
Masterarbeit

Sentiment Analysis of Informal Online Texts with Neural
Networks

vorgelegt von

Tim Alexander Dobert

Matrikelnummer 6427948

Studiengang Informatik

April 2019

Betreuer: Steffen Remus

Erstgutachter: Prof. Dr. Chris Biemann

Zweitgutachter: Steffen Remus



Abstract

With the large amounts of user generated text on social media and the internet in general,
automated text processing and classification is becoming a more and more attractive tool
for maintaining an overview of popular topics and trends. Sentiment analysis specifically
can be valuable to monitor public perception and the social climate of a topic. This
requires reliable and accurate methods, otherwise the gathered data is of little use. In this
work, we examine the properties of informal online text communication and compare the
performance of different neural networks in on this data. Among these are the recently
introduced capsule networks, which have already achieved promising results on image
classification tasks. We examine how their new ideas like routing by agreement and
reconstruction modules fare on text and how these networks as a whole perform in this
domain. Comparing this new type of network to more traditional CNNs (convolutional
neural networks) and LSTM (long short-term memory) networks on two different datasets,
shows that they perform better in some scenarios and worse in others. Using relatively
simple, shallow models with pretrained word embeddings, we get results that are not too
far from the the state-of-the-art. Even when classification scores are low, diving into the
results in detail can still provide information on trends and patterns in the datasets. The
reconstructions, which can produce impressive results in simple image classification, are
much more difficult to use on text. Even with multiple adjustments, they provide no
improvement in text classification.

2



Contents

1 Overview 4
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work 7
2.1 Text Processing Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Text Classification in General . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 LSTM Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Capsule Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methodology 16
3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 CNN and LSTM Network . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Capsule Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Evaluation 24
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Grid Search Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Further Insights 36
5.1 Reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusion 42
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 44

Appendices 46

3



1 Overview

1.1 Introduction

Despite the prevalence of smart phones with front facing cameras and increasing access
to high bandwidths, a large part of online communication is still text based. Whether
social media, message boards or comments on various websites, the written word is one of
the most common forms of user generated content on the web. Because of its abundance,
text can be a great resource for gaining insight into a community’s social climate, stances
on certain topics or other sentiments. Whether for market research or because of rising
concerns about hate speech, there are more and more reasons to look at user generated
text at a large scale. The sheer volume of text makes this a monumental task however,
with Twitter alone boasting over 500 million posts a day1. Since comprehensive manual
analysis is out of the question, accurate, automatic procedures would be extremely helpful
in this endeavor. Luckily, the advances in machine learning in the past years are being
used to develop sophisticated methods for picking up on the nuances of human language,
which is necessary for building accurate text classifiers in these areas.

This work examines the properties of informal, user generated online texts and compares
different types of neural networks for the classification of informal online communication,
especially in regards to sentiment analysis. The recently introduced capsule networks
receive a special focus in this regard, in order to evaluate their potential for text processing
in general and the classification of short informal texts in particular. The goal is not to to
develop the most accurate classifier possible, but rather to provide an overview of common
methods. The results should serve as an indication of how useful these methods are for
this kind of task and reveal the areas in which they could improve the most.

1.2 Motivation: Sentiment Analysis and Online Harassment

The field of sentiment analysis is a growing subsection of text classification. It deals
with extracting attitudes, value judgments and opinions from speech, most often in the
form of plain text. Doing this on spoken language can be an easier task, since emotion is
more easily conveyed in that domain, but there are many applications where only text
is available. Commonly, sentiment analysis is performed to gather a large-scale view on
people’s opinions on events, politics or products. This can be useful from two perspectives.
As a consumer doing online research on a product, it can be overwhelming to manually
read through a vast number of reviews, blog posts and comments to get a picture of
the general opinion. An automatically maintained "opinion database" could provide a
much quicker way to arrive at a conclusion. Similarly, from the manufacturer’s side,
understanding the reception of a product is important for future business decisions. (Pang,
Lee, et al., 2008)

1https://business.twitter.com/ (accessed March 31, 2019)

4

https://business.twitter.com/


Adjacent to the field of sentiment analysis is the detection of personal attacks, harassment
and toxicity in user comments and messages. Surveys show that a majority of people
have witnessed harassment online and that many of the victims reduce their participation
in discussions and content generation as a result of these attacks (Wulczyn et al., 2017).
Even if they are not the target themselves, many of these people report being discouraged
from making further contributions (Duggan, 2017)2. This is concerning on both a personal
level and from a purely business oriented point of view. Since users generate most, if not
all, of the content on many of these online platforms, it would be beneficial to reduce
these attacks not only for moral reasons, but also to to improve the public image. This
requires a monumental amount of work on large platforms though. Hence, Wulczyn et al.
(2017) suggest that automatic classifiers would help moderators reduce personal attacks
and toxicity in Wikipedia comments. The fact that attacks are dispersed among a large
number of users, but tend to cluster when they occur, indicates, that setting a standard
of what is acceptable by curbing harassment quickly before it poisons the discussion,
would improve the overall climate. A well enforced standard and well maintained climate
would likely discourage this kind of behavior and help prevent it. Considering that only a
fraction of victims report the attacks2, automatic detection could not only help human
moderators find offending posts, but can also provide information on the history of a
user’s contributions, reducing the manual work necessary to decide, whether they are
problematic or not. This improvement to both efficacy and efficiency could be a great
help in the endeavor to reduce harassment and toxicity.

But for automated moderation tools to actually be of help, they must be accurate.
Otherwise the manual overhead required to differentiate between good and bad predictions
outweighs the benefit of having them. As such, existing text classification and sentiment
analysis methods need to improve before this becomes practical. Machine learning and
especially neural networks have been rising in popularity in recent years. They are
being used in many automation and artificial intelligence related areas, including natural
language processing. One potentially exciting new development in this field are capsule
networks, which were introduced in 2017 by Hinton et al. Originally intended to improve
upon convolutional neural networks (CNNs) in computer vision tasks by more closely
emulating the process of human vision, their principles are general enough to be used
for other machine learning applications. As the name suggests, these networks contain
capsules, each of which represents one entity, an aspect or pattern which frequently
occurs in the data. These capsules are small networks themselves. Unlike a usual neuron,
which outputs a single scalar, they output a vector containing the detected instantiation
parameters of that entity, with the overall length representing the confidence that it is, in
fact, present.

By exploring the potential of these capsule networks for sentiment analysis we can hopefully
get closer to a practical application of sentiment analysis and the automated detection of
personal attacks and toxicity in text.

2Wikimedia Commons contributors, "File:Harassment Survey 2015 - Results Report.pdf," Wiki-
media Commons, the free media repository, https://commons.wikimedia.org/w/index.php?title=File:
Harassment_Survey_2015_-_Results_Report.pdf&oldid=224534499 (accessed March 27, 2019)

5

https://commons.wikimedia.org/w/index.php?title=File:Harassment_Survey_2015_-_Results_Report.pdf&oldid=224534499
https://commons.wikimedia.org/w/index.php?title=File:Harassment_Survey_2015_-_Results_Report.pdf&oldid=224534499


1.3 Hypothesis and Structure

The goal of this work is to compare different kinds of neural networks on this specialized
task. Informal online communication has several properties that make it more difficult to
work with than more formal literature. Exploring this task with different methods might
bring new insights into the strengths and weaknesses of different approaches and reveal,
which established methods and heuristics work well and which need to be rethought. This
is especially true for the capsule networks which are still relatively unexplored in this
regard. Doing this hopefully brings insight into the practicability of using these systems for
large scale applications and shows, what benefit can be gained from their employment.

The procedure and structure of this thesis is as follows: Chapter 2 provides an overview
of the current relevant technologies used for this task, including basic text processing and
different neural network types that are commonly used in similar tasks. Chapter 3 goes
over the implementations and experimental setup in detail. The evaluation, which includes
a description and analysis of the datasets, as well as all relevant results, is presented
Chapter 4. Following that is Chapter 5, discussing the use of the capsule network’s
reconstructions on text and the results in general. Finally, the conclusion and possible
future work are found in Chapter 6.

6



2 Related Work

This chapter goes over the established groundwork related to text classification with neural
networks. It summarizes the current state of text preprocessing, formally introduces the
task of text classification and describes the network types commonly used for it. This
includes a detailed explanation of capsule networks. Relevant related work with practical
applications of these networks on similar tasks is also discussed.

2.1 Text Processing Basics

Modern language and text processing consists of many steps, most of which would be
considered preprocessing for the task at hand. In order for most neural networks to be
able to process data, samples must be formatted as tensors of floating point values. Unlike
images or audio, whose digital representations lends itself easily to this conversion, it is a
bit more complicated with text. The naive approach would be to encode every occurring
character as a scalar or a one-hot encoded vector. This ignores a lot of information
though, as many characters are more closely related to some than to others. Having a
representation that can include differences between punctuation, digits, vowels, consonants
or other kinds of groupings gives a neural network more information to work with. The
most common solution for this problem in text processing are vector embeddings. In this
type of embedding, every occurring token, a character or a word, is represented by an
n-dimensional vector. Ideally, closely related words are clustered together in this vector
space, with the spacial difference corresponding to the difference in meaning. These
embeddings are usually generated with a machine learning approach like the skip-gram
model introduced by Mikolov et al. (2013). This representation also does not have to
remain static while it is being used in a downstream task. In most applications, they are
implemented as an embedding layer, whose weights are adjusted during training, just like
all the other weights in the network.

Characters alone do not hold much meaning however. When people read a text, they
mostly recognize words as a unit instead of going through it character by character.
Character embeddings do work, but the additional information that word embeddings
can contain makes them very attractive for classification tasks. However, this leads to
the issue of dividing the text into separate words. This is the task of tokenization. Just
splitting everything by spaces will produce suboptimal results due to a number of common
edge cases. Punctuation for example is usually appended to the the preceding word.
Every word that occurs at the end of a sentence would therefore be embedded twice.
Luckily, problems like this are largely solved, with modern tokenizers reaching accuracies
of 99.8% (Beißwenger et al., 2016). After obtaining the tokens, it is often useful to filter
out the ones that are not needed. For many tasks, punctuation and stop words (e.g.
"the", "is") are irrelevant and are removed from the data before the text is processed.
This should remove noise and increase the density of relevant information. The process of
getting a floating-point tensor representation from raw text is illustrated in figure 2.1

7



Raw text "The quick, brown fox..."

After tokenization ["The", "quick", ",", "brown", "fox", ...]

After filtering ["quick", "brown", "fox", ...]

After Indexing [3, 1, 2, ...]

After one-hot-encoding
2

6666666664

0

BBBBBBBB@

0

0

0

1
...

1

CCCCCCCCA

0

BBBBBBBB@

0

1

0

0
...

1

CCCCCCCCA

0

BBBBBBBB@

0

0

1

0
...

1

CCCCCCCCA

· · ·

3

7777777775

After embedding
2

6666666664

0

BBBBBBBB@

0.23

0.55

0.01

0.07
...

1

CCCCCCCCA

0

BBBBBBBB@

0.36

0.64

0.86

0.90
...

1

CCCCCCCCA

0

BBBBBBBB@

0.03

0.33

0.43

0.65
...

1

CCCCCCCCA

· · ·

3

7777777775

Figure 2.1: This is an overview of process of transforming plain text to a tensor. The
indexing and one-hot encoding steps might be skipped depending on the
processing pipeline and the interface of the neural network. The values were
chosen arbitrarily as an example.

Most corpora contain words not found in pretrained word embeddings. In those cases, the
most common solution is to assign every one of those words a randomly generated vector
as an embedding. Using sophisticated methods that take the distribution of the other
word vectors into account, can yield better results than a standard, unbiased random
number generation method (Kim, 2014). Another approach is to build the vectors for
these words from pretrained character embeddings (dos Santos and Gatti, 2014). To
avoid generating new vectors for otherwise known words, it is important to have a good
tokenizer, since incorrectly split tokens are rarely present in pretrained embeddings. Even
if they are, due to their rare occurrence in text, their vector representation will not be as
meaningful as the one belonging to the correctly tokenized word.

Besides the word and character representations, there are other features that can be
gained from text. Taggers can annotate words with grammatical or syntactic properties,
like part of speech, or tags that indicate meaning and how the word is generally used.
These tags can then be used to build parse trees, which organize the relationships between
the words in a sentence. This can help with long range dependencies. Building a parse
tree is usually done on tokenized text.

In this thesis, we only use tokenization, filtering and word embeddings. This minimizes
dependencies, as we only have end-to-end systems that produce output based on raw text
and no extra input.

2.2 Text Classification in General

Formally, text classification, sometimes called text categorization, can be described as
assigning a binary value of either True or False to every (d

j

, c

i

) 2 D ⇥ C. This tuple
represents a pair of a text document d

j

, which is part of a larger corpus D, and a class or

8



category c

i

that is part of a predefined set of categories C (Sebastiani, 2002). Labeling
a pair as True, means that the document belongs to the class. Going one step further,
we can define the set of correct classifications L as follows: (d

j

, c

i

) 2 L ✓ D ⇥ C if and
only if the correct label for (d

j

, c

i

) is True. Like with all classification tasks, the goal is to
approximate a target function, which dictates how every pair should be labeled.

