UH
jﬁ
L2 8 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

MASTERTHESIS

Estimating the influence of auxiliary training
data for learning natural language processing
tasks

vorgelegt von

Fynn Schroder

Universitat Hamburg

MIN-Fakultat
Fachbereich Informatik
Studiengang: Informatik
Matrikelnummer: 7003971

Abgabedatum: 23.10.2019

Erstgutachter: Prof. Dr. Chris Biemann
Zweitgutachter: Benjamin Milde

Abstract

Today’s computational natural language processing is largely based data-based machine
learning approaches. Deep neural networks achieve state-of-the-art results and are thus
commonly used. A downside is their need for large training corpora and the time- and
resource-consuming training process. In case of insufficient amounts of training data,
a solution is the usage of auxiliary training data. However, finding the most suitable
auxiliary dataset requires an even more time-consuming trial-and-error approach.

Therefore, new methods are developed in this thesis to shorten the tedious search
or make it entirely unnecessary. Based on the hypothesis that auxiliary data similar to
the main training data results in a better performance, new methods are designed to
automatically compute the similarity between any two sequence tagging datasets.

Compared to previous approaches, the new methods have two advantages. First, words
and their labels are both taken into account when computing the similarity. This makes
the methods more robust than previous approaches that only use either words or labels as
their source of information. Second, the methods can compare raw datasets of arbitrary
sequence tagging tasks without any preprocessing. Previous approaches working on labels
required one of the datasets to be annotated in parallel with the labels from the other
task. Thus, it was only possible to compare datasets of different tasks where at least one
of the tasks had to be almost perfectly automatically taggable.

In multiple experiments, the hypothesis could be confirmed empirically. The designed
similarity measurement methods conform to the intuition, which pairs of datasets should
be similar to each other. In addition, they correlate with the test results obtained from
neural networks that use the corresponding auxiliary datasets for multi-task learning.
To a certain extent, it is possible to predict the multi-task learning results on the test
sets based on the datasets’ similarity and the neural network’s single-task learning
performance.

As part of this work, an efficient, open-source implementation® is provided, which can
compute multiple similarity measures on sequence tagging datasets. In the course of the
implementation, an effective solution was designed to identify all most similar pairs of
vectors for a large amount of word vectors. The software allows automatically identifying
similar datasets instead of performing the time-consuming training process for every
possible auxiliary dataset to find the most suitable auxiliary training data. As a result,
the time spent in a trial-and-error search for a suitable auxiliary dataset to train deep
neural networks with multi-task learning can be reduced to a fraction.

!Source code available at https://github.com/zoodyy/seq-tag-sim and on the attached disk

https://github.com/zoodyy/seq-tag-sim

Zusammenfassung

Die automatisierte Verarbeitung natiirlicher Sprache findet heutzutage vor allem mit
datenbasierten Ansétzen des maschinellen Lernens statt. Insbesondere kiinstliche neu-
ronale Netzwerke werden bevorzugt eingesetzt, da sie aktuell die besten Ergebnisse
erzielen. Diese benotigen jedoch viele Trainingsdaten und der Lernprozess ist zeit- und
ressourcenintensiv. Bei unzureichend vielen Trainingsdaten sind passende Hilfsdatensat-
ze eine Losung. Den am besten geeigneten Hilfsdatensatz zu finden, erfordert jedoch
zeitaufwéndiges Ausprobieren.

Daher werden in dieser Arbeit Methoden entwickelt, um diese Suche abzukiirzen
oder gar iiberfliissig zu machen. Basierend auf der Hypothese, dass zu den priméren
Trainingsdaten dhnliche Datensétze ein besseres Ergebnis erzielen, werden Methoden zur
Bestimmung der Ahnlichkeit zweier Sequenz-Tagging-Datensitze konzipiert.

Im Vergleich zu bisherigen Ansétzen haben diese zweierlei Vorteile. Einerseits werden
sowohl Worte als auch deren Annotationen zur Berechnung der Ahnlichkeit einbezogen,
wodurch die neu entwickelten Methoden robuster sind als bisherige Vorgehensweisen, die
nur entweder Worte oder Annotationen berticksichtigen. Andererseits sind die Methoden
zum Vergleich von unbearbeiteten Datenséitzen beliebiger Aufgaben anwendbar, wahrend
bisherige Ansétze basierend auf Annotationen es erfordern, dass mindestens einer der
Datensatze parallel mit den Annotationen aus der anderen Aufgabe versehen ist. So ist
es bisher nur moglich gewesen, Datensétze verschiedener Aufgaben zu vergleichen, wobei
eine dieser Aufgaben beinahe perfekt automatisch annotierbar sein musste.

