
Unsupervised Multi-Document
Summarization

A thesis for the academic degree
’Master of Science’

of

Michael Eisele

7eisele@informatik.uni-hamburg.de
Field of study: Computer Science
Matriculation number: 7089760

Examiners: Prof. Dr. Chris Biemann
Hans-Peter Zorn (inovex GmbH)

Advisor: Jannis Bergbrede (inovex GmbH)
Submitted: 23.10.2019

Hiermit versichere ich, Michael Eisele, an Eides statt, dass ich die vorliegende Arbeit im
Masterstudiengang Informatik mit dem Titel: "Unsupervised Multi-Document Summa-
rization" selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel benutzt
habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wur-
den, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher
nicht in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte schriftliche
Fassung der auf dem elektronischen Speichermedium entspricht.

Hamburg, den 23.10.2019

.
Michael Eisele

i

Abstract

Today, vast amounts of textual information are available at any given time. Automatic
summaries can help deal with this and allow the reader to focus on the most important
information. To automatically summarize a text, current systems often rely on supervised
machine learning techniques trained on large datasets. The practical adaptation of these
systems proves to be an issue, as many domains only have small datasets to work with.
This thesis investigates how well an unsupervised summarization system can work on
small multi-document datasets. The multi-document aspect is in contrast to other current
systems, as they oftentimes focus on single-document summarization. Therefore, a system
that combines extractive and abstractive techniques is proposed. At first, it extractively
summarizes each document and then it generates an abstractive summary of all documents
by fusing similar sentences. The system has been evaluated on multiple datasets using
the quality aspects defined by Grusky et al. [29]. Based on the experiments, the findings
suggest that unsupervised systems can compete with supervised systems in generating
summaries and the abstractiveness of a system negatively correlates with the information
contained in a summary. Given that the information content is the most important aspect
of a summary, extractive systems outperformed the proposed system. The thesis is aimed
at readers who are interested in current research in NLP and who want to deepen their
knowledge in automated summarization.

ii

Contents

Abstract ii

1 Introduction 1
1.1 Motivation . 1
1.2 Research objectives . 2
1.3 Outline . 2

2 Theoretical foundations 3
2.1 The summarization task . 3
2.2 Summary quality . 4
2.3 Natural Language Processing . 5
2.4 Neural networks . 6
2.5 Language Modeling . 7
2.6 Word embeddings . 9
2.7 Sequence to Sequence processing . 10

2.7.1 Attention . 11
2.7.2 The Transformer . 12

3 Related work to summarization 15
3.1 An overview of multi-document summarization techniques 15
3.2 Summary evaluation . 16

3.2.1 Informativeness . 17
3.2.1.1 Lexical similarity . 17
3.2.1.2 Content coverage . 20

3.2.2 Quality . 22
3.2.2.1 Fluency . 23
3.2.2.2 Coherence . 23

4 Approach and implementation 25
4.1 Architecture overview . 25
4.2 Extractive single-document summarization 26

4.2.1 Pre-processing . 27
4.2.2 Sentence encoding . 27
4.2.3 Sentence relevance metric . 27
4.2.4 Sentence position metric . 29
4.2.5 Sentence novelty metric . 29
4.2.6 Sentence selection . 30

4.3 Abstractive multi-document summarization 30
4.3.1 Pre-processing . 32
4.3.2 Sentence encoding and clustering . 32
4.3.3 Sentence Fusion Word Graph . 33

iii

Contents

4.3.4 Lexical substitution . 34
4.3.5 Keyphrase extraction . 34
4.3.6 Sentence selection . 35

5 Evaluation 37
5.1 Evaluation strategy . 37
5.2 Datasets . 38

5.2.1 Opinosis - Opinion Dataset . 38
5.2.2 Document Understanding Conference (DUC) Dataset 39
5.2.3 Multi-News Dataset . 39

5.3 Results . 39

6 Analysis and discussion 41
6.1 Generalizing the extractive selection . 41
6.2 Sentence encoding . 42
6.3 Sentence Fusion Word Graph . 43
6.4 Lexical substitution . 44
6.5 Keyphrase extraction . 45
6.6 True-case sentences . 45
6.7 Improving text coherence . 46
6.8 Bringing it all together . 47

7 Conclusion and future work 50

Bibliography 52

List of Figures 60

List of Tables 61

iv

1 Introduction

1.1 Motivation

We live in an era where tremendous amounts of information are available at all times.
Through the internet, the latest literature, current news and product reviews are never
more than a few clicks away. Although openly available information is an inherently good
thing, being confronted with it can be quite overwhelming. Summarization can help us
deal with this by extracting and compressing valuable information from text, which saves
time and allows us to focus on the important content. To automate this, computers need
to be taught to make sense out of words and their implied meaning as well as how to
compress text into a fluent and coherent summary. The research field of Natural Language
Processing (NLP) deals with this challenging task.

Current research in automated summarization focuses mostly on summarizing single doc-
uments, which is in contrast to how information is oftentimes presented to us. Most of
the time, we are presented with related information from multiple sources. Examples
of this are customer reviews, newspapers from different authors about a shared topic or
academic research. A summary of multiple documents should contain the relevant infor-
mation from each document, without repeating redundant content. The work done in the
context of this thesis aims to reduce this discrepancy by exploring ways to summarize
multiple documents.

To automate the summarization process, systems oftentimes rely on statistical and ma-
chine learning approaches. Approaches in machine learning are generally divided into two
categories: supervised learning and unsupervised learning. The former requires labeled
data and tries to find a generalized transformation from the input data to predefined out-
put. The latter in contrast does not require labeled data and tries to predict the output
based on reoccurring patterns in the input data. Although NLP has made several break-
throughs in the last years due to effective text representations and an increasing amount
of large training datasets, the practical adaptation to specific domains still proves to be
very difficult. One major issue is that many domains only have small datasets to work
with. Unsupervised learning, since it does not rely on domain-specific training data, could
be one way to solve the adaptation problem.

There are two distinctive techniques to summarize text: extractive summarization, which
involves identifying the most salient parts and choosing a subset of the original text and
abstractive summarization, where the original text is paraphrased in a compressed way.
Extractive approaches are generally less expensive compared to abstractive ones, as they
do not require a comprehensive understanding of language. Although extractive systems
did achieve good results in the past, current research focuses on abstractive systems in

1

1 Introduction

hope of creating more natural summaries. Part of this thesis is to explore how well these
two approaches can be combined.

With some of the earlier works dating back to 1958 and 1969 [51, 21], automatic sum-
marization is not a new field of research. Still, many challenges remain unsolved when
it comes to generating high-quality summaries that could rival those written by humans.
This thesis investigates whether some of these challenges can be solved using unsupervised
approaches, especially in domains with only small datasets available.

1.2 Research objectives

The thesis’ main hypothesis is:

Unsupervised systems can improve the generated summarizes in domains where only
small datasets are available.

To discuss this, the following research questions are asked:

1. Does combining extractive and abstractive approaches improve the generated sum-
maries?

2. How can current research in NLP help unsupervised summarization systems?

3. How well can unsupervised summarization systems generalize to diverse input data
and summary lengths?

1.3 Outline

This section briefly summarizes the outline of this thesis. After this introduction, Chap-
ter 2 introduces the theoretical foundations necessary to understand the approach and
briefly introduces recent advances in NLP, which made this thesis possible in the first
place. Chapter 3 investigates the research landscape in multi-document summarization
and introduces ways to evaluate summaries. The baseline approach is explained in detail
in Chapter 4. Chapter 5 proposes an experimental setup and shows the results from these
experiments. Chapter 6 analyses the results and proposes ways to improve upon the base-
line. Chapter 7 concludes the findings of the previous chapters and provides an outlook
to future research.

2

2 Theoretical foundations

This chapter provides an introduction to the relevant theoretical foundations and concepts
of this thesis. The first section defines the task of summarization and provides an overview
of different summarization approaches and categories. The subsequent section explains
important aspects of a summary and how they can be used to evaluate the quality of it.
Automating the process of summarization is one of the many tasks of Natural Language
processing, which is introduced in Section 2.3. The last section presents word embeddings,
a way of turning words into a machine-readable representation.

2.1 The summarization task

Summarization is the act of producing a condensed form of text while still retaining
most of the important information from the source. The following paragraphs follow the
classification of approaches to summarization from Gambhir and Gupta [25].

Approaches to summarization are usually divided into two categories: extractive and ab-
stractive. Extractive approaches identify the important parts of a text and select a subset
of the text’s sentences to form the summary. This is similar to how one would use a text
marker to highlight the most important parts. They tend to be easier to compute as they
do not need a form of language generation but they are also limited since they can not
generate new sentences. Abstractive approaches aim to summarize the text by generating
a new text which conveys the information. This is akin to how humans would summarize
something using their own words. Abstractive approaches tend to be more complicated,
as text generation requires some form of language understanding. Table 2.1 shows a short
source text, which is summarized in an extractive and in an abstractive way.

Based on the input text, summarization is either classified as single-document or multi-
document. Single-document summarization, as the name implies, focuses on a single doc-
ument and can therefore rely on sentence position and the document structure. Multi-
document summarization deals with a corpus of text, which in this context is a set of
at least partially related documents. Multi-document summarization is a task that often
occurs in everyday life - news articles, blogs or customer reviews share a common topic
but oftentimes have a different focus. The main challenge is to identify important bits of
information while at the same time keeping redundancy to a minimum.

Summarization can also be categorized using the summary’s objective. It can either be
a generic summary or a query-based summary. Whereas the former tries to summarize
all key aspects of the source text, the latter tries to answer a query or question and the

3

2 Theoretical foundations

True

Source

Bilbo was very rich and very peculiar, and had been the wonder of the Shire for sixty years,
ever since his remarkable disappearance and unexpected return. The riches he had brought

back from his travels had now become a local legend, and it was popularly believed,
whatever the old folk might say, that the Hill at Bag End was full of tunnels stuffed with
treasure. And if that was not enough for fame, there was also his prolonged vigour to

marvel at. Time wore on, but it seemed to have little effect on Mr. Baggins. At ninety he
was much the same as at fifty.

Extractive Abstractive

Bilbo was very rich and very peculiar, and
had been the wonder of the Shire for sixty

years, ever since his remarkable disappearance
and unexpected return. Time wore on, but it
seemed to have little effect on Mr. Baggins.

Bilbo was very wealthy and peculiar, the
riches he brought back after his disappearance

and unexpected return made him a local
legend. He was also very vigorous for his age.

Table 2.1: An excerpt from the fantasy novel The Fellowship of the Ring from Tolkien [88],
alongside an exemplary extractive and abstractive summary.

produced summary only contains information relevant to the query. The main focus of
this thesis lies on generic summarization.

2.2 Summary quality

To put the knowledge about summarization into practice and produce good summaries, a
definition of what makes a summary "good" is needed, as well as ways to measure and com-
pare the summary quality. In the context of this thesis, the definition of Grusky et al. [29]
is used, which defines the following four key aspects of a good summary: informativeness,
relevance, fluency and coherence. Together they can provide a good picture of a sum-
mary’s quality and allow to compare the strengths and weaknesses of different summary
systems. Dang [18] provide a similar definition with the additional aspects of referential
clarity and focus. These aspects are not included in the evaluation, as they can only be
manually evaluated as of today. Abstractiveness, although not an indicator of summary
quality, is an important aspect when comparing automatically generated summaries.

Informativeness is the most obvious way to assess a summary. The main question that
can be asked with an informativeness metric is: ’does it capture the important informa-
tion?’ To answer this question, lexical-similarity-based metrics are commonly used. These
metrics rank summaries based on how similar the system-generated summary, known as
a candidate summary, is to a human-written reference summary. Content-based metrics
serve a similar purpose, but instead of relying on word-overlap in the candidate and refer-
ence summary, they aim to measure how many of the key-points from the source document
are found in the candidate summary.

4

2.3 Natural Language Processing

Relevance is an indicator of how consistent the content of a candidate summary is com-
pared to the source material or a reference summary. This is especially important for
affirmation and negation of facts, which might go unnoticed in content-based approaches.
To measure it, lexical-similarity-based metrics are used. They commonly work on multiple
n-grams. A n-gram is a contiguous sequence of n items in a text (e.g. characters or words).
Bi-grams (e.g. the dog or dog barked) and four-grams (e.g. the dog barked loudly), with
the values of N = 2 and N = 4 respectively, are commonly used in relevance metrics.

Fluency is what makes humans perceive sentences as natural. It is based on the same
intuition as readability or grammaticality and distinguishes a sentence from a list of un-
related words. Commonly, the perplexity of a language model (see Section 2.5), which
indicates how well a model can predict a sample, is used to measure the fluency of a sen-
tence. This is based on the intuition that words, which commonly occur after one another,
are likely to be grammatically correct.

Coherence is what differentiates a well-written text from a set of unrelated sentences. It
is often neglected in summarization systems, as current research focuses on the informa-
tiveness and relevance of the generated summaries. One way to assess this is by measuring
how similar the follow-up sentences are or how similar the topics of subsequent sentences
are.

Abstractiveness is not defined as a quality aspect by Grusky et al. [29], but it helps
to set the other aspects in context. It measures how abstract the candidate summary is
compared to a reference summary. Therefore, a lot of paraphrasing correlates with a high
abstractiveness. A common metric to measure the abstractiveness is the copy rate, which
counts the number of words that occur in both the candidate summary and the source
documents. Extractive systems have a copy rate of 100% by definition. A summary that
has a low copy rate is considered to be highly abstractive as it expresses the content of
a text in its own words. High abstractiveness values in combination with content-based
informativeness metrics can also compensate for low scores in lexical similarity metrics as
they often rely on word overlap.

Automating the summarization process is one of the many tasks in the field of Natural
Language Processing, which is introduced in the following section.

2.3 Natural Language Processing

The field of natural language processing (NLP), which is sometimes referred to as compu-
tational linguistics, is a research area that deals with computational models and processes
to solve problems in understanding human languages [65]. Application areas for NLP be-
sides summarization range from part-of-speech (POS) tagging to machine translation and
automatically answering questions for example. To work on these tasks, a wide variety of
rule-based, statistical and machine learning approaches is employed in NLP.

5

2 Theoretical foundations

Machine learning is a subfield of artificial intelligence (AI), which involves algorithms
that are able to learn from data. Mitchell [60] defines the term learning in this context
as: "A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P , if its performance at tasks in T , as measured by
P , improves with experience E". This includes a wide variety of tasks and disciplines,
which to explain would go beyond the scope of this thesis. Interested readers are referred
to textbooks by Mitchell [60] and Bishop [8].
Approaches in machine learning are generally divided into two categories: supervised learn-
ing and unsupervised learning. The former requires labeled data and tries to find a gener-
alized transformation from the input data to predefined output. In contrast, unsupervised
learning does not require labeled data and tries to predict the output based on features
or patterns in the input data [28].

A fundamental problem in Natural Language Processing is finding a representation which
allows machines to understand text in a similar way humans do. This can be formalized
as a machine learning problem with a text t, which consists of n words w1, ..., wn, as
input and a numerical representation r as the desired output. One of the most well-
known approaches to language representation is bag-of-words (BOW). It is simply an
unordered set of words alongside their respective frequency in a document, which can
be used to classify documents based on their content. This approach is not the best
way of representation, as a lot of information cannot be represented in terms of word
frequencies.

To address this, earlier research in NLP focused on statistical approaches along with ma-
chine learning approaches. However, in the last years many machine learning disciplines,
including NLP, shifted the research focus to neural networks (NNs), which enhanced or
replaced many of these approaches [65].

2.4 Neural networks

A neural network, sometimes referred to as artificial neural network (ANN), is a widely
used machine learning method inspired by the biological brain [28]. Its basic building block
is the neuron, which takes a set of input values and performs a weighted sum computation
over a non-linear activation function (e.g. softmax). The weights of each neuron are
learned parameters, which get corrected using the error of the network’s output. Multiple
neurons are grouped on a layer and a neural network typically consists of an input layer
and an output layer, as well as one or multiple hidden layers inbetween.

The most intuitive neural network architecture is the feed-forward network (FFN). It
consists of multiple layers with connected neurons. The output of each neuron is passed
to the neurons in the next layer, with no connection to pass values back to lower layers.
Figure 2.1 shows the standard architecture of an FFN on the left side. The recurrent
neural network (RNN) in contrast does allow values to be passed back to lower layers,
which makes it very suitable for sequence tasks. The architecture of an RNN is shown on
the right side of Figure 2.1. These architectures form the basis of the networks employed
for this thesis and the current state of the art in Section 2.7.

