension of the dot-product attention, additionally scaled by the
factor 1√

dk
. It is de�ned as

Attention(Q,K, V ) = softmax(
QK>√
dk

)V.

The process can be described as follows: Let M be the encoder's output and I
the input of a Transformer layer. The global attention mechanism between encoder
and decoder weights the relevance of the encoder's output (V = M) for the current
decoding step. The assigned weights are calculated from the encoder's output (K =
M) and the current input (Q = I). Other implementation use self attention, so that
the values are not in�uenced by an output, hence Q = K = V = I. The Transformer
model computes attention with multiple heads, so that it allows multiple hops of
self-attention. Each of the Transformer layers computes a Multi-Head Attention of
Q,K, and V , consisting of h attention heads headi, de�ned as

MultiHead(Q,K, V ) = concat(head1, . . . , headh)W
0

with headi = Attention(QWQ
i , KW

K
i , V W

V
i )
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Figure 11: Multi-Head Attention in the Transformer (Vaswani et al. 2017)

where WQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,W V
i ∈ Rdmodel×dv ,W 0 ∈ Rdmodel×dv is a pa-

rameter matrices and therefore learned. Furthermore, the Transformer implements
a method to keep in track the position of the inputs in the sequence, the positional
encoding. There are multiple choices for these encodings (see e.g Gehring et al. 2017),
Vaswani et al. (2017) applied sine and cosine functions with di�erent frequencies to
let the model learn to attend to relative positions, which are discarded using purely
self-attention, despite their importance in several NLP-tasks.

The model, based solely on attention instead of recurrence and convolution performed
in sequence2sequence task not only signi�cant faster, but also achieve SOTA results
in di�erent tasks.

BERT
The model is based on the encoder architecture of the Transformer (see Figure 10).
Representations are bidirectionally trained representation of words and documents,
which is where it di�ers from other Transformer-based models, such as OpenAI GPT-
27. The main purpose of the language model remains to predict a token given its
context. With bidirectional context, the model sees the left and the right context
simultaneously in the BERT model. To ensure that the model does not see the
searched token itself, which would make the prediction a trivial task in a multilayered
context, it introduces the masked language model, based on the idea of a cloze task
(Taylor 1953). 15% of the input tokens are masked and tried to predict by the

7https://github.com/openai/gpt-2
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remaining words. More precise, the following rules are applied to the randomly
chosen masked token

• 80% of the time replaced by the [MASK] token

• 10% of the time replaced by a random token

• 10% of the time, the token stays unchanged

Devlin et al. (2019) use the three di�erent rules, because otherwise they would train
the model excessively to predict a token that does not occur during �ne-tuning and
create a mismatch between pre-training an �ne-tuning.
As sequences often have a connection, like two sentences in a document, and many
NLP-tasks, such as Question Answering, bene�t from learning connections between
connected sequences (Devlin et al. 2019), the model is trained on a second task:
next sentence prediction. Given two sentences A and B, the objective is to predict
whether B is the successor of A. Therefore, 50% of the time, the real successor B
gets replaced by a random sentence from the corpus.

BERT's architecture is a multi-layer bidirectional transformer encoder. The authors
implemented two version, BERTBASE with L = 12 transformer layers and h = 12 at-
tention heads, with a total of 110 million parameters and BERTLARGE with L = 24
Transformer layers and h = 12 attention heads and a total of 340 million parameters.
The pre-trained models expect the input tokenized with the word-piece tokenizer (Wu
et al. 2016) with a vocabulary of 30,000 unique token. The �rst token of a sentence
must be a special [CLS] token, called the classi�cation tokens that should learn to
represent the complete �rst sentence. The �nal hidden state corresponding to this
token is then utilized as sequence representation for classi�cation tasks.
Sentence pairs are put into a single sequence, separated by a special [SEP] token
between them and in the end of the sequence.

Fine-tuning BERT is � in words of the authors � straightforward since the self-
attention mechanism allows to model di�erent downstream-tasks easily by swapping
to appropriate inputs and outputs. All parameters of the model are �ne-tuned during
the �ne-tune stage. In the case of text classi�cation, the [CLS] representation is
fed into an output layer for classi�cation, whose parameters are trained also in the
�ne-tuning stage. For other tasks, like named entity recognition or next sentence
prediction, the input and output must be changed, as well as the �nal classi�cation
layer. Devlin et al. (2019) reports a short �ne-tune time of only a few hours on GPU
(depending on the training corpus size), which can be considered as an advantage of
BERT and transfer learning in general.
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3.2.6 Evaluation Metrics

To evaluate the performance of machine learning algorithms, a typically metric is
the F-score, or F1 score, which is the harmonic mean of the precision and recall of
the classi�er. The precision is de�ned as

precision =
TP

TP + FP
,

where TP refers to true positive predictions, FP to the false positive predictions.
The recall is de�ned as:

recall =
TP

TP + FN
,

with FN, the false negative predicted samples of test data. The F1 score is de�ned
as:

F1 = 2 · precision · recall
precision+ recall

.