Die Hypothese wird anhand mehrerer Experimente empirisch bestatigt. Die neu
konzipierten Methoden zur Ahnlichkeitsmessung stimmen mit der Intuition iiberein,
welche Datensétze sich ahnlicher sein sollten als andere, und sie korrelieren mit den
Ergebnissen neuronaler Netzwerke, die mit den entsprechenden Hilfsdaten trainiert
wurden. Bis zu einem gewissen Grad ist sogar eine Vorhersage der Ergebnisse auf den
Testdatensitzen anhand der Ahnlichkeit der verwendeten Daten moglich.

Im Rahmen dieser Arbeit wird eine effiziente Softwareimplementierung? bereitgestellt,
mit der die Ahnlichkeit von Sequenz-Tagging-Datensitzen anhand mehrerer Ahnlichkeits-
mafle berechnet werden kann. Im Zuge der Implementierung wurde eine effektive Methode
zum Finden der dhnlichsten Vekotrenpaare in einer grolen Anzahl von Wortvektoren
entwickelt. Mit dieser Software wird es ermoglicht, dhnliche Datensétze automatisiert
und schnell zu identifizieren, anstatt zeitintensives Training fiir alle moglichen Hilfsda-
tensdtze durchzufiihren um geeignete zusétzliche Daten zu finden. Somit lasst sich der
zeitliche Aufwand des Ausprobierens diverser Hilfsdatensétze fiir das Training komplexer
neuronaler Netze bei Verwendung von Hilfsdaten auf einen Bruchteil reduzieren.

2Quellcode verfiigbar unter https://github.com/zoodyy/seq-tag-sim und auf der CD

I1I

https://github.com/zoodyy/seq-tag-sim

Danksagung

Ich maochte Chris herzlich dafiir danken diese
spannende Thesis schreiben zu konnen. Zu schatzen
gelernt habe ich insbesondere die wunderbare
Betreuung, die unglaubliche schnelle Beantwortung
allerler Fragen meinerseits, die Vorschldge fiir
Verbesserungsmaglichkeiten, die vielen guten Ideen
sowie die Motivation um die Arbeit auch abzuschliefen.

Ich méchte auch Benjamin fiir seine hilfreichen
Vorschlige beziiglich Inhalt und Strukturierung der
Arbeit sowie Tipps zu den Experimenten samt deren
Durchfihrung und Auswertung danken.

Meinen Freunden danke ich fiir ihre moralische
Unterstitzung und fir ihr Verstindnis wdhrend der
anstrengenden Zeit des Schreibens.

Meinen Eltern Renate und Olaf mochte ich zutiefst
dafiir danken, dass sie immer an mich glauben und
mich jedes Mal unterstiitzen, wenn notig.

Meine umfassende Dankbarkeit und Liebe maochte ich
Swaantje ausdricken. Sie war immer fiir mich da,
wenn ich sie brauchte. Auflerdem hat sie mich immer
motivert, wenn ich bei der Thesis zweifelte, mich
erinnert auch Zeit fiir schone Dinge neben der Thesis
zu nehmen und mir so oft ein Lédcheln auf die Lippen
gezaubert.

Contents

1

Introduction

1.1 Motivation Lo

1.2 Research question

1.3 High-level overviewo

Theoretical background

2.1 Sequence tagging with statistical modeling methods
2.1.1 Hidden Markov Model (HMM)
2.1.2 Maximum Entropy Markov Models (MEMM)
2.1.3 Conditional Random Fields (CRF)

2.2 Neural networks
2.2.1 Fundamentals o
2.2.2 Feedforward neural networkso
2.2.3 Recurrent neural networkso
2.24 Regularization oo
2.2.5 Hyperparameter optimization
2.2.6 Word embeddings Lo

2.3 Multi-task learning
2.3.1 Theory and application in neural networks
2.3.2 MTL variants and differences to transfer learning

2.4 Information theoretic clustering comparison measures

2.4.1 Entropy, joint entropy and conditional entropy
2.4.2 Mutual information
2.4.3 Comparing clusterings L.
2.4.4 Information theoretic similarity measures

Related work

3.1 Multi-task learning for sequence tagging
3.2 Effect of auxiliary task similarity
Dataset similarity concepts

4.1 Hypotheses
4.2 Requirements
4.3 Framing label similarity as a clustering comparison problem
4.4 Evaluation of clustering comparison measures
4.5 Calculation of dataset similarity from labels

4.5.1 Textoverlap

VII

VIII Contents

4.5.2 Vector space similarity
4.6 Calculation of dataset similarity from gradients observed during training

5 Neural MTL system implementation
5.1 Objectives e
5.2 Architecture
5.3 Design decisions and training process
5.4 Implementation summaryo

6 Dataset similarity tool
6.1 Objectives
6.2 Architecture overview
6.3 Textoverlap
6.4 Vector space similarity L oo
6.5 Contingency table similarity measures

7 Experiments
7.1 Preliminary evaluation of dataset similarity design decisions
7.1.1 Evaluation of the similarity of identical datasets
7.1.2 Comparison of the approaches to fill the contingency table
7.1.3 Run time efficiency of word vector comparisons
7.2 Experimental Setup
7.3 Results and analysis Lo
7.3.1 Part-of-speech taggingo
7.3.2 Named entity recognition L.
7.4 Multi-task learning test score prediction