6

2.5 Language Modeling

(a) Feed-forward neural network (b) Recurrent neural network

Figure 2.1: Conceptual architecture of an FFN and an RNN, with two input neurons, a single
hidden layer and one output neuron.

2.5 Language Modeling

A language model (LM) is a function that estimates the probabilistic distribution of words
in a text. Common use-cases of LMs are next-word-prediction in assisted typing and
grammaticality checks. Given a sequence of words w1, ..., wn, the goal is to learn the
probability P (w1, ..., wn). Using this probability, a LM can derive the probability P (wi|h)
of a word wi given its history of previous words h = w1, ..., wi−1. Language models can be
classified as either count-based or continuous-space LMs.

N-gram language models, which are count-based, are a simple approach to model lan-
guage. Using a large training corpus, they count how often a sequence of words h is
followed by word w to estimate the probability distribution. The problem is that natural
language has an almost infinite variety of word sequences and some sequences might not
be in the training corpus. To solve this, the chain rule of probability is applied:

P (w1, ..., wn) =
n∏
i=1

P (wi|wi, ..., wi−1) (2.1)

Due to the fact that temporally closer words are statistically more dependent [6] and word
order is an important aspect of natural language, n-gram models simplify the computation
by approximating the history using the last n− 1 words:

P (w1, ..., wn) =
n∏
i=1

P (wi|wi−n+1, ..., wi−1) (2.2)

The assumption that the probability of a word depends only on the n previous words
is called n-th order Markov assumption [38]. Commonly, the n-gram probabilities are
computed using maximum likelihood estimation (MLE). MLE estimates the probability of
a word wi and its history h = wi−n+1, ..., wi−1 by counting how many times wi appears in
h and normalizing it by all occurrences of h:

7

2 Theoretical foundations

P (wi|wi−n+1, ..., wi−1) = count(wi−n+1, ..., wi−1, wi
count(wi−n+1, ..., wi−1) (2.3)

For example, given a tri-gram model and the history "After school she reads", the goal is
to predict the probability of the word "books". To do this, the model would count how
often the last n− 1 words "she reads" is followed by "books" in the training corpus:

P (books|she reads) = count(she reads books)
count(she reads) (2.4)

One problem of n-gram LMs is that known words might appear in a context that was
not in the training data. To avoid the assignment of zero probability to these sequences,
smoothing (e.g. Laplace or Kneser-Ney) is required [54]. This slightly reduces the proba-
bility of sequences that appear in the training data and adds a small amount to sequences
that do not appear in it. One way to overcome this issue is to employ neural networks, as
they can generalize well to sequences of similar words [38].

Neural language models, which are continuous-space LMs, do approximate the proba-
bility of a word based on the previous n words, just like n-gram LMs do. What makes
them generalize better, is the fact that the history is not represented by words but by
embeddings instead. Embeddings are words embedded in a high-dimensional vector space,
allowing them to capture semantic similarities [38]. Coming back to the previous exam-
ple, if the training data does not contain the phrase "she reads newspapers", an n-gram
LM could only predict "books" as a possible next word. A neural LM could also predict
"newspapers", based on the fact that the embeddings of "books" and "newspapers" are
likely to be similar. To train a neural network on a task, one needs some way to evaluate
its performance, in order to correct the network’s weights and thereby minimize its error.
For an LM, this way of evaluation is the perplexity.

Perplexity is a probability-based metric to evaluate the performance of a language model.
Achieving a low perplexity on a test dataset is the goal of a language model, as task-
specific evaluation can be very costly. The perplexity of a sequence of words s = w1, ..., wn
is defined as the inverse probability normalized by the number of words:

perplexity(s) = b−
1
N

∑N

i=1 logbP (wi) (2.5)

The perplexity is therefore lower for words, which are very likely to follow after another
and a low perplexity of a sequence is a reasonable estimate of a good grammaticality.

One of the first neural LM was proposed by Bengio et al. [6] and uses a feed-forward
architecture which needs a pre-defined history length. This was overcome in 2010 when
Mikolov et al. [59] introduced a language model based on a recurrent neural network
architecture. RNN language models became the state-of-the-art and recent approaches
are still using related architectures.

Embedding words to preserve some kind of semantic meaning is not only important for
language modeling, but is also a core aspect of many NLP applications. Hence, the next
section will introduce methods to learn word embeddings.

8

2.6 Word embeddings

2.6 Word embeddings

Whereas the previous section introduced embeddings to preserve semantic relationships of
words in the sole context of language modeling, this section summarizes some of the most
influential work done to obtain stand-alone word representations. Traditionally, these
systems are not obtained from language models, but recent approaches (see Section 2.7)
achieve state-of-the-art results by extracting the weights of an LM as embeddings.

word2vec is a framework to obtain embeddings proposed by Mikolov et al. [58, 57], which
is credited for the strong increase in popularity of using embeddings in various NLP tasks.
This is due to two reasons. Firstly, it simplifies the embedding generation task by treating
it as a linear classification by asking "is word wi likely to appear in the context words wi±n"
[39]. This is less complex than predicting the next word, as there is an almost infinite
amount of word combinations in natural language. Secondly, it reduces the computational
cost by approximating the softmax using the hierarchical softmax from Morin and Bengio
[61]. Word2vec consists of two neural network architectures, the continuous-bag-of-words
(CBOW) and the skip-gram architecture, which are illustrated in Figure 2.2.

(a) CBOW (b) Skip-gram

Figure 2.2: Architectures of the proposed models from Mikolov et al. [58, 57] with an exemplary
context size of 5. The CBOW model is trained to predict the word wi based on the
sum of the previous and the future words in its context. The Skip-gram works the
other way around by trying to predict the context words based on the center word
wi.

Continuous-bag-of-words uses a similar architecture to a feed-forward neural language
model without a non-linear hidden layer. The projection layer is shared for all in-
puts. It aims to predict the center word wi based on the sum of the context words
wi−c, ..., wi−1, wi+1, ..., wi+c in a window of size 2c.

− 1
n

n∑
i=1

logP (wi|wi−c, ..., wi−1, wi+1, ..., wi+c) (2.6)

Skip-gram works the other way around and aims to find word representations to predict
the context words of word wi by maximizing the average log probability:

9

2 Theoretical foundations

− 1
n

n∑
i=1

∑
−c≤j≤c,j 6=0

logP (wi + j|wi) (2.7)

A skip-gram model trained on a large corpus as well as the source code can be obtained
from the official word2vec site1. It uses the very common context size of four words before
and after the center word.

Related approaches to word2vec are Global Vectors (GloVe) from Pennington et al. [69],
which learns to construct a low-dimensional representation of a co-occurrence matrix (i.e
how often a word occurs in a given context) and fastText from Bojanowski et al. [10], which
extends word2vec by representing words as the sum of their characters’ embeddings.

One major issue with these embedding techniques is that they are not context-sensitive.
This means, a word has only one representation without including the surrounding context.
This can lead to problems for words with multiple meanings e.g. the word fair, which can
either mean equal treatment, a local festivity or be used to describe light hair color.
Recent approaches like Embeddings from Language Models (ELMo) from Peters et al. [71]
and Bidirectional Encoder Representations from Transformers (BERT) from Devlin et al.
[20] address this by extracting context-sensitive embeddings from a language model. To
understand how these approaches work, the following section provides a brief overview of
Sequence to Sequence processing and the concept of attention in neural networks.

2.7 Sequence to Sequence processing

Many problems in NLP involve the transformation from one sequence to another. These
tasks belong to the category of Sequence to Sequence (Seq2Seq) tasks and include for
example machine translation, language modelling and text summarization. Traditionally,
recurrent neural networks (see Section 2.4) are employed to handle sequences. Using RNNs
for Seq2Seq tasks has two major drawbacks. Firstly, long-term dependencies cannot be
handled due to the vanishing gradient problem and secondly, neural networks need a
fixed-length representation for both input and output. The former problem is solved by
employing a variation of the RNN architecture called Long Short-Term Memory (LSTM)
network from Hochreiter and Schmidhuber [32]. The latter problem can be solved by
employing an architecture design pattern called the encoder-decoder model, which allows
variable lengths of input and output.

Encoder-Decoder The network is separated into two recurrent networks, the encoder
and the decoder. The encoder, as the name implies, maps a sequence of tokens (xi, ..., xn)
to a fixed-length hidden state h. With h as input, the decoder generates an output sequence
y = (y0, ..., ym). Starting from the first input token x1, a transformation to the hidden
state h1 is calculated. All subsequent hidden states h2, ..., hn take their respective input
xi, with 2 ≤ i ≤ n, and the previous hidden state hi−1 into account. The encoder’s last

1http://code.google.com/p/word2vec

10

http://code.google.com/p/word2vec

2.7 Sequence to Sequence processing

hidden state hn is referred to as context vector c [2]. The context vector is used as input
for y0 and all hidden states of the decoder. Figure 2.3 illustrates the encoder-decoder
architecture.

Figure 2.3: Encoder-decoder architecture, drawn after Kamath et al. [40]. The input tokens
xi, ..., xn are mapped to the encoders fixed-length hidden state h and the last hidden
state hn is used as input for the first output token y0 and the decoders hidden states
h Kamath et al. [40].

Given that the context vector has a fixed size, longer sequences become increasingly dif-
ficult to encode and long-term dependencies can get lost. To overcome this, Bahdanau
et al. [2] propose a modified encoder-decoder architecture, which uses an attention mech-
anism to attend to different parts of the input sequence instead of encoding it into a
context-vector.

2.7.1 Attention

Similar to how neural networks are inspired by the biological brain, the attention mecha-
nism is loosely inspired by the visual attention of humans, where some regions are focused
on and others are blurred out. This relieves the encoder from storing all information in
the context-vector c and instead computes cj as the weighted average of the hidden states
hj of each element in the input sequence with respect to the current output hidden state
hi:

cj =
∑
i=1

αjihi (2.8)

where a variable-length alignment vector αji is derived from the attention score of the
current output hidden state hi with each input hidden state hj [2, 52]:

αji = exp(score(hi, hj)∑
j exp(score(hi, hj))

(2.9)

Attention score functions can be categorized as either additive attention or asmultiplicative
attention. The former, as proposed by Bahdanau et al. [2] defines the score as:

score(hi, hj) = v>a tanhWa[hi, hj] (2.10)

where vτa and Wa are learned parameters of a single layer. Luong et al. [52] in contrast
define the multiplicative attention as either the dot-product of hi and hj or a general score

11

2 Theoretical foundations

with an additionally learned parameter Wa:

score(hi, hj) =

 h>i hj dot-product

h>i Wahj general
(2.11)

Figure 2.4 illustrates a conceptual architecture of a sequence to sequence model with an
attention layer [95].

Figure 2.4: Sequence to sequence model with attention, draw after Zhang et al. [95].

Although the attention mechanism solves the problem of encoding longer sequences, the
sequential nature of recurrent neural networks still proofed to be a bottleneck. To address
this, Vaswani et al. [90] proposed the Transformer architecture, which is an encoder-
decoder network that relies on an attention mechanism called self-attention and replaces
the recurrent layers with simpler, fully connected layers.

2.7.2 The Transformer

The Transformer architecture, as proposed by Vaswani et al. [90], follows the general
architecture of an encoder-decoder network, where all recurrent layers are replaced by a
combination of a self-attention layer and a feed-forward layer. The self-attention layer uses
multi-head attention, which differs from regular self-attention by using the concatenation
of multiple scaled dot-product attention values.

Without recurrent layers, the model can easily be parallelized and therefore can use a
lot more data during both training and inference. Several of these layer combinations are
grouped into an encoder or decoder block. The Transformer consists of a stack ofN of these
blocks, Vaswani et al. [90] recommend N = 6 but others use a similar architecture with
dozens of blocks. To compensate for the lack of sequence information without recurrent
layers, an additional positional encoding is used as input. This positional encoding maps
the input tokens to a sequence of numbers, indicating the token position in a sentence.
Figure 2.5 illustrates the architecture of the Transformer model.

12

2.7 Sequence to Sequence processing

Figure 2.5: The encoder-decoder architecture of the Transformer model, drawn after Vaswani
et al. [90]. Both the encoder on the left side and the decoder on the right side are
composed of N identical layers.

The Transformer architecture achieved state-of-the-art results in several NLP tasks [90]
and variations of it are found in many of the most recent models. Some of these recent
models are briefly introduced below.

Generative Pre-Training 2 (GPT-2) is a transformer-based unidirectional language
model proposed by Radford and Salimans [73]. It uses a two-step training procedure
of unsupervised pre-training and supervised fine-tuning. This separation of pre-training
and fine-tuning has become very popular in various image processing tasks after the release
of the ResNet model from [30]. ResNet is trained on a large amount of images and out-
performed the previous state-of-the-art models in many tasks after only a few iterations
of fine-tuning. Fine-tuning allows GPT-2 to train once and adapt to various tasks. It
consists of 12 Transformer decoder-only blocks and is trained on the BookCorpus dataset
[97].

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-
based encoder-only model from Devlin et al. [20], which learns text representations. These

13

2 Theoretical foundations

representations can either be used as word-embeddings or can be fine-tuned to solve various
NLP tasks. BERT is trained using two training objectives. Firstly, masked language
modeling, where 15% of the words are replaced by a special token and the objective is to
predict the masked word and secondly next sentence prediction, where the model is given
two sentences A and B and the objective is to predict if B actually follows A [20]. BERT
distinguishes itself from GPT-2 by reading the entire input sequence (up to a maximum
length) at once, which results in a bidirectional representation.

Recent transformer-based systems include Transformer XL from Dai et al. [17], which
focuses on learning longer dependencies and removes the fixed-length context, XLNet from
Yang et al. [93], which combines ideas from BERT and Transformer XL, RoBERTa from
Liu et al. [50], which optimizes the pre-training of BERT to an extend that it can match
the results of the other models, and DistillBert from Tang et al. [86], which is a version of
BERT optimized to be fast and more light-weight that uses only one fifth of the parameters
BERT uses.

The following chapter builds upon these theoretical foundations and provides an overview
of related work in multi-document summarization and summary evaluation.

14

3 Related work to summarization

This chapter introduces the field of text summarization and focuses primarily on multi-
document summarization systems. The first section provides an overview of related work
and identifies the most influential work in order to evaluate the performance of the pro-
posed system in Chapter 5. The second section explains common metrics to assess the
performance of summarization systems with the quality aspects defined in Section 2.2 in
mind.

3.1 An overview of multi-document summarization techniques

Although early text summarization efforts date back to 1958 when Luhn [51] and Edmund-
son [21] first used statistical techniques on single documents based on word positions and
cue words, multi-document summarization has only been widely applied in the last two
decades. Compared to single documents, redundancy plays a major role in multi-document
settings, since related documents often share facts and concepts. Goldstein et al. [27] were
one of the first to provide summaries for multiple documents and solved the redundancy
problem by applying the concept of Maximal Marginal Relevance (MMR). MMR is a
greedy approach to select sentences that are both salient and non-redundant. Salient in
this context means that these sentences are important for the overall meaning of the text
and they contain valuable information.

Graphs Erkan and Radev [22] proposed the well-known LexRank algorithm, which selects
important sentences based on the concept of Eigenvector centrality. Sentences form the
nodes in a undirected graph structure and edges, which are weighted by the sentences
similarity, connect all nodes with one another. Summaries are formed through a random
walk on the graph on which similar sentences have a high transition probability. Mihalcea
and Tarau [56] proposed TextRank, which is very similar to LexRank except that it was
designed for summarizing single documents. Ganesan et al. [26] used a similar graph-based
approach that was adapted to use word units instead of sentences and directed edges to
represent sentence structure in their Opinosis system.

Sentence compression & fusion Barzilay and McKeown [5] employ a technique called
sentence fusion to create summaries. Sentence fusion is about generating sentences, which
aim to include all salient information in a cluster of similar sentences. Filippova [24] extend
this approach with a graph-based approach, in which fused sentences are generated by
finding a set of shortest paths in the content clusters. Boudin and Morin [11] improved
Filippova’s approach [24] by ranking the fused sentences based on keywords they contain.