In general, classification tasks are divided into three types. The simplest of these is a
binary classification, where every document belongs to exactly one of two possible classes.
Most of these tasks define one property and then define one class as having the property
and the other as lacking it. If the samples are represented as n-dimensional feature vectors,
then the target function divides Rn into two sub-spaces, each representing one of the two
classes. In cases where this division can be modeled as a hyperplane, a neural network with
two layers is enough to find it. For non-linear functions, a minimum of one hidden layer is
needed. A more complex task is multi-class classification. In these tasks, every document
belongs to exactly one of n classes with n > 2. In practice, this means, that a classification
procedure should output the probabilities p

1

. . . p

n

where p

i

represents the likelihood or
confidence, that the document belongs to class c

i

. To ensure that all of these probabilities
sum to 1, models use either a hardmax or softmax function. A hardmax simply sets the
highest probability to one and the all others to zero. This loses valuable information for the
back propagation though, as the magnitude of the error is lost. Therefore, a function that
retains this information is preferred. The softmax function fulfills theses requirements. It
is defined as softmax(x

i

) = exp(xi)Pn
j exp(xj)

where x is an n-dimensional vector. After applying
one of these functions to the output, the predicted class is the one with the highest
probability. Many multi-class problems operate under the closed world assumption, which
states that |C| is finite and known and that 8d 2 D : 9c 2 C : (d, c) 2 L. In other words:
No document belongs to a class that has not been established beforehand. If this can not
be guaranteed, then an orphan or none of the above class can be used. Though at that
point, the task arguably becomes a multi-label classification problem, the most complex of
the three types. Multi-label classification is similar to multi-class classification, with the
difference that a document can belong to multiple classes or none of them. Similar to the
binary classification, in practice, the categories often represent properties that a document
might have, except that here, a single document can have any number of these properties.
As such, this type of task could be broken down into a series of binary classifications. It
can also be modeled as a multi-class task with 2|C| classes, where every class represents a
combination of labels. When doing this conversion, one should be aware that, depending
on the exact implementation, some correlations between predictions might be lost, making
the classification process more difficult than it actually is.

Sentiment analysis is a special case of text classification. Usually with these tasks, there
are a predetermined number of sentiments which every document might have. They can
take the form of any of the three classification types. A multi-class task might have the
mutually exclusive classes of positive, neutral, and negative, like the Stanford Sentiment
Treebank1 for example. In a multi-label task, a document might display several sentiments
or emotions at once, or be completely devoid of them. These tasks can be approached
with either traditional machine learning methods, such as support vector machines (SVM)
and Naive Bayes (Joachims, 1998), or with neural networks, which will be explored in the
next sections.

1https://nlp.stanford.edu/sentiment/index.html

9



2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) specialize in processing organized, grid based data.
Since these networks are often used in image processing, the input often takes the shape
of a two-dimensional grid, if the images are black and white, or a three-dimensional grid,
if they have RGB information. The principle works on data of any dimensionality, though.
The following explanation is based on the detailed descriptions by Dumoulin and Visin
(2016) and Goodfellow et al. (2016).

The modern form of CNNs (LeCun et al., 1989) is based on neurobiological findings on
how vision works in animals. At the heart of CNNs is the convolution operation. It is
performed in the spacial domain with a kernel (sometimes also called a filter) that moves
over the input. A convolution layer is defined by its kernel size k, stride s and number
of different kernels n. k and s are both tuples with one entry for every input dimension.
These entries must not be larger than the input size. n is a positive integer that defines
how many different kernels get applied. Based on these variables, a number of kernels are
initialized. The kernels are tensors of the same dimensionality as the input. A feature
map is obtained by overlaying the corresponding kernel on the input and performing an
element-wise multiplication, the results of which get converted into a single floating point
value, typically by just adding them all together. This value is then passed through a
nonlinear activation function. This is done on a number of predefined positions in the
input defined by the kernel size and stride. The stride defines how much the kernel moves
in between each calculation. With a stride of one, the kernel position shifts by only one
element from one calculation to the next. This creates an overlap, where most elements
are part of multiple kernel calculations. Thus, if the stride is equal to the kernel size,
there is no overlap and every entry of the feature map is calculated based on different,
disjunct parts of the input. The resulting output is one feature map for each of these
kernels. The relationship between these parameters, the size of the input i and size of the
resulting feature map m in dimension d is as follows: m

d

= id�kd
sd

+ 1. The values in the
kernels are the trainable weights of the layer. Ideally, by the end of the training, every
kernel has specialized in detecting different features of the data.

These convolutions are usually followed by pooling layers. These are not trainable, they
only exist to reduce the size of the intermediate representation at certain points in the
network, by sacrificing less relevant information. This in turn reduces the number of
trainable weights in some of the following layers, greatly simplifying the network. These
layers are defined by the pooling method, a window size and a stride. The formula for
the output size is the same as for convolution layers. CNNs mostly employ max-pooling
to find the most prominent feature(s) on each of the feature maps. Pooling layers do
not use an activation function, since they do not model neurons. A deep CNN usually
consists of a number of alternating convolutional and pooling layers. After those, the data
is flattened into a one-dimensional tensor so that it can be passed into a standard linear
layer. The output shape of this final layer depends on the task. In a multi-class task it
is usually a one-dimensional tensor with one entry for each class, which represents the
probability or confidence that this class is the correct one. The softmax function is used
as the activation function for this final layer, so that all the probabilities sum to one and
to make the back propagation more effective. An illustration of this basic architecture
can be seen in Figure 2.2.

10



Input ! (Convolution ! ReLU ! Pooling)+ ! feed-forward network ! Output

Figure 2.2: Most CNN classifiers follow this basic architecture. The data gets passed
through a number of alternating convolution and pooling layers, before a
feed-forward network of linear layers produces the predictions.

Even though CNNs were introduced to solve image recognition tasks, they are surprisingly
effective in many other areas, including text classification. Kim (2014) propose a simple
CNN architecture for sentence classification consisting of one convolution and one max-
pooling layer (Figure 2.3). By concatenating all the word vectors in a sentence, a
two-dimensional input is created. The kernels of the convolution layer have varying
window sizes in the dimension of the sentence length, but all of them encompass the whole
vector embedding in the dimension of the word vectors. Using pretrained word embeddings
with this architecture, they achieve competitive results on multiple datasets.

wait 
for 
the 

video 
and 
do 
n't 

rent 
it 

n x k representation of 
sentence with static and 

non-static channels 

Convolutional layer with 
multiple filter widths and 

feature maps 

Max-over-time 
pooling 

Fully connected layer 
with dropout and  
softmax output 

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x
1:n

= x
1

� x
2

� . . . � x
n

, (1)

where � is the concatenation operator. In gen-
eral, let x

i:i+j

refer to the concatenation of words
x

i

,x
i+1

, . . . ,x
i+j

. A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature c

i

is generated from a window
of words x

i:i+h�1

by

c

i

= f(w · x
i:i+h�1

+ b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x

1:h

,x
2:h+1

, . . . ,x
n�h+1:n

} to produce
a feature map

c = [c
1

, c

2

, . . . , c

n�h+1

], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate c

i

in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l

2

-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ

1

, . . . , ĉ

m

] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l

2

-norms of the
weight vectors by rescaling w to have ||w||

2

= s

whenever ||w||
2

> s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

Figure 2.3: The diagram Kim (2014) use to illustrate their CNN architecture

A more sophisticated architecture is proposed by dos Santos and Gatti (2014). Their
model starts at the character level and uses a combination of one convolution and one max-
pooling layer to compute a vector representation for each word, which is then combined
with a pretrained embedding for that word. A full sentence consisting of these combined
vectors is passed into a convolution layer, followed by another pooling layer, to get a
sentence level representation, which is fed into a two-layer linear network to arrive at the
predictions. They show that the addition of character based word vectors improves scores
on their Twitter dataset.

2.4 LSTM Networks

Long Short-Term Memory networks (Hochreiter and Schmidhuber, 1997) are a special type
of recurrent neural networks (RNNs). These types of networks are useful for processing
sequential information of variable length. When multi-dimensional data is passed into an
RNN, one of those dimensions is interpreted as time. The input is divided into discrete
time steps along this dimension. These steps are then fed into the network one after
another. At every point in this sequence, in addition to the input data of that step, the
network also receives its output of the last time step as input. That way, the output at

11



every time step is influenced by everything that came before. Since there is no previous
output on the first time step, the network usually starts with a randomized output. RNNs
can be bidirectional, in which case it produces a second output that is the result of starting
with the last time step and going backwards. See Figure 2.4 for an illustration of this
process. Since the output at the final time step should contain all relevant information,
most networks only use the final output for further processing. When used this way, RNNs
have a constant output length despite having a variable input size, which makes them a
good fit for language processing where samples often differ in length. Some applications,
e.g. sequence taggers, also make use of the output at specific time steps other then the
last.

Basic recurrent neural network:

Output
t�1

Intput
t

Unrolled:

Input

Random

Input

Output

Input

Output Final output

Figure 2.4: RNNs can be unrolled to illustrate how they process data.

One disadvantage of this process is that it will often prioritize later time steps, because
the gradient either vanishes or explodes as it gets further away from the end. LSTMs
were developed to improve upon RNNs by mitigating this weakness (Hochreiter and
Schmidhuber, 1997). They do this by introducing a cell state that can retain important
information. This state is controlled by a set of gates. Every time step, these gates can
decide to let in new and push out old information. They are a trainable part of the
network so they should learn to only keep relevant data in the cell state.

2.5 Capsule Networks

Capsule networks are a proposed enhancement to CNNs for image recognition tasks, aiming
to improve results by emulating biological vision more closely (Hinton et al., 2011; Sabour
et al., 2017). There are two major parts to understand about these networks, the capsules
themselves and the way that they can be used classification networks. Formally, a capsule
is a part of a network that receives an input tensor and outputs a vector. Since single
neurons usually only output a single scalar, it can be thought of as a more complex version
of those. The purpose of these vectors is that their entries are instantiation parameters
for entities, which are learned automatically instead of being feature engineered by hand.
An entity in this context is a property or pattern which occurs throughout the dataset
and appears in many if not all of the samples. In image processing, an entity could be
something as simple as a line or as complicated as a face. Like the instantiation parameters,

12



these are not defined beforehand and are instead learned during training. Occurrences
of these entities in the dataset will have various differences between them, which can be
abstracted as transformations. The instantiation parameters put out by a capsule would
be equivariant with transformations of the corresponding entity in the input. This means
that, for all important features, there is not just a single value representing the confidence
that they are present, but multiple values indicating their properties in this particular
instance. This should make the network more robust against affine transformations of the
input, since they could easily be modeled by the capsule output. One admitted weakness
of this approach is crowding. Since one capsule only deals with a single entity, if many
instances of the same entity are grouped closely together, the network will have trouble
detecting them all and differentiating between them. (Sabour et al., 2017)

To ensure, that the instantiation parameters learned by the capsule are relevant and useful,
they are passed into a reconstruction module. Using the capsule as an auto-encoder and
minimizing the difference between the reconstruction and the target should encourage the
capsules to have the output vectors be the best possible representations of the input and
contain the most relevant transformations. If the primary purpose of the network is to
classify, then this should only be a small part of the total loss. In that case it works as a
regularization method, since it makes the output more generalizable (Sabour et al., 2017).
Wang et al. (2018) report good accuracy scores when LSTM based capsules are used for
sentence classification in this way.

The next step is to build a deep network with multiple capsule layers that takes full
advantage of their output format. Assuming that the network is supposed to detect
complex entities that are made of multiple simple entities, capsules can be used to
represent this parent-child relationship. If a capsule represents a simple entity, then its
output vector contains information about the transformations applied to a particular
instance of the entity. If multiple child entities predict the same transformations for a
parent entity that they are all part of, then the probability is high, that the parent entity
is present with these predicted transformations. This is the idea behind "routing by
agreement". The exact implementation of this idea can vary, but Sabour et al. (2017)
propose the following process to calculate the output of capsule layer c

2

based on the
output of capsule layer c

1

:

1. The probability that the entity detected by a capsule is present is represented by
length of the output vector. To facilitate this, the output vector v is "squashed" so
that ||v|| 2 [0, 1]. This is accomplished with the following function: v

squashed

= v· ||v||
1+v

2

2. A four-dimensional weight matrix W links every entry of every capsule in c

1

to every
entry of every capsule in c

2

. This not only defines, which output parameters of c
1

affect which output parameters of c
2

, it also represents base probabilities of which
child entities are likely part of which parent entities. These weights are learned as
the network trains.

3. Multiplying the output of c
1

with W and squashing the result produces the first set
of predictions. The capsules of c

1

then divide their output among the capsules of
c

2

based on these predictions. Capsules with a longer prediction vector receive a
bigger portion of the output. Repeating this process with the adjusted outputs of c

1

yields the next set of predictions. After a number of repetitions, the predictions are
used as the final output. The paper suggests three iterations.

13



The use of this algorithm separates the capsules layers in a network into two types. Primary
capsule layers contain capsules that detect simple entities in the input and produce output
vectors. How exactly they do that is up to the implementation and can differ from task
to task. Capsule layers whose input is the output of another capsule layer are secondary
capsule layers. They produce their output via routing algorithm. Primary capsules are
usually place-coded in that every capsule only sees a part of the input (Sabour et al.,
2017). That means the position of a detected entity is encoded by which capsule detected
it. Since the routing connects every capsule of the previous layer to every capsule of the
next, this specific property is lost in the process. However, this information should be
translated to be part the output parameters of the secondary capsule layer by the routing.
So it is still there, except that now, it is rate-coded. It is also possible to circumvent this
transition by having groups of capsules route their output to only a subset of the capsules
in the next layer, which would preserve the place-coding to some degree. Conceptually,
capsules in later layers should have more output parameters, since they represent more
complex entities and need to store previously place-coded data.