8 Summary, Conclusion & Future Work
8.1 Summary
8.2 Conclusion
83 Futurework

List of Figures
List of Tables
Bibliography

A Appendices
A.1 Neural MTL system implementation details
A.2 Dataset similarity tool implementation details
A.3 Preliminary dataset similarity evaluation results
A.4 Experiment results POS tagging
A5 Experiment results NER

46

49
49
50
52
95

57
o7
o7
29
61
64

67
67
68
69
72
74
7
7
82
87

89
89
90
90

1 Introduction

In the field of computational natural language processing an example for a simple,
concrete task is part-of-speech tagging in which each word in a text has to be labeled
with its corresponding part of speech, e.g. noun, verb or adjective. To automatically
label texts with the part-of-speech labels, manually labeled texts are used to train a
program for this task. This thesis shows how to find the best text to improve the training
process depending on the labeled texts’ similarities.

1.1 Motivation

The trend in computational natural language processing is to use data-based machine
learning methods for a variety of tasks. State-of-the-art results on most tasks are mainly
achieved by employing deep neural networks for the entire natural language processing
pipeline. Such methods require a large amount of training data in order to learn all the
parameters in their complex models.

In many cases, the dataset used for training does not contain enough samples to obtain
satisfactory results. Data scarcity is a problem especially for uncommon tasks or when
working with manually created datasets. Often it is not feasible to label more training
data because the raw data source is limited or manual annotation is too expensive. In
this case, the possible options are to reduce the model’s complexity and accept a lower
performance or use similar datasets as auxiliary training data. For common tasks in
natural language processing, there are plenty of datasets available. In case of niche tasks,
related common tasks can be leveraged. Auxiliary datasets can be incorporated into the
training process by applying transfer learning or multi-task learning.

When including auxiliary datasets to improve the performance on the main dataset,
the question arises which dataset(s) to use. In order to find the additional dataset or
combination of datasets that provide the largest performance gain on the main task,
it is necessary to try them all and perform individual hyperparameter optimization.
Comparing different auxiliary datasets with the same hyperparameters would be like
comparing apples to oranges. One of the following two types of errors is likely to occur:
When testing on a low-capacity model, the gains of using more data are miniscule. In
the other extreme, testing a high-capacity model with no or only small amounts of extra
data will overfit, fail to generalize and thereby perform poorly.

Especially for complex deep neural networks with many hyperparameters, the process
of comparing multiple auxiliary training datasets with individual hyperparameter op-
timization will take a long time and consume precious resources. For these reasons, a
better way of selecting suitable additional datasets needs to be found.

2 1 Introduction

1.2 Research question

It would be valuable to know whether it is worthwhile to perform transfer learning or
multi-task learning for a specific task and training dataset given some auxiliary dataset.
The question is how to estimate the effect of an auxiliary dataset on the main task
without performing expensive training and hyperparameter optimization. The goal of
this thesis is to devise a fast method to estimate the effect of auxiliary training data
on the performance of the main task. More specific, the method should be able to
distinguish datasets having the potential to improve results on the main task from those
that will have no effect or even worsen the performance.

While there are numerous tasks in natural language processing, the scope of this thesis
is limited to a subset of sequence tagging problems. Common sequence tagging tasks
are for example part-of-speech (POS) tagging and named entity recognition (NER). To
be easily applicable for a wide range of sequence labeling tasks and combinations of
datasets, the method must work on raw training data. It should be able to compare
arbitrary datasets without any constraints on the tokens or labels. Unlike the work by
Bjerva (2017), the method must not be constrained to automatically taggable tasks.
While the method should be able to work with datasets belonging to different tasks, only
the effects between datasets of the same task will be explored in this thesis to reduce the
scope to a feasible level. The subsequent problem, how to reliably evaluate the method
to be designed, needs also to be resolved.

1.3 High-level overview

In order to provide a broad idea of how the research question will be tackled throughout
this thesis, the high-level approach will be briefly illustrated. An example schematic of
the approach is also shown in Figure 1.1. The effect of auxiliary datasets on the main
task performance shall be estimated by comparing the similarity between the main and
auxiliary dataset. Two sequence tagging datasets can be compared via their labels by
using their shared vocabulary as a bridge. Words and labels from one dataset are joined
with the words and their labels from another dataset to create a probabilistic mapping
between both label sets. By assessing the quality of this label mapping, the similarity of
the datasets will be measured. Finally, experiments will be performed to check whether
the similarity correlates with the effect on the multi-task learning performance when
using the second dataset as auxiliary training data.