15

3 Related work to summarization

Nayeem et al. [62] use a modified version of TextRank to select fused sentences from a word
graph whose edges are weighted based on the similarity between sentence embeddings.

Centroid based Rossiello et al. [77] identify the document centroid based on term
frequency-inverse document frequency (TF-IDF) weights and word embeddings. Salient
sentences are selected by measuring the similarity to this centroid. Ma et al. [53] share
the basic idea of measuring the similarity to a centroid but apply it on a paragraph level
instead of on document level. Beam search is used to generate the summary from a set of
candidate sentences.

Integer Linear Programming (ILP) Banerjee et al. [3] initially identify the most impor-
tant document and turn each of its sentences into a separate cluster to which all other
sentences are aligned. A word graph generates candidate sentences from which the top
sentences are selected using integer linear programming. The optimization goal is to max-
imize information content, which is based on the sentences’ TextRank score, and minimize
redundancy. A similar approach is used by Bing et al. [7] where sentences are broken down
into verb and noun phrases which are ranked by their redundancy. New valid sentences
are then generated using ILP. Tuan et al. [89] improve the performance of this approach
by including a syntax factor.

Neural Networks Some very recent systems use a neural-networks-based approach. Chu
and Liu [14] employ a LM (see Section 2.5) trained on the summary dataset and two auto-
encoders with tied encoder/decoder for selecting relevant content. Yasunaga et al. [94]
use a graph convolutional neural network (GCNN) to estimate the salience of sentences
and extract highly salient sentences to form the summary. Li et al. [46] propose the use of
variational auto-encoders (VAEs) to estimate salient sentences and reconstruct abstractive
summaries from the VAEs latent semantic space. Schumann [78] employs a very similar
approach and focuses on producing very short summaries.

3.2 Summary evaluation

The preceding section introduced the past and recent work done in multi-document sum-
marization. A well-performed evaluation is crucial to compare and improve upon these
works. Therefore, this section explores the field of summary evaluation, which is the base-
line for the decisions made in Chapter 5. Gambhir and Gupta [25] define a taxonomy to
classify different evaluation techniques, which incorporates the summary quality aspects
defined in Section 2.2.

As Figure 3.1 illustrates, evaluation measures are categorized into extrinsic and intrinsic
metrics. The former is task-specific and determines a summary’s quality by how well it
performs on a given task. Steinberger and Ježek [84] define three important extrinsic
tasks, namely question answering, information retrieval and text classification.
Intrinsic evaluation is task-agnostic and rates both text quality and how well the summary
covers important aspects of its source. Quality measurements are commonly based on

16

3.2 Summary evaluation

linguistic features, e.g. grammaticality, non-redundancy and coherence. Informativeness
is usually based on how well a generated candidate summary represents a human-written
reference summary or the concepts it covers. The focus of this thesis lies on intrinsic
evaluation measures as these features can evaluate a summary on their own.

Figure 3.1: Evaluation measures taxonomy by Gambhir and Gupta [25]. Generally, evaluation
measures are divided into extrinsic (task-specific) and intrinsic (task-agnostic) mea-
surements. This thesis focuses on the latter, which includes the quality aspects
defined in Section 2.2.

3.2.1 Informativeness

Informativeness metrics are divided into two categories: lexical-similarity-based and
content-coverage-based evaluation. Relevance, although not included in Gambhir and
Gupta’s taxonomy, is often evaluated with lexical-similarity-based metrics and therefore
no additional section is included. The following section summarizes common metrics, their
limitations and current research in this area.

3.2.1.1 Lexical similarity

Lexical-similarity-based metrics follow the idea that the closer a candidate summary is
to a given human-written reference summary in terms of word-overlap, the more rele-
vant information it contains. Following the foundations laid by Edmundson [21], earlier
summarization systems adapted three very intuitive metrics from the field of Information
Retrieval (IR): precision, recall and f1-score. The latter is the harmonic mean of recall
and precision.

Precision denotes how many n-grams (see Section 2.2) in the candidate summary appear
in the reference summary.

precision = reference n-grams ∩ candidate n-grams
candidate n-grams (3.1)

17

3 Related work to summarization

Given a reference (a) and a candidate sentence (b), which slightly differs in the chosen
words but conveys the same information:

(a) The dog walked around in the village
(b) The dog walked through the settlement

The precision score would be 4
6 for uni-grams (n = 1), as four out of six words occur in the

reference summary and the candidate summary, divided by the total number of uni-grams
in the candidate summary. For bi-grams (n = 2), the score would be 2

5 , as only the word
pairs "The dog" and "dog walked" occur in both summaries.

While comparing to a reference summary can work well in some cases, using precision in
text summarization can lead to high scores without the candidate summary containing
much information of the reference summary, as the following short sentence (c) illus-
trates:

(c) The dog the dog the dog the dog

This sentence would result in a perfect precision score of 8
8 for uni-grams and a still very

high score of 4
7 for bi-grams, as all n-grams in the candidate sentence exist in the reference

sentences. To overcome this, Papineni et al. [67] developed the BLEU metric.

Bilingual Evaluation Understudy (BLEU) was originally developed to evaluate machine
translation systems, but has been widely adapted in the summarization field. Its basic idea
is to calculate the precision, but it improves upon earlier works by counting the maximum
n-gram occurrence in any reference summary and introducing a best match length. BLEU
is designed to work with a corpus of text, including multiple reference summaries, since
information can be conveyed in multiple ways (e.g. by paraphrasing, the use of synonyms
etc.) [63]. By design, precision penalizes only too long sentences. To also penalize too
short candidate sentences, BLEU introduces a brevity penalty (BP) which is defined as:

BP =

 1 if c > r

e(1−r/c) if c ≤ r
(3.2)

where c is the length of the candidate sentence and r is the length of the reference sen-
tence.

The final score is defined as:

BLEU = BP× exp
(

N∑
n=1

wn log pn

)
, where wn = 1

n
(3.3)

where pn is the modified n-gram precision, in which the candidate n-grams are clipped to
the maximum occurrence in the reference corpus and N is the maximum sequence length

18

3.2 Summary evaluation

of n-grams considered (usually 4).
Returning to example (c), BLEU would penalize the redundancy by limiting the precision
to the count of the = 2 and dog = 1 in the reference sentence, resulting in a uni-gram
score of 3

8 and bi-gram score of 1
7 .

Recall denotes how many n-grams in the reference summary exist in the candidate sum-
mary and is therefore the natural complement of precision.

recall = reference n-grams ∩ candidate n-grams
reference n-grams (3.4)

Recall usually favors longer candidate sentences, as it is normalized by the n-grams of
the reference sentence. Example (d) scores a perfect score for both uni-gram and bi-gram
recall, as the additional information does not affect it, which can lead to unfocused and
unnecessarily long sentences.

(d) The dog walked around in a hurry, because he could not find his owner in the village

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is not a single metric
but a set of metrics and it is the most widely accepted mean of comparing results from
different systems. It was inspired by BLEU but focuses on the harmonic mean of recall
and precision, the so called f1-score. Several variants exist with the most prominent being
ROUGE-N, which is commonly calculated from multiple references:

ROUGE-N =
∑

s∈references
∑

n-gram∈s n-gram ∩ candidate n-grams∑
s∈references

∑
n-gram∈s n-gram

(3.5)

It is commonly calculated for N = 1 (unigrams) and N = 2 (bigrams). Other ROUGE
metrics include ROUGE-L where the longest common subsequence between a candidate
sentence and a reference sentence is calculated and ROUGE-SU4, which calculates bigram-
overlap with up to 4 n-gram gaps in between.

Limitations of lexical similarity ROUGE and BLEU are generally considered to correlate
well with human judgements (>90%) according to Owczarzak et al. [66] when ranking
different summarization systems. The bi-gram versions is performing better than uni-
gram versions. Depending on the data and variant used, Steinberger and Ježek [84] and
Gambhir and Gupta [25] argue that this can drop below 50% correlation. Despite being
used very frequently, both metrics are criticized for not taking semantic similarity into
account, making them less suitable for paraphrasing and highly abstractive systems, which
try to imitate the way humans perform summaries. Grammaticality and sentence structure
are also not evaluated, which are important factors for system acceptance.

19

3 Related work to summarization

Current research Ng and Abrecht [64] try to address the paraphrasing problem by
weighting n-grams by their word embeddings (see Section 2.6). This allows for sentences
without direct overlap to get high scores when n-grams are semantically related. Their
new metric is called ROUGE-WE. A similar approach is used by ShafieiBavani et al. [80] in
their work on ROUGE-G, which adds a graph-based semantic similarity ranking of n-grams
to allow for paraphrasing and fairer comparison of extractive and abstractive summaries.
Both are shown to correlate better with human judgments than regular ROUGE.

A very recent approach from Böhm et al. [9] learns to rank summaries by fine-tuning
BERT (see Section 2.7) to imitate human evaluation. It shows a higher correlation with
human judgements than common lexical-similarity (ROUGE, BLUE, METEOR) [9] and
can be used without references summaries.

3.2.1.2 Content coverage

While the preceding section covered metrics based on n-gram overlap on a lexical level,
this section introduces several content-coverage based metrics. These metrics metrics try
to overcome the "shallow" evaluation on lexical features by measuring how well the topics
and facts of a summary represent its source. Earlier summary systems were evaluated by
human annotators, who rated each candidate summary based on a set of criteria with a
predefined scale (e.g. 1=worst to 5=best). Naturally, this led to very subjective evalua-
tions, as often two annotators would not agree on a grade. Lin and Hovy [47] report that
human annotators agreed in only 82% of the cases with their own prior judgement. The
following sections cover methods that address these issues and promote more objective
evaluations.

Factoid Method The Factoid Method proposed by Teufel and Van Halteren [87] is based
on small information units called factoids. A factoid is a small textual element, which
represents the meaning of a sentence and human annotators can assign each sentence one
or multiple factoids. The following example from [87] illustrates how the sentence "The
police have arrested a white Dutch man" is represented using factoids:

• A suspect was arrested
• The police did the arresting
• The suspect is white
• The suspect is Dutch
• The suspect is male

These elements are then weighted based on the information overlap they contain with
other factoids. Summaries are evaluated by how many weighted factoids they contain.

Basic Elements (BE) Hovy et al. [36] use a very similar approach but they try to re-
move the need for human annotators by automatically selecting important elements of
summaries and scores accordingly. Here, a sentence is segmented into small units of con-
tent, which can be either a single word or a relationship triplet. These triplets consist of

20

3.2 Summary evaluation

a head, which is the subject, a modifier, which is the object, and their relationship. For
example, a content unit for the word sequence "student writes thesis" the corresponding
triplet would be (student|thesis|writes). Summaries are scored based on the triplet overlap
in candidate and reference summary. Similar approaches have been developed by Stein-
berger and Jezek [83] called Latent Semantic Analysis evaluation and from Cohan and
Goharian [15] by the name of Summarization Evaluation by Relevance Analysis (SERA).
Both approaches score summaries on how well the representation of each topic in the
source matches the representation in the candidate summary.

Pyramid Method is a semi-automatic technique that has been widely used since its
introduction in DUC 20061. Nenkova et al. [63] follow the idea that a system can be
evaluated based on how many summary content units (SCUs), considered important by
human annotators, are contained in a candidate summary. These SCUs are created by
identifying similar phrases and ranking them in a pyramid model according to how often
they occur in the reference summaries. The phrases, which form an SCU can be as short
as a single word or as long as a whole sentence, as the same information can be conveyed
in different ways. For example, an SCU of weight w = 4 might consist of the following
facts from four different documents:

• SCU1 (w=4): The dog moves around the village
• the dog took a stroll in the settlement
• Dog Buddy, ..., walked the village’s streets
• ... where his dog walked around
• he ... walking through the village

A pyramid model has n levels with n being the number of reference summaries used in
the evaluation. A weight is assigned to each SCU corresponding to the number of human
assessments, which identify the same content. For example, an SCU that occurs in two out
of four reference summaries would be placed on the second level from the bottom. Figure
3.2 shows a pyramid with four levels and a candidate summary is evaluated to contain
all of the most important SCUs and two out of four from the third level. An optimal
summary should first and foremost contain all SCUs from the highest level and then, if
lengths limits permit it, descend to the lower levels.

1Document Understanding Conference - https://duc.nist.gov/

21

https://duc.nist.gov/

3 Related work to summarization

Figure 3.2: Example pyramid with matching SCUs selected adapted from Nenkova et al. [63].
Higher levels indicate more important SCUs, based on the fact that they are men-
tioned in multiple reference summaries.

The optimal content score for a summary with X SCUs on a pyramid with n levels
L1, ..., Ln is calculated as:

Max =
n∑

i=j+1
i× |Li|+ j ×

X − n∑
i=j+1

|Li|

 ,where j = max
i

(
n∑
l=i
|Ll| ≥ X

)
(3.6)

The pyramid method is known to correlate well with human judgements, but it needs
well trained human annotators to identify and match SCUs in both the candidate and
the reference summaries. To address this, several attempts to automate the pyramid
evaluation have been made.

Passonneau et al. [68] developed an algorithm to automate the process of scoring sum-
maries with manually annotated SCUs. This is done using distributional semantics and
scores are assigned if the low dimensional vectors of an SCU and an n-gram exceed a sim-
ilarity threshold. Steinberger et al. [85] proposed a similar system to automate the eval-
uation of manually-created SCUs using an abstract meaning representation graph. Yang
et al. [92] proposed the Pyramid Evaluation Via Automatic Knowledge Extraction (PEAK)
framework, which does both automatically extract SCUs from a source corpus and score
candidate summaries on how many SCUs they contain. Peyrard and Eckle-Kohler [72] pro-
posed a genetic summarization system, which approximates pyramid scores. They noted
that summaries, which achieve high pyramid scores from PEAK, receive low ROUGE
scores and vice versa.

3.2.2 Quality

Quality metrics aim to measure two important aspects: fluency and coherence. Text qual-
ity assessment is not as often reported as informativeness score in summary evaluations,
but is an important element that differentiates keyword lists from well-written texts.

22

3.2 Summary evaluation

3.2.2.1 Fluency

Fluency, which also known as readability or grammaticallity is commonly evaluated using
the perplexity of a language model (see Section 2.5). As the perplexity indicates how
well a model can predict a sample, it can estimate how grammatically correct a sentence
is, based on how likely one word follows another. Since this is based on follow-up word
likeliness, it assigns high values (lower is better) to words, which are uncommon or simply
rare in a given context. To correct this, Kann et al. [41] propose the SLOR metric, which
normalizes the perplexity of a sentence by the unigram log-probability and sentence length.
For a given sentence S, the SLOR score as computed by a language model is defined as:

SLOR(S) = ln(pLM (S))− ln(pu(S))
|S|

(3.7)

where pLM (S) is the probability for a sentence and pu(S) the unigram probability which
is the product of the probabilities for each token in a sentence. This allows sentences with
uncommon words to gain good scores and therefore is used in the evaluation.

Grammar parsers are another way of evaluating the grammar of a given text. Commonly,
the text is annotated with POS tags and the annotated text is checked against a manually
created set of rules. Identifying these rules is expensive, as it requires in-depth knowledge
of a certain language, but these systems excel at providing explanations as to why a
certain sentence contains a grammatical error. With the availability of large documents
for training, language models have become more popular [82].

3.2.2.2 Coherence

Coherence metrics typically rank the structure of a text and how well information or
concepts traverse from one sentence to the next.

Follow-up sentence similarity is an approach proposed by Lapata and Barzilay [44]. A
text is considered to be coherent if the follow-up sentences are similar to each other. The
coherence metric for a document D consisting of n sentences S1, ..., Sn, is defined as the
sum of the normalized sentence similarity function sim:

coherence(D) =
∑n−1
i=1 sim(Si, Si+1)

n− 1 (3.8)

This presupposes a high-quality similarity function. Lapata and Barzilay [44] used a
word-overlap-based similarity function that is up to date with current research. Modern
vector representations promise improvements in terms of correlation of this metric with
the evaluation from human experts.

Entity grids are a form of text representation, where each column corresponds to an
entity (e.g. a proper noun) and each row corresponds to a sentence [5]. The grid’s cells

23

3 Related work to summarization

reflect the grammatical role of an entity in this sentence (e.g. subject, object etc.). Based
on the assumption that coherent texts follow certain entity distributions, Barzilay and
McKeown [5] define the coherence of a document D with entities e1, ..., en as the joint
probability distribution of entities across the documents sentences S1, ..., Sm:

coherence(D) =
n∏
i=1

P (ei;S1, ..., Sm) (3.9)

With this overview of summarization systems and evaluation metrics in mind, the next
chapter presents the approach employed in this thesis.