This division provides a basic framework for building a capsule network classifier. Since the
length of the output vector of a capsule represents a probability, an additional feed-forward
network to produce the predictions is not needed. The last layer of a network can just be
a secondary capsule layer with one capsule for each class. In this case, the entity each
capsule represent is decided beforehand. This layer can be preceded by more secondary
capsule layers or be directly connected to a primary capsule layer, which in turn, can
operate directly on the input or receive a representation that was already processed by
more traditional neural network layers. A simplified illustration of this architecture can
be seen in Figure 2.5.

Input Primary capsules Class capsules

Figure 2.5: Basic structure of a simple capsule network where the primary capsule layer
is implemented with a convolution layer.

Sabour et al. (2017) achieve promising results on the MNIST dataset2 with a network
consisting of one convolution layer, one primary capsule layer and one secondary capsule
layer. The last layer functions of their model functions as an output layer and is connected
to a reconstruction module. Their primary capsule layer is implemented as a convolution
layer with each kernel position defining the receptive field of a group of primary capsules.
This is done by arranging the resulting feature maps in such a way that a number of

2http://yann.lecun.com/exdb/mnist/

14

http://yann.lecun.com/exdb/mnist/


entries, all taken from the same position in different maps, are used as the entries of the
capsule output vectors. Therefore, the number of primary capsules is defined by the size
of the input and kernel, the stride, and the number of filters, since those determine the
output size of the convolution layer. The network seems especially good at recognizing
multiple digits in a single image after having been trained on one digit per image. A
similar architecture has also been used for text classification. Yang et al. (2018) present a
deeper network with one additional routing layer. This layer has restricted connections so
that the place coding is preserved until right before the final capsule layer. They achieve
good results, showing that capsules have great potential for transferring from single to
multi-label problems on this task as well.

15



3 Methodology

This chapter describes our methodology detail. It includes a detailed description of
the preprocessing steps, as well as the concrete implementation of the models that are
evaluated. Lastly we describe the hyperparameter optimization process. Everything
is implemented in Python3, using the Pytorch framework1 (version 1.0) for all neural
network related aspects.

3.1 Preprocessing

As mentioned in Section 2.1, raw text needs to be preprocessed before it can be fed into
a neural network. Not only does the text need to be converted into a floating point
representation using word vector embeddings, additional clean up can remove noise and
make training more effective. Upon loading all data samples as a list of strings and all
labels as a list of integers, the following preprocessing steps are applied:

1. Replace all sequences of whitespace characters with single spaces.

2. Remove whitespace at the start and end of samples.

3. Remove samples of length zero. Of the two datasets used in the evaluation this step
removes six samples from one dataset and none from the other.

4. Replace alternative characters. Some unicode characters look almost identical to
ASCII characters. If they are also used the same way, there is no need to differentiate
between them. For example, the fullwidth exclamation mark (U+FF01) is replaced
with the standard ASCII exclamation mark.

5. Tokenize with spaCy2.

6. Convert all text to lowercase. We use the GloVe 42B word embeddings3 which are
trained on lowercased text (Pennington et al., 2014).

7. Careful spell check: Replacing misspelled words with their correct counterpart
improves the effectiveness of word embeddings. It also introduces possible mistakes,
so this should be done carefully. In our approach, only tokens that occur no more
than once in the corpus are considered for correction. We assume a token is a
misspelling of another word, if the other word occurs more than once in the corpus
and is within a string editing distance of one. If there are multiple candidates, the
one that occurs more often is chosen. Despite being very conservative, this method
will still lead to mistakes, but should overall improve the quality of the data.

1https://pytorch.org/
2https://spacy.io/
3https://nlp.stanford.edu/projects/glove/

16

https://pytorch.org/
https://spacy.io/


8. Filter out stop words and non-alphanumeric tokens. This reduces noise and increases
information density.

9. The embedding process is started by collecting a vocabulary of all occurring tokens
and a set of all tokens that occur only once. The former is used to create a dictionary
that maps every word to a unique integer. The latter is used in step 14.

10. Perform an analysis of the dataset to determine the size of the vocabulary, sample
length, class distribution, and other statistics. This only serves to provide insight
into the dataset. See section 4.1 for specific details.

11. In order to train with a batch size other than one, all samples must all have the
same length. To achieve this, a maximum length is chosen. Every sample that is
longer is truncated, every sample that is shorter is padded. We choose the 75th

percentile of sample lengths for this maximum length.

12. Convert the samples from words to integers using the dictionary constructed in
step 9. At this point in the pipeline, the samples and dictionary are saved, so that
previous steps can be skipped, the next time the dataset is loaded.

13. Load pretrained word embeddings. Construct a dictionary, that maps every word
integer to the corresponding word vector in the embedding. Use a random vector
for words not present in the embedding.

14. Every token that occurs only once in the entire corpus and is not present in the
pretrained embeddings contains little usable information. To prevent overfitting
on these low frequency unknown tokens (referred to as LFUTs from now on) and
to keep the size of the embedding layer reasonable, all LFUTs are replaced with a
generic <lfut> token. This token is than mapped to a single, randomly generated
vector.

15. Add the padding token to the word-to-int dictionary and its embedding vector (the
zero vector) to the integer-to-vector dictionary.

16. Convert the samples from a list of integers to a one-dimensional tensor of integers.

17. Normalize all embedding vectors. This process loses some information, but it is
necessary to keep all input values between -1 and 1. This is especially relevant if a
reconstruction module is used, since it limits the value range of the input to [0, 1].

The final conversion of the samples to a two-dimensional tensor of floating point values
happens within the networks themselves. The first layer of every network is an embedding
layer, initialized with the integer-to-vector dictionary. After that, every network proceeds
differently.

3.2 CNN and LSTM Network

The convolutional neural network used in the experiments is based on the architecture
described by Kim (2014). As such, the convolution window covers the whole word
embedding, meaning the resulting feature maps are one-dimensional. The only difference to
the paper, is that this CNN only uses one window size. This simplifies the implementation
and reduces the search space for hyperparameter optimization. The resulting network

17



therefore consists of the following layers in order: Input ! embedding layer ! convolution
layer ! max-pooling layer ! linear layer ! output.

The LSTM network is kept just as simple, for the purpose of comparison. Instead of
the convolution and pooling layers, it has one LSTM layer. Unlike the other networks
in this comparison, it receives the original length of the sample as an additional input
in every batch. This is necessitated by the padding contained in most samples. The
output of the LSTM layer contains the results of every step. This includes the time steps
that only contain padding information, so the original length is used to pick the last
relevant one. Doing it this way precludes the effective use of a bidirectional model without
significant workarounds, since starting at the end and going in reverse make the network
go through the padding first. The LSTM layer is therefore unidirectional. No additional
regularization layers like dropout (Srivastava et al., 2014) are used in order to make the
comparison to capsule networks more fair. Since dropout layers are usually placed in
between two linear layers that produce the final prediction and capsule networks do not
use linear layers there, any implementation of them would be inherently uneven. Since
Pytorch provides implementations of both convolution and LSTM layers, the code (see
Listing 3.1) for these is quite short. Figure 3.1 illustrates the CNN and LSTM models.

1 def forward(self, x): #CNN

2 x.unsqueeze_(1) # 1 input channel for the convolution layer

3 x = F.relu(self.conv(x))

4 x = self.pool(x)

5 x = x.view([...]) # Changing the format so it can be passed to self.lin

6 x = F.softmax(self.lin(x), dim=1)

7 return x

8

9 def forward(self, x, length): #LSTM

10 h0 = torch.rand([...]) # randomly initializing hidden layer

11 c0 = torch.rand([...]) # randomly initializing cell state

12 x, hidden = self.lstm(x, (h0, c0))

13 # Taking the last relevant time step:

14 x = torch.stack([x[i, length[i]-1] for i in range(x.size(0))])

15 x = torch.relu(x)

16 x = F.softmax(self.lin(x), dim=1)

17 return x

Listing 3.1: Code of the forward passes of the CNN and LSTM network. These snippets
are simplified from the actual source code to be more readable.

In addition to the presented CNN, we examine another network with an alternative
pooling method, inspired by the capsule networks. The output of the convolution layer, is
a set of one-dimensional feature maps. The subsequent pooling layer has a window size
equal to the length of these feature maps, which means that every map gets reduced to a
single value. The most common pooling mechanism for this is max-pooling, which is what
we use for the standard CNN. However, other pooling mechanisms, like average-pooling or
min-pooling would work as well, but would likely differ in effectiveness. A one dimensional
feature map can be interpreted as a vector, which opens up additional possibilities for
reducing it to a single value. The alternative CNN uses the exact same architecture as
the previously presented one, but instead of using max-pooling, it takes the squashed
length of the feature map as if it were a vector. Since the squashing acts as a activation
function, it is used instead of ReLu after the convolution layer. This variation can be
thought of as something of a compromise between max-pooling and average-pooling. Since
taking the length of a vector squares all entries before the sum, large entries will have a
disproportionately larger impact on the resulting value than smaller entries. But small

18



["The", "quick", "brown", "fox", ...]

tensor (l ⇥ e)

tensor
✓⇣

l�w0
s0

+ 1
⌘

⇥
⇣

l�w1
s1

+ 1
⌘

⇥ f

◆

tensor
✓
1 ⇥

⇣
l�w1

s1
+ 1

⌘
⇥ n

prime

⇥ d

prime

◆

tensor (c ⇥ 1)

[0.23, 0.12, 0.56, ...]

["The", "quick", "brown", "fox", ...]

tensor (l ⇥ e)

tensor (l ⇥ h)

Length: 9

tensor (1 ⇥ h)

tensor (c ⇥ 1)

[0.17, 0.11, 0.60, ...]

w : Window size
s : Stride
f : Filter number

l : Input size
e : Embedding size
c : Number of classes

h : Hidden dimension

Embedding

Convolution(w, s, f)

Max pooling

Linear layer

Predictions

Embedding

LSTM(h)

Taking last time step

Linear layer

Predictions

Figure 3.1: Architecture of the convolutional and LSTM networks.

values do still affect the sum, which differentiates it from max-pooling. None of the pooling
methods take the order of entries into account, so this method would still work with
differently sized pooling windows. The entries of that window only have to be reshaped
into a vector. This variation of the CNN receives no extra hyperparameter optimization.
It uses the same hyperparameter settings as the standard CNN. We will refer to this
variation as squash CNN during evaluation.

3.3 Capsule Network

The implementation of the capsule network follows Sabour et al. (2017), with the exception
that the first convolution layer is omitted. That way, the number of trainable layers is equal
between all three of the networks, making the architectures and thus the performance more
comparable. The reconstruction module too is omitted for that reason and others. Using
a regularization method in only one of the networks would make for an unfair comparison.
In addition, using reconstructions on text presents a number of difficulties, which are
discussed later. So to avoid potential caveats to the end results, this aspect of capsule
networks is not used in our evaluation. An overview of the implemented architecture can
be seen in Figure 3.2.

19



["The", "quick", "brown", "fox", ...]

tensor (l ⇥ e)

tensor
✓⇣

l�w0
s0

+ 1
⌘

⇥
⇣

l�w1
s1

+ 1
⌘

⇥ f

◆

tensor
✓⇣

l�w0
s0

+ 1
⌘

⇥
⇣

l�w1
s1

+ 1
⌘

⇥ n

prime

⇥ d

prime

◆

tensor (c ⇥ d

class

)

[0.23, 0.12, 0.56, ...]

tensor (l ⇥ e)

w : Window size
s : Stride
f : Filter number
e : Embedding size
l : Input size
n : Number of capsules
d : Capsule dimensionality
c : Number of classes

Embedding

Convolution(w, s, f)

Reshape as capsule outputPrimary capsules

Routing

PredictionsClass capsules

Reconstructions

Figure 3.2: Architecture of the capsule network implementation. For our purposes w

1

is
always equal to e. The diagram also shows where a reconstruction module
would fit in if one was used.

The first capsule layer is implemented as a standard Pytorch convolution layer. Its output
is reshaped to represent groups of capsules with limited receptive fields, as described in
the paper. For a more direct comparison to the CNN, the kernel size of the convolution
encompasses the entire embedding dimension in this network as well. This will also
help with hyperparameter optimization, since it eliminates one variable. Considering
that capsule networks already have the most hyperparameters of the three network, this
choice should help with finding a good setting in a reasonable amount of time. The class
capsule layer does not have an equivalent in Pytorch, so a custom implementation of the
dynamic routing algorithm is used. To verify that this implementation works as intended,
it was tested on the MNIST dataset, where it produced results comparable to the ones
described in the paper. Listing 3.2 shows the source code of the implementation. In
order to make the implementation more efficient, most steps are formulated as matrix
multiplications. Matrix multiplications are very well optimized both algorithmically and
in their implementation, so using them as much as possible is important to avoid ending
up with impractically long training times.

20



1 class CapsuleLayerDense(nn.Module):

2 def __init__(self, in_caps_num, in_caps_dim, num_capsules, output_dim,

iterations=3):

3 super(CapsuleLayerDense, self).__init__()

4 self.in_caps_num = in_caps_num; self.in_caps_dim = in_caps_dim; [...]