In classi�cation tasks with more than two classes (i.e. the binary case) and in cases
unbalanced classes, there are three common approaches to calculate the F1 score of
a problem, called micro, macro and weighted. Micro calculates the metrics TP, FN,
and FP globally, macro calculates them for each label independently and calculates
the unweighted means, while weighted calculates it for each label and calculates their
weighted average, taking into account the class imbalances. If not further mentioned,
F1 score, refers to the weighted average F1-score.
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4 Methodology

This section provides the applied methodology. We aim to automatize the classi�-
cation of the answers of the OMT by training machine learning model. Thus, we
train di�erent sentence representation techniques and train them on labeled data.
We further evaluate the trained models on unseen test data. To select the best
hyperparameter settings, we either use a randomly selected validation set, sampled
from the training data before training (for models with a long training time, i.e LDA,
TMN and BERT) or use a k-fold cross-validation, i.e. we split our train set into k
parts, train it on k − 1 parts and evaluate it on the held-out data. For every set
of features, we loop over all k parts as held-out dataset and average the results to
improve generalization. We use k = 5 in this thesis.
We present considered and applied pre-processing steps, followed by the concrete
implementational details and considered hyperparameter. This section is separated
into three parts, �rst, the overall pre-processing applied to the dataset, followed by
a section where we describe the machine learning models, i.e the learned and en-
gineered document representations and SVM / MNB. The last section provides the
implementational details for the deep neural networks, namely TMN and BERT, and
applied hyperparameter tuning for both.

4.1 Pre-processing

As raw text has to be transformed into a numerical representation, we apply di�erent
pre-processing steps to the data to exclude unnecessary information, so-called noise,
and make training more e�cient. First, we clean up the dataset by these steps:

-Removing all empty entries from the data

-Removing entries in foreign language We utilize langdetect for python8. As
the detection of language on short texts is not precise, we decide to apply
automated language detection carefully and only apply it on documents with
more than twelve tokens and manually delete shorter answers in languages
other than German.

Following best practice in NLP as well as design speci�c decisions, we consider the
following pre-processing steps with an additional note why the speci�c step might be
useful. As we use di�erent models based on di�erent assumptions and statistics, the
pre-processing steps not applied to every feature, which will be further elaborated.
Table 2 shows, which steps are applied, skipped and tested for di�erent features.
Pre-processing of BERT and TMN are elaborated in their respective subsections.

-Lower casing all entries Especially in German, this will reduce the vocabulary
but, at least in BOW-based models, eliminate information. Thus, we use this

8https://pypi.org/project/langdetect/
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pre-processing step supervised on created features. We do not apply this step
for BERT representations, as we follow the settings of the pre-trained model
we utilize (see Section 4.4).

-Removal of corpus speci�c stop-words Removal of token with a document fre-
quency above a given threshold. If the word is above the threshold, occurring
in nearly all documents, it can not be characteristic for a speci�c class and
therefore provides no useful information to the given task. This step has to be
applied carefully, as the quantity of a stopword in a document can still provide
useful information. Nevertheless this is a useful method to reduce the vocabu-
lary size, so that processing can be more e�cient. We do not remove language
speci�c stop-words, as we can not preclude the information content of these
words given the task. Furthermore, corpus speci�c stopwords might overlap
with these.

-Removal of rare words Words occurring in less documents than a de�ned thresh-
old. Similar to corpus speci�c stopwords, if a speci�c word occurs in very few
documents (considered thresholds are < 20), the document instances are so
rare that they do not have su�cient coverage to be useful. This is also called
cut o�.

-Remove all characters not in [a-zA-ZöÖüÜäÄÿ ] This allows a focus on the
text and reduces noise, at cost of distorting the original. We use regex ex-
pression here that matches all characters of the German alphabet, including
umlauts and ÿ.

lower casing
corpus

stopwords
cut o�

special char
removal

BOW e x x e
tf-idf e x x e
fastText - x x x
LDA x x x x
Paragraph Vector - x x -

Table 2: Summary of the applied pre-processing steps. 'x' represents applied, 'e' is
experimented with di�erent values, '-' represents not applied.

4.2 Feature Engineering & Machine Learning

This section will explain how we derive features from the pre-processed text with
the given models and furthermore provide details about the implementation of the
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machine learning algorithm. The section includes BOW, tf-idf, LDA, fastText and
Paragraph Vectors. The BERT and TMN settings are explained in the Sections 4.3
and 4.4, because these models combine the feature extraction and classi�cation pro-
cess. If not explicitly mentioned otherwise, a combination of features describes the
concatenation of the given feature vectors.
We further classify all engineered features with a MNB classi�er with α = 1 and
SVM with C = 0.1, following the settings of S. Wang et al. (2012). We will report
the result with the highest F1 scores in Chapter 5.2. We seek the best hyperparam-
eter with a 5-fold cross-validation.
As an exhausting grid search is computational too expensive, we apply a greedy
search. We do know that the greedy approach will not necessarily �nd a global op-
timum. The �nal results are evaluated on an unseen test set.

For BOW and tf-idf, we consider uni and bigram features, as S. Wang et al. (2012)
reported improved results on di�erent datasets. Larger n-grams do represent more
contextual representation but tend to generalize poorly because of the resulting high-
dimensional representation (Le et al. 2014). We furthermore combine these features
with topic distributional features, learned with LDA similar to the Zeng et al. (2018).
For the topical features, we remove all words occurring in more than 80 percent and
less than 10 documents. We follow the hyperparameter start settings of Riedl et
al. (2012) and use 500 model estimation iterations and 100 inference iterations and
β = 0.1. We test multiple topic numbers T with α = 50/T . Applying the TM to a
document, we will obtain a |T |-dimensional distribution over topics of the given doc-
ument. Note that LDA is a probabilistic model, thus the process is not deterministic
and will produce di�erent results, even with the same trained model.