24

4 Approach and implementation

This chapter covers the main approach and its implementation for this thesis. The ap-
proach acts as a baseline for the experiments conducted in Chapter 5 and improvements
are proposed in Chapter 6. This chapter is structured as follows: First, the system’s archi-
tecture will be introduced on a conceptual level and the motivation and intuition behind
this design will be explained. Then, the following two sections will dive deeper into the
inner workings of each component.

4.1 Architecture overview

The proposed system is based on the intuition that, by using the output of an extractive
approach as input for an abstractive approach, the resulting system can take advantage
of the strengths (see Section 2.1) of both approaches without suffering from the disadvan-
tages.

Multi-document summarization begins with a set of documents with similar content as
input. The summarization now works in two steps: in the first part, each of these docu-
ments is summarized extractively and stored temporarily. The summaries are then used
as input for the second part, which produces a single abstractive summary from the set of
temporary summaries. Figure 4.1 shows how the two main parts interact.

Figure 4.1: A high-level view of the system’s architecture

To implement this, python version 3.7 and the machine learning framework PyTorch1 are
used.

1https://pytorch.org/

25

https://pytorch.org/

4 Approach and implementation

4.2 Extractive single-document summarization

The extractive part’s architecture is based on the SummCoder model from Joshi et al. [37].
It is a single-document summarization system, so each input document will be processed
separately. The model works by assigning a score to each sentence and selecting the top N
sentences to form a summary. The whole process will be briefly explained in the following
paragraphs and the remainder of this section will explore each step in more detail. Figure
4.2 illustrates the architecture.

Preprocessing: first, the input text is
"cleaned" by replacing non-alphabetic
characters and accented characters with
a normalized version and splitting the
text into sentences.

Encode sentences: these clean
sentences are then encoded into
high-dimensional vectors called
sentence embeddings (see Chapter 2.6).
Using these embeddings, three metrics
are calculated, which make up the
sentence score.

Position metric: assigns high scores to
sentences at the beginning or at the
very end of the text, as those tend to
contain important information.

Relevance metric: indicates how
important a sentence is for the meaning
of the whole document.

Novelty metric: indicates how novel
the information in a sentence is to
reduce redundancy and assigns high
scores to sentences whose embeddings
differ from those of the other sentences.
An equally novel sentence is preferred if
it contains relevant information.

Combine scores: each sentence is
ranked based on a combination of the
position, novelty and relevance metric.
The top sentences are then selected to
form the summary.

Figure 4.2 Architecture of the extractive part, based
on Joshi et al. [37].

26

4.2 Extractive single-document summarization

4.2.1 Pre-processing

Pre-processing is an important step to improve the data quality and is implemented us-
ing spaCy2. SpaCy is an NLP library developed by Honnibal and Johnson [35], which
focuses on speed and ease of development but lacks the flexibility of other NLP libraries
like NLTK 3. As a first step, non-alphanumeric characters (e.g. accented characters) are
removed or replaced with an alphanumeric equivalent. The next step is to remove all
special characters that are not used as punctuation marks. The last step is to convert the
text to lower-case and split it into a list of sentences. The lower-casing is important for
the sentence fusion word graph to work, as it allows it to merge words from the sentence
start with words from within a sentence.

4.2.2 Sentence encoding

The clean sentences are encoded into a high-dimensional vector representation using the
skip-thoughts model from Kiros et al. [42]. Skip-thoughts consists of a recurrent neural
network, which takes a sentence as input and is trained to reconstruct both the previous
and the next sentence from it. Figure 4.3 shows a triplet of sentences, which is used to
learn the sentence representation.

Figure 4.3: Example skip-thought sentence triplet from Kiros et al. [42]. <eos> represents the
end of a sentence.

4.2.3 Sentence relevance metric

The content relevance metric aims to assign high values to sentences, which have a high
impact on the meaning of the whole document. Low values are assigned to those sentences
that could potentially be left out, without losing much information. To achieve this,
a mechanism to compute the relevance of a sentence in a document and a document
representation are needed. The basis of the document representation are the sentence
embedding vectors, which are one-dimensional vectors with M entries. To get to the
document representation, two transformations need to be performed. First, all sentence
embeddings are concatenated on the second axis, which results for N sentences in a two-
dimensional matrix with the shape (N,M). The second step is to use this matrix as input
for a deep auto-encoder network to compress the information from all sentences back into a

2https://spacy.io/
3https://www.nltk.org/

27

https://spacy.io/
https://www.nltk.org/

4 Approach and implementation

one-dimensional vector again. The intuition behind this is, that by compressing the data,
only the most relevant information is encoded and irrelevant information is left out.

Deep auto-encoder is a neural network architecture proposed by Hinton and Salakhut-
dinov [31]. The term deep implies that it consists of more than two layers. It is used to
convert high-dimensional data into a low-dimensional representation and can be thought
of as a non-linear generalization of the principal component analysis (PCA). It consists
of two symmetrical feed-forward networks, which share a central layer, storing the latent
representation. The first part called the encoder is trained to learn a lower-dimensional
representation of the input data and the second part, called decoder is trained to recon-
struct the input data from the lower-dimensional representation.

Figure 4.4: Conceptual processing pipeline of the document embedding creation.

The auto-encoder used for the document representation consists of four layers for the
encoder and decoder and is first trained on a set of documents with the goal to minimize the
reconstruction loss. After training, the decoder is discarded since the metric only depends
on the latent representation. The document representation D̂ for a given document D
is computed by feeding the two-dimensional embedding matrix of all sentences into the
auto-encoder network.

To compute the relevance of a sentence Si, the document representation of the whole
document is compared with a modified document representation modD̂Si , which excludes
sentence Si:

modD̂Si = D̂ − Ŝi (4.1)

The original representation is now compared to the modified one to define the relevance
score:

relevance(D,Si) = 1− D̂ ·modD̂Si

||D̂||||modD̂Si ||
(4.2)

28

4.2 Extractive single-document summarization

4.2.4 Sentence position metric

The sentence position was one of the first metrics to indicate the relevance of a given
sentence. For a sentence Si in a document D, Joshi et al. [37] define it as:

position(D,Si) = max(0.5, exp(−P (Si)
3√N

)) (4.3)

The values of position(D,Si) are bound in range [0.5, 1.0] and the function P returns the
relative position of a sentence in its containing document starting from 1.

4.2.5 Sentence novelty metric

The idea behind the novelty metric is to identify which sentences in a given text contain
new information and which contain redundant information. This is obtained by measur-
ing how alike the sentence embedding vectors are. Therefore, choosing a good sentence
representation is critical for this step.

The novelty score is calculated the following way: first, the similarity between two sen-
tences Si and Sj is determined by the cosine similarity of their respective embeddings
vectors ~Si and ~Sj :

cos(Si, Sj) =
~Si · ~Sj

||~Si|| · || ~Sj ||
(4.4)

Using the similarity value, a sentence is considered novel when it subceeds a certain thresh-
old τ . The threshold is highly depended on the sentence embeddings, therefore a small
experiment was conducted by Joshi et al. [37]. To start the experiment, 50 sentence pairs
were chosen randomly and encoded as sentence embeddings. Out of these sentence pairs,
half of them are classified as semantically similar. For each sentence embedding pair the
cosine similarity is computed and the value of τ is set to the third quartile (Q3) of the
sentence similarity, which for the skip-thought embeddings is 0.85.

A sentence Si, is considered to be novel if the global similarity, which is computed by
determining the highest similarity with any of the other sentences in the input document
D, is lower than τ . If it is higher than τ it can still be considered novel, in case Si has a
higher relevance score (see Section 4.2.3) than its most similar sentence. Otherwise, the
highest cosine distance is its score.

novelty(D,Si) =



1, if max
({
cos

(
~Si, ~Sj

)})
< τ, 1 ≤ j ≤ N, i 6= j

1, if max
({
cos

(
~Si, ~Sj

)})
> τ, relevance(D,Si) > relevance(D,Sk)

k = argmax(cos(~Si, ~Sj)), 1 ≤ j ≤ N, i 6= j

1− cos(~Si, ~Sj)) Otherwise
(4.5)

29

4 Approach and implementation

4.2.6 Sentence selection

The sentence score of a sentence Si in a document D is defined as the weighted sum of
position, novelty and relevance:

score(D,Si) = α · relevance(D,Si) + β · novelty(D,Si) + γ · position(D,Si) (4.6)

A grid search optimization yielded the values of α = 0.45, β = 0.35 and γ = 0.20 for the
authors. Joshi et al. [37] define a relative rank rank(Si) for a sentence in a document,
which is the ordinal rank of the sentence score and is defined as follows:

rank(Si) = 1 +
N∑
e=1

γ(e, i) (4.7)

γ(e, i) =
{

1 if score(D,Si) + ε · i >score(D,Se) + ε · e
0 otherwise

(4.8)

where 1 ≤ i, e ≤ N for a document with N sentences, ε is a tiny positive value, that is
used to assign a different value when score(D,Si) = score(D,Se) with a preference to the
sentence position.

Generating the candidate summary is done by selecting the highest-scoring sentences from
the document combining them into a single text. This text will then be used as input for
the abstractive multi-document part, which will be explained in the succeeding section.

4.3 Abstractive multi-document summarization

The abstractive part is based on the architecture of the ParaFuse_doc model from Nayeem
et al. [62]. It works by first clustering highly similar sentences and then generating new
sentences, which combine the information in one cluster. These generated sentences are
then paraphrased and ranked using the TextRank algorithm from Mihalcea and Tarau
[56]. A subset of these generated sentences is then selected through an optimization
step, trying to maximize the sentence score and the weighted keyphrases included in the
summary. The architecture is illustrated in Figure 4.5 and each step is explained in the
following paragraphs.

30

4.3 Abstractive multi-document summarization

Preprocessing: is very similar to the
preprocessing done by Joshi et al. [37], with
the addition of part-of-speech (POS)
tagging.

Encode sentences: using a bi-directional
gated recurrent unit (Bi-GRU) the sentences
are encoded into high-dimensional
representations.

Cluster sentences: the sentences are
grouped into clusters based on the cosine
similarity of their respective embeddings.
These clusters are very small and typically
contain a handful of highly similar
sentences.

Fuse sentences: for each cluster, a word
graph is constructed that aims to generate
candidate sentences which capture the
content and information of the cluster.

Paraphrase candidates: these candidates
are then paraphrased if a fitting lexical
substitute is available.

Rank candidates: the candidates from the
word graph and their substituted peers are
ranked based on the information they
contain and their grammaticality.

Extract keyphrases: from the original
input documents, keyphrases are extracted
and weighted on the importance of the
contained information.

Select sentences: a linear optimization
procedure is employed to select a subset of
sentences, which a) includes highly relevant
keyphrases and b) has high sentence ranks.

Figure 4.5 Architecture of the abstractive part, based
on Nayeem et al. [62].

31

4 Approach and implementation

4.3.1 Pre-processing

The pre-processing step shares its functionality with the pre-processing step for the extrac-
tive part with an additional part-of-speech (POS) tagging step. Using spaCy, the input
sentences are transformed into lists of tuples consisting of the lower-cased word and its
associated POS-tag.

Part-of-speech tagging is the process of assigning words to a specific category or marking
them as a specific part-of-speech, for example nouns, verbs, adjectives etc. [54]. Table 4.1
shows a sentence annotated with both coarse and fine POS tags from spaCy.

Input The dog walked around in the village .

Coarse DET NOUN VERB ADV ADP DET NOUN PUNCT

Fine DT NN VBD RB IN DT NN .

Table 4.1: Exemplary sentence with coarse and fine POS tags.

4.3.2 Sentence encoding and clustering

Given a sentence S, which is a sequence of words (w1, w2, ..., wL) where L is the number
of words, a sentence is encoded into a high-dimensional embedding using a bi-directional
GRU (Bi-GRU) architecture. As input for the Bi-GRU network, each word is embedded
into pre-trained word embeddings from Google news. The networks architecture follows
the general encoder-decoder architecture (see Section 2.7), but processes the input in both
forward and backward direction. Figure 4.6 shows the the input sequence (w1, w2, ..., wL)
being processed in both directions in the hidden states (h0, ..., hL).

Figure 4.6: Bi-directional GRU for sentence encoding, drawn after Nayeem et al. [62].

Similar sentences are then clustered using a technique called agglomerative clustering.
The clusters are formed based on the cosine similarity of the sentence embeddings. These
clusters are needed for the next step, where new sentences are generated that represent the

32

4.3 Abstractive multi-document summarization

information of a cluster. Therefore, finding a good sentence representation is an essential
component to form clusters with highly similar sentences.

Agglomerative clustering is a hierarchical approach to form clusters by assigning each
element its own cluster and iteratively merging close clusters. It employs a complete-linkage
criterion to maximize the inter-cluster-distance during the merging procedure [75].

4.3.3 Sentence Fusion Word Graph

Given a cluster of highly similar sentences, the aim of this step is to summarize the cluster’s
content or topic in a single sentence, which preserves the most important information. This
task is referred to as multi-sentence compression and is based on the work of Filippova
[24].
This is done by constructing a word graph. The graph is created by iteratively adding
the sentences in a cluster to it. The nodes of the graph are the words in a sentence and
their respective POS-tag. Nodes are connected by forming directed edges for words in a
sentence based on their position. A graph has an additional start and end node, to which
all sentences are connected. Figure 4.7 shows a graph consisting of two example sentences
about former Chilean president Augusto Pinochet.

1. Pinochet left government in 1990.
2. He ruled from 1973 to 1990 but remained commander until March.

Figure 4.7: Example word graph based on real sentences from the DUC 2004 dataset. To sim-
plify the figure, only two sentences are shown which connect on the 1990 node.
POS-tags are omitted for clarity as well.

From this word graph with only one common word (1990) two new sentences can be
constructed by generating the K-shortest paths from start node to end node:

1. Pinochet left government in 1990 but remained commander until March.
2. He ruled from 1973 to 1990.

The sentences for a word graph can differ in length and syntax, but they need at least one
common word to generate new sentences. In practice, where word graphs are constructed
from clusters with multiple sentences, a common word is almost always found, given that
the sentence representation and clustering function work as intended. From a word graph,
between 50 and 200 K-shortest paths are generated according to Nayeem et al. [62].

33

4 Approach and implementation

The biggest problem when using this approach is how to rank the generated sentences. Fil-
ippova’s implementation [24] ranks the candidate sentences based on the sentence length,
which does not fully correlate with how much information is contained in a sentence
(although longer sentences tend to contain more information). Boudin and Morin [11]
propose to rank candidate sentences based on the keywords they include. The authors of
the ParaFuse_doc system decided to use a modified version of the TextRank algorithm to
compute a score for each generated sentence. TextRank scores sentences based on their
similarity to all other sentences in a document. In the original implementation, the num-
ber of overlapping words is used as a similarity measurement. Nayeem et al. [62] propose
to use the cosine similarity of the sentence embeddings instead.

4.3.4 Lexical substitution

To increase the abstractiveness of the generated summary, the candidate sentences are
paraphrased with lexical substitutes from the paraphrase database PPDB 2.0 4. It is an
open-source database with several million alternative phrases given a word and its context.
As the paraphrasing should not change a sentence’s meaning, only nouns (excluding named
entities, also known as proper nouns) and verbs are used as substitution candidates. Multi-
word expressions are not considered as substitute or target.

To decide if a word substitution is fitting, the appropriateness score is calculated based
on the word vectors of a possible substitute. This is done using the context2vec model
from Melamud et al. [55], which aims to learn embeddings for sentential contexts around
a target word. The appropriateness of a substitution s for a target word t and its context
elements C = {c1, ..., cn} is defined as:

appropriateness(s|t, C) = cos(s, t) +
∑
c∈C cos(s, c)

|C|+ 1 (4.9)

A target word t is considered suitable for substitution if the candidate s has an
appropriateness, which exceeds a certain threshold. Nayeem et al. [62] recommend a
value of 0.7 for this, without specifying how they obtained this value. The candidate with
the highest appropriateness value is selected and a new sentence is formed by replacing
the target word with the candidate.