5 weights = torch.randn(1, num_capsules, in_caps_num, output_dim, in_caps_dim)

6 self.weights = nn.Parameter(weights) # Making the weights trainable

7

8 def forward(self, x):

9 b = torch.zeros((x.size(0), self.num_capsules, self.in_caps_num),

requires_grad=True)

10 x = x.unsqueeze(1).unsqueeze(-1) #Adjusting format for the coming operations

11 predictions = torch.matmul(self.weights, x).squeeze(-1)

12 for n in range(self.iterations):

13 coupling = F.softmax(b, dim=-1).unsqueeze(-2)

14 output = torch.matmul(coupling, predictions).transpose(-1,-2)

15 if n != self.iterations - 1: # Update coupling for next iteration

16 output = squash(output, dim=-2)

17 output = torch.matmul(predictions, output).squeeze(-1)

18 b = b + output

19 return output.squeeze(-1)

Listing 3.2: Implementation of the routing process. Matrix multiplications are used
wherever possible to optimize performance. This snippet is slightly
simplified for readability

Since the vector lengths of the class capsules can be used as the final prediction, no
additional linear layers are necessary to produce the output. But some additional processing
before calculating the loss can make training more efficient. The squashing function tends
to reduce the length of vectors to a very small value, especially in a newly initialized
network. As a result, the numeric difference between the probabilities for each classes can
also be very small. To mitigate this, the prediction vector, which contains the lengths
of the class capsule vectors, is also normalized. This emphasizes the differences between
classes and avoids situations where multiple classes end up having the highest probability
at the same time. Initial tests confirm that this causes the network to make faster progress
during training. We also use a simplified squashing calculation to avoid dividing by the
vector length. In general, when dealing with the capsule output vectors, it is important
to be aware of any calculations that involve normalizing or squashing them, since that
would lead to errors with the zero vector. It can easily lead to a NaN (Not a Number)
value, which, through back-propagation will break the whole network. In our case, the
padding consists of zero vectors, at least initially, so capsules operating exclusively on
padding are likely to put out a zero vector as well. As a precaution, when the norm of
the vector is used as a denominator, a small ✏ should be added to avoid a division by
zero. This will prevent errors, but it can still cause problems during training. That is
why we use a simplified version of the squashing formula which does not divide by the
norm. If the unaltered squashing function is used, the padding vector should be randomly
generated to avoid this problem.

3.4 Hyperparameter Optimization

The efficacy of a network is not just dependent on its architecture. Proper hyperparameter
settings also play a big role. These include properties like the the kernel size in convolution
layers or the dimension of the hidden layer in an LSTM layer. Unfortunately, just choosing
the largest possible setting is rarely practical or optimal. Since memory and computing

21



time are limited in realistic applications, some hyperparameters will have to be prioritized
over others. But even maxing out the most important ones is often not the best solution.
Arbitrarily chosen hyperparameters make a comparison between networks meaningless,
since it is easily possible, that some networks ended up with much less optimal settings by
chance. Therefore, an automatic optimization is necessary. The most effective approach
to this problem is something close to an exhaustive search usually implemented as a grid
search.

To optimize the models detailed in the previous section, every hyperparameter for every
network type gets assigned a range of possible values. In a addition to network specific
ones, the batch size and learning rate also have a big influence over the result and should
therefore be included. For every possible combination of these hyperparameters, a network
is trained and then evaluated on a separate part of the dataset. This is done in a random
order, so that trends can be seen more easily before the search has been fully completed.
Since this is a very time intensive process, it is important to make the search as efficient
as possible. Some hyperparameter combinations can be disregarded without the need to
train a model with them. If the stride of a convolution layer is bigger than its kernel
size, some data in the input would be skipped. A network that carelessly ignores parts
of the data is probably not going to be optimal, therefore these settings can be skipped.
Similarly, the difference between the input size and the kernel size should not be smaller
than the stride, since this will result in the exact same kernel positions as other settings
with a smaller stride. The training should be as deterministic as possible, so evaluating
what is effectively the same network multiple times is not necessary.

In order to train a number of networks sequentially without manual interference, conditions
must be established, under which the training of a network ends. We use the following
conditions, training ends if one of them is met:

• The loss has decreased by less than a given delta for the last 3 epochs. This indicates,
that the network has practically converged and will not improve much more, even
with further training.

• A certain maximum number of epochs is reached. This number is set before the
search is started. It is the same for every network, but can differ between datasets.
An epoch is defined as number of samples, so that it is the same for every dataset.

• The output of the network or the loss contains NaN. This might happen for various
reasons, the most common of which is a division by zero somewhere in the network.
In this case, a checkpoint from the previous epoch is used for the evaluation.

When training only one network, the test score is a useful metric to determine when to
stop. If it does not increase over several epochs, the training should end. Using this
metric in the grid search is not really feasible, though, since evaluating the network after
every epoch significantly increases the search time. When one of the exit conditions is
met and training ends, the network is evaluated on a validation set. This set is completely
disjunct from both the training and test set. It is usually the smallest of the three, making
up about 10% of the whole dataset. The training data is 70% of the dataset and the
remaining 20% are the testing data used for the final evaluation. After all hyperparameter
combinations are processed this way, the best one is determined by the highest F1 score
achieved in the evaluation step.

22



Finally, the best networks, as determined by this method, are evaluated on the test set.
It is possible that the network with the best F1 score is especially good at learning to
predict the particular samples contained in the validation set, so to get a more general
idea about the performance of the network, a different part of the dataset, the test set, is
used for the final evaluation.

23



4 Evaluation

This chapter contains the evaluation and comparison of the networks on different datasets.
The two datasets used for this evaluation are introduced and their properties and statistics
are detailed and discussed. Before comparing the scores and training statistics of the
networks, the results of the grid search are presented.

4.1 Datasets

The models are evaluated on two datasets. For both of them, the networks will operate
purely on the text and word vector embeddings. No additional features or sentiment
annotations per word or sentence are used as targets or as data for predictions.

Properties of User Generated Online Texts

The processing of short informal online posts presents many difficulties not found in more
traditional literature. Correct tokenization and subsequent embedding can be challenging
because of this. Two of these aspects are incorrect and unconventional spelling and
formatting. Without additional preprocessing, a misspelled word would not map to
the vector of the word it actually represents. Unless the exact misspelling is common
enough to appear in the pretrained embedding, it either receives a randomly generated
vector or be classified as a LFUT. This goes for spelling mistakes ("apparantly" instead
of "apparently"), typos ("teh" instead of "the") and repeating characters for emphasis
("waaaaayyy too much"). A person can easily recognize the intended word, but standard
word embeddings are not a nuanced process. Either that exact word exists in it or it
does not. A spell check can be employed to help with this issue, but the question of
which words to correct is not trivial. In such an informal environment, some colloquial
or slang expressions might be unknown to the spell checker and lead to false corrections.
Among other things, the keyboard layout should be taken into account when deciding
what the correct version of a misspelled word is. For example, leaving other aspects
aside, the incorrectly spelled "solition" should be corrected to "solution" rather than
"volition", since the letters u and i are next to each other on a qwerty keyboard, but s
and v are not. Most standard spell checks and tokenizers are also unprepared to deal
with unusual formatting like putting a space in between every letter of a word, omitting
the spaces between words, or the repetition of characters mentioned above. Then there
are intentional misspellings, which can occur when a person is mocking someone else or
emulating an accent. In general, this can be thought of as a difficult denoising problem.

Sophisticated methods to correct these kinds of misspellings (Wint et al., 2017) and
replace slang (Singh and Kumari, 2016) exist, but transformative approaches always lose
some information in the process. All of the discussed aspects leave an impression on a
human reader who, in most cases, still recognizes the original words underneath. These

24



often stylistic alterations provide a layer of meaning in addition to what a proper, correct
version of the text would contain. Trying to model these aspects and taking all of these
possibilities into account would require a much different preprocessing methodology and
different, more complex network architectures to take advantage of them.

20 Newsgroups

The 20 newsgroups dataset1 is a collection of almost 19,000 documents, each belonging
to one of twenty different newsgroups. Predicting the newsgroup a document belongs to
based on its content, is a multi-class, single-label problem. Their style is mostly informal
and they often take the form of inquiries and discussions. This dataset specifically is not
related to sentiment analysis, it represents a straight-forward text classification task. As
such, it is a good basis, to test the pipeline and networks and to get a general idea about
the potential of each of the evaluated models.

We use the scikit-learn implementation2 of this dataset, which provides the option of
filtering out headers, footers and quotes from other users. See Figure 4.1 for an example.

From: maynard@ramsey.cs.laurentian.ca (Roger Maynard)
Subject: Re: Tie Breaker....(Isles and Devils)
Organization: Dept. of Computer Science, Laurentian University, Sudbury, ON
Lines: 18

In <lrw509f@rpi.edu> wangr@vccsouth22.its.rpi.edu ( Rex Wang ) writes:

>I might not be great in Math, but tell me how can two teams ahve the same points
>with different record??? Man...retard!!!!!! Can’t believe people actually put
>win as first in a tie breaker......

Well I don’t see any smileys here. I am trying to figure out if the poster
is a dog or a wordprocessor. Couldn’t be neither. Both are smarter than
this.

"I might not be great in Math"

--

cordially, as always, maynard@ramsey.cs.laurentian.ca
"So many morons...

rm ...and so little time."

Figure 4.1: This is one sample form the 20 newsgroups dataset. It belongs to the class
rec.sport.hockey. The header is marked in red, quotes in green and the
footer in blue.

The user guide recommends removing all three to prevent the model from classifying based
on user names and article IDs. Many of the samples heavily feature quotes however, often
with very little original text, so removing them removes most of the context. Additionally,
in some of the samples, the actual text of the message is mistakenly marked as being part of
one of those three, so removing them all results in a quite a few empty samples, which have
to be discarded. With this in mind, we filter out headers and footers, but keep the quotes.
Thus, the total amount of samples is slightly reduced, but the resulting network would

1http://qwone.com/⇠jason/20Newsgroups/
2https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

25

http://qwone.com/~jason/20Newsgroups/
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html


likely generalize better to documents from a different time frame. Leaving in quotations will
leave in article IDs and user names, but since they contain non-alphanumeric characters,
they are filtered out later in the preprocessing. Leaving in quotations still has a noticeable
effect, though, even after filtering. Many quotes begin with some form of "In article <id>,
<name> writes:". Since both "article" and "writes" are alphanumeric and not stop words,
they end up being the two most common tokens in the dataset after filtering.

Unfiltered Filtered

Average sample length 310.4 106.9
75th percentile length 315 106

Number of different tokens 149K 63K
Type/Token ratio 0.0255 0.0314

10 most common tokens1 the to of a and writes article like people
i in is that it know x think use time good

%2 occupied by top 10 23.9% 4.1%
%2 occupied by LFUT 1.0% 0.2%

1

Not counting common punctuation

2

Percentage of the whole corpus

Table 4.1: Statistics of the 20 newsgroups dataset. These are created during the prepro-
cessing described in section 3.1. The lengths are in number of tokens. The
token "x" occurs often in the technology related newsgroups.

Comparing the statistics for the filtered and unfiltered dataset (Table 4.1), the benefits of
filtering stop words and non-alphanumeric tokens become clear. In the filtered dataset,
the most common tokens occupy a much smaller percentage of all data. The same goes for
LFUTs. Their high number in the unfiltered data is likely due to the prevalence of user
names and article IDs. Since both the most common tokens and the LFUTs provide little
basis for predictions due to their presence in most samples, reducing these percentages
should increase the density of relevant information and thus, reduce noise. Another
statistic, which is significantly reduced by filtering, is the length of the samples. The 75th

percentile length, which is what all samples are trimmed to as part of the preprocessing,
is reduced by about two thirds. Even though more information is always better in theory,
short samples have some practical advantages, since network size often scales with sample
length. This is the case for both the CNN and capsule network. To get results in a
reasonable amount of time, networks are trained on GPUs. Since GPU memory is much
more limited than RAM on most computers, this puts a limit on the number of parameters
in a network, as well as the batch size. Even if memory is not an issue, smaller networks
usually run significantly faster. As a result, more hyperparameter combinations can be
tested via grid search, resulting in better settings.

The distribution of samples between the classes of the dataset is almost balanced, but they
differ greatly in average length (see Table 4.3, left). Samples of talk.politics.mideast are
almost 4 times as long on average as samples from misc.forsale. How these two statistics
affect the accuracy for each class is an aspect worth looking into. It is very possible, that
some classes have strong signifiers and are easy to predict, despite a low sample count or
short length. Similarly, long sample length and high sample count are no guarantee that
a class will be predicted with a high accuracy.

26



The state-of-the-art for this dataset achieves an F1 score of 92.6 (Shu et al., 2017)

2018 Semeval Task 2: Twitter Emojis

The English dataset of the 2018 Semeval Task 2 (Barbieri et al., 2018)3 consists of the
text of roughly 450,000 tweets. Each of these tweets uses exactly one of the 20 most
commonly used emojis, which is used as the label. It can appear any number of times in
the tweet. The task is to predict the used emoji based on the text of the tweet after it
has been removed. As such, it is a multi-class, single-label classification problem.

The organizers provide a script for gathering the dataset from Twitter. It also applies
some text preprocessing steps as part of the collection process. These include removing
all emojis, as the nature of the task necessitates, removing links, and replacing all user
names with a generic "@user". For our evaluation this preprocessing is changed slightly.
Since both the links and emojis can appear at different positions in the tweet and in
varying numbers, removing them removes more information than necessary. Instead, links
and emojis are replaced with the generic "<link>" and "<emoji>" tokens respectively.
Figure 4.2 shows an Example. This alters the task slightly, but the goal is to compare
different models to each other rather than to the state-of-the-art. The tokenization is also
adjusted for this dataset. If the character "#" is followed by more characters without a
space, it is not split into a separate token. That way, whole hashtags are preserved as a
single token.