We further utilize pre-trained word embeddings for fastText. We use 300-dimensional
representations, trained with character n-grams of length 5, and a window size of 5.
The model is trained in CBOW fashion (see Section 3.2.5) on a German Wikipedia
dump9 and German Common Crawl10, together with over 60,000,000,000 tokens. For
further information about the pre-training process, we refer to Grave et al. (2018).
We use the pre-trained embeddings similar to Joulin et al. (2017) by summing or av-
eraging all word vector to obtain a 300-dimensional document representation, which
is further utilized as feature in the classi�cation process. Similar to the BOW model
above, this is a very e�cient method to classify texts and obtain context-sensitive
representation of words, once pre-trained embeddings are available. Limitations of
this approach might be that positional information, so document-speci�c context is
not considered in this model.
We further try to examine, whether this context does provide improved representa-
tion with respect to the given task and train the Paragraph Vector model according
to Le et al. (2014). We train sentence vector representation with 400 dimensions for

9https://dumps.wikimedia.org/
10https://commoncrawl.org/
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PV-DBOW and vector and word representation of 400 dimension for PV-DM. The
optimal window size is task-dependent, thus we test di�erent window sizes w = [4, 8].
Special characters are treated as normal words in the process.
As input for classi�cation, we use the concatenation of both sentence representations,
as this is reported to �often work consistently better� (Le et al. 2014).

4.3 Topic Memory Network

One reason for the development of the OMT was to reduce the time-consuming
process of measuring latent motives with the TAT, as explained in Chapter 3.1. The
OMT produces theoretically shorter statements of the subjects up to only keywords.
Following this logic, we apply a Topic Memory Network Zeng et al. (2018) to the given
task. We use the implementation of (Zeng et al. 2018)11. As input representation,
we use fastText embeddings of 300 dimensions, identical to the described model
beforehand. We set the number of hops to H = 1, due to computational limitations.
The in�uence of the number of hops was discussed in (Zeng et al. 2018) and in�uenced
the accuracy by ±0.05, which will be considered in results.
Due to computational resources, we use 50 topics, as the results on di�erent datasets
showed the best results in Zeng et al. (2018). As sequence length, we choose 25, close
to the 75% quantile in pre-processed text. We are aware that many answers will be
truncated based on this decision, but accept this due to the evaluation process of
the OMT. The examiners are constrained to assign a label to an answer, as soon as
an indicator for a latent motive is observed. Thus, the truncation of answers might
even re�ect the validation process and should be appropriate in length. The training
is �compared to the other models applied in this thesis� extreme resource intensive.
We aim to train the model with early stopping method (Lawrence et al. 2000). For
the �nal classi�cation we use a CNN with a hidden size of 500.

4.4 BERT

We use the PyTorch implementation of BERT12 with a linear layer on top of the
pooled output. To use the full potential of the BERT model, we use a pre-trained
model from deepset.ai13. The model is pre-trained on German Wikipedia dump,
OpenLegalData dump14 and news articles, about 11 GB of raw text in �cased� fash-
ion, thus with the original capitalization of the texts. To our knowledge, this is the
only pre-trained model in German. The model architecture is identical to the base
model in Devlin et al. (2019).
We use the trained sentencepiece tokenizer15 to tokenize texts. It is based on Google's

11https://github.com/zengjichuan/TMN
12https://github.com/huggingface/pytorch-transformers
13https://deepset.ai/german-bert
14http://openlegaldata.io/research/2019/02/19/court-decision-dataset.html
15https://github.com/google/sentencepiece
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wordpiece tokenizer with a �xed-size learned vocabulary. Out of vocabulary token are
split into the largest known sub-token to approximate a contextual representation.
We use the German pre-trained model instead of available pre-trained multilingual,
as the German model performed better in four out of �ve downstream tasks in Ger-
man. We �ne-tune the model on a 12 GB TitanX GPU.
Is input for the classi�cation layer we use the [CLS], as proposed by the authors.
As the model is, compared to TMN very e�cient, it is possible to train the neural
network on multiple parameters. We follow the suggestions of the authors and use

• Batch size: 16, 32

• Learning rate (Adam): 5× 10−5, 3× 10−5, 2× 10−5

• Number of epochs: 2, 3, 4

As task speci�c adjustment, we use sequence lengths of 100, which includes all token
in each document of the dataset.
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5 Evaluation

5.1 Dataset

This section aims to provide insights into the utilized dataset. It origins from the
Universität Trier in Germany and is collected and used as described in Schüler et al.
(2015). The collection process followed the original paper (Kuhl et al. 1999). So each
subject answered the four questions to 15 di�erent ambiguous pictures (see Chapter
3.1). The answers are mostly in German.

Number Answer Motive Level
0 185124138106620081063215 ignoranz den anderen gegenüber.schlecht.die Pe... M 5
1 185124138106620081063215 mitlachen, mit eingeschlossen zu werden.sie la... A 5
2 185124138106620081063215 den anderen Umamen, ehrlichkeit, vertrauen.gut... A 1
3 52122529750377312346781011 Sie hält die andere Person, stütz sie. Gut.Sie... M 1
4 52122529750377312346781011 Entspannung, Spaÿ zu haben. Sie albern herum. ... A 2

Table 3: Extract from the unprocessed dataset

The dataset consists of 220,000 documents. After �ltering out answers in other
languages than German, answers containing only the same letter repeated, and empty
entries, the dataset consists of 209,399 values. Each entry is composed of (i) the
anonymized number of the participant, (ii) the concatenated four answers, (iii) the
motive, and (iv) the a�ective level as shown in Table 3. The creators utilized a

Figure 12: Label distribution of the
dataset

slightly di�erent evaluation method than
Kuhl et al. (1999) proposed, as they per-
ceive freedom (F ) as distinct motive. In
Kuhl et al. (1999), the freedom motive is
not a distinct motive. Sche�er, the co-
author of the OMT, perceives its char-
acteristic as real subset of the power
motive16. Thus, the freedom motive is
changed to power for generalization as-
pects. As we classify solely the motive,
not the a�ective levels, there is no need
to adjust the a�ective level as well. We
further refer to the motives also as M
(power), L(achievement), and A (a�lia-
tion). The abbreviations are utilized in
the labeling process and refer to the re-
spective German translation.
The length of the answers di�ers from 1− 97 with a mean length of 22 words and a
standard deviation of 12.03. A document containing one word is possible, as there
is no restriction on how many answers a participant wants to give and might be