4.3.5 Keyphrase extraction

To distinguish sentences with a high information content from those with little information
content, keyphrases are extracted from the original input text. Rose et al. [76] define a
keyphrase as a sequence of one or multiple words, which represent a given document’s
content. The extraction is performed using Rapid Automatic Keyword Extraction (RAKE)
from Rose et al. [76]. The intuition behind RAKE is that keyphrases rarely contain stop
words (such as the, of, and in) or punctuation and therefore, sequences without these are
likely to contain relevant information. The algorithm works as follows:

4http://paraphrase.org

34

http://paraphrase.org

4.3 Abstractive multi-document summarization

Using a set of phrase and word delimiters, the input text is split into sequences of candidate
keyphrases. For example, a keyphrase might start after a stop word and end right before
a punctuation. These candidates are then scored by the ratio of the word degree and the
word frequency. The degree of a word w is defined as the total number of words that occur
in candidate keyphrases, which contain w. The frequency of a word is defined as how often
it occurs in the entire list of keyphrases. The weight of a candidate c = (w1, w2, ..., wn)
with n words is defined as:

weight(c) =
n∑
i=1

degree(wi)
frequency(wi)

(4.10)

For example, using the last two paragraphs as input text, RAKE would consider the
following phrases to be the most important information:

• Rapid Automatic Keyword Extraction (RAKE) - 19.9
• high information content - 9.28
• original input text - 9.17

where the number after a keyphrase represents its RAKE score. The score a keyphrase
with multiple words is based on sum of the word-degrees of each word, normalized by their
frequencies.

4.3.6 Sentence selection

The summary is formed by selecting a subset from the candidate sentences using an Integer
Linear Programming (ILP) framework. ILP is an optimization procedure that tries to
select an optimal result under constraint of a set of linear equations and inequations.
An optimal result is defined as having the maximum value of the sum of the weighted
keyphrases included in the summary and the sum of the scores of the sentences included
(see Equation 4.11). This is implemented using the linear programming modeler PuLP5.

Given a set of candidate sentences, two binary variables are defined, which the ILP frame-
work tries to solve: sj indicates if the candidate sentence j is selected and ki indicates if
a keyphrase i is present in the selected sentences. Let wi be the weight of a keyphrase i
and lj the length of a sentence j. The variable Occij is set to 1 if the keyphrase i occurs
in sentence j, otherwise it is set to 0. The selection procedure for a summary of length L
is defined as:

max : (
∑
i

wiki +
∑
j

(score(sj) + lj
L
· sj) (4.11)

Subject to :
∑
j

ljsj ≤ L (4.12)

5https://github.com/coin-or/pulp

35

https://github.com/coin-or/pulp

4 Approach and implementation

sjOccij ≤ ki, ∀i, j (4.13)

∑
j

sjOccij ≥ ki, ∀i (4.14)

∑
j∈gc

sj ≤ 1,∀gc (4.15)

ki ∈ {0, 1}∀i (4.16)

sj ∈ {0, 1}∀j (4.17)

To reduce redundancy, the constraints in Equations 4.13 and 4.14 restrict the selection
of sentences based on the keyphrases they contain. From each sentence cluster, only one
sentence can be selected to increase information diversity (Eq. 4.15). The constraints
in Equations 4.16 and 4.17 restrict the values of s and k to binary values, in order to
represent the inclusion of a sentence or keyphrase. Equation 4.12 restricts the summary
length to the value of L. The selected sentences are then concatenated to a single body
of text to form the final summary.

36

5 Evaluation

This chapter first proposes a strategy to evaluate how good the candidate summaries are.
This strategy is based on insights gained in Section 3.2. The second section introduces the
experimental setup and the last section shows the results obtained from the implemented
system.

5.1 Evaluation strategy

Following the definition from Section 2.2, the evaluation strategy focuses on the key as-
pects of a good summary: informativeness, relevance, fluency and coherence as well as the
supporting metric of abstractiveness. Together they can provide a good picture of a sum-
mary’s quality and allow to compare the strengths and weaknesses of different summary
systems.

Informativeness is commonly evaluated using lexical similarity metrics (e.g. ROUGE-
1). Due to the drawbacks of the latter (see Section 3.2.1.1), a content-based approach
is preferable. Originally this thesis used he PEAK framework (see Section 3.2.1.2) from
Yang et al. [92] to generate and evaluate the pyramids. Peyrard and Eckle-Kohler [72]
pointed out that high pyramid scores from PEAK result in low ROUGE scores and vice
versa, which is why instead the reward function from Böhm et al. [9] is used to evaluate
the informativeness of a summary. Böhm et al.’s system [9] is trained to approximate
human summary evaluation and can be employed without reference summaries.

Relevance measures how consistent the content of a candidate summary is compared to
the source material, which might go unnoticed in content-based approaches. To measure
it, the ROUGE-2 metric is used. It is based on the bi-gram overlap of candidate and
reference summary. When taking a summary’s abstractiveness into account, this overlap
measurement can help identify incorrect information in a candidate summary.

Abstractiveness is commonly measured using the copy rate, which is the number of
unique words that occur in both the candidate summary and the source documents in
relation to the total number of unique words in the candidate summary. Seeing that
the copy rate cannot differentiate between a purely extractive system and a word fusion
system (i.e. where new sentences are formed using the original vocabulary), the copy rate
is not the most appropriate metric. Instead, the number of unique bi-grams, occurring

37

5 Evaluation

in both the candidate summary and the input documents is counted and divided by the
total number of unique bigrams in the candidate summary.

Fluency is what makes humans perceive sentences as natural. Commonly, the perplexity
of a language model (see Section 2.5) is used to measure the fluency of a sentence. Although
this is a good indicator on how correct and natural a sentence feels, it assigns lower values
to sentences with rare or uncommon words. To correct this, Kann et al. [41] propose
the SLOR metric (see Section 3.2.2.1), which allows sentences with uncommon words to
achieve good scores and therefore is used in the evaluation. The perplexity and uni-gram
probabilities are obtained from the language model GPT-2 (see Section 2.7).

Coherence is what differentiates a well-written text from a set of unrelated sentences.
Lapata and Barzilay [44] propose to measure the text coherence based on the follow-up
sentence similarity. This approach is not as popular as the entity-grid method which was
also proposed by Barzilay and Lapata [4], but got recent attention with the rise of large
scale transfer-learning and the resulting improvements in sentence encoding. Therefore,
for this thesis, the follow-up sentence similarity is used and the Sentence BERT model
from Reimers and Gurevych [74] is used to calculate the sentence representations.

5.2 Datasets

Whereas the previous section explained how the evaluation was performed, this section
introduces the datasets used in the experimental setup. For the experiments done in this
thesis, three datasets have been chosen, which differ in the length of the reference sum-
maries. The reason for this is to show that the system can perform well when generating
both long and short summaries. An instance in these datasets consists of multiple doc-
uments with related and partly-redundant content. Each instance has one or multiple
human-written reference summaries. The datasets will be listed in order of their reference
summary length from shortest to longest.

5.2.1 Opinosis - Opinion Dataset

Opinosis is an aspect-separated user review dataset obtained from Amazon1, Edmunson2

and TripAdvisor3. It was published by Ganesan et al. [26] to evaluate their identically
named system and can be obtained from the authors’ personal homepage4.

It consists of 51 instances, each with an average of 134 sentences and four human-composed
reference summaries. Some of the sentences in this dataset are incomplete, adding an
additional challenge. To deal with this, incomplete sentences that contain a conjunction

1http://www.amazon.com
2http://www.edmundson-electrical.co.uk
3http://wwww.tripadvisor.com
4https://kavita-ganesan.com/opinosis-opinion-dataset/

38

http://www.amazon.com
http://www.edmundson-electrical.co.uk
http://wwww.tripadvisor.com
https://kavita-ganesan.com/opinosis-opinion-dataset/

5.3 Results

are cropped and punctuation is added. Incomplete sentences without a conjunction are
excluded. This affects 124 out of 6846 sentences. The target word length for a reference
summary is 15 words which makes the Opinosis dataset a good candidate to evaluate if the
proposed system can generate very short summaries with a compression rate of 99.5%.

5.2.2 Document Understanding Conference (DUC) Dataset

DUC was an annual conference from 2000 to 2007 to further the progress in document
understanding. In 2008 it was included into the Text Analysis Conference (TAC)5 as
the summarization track. As part of the conference, several multi-document datasets
were released to the public6. This thesis uses the dataset from DUC2004, which contains
articles from The Associated Press7 and The New York Times8. It has 50 instances with
6945 words on average and four human-written reference summaries. The target word
length for a reference summary is 100 words, which translates to a compression rate of
98.6%. The dataset is chosen to evaluate if the proposed system can generate medium
sized summaries.

5.2.3 Multi-News Dataset

Fabbri et al. [23] released this very recent multi-document corpus consisting of 56,216
articles-summary pairs with 2-10 articles per topic and 1876 words on average. The
summaries are obtained from the news curator website Newser9. The authors released the
dataset to the public on GitHub10. The target word length for a reference summary is 250
words, which translates to a compression rate of 86.7%. This makes this dataset a good
candidate to evaluate the generation of large summaries.

5.3 Results

Each instance of these three datasets is summarized with the baseline system and every
summary is then evaluated on all quality aspects. To put the evaluation in context,
several summarization systems from Chapter 3 are used for comparison. Table 5.1 shows
the results of the proposed system and follows the order of the dataset presentation from
shortest to longest. Lower values are better for abstractiveness and fluency. On each
dataset, some of the highest scoring peer systems are used for comparison.

The results show that the proposed system performs quite differently on each dataset. It
is to note that fluency should be lower (i.e. better) for extractive systems (i.e with an
abstractiveness value of 100.0). The proposed system is able to generate more abstractive

5https://tac.nist.gov/
6https://www.nlpir.nist.gov/projects/duc/data.html
7https://www.ap.org
8https://www.nytimes.com/timeswire
9https://www.newser.com/

10https://github.com/Alex-Fabbri/Multi-News

39

https://tac.nist.gov/
https://www.nlpir.nist.gov/projects/duc/data.html
https://www.ap.org
https://www.nytimes.com/timeswire
https://www.newser.com/
https://github.com/Alex-Fabbri/Multi-News

5 Evaluation

text for longer summaries. An important aspect of the informativeness values is that
they should not be interpreted as absolute values but are meant to rank one summary
over another, which is why the upper and lower bounds differ greatly between different
datasets. The coherence of the baseline system is rather low, as it currently concatenates
the selected sentences and ignores the original sentence position. To improve the generated
summaries, the next chapter discusses the results and suggests improvements.

System Inf. Rel. Abs.* Flu.* Coh.

Opinosis

TextRank [56] 14.03 20.30 100.0 135.28 66.87

Opinosis [26] 27.09 18.85 92.05 83.76 73.06

Pointer-Generator-MMR [45] 3.20 10.24 91.03 98.10 63.54

Proposed system 9.09 7.84 61.24 83.20 65.15

DUC 2004

Lead-100w 34.83. 9.42 100.0 53.74 73.21

Submodular [48] 35.82 13.68 100.0 47.81 73.59

RegSum [34] 44.25 14.66 100.0 44.74 81.34

DDP [43] 42.49 14.56 100.0 40.43 78.77

Proposed system 30.37 6.69 58.72 123.61 64.79

Multi-News

Transformer [79] 8.79 8.69 36.86 100.84 58.22

AllSummarizer [1] 13.85 14.87 100.0 70.39 66.64

Hi-Map [23] 2.38 8.70 36.11 120.54 59.16

Proposed system 11.78 9.20 65.03 115.17 66.79

Table 5.1: Results for the proposed approach in comparison to several influential peer systems.
(* lower is better)

40

6 Analysis and discussion

This chapter analyses and discusses the results of the baseline systems and proposes ways
to improve the system. Each section identifies a problem in the baseline approach and
proposes a solution to improve the system in this area. This chapter also reflects the
iterative way in which the practical work for this thesis was performed.

The system follows a component-based architecture, making it possible to analyse and
improve each component on its own. To ensure that the whole system improves as well,
the summaries are generated for each dataset in every iteration. The order in which
each component was analysed follows the order in which this thesis is structured - from
extractive to abstractive components.

6.1 Generalizing the extractive selection

The first thing to notice about the results is that the summaries of the Opinosis dataset are
relatively worse than those of the other datasets when compared to competing systems.
Also, the Lead-3 baseline is not as strong on this dataset. Joshi et al. [37] do report
high ROUGE values from their evaluation on several different datasets. Unfortunately, all
of the datasets the authors evaluated their system on are based on news articles. News
articles oftentimes start by providing an overview of the content to come in the first few
lines. The position score exploits this statistical feature but just as the Lead baseline, it
only improves the summaries of news datasets.

To remove this bias towards certain document structures, only the first two of the three
metrics are used for this thesis – namely novelty and relevance. This has an effect on
the sentence selection procedure in a way that differs from the original approach where
a weighted sum of the sentence metrics was employed. With only two instead of three
metrics, using the minimum value of either novelty or relevance, resulted in a better
selection overall in terms of informativeness and relevance. The score of a sentence Si in
a document D is hence defined as:

score(D,Si) = min(novelty(D,Si), relevance(D,Si)) (6.1)

Table 6.1 shows how the results change for each dataset. Values in parentheses are the
relative change to the original values, results that did not change are omitted for clarity.
The fluency values improve on all datasets. On the Opinosis dataset, the informativeness
and relevance increases, on the other two datasets it decreases. This is because the latter

41

6 Analysis and discussion

two are news articles, where the position score works very well. Still, removing it allows
the system to work on datasets from different domains.

Dataset Inf. Rel. Abs.* Flu.* Coh.

Opinosis 10.43 (+1.34) 9.73 (+1.89) 70.31 (+9.07) 62.83 (-20.37) 63.77 (-1.38)

DUC2004 28.35 (-2.02) 4.59 (-2.10) 58.00 (-0.72) 113.21 (-10.4) 62.32 (-2.47)

Multi-News 10.60 (-1.18) 7.91 (-1.29) 65.63 (+0.60) 101.18 (-13.99) 61.46 (-5.33)

Table 6.1: The results for each dataset after changing the weighted sum of the original three
metrics to the minimum of novelty and relevance. (*lower is better)

6.2 Sentence encoding

Both the extractive and the abstractive part are highly-dependent on good sentence rep-
resentations. Both metrics from the former are based on inter-sentence similarity which
makes the sentence representation the biggest lever for improving the result. The lat-
ter uses the sentence embeddings mainly for clustering similar sentences. These sentence
clusters are then fused using the word-graph. Therefore, without a good representation,
unrelated sentences might be merged into the same cluster which could result in low-quality
unrelated sentence fusions.

During the implementation of the proposed system, several different sentence embedding
techniques were used. To identify the most appropriate technique, the scores on the
Semantic textual similarity (STS) benchmark1 were consolidated. The goal in STS is to
predict whether a pair of sentences is semantically similar or not. Table 6.2 shows the
Spearman rank correlation of different sentence embedding models on the STSb dataset.

Model STS spearman rank

Avg. BERT embeddings[20] 46.4

Avg. GloVe embeddings[69] 58.0

SkipThought[42] 62.2

InferSent[16] 66.87

Universal Sentence Encoder[13] 74.9

Sentence BERT[74] 77.0 (79.23)

Sentence RoBERTa[74] 77.8 (79.10)

Table 6.2: STS benchmark results for different sentence embeddings. Values as reported by
Reimers and Gurevych [74] and Perone et al. [70]. Values in parentheses are obtained
from the large version of the system.

1http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

42

http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

6.3 Sentence Fusion Word Graph

The Bi-GRU approach from Nayeem et al. [62] is not included in this table, but consid-
ering that the underlying architecture is very similar to the InferSent system (which uses
a Bidirectional Long Short-Term Memory (Bi-LSTM) architecture), it is save to assume
that the performance is similar or lower than InferSent’s. The highest-scoring values are
reported by the Sentence BERT/ RoBERTa system from Reimers and Gurevych [74]. It
works by fine-tuning the BERT model (see Section 2.7 for details) to produce semanti-
cally meaningful sentence representations using a triplet network [33]. Several pre-trained
models can be obtained from the authors’ GitHub page2. It is to note that the model
works very well on clean sentences but struggles with very short or noisy sentences as they
appear in the Opinosis dataset. This is due to the system’s training on sentences from the
English Wikipedia, which contain almost no noise and are of a high quality in general.