Garrett Swann on Twitter: "#winterwhite �������by @... https://twitter.com/GarrettSwann/status/8148864...

1 of 1 4/4/19, 5:38 PM

Full text on Instagram:

Such a great shoot! It’s so refreshing to be present and
comfortable with great photographers. Thank you Aaron!

After initial preprocessing:

#winterwhite <emoji>by @user Such a great shoot! It’s so
refreshing to be present and. . . <link>

Figure 4.2: This is one sample form the English 2018 Semeval Task 2 dataset. It shows
the original tweet on the left, the full text of the corresponding instagram
post, and the sample after initial preprocessing.

Looking at the statistics in Table 4.2, filtering out stop words and non-alphanumeric
tokens in this dataset is not as beneficial as it is in the 20 newsgroups dataset. It decreases
the average sample length to only 6.4 tokens and actually increases the proportion of
LFUTs in the dataset. Besides the statistics, there are other factors to consider for
filtering out non-alphanumeric characters. People occasionally build emoticons and other
images out of various, often obscure characters. In addition, it is likely, that punctuation,
especially exclamation marks, contain relevant information in this domain. For these
reasons, the dataset is not filtered. A more detailed filtering approach that keeps tokens
like hashtags and meaningful punctuation would probably be the best option, but this
type of optimization usually brings very little benefit for the amount of time it takes to
perfect it.

The class distribution of the dataset (Table 4.3, right) is noticeably unbalanced, with
the most common emoji, red heart ( ), occurring almost nine times as often as the least

3https://competitions.codalab.org/competitions/17344

27

https://competitions.codalab.org/competitions/17344


Unfiltered Filtered

Average sample length 15.9 6.4
75th percentile length 19 8

Number of different words 284K 234K
Type/Token ratio 0.0394 0.0814

10 most common tokens1 <emoji> <link> @ . . . love new day happy night
the @user i my to a today beach time york good

%2 occupied by top 10 29.8% 6.2%
%2 occupied by LFUT 2.4% 4.7%

1

Not counting common punctuation

2

Percentage of the whole corpus

Table 4.2: Statistics of the emoji prediction dataset. The @ being so common is not a
tokenization mistake, many users use it in place of "at" when they describe
where they are.

Class Share Length

rec.sport.hockey 5.3% 106.6
soc.religion.christian 5.3% 140.7

rec.motorcycles 5.3% 65.7
rec.sport.baseball 5.3% 83.3

sci.crypt 5.3% 128.7
rec.autos 5.3% 76.6
sci.med 5.3% 120.6

comp.windows.x 5.2% 117.5
sci.space 5.2% 118.4

sci.electronics 5.2% 74.8
comp.os.ms-windows.misc 5.2% 71.4
comp.sys.ibm.pc.hardware 5.2% 69.9

comp.graphics 5.2% 110.2
misc.forsale 5.1% 57.7

comp.sys.mac.hardware 5.1% 64.6
talk.politics.mideast 5.0% 204.3

talk.politics.guns 4.8% 127.7
alt.atheism 4.2% 126.0

talk.politics.misc 4.1% 170.0
talk.religion.misc 3.3% 132.6

Standard deviation 0.5% 37.4

Class Share Length

21.7% 16.3
10.5% 15.5
10.3% 17.1
5.4% 15.2
5.1% 16.7
4.7% 16.0
4.4% 15.1
3.7% 15.7
3.4% 15.0
3.3% 16.3
3.3% 15.6
3.1% 14.6
2.8% 15.4
2.7% 17.0
2.7% 15.3
2.7% 15.9
2.7% 16.4
2.6% 14.8
2.6% 15.3
2.5% 16.3

Std. dev. 4.4% 0.7

Table 4.3: Class distribution and average length of samples in each class for the two
datasets. The lengths are given in numbers of tokens for the filtered 20 news-
groups dataset (left) and the unfiltered Twitter dataset (right).

28



common one, winking face with tongue ( ). It is also worth noting, that some of the
emojis are very similar to each other, e.g. the camera with flash ( ) and the camera
without flash ( ). Other emojis have multiple, often overlapping meanings, which is why
even humans struggle with this kind of task (Barbieri et al., 2017). In addition, tweets
often link to pictures, which are ignored by a purely text based classifier. Many of them
are reposts from Instagram, which are linked in the tweet. In those cases, the text of the
tweet is a shortened version of the text in the Instagram post, ending with the horizontal
ellipses character (U+2026). This explains, why it is one of the most common tokens in
the unfiltered dataset. As a result, these tweets often lack important context information.
All of these aspects make this particular dataset very difficult. The best system of the
task achieves an F1 score of 35.99 with an SVM classifier (Barbieri et al., 2018).

4.2 Grid Search Results

The hyperparameter settings of the networks are optimized via grid search on both datasets.
Because of the size and difficulty of the Twitter dataset, some concessions had to be made
in the hyperparameter optimization. In order to get meaningful results in a reasonable
amount of time, some settings had to be skipped. These choices were made based on the
results of the same network on the 20 newsgroups dataset. If a parameter combination
produced NaN during training or had an F1 score that is not significantly better than
random guessing, no network is trained with the same settings on the Twitter dataset.
With these specific exceptions, all network and dataset combinations have completed the
search. The alternative CNN, which uses the squashed norm of each feature map instead
of the maximum, is not optimized separately. It uses the same hyperparameters as the
standard CNN in the final evaluation.

20 newsgroups Twitter
Parameter Candidates CNN LSTM CapsNet CNN LSTM CapsNet

Learning rate [1e�4, 5e�4, 1e�3] 0.0005 0.001 0.001 0.0001 0.0005 0.001
Batch size [8, 16, 32] 32 8 32 16 16 32
Kernel x [3, 5, 10] 5 - 5 3 - 5
Stride x [1, 2, 4, 8] 1 - 1 1 - 1
Filters [100, 200, 400, 800] 800 - 512 200 - 512

Hidden dim. [200, 400, 800] - 200 - - 200 -
Prime caps num. [8, 16, 32] - - 32 - - 32
Prime caps dim. [8, 16, 32] - - 16 - - 16
Class caps dim. [8, 16, 32] - - 16 - - 16

Table 4.4: Results of the grid search for all 6 network and dataset combinations. The
number of filters is grayed out for capsule networks, because it is not set
directly as a hyperparameter. It is determined by the number and dimension
of prime capsules.

The Table 4.4 shows the results of the grid search. The full range of both the learning rate
and batch size is represented in the results, confirming, that they are an important part of
the optimization. While the optimal settings vary for both the CNN and LSTM networks
depending on the dataset, the capsule network’s settings stay the same. The traditional
networks decrease their learning rate going from the 20 newsgroups dataset to the Twitter
dataset, probably because the latter is larger and more difficult. A lower learning rate is

29



less likely to skip over more nuanced differences between samples. The CNN also uses a
smaller kernel size, which is expected considering how much shorter the Twitter samples
are. The reason for the sharp decrease in the preferred filter number is not as easy to
explain. It is possible, that the increased size of a CNN with a large filter number makes
it more prone to overfitting. Interestingly enough, this does not seem to apply to the
capsule network. Since the CNN goes to both extremes, a more extensive grid search with
a wider range would be necessary to determine, how far in either direction the optimal
setting lies. The same goes for the dimension of the hidden layer in the LSTM, which is
the lowest value in the range for both datasets. Looking at the hyperparameters unique
to the capsule networks, we can not confirm that the class capsule dimension should be
larger than the prime capsule dimension. However, the grid search results do seem to
indicate that it should not be lower.

The grid search presented here was by no means exhaustive, so these hyperparmeter
settings are not definitive. They do however show tendencies on what settings are better for
what kinds of datasets. Having done this optimization also makes for a fairer comparison
between networks.

4.3 Test Results

The final comparison between the networks is done by training models with the optimal
parameter settings found by the grid search. A negative log likelihood loss and Adam
optimizer (Kingma and Ba, 2014) are used for this training, the same as for the grid
search. There are several reasons why a new model is trained instead of directly using the
model created by the grid search. The first is logging training statistics. Since the grid
search should be as fast as possible to examine as many settings as possible, additional
logging could actually impact the end result. Considering that these logs are only relevant
for one out of all examined models, doing it in an extra step is more sensible. During
training, the validation F1 score and average loss are logged after every epoch. Every
time a new best score is achieved, a checkpoint of the model is saved. When a number of
epochs pass without the best score being beaten, the training stops automatically. After
stopping, the last checkpoint contains a model that has not started overfitting yet. This is
the second reason for training a new model. During the grid search, the difference in loss
is used to determine when to stop training, so many of the models produced there end up
overfitting, especially since no additional regularization methods are used. Training the
final model in a separate step and using the validation F1 score as an indicator, avoids
this issue. It also allows setting the samples per epoch a bit lower to more accurately
hit the point where the model performs best. After training, the models are evaluated
on the test set to get a final F1 score, which will serve as the main point of comparison.
Macro averaging is used for both the validation and test scores. An overview of these
scores in addition to some other statistics can be found in Table 4.5. The graphs showing
the progression of the statistics during training can be seen in Figure 4.3.

The final F1 test scores for the 20 newsgroup dataset are good across the board. The squash
CNN performs the best on this dataset with an F1 score of 88.14. This is considerably
better than the standard CNN’s score of 86.11. Despite changing only a small aspect of
the network, the alternative to max-pooling has great effects on the performance in this
task. The capsule network, too, performs better than the standard CNN. Scores are much

30



20 newsgroups dataset

Test F1 Validation F1 Parameters1 Time per sample2

CNN 86.11 85.37 1.2M 9.91 ms
Squash CNN 88.14 87.87 1.2M 10.21 ms

LSTM 83.26 82.63 406K 10.83 ms
CapsNet 87.51 87.86 17.5M 27.53 ms

SemEval 2018 Twitter dataset

Test F1 Validation F1 Parameters1 Time per sample2

CNN 35.40 35.49 184K 11.17 ms
Squash CNN 34.31 34.47 184K 11.76 ms

LSTM 35.31 35.36 406K 12.60 ms
CapsNet 31.48 31.49 3.2M 16.01 ms

1Model parameters excluding the embedding layer
2When trained with a batch size of 1

Table 4.5: These two tables show the test results of the different networks on the 20
newsgroups dataset (top) and the Twitter dataset (bottom). Scores are out
of 100. The time per sample is supposed to serve as a point of comparison
for the computational complexity of the networks, rather than a precise
measurement of the individual performance.

lower on the more difficult Twitter dataset. The best score here, 35.40, achieved by the
standard CNN, gets close to the best score (35.99) of the shared task (Barbieri et al.,
2018). Although, this is most likely due to the different preprocessing rather than the
strength of the model itself. The capsule network performs much worse on this dataset,
even when accounting for the higher difficulty, achieving a score of only 31.48. Both the
LSTM network and the CNN perform well here, but not quite as good as the standard
CNN. Comparing the test F1 scores with the validation F1 scores, the capsule network
has the lowest difference between the two on both datasets. This suggests that they are a
bit more stable in their performance than the other networks, but to confirm this, a cross
validation is necessary.

Technical Aspects

In addition to the scores and training statistics, there are some technical aspects that are
worth looking into. Out of the tested networks, the capsule network is by far the most
resource intensive. It has not only the highest parameter count, but also takes the most
time per sample on both datasets. This is caused by the class capsule layer, which, as a
secondary capsule layer, implements the routing by agreement algorithm. This routing
algorithm uses a four-dimensional tensor, which contains the trainable weights of that
layer. Every entry of every ingoing capsule vector is connected to every entry of every
outgoing capsule vector with a unique weight. Thus, it scales heavily with the sample
length, the number and dimension of the prime capsules, and the number and dimension
of the class capsules. In addition, the routing iterations can not be parallelized, further
increasing the computation time. Even when using efficient matrix multiplications for

31



all calculations that allow it, the sheer amount of parameters makes capsule networks
significantly slower than most other network types. Since the samples in the Twitter
dataset are much shorter than those in the 20 newsgroups dataset, the capsule network,
as well as the CNN are much smaller on there. In most cases this would mean that they
are also faster, but this is not true for the CNN here. The reason for this is most likely
the much larger vocabulary of the Twitter dataset, which heavily increases the size of the
embedding layer. The capsule network is faster on this dataset, though. It seems that
its decrease in size due to shorter samples more than offsets the increase in size of the
embedding layer. While a shorter sample size does not affect the number of parameters
in an LSTM network, it does increase the number of iterations in the recurrent layers,
so it is not surprising to see the time of the LSTM change in the same way as the CNN.
Comparing the two CNN variations, it also seems that calculating the squashed norm is
slightly more computationally expensive than max-pooling. The differences in times are
not significant enough to make a definitive statement, however. They could just as easily
be the product of load fluctuations on the server. More thorough experiments would be
needed to confirm this, but that lies outside of the scope of this thesis. Overall, CNNs, at
least the way they are implemented in Pytorch, are the most efficient in terms of time,
while LSTM networks are more efficient in terms of space. Capsule networks are very
resource intensive in both areas, especially if samples are long.