Before the concepts for the outlined approach can be described in detail, the necessary
theoretical background for the understanding of this thesis will be explained in following
chapter. This includes the relevant aspects of sequence tagging, neural networks, multi-
task learning and information theoretic measures. In Chapter 3, related work regarding
multi-task learning for sequence tagging and the effect of auxiliary task similarity is
summarized. The concepts of measuring dataset similarity are developed in Chapter 4.
This includes a definition of the underlying hypotheses and precise descriptions of the
functionality of multiple similarity calculation methods. In Chapter 5, the key aspects

1.3 High-level overview 3

auxiliary training auxiliary
dataset 1 dataset dataset 2

) 4 : A 4 \ 4 :) 4
neural > : fast i v : < neural
; - ; rain :
network . | auxiliary similarity | Jata - ; network
dataset 1 Computatjon auxﬂlary
dataset 1
vy S RMIEMEIEIEIEREE Voo v
. similarity: similarity:
score: high) score: low
high low
preferred auxiliary dataset poor auxiliary dataset

Figure 1.1: High-level approach example: Two auxiliary datasets are separately compared
regarding their similarity with the training dataset and their usefulness as
additional training data for a neural network.

of the neural multi-task learning system are described. The neural network is used in
the evaluation of the dataset similarity concepts. The implementation details of the
developed dataset similarity concepts are explained in Chapter 6. Aside from the software
architecture, different methods are clarified to create a probabilistic mapping between
the label sets of two datasets. In Chapter 7, the previously developed dataset similarity
approaches are evaluated. In extensive experiments, their concordance with the effect of
different auxiliary datasets on the multi-task learning performance is examined.

2 Theoretical background

2.1 Sequence tagging with statistical modeling methods

Sequence tagging is a class of tasks in natural language processing where each word or
token is assigned a label (also called tag). For example in part-of-speech tagging, each
word is tagged with a POS tag, e.g. adjective, noun, verb etc. When working with raw
text data, the following steps are performed in the processing pipeline: Read the input
text, split into sentences, tokenize each sentence into words, apply the desired tagging
method and store the results. In case a preprocessed dataset is used, the pipeline is
reduced to reading the input, tagging the words and storing the results. (Jurafsky and
Martin, 2009, pp. 133-135)

The specialty of sequence tagging compared to other tasks such as classification is that
the tags depend on the other tags in the same context. As an example for part-of-speech
tagging, a verb is very unlikely to follow a determiner while adjective and noun are
common POS tags after a determiner. These dependencies between already predicted
labels and labels to be predicted in future require specific prediction methods to perform
well. Three classic approaches have been used for sequence tagging in the past before
the advent of neural models, which will be covered in Section 2.2.3: (1) Rule-based
techniques rely on a large set of handwritten linguistic rules to tag a word. These rule
sets quickly become unmanageably complex and time-consuming to maintain.(Jurafsky
and Martin, 2009, pp. 137-139) (2) Transformation based learning starts with a simple
solution and uses an algorithm to apply the best transformation rule in subsequent
steps until no improving rules can be applied. The necessary transformation rules are
extracted from an annotated training corpus.(Jurafsky and Martin, 2009, pp. 151-153;
Manning and Schiitze, 1999, pp. 361-365) (3) Statistical modeling methods are based
on the probabilities of word occurrences for a particular tag. These probabilities are
obtained from a training corpus. During inference, a probability distribution is computed
over possible labels and the best label sequence is chosen. There are three different
statistical modeling methods that will be described in greater detail as some of them are
used as a part in state-of-the-art neural sequence taggers.

2.1.1 Hidden Markov Model (HMM)

The foundation of a Hidden Markov Model is a Markov chain, which can be represented
by a special weighted finite-state automaton. It can be defined by a set of observable
states, a transition probability matrix (probabilities for moving from each state to every
other state) as well as a start and an end state. A first-order Markov chain adheres to the

6 2 Theoretical background

Markov property: The probability of a particular state is dependent only on the previous
state. For a Markov chain the input sequence must uniquely determine the states gone
through the automaton. Thus, it cannot handle ambiguous sequences commonly found
in natural languages. Further, a Markov chain can only compute a probability for an
observable sequence. For sequence tagging it is necessary to obtain a probability for
the labels while only observing the corresponding words. (Jurafsky and Martin, 2009,
pp. 173-176; Manning and Schiitze, 1999, pp. 317-320)

A HMM can be seen as an extension of a Markov chain solving its two main problems
for use in natural language sequence tagging tasks. It allows to incorporate both the
observed words and the labels in form of the hidden states. A HMM is a generative
model, assigning a joint probability to sequences with pairs of observation and label.
Compared to the Markov chain, its definition additionally includes a sequence of hidden
states and a sequence of observation likelihoods called emission probabilities (probability
of a particular observation being generated from a specific state). While the Markov
chain has to use the observation i.e. vocabulary as its states, a HMM uses labels as its
states and incorporates the observations into the model with their emission probabilities.
As a consequence, HMMs are not deterministic so that generating the same observation
can result in different states. The Markov property also holds true for a HMM. Emission
of observations can be modeled either as a state-emission HMM or arc-emission HMM. In
a state-emission HMM, a symbol is emitted for each state and the emission probability
of an observation depends only on the state that produced it — not on any other states
or observations. In case of an arc-emission HMM, symbols are emitted at the connecting
“arc” between states. Thus, each generated symbol depends on both the previous i.e.
source state and the next i.e. target state. (Jurafsky and Martin, 2009, pp. 177-179;
Manning and Schiitze, 1999, pp. 321-325)

Rabiner (1989) popularized three problems to be solved for a useful application on
real-world tasks. (1) Efficiently compute the likelihood of an observation sequence,
(2) find the state sequence that best explains the observations and (3) train the model to
learn the transition probability matrix and the emission probabilities.