To improve the system, the Sentence BERT base model was employed. Although the large
BERT model and the RoBERTa model do have a higher STS score, they are not considered
due to high hardware requirements. The abstractive part benefited the most from these
embeddings, as clusters with more similar sentences meant less unrelated sentence fusions.
Table 6.3 shows the influence of the new embeddings on the overall result. Although the
information content contained in the summaries increases, the fluency score gets a lot
worse. Ranking the sentence fusions by their perplexity will improve the fluency again.

Dataset Inf. Rel. Abs.* Flu.* Coh.

Opinosis 17.32 (+6.89) 5.20 (-4.53) 61.89 (-8.42) 189.67 (+126.84) 68.18 (+4.41)

DUC2004 28.35 (+0.00) 4.72 (+0.13) 60.27 (+2.17) 196.96 (+83.75) 64.78 (+2.46)

Multi-
News

11.56 (+0.96) 8.34 (+0.43) 66.84 (+1.21) 168.58 (+67.40) 60.49 (-0.97)

Table 6.3: Improvements in the results for each dataset after switching to the Sentence BERT
model. (*lower is better)

6.3 Sentence Fusion Word Graph

The most challenging aspect of the word-graph is not the sentence fusion itself but the
ranking of the candidate fusions. For this, Nayeem et al. [62] used the keyphrase-based
approach from Boudin and Morin [11] which focuses on producing a diverse set of infor-
mative sentences without taking fluency into account. To overcome this issue and improve
both informativeness and fluency, the fusion candidates are ranked in a two-step proce-
dure: First, the sentences are grouped based on the keyphrases they contain. Then the n
best sentences out of each group are identified to ensure that a diverse set of information
is preserved. To rank the sentences, the SLOR metric (see Section 3.2.2.1) as computed
by a language model is used to ensure only grammatically correct sentences are selected.
The LM employed for this is OpenAi GPT-2 from Radford and Salimans [73] (see Section
2.7).

2https://github.com/UKPLab/sentence-transformers

43

https://github.com/UKPLab/sentence-transformers

6 Analysis and discussion

Dataset Inf. Rel. Abs.* Flu.* Coh.

Opinosis 14.43 (-2.89) 6.17 (+0.97) 54.27 (-7.62) 81.20 (-108.47) 68.00 (-0.18)

DUC2004 30.25 (+1.90) 6.69 (+1.97) 46.93 (-13.34) 120.42 (-76.54) 65.37 (+0.59)

Multi-News 11.78 (+0.22) 9.12 (+0.78) 42.93 (-23.91) 113.70 (-54.88) 61.51 (+1.02)

Table 6.4: Improvements in the overall result for the candidate sentences after ranking the
sentence fusions based on the normalized perplexity of OpenAi GPT-2. (*lower is
better)

The SLOR score is lower for words which are very likely to follow after another and a
low SLOR score of a sentence is a reasonable indicator of good grammaticality. Table 6.4
shows the improvements in informativeness and fluency on each of the datasets.

6.4 Lexical substitution

Whether or not a target word should be substituted is computed using the appropriateness
equation (see Equation 4.9). It relies on the word embeddings of the surrounding words of
the target and only allows substitution if the cosine distance does not change significantly.
This leads to sentences that are equally or only slightly worse in terms of grammaticality
and fluency. To find sentences which are more fluent than the original sentence, an ap-
proach based on the normalized perplexity of a language model is proposed. Similar to the
SLOR metric defined in Equation 3.7, the perplexity is then normalized with the unigram
probability of a sentence, in order to compensate for uncommon words in an sentence. A
sentence S with a target word t can be paraphrased using a substitution candidate s if
the normalized perplexity of Soriginal is smaller or equal to the normalized perplexity of
Ssubstituted. An appropriateness value greater than zero is used to select substitutions:

appropriateness(s, t) = perplexity(Soriginal)− perplexity(Ssubstituted) (6.2)

Dataset Inf. Rel. Abs.* Flu.* Coh.

Opinosis 22.88 (+8.45) 7.38 (+1.21) 68.41 (+14.14) 64.88 (-16.32) 57.14 (-10.86)

DUC2004 35.90 (+5.65) 6.97 (+0.28) 62.08 (+15.15) 114.88 (-5.54) 65.31 (-0.06)

Multi-News 12.47 (+0.69) 8.48 (-0.64) 44.48 (+1.55) 93.99 (-19.71) 67.06 (+5.55)

Table 6.5: Improvements in the fluency and abstractiveness (lower is better) values after aug-
menting the lexical substitution component to use normalized perplexity instead of
neighbouring context-embedding distance.

Table 6.5 shows the improvement in terms of fluency and abstractiveness for the datasets
used in the evaluation. To implement this, the LM GPT-2 (see Section 2.7) from Radford
and Salimans [73] is employed.

44

6.5 Keyphrase extraction

6.5 Keyphrase extraction

The extracted keyphrases have a high influence on the candidates as the assigned weights
and the keyphrases included in a sentence are used for the sentence selection. Therefore,
using a high-quality system for the extraction is an obvious candidate for improvement.
Campos et al. [12] propose a feature-based system by the name Yet Another Keyword
Extractor (YAKE) which uses a similar approach to RAKE, but instead of only focusing
on word degree and frequency (see Section 4.3.5) it also focuses on word casing, relatedness
to the context and how often a word occurs in different sentences.

YAKE is achieving state-of-the-art or close to state-of-the-art performance on several
extraction datasets and outperforms RAKE on all of them3. The effect on the generated
summaries’ informativeness and relevance can be seen in Table 6.6.

Dataset Inf. Rel. Abs.* Flu.* Coh.

Opinosis 18.19 (-4.69) 13.41 (+6.03) 84.47 (+16.06) 84.00 (+19.12) 62.79 (+6.65)

DUC2004 40.93 (+5.03) 6.74 (-0.23) 87.18 (+25.1) 67.28 (47.60) 63.16 (-2.15)

Multi-
News

11.97 (-0.50) 13.13 (+4.65) 92.25 (+47.77) 89.85 (-4.14) 61.53 (-6.53)

Table 6.6: Changes to the results for each dataset when using YAKE instead of RAKE. (*lower
is better)

Using YAKE keyphrases makes the system a lot less abstractive, which improves the
fluency and the relevance scores.

6.6 True-case sentences

One issue with the candidate sentences that is often overlooked, as common metric do
not take it into account is word casing. The system’s output is currently all lower-cased,
because the word graph needs lower-cased words to fuse sentences on any word position.
Lower-cased text is more difficult to read and might convey false information, as proper-
nouns or named-entities might not be recognized by the reader.

To restore the original case information, a true-casing component is proposed. True-casing
is defined as the process of "restoring case information to badly-cased or non-cased text"
[49]. In the context of this thesis, a combination of POS-tagging and rule-based matching
is proposed, which can easily be integrated in the summarization pipeline. To evaluate
whether this is effective, an experiment has been conducted to recreate the original case
of all lower-cased documents of the DUC2004 dataset. A random baseline as well as a
statistical approach based on the ideas of Lita et al. [49] is used for comparison. Table 6.7
shows how effective both approaches are.

3https://github.com/LIAAD/yake/blob/master/docs/YAKEvsBaselines.jpg

45

https://github.com/LIAAD/yake/blob/master/docs/YAKEvsBaselines.jpg

6 Analysis and discussion

Random Baseline(%) Rule-based POS-tagging(%) Statistical approach(%)

0.449 0.993 0.983

Table 6.7: Percentages of correctly ordered words of the DUC-2004 dataset. The proposed rule-
based POS-tagging approach outperforms the approach from Lita et al. [49].

The proposed approach has an edge over the approach from Lita et al. [49], which alone
might not be enough to choose one over another. Due to the fact that each word is
already tagged in the word graph, however, the proposed approach integrates very well in
the summarization pipeline and runs considerably faster than the statistical approach.

6.7 Improving text coherence

Text coherence is an important quality aspect for a human reader and has even been
included in the official DUC guidelines in 20054. Still, many systems neglect this or, as
is the case in many extractive single-document systems, simply use the original sentence
position as a relative indicator. The abstractive approach by Nayeem et al. [62] does
not feature a text coherence component, resulting in summaries with randomly chosen
sentences. To improve this, two methods for ordering the sentences have been evaluated.

Next sentence prediction using BERT. One of the training tasks of BERT is to predict
whether a sentence A is likely to precede a sentence B. Given a set of randomly ordered
sentences, the next sentence probability is calculated for each sentence combination. The
ideal sentence order is computed by finding the sentence order which maximizes the next
sentence probability.

Maximize follow-up sentence similarity following the proposal of Lapata and Barzilay
[44]. They define a coherence metric for a document D consisting of N sentences S1, ..., SN
as the sum of the normalized sentence similarity:

coherence(D) =
∑N−1
i=1 cos(Si, Si+1)

N − 1 (6.3)

The ideal sentence order is therefore the order that maximizes the follow-up similarity or
coherence of a given text. The similarity is defined as the cosine similarity of two Sentence
BERT representations. For both methods, a linear problem was defined to maximize
either the follow-up-similarity or the next-sentence probability. This was then solved for
all permutations of a list of sentences using PuLP.

To assess which method is superior, a small experiment has been conducted. The task
is to order the sentences in a set of randomly shuffled documents from the DUC 2004
dataset. The methods are scored on the relative amount of correctly ordered follow-up
sentence pairs. Correctly ordered means that one point is awarded for each sentence pair

4https://duc.nist.gov/duc2005/quality-questions.txt

46

https://duc.nist.gov/duc2005/quality-questions.txt

6.8 Bringing it all together

si, si+1 that matches the original sentence pair oi, oi+1. Table 6.8 shows how they compare
to each other and a randomly shuffled baseline.

Random Baseline(%) BERT next sentence(%) Follow-up similarity(%)

0.123 0.152 0.187

Table 6.8: Percentages of correctly ordered sentences from a randomly shuffled documents of
the DUC 2004 dataset.

Seeing that the follow-up sentence similarity approach is slightly superior in this experi-
ment, it is included in the system’s architecture as the second-to-last step. It is to note
that sentence ordering is a challenging problem and both methods are only slightly better
than a random baseline.

6.8 Bringing it all together

To conclude the Analysis and Discussion chapter and summarize the findings of this thesis,
this section provides an overview on how each proposal improves the system and its output.
The final results, as well as the effects of each iterative improvement are displayed in Table
6.9. Table 6.10 shows how the final version of the system compares to other systems. In
line with previous tables, the best values on each dataset are highlighted in bold letters.

47

6 Analysis and discussion

System Inf. Rel. Abs.* Flu.* Coh.

Opinosis

Original 9.09 7.84 61.24 83.20 65.15

+ generalized extractive 10.43 9.73 70.31 62.83 63.77

+ sentence encoding 17.32 5.20 61.89 189.67 68.18

+ improved word-graph 14.43 6.17 54.27 81.20 68.00

+ perplexity substitution 22.88 7.38 68.41 64.88 57.14

+ improved keyphrases 18.19 13.41 84.47 84.00 62.79

+ improved coherence 18.19 13.41 84.47 84.00 68.42

DUC 2004

Original 30.37 6.69 58.72 123.61 64.79

+ generalized extractive 28.35 4.59 58.00 113.21 62.32

+ sentence encoding 28.35 4.72 60.27 196.96 64.78

+ improved word-graph 30.25 6.69 46.93 120.42 65.37

+ perplexity substitution 35.90 6.97 62.08 114.88 65.31

+ improved keyphrases 40.93 6.74 87.18 67.28 63.16

+ improved coherence 40.93 6.74 87.18 67.28 74.59

Multi-News

Original 11.78 9.20 65.03 115.17 66.79

+ generalized extractive 10.60 7.91 65.63 101.18 61.46

+ sentence encoding 11.56 8.34 66.84 168.58 60.49

+ improved word-graph 11.78 9.12 42.93 113.70 61.51

+ perplexity substitution 12.47 8.48 44.48 93.99 67.06

+ improved keyphrases 11.97 13.13 92.25 89.85 61.53

+ improved coherence 11.97 13.13 92.25 89.85 78.56

Table 6.9: Results of the original approach in comparison to the results obtained with iterative
improvements. (*lower is better)

48

6.8 Bringing it all together

System Inf. Rel. Abs.* Flu.* Coh.

Opinosis

TextRank [56] 14.03 20.30 100.0 135.28 66.87

Opinosis [26] 27.09 18.85 92.05 83.76 73.06

Pointer-Generator-MMR [45] 3.20 10.24 91.03 98.10 63.54

Proposed system 18.19 13.41 84.47 84.00 68.42

DUC 2004

Lead-100w 34.83. 9.42 100.0 53.74 73.21

Submodular [48] 35.82 13.68 100.0 47.81 73.59

RegSum [34] 44.25 14.66 100.0 44.74 81.34

DDP [43] 42.49 14.56 100.0 40.43 78.77

Proposed system 40.93 6.74 87.18 67.28 74.59

Multi-News

Transformer [79] 8.79 8.69 36.86 100.84 58.22

AllSummarizer [1] 13.85 14.87 100.0 70.39 66.64

Hi-Map [23] 2.38 8.70 36.11 120.54 59.16

Proposed system 11.97 13.13 92.25 89.85 78.56

Table 6.10: Results for the final version in comparison to several influential peer systems. (*
lower is better)

49

7 Conclusion and future work

This thesis investigated whether unsupervised summarization systems can compete with
supervised systems in the field of multi-document summarization. To evaluate this, a
system has been developed that combines the extractive approach from Joshi et al. [37]
and the abstractive approach from Nayeem et al. [62]. The system was employed to gen-
erate summaries for three diverse datasets - Opinosis, DUC2004 and Multi-News. These
documents were chosen to cover a variety of document lengths and compression rates.
The results were evaluated on four quality aspects as identified by Grusky et al. [29].
To further improve the generated summaries, several improvements on the summarization
system have been proposed to include state-of-the-art techniques and make the summaries
more readable.

The chosen sentence representation had a great impact on the performance of the model
and the use of the Sentence BERT model [74] improved both the extractive selection and
the abstractive generation. The extractive part was improved, as the model highly depends
on sentence similarity and the abstractive part benefited from highly-similar sentences in
each cluster, which improved the sentence fusion. Other current large-scale models such
as BERT [20] and GPT-2 [73] have been found to benefit the system to produce coherent
and fluent text.

Although the proposed system can compete with other summarization systems in many
aspects (see Table 5.1 and Table 6.9), the conducted experiments show that there is a
trade-off between the abstractiveness of a summary and the information included in it.
Highly-abstractive summarization tends to result in low information content, which is
in line with the findings of Zhang et al. [96]. They state that many of the abstractive
systems (e.g. Pointer-Generator [79]) with high information content are near-extractive.
Given that the information content is the most important aspect of a summary, extractive
systems outperformed the proposed system.

The proposed system is quite complex, so it is very likely that not all components are
optimized to their full potential. Reducing the complexity while still maintaining the
important aspects will surely benefit the system. Besides, for each component there are
a number of parameters and thresholds that are only optimized locally. An end-to-end
grid search optimization was not performed due to time constraints but might benefit the
system’s performance as well.

Another important topic that was not covered in this thesis is aspect-based summarization.
This can most easily be observed on the generated summaries of the Opinosis dataset,
where contradictions are very common. A generated summary might be The bathroom
is very large. The bathrooms were tiny., which is a problem that aspect-based clustering
might solve.

50

One way to enhance the sentence fusion component could be to merge multiword expres-
sions (MWEs) as ShafieiBavani et al. [81] proposed. PPDB 2.0 also provides support for
MWEs, which could be used to merge sentences where the only connection is a figure of
speech. A similar effect might be archived using a neural sentence simplification model
[91] to simplify the sentences in each cluster before summarization. Incorporating an infor-
mation extraction system such as ClauseIE [19] could help by linking personal pronouns
with named entities in a sentence cluster.

One of the biggest challenges that remains for this system is the sentence selection. Se-
lecting a subset of sentences from the large pool of paraphrased and fused sentences in a
way that the selection forms a coherent text, is still an unsolved task. Coming up with a
way to select sentences that build upon each other should yield a major improvement in
text quality. Maximizing the coherence and fluency on a document level instead of on a
sentence level, might improve this.

With the current rate of improvements in NLP, it is to be expected that in the near future
even better sentence representations and language models will be published. Incorporating
these new systems might benefit the approach presented in this thesis as well.