Training Statistics

Looking at the training statistics of the networks can provide clues to the reasons behind
their performance. Despite the different learning rates, the capsule network and both
CNNs plateau at around 10 epochs on the 20 newsgroups dataset. With 3072 samples per
epoch that corresponds to roughly 2.3 iterations through the training data. The LSTM
network has a much slower start and takes a bit longer before the score becomes stable.
This might be due to the relatively high length of the samples. Since only the output of
the last time step (before padding begins) is used for classification, it probably takes some
time to learn how to preserve relevant information all the way to the end. It is also the
network that ends with the lowest training accuracy, meaning, that it would probably
benefit the most from dropout or other regularization methods.

The loss progressions on this dataset for the LSTM and CNNs look similar, even if the
former has a consistently higher average loss. This is due to the fact that the loss per
batch is less stable for the LSTM and varies more widely even late in the training. The
shape of the loss progression for the capsule network has the same shape as the other
three, but converges to an unusually high value. Apparently, this does not seem to affect
the end result, though, as the capsule network achieves the second highest score on this
dataset. On the Twitter dataset it starts at a higher value than the other networks and
never even reaches their starting point. There is probably a connection between this and
the comparatively poor performance of the capsule network on this dataset, as the starting
loss is usually fairly consistent if the loss function and dataset are the same. In addition, it
stops improving much faster than both CNNs. Investigating this discrepancy would be a
good starting point for improving the performance of the capsule network on this dataset.
Interestingly, the LSTM network, which performs much better than the capsule network
on this dataset also stops after 10 epochs, which is only about 2 iterations through the
dataset. Similar to the 20 newsgroups dataset it has the lowest training accuracy of all

32



0 5 10 15 20

0

0.2

0.4

0.6

0.8

Epochs

F1
sc

or
e

20 newsgroups F1 score

CNN
Squash
LSTM
Caps

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

Epochs

Lo
ss

20 newsgroups loss

CNN
Squash
LSTM
Caps

3072 samples per epoch

0 5 10 15 20 25 30

0

0.1

0.2

0.3

Epochs
F1

sc
or

e

Twitter F1 score

CNN
Squash
LSTM
Caps

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Epochs

Lo
ss

Twitter loss

CNN
Squash
LSTM
Caps

61440 samples per epoch

Training Accuracy

CNN: 99.74
Squash CNN 98.21
LSTM network: 97.79
CapsNet: 99.41

CNN: 63.51
Squash CNN 62.03
LSTM network: 54.00
CapsNet: 60.10

Figure 4.3: These graphs show the development of the F1 scores (top) and the loss
(bottom) of the 20 newsgroups dataset (left) and the Twitter dataset (right).
Differing numbers of samples per epoch were used to make the graphs more
readable. Note that the networks trained with different learning rates, so
their training speed is not directly comparable.

33



the networks when it stops. The CNNs both train for 30 epochs here which is equal to
about 5.9 iterations.

Confusion Matrices

The confusion matrix of a model can yield insight into its strengths and weaknesses. In
our results, all networks produce similar matrices and do not display any different patterns.
Figure 4.4 shows the matrix of the best network for each dataset, which will serve as a
representative for all the others. Additional confusion matrices for the capsule network
can be found in the Appendix.

At a glance, there does not seem to be a strong correlation between the accuracy and
average text length of each class on the 20 newsgroups dataset. The most frequent
mistakes in this dataset are not surprising, considering how closely related the topics
are. Samples of talk.politics.misc are often classified as talk.politics.guns and samples of
talk.religion.misc are often classified as soc.religion.christian. These two misclassifications
specifically are more common than the reverse due to the asymmetry in distribution.
If there are more samples of soc.religion.christian than talk.religion.misc and a sample
looks like it could belong to either, it is smarter to predict soc.religion.christian, since
that has a higher chance of being correct. The dataset as a whole is mostly balanced,
but the difference between these two (second most common, 5.3% of the dataset, versus
least common, 3.3% of the dataset) is enough to have a noticeable effect. Content wise,
these are the kind of mistakes one would expect to be most common in a dataset like
this. The themes and language of these classes likely overlap heavily. This is true for the
other most common mistake, confusing alt.atheism with talk.religion.misc and vice-versa,
as well as less frequent mistakes, like confusion between comp.sys.ibm.pc.hardware and
sci.electronics. Both directions of misclassification are equally likely for those two.

Similar patterns can be observed in the confusion matrix for the Twitter dataset. Since
face with heart eyes ( ) and the face with tears of joy ( ) are the second and third most
common emojis in the dataset, many less frequent emojis are often misclassified as one
of these two. This is especially true if they have a similar meaning, like many of the
other faces. Among all emojis, beaming face with smiling eyes ( ) is he hardest to predict
correctly and red heart ( ) is the easiest. Christmas tree ( ) has the second highest
accuracy, which is notable, as it is the third least common emoji and the one with the
shortest average sample length,. Unlike most of the other less common emojis, it has a
very specific meaning, so it is probably used it in a much more consistent context. As a
result, it is comparably easy to predict. Also interesting are the values for camera with
flash and camera ( , no flash). There are frequent mistakes in both directions, but only
one type of mistake is more common than correct predictions, at least among these four
possibilities. This suggests that there actually is a small difference in how these emojis
are used. In fact, many emojis are apparently easier to differentiate than expected. Two
hearts ( ), for example, is rarely misclassified as red heart ( ), despite the latter being
about four times as common.

Even if the scores for the Twitter dataset are not very impressive, looking at the confusion
matrix provides interesting insights into how the emojis are used in the dataset.

34



Figure 4.4: These are the confusion matrices for both dataset. They depict the normalized accuracy for the best network on each, the
alternative CNN for 20 newsgroups (top) and the standard CNN for Twitter (bottom). As an example, the 0.17 in the
entry for talk.religion.misc - soc.religion.christian (row 20, column 6) means that 17% of all talk.religion.misc samples were
classified as soc.religion.christian. Some rows do not add up to 1.0 due to rounding.

35



5 Further Insights

Using capsule networks for text classification and comparing them to other networks on
this task reveals some of their strengths and weaknesses. This chapter discusses their
potential for text processing, based on the results of the previous chapters.

5.1 Reconstructions

The network architecture introduced in Sabour et al. (2017) includes a reconstruction
module, placed after the class capsule layer. It receives the output vector of a capsule
as input and its produces a tensor with the same dimensions and value range as the
input sample. As the name implies, the point of this module is to recreate the original
input based on the output of a capsule. An additional loss is calculated based on the
difference between the reconstruction and the original. This essentially turns the network
into an auto-encoder. Since the primary purpose of the network remains classification,
the additional loss is multiplied with a small factor � before it is added to the prediction
loss, so that it influences the training, but does not dominate it. This procedure should
encourage the capsules to learn generalized, meaningful output parameters. As such,
it works as regularization method. The most straightforward implementation of such a
module is as a series of linear layers. The last of those layers must have an output size
equal to the number of entries in the input tensor and use an activation function with the
same value range as the samples. This one-dimensional output tensor is then reshaped to
resemble the original input, before it is compared to it.

There are two ways to build a reconstruction module directly into a capsule network. The
first is to have one module per capsule in the final layer (Hinton et al., 2011). In that case,
all capsules produce a reconstruction, but only the one made by the capsule corresponding
to the true label is used to calculate the loss. This is important, as it allows each module
to learn the commonalities between different instances of the entity represented by its
capsule. That way, the entries in the capsule output vector represent parameters, which
describe how a particular instance differs from the base representation. A more efficient
way of using reconstruction modules is to use a single module, which is connected to the
output of all capsules of the last layer (Sabour et al., 2017). When the output of that
layer is passed to this module, each capsules output is set to zero, except for the one
representing the true label of the sample. That way, the information of what exactly is
being reconstructed is preserved, even though there is only one reconstruction module for
all capsules.

One of the benefits of this regularization method is that it can provide insight into what
the network has learned. Using it on digit recognition results in very concrete instantiation
parameters for the class capsules, whose effect on the reconstructions is easy to visualize
and understand (see Figure 5.1). Previous applications of capsule networks on text either
seem to not use reconstructions (Yang et al., 2018) or do not mention how they handle

36



Figure 3: Sample MNIST test reconstructions of a CapsNet with 3 routing iterations. (l, p, r)
represents the label, the prediction and the reconstruction target respectively. The two rightmost
columns show two reconstructions of a failure example and it explains how the model confuses a
5 and a 3 in this image. The other columns are from correct classifications and shows that model
preserves many of the details while smoothing the noise.

(l, p, r) (2, 2, 2) (5, 5, 5) (8, 8, 8) (9, 9, 9) (5, 3, 5) (5, 3, 3)

Input

Output

Table 1: CapsNet classification test accuracy. The MNIST average and standard deviation results are
reported from 3 trials.

Method Routing Reconstruction MNIST (%) MultiMNIST (%)

Baseline - - 0.39 8.1
CapsNet 1 no 0.34±0.032 -
CapsNet 1 yes 0.29±0.011 7.5
CapsNet 3 no 0.35±0.036 -
CapsNet 3 yes 0.25±0.005 5.2

5 Capsules on MNIST

Training is performed on 28 ⇥ 28 MNIST (LeCun et al. [1998]) images that have been shifted by up
to 2 pixels in each direction with zero padding. No other data augmentation/deformation is used. The
dataset has 60K and 10K images for training and testing respectively.

We test using a single model without any model averaging. Wan et al. [2013] achieves 0.21% test
error with ensembling and augmenting the data with rotation and scaling. They achieve 0.39%
without them. We get a low test error (0.25%) on a 3 layer network previously only achieved by
deeper networks. Tab. 1 reports the test error rate on MNIST for different CapsNet setups and shows
the importance of routing and reconstruction regularizer. Adding the reconstruction regularizer boosts
the routing performance by enforcing the pose encoding in the capsule vector.

The baseline is a standard CNN with three convolutional layers of 256, 256, 128 channels. Each has
5x5 kernels and stride of 1. The last convolutional layers are followed by two fully connected layers
of size 328, 192. The last fully connected layer is connected with dropout to a 10 class softmax layer
with cross entropy loss. The baseline is also trained on 2-pixel shifted MNIST with Adam optimizer.
The baseline is designed to achieve the best performance on MNIST while keeping the computation
cost as close as to CapsNet. In terms of number of parameters the baseline has 35.4M while CapsNet
has 8.2M parameters and 6.8M parameters without the reconstruction subnetwork.

5.1 What the individual dimensions of a capsule represent

Since we are passing the encoding of only one digit and zeroing out other digits, the dimensions of a
digit capsule should learn to span the space of variations in the way digits of that class are instantiated.
These variations include stroke thickness, skew and width. They also include digit-specific variations
such as the length of the tail of a 2. We can see what the individual dimensions represent by making
use of the decoder network. After computing the activity vector for the correct digit capsule, we can
feed a perturbed version of this activity vector to the decoder network and see how the perturbation
affects the reconstruction. Examples of these perturbations are shown in Fig. 4. We found that one
dimension (out of 16) of the capsule almost always represents the width of the digit. While some
dimensions represent combinations of global variations, there are other dimensions that represent

5

Figure 4: Dimension perturbations. Each row shows the reconstruction when one of the 16 dimensions
in the DigitCaps representation is tweaked by intervals of 0.05 in the range [�0.25, 0.25].

Scale and thickness

Localized part

Stroke thickness

Localized skew

Width and translation

Localized part

variation in a localized part of the digit. For example, different dimensions are used for the length of
the ascender of a 6 and the size of the loop.

5.2 Robustness to Affine Transformations

Experiments show that each DigitCaps capsule learns a more robust representation for each class
than a traditional convolutional network. Because there is natural variance in skew, rotation, style, etc
in hand written digits, the trained CapsNet is moderately robust to small affine transformations of the
training data.

To test the robustness of CapsNet to affine transformations, we trained a CapsNet and a traditional
convolutional network (with MaxPooling and DropOut) on a padded and translated MNIST training
set, in which each example is an MNIST digit placed randomly on a black background of 40 ⇥ 40
pixels. We then tested this network on the affNIST4 data set, in which each example is an MNIST digit
with a random small affine transformation. Our models were never trained with affine transformations
other than translation and any natural transformation seen in the standard MNIST. An under-trained
CapsNet with early stopping which achieved 99.23% accuracy on the expanded MNIST test set
achieved 79% accuracy on the affnist test set. A traditional convolutional model with a similar
number of parameters which achieved similar accuracy (99.22%) on the expanded mnist test set only
achieved 66% on the affnist test set.

6 Segmenting highly overlapping digits

Dynamic routing can be viewed as a parallel attention mechanism that allows each capsule at one
level to attend to some active capsules at the level below and to ignore others. This should allow
the model to recognize multiple objects in the image even if objects overlap. Hinton et al. propose
the task of segmenting and recognizing highly overlapping digits (Hinton et al. [2000] and others
have tested their networks in a similar domain (Goodfellow et al. [2013], Ba et al. [2014], Greff et al.
[2016]). The routing-by-agreement should make it possible to use a prior about the shape of objects
to help segmentation and it should obviate the need to make higher-level segmentation decisions in
the domain of pixels.

6.1 MultiMNIST dataset

We generate the MultiMNIST training and test dataset by overlaying a digit on top of another digit
from the same set (training or test) but different class. Each digit is shifted up to 4 pixels in each
direction resulting in a 36⇥36 image. Considering a digit in a 28⇥28 image is bounded in a 20⇥20
box, two digits bounding boxes on average have 80% overlap. For each digit in the MNIST dataset
we generate 1K MultiMNIST examples. So the training set size is 60M and the test set size is 10M.