16Personal communication, 23.09.2019
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Figure 13: Box plot of the text length.

enough to attribute a motive to. Figure 13 illustrates more about the statistics of
the corpus. As the �gure reveals, the 75% quantile is at 29. The box plot also shows
many outliers to the right side, but in general, the answers are short. We decided
not to remove the very short answers, as we do not know the exact in�uence of the
length of answers on the classi�cation by human experts. Additionally, the 0 motive
is introduced especially for answers, which could not be assigned to any of the other
motives, therefore these special cases are not disruptive to the task. The distribution
of the classes, shown in Figure 12, is imbalanced. The M motive is by far the most
frequent class. Thus we decided to use a strati�ed split on the train and test set.
The split is chosen by 70% of data as training set, leading to 30% as test set. In
numbers, there remain 146579 answers in the training set, 62820 in the test set.

The imbalance of classes also result in the baseline with a zeroR classi�er, attributing
always the most common label. Another aspect, di�ering from the majority of NLP
research, is the use of German. German uses capitalization for nouns as well as
three genera for nouns and a moderate degree of in�ection. In short texts, especially
capitalization is often ignored. Table 3 illustrates the beginning of 5 answers, in which
a German native speaker can identify numerous spelling mistakes (e.g. Umamen in
third line is, spelled correctly umarmen / to hug, ignoranz is correctly Ignoranz /
ignorance.
Furthermore, we will append ten instances of the dataset in the appendix.
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5.2 Results

This section will present the results of the experiments described in Chapter 4. A
discussion of the results follows in the Chapter 6. For simplicity, we refer to the
combination of feature and classi�er as model. The results presented in Table 4 are
the best results achieved by the individual models. Each result is the mean of multiple
runs to increase con�dence in replicability. On the given task, the pre-trained BERT
model performed best out of all models. The best results were obtained training all
parameters for two epochs with a learning rate of 1e−5, slightly lower than proposed
in Devlin et al. (2019).

Table 4: Results

Model F1 Settings

zeroR 0.5886
LMT17 0.801
BOW - SVM 0.8308 cut o�=10, unigrams
TFIDF - SVM 0.8354 cut o�=10, uni & bigrams
LDA - SVM 0.7473 topics = 80, alpha = 50 / 80
fastText - SVM 0.7911 averaged, 300 dimension
BOW + LDA - SVM 0.8223 see above
Paragraph Vector 0.8109 window size =[8,4]
BERT 0.8443 Learning rate = 1e− 5, epochs = 2

Also all features classi�ed with SVM achieved a higher F1 score than the identical
features with MNB, thus we consider the the SVM inferior on this dataset. As we
applied many di�erent techniques to classify the answers of the OMT, we further list
the models and report speci�c observations on each of the models.

BOW, tf-idf : The models performed third respective second best with very similar
results. Both models bene�t from noise removal, where especially the minimum
document frequency of terms is the most important, but also lower casing and the
removal of special characters improved the performance.
Figure 14 shows confusion matrices for both models and reveals that both models
tend to classify answers to theM motive that is by far the most occurring class. Even
though the BOW-model achieved a lower F1 score, it tends to classify the motives
L, A, and 0 with slightly higher accuracy on the cost of losing accuracy on the M
motive. The accuracy decreases with the number of occurrences for each label.

LDA Topic Model: Of all features tested, the LDA topic models performed worst
and had a negative in�uence combined with BOW features.
Of all tested numbers of topics, the model with T = 80 topics performed best. We
observed similar results in the classi�cation task with other parameters, especially
with T < 80 by adjusting the α parameter at the cost of higher variance in the F1
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(a) Confusion matrix of the test set results

of BOW features classi�ed with SVM

(b) Confusion matrix of the test set results

of tf-idf features classi�ed with SVM

Figure 14: Confusion matrices of the count-based features classi�ed with SVM. All
results are normalized.

score (see Chapter 6).
Even though the F1 scores vary a lot, all models share that the 0 motive is not pre-
dicted.
As LDA is an unsupervised model, it is also possible to �t it additionally on the test
set, or in real life examples on new instances to �t the model to all data. Interestingly,
training the TM on all available data does not increase the classi�cation performance
nor increase stability of the F1 scores. Due to the signi�cant weaker performance,
we do not apply methods to increase stability of the results (see e.g. Riedl et al. 2012).

fastText: The di�erence between the applied sentence representation strategies (i.e.
summing up and averaging all word vectors) is very small, considering the other
results, with a slightly better score for the averaged sentence representation (0.7883
compared to 0.7911). Nevertheless, the scores are signi�cant lower than the scores
achieved by the tf-idf and BOW models.

OOV-token Nearest neighbor similarity Translation
diszplin Disziplin 0.5380 discipline (f), discipline
Körpersignalen Sensorsignalen 0.6970 body signals, sensor signals
Behüterrolle Behüter 0.6215 role of a guardian, guardian
gesprächsleitung Gesprächsleitung 0.6468 moderation (f), moderation
aushegen R07 0.5435 ? , non-word

Table 5: Overview of OOV token embeddings. '(f)' represents minor spelling mis-
takes in the OOV token, '?' a non-interpretable token, and 'non-word' an unknown
word, most likely a proper noun.

Out of a total of 70,000 unique tokens, 23,000 are OOV token. All token are em-
bedded based on their character n-gram composition, including all misspelled words.
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Table 5 shows examples for the OOV embeddings, which sometimes, especially on
slightly misspelled words (e.g. swapped letters in a word) and ignored capitalization.

The confusion matrix (Figure 15) of the model shows that the it over�ts to the M
motive and tend to classify to many documents in to that class.