51

Bibliography

[1] Abdelkrime Aries, Djamel Eddine Zegour, and Khaled Walid Hidouci. “AllSumma-
rizer system at MultiLing 2015: Multilingual single and multi-document summa-
rization”. In: Proceedings of the 16th Annual Meeting of the Special Interest Group
on Discourse and Dialogue. Prague, Czech Republic: Association for Computational
Linguistics, 2015, pp. 237–244. doi: 10.18653/v1/W15-4634.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Trans-
lation by Jointly Learning to Align and Translate”. In: (2014). arXiv: 1409.0473.

[3] Siddhartha Banerjee, Prasenjit Mitra, and Kazunari Sugiyama. “Multi-document
abstractive summarization using ILP based multi-sentence compression”. In: IJCAI
International Joint Conference on Artificial Intelligence (2015), pp. 1208–1214. issn:
10450823. arXiv: 1609.07034.

[4] Regina Barzilay and Mirella Lapata. “Modeling local coherence”. In: Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics - ACL ’05.
Morristown, NJ, USA: Association for Computational Linguistics, 2005, pp. 141–
148. doi: 10.3115/1219840.1219858.

[5] Regina Barzilay and Kathleen R. McKeown. “Sentence fusion for multidocument
news summarization”. In: Computational Linguistics 31.3 (2005), pp. 297–327. issn:
08912017. doi: 10.1162/089120105774321091.

[6] Yoshua Bengio et al. “A Neural Probabilistic Language Model”. In: Journal of Ma-
chine Learning Research 3.Feb (2003), pp. 1137–1155. issn: ISSN 1533-7928.

[7] Lidong Bing et al. “Abstractive multi-document summarization via phrase selec-
tion and merging”. In: ACL-IJCNLP 2015 - 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Nat-
ural Language Processing of the Asian Federation of Natural Language Processing,
Proceedings of the Conference 1 (2015), pp. 1587–1597. arXiv: 1506.01597.

[8] Christopher M. Bishop. Pattern recognition and machine learning. Springer, 2006.
isbn: 9780387310732.

[9] Florian Böhm et al. “Better Rewards Yield Better Summaries: Learning to Sum-
marise Without References”. In: Proceedings of the 2019 Conference on Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP). Hong Kong,
China, 2019. arXiv: 1909.01214.

[10] Piotr Bojanowski et al. “Enriching Word Vectors with Subword Information”. In:
Transactions of the Association for Computational Linguistics 5 (2017), pp. 135–
146. issn: 2307-387X. doi: 10.1162/tacl_a_00051. arXiv: 1607.04606.

52

https://doi.org/10.18653/v1/W15-4634
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1609.07034
https://doi.org/10.3115/1219840.1219858
https://doi.org/10.1162/089120105774321091
http://arxiv.org/abs/1506.01597
http://arxiv.org/abs/1909.01214
https://doi.org/10.1162/tacl_a_00051
http://arxiv.org/abs/1607.04606

Bibliography

[11] Florian Boudin and Emmanuel Morin. “Keyphrase extraction for n-best reranking
in multi-sentence compression”. In: NAACL HLT 2013 - 2013 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Proceedings of the Main Conference (June 2013), pp. 298–
305.

[12] Ricardo Campos et al. “YAKE! collection-independent automatic keyword extrac-
tor”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 10772 LNCS. 2018,
pp. 806–810. isbn: 9783319769400. doi: 10.1007/978-3-319-76941-7_80.

[13] Daniel Cer et al. “Universal Sentence Encoder for English”. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. Brussels, Belgium: Association for Computational Linguistics, 2018,
pp. 169–174. doi: 10.18653/v1/D18-2029.

[14] Eric Chu and Peter J. Liu. “MeanSum: A Neural Model for Unsupervised Multi-
document Abstractive Summarization”. In: International Conference on Machine
Learning (2018). arXiv: 1810.05739.

[15] Arman Cohan and Nazli Goharian. “Revisiting Summarization Evaluation for Sci-
entific Articles”. In: Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC 2016). : Portorož, Slovenia: European Language
Resources Association (ELRA), 2016, pp. 806–813.

[16] Alexis Conneau et al. “Supervised Learning of Universal Sentence Representations
from Natural Language Inference Data”. In: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. Copenhagen, Denmark: Asso-
ciation for Computational Linguistics, 2017, pp. 670–680. doi: 10.18653/v1/D17-
1070.

[17] Zihang Dai et al. “Transformer-XL: Attentive Language Models beyond a Fixed-
Length Context”. In: 2019, pp. 2978–2988. doi: 10.18653/v1/p19-1285. arXiv:
1901.02860.

[18] Hoa Trang Dang. “Evaluation of Question-Focused Summarization Systems”. In:
Proceedings of the Workshop on Task-Focused Summarization and Question An-
swering. Sydney, Australia, 2006, pp. 48–55.

[19] Luciano Del Corro and Rainer Gemulla. “ClausIE”. In: Proceedings of the 22nd
international conference on World Wide Web - WWW ’13. New York, New York,
USA: ACM Press, 2013, pp. 355–366. isbn: 9781450320351. doi: 10.1145/2488388.
2488420.

[20] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: Proceedings of the 2019 Conference of the North.
Minneapolis, Minnesota, USA: Association for Computational Linguistics, 2019,
pp. 4171–4186. doi: 10.18653/v1/N19-1423.

[21] H. P. Edmundson. “New Methods in Automatic Extracting”. In: Journal of the ACM
16.2 (1969), pp. 264–285. issn: 00045411. doi: 10.1145/321510.321519.

[22] Gunes Erkan and Dragomir R. Radev. “LexPageRank : Prestige in Multi-Document
Text Summarization”. In: Proceedings of the 2004 Conference on Empirical Methods
in Natural Language Processing (EMNLP) (2004), pp. 365–371.

53

https://doi.org/10.1007/978-3-319-76941-7_80
https://doi.org/10.18653/v1/D18-2029
http://arxiv.org/abs/1810.05739
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/p19-1285
http://arxiv.org/abs/1901.02860
https://doi.org/10.1145/2488388.2488420
https://doi.org/10.1145/2488388.2488420
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/321510.321519

Bibliography

[23] Alexander Fabbri et al. “Multi-News: A Large-Scale Multi-Document Summariza-
tion Dataset and Abstractive Hierarchical Model”. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Florence, Italy: Associa-
tion for Computational Linguistics, 2019, pp. 1074–1084. doi: 10.18653/v1/P19-
1102.

[24] Katja Filippova. “Multi-Sentence Compression: Finding Shortest Paths inWord
Graphs”. In: Coling 2010 - 23rd International Conference on Computational Lin-
guistics, Proceedings of the Conference. August. Association for Computational Lin-
guistics, 2010, pp. 322–330. doi: 10.3115/977035.977047.

[25] Mahak Gambhir and Vishal Gupta. “Recent automatic text summarization tech-
niques: a survey”. In: Artificial Intelligence Review 47.1 (Jan. 2017), pp. 1–66. issn:
15737462. doi: 10.1007/s10462-016-9475-9.

[26] Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. “Opinosis: A Graph Based
Approach to Abstractive Summarization of Highly Redundant Opinions”. In: Pro-
ceedings of the 23rd International Conference on Computational Linguistics (Coling
2010). Beijing, China: The COLING 2010 Organizing Committee, 2010, pp. 340–
348.

[27] Jade Goldstein et al. Multi-document summarization by sentence extraction. 2000.
doi: 10.3115/1567564.1567569.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press,
2016. isbn: 9780262035613.

[29] Max Grusky, Mor Naaman, and Yoav Artzi. “Newsroom: A Dataset of 1.3 Mil-
lion Summaries with Diverse Extractive Strategies”. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans,
Louisiana: Association for Computational Linguistics, 2018, pp. 708–719. doi: 10.
18653/v1/n18-1065. arXiv: 1804.11283.

[30] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2016,
pp. 770–778. isbn: 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.90.

[31] G. E. Hinton and R. R. Salakhutdinov. “Reducing the dimensionality of data with
neural networks”. In: Science 313.5786 (2006), pp. 504–507. issn: 00368075. doi:
10.1126/science.1127647.

[32] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (1997), pp. 1735–1780. issn: 08997667. doi: 10.1162/neco.1997.
9.8.1735.

[33] Elad Hoffer and Nir Ailon. “Deep metric learning using triplet network”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 9370 (2015), pp. 84–92. issn: 16113349.
doi: 10.1007/978-3-319-24261-3_7. arXiv: 1412.6622.

[34] Kai Hong and Ani Nenkova. “Improving the Estimation of Word Importance for
News Multi-Document Summarization”. In: Proceedings of the 14th Conference of
the European Chapter of the Association for Computational Linguistics. Gothenburg,
Sweden: Association for Computational Linguistics, 2014, pp. 712–721. doi: 10.
3115/v1/E14-1075.

54

https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.3115/977035.977047
https://doi.org/10.1007/s10462-016-9475-9
https://doi.org/10.3115/1567564.1567569
https://doi.org/10.18653/v1/n18-1065
https://doi.org/10.18653/v1/n18-1065
http://arxiv.org/abs/1804.11283
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1126/science.1127647
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-3-319-24261-3_7
http://arxiv.org/abs/1412.6622
https://doi.org/10.3115/v1/E14-1075
https://doi.org/10.3115/v1/E14-1075

Bibliography

[35] Matthew Honnibal and Mark Johnson. “An Improved Non-monotonic Transition
System for Dependency Parsing”. In: Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing. Lisbon, Portugal: Association for
Computational Linguistics, 2015, pp. 1373–1378. doi: 10.18653/v1/D15-1162.

[36] Eduard Hovy et al. “Automated Summarization Evaluation with Basic Elements.”
In: Proceedings of the Fifth International Conference on Language Resources and
Evaluation (LREC’06). Genoa, Italy: European Language Resources Association
(ELRA), 2006.

[37] Akanksha Joshi et al. “SummCoder: An Unsupervised Framework for Extractive
Text Summarization Based on Deep Auto-encoders”. In: Expert Systems with Appli-
cations (2019). issn: 0957-4174. doi: 10.1016/J.ESWA.2019.03.045.

[38] Dan Jurafsky and James H. Martin. Speech and language processing : an introduction
to natural language processing, computational linguistics, and speech recognition. 2nd
ed. Pearson Prentice Hall, 2009, p. 988. isbn: 0135041961.

[39] Dan Jurafsky and James H. Martin. Speech and language processing : an introduction
to natural language processing, computational linguistics, and speech recognition. 3rd
ed. dr. Pearson Prentice Hall, 2019.

[40] Uday Kamath et al. “Attention and Memory Augmented Networks”. In: Deep Learn-
ing for NLP and Speech Recognition. Cham, Switzerland: Springer International
Publishing, 2019, pp. 407–462. doi: 10.1007/978-3-030-14596-5_9.

[41] Katharina Kann, Sascha Rothe, and Katja Filippova. “Sentence-Level Fluency Eval-
uation: References Help, But Can Be Spared!” In: Proceedings of the 22nd Confer-
ence on Computational Natural Language Learning. Brussels, Belgium: Association
for Computational Linguistics, 2018, pp. 313–323. doi: 10.18653/v1/K18-1031.

[42] Ryan Kiros et al. “Skip-Thought Vectors”. In: Advances in Neural Information Pro-
cessing Systems 28. Ed. by C Cortes et al. Curran Associates, Inc., 2015, pp. 3294–
3302.

[43] Alex Kulesza and Ben Taskar. “Determinantal point processes for machine learning”.
In: Foundations and Trends in Machine Learning 5.2-3 (2012), pp. 123–286. issn:
19358237. doi: 10.1561/2200000044. arXiv: 1207.6083.

[44] Mirella Lapata and Regina Barzilay. “Automatic evaluation of text coherence: Mod-
els and representations”. In: IJCAI International Joint Conference on Artificial In-
telligence. Edinburgh, Scotland, 2005, pp. 1085–1090.

[45] Logan Lebanoff, Kaiqiang Song, and Fei Liu. “Adapting the Neural Encoder-Decoder
Framework from Single to Multi-Document Summarization”. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics, 2018, pp. 4131–4141. doi: 10.
18653/v1/D18-1446.

[46] Piji Li et al. “Salience estimation via variational auto-encoders for multi-document
summarization”. In: 31st AAAI Conference on Artificial Intelligence, AAAI 2017
(2017), pp. 3497–3503.

[47] Chin-Yew Lin and Eduard Hovy. “Manual and automatic evaluation of sum-
maries”. In: Proceedings of the ACL-02 Workshop on Automatic Summarization -
. Vol. 4. Phildadelphia, Pennsylvania, Association for Computational Linguistics,
2002, pp. 45–51. doi: 10.3115/1118162.1118168.

55

https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.1016/J.ESWA.2019.03.045
https://doi.org/10.1007/978-3-030-14596-5_9
https://doi.org/10.18653/v1/K18-1031
https://doi.org/10.1561/2200000044
http://arxiv.org/abs/1207.6083
https://doi.org/10.18653/v1/D18-1446
https://doi.org/10.18653/v1/D18-1446
https://doi.org/10.3115/1118162.1118168

Bibliography

[48] Hui Lin and Jeff Bilmes. “A Class of Submodular Functions for Document Sum-
marization Extractive Document Summarization The figure below represents the
sentences of a document”. In: Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies - Volume 1
(2011), pp. 510–520.

[49] Lucian Vlad Lita et al. “tRuEcasIng”. In: Proceedings of the 41st Annual Meeting
on Association for Computational Linguistics - ACL ’03. Vol. 1. Morristown, NJ,
USA: Association for Computational Linguistics, 2003, pp. 152–159. doi: 10.3115/
1075096.1075116.

[50] Yinhan Liu et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”.
In: (2019). arXiv: 1907.11692.

[51] H. P. Luhn. “The Automatic Creation of Literature Abstracts”. In: IBM Journal of
Research and Development 2.2 (1958), pp. 159–165. issn: 0018-8646. doi: 10.1147/
rd.22.0159.

[52] Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches to
Attention-based Neural Machine Translation”. In: Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Asso-
ciation for Computational Linguistics, 2015, pp. 1412–1421. doi: 10.18653/v1/D15-
1166.

[53] Shulei Ma, Zhi-Hong Deng, and Yunlun Yang. “An Unsupervised Multi-Document
Summarization Framework Based on Neural Document Model”. In: Proceedings of
COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, 2016,
pp. 1514–1523.

[54] Christopher D. Manning, Hinrich Schütze, and Gerhard Weikurn. Foundations
of Statistical Natural Language Processing. 1st ed. MIT Press Ltd, 1999. isbn:
0262133601. doi: 10.1145/601858.601867.

[55] Oren Melamud, Jacob Goldberger, and Ido Dagan. “context2vec: Learning Generic
Context Embedding with Bidirectional LSTM”. In: Proceedings of The 20th SIGNLL
Conference on Computational Natural Language Learning. Berlin, Germany: Associ-
ation for Computational Linguistics, 2016, pp. 51–61. doi: 10.18653/v1/K16-1006.

[56] Rada Mihalcea and Paul Tarau. “TextRank: Bringing Order into Text”. In: Proceed-
ings of the 2004 Conference on Empirical Methods in Natural Language Processing.
Barcelona, Spain: Association for Computational Linguistics, 2004, pp. 404–411.

[57] Tomas Mikolov et al. “Distributed representations ofwords and phrases and their
compositionality”. In: Advances in Neural Information Processing Systems (2013).
issn: 10495258. arXiv: 1310.4546.

[58] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector
Space”. In: 1st International Conference on Learning Representations, {ICLR}.
Scottsdale, Arizona, USA, 2013. arXiv: 1301.3781.

[59] Tomas Mikolov et al. “Recurrent neural network based language model”. In: Eleventh
annual conference of the international speech communication association. Makuhari,
Chiba, Japan, 2010.

[60] Tom M Mitchell. Machine learning. Vol. 1st ed. McGraw-Hill Education Ltd, 1997.
isbn: 978-0070428072.

56

https://doi.org/10.3115/1075096.1075116
https://doi.org/10.3115/1075096.1075116
http://arxiv.org/abs/1907.11692
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.1145/601858.601867
https://doi.org/10.18653/v1/K16-1006
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1301.3781

Bibliography

[61] Frederic Morin and Yoshua Bengio. “Hierarchical probabilistic neural network lan-
guage model”. In: AISTATS 2005 - Proceedings of the 10th International Workshop
on Artificial Intelligence and Statistics. 2005, pp. 246–252. isbn: 097273581X.