4Available at http://www.cs.toronto.edu/~tijmen/affNIST/.

6

Figure 5.1: Examples of reconstructions from the MNIST dataset by Sabour et al.
(2017). The bottom table shows the results of manipulating a single entry
in the capsule output vector.

these difficulties (Wang et al., 2018). To our knowledge, no work has been done to
examine, whether reconstructions can produce sensible results on text, like they can on
digit recognition.

All the capsule networks evaluated in Chapter 4 have no reconstruction module. The
reasons for this are twofold. Using a regularization method in one network but not the
others would weaken the comparison between them. Other regularization methods could
be used on the CNN and LSTM network, but this too would have made a direct comparison
less meaningful, as it would not be clear, whether the differences in performance are
due to the networks themselves or the regularization method. The other reason is that
using auto-encoders on text is more difficult than it is on images. Unlike images, text
needs to be preprocessed before it can be fed into a neural network. Raw text is not
represented by a tensor of floating point values, which is the format most networks expect
as input. Thus, there is no ground truth to compare the reconstruction against and no
direct way to calculate a loss. The closest alternative is the embedded input, since it is a
sequence of vectors. This also presents a problem however, since the embedding process is
usually implemented as a trainable embedding layer in the network. Because of this, the
representation, the target of the reconstruction, changes over the course of the training.
The embedding layer can be made static to avoid this, but that sacrifices the improvement
to classification results that it brings. The different lengths of samples present another
challenge. To allow for batched processing, samples are all padded to the same length with
a padding vector. Without additional measures, this causes the reconstruction module to
learn that producing a reconstruction made entirely of these padding vectors is a good
way to minimize the average difference to the original.

Despite these challenges, reconstructions are a unique quality of capsule networks, so their
use in text should still be explored. To judge, whether reconstructions have any potential
in this domain, the following steps are taken to mitigate the problems described above:

• To solve the problem of the moving target, a capsule network without reconstruction
module is trained first. Then a new capsule network with a reconstruction module is

37



created and its embedding layer is initialized with the word vectors extracted from
the previous network. This embedding layer is made static, so that the word vectors
do not change over the course of the training. This method should provide the
benefits of a trainable embedding layer without drawbacks for the reconstructions.

• Before loading the trained word vectors into the second network, they are normalized
again and the padding vector is set to zero. Also, before calculating the difference loss
between the reconstruction and the original, every word vector in the reconstruction
is normalized. This prevents the network from filling the reconstruction with padding
vectors.

• The squashing function, which is used on all capsule output vectors as an activation
function, often leads to very small output values. This is especially true for a newly
initialized network. Because of this, the initial linear layer of the reconstruction
module should not have a bias, since it will overshadow the actual input. As a result,
the reconstruction would always be the same, regardless of input.

• Since all word vectors in the target are normalized, all entries are between �1
and 1. Therefore, tanh is used as the activation function of the final layer in the
reconstruction module.

With these adjustments, reconstructions make sense on a mathematical level. That is
enough to test whether they improve the networks performance or not, but in order
to judge whether the results are sensible at all, the reconstructed tensor first has to
be turned back into a representation that is readable by humans. To do this, the two-
dimensional reconstruction tensor is split up into a sequence of word vectors. Then the
embedding is searched for the nearest vector and word represented by that vector is taken.
Concatenating all those words with spaces results in a readable output (see Figure 5.2).
Another way to visualize the result is to perform a principle component analysis (PCA) on
both the word vectors of the original sample and those of the reconstruction, so that they
can be graphed in a 2D scatter plot. In order to better compare the resulting positions,
the PCA should be performed on all words in the embedding at once, so that all graphed
vectors have the same frame of reference and different samples can be compared. The
spacial distribution of word vectors of a good reconstruction should be similar to that of
the original. Figure 5.3 shows these scatter plots.

rec.sport.baseball
"article writes williams writes writes thought thought hit baseball
hit year baseball baseball baseball players hit players hit baseball
baseball hit sure hit hit players sure sure hit [...]"

soc.religion.christian
"article writes writes writes think think reason reason god god reason
god god reason reason reason reason god god reason reason reason
reason reason reason think think think reason [...]"

Figure 5.2: Two examples for reconstructions from the 20 newsgroups dataset.

Despite all of these steps, the results for reconstructions on the 20 newsgroups dataset
still barely resemble the original text. This is in stark contrast to the reconstructions on
the MNIST dataset, which not only show clearly recognizable digits, but also mimic some

38



Figure 5.3: The scatter plots for the reconstructions from Figure 5.2. The one the left
belongs to the sample from rec.sport.baseball, the one on the right belongs
to the sample from soc.religion.christian. The words of the original sample
are in blue, the words of the reconstructions in red.

of the specific properties of the input. Still, the strings produced by the reconstruction
module here seem like they belong in the correct class and they display some structural
elements. Many samples begin with quotes, so the reconstructions start with "article"
and "writes", which are the only words left in the introduction of a quote after filtering
out stop words and non-alphanumeric tokens. Overall, they appear more like a collection
of prominent words of the class, rather than the reconstruction of a specific sample. Using
reconstructions did not increase the classification score either. To get a reasonable result,
a class capsule dimension of 32 had to be used. A network with optimized hyperparamters
and a class capsule dimension of 16 produced worse results than the ones shown here.
Several things could explain this sub-par performance. In the MNIST dataset, samples of
the same class are much more similar to each other than in the 20 newsgroups dataset.
They also contain essentially no noise. Since the loss is computed with a simple mean
square error (MSE), reconstructing noise becomes part of the goal. This blurs the purpose
of the instantiation parameters as they must account for this. A possible solution for
this is to have an additional orphan capsule representing noise. Sabour et al. (2017) do
this to improve classification results on the CIFAR-10 image classification dataset1, in
which the background of the images is considered noise. Sadly, they do not mention how
this affects the reconstruction. In our experiments, using an orphan capsule does not
improve results for the 20 newsgroups dataset, regardless of whether its input is used by
the reconstruction module or not. Trying reconstructions on the unfiltered 20 newsgroup
dataset shows how much of a problem noise is. In that case, the reconstructions contain
nothing but the most common stop words. Also, a series of linear layers and MSE loss
might just work much better on images than it does on text.

These results do not mean that reconstructions as a whole are useless on text. One
possible avenue of improving reconstructions is to reduce their size. After all of the
preprocessing is done, only a fraction of the words in the pretrained embeddings actually

1https://www.cs.toronto.edu/⇠kriz/cifar.html

39

https://www.cs.toronto.edu/~kriz/cifar.html


appear in the dataset. Theoretically, this means less dimensions are needed to properly
represent their differences. Using PCA to reduce the size of the word embeddings reduces
the size of the input, which also reduces the size of the reconstruction. Shrinking the
output, while leaving the parameter count of the network the same should increase the
fidelity. Unfortunately, reducing the word vectors with PCA also reduces the classification
performance, so this method is not worth the trade-off.

In summation, reconstructions in their current form do not help with the text classification
tasks presented in this thesis, but they deserve further attention in future work.

5.2 Discussion

The results in Sections 4.3 and 5.1 show some success for using capsule networks and
their concepts in text classification. Using the squashed norm instead of max-pooling
in a CNN network significantly improved the performance of a simple CNN on the 20
newsgroups dataset, getting it relatively close to the state of the art. Since this is a
simple change with little effect on the networks complexity, it should require little effort
to test whether this improvement translates to other tasks as well. The fact that it
serves the exact same function as a pooling layer, taking a number of values with no
regard to their placement within the window and calculating a new, single value based
on them, makes this a real alternative. It would be interesting to see if this method is
still beneficial, if the window of the pooling layer does not encompass the entire feature
map. Considering that it brought no benefit over the standard method on the Twitter
dataset, its applications might be limited. Since the capsule network itself also performs
better than the CNN on the 20 newsgroups dataset and worse on the Twitter dataset,
it seems likely that this reflects the strengths and weaknesses of capsules. Still, they do
clearly have potential for text classification tasks, as the results on 20 newsgroups show.
It would be interesting to see how deeper capsule networks fare against deeper CNNs. A
big part the argument why capsule networks are theoretically superior is that they use
routing instead of pooling, which does not lose any information. Therefore, the benefits or
drawbacks should become more apparent if the network has more of these layers. Based
on our results, deep capsule networks would require very powerful hardware, so these
kinds of comparisons are currently not very practical. The comparatively low score of the
the capsule network on the Twitter dataset might be explained by its large number of
parameters, which makes it more prone to overfitting. The fact that the optimal CNN
uses as little filters as possible seems to support this hypothesis. Looking at the results
through this lens, it seems like the chosen hyperparameter setting are not actually optimal
for the Twitter dataset. A more thorough grid search might have lead to better results.
Even if that is the case, it likely would still not achieve the highest score on that dataset,
since that requires an increase of more than four points. The relatively equal performance
of all the other networks also suggests that more sophisticated models and regularization
methods are needed to achieve better scores here. Since the ranking of the networks differs
so much between the two datasets, it is safe to say none of the examined network are
strictly better than the others. Though one should acknowledge the consistently good
performance of simple CNNs. Since they seem to produce decent results on almost any
task and train quickly thanks to good optimization, they should make for good baselines
in many applications.

40



In addition to the networks themselves, the preprocessing on the Twitter dataset has
much room for improvement. The high number of LFUTs could be reduced with better
tokenization. Incorrect or unusual formatting often results in strings that are not split
correctly. For example, if punctuation is followed by a letter or digit, spaCy will not split
it into its own token. That means, if two sentences are not separated properly, the last
word of the first sentence and the first word of the second sentence end up as a single
token, together with the punctuation. Since it is rather unlikely that this mistake happens
again with the exact same words, tokens like these are mostly marked as LFUTs as they
occur only once the corpus and can not be found in the in the pretrained embedding.
The Twitter dataset contains many mistakes of that or a similar nature, which is one
of the reasons why the number of LFUTs ends up being so high. A simple rule that
always splits punctuation into its own token would lead to other mistakes though, so
more sophisticated tokenization would be necessary to solve this problem. Similarly, many
hashtags are marked as LFUTs, despite containing information. Even hashtags that occur
only once in the corpus are often made up of normal words. Deriving a word vector
based on the components would provide more information than using a random vector or
mapping the hashtag to the generic LFUT like we currently do. Even just using a generic
<unique hashtag> token would probably be better than the current approach. Deriving
an additional word vector from pretrained character embeddings is another option and
has been shown to work well on Twitter data (dos Santos and Gatti, 2014).

Aside from preprocessing, it is also possible that the performance of the capsule networks
themselves is not as good as it could be. Additional tests show that using three routing
iterations instead of one only improves performance if the capsule dimension of the routing
layer is higher than that of the ingoing capsule layer, like the original paper suggests. With
only one routing iteration, the layer is equivalent to a normal, fully connected, linear layer.
It is possible that the optimal hyperparameter settings for the capsule network found with
the grid serach would be even better, if the class capsule dimension was changed from 16
to 32. Even if that was the case, the grid search would not have found this setting though,
because the resulting network is too large to fit on the GPU used for training. Still, it is
possible that a usable, more optimal setting with a higher class capsule dimension and
lower prime capsule number exists, but was not found by the grid search. Since no settings
between 16 and 32 were examined for these parameters, the optimum might actually lie
somewhere in between. The epoch length and loss delta can also have an effect on which
hyperparameters end up being declared as optimal. Since the main criterion for stopping
the training during the search is the change in loss, networks that overfit more easily are
graded lower, even if they would achieve better validation results earlier during training.

Whether reconstructions can improve text classification results of a capsule network is
something that needs to be investigated more. The results presented here and in the
literature certainly show that good performance can be achieved without them, but that
does not mean that they have no purpose in text processing. Though, to make good
use of them, other reconstruction methods need to be explored, as the naive approach
does not yield good results, even with some adjustments. It is also worth noting, that a
reconstruction module further increases the size of the already large networks, so using
them on long texts might not even be practical with current hardware. Since RNNs can
produce sequential output of any length independent of their own size, they might be the
best alternative here.

41



6 Conclusion

6.1 Conclusion

Sentiment analysis as a specialized form of text classification is becoming increasingly
useful with the wealth of user generated text on the web. It can be used to gain insight on
opinions at a large scale and could help manage toxicity in online communities. Since many
platforms rely on active, participating users, this is important for both moral and business
oriented reasons. This domain presents many challenges for text processing however,
ranging from spelling mistakes and unusual formatting to the incomplete nature of the
raw text in posts which contain images and links. The established preprocessing method
of using common tokenization methods and pretrained word embeddings alone has many
shortcomings in that regard. Perhaps that is the reason why even simple neural networks
can still come close to state-of-the-art results on some of these tasks. Especially in the
case of Twitter data, this suggests that looking into the problems related to preprocessing
would be just as, if not more beneficial than improving the models themselves. Even with
all the challenges and low classification scores, training a model on this data can still be
useful. The confusion matrices can show the presence or absence of correlations, which
provide all kinds of insights into the dataset.