To compute the observation likelihood (1), a naive algorithm is to sum all hidden state
sequence probabilities. The probability of each hidden state sequence is the product of
all transition probabilities. Instead of this exponential algorithm, an efficient dynamic
programming solution called the forward algorithm is used. For an explanation of the
forward algorithm refer to e.g. Jurafsky and Martin (2009, pp. 181-184).

Finding the best hidden sequence (2) for an observation sequence could be done
by performing an exhaustive search over all possible hidden state sequences. Each
sequence would require running the forward algorithm resulting in an extremely inefficient
computation. Instead, the Viterbi algorithm can be used to efficiently perform the
decoding, i.e. finding the best hidden state sequence. Refer to e.g. Jurafsky and Martin
(2009, pp. 184-187) for a detailed description of the Viterbi algorithm.

Training a HMM (3) is typically performed with an algorithm called forward-backward
or Baum-Welch (Baum, 1972) which is a specialization of the more general Expectation-
Maximization algorithm (Dempster et al., 1977). It allows to iteratively learn both
the transition probability matrix and the emission probabilities, which are randomly

2.1 Sequence tagging with statistical modeling methods 7

initialized. If a HMM is trained on an annotated training dataset, no Expectation-
Maximization training is necessary. The transition probabilities between the labels are
directly observable from the training data by counting the occurrences of all label-pairs
(Brejova et al., 2007).

Instead of only looking at the previous label to predict the current label (bi-gram
tagger), a HMM can be extended to look at the two previous labels to improve its
predictions. This results in a tri-gram HMM in which each state represents a label
bi-gram. In theory, an arbitrary n-gram could be used, but in practice there are no
gains due to data sparsity: Seeing a longer n-gram more than once is highly unlikely
(Rosenfeld, 2000). Using word features such as capitalization, suffix etc. instead of the
word itself to reduce data sparsity is impractical in HMMs as it results in many more
states greatly increasing the number of parameters (Jurafsky and Martin, 2009, p. 208).

2.1.2 Maximum Entropy Markov Models (MEMM)

In contrast to the generative HMM, a Maximum Entropy Markov Model is a discriminative
model conditioning the label on current and previous observations including arbitrary
features. MEMM is based on Maximum Entropy Modeling, which is a multinomial
logistic regression classifier. It allows to compute the probability of a single label given
an observation, i.e. a word. Maximum Entropy models can be trained by finding the
weights which maximize the log-likelihood of training samples with the help of a convex
optimization algorithm. (McCallum et al., 2000; Jurafsky and Martin, 2009, pp. 201-207)

MEMDMSs combine Maximum Entropy together with the Viterbi algorithm used in
HMMs. This enables finding the optimal label sequence for the whole sentence instead
of selecting the best label for each word on its own. While HMMs include distinct
probabilities for both state transition and observation, MEMMs produce only an estimate
for the probability of the next tag given the observation and the previous tag. With an
annotated dataset, the weights are easily trained to maximize the log-likelihood on the
training corpus. (McCallum et al., 2000; Jurafsky and Martin, 2009, pp. 207-211)

Although MEMMSs solve the lacking feature-support of HMMs, they are prone to the
so-called label bias problem. Outgoing probabilities of the current state to the next states
are normalized per state. When a state has many outgoing transitions, the probability
mass has to be divided among them, resulting in lower average transition probabilities
compared to states with fewer outgoing transitions. In the extreme case of a single
outgoing transition, the current observation is fully ignored. In general, states with lower
entropy are preferred regardless of the observations. This results in selecting a state
sequence with high probability that occasionally does not fit to the observation at all.
(Lafferty et al., 2001)

Figure 2.1 shows an example that illustrates the issue. Assuming the model starts in
State 1, the path (1-1-1-1) has the highest probability 0.45-0.45-0.5 = 0.1013. However,
with greedy Viterbi decoding, the system will end in State 2 because State I has a
higher probability to change to State 2 whereas State 2 prefers to stay in State 2. The
path (1-2-2-2) only has a probability of 0.55-0.3 - 0.3 = 0.0495. Yet it or another path
leading to State 2 will be the outcome for this example.