[62] Mir Tafseer Nayeem, Tanvir Ahmed Fuad, and Yllias Chali. “Abstractive Unsu-
pervised Multi-Document Summarization using Paraphrastic Sentence Fusion”. In:
Proceedings of the 27th International Conference on Computational Linguistics.
Santa Fe, New Mexico, USA: Association for Computational Linguistics, Aug. 2018,
pp. 1191–1204.

[63] Ani Nenkova, Rebecca Passonneau, and Kathleen Mckeown. “The Pyramid Method:
Incorporating human content selection variation in summarization evaluation”. In:
ACM Transactions on Speech and Language Processing 4.2 (May 2007), 4–es. issn:
15504875. doi: 10.1145/1233912.1233913.

[64] Jun Ping Ng and Viktoria Abrecht. “Better summarization evaluation with word
embeddings for ROUGE”. In: Conference Proceedings - EMNLP 2015: Conference
on Empirical Methods in Natural Language Processing (Aug. 2015), pp. 1925–1930.
arXiv: 1508.06034.

[65] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. “A Survey of the Usages
of Deep Learning in Natural Language Processing”. In: (2018). arXiv: 1807.10854.

[66] Karolina Owczarzak et al. “An Assessment of the Accuracy of Automatic Evalu-
ation in Summarization”. In: Proceedings of Workshop on Evaluation Metrics and
System Comparison for Automatic Summarization. Montréal, Canada: Association
for Computational Linguistics, 2012, pp. 1–9.

[67] Kishore Papineni et al. “BLEU”. In: Proceedings of the 40th Annual Meeting on Asso-
ciation for Computational Linguistics - ACL ’02. Morristown, NJ, USA: Association
for Computational Linguistics, 2001, p. 311. doi: 10.3115/1073083.1073135.

[68] Rebecca J. Passonneau et al. “Automated Pyramid Scoring of Summaries using
Distributional Semantics”. In: Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2: Short Papers). Sofia, Bulgaria:
Association for Computational Linguistics, 2013, pp. 143–147.

[69] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe: Global
vectors for word representation”. In: EMNLP 2014 - 2014 Conference on Em-
pirical Methods in Natural Language Processing, Proceedings of the Conference.
Doha, Qatar: Association for Computational Linguistics, 2014, pp. 1532–1543. isbn:
9781937284961. doi: 10.3115/v1/d14-1162.

[70] Christian S. Perone, Roberto Silveira, and Thomas S. Paula. “Evaluation of sentence
embeddings in downstream and linguistic probing tasks”. In: (June 2018). arXiv:
1806.06259.

[71] Matthew Peters et al. “Deep Contextualized Word Representations”. In: Proceedings
of the 2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long Papers). New
Orleans, Louisiana, USA: Association for Computational Linguistics, 2018, pp. 2227–
2237. doi: 10.18653/v1/n18-1202. arXiv: 1802.05365.

57

https://doi.org/10.1145/1233912.1233913
http://arxiv.org/abs/1508.06034
http://arxiv.org/abs/1807.10854
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/d14-1162
http://arxiv.org/abs/1806.06259
https://doi.org/10.18653/v1/n18-1202
http://arxiv.org/abs/1802.05365

Bibliography

[72] Maxime Peyrard and Judith Eckle-Kohler. “Supervised learning of automatic pyra-
mid for optimization-based multi-document summarization”. In: ACL 2017 - 55th
Annual Meeting of the Association for Computational Linguistics, Proceedings of
the Conference (Long Papers). Vol. 1. Vancouver, Canada: Association for Compu-
tational Linguistics, 2017, pp. 1084–1094. isbn: 9781945626753. doi: 10.18653/v1/
P17-1100.

[73] Alec Radford and Tim Salimans. Improving Language Understanding by Generative
Pre-Training. 2018.

[74] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguis-
tics, 2019. arXiv: 1908.10084.

[75] Lior Rokach and Oded Maimon. “Clustering Methods”. In: Data Mining and Knowl-
edge Discovery Handbook. New York: Springer-Verlag, 2005, pp. 330–331. doi: 10.
1007/0-387-25465-X_15.

[76] Stuart Rose et al. “Automatic Keyword Extraction from Individual Documents”. In:
Text Mining: Applications and Theory. Chichester, UK: John Wiley & Sons, Ltd,
Mar. 2010, pp. 1–20. isbn: 9780470749821. doi: 10.1002/9780470689646.ch1.

[77] Gaetano Rossiello, Pierpaolo Basile, and Giovanni Semeraro. “Centroid-based Text
Summarization through Compositionality of Word Embeddings”. In: Proceedings of
the MultiLing 2017 Workshop on Summarization and Summary Evaluation Across
Source Types and Genres. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2017, pp. 12–21. doi: 10.18653/v1/W17-1003.

[78] Raphael Schumann. “Unsupervised Abstractive Sentence Summarization using
Length Controlled Variational Autoencoder”. In: (Sept. 2018). arXiv: 1809.05233.

[79] Abigail See, Peter J. Liu, and Christopher D. Manning. “Get To The Point: Sum-
marization with Pointer-Generator Networks”. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Vancouver, Canada: Association for Computational Linguistics, 2017, pp. 1073–1083.
doi: 10.18653/v1/P17-1099.

[80] Elaheh ShafieiBavani et al. “A Graph-theoretic Summary Evaluation for ROUGE”.
In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. Brussels, Belgium: Association for Computational Linguistics, 2018,
pp. 762–767. doi: 10.18653/v1/D18-1085.

[81] Elaheh ShafieiBavani et al. “An Efficient Approach for Multi-Sentence Compres-
sion”. In: Proceedings of The 8th Asian Conference on Machine Learning. Ed. by
Robert J Durrant and Kee-Eung Kim. Vol. 63. Proceedings of Machine Learning Re-
search. The University of Waikato, Hamilton, New Zealand: PMLR, 2016, pp. 414–
429.

[82] Madhvi Soni and Jitendra Singh Thakur. “A Systematic Review of Automated
Grammar Checking in English Language”. In: (Mar. 2018). arXiv: 1804.00540.

[83] Josef Steinberger and Karel Jezek. Using Latent Semantic Analysis in Text Summa-
rization and Summary Evaluation. 2004. doi: 10.1177/0165551511408848.

[84] Josef Steinberger and Karel Ježek. “Evaluation measures for text summarization”.
In: Computing and Informatics 28.2 (2009), pp. 251–275. issn: 13359150.

58

https://doi.org/10.18653/v1/P17-1100
https://doi.org/10.18653/v1/P17-1100
http://arxiv.org/abs/1908.10084
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.18653/v1/W17-1003
http://arxiv.org/abs/1809.05233
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/D18-1085
http://arxiv.org/abs/1804.00540
https://doi.org/10.1177/0165551511408848

Bibliography

[85] Josef Steinberger, Peter Krejzl, and Tomáš Brychcín. “Pyramid-based Summary
Evaluation Using Abstract Meaning Representation”. In: RANLP 2017 - Recent
Advances in Natural Language Processing Meet Deep Learning. Varna, Bulgaria:
Incoma Ltd. Shoumen, Bulgaria, Nov. 2017, pp. 701–706. isbn: 9789544520496. doi:
10.26615/978-954-452-049-6_090.

[86] Raphael Tang et al. “Distilling Task-Specific Knowledge from BERT into Simple
Neural Networks”. In: (2019). arXiv: 1903.12136.

[87] Simone Teufel and Hans Van Halteren. “Evaluating Information Content by Factoid
Analysis: Human annotation and stability.” In: Proceedings of the Conference on
Empirical Methods on Natural Language Processing (EMNLP ’04) (2004), pp. 419–
426.

[88] J R R Tolkien. The Fellowship of the Ring. Vol. 1. London: George Allen & Unwin
Ltd., 1954.

[89] Dung Tran Tuan, Nam Van Chi, and Minh Quoc Nghiem. “Multi-sentence Compres-
sion Using Word Graph and Integer Linear Programming”. In: Studies in Computa-
tional Intelligence. Vol. 710. Springer, Cham, 2017, pp. 367–377. doi: 10.1007/978-
3-319-56660-3_32.

[90] Ashish Vaswani et al. “Attention is all you need”. In: Advances in Neural Information
Processing Systems 30. Curran Associates, Inc., 2017, pp. 5999–6009. arXiv: 1706.
03762.

[91] Xiaojun Wan. “Automatic Text Simplification”. In: Computational Linguistics 44.4
(Dec. 2018), pp. 659–661. issn: 0891-2017. doi: 10.1162/coli_r_00332.

[92] Qian Yang, Rebecca J. Passonneau, and Gerard De Melo. “PEAK: Pyramid evalu-
ation via automated knowledge extraction”. In: 30th AAAI Conference on Artificial
Intelligence, AAAI 2016. AAAI Press, 2016, pp. 2673–2679. isbn: 9781577357605.

[93] Zhilin Yang et al. “XLNet: Generalized Autoregressive Pretraining for Language
Understanding”. In: (2019). arXiv: 1906.08237.

[94] Michihiro Yasunaga et al. “Graph-based Neural Multi-Document Summarization”.
In: Proceedings of the 21st Conference on Computational Natural Language Learn-
ing (CoNLL 2017). Vancouver, Canada: Association for Computational Linguistics,
2017, pp. 452–462. doi: 10.18653/v1/K17-1045.

[95] Aston Zhang et al. Dive into Deep Learning. Creative Commons licence, published
on http://www.d2l.ai, 2019.

[96] Fangfang Zhang, Jin-ge Yao, and Rui Yan. “On the Abstractiveness of Neural Docu-
ment Summarization”. In: Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing. Brussels, Belgium: Association for Computational
Linguistics, 2018, pp. 785–790. doi: 10.18653/v1/D18-1089.

[97] Yukun Zhu et al. “Aligning Books and Movies: Towards Story-Like Visual Explana-
tions by Watching Movies and Reading Books”. In: 2015 IEEE International Con-
ference on Computer Vision (ICCV). IEEE, Dec. 2015, pp. 19–27. isbn: 978-1-4673-
8391-2. doi: 10.1109/ICCV.2015.11.

59

https://doi.org/10.26615/978-954-452-049-6_090
http://arxiv.org/abs/1903.12136
https://doi.org/10.1007/978-3-319-56660-3_32
https://doi.org/10.1007/978-3-319-56660-3_32
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1162/coli_r_00332
http://arxiv.org/abs/1906.08237
https://doi.org/10.18653/v1/K17-1045
https://doi.org/10.18653/v1/D18-1089
https://doi.org/10.1109/ICCV.2015.11

List of Figures

2.1 Conceptual architecture of an FFN and an RNN, with two input neurons,
a single hidden layer and one output neuron. 7

2.2 Architectures of the proposed models from Mikolov et al. [58, 57] with an
exemplary context size of 5. The CBOW model is trained to predict the
word wi based on the sum of the previous and the future words in its
context. The Skip-gram works the other way around by trying to predict
the context words based on the center word wi. 9

2.3 Encoder-decoder architecture, drawn after Kamath et al. [40]. The input
tokens xi, ..., xn are mapped to the encoders fixed-length hidden state h and
the last hidden state hn is used as input for the first output token y0 and
the decoders hidden states h Kamath et al. [40]. 11

2.4 Sequence to sequence model with attention, draw after Zhang et al. [95]. . . 12
2.5 The encoder-decoder architecture of the Transformer model, drawn after

Vaswani et al. [90]. Both the encoder on the left side and the decoder on
the right side are composed of N identical layers. 13

3.1 Evaluation measures taxonomy by Gambhir and Gupta [25]. Generally,
evaluation measures are divided into extrinsic (task-specific) and intrinsic
(task-agnostic) measurements. This thesis focuses on the latter, which in-
cludes the quality aspects defined in Section 2.2. 17

3.2 Example pyramid with matching SCUs selected adapted from Nenkova et
al. [63]. Higher levels indicate more important SCUs, based on the fact that
they are mentioned in multiple reference summaries. 22

4.1 A high-level view of the system’s architecture 25
4.2 Architecture of the extractive part, based on Joshi et al. [37]. 26
4.3 Example skip-thought sentence triplet from Kiros et al. [42]. <eos> repre-

sents the end of a sentence. 27
4.4 Conceptual processing pipeline of the document embedding creation. 28
4.5 Architecture of the abstractive part, based on Nayeem et al. [62]. 31
4.6 Bi-directional GRU for sentence encoding, drawn after Nayeem et al. [62]. . 32
4.7 Example word graph based on real sentences from the DUC 2004 dataset.

To simplify the figure, only two sentences are shown which connect on the
1990 node. POS-tags are omitted for clarity as well. 33

60

List of Tables

2.1 An excerpt from the fantasy novel The Fellowship of the Ring from Tolkien
[88], alongside an exemplary extractive and abstractive summary. 4

4.1 Exemplary sentence with coarse and fine POS tags. 32

5.1 Results for the proposed approach in comparison to several influential peer
systems. (* lower is better) . 40

6.1 The results for each dataset after changing the weighted sum of the original
three metrics to the minimum of novelty and relevance. (*lower is better) . 42

6.2 STS benchmark results for different sentence embeddings. Values as re-
ported by Reimers and Gurevych [74] and Perone et al. [70]. Values in
parentheses are obtained from the large version of the system. 42

6.3 Improvements in the results for each dataset after switching to the Sentence
BERT model. (*lower is better) . 43

6.4 Improvements in the overall result for the candidate sentences after ranking
the sentence fusions based on the normalized perplexity of OpenAi GPT-2.
(*lower is better) . 44

6.5 Improvements in the fluency and abstractiveness (lower is better) values
after augmenting the lexical substitution component to use normalized per-
plexity instead of neighbouring context-embedding distance. 44

6.6 Changes to the results for each dataset when using YAKE instead of RAKE.
(*lower is better) . 45

6.7 Percentages of correctly ordered words of the DUC-2004 dataset. The pro-
posed rule-based POS-tagging approach outperforms the approach from
Lita et al. [49]. 46

6.8 Percentages of correctly ordered sentences from a randomly shuffled docu-
ments of the DUC 2004 dataset. 47

6.9 Results of the original approach in comparison to the results obtained with
iterative improvements. (*lower is better) 48

6.10 Results for the final version in comparison to several influential peer sys-
tems. (* lower is better) . 49

61

	Abstract
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Research objectives
	1.3 Outline

	2 Theoretical foundations
	2.1 The summarization task
	2.2 Summary quality
	2.3 Natural Language Processing
	2.4 Neural networks
	2.5 Language Modeling
	2.6 Word embeddings
	2.7 Sequence to Sequence processing
	2.7.1 Attention
	2.7.2 The Transformer

	3 Related work to summarization
	3.1 An overview of multi-document summarization techniques
	3.2 Summary evaluation
	3.2.1 Informativeness
	3.2.1.1 Lexical similarity
	3.2.1.2 Content coverage

	3.2.2 Quality
	3.2.2.1 Fluency
	3.2.2.2 Coherence

	4 Approach and implementation
	4.1 Architecture overview
	4.2 Extractive single-document summarization
	4.2.1 Pre-processing
	4.2.2 Sentence encoding
	4.2.3 Sentence relevance metric
	4.2.4 Sentence position metric
	4.2.5 Sentence novelty metric
	4.2.6 Sentence selection

	4.3 Abstractive multi-document summarization
	4.3.1 Pre-processing
	4.3.2 Sentence encoding and clustering
	4.3.3 Sentence Fusion Word Graph
	4.3.4 Lexical substitution
	4.3.5 Keyphrase extraction
	4.3.6 Sentence selection

	5 Evaluation
	5.1 Evaluation strategy
	5.2 Datasets
	5.2.1 Opinosis - Opinion Dataset
	5.2.2 Document Understanding Conference (DUC) Dataset
	5.2.3 Multi-News Dataset

	5.3 Results

	6 Analysis and discussion
	6.1 Generalizing the extractive selection
	6.2 Sentence encoding
	6.3 Sentence Fusion Word Graph
	6.4 Lexical substitution
	6.5 Keyphrase extraction
	6.6 True-case sentences
	6.7 Improving text coherence
	6.8 Bringing it all together

	7 Conclusion and future work
	Bibliography
	List of Figures
	List of Tables