Capsule networks were introduced as a proposed improvement to CNNs, so it is encouraging
to see that they achieve better results on one of the two datasets used for evaluation. In
addition, using one of its concepts, the squashed norm, in CNNs instead of max-pooling
improved results considerably. Since both of these improvements over the standard CNN
are limited to only one of the datasets, we can conclude, that capsule networks have a
place in text classification, but are not a strictly superior version of CNNs. They also
have their drawbacks, as they are much larger in size and considerably slower. Since the
size scales heavily with both hyperparameters and sample length, capsule networks might
not be suitable for some tasks for technical reasons alone. This also has to be taken into
account during hyperparameter optimization, to avoid situations, where potentially good
setting are ignored, due to the resulting network not fitting into memory. This is true
even when no reconstruction module is being used. Using reconstructions on text is only
really possible with many adjustments and even then, they do not improve classification
performance like they do on image classification. This conclusion is only based on a single,
simple way of using this concept however, so it should not necessarily be discounted
entirely.

In conclusion, capsule networks are a useful alternative to traditional network types in
text processing. With a high computational complexity and a reconstruction module that
currently provides no benefit on the tasks presented here, it seems that they still have
untapped potential.

42



6.2 Future Work

It has been shown that capsule networks can achieve good results on text related tasks,
but that does not mean that there are no further improvements to be made. As discussed,
reconstructions are one area, where more work could be done. There are many different
approaches that could lead to new insights there. For example, some kind of generative
language model would probably result in more sensible output. Using RNNs for this
would also solve the problem of the reconstruction module scaling with input size, which
is a considerable hurdle in some applications. If that is not a concern, a capsule based
reconstruction module might actually be more appropriate, since capsules output vectors
and the goal is to produce a series of word vectors. Using a loss function more suited for
vectors would also be worth exploring. Producing reconstructions that seem reasonable to
a human is technically only a nice side effect though, the primary goal is still to improve
classification performance by using them as a regularization method. These two goals
are probably correlated, so it is definitely worth looking into. Considering the generative
nature of capsules, they might also be useful in generative adversarial networks (Goodfellow
et al., 2014). Having a discriminative model rate the quality of a reconstruction instead
of using a numeric loss seems like an interesting alternative. All of these are potential
improvements for the architecture used in this thesis, but that is not the only way to
implement the concept of capsules. It is entirely possible to construct a primary capsule
layer from something other than a convolution layer. This would potentially affect some
assumptions like the place coding and receptive fields, which might have to be taken
into account in the routing layer. The routing algorithm itself, including the concept
of having the vector length represent a probability, is not definitive either. Other ways
of modeling the agreement between child entities on their predictions of parent entities
could be explored. In summary, the concept of capsule networks is promising and flexible
enough to provide a wide array of possibilities for its use.

Considering the properties of short informal online texts like tweets and the evaluation
results, there is still work to be done when it comes to handling their unique challenges.
Modeling spelling mistakes, unusual formatting and other stylistic choices separate from
the underlying word would be much closer to the way humans read these kinds of texts.
Done correctly, it would not only provide additional information to a classifier, but also
improve the information that is already there by better separating it from noise. This kind
of process needs a very different pipeline though, so a novel approach to preprocessing
would need to be developed.

Finally, the effects of using the squashed norm in an otherwise unaltered CNN need to be
explored more. If it turns out to be a real alternative to other pooling methods, it could
potentially be useful in many network architectures and applications.

43



Bibliography

Barbieri, Francesco, Miguel Ballesteros, and Horacio Saggion (2017). Are Emojis Pre-
dictable? In: Proceedings of the 15th Conference of the European Chapter of the Associ-
ation for Computational Linguistics. Valencia, Spain, pp. 105–111.

Barbieri, Francesco, Jose Camacho-Collados, Francesco Ronzano, Luis Espinosa Anke,
Miguel Ballesteros, Valerio Basile, Viviana Patti, and Horacio Saggion (2018). SemEval
2018 Task 2: Multilingual Emoji Prediction. In: Proceedings of The 12th International
Workshop on Semantic Evaluation. New Orleans, USA, pp. 24–33.

Beißwenger, Michael, Sabine Bartsch, Stefan Evert, and Kay-Michael Würzner (2016).
EmpiriST 2015: A shared task on the automatic linguistic annotation of computer-
mediated communication and web corpora. In: Proceedings of the 10th Web as Corpus
Workshop. Berlin, Germany, pp. 44–56.

dos Santos, Cícero and Maíra Gatti (2014). Deep convolutional neural networks for
sentiment analysis of short texts. In: Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers. Dublin, Ireland, pp. 69–78.

Duggan, Maeve (2017). Online harassment 2017. Pew Research Center. Technical Report.
Dumoulin, Vincent and Francesco Visin (2016). A guide to convolution arithmetic for

deep learning. In: ArXiv e-prints. eprint: 1603.07285.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. 1 Rogers

Street, Cambridge, MA: MIT Press.
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). Generative Adversarial Nets.
In: Advances in Neural Information Processing Systems 27. Curran Associates, Inc.,
pp. 2672–2680.

Hinton, Geoffrey E., Alex Krizhevsky, and Sida D. Wang (2011). Transforming auto-
encoders. In: International Conference on Artificial Neural Networks. Espoo, Finland,
pp. 44–51.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). Long short-term memory. In: Neural
computation 9.8, pp. 1735–1780.

Joachims, Thorsten (1998). Text categorization with Support Vector Machines: Learning
with many relevant features. In: Machine Learning: ECML-98. Ed. by Claire Nédellec
and Céline Rouveirol. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 137–142.

Kim, Yoon (2014). Convolutional Neural Networks for Sentence Classification. In: Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
2014, Doha, Qatar, pp. 1746–1751.

Kingma, Diederik and Jimmy Ba (Dec. 2014). Adam: A Method for Stochastic Optimization.
In: International Conference on Learning Representations. Banff, Canada.

LeCun, Yann, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne Hubbard, and Lawrence D. Jackel (1989). Backpropagation Applied to Hand-
written Zip Code Recognition. In: Neural Computation 1.4, pp. 541–551.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean (2013).
Distributed representations of words and phrases and their compositionality. In: Advances
in Neural Information Processing Systems. Lake Tahoe, USA, pp. 3111–3119.

44

1603.07285


Pang, Bo, Lillian Lee, et al. (2008). Opinion mining and sentiment analysis. In: Foundations
and Trends in Information Retrieval 2.1–2, pp. 1–135.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). GloVe: Global
Vectors for Word Representation. In: Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar, pp. 1532–1543.

Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton (2017). Dynamic routing between
capsules. In: Advances in Neural Information Processing Systems. Long Beach, USA,
pp. 3856–3866.

Sebastiani, Fabrizio (2002). Machine Learning in Automated Text Categorization. In: ACM
Comput. Surv. 34.1, pp. 1–47.

Shu, Lei, Hu Xu, and Bing Liu (2017). DOC: Deep Open Classification of Text Documents.
In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. Copenhagen, Denmark, pp. 2911–2916.

Singh, Tajinder and Madhu Kumari (2016). Role of text pre-processing in twitter sentiment
analysis. In: Procedia Computer Science 89.1, pp. 549–554.

Srivastava, Nitish, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov (2014). Dropout: a simple way to prevent neural networks from overfitting.
In: The Journal of Machine Learning Research 15.1, pp. 1929–1958.

Wang, Yequan, Aixin Sun, Jialong Han, Ying Liu, and Xiaoyan Zhu (2018). Sentiment
analysis by capsules. In: Proceedings of the 2018 World Wide Web Conference on World
Wide Web. Lyon, France, pp. 1165–1174.

Wint, Zar Z., Théo Ducros, and Masayoshi Aritsugi (2017). Spell corrector to social media
datasets in message filtering systems. In: 2017 Twelfth International Conference on
Digital Information Management (ICDIM). Fukuoka, Japan, pp. 209–215.

Wulczyn, Ellery, Nithum Thain, and Lucas Dixon (2017). Ex machina: Personal attacks
seen at scale. In: Proceedings of the 26th International Conference on World Wide Web.
Perth, Australia, pp. 1391–1399.

Yang, Min, Wei Zhao, Jianbo Ye, Zeyang Lei, Zhou Zhao, and Soufei Zhang (2018). Inves-
tigating Capsule Networks with Dynamic Routing for Text Classification. In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels,
Belgium, pp. 3110–3119.

45



Appendix

List of Figures

2.1 Text representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 General CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 CNN architecture by Kim (2014) . . . . . . . . . . . . . . . . . . . . . . 11
2.4 RNN illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Capsule network architecture . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 CNN & LSTM Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 CapsNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 20 newsgroups dataset sample . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Tweet example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Training statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Confusion matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 MNIST Reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Reconstruction Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Reconstruction Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . . . 39

List of Tables

4.1 20 newsgroups statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 English 2018 Semeval Task 2 dataset statistics . . . . . . . . . . . . . . . 28
4.3 Dataset distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Grid search results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

46



List of Acronyms

CNN Convolutional neural network
RNN Recurrent neural network
LSTM Long short-term memory
LFUT Low frequency unknown token
NaN Not a Number
SVM Support vector machine
PCA Principle component analysis
MSE Mean square error

Source Code

For the sake of clarity, the code snippets presented here are altered slightly from the
actual source code. These alterations include changing variable names to be more in line
with the terminology used in this document and removing code which has no effect on the
output of the network.

Reconstruction Module

1 class Reconstructor(torch.nn.Module):

2 def __init__(self, class_caps_num, class_caps_dim, output_shape, orphan_caps=False):

3 super(Reconstructor, self).__init__()

4 numel = output_shape[0]

*

output_shape[1]

5 self.output_shape = [1] + list(output_shape)

6 size_limit = 4096

7 inter_size = min(2

*

numel, size_limit)

8

9 self.lin1 = nn.Linear(class_caps_num

*

class_caps_dim, inter_size, bias=False)

10 self.lin2 = nn.Linear(inter_size, numel)

11

12 self.orphan_switch = torch.zeros(class_caps_num, class_caps_num)

13 if orphan_caps: # If there is a orphan capsule and it’s output should be used

14 self.orphan_switch[class_caps_num-1, class_caps_num-1] = 1

15

16 def forward(self, x, y):

17 self.output_shape[0] = x.size(0) ) #replacing the placeholder 1

18 if x.is_cuda:

19 self.orphan_switch = self.orphan_switch.cuda()

20 y = y + selforphan_switch

21 x = torch.matmul(y,x) # y is the label with a 2d one-hot encoding...

22 # ...meaning it’s a matrix where y[i, j] = 1 only if i=j=label

23 x = x.view(x.size(0), -1)

24 x = torch.tanh(self.lin1(x))

25 x = torch.tanh(self.lin2(x))

26 x = x.view(self.output_shape)

27 n = x.norm(dim=-1, keepdim=True)

28 x = x/n

29 return x

47



Capsule Network

1 class CapsNet(text.TextNet):

2 def __init__(self, num_classes, max_length, embedding_dim, window, stride,

prime_num, prime_dim, class_dim, orphan_caps=False, recon_type="None"):

3 super(CapsNet, self).__init__(num_classes, (max_length, embedding_dim))

4 self.type = "caps"

5 self.num_classes = num_classes

6 self.window = window

7 self.stride = stride

8 self.prime_caps_num = prime_num

9 self.prime_caps_dim = prime_dim

10 self.filter_num = self.prime_caps_num

*

self.prime_caps_dim

11 self.class_caps_dim = class_dim

12 self.orphan_caps = orphan_caps

13

14 self.caps_conv = torch.nn.Conv2d(

15 in_channels = 1,

16 out_channels = self.filter_num,

17 kernel_size = self.window,

18 stride = self.stride

19 )

20 conv_caps_output_size = conv_output_size(self.input_size, self.window,

self.stride)

21

22 self.class_caps = caps.CapsuleLayerDense(

23 in_caps_num = conv_caps_output_size[0]

*

conv_caps_output_size[1]

*

self.prime_caps_num,

24 in_caps_dim = self.prime_caps_dim,

25 num_capsules = num_classes,

26 output_dim = self.class_caps_dim

27 )

28

29 if recon_type != "None":

30 self.reconstructor = caps.Reconstructor(num_classes, class_caps_dim,

self.input_size, orphan_caps)

31

32 def forward(self, x, length=None, y=None):

33 x = x.unsqueeze(1) #Unsqueeze for in_channel = 1

34 x = self.caps_conv(x)

35 x = x.view(x.size(0), -1, self.prime_caps_dim) #formatting as capsules

36 x = caps.squash(x)

37

38 x = self.class_caps(x)

39 x = caps.squash(x)

40 classes = x.norm(dim=-1) #vectors -> length

41 classes = F.normalize(classes, dim=-1, eps=sys.float_info.epsilon)

42 classes = torch.softmax(classes, dim=-1)

43 x = self.reconstructor(x, y)

44

45 return classes, x

48



Additional Statistics

Confusion matrices of the capsule network

49



Erklärung

Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen, als die
angegebenen Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten
Internetquellen – benutzt habe, die Arbeit vorher nicht in einem anderen Prüfungsverfahren
eingereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen
Speichermedium entspricht.

Ich bin mit der Einstellung der Master-Arbeit in den Bestand der Bibliothek des Fach-
bereichs Informatik einverstanden.

Hamburg, den . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


	Overview
	Introduction
	Motivation
	Hypothesis

	Related Work
	Text Processing Basics
	Text Classification in General
	Convolutional Neural Networks
	LSTM Networks
	Capsule Networks

	Methodology
	Preprocessing
	CNN and LSTM Network
	Capsule Network
	Hyperparameter Optimization

	Evaluation
	Datasets
	Grid Search Results
	Test Results

	Further Insights
	Reconstructions
	Discussion

	Conclusion
	Conclusion
	Future Work

	Bibliography
	Appendices