8 2 Theoretical background

Figure 2.1: MEMM: Example illustrating the label bias problem, after Xing (2007)

2.1.3 Conditional Random Fields (CRF)

Conditional Random Fields combine the strengths of both HMMs and MEMMSs without
their weaknesses. A CRF is a discriminative model like MEMM with support for features
on the observation sequence. By applying global normalization over the whole observation
sequence, the label bias problem is solved. The idea is that transitions can have a higher
probability depending on the observation. While it is possible to construct a HMM-like
CRF by using an appropriate feature functions, CRFs are more powerful as arbitrary
dependencies on the observation and state sequence can be modeled. In the simplest
form, the linear chain CRF, each hidden state has two neighbors allowing dependencies
on both previous and future states to be modeled. Figure 2.2 shows a comparison of
HMMs, MEMMs and CRFs. The Markov property holds for linear chain CRFs, enabling
efficient decoding using a variant of the Viterbi algorithm. (Lafferty et al., 2001)

The downside of the mutual dependence between labels and observations is a slower
training process even on annotated datasets. Counting the occurrences of label-pairs
for maximum likelihood estimation is no longer possible. Instead, iterative methods
calling variants of the forward-backward and Viterbi algorithm can be used. The
original and rather slow training algorithms are based on generalized iterative scaling
and improved iterative scaling (Lafferty et al., 2001). Newer, faster approaches are
based on gradient descent. This includes quasi-Newton methods such as the Broy-
den—Fletcher—Goldfarb—Shanno (BFGS) algorithm and conjugate gradient methods.
(Sutton and McCallum, 2012)

2.2 Neural networks 9

Lo 606

" (s)

® ®

@O

(a) HMM) MEMM
W
) CRF

Figure 2.2: Comparison of HMM, MEMM and CRF

2.2 Neural networks

An artificial neural network is a computational model inspired by biological neural
networks such as the human brain. In this model, many simple entities, called neurons,
are able to solve complex tasks through manifold connections between them.

With enough neurons, the right connections between them and suitable activation
functions, a neural network can approximate any continuous function (Hornik et al.,
1989). Therefore, neural networks are able to solve almost any complex task with one
caveat: The correct weights of the connections need to be found. Before the general ideas
to train the weights of neural networks will be outlined in Section 2.2.2, the fundamentals
of neural networks will be described in the upcoming section.

2.2.1 Fundamentals
A single neuron

A single artificial neuron is the basic building block of an artificial neural network. It
receives inputs from external sources or other neurons. Each of these input connections
has a weight assigned allowing the values of each connection to be weighted individually.
The weights are stored for each input and can be changed “learned” separately. These
learnable weights allow a neural network to be adjusted to a specific task. (Schmidhuber,
2015)

A neuron sums up all of its inputs resulting in an weighted sum. It applies a function,
called activation function, on this weighted sum and outputs the function’s result. An

10 2 Theoretical background

bias
Wo

wy step function

inputs @w\n Z —{ f(2) %@
@/ sum output

Figure 2.3: Perceptron

activation function can introduce non-linearity to the computation. This is needed for
solving any non-linear problem, which is the case for most real-word problems. The
output is connected to other neurons or to an external sink. This enables multiple
neurons to have arbitrary connections between them allowing to form a complex neural
network. (Freund and Schapire, 1999)

Perceptron

The perceptron (Rosenblatt, 1957) is a binary classifier mapping a real-valued vector as
input to either false: 0 or true: 1. Figure 2.3 shows the structure of a perceptron. It is
a simplistic neural “network” consisting of multiple inputs and a single neuron with a
threshold function as activation function. The unit step function outputs 1 if its input
(the weighted sum) is a positive value. In any other case, the output is 0. A perceptron
uses an additional constant input, called bias, regardless of the number of real input
signals. The bias is a constant input of 1 with a learnable weight w, allowing to add
any value to the weighted sum of a neuron. It is used as an effective way to shift the
activation function to the left or right, which is necessary because the activation function
is fixed. Thus, it allows to output 1 even if the weighed sum of the inputs without the
bias is negative. Otherwise, differentiating between two inputs with weighted sums of
identical signs e.g. 0.5 and 1.5 would not be possible. (Freund and Schapire, 1999)

In order to solve a task with a perceptron, its weights need to be learned. Formal
specification of a perceptron: = = (z1,xs,...,2,) is a single training sample, where
x; represents the value of the ith feature. c is the correct output for the input vector
x and y is the output of the perceptron for the same input. zy = 1 is the constant
bias. w = (wg,wy,ws, ..., w,) is the weight vector to be learned where w; is the
weight x; is multiplied with. f(z) is the activation function applied on the weighted
sum. The training process additionally requires a learning rate A typically in range
(0,1]. For training, the weights w can be initially set to 0 or random values. For each
training sample (x,c), two steps are executed. (1) Calculate the perceptron’s output
y=f(Cw-z)= flwyzg + wizrs + - -+ + wyz,) (2) Update the perceptron’s weights for

2.2 Neural networks 11

_ _ 1
2 N O'(CE) T 14exp(—z)

— tanh(x) = 20(2z) — 1

/ ReLU(x) = max(0, x)
0 g

Figure 2.4: Activation functions: Sigmoid, tanh and ReLLU

all features 0 <7 < n: w; = w; + A - (¢ — y)x;. Looping over all training samples can be
stopped at a predefined iteration count, when all training samples are classified correctly
or when a user defined training error threshold is reached. Minsky (1987, pp. 62-68) has
shown that the perceptron can only solve linearly separable problems. To overcome this
limitation, multiple neurons can be stacked together as shown in Section 2.2.2.