Figure 15: Confusion matrix of the fastText model. The right column reveals that
the model classi�es many documents to theM class and therefore shows poor results
for the other classes, especially 0

Paragraph Vector: The model performed best when concatenating both imple-
mentations, PV-DBOW and PV-DM. Using both models individual, the PV-DBOW
model is superior by a large margin (0.8088 to 0.6984). Unlike in the combination of
LDA and BOW, the combination of both model perform better when combined.
DBOW shows best results using a window size of 8, while the DM model results with
a window size of 4 are the best.

BERT: The pre-trained deep neural network model is the best out of all tested
models. The results of all applied learning rates peaked after two iterations before
dropping lower than after the �rst iteration. As we observed this behavior especially
on the higher learning rates, we additionally used 1 × 10−5 as learning rate and
reported best results. The best set of hyperparameter is training for two epochs and
a learning rate of 1e− 05. Figure 16 shows the confusion matrix of the model. The
right column indicates, that the model is likely to classify to many documents as M
motive. The e�ect in this model is lower compared to all other model, at the cost
of a lower accuracy on the M motive. Even though the accuracy in the 0 class is
still beneath 50%, the score is about twice as good as the second best accuracy in
this class. Also the accuracy on A and L is 5% higher than in the second best model
(tf-idf).
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Figure 16: Confusion matrix of the test set results
of the BERT model

TMN: On the given hardware setup, we are not able to train the TMN su�ciently
and therefore report validation set results, shown in Table 6.

Table 6: F1 score on valida-
tion set

Model F1 Acc
TMN 0.824 0.8354
BERT 0.848 0.847

The model trained for 250 epochs, but we can not en-
sure convergence, thus these results have to be taken
with care. It is important to notice that the model con-
sists of two networks that are trained in a joint learning
process. Thus, not the complete network trained for
250 epochs. Most iteration are for improving the topic
representation in the NTM part of the model. Addi-
tionally, the �nal classi�cation input is the concate-
nation of the sequence embedding and the topic induced document representation.
Thus, it is up to future work du test the complete model and to test classi�cation of
embedded sequences with CNN and RNN.
Nevertheless, to this points results are inferior to the results of BERT as well as the
tf-idf features classi�ed by SVM.
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6 Discussion

This chapter we discuss the results of the experiments. We split this section into
three parts. In the �rst part we discuss general results of the classi�cation of the
answers of the OMT, in the subsequent section we focus on the classi�cation with
TM and BERT.

6.1 OMT Classi�cation

The results of Section 5.2 show success in the goal of this work, the classi�cation of
the answers of the OMT. All applied methods perform substantially better than the
the zeroR classi�er, most of them additionally improved the results of Johannÿen
et al. (2019). The BERT model achieved SOTA performance.
Nevertheless, even though the F1 scores are satisfying compared to the previous
results, the accuracy on the A,L, and especially the 0 motive are poor. This most
likely has two reasons: (i) The imbalance of the data: More than 50% of the answers
of the OMT are classi�ed as M , thus classi�er tend to classify more answers into
the majority class. (ii) The 0 class, or 0 motive are the answers, which can not be
attributed to another motive. Thus, it can be seen as residue of the other classes
and contains all meaningless answers such as "i don't know" repeated multiple times,
and stories without connections to the stimuli. So it is likely that there is no real
characteristic for a 0 motive answer, what would explain the low accuracy shown in
the confusion matrices in the previous chapter.
An analysis of the wrong classi�ed documents revealed, that the length of all false
classi�ed answers is very similar to the correct classi�ed answers, shown in Table
7 as well as the mean number of spelling mistakes18. The only di�erence are the
false positives for the 0 class: There, the average length was only 14, compared to
22 on the corpus. As these includes only a very small fraction of the set (e.g. 230
documents in tf-idf - SVM model).

Group ∅ length ∅ spelling mistakes
Correctly labeled 22.22 0.3593
Wrongly labeled 21.86 0.3759

Table 7: Statistics from the test corpus

For a human reader who is not trained to classify the answers of the OMT, there are
no latent characteristics observable in false classi�ed answers indicating why these
answers are not correctly classi�ed. It seems like the answers tend be too similar to
be classi�ed with higher F1 score.

18Measured with the count of spacy (https://spacy.io/) OOV token.
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The corpus contains the typical high percentage of rare occurring words (Zipf's law,
Zipf (1929)). More than 55% or 40,000 out of 70,000 token of the train corpus vo-
cabulary occur in less than three documents. Another 10,000 occur in under ten
documents. These rare words contain a high amount of misspelled words, which are
likely to be in the corpus, as well very context speci�c words. For the count-based
(i.e. BOW, tf-idf) models, minor improvements could be achieved by using a proper
spell correction, which should increase word co-occurrences As all count-based mod-
els bene�t from lower casing, this might be useful as well.
Some participants seem to answer the questions to a presented stimuli by referring
to the speci�c situation in which the seen stimuli plays in their imagination. An ex-
ample of this is �Architekt (architect)�. A related document with the word Architekt
is

Der Architekt legt seine Gründe in Form von Argumenten dar warum er
jenes Gebäude so und nicht anders realisieren möchte. Angespannt. Er
möchte den Auftraggeber überzeugen und befürchtet zugleich nicht ver-
standen zu werden. (The architect explains his reasons in the form of
arguments why he wants to realize that building so and not otherwise.
Strained. He wants to convince the client and feared at the same time
not to be understood).