Activation functions

Apart from the step function previously introduced with the perceptron, there are many
other suitable activation functions. Figure 2.4 shows commonly used activation functions:
sigmoid, tanh and ReLU. The sigmoid function o(z) = 1/(1 + exp(—z)) squashes a real-
valued input to the range of 0 to 1. The hyperbolic tangent function tanh(z) = 20(2z) —1
can be defined to use the sigmoid function and squash the range of a real-valued input
to range of —1 to 1. The tanh function has two valuable properties when working on
normalized data compared to the simpler sigmoid function: It avoids bias in the gradients
and provides stronger derivatives (Glorot and Bengio, 2010). This is helpful for training
as explained later in Section 2.2.2. The Rectified Linear Unit (ReLU) f(z) = max(0, x)
clips a real-valued input to zero or more. While it is not differentiable at x = 0, it does
provide a constantly strong gradient of 1 for all positive inputs. This property becomes
important for training when many neurons are used in succession (Krizhevsky et al.,
2012).

2.2.2 Feedforward neural networks

A perceptron is the simplest feedforward neural network consisting only of one input
layer and a single neuron producing the output. A natural extension is to use multiple
neurons to produce more than one output. This changes the binary classifier to a
multi-class classifier. The group of output neurons can also be seen as the output layer

12 2 Theoretical background

input layer hidden layer output layer outputs

bias

inputs

Figure 2.5: Two-layer fully-connected feedforward neural network with n input features,
m hidden neurons and o output neurons

of the network. Feedforward networks in general have one input layer, any number of
intermediate hidden layers and an output layer. Figure 2.5 shows a feedforward network
with one hidden layer having m hidden neurons. It takes n features as input and uses o
output neurons to produce o output signals. The number of inputs n, hidden neurons
m and outputs o are independent. Further, it is possible to add more hidden layers,
resulting in a deeper neural network.

In contrast to single-layer networks, multi-layer feedforward networks are universal
approximators. Hornik et al. (1989) proved that neural networks with a single hidden
layer using enough neurons can approximate any measurable function to any degree of
precision.

Inference

Inference is the process of computing the neural network output for a given input. For a
multi-layer feedforward architecture, it is necessary to calculate the output of each layer
sequentially. Within a layer, many computations can be performed in parallel as neurons
within the same layer are independent of each other.

The following explanation refers to the two-layer network shown in Figure 2.5. Every
input is connected to each neuron in the hidden layer with an individual weight. The ith
input for the jth hidden neuron needs to be multiplied with the weight w;;. Then the
weighted inputs are summed up for each hidden neuron. The weights can be stored in a
two-dimensional matrix W with n columns and m rows. The input values are in an n
dimensional vector x. Performing all these multiplications and summations can be done
efficiently in a single operation by computing the matrix-vector product Wz resulting in
an m-dimensional vector h. The jth component of h contains the weighted sum of the

2.2 Neural networks 13

inputs for the jth hidden neuron. Applying the activation function f in the hidden layer
is an element-wise in-place operation on vector h.

If there were additional hidden layers, the intermediate output A would be used as an
input for the next hidden layer analogous to the vector . The weights of the output
layer can be arranged in an m X o matrix W’ similar to W. The intermediate result
vector h is then used in the matrix-vector product W’h producing an o-dimensional
vector y. This computes the weighted sums of the output layer. Finally, the activation
functions of the output neurons are applied on the vector o in an element-wise manner
to obtain the actual output of the neuron network.

Inference in a feedforward neural network is a fast and straightforward process. There
are numerous highly optimized software frameworks for matrix and vector operations
capable of utilizing modern multi-core CPUs and GPUs. Due to the high amount of
independent, parallel operations, large networks with thousands of neurons do not pose
a problem for current computer hardware.

Training

While inference is fast and simple, training a multi-layer neural network is both more
complex and significantly slower. With a perceptron having only a single layer the weights
can be directly adjusted from the comparison of correct and actual outputs. When using
multiple layers, this is no longer possible. The solution is to apply backpropagation
together with gradient-based learning (Rumelhart et al., 1986). The idea is to minimize a
loss function L(z, y*, 0) where x is the input, y* the correct output and 6 are the network’s
parameters, i.e. the weights of all layers. Using mean squared error as loss function
on a single training sample (z,y*), the loss function is L(z,y*,0) = 1(y* — f(z,0))%
When plotting the actual output y against the loss L(z,y*, 0), a multi-dimensional error
surface is created. Gradient descent is an algorithm to iteratively minimize the loss by
changing the network parameters in the direction of the steepest descent along the error
surface. For multi-layer networks, “backpropagation” is used to efficiently calculate the
steepest descent direction for every weight in the network. To compute the gradient of
the loss function, the derivative of the neural network’s function f is needed. It can
be obtained by applying the chain-rule as f is a chain of matrix multiplications and
activation functions from all layers. The term “backpropagation” describes the idea of
propagating the error from the output back through the network to the first hidden layer.
(Goodfellow et al., 2016, pp. 167-173)

For each iteration it is necessary to compute the actual output of each training sample,
compute the error gradient and modify the weights. As non-linear activation functions
are used in multi-layer networks training becomes a non-convex optimization problem
without the guarantee of finding a global minimum. However, LeCun et al. (2015) argue
that in practice, this does not pose a problem as gradient descent in a high-dimensional
space is able to find a local optimum very close to the global one.

14 2 Theoretical background

input layer hidden layer output layer outputs

Figure 2.6: A two-layer recurrent neural network with n input features, m hidden neurons
and o output neurons. The bias is omitted for clearer display. Recurrent
connections are dashed.

2.2.3 Recurrent neural networks

Recurrent neural networks (RNNs) are specialized for sequence processing. While
feedforward networks can only work on fixed size input, RNNs can work with sequences
of variable length. More importantly, they enable parameter sharing across the different
positions in a sequence, reducing the amount of required training data and increasing the
generalization capabilities. The output for each position is computed by a function over
the current input and the previous hidden layer representation resulting in a recurrent
computation. The recurrent network architecture as explained is shown in Figure 2.6 for
a single hidden layer. If there were two or more hidden layers, the recurrent connections
would go from the last hidden layer back to the first. (Goodfellow et al., 2016, pp. 367
368)

There are a many tasks that can be solved by working with sequences. Operating on
sequences can be done in various forms. Sequences can either be the input, output or
both. Figure 2.7 shows five different types of sequence processing with recurrent neural
networks. The one-to-one mapping or no sequence processing (a) could also be performed
by a feedforward network. The other four types use recurrent connections in the hidden
layers. The one-to-many mapping (b) produces a variable length sequence as output
from a single fixed size input. This is for example used when a textual description has to
generated from an image. Having a sequence as input and mapping it to a single output
(c) is used for classification tasks. Consuming and producing a sequence can occur in two
forms: (d) Outputting a sequence of different length than the input starts after seeing the
final input. Machine translation is a common task for this encoder-decoder architecture

2.2 Neural networks 15

O O O

(a) one-to-one (b) one-to-many ¢) many-to-one
(d) many-to-many (e) many-to-many synced

Figure 2.7: Different types of sequence processing with recurrent neural networks. Figure
adapted from Karpathy (2015). Red circles are inputs, green hidden layers
and blue outputs.

proposed by Sutskever et al. (2014) and Cho et al. (2014). (e) Alternatively, each position
in the input sequence is directly mapped to a position in the output sequence resulting
in two sequences of equal length. This is used for sequence tagging, which is the focus in
this thesis.

Inference

In order to perform the computations in a recurrent neural network, the operations have
be reformulated from a recurrent definition to a linear chain of operations. A recurrent
computational graph is unfolded to a directed acyclic graph with a repetitive structure.
Unfolding the graph has to be done for each sequence individually as the number of
repeated operations is equal to the sequence length. When the recurrence is employed in

16 2 Theoretical background

the hidden layers, which is the most common way, Equation (2.1) can be used to define
the values of the hidden neurons.

WY = f(rD, 20 0) (2.1)

The hidden state h®) is fed into the output layer to produce the final result for each time
step t of the sequence. Unfolding Equation (2.1) results in a repetitive application of f
using the same network parameters 6 as shown in Equation (2.2).

O = FFfC . f(RO,2M:0) . 2t 0), 207D 9), 20);) (2.2)

h(®) is the initial hidden state which can be a vector of zeros or small random values. The
same function f can be used with the same parameters 6 for each element in a sequence
allowing to share the model parameters regardless of the sequence length. The unfolded
computation graph and hidden state equation make the implementation of the inference
process straightforward and build the basis for the training process. (Goodfellow et al.,
2016, pp. 369-372)

The forward computation, i.e. inference, for the RNN in Figure 2.6 consists of four
operations per time step: (1) Transforming the input to the dimensions of the hidden
layer, (2) summing up the inputs together with the recurrent connections, (3) applying
the activation function to produce the new hidden state and (4) transforming the hidden
state to the number of outputs. This is described in the following update equations given
an initial hidden state h(©)

a® = Uz® (2.3)
b® = Wht=b 4 o (2.4)
h® = f() (2.5)
o) =y p® (2.6)

with input z, output