The participant describes the feelings of the acting person in the stimuli projected
into the speci�c context of an architect at work. As we do not have the presented
stimuli present we are not be able to further analyze speci�c answers like this, as we
can not determine the content of the stimuli. This makes it impossible to conclude,
whether this kind of answers are in�uenced by the stimuli or by participant-speci�c
situations, like Chapter 3.1 described. Considering the rare occurrences of the token
�architekt�, it is unlikely that the stimuli presented architectural stimuli like draw-
ings from buildings. This would support the theory of operant tests but cannot be
veri�ed with the given data, but is also not the objective of this thesis.

Our expectation, that the fastText embeddings may yield better classi�cation re-
sults based on their ability to express relatedness between terms did not materialize.
We suspect three possible reasons for this, (i) the 300 dimensional vector represen-
tation of documents is not su�cient to represent information at least on par with
de count-based methods, (ii) the pre-trained embeddings need further, domain or
corpus speci�c �ne-tuning be able to represent terms su�cient for the task and (iii)
in the context of the OMT a strict discrimination of terms is useful. (i) and (ii) can
be implemented and tested in future work, by �ne-tuning and/or using sequential
embeddings and deep neural networks such as CNN for classi�cation.
(iii) might be a limitation of this approach in general, as it can be important in this
context to discriminate related words based on minor changes. In our pre-trained
model, the most similar term to �will (to want something)� is �möchte (would like
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to)�. In many context this measurable similarity is very useful, for our use case
maybe not, as �He would like to...� is more passive and less aggressive than �He
wants to...�, which can be a reason for the poor performance. Most likely, a com-
bination of all three reason in�uences the model to some degree and should be be
further investigated. In the applied method, the fastText embeddings classi�ed with
SVM are ine�ective.
Even though the Paragraph Vector model performed better than the LMT, it is still
not preferable to the simpler and more e�cient count-based models. Considering
training time for the model in combination with the F1 scores, we would recommend
to use BERT, which trains slightly longer but achieves best results or to use tf-idf
in combination with SVM, which trains more than 30 times faster and maintains
interpretability. Noticeably is also, that the PV-DBOW model solely achieved an
F1 score of 0.8088 whilst the PV-DM only achieved 0.6984 and is the worst of all
applied model. Unlike in the combination of BOW and LDA features, the combined
model performs better than both model standalone. We append confusion matrices
of the models in the appendix.

6.2 OMT Classi�cation with Topic Models

As mentioned in Chapter 5.2, we focus on LDA and overlook the results of the TMN,
because we have not su�cient data to analyze it.
Compared to the other applied models, LDA performed bad in the given task. Con-
sidering the mean length of the texts, it is not very surprising that LDA as single

Figure 17: Example stimulus from Kuhl et
al. (1999), possibly related to climbing

feature does not achieve good results,
considering we represent the documents
with just T dimension. Interestingly
the performance of BOW combined with
LDA dropped, to when combining both.
Via weighting of the features, we can
minimize this e�ect, but only approach
the performance of the BOW model
solely. We conclude that a LDA TM
does not yield information that goes be-
yond a BOWmodel considering the clas-
si�cation task. The reported best F1

for LDA score can nearly be achieved
in multiple ways. Following Riedl et al.
(2012) and using α = 50/T , we achieve
an score of 0.7473 with a standard devia-
tion of 0.0082, which is not only the best
result but also the result with the lowest
deviation over �ve runs with identical hyperparameter. As Figure 18a reveals with
this dynamic setting of the alpha, other topic numbers perform slightly weaker with
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a higher deviation. We can achieve similar performance with other topic numbers
by adjusting the alpha parameter. E.g setting the topic number to only 20 topics
with an alpha of 1 achieves similar F1 scores but su�ers from a very high standard
deviation over di�erent runs. This behavior shows the probabilistic nature of LDA
topic models, where variations can have a high in�uence on the resulting model. We
achieve scores up to 0.76, which were best results with the model. Thus, reported
LDA results should always be normalized over multiple runs.
In Figure 18b we additional report normalized perplexities of ten runs. We observe
that our best model with 80 topics has not the best perplexity, which shows that
perplexity is not necessarily useful to measure the quality of LDA topic models with
respect to a TC task. Beside the problem of to few co-occurrences in short text,
the model might su�er from another issue that is task speci�c. Participants tend do
describe the observed stimuli, observable in Topic 19 from Table C1 in Appendix.
The top words are berg, den, kommt, oben, halt, kommen, angestrengt, gipfel, hoch
(mountain, the, comes, top, stop, coming, exhausted, summit, high) that are clearly
correlated to mountain climbing, which is likely to be visible in the stimuli. Kuhl
et al. (1999) present example stimuli like Figure 17, which could be the stimuli to
Topic 19. Thus, we maybe found a topic that describes the stimulus, but does not
capture task speci�c information to classify the answers of the OMT su�ciently.

(a) LDA results with di�erent T and

alpha = 50/T

(b) Stability of perplexity over 10 runs

visualized. We use alpha = T/50

Figure 18: Statistics from the LDA topic model

In future research, it can be useful to observe whether particular topics are stronger
correlated to stimuli. Then, we will be able to determine, whether the model learns
which stimulus is related to which motive or whether our model learns to classify
language speci�c characteristics to a latent motive. Furthermore, the top words of
each topic are very di�cult to analyze. E.g Topic 46 contains top words like �mächtig
(mighty)�, �eingeschüchtert (intimidated)�, �überlegenheit (superiority)� and could
be linked to the power motive M . Topic 70's top words seem to be correlated to
the L motive, containing �leistung (performance)�, �anerkennung (appreciation)� and
�jubeln (cheer)�. Topic 0 covers a�liation related terms like �einander (each other)�,
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�vertrauen (trust)� and �verantwortung (responsibility)�. Many other topics contain
similar words that can also be considered as stopwords and yield no information with
respect to the task for a human reader but are not captured by the pre-processing
methods, where further improvements might be possible.

6.3 OMT Classi�cation with BERT

Similar to many other NLP-tasks, BERT achieved best results considering the F1

score. The result is very close to the pairwise human agreement score of 0.85 with
an accuracy of 0.8460, thus it is hard to argue whether further improvements are
possible.

(a) Decreasing F1 score over time (b) F1 score of di�erent learning rates over time

Figure 19: BERT model statistics

We observed strong signs of over�tting during the training, as statistics from Figure
19 reveal. For every applied learning rate, the validation set accuracy decreases after
2 epochs and did not recover to former scores over time. Considering that Devlin
et al. (2019) recommend only 2-4 epochs, this is maybe typical behavior on small

Figure 20: Training and validation loss over time
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datasets considering the huge amount of pre-training data and 110,000,000 parameter
to adjust. Not only the validation loss is increasing over time, the training loss is also
converging. For further analysis and usage of the model, sophisticated and exhaustive
�ne-tuning should be applied, so that it is (i) maybe possible to slightly improve
F1 and accuracy score and (ii) increase stability of the model. In this thesis, we
consider the training successful, as we performed reproducible SOTA results within
the recommended range of �ne-tuning epochs. Nevertheless, we are aware of multiple
methods that would increase stability and maybe performance of the model, namely
(i) increasing the amount of training data, (ii) exhaustive hyperparameter tuning,
including di�erent batch sizes, maximum sequence length, optimizer and learning
rate schedules and (iii) using the BERT Large model with 24 Transformer blocks,
1024 hidden layers and 16 attention heads, resulting in 340 million parameter to
train.
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7 Conclusion

The use of machine learning to classify the answers of the OMT into latent motives
shows to be very e�ective. Thus, we can con�rm our hypothesis and established a
new benchmark with the BERT model.

We introduced a dataset of answers to the OMT with di�cult properties for a TC
task. The classes are highly imbalanced, single answers su�er noise such as abbrevi-
ations, spelling mistakes and are in general short. We encountered this with di�erent
pre-processing and text representations in combination with di�erent classi�cation
methods. We showed that simple count-based document representations classi�ed
with a SVM yield very promising results, even better than more sophisticated sen-
tence representations and word embeddings.
Despite an improvement compared to the zeroR classi�er, we consider LDA topic
model not as a useful feature to classify the answers of the OMT, even though the
resulting topic models showed tendencies to model motive-related terms together.

Furthermore we showed the e�ectiveness of a pre-trained attention based deep neu-
ral network for classifying a psychometric test, trainable in considerable time and
with a�ordable hardware19. We found these results are in accordance with actual
research results in downstream NLP-tasks, where closely related models performed
SOTA performance on a wide range of tasks.

With a �nal F1 score of 0.84 we substantial improved previous results and approach
the human performance, measured in human intraclass correlation coe�cient of 0.85.
These metrics are not directly comparable but are to our knowledge the best mea-
surement of human performance.

For further analysis of the texts and characteristics, we found the classi�cation with
BERT signi�cantly less useful than other techniques, e.g. BOWmodels and the LMT
trained by Johannÿen et al. (2019), which enable a better analysis of classi�ed texts
and should also be considered in further human motive related research. Especially
Johannÿen et al. (2019) could detect the most in�uential features in the classi�cation
process, while BERT remains a black box model.

19Su�cient hardware setup is available at https://colab.research.google.com/ for free
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A Dataset Examples

76122927536646036781011;Sie müssen Arbeit fertig stellen, Leistung erbringen. Handw-
erklich tätig sein. Je nachdem wie das von ihnen geforderte Pensum ist. Sie stehen
entweder unter Druck oder können sich zeit lassen.ihnen bleibt keine andere wahl.
das ist ihr leben, ihre arbeit. ;L;4

76122927536646036781011;Sie entschuldigt sich.Unterdrückt, klein. Sie hat den Stift
eines anderen kaputt gemacht ).... Der stift kann ersetzt werden, alles halb so
schlimm.;M;5

11311412943387617M10;Die Person gegenüber soll überzeugt werden.überlegen, un-
verständlich.Die Person fühlt sich in seiner Intelligenz beleidigt, da die Selbstver-
ständlichkeit, für die er argumentiert nicht verstanden wird.;M;4

11311412942914312M7;Zuwendung.einsam.weil sie allein ist.;A;5

13491831192726807846K15;sie sin eine Gemeinschaft.unsicher.sie wissen nicht, was
auf sie zukommt.;M;5

13491831192726807846K15;sie maÿregelt.gut.sie glaubt, sie hat ein Recht dazu.;M;4

6241478198361714M7;unterhalten.freudig unterhalten.da sie eine gute Konversation
führen.;A;2

6241478198361714M7;versucht zu ignorieren.ausgeschlossen.da sie nicht mitmacht
und über sie gesprochen wird.;A;5

6081477664560133M10;Wichtig ist, dass sie nachdenken kann und Ruhe hat.Sie fühlt
sich ganz in Ihrer Kraft, was Ihre Intellektuellen Fähigkeiten betri�t. Weil sie dasitzt
und den Blick nach unten gerichtet sinniert und nachdenkt. ;F;1

1551757410308674421K15;dass die Weisse wieder zu Atem kommt.behütend für die
andere.weil sie mehr Erfahrung hat als die Weisse.harmonisch.;M;1
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B Paragraph Vector Confusion matrices

Figure B1: Confusion matrix of PV-DBOW model. Similar to most other classes,
the right column reveals, that the model classi�es many documents to the M class
and therefore shows poor results for the other classes, especially 0

Figure B2: Confusion matrix of the PV-DM model. The poor perfomance can be
explained by the over�tting to the M class
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Figure B3: Confusion matrix of the combined Paragraph Vector model
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C Topic Model from LDA

Table C1: Top words per class from a topic model trained with best hyperparameter
settings

WORD 1 WORD 2 WORD 3 WORD 4 WORD 5 WORD 6 WORD 7 WORD 8 WORD 9 WORD 10
0 durch des beide einander vertrauen arm schulter gutes vertraut verantwortung
1 schlecht klein unterlegen schuldig schämt kopf beschämt sich dafür entschuldigt
2 der und sie die ist chef vom eigene froh eigenen
3 machen sie ganz schon noch fertig gelangweilt und weil ist
4 diese sie geben geborgen jemanden und geborgenheit wohl umarmt braucht
5 sie tun nichts soll die hören zu und aufgeregt weil
6 stolz glücklich zufrieden sie und weil lob hat erhält gelobt
7 zur schaut arme sie sieht die verschränkt und überlegt seite
8 hat einen gemacht fehler sie weil streit sich und begangen
9 kann aufgabe helfen lösen problem hilfe bei hilft unterstützung rätsel
10 nicht verstanden dabei sie die zu bleibt und der bringen
11 als wollen unter team ruhe druck spiel müssen arbeiten schnell
12 anderen der sie die verantwortlich und person position ist dominant
13 und mehr ihrer sie ihre die mutter kritik sich erfüllt
14 ein sie und der ist weil freund sich bisschen die
15 sie ihrem zu lassen und die weil sich überfordert muss
16 sie hört weil zu tut und sich begeistert ist die
17 sich und selbst zeit sie gerne würde zu bewusst die
18 sie und die ist weil sich selbstsicher zu person der
19 berg den klettert kommt oben halt kommen angestrengt gipfel hoch
20 auf sie und die gehalten sich leute weil liegt augenhöhe
21 sie und zu die ist sich weil verständnis der missverstanden
22 nähe und zurück sucht sich sie die war der eher
23 sie man wenn nicht zu weil und ist sauer sich
24 über geht reden weg die sie und damit beschäftigt darüber
25 für die ist sie dieser und der neugierig zu sicherheit
26 alle sie erfolg und den im weil mittelpunkt feiern hat
27 wird von sie und sich akzeptiert schutz weil die respektiert
28 sich der und sie die anderen weil zu körpersprache person
29 sie die weil und sich der ist zu person nicht
30 wie sie zuhören aufmerksamkeit zeigen und weil der erhalten die
31 fühlt sich sie nicht dazu die und kleine mut weil
32 mit die sie sitzt und person ist armen der weil
33 sie und besser menschen weil die ist zu sich sein
34 gut sie sehr weil und sich die schreiben beraten weint
35 sie gerade wurde weil sich zu und verletzt der nicht
36 möchte sein sie zu und sich genervt weil die muss
37 gegenüber nimmt halten ohne thema vortrag vermitteln rede sie viel
38 ziel konzentriert erreichen an erreicht angespannt motiviert scha�en bzw erfolgreich
39 eine lösung �nden �ndet gedanken nachdenken sie muss die zu
40 aber auch sie jetzt ist nicht besorgt die mag und
41 person andere die hand jedoch linke rechte angegri�en trösten linken
42 nicht keine weiÿ weiss ich nur ob dann unsicher ahnung
43 steht dem die hinter sie rücken und einfach weil sich
44 macht da sie sich und die weil nicht der ist
45 werden zu sie aufmerksam ernst und weil gehört genommen nicht
46 körperhaltung gelassen sie mächtig wirkt wegen eingeschüchtert und überlegenheit der
47 das kind wieder dem vater sohn sagt der seinem beziehung
48 sicher sie haltung sache die der und sich klar weil
49 zusammen arbeit gemeinsam sind arbeiten bauen immer jeder zwei erledigen
50 was sie wissen sagen zu weil der die anderen ratschläge
51 sie und den zu kontakt freude die der weil sich
52 personen anderen beiden allein ab ausgeschlossen sich wendet einsam den
53 und lässt die erzählt sie weil ist eines sich den
54 zu versucht erklärt die erklären sie verstehen versteht überzeugen lernen
55 zu sie scheint und die sich der bleiben ist weil
56 es wichtig ist dass sie so anliegen und dennoch für
57 gespräch einem am zeigt tisch dem wenig andern kollegen setzt
58 der die person sie anderen und verhalten anderer unzufrieden sich
59 nach traurig oder alleine denkt vielleicht nachdenklich sie leben passiert
60 hat bekommt ängstlich falsch angst enttäuscht bekommen ärger schlechte sie
61 sie weil hält und die ist besprechen der gleichen sich
62 haben sind entspannt miteinander unterhalten gehen spaÿ ihnen sprechen lachen
63 gruppe einer vor die stehen teil sie kennt und unsicher
64 sie sich weil beobachtet könnte die und ist nahe denn
65 etwas sie interessiert spricht der die von überzeugt anderen und
66 um sie die jemand und zu ruhig keinen weil sich
67 sie und sich freuen sehen bis die voller weil lange
68 ihr sie zuhört neue und genau die erwartet zu weil
69 in situation und sie sich ist der die moment partner
70 leistung sie anerkennung gute und die jubeln freudig weil der
71 aus können sie fühlen die dritte sich zu der austausch
72 stark den stein gescha�t scha�t einen kraft hebt stärke sie
73 überlegen im meinung recht ihre wütend schimpft ihren hauptperson doch
74 zum und beim freut mal leicht zu herausforderung spielen die
75 sie zu und weil der die weiter ist sich spielt
76 will sie gibt rat weil guten wichtiges nervös die und
77 sie weil ist die der und sich anderen ärgerlich nicht
78 er ihm ihn seine schüler lehrer der verärgert aufgaben seinen
79 dass sie ist die alles nicht richtig dies und erledigt
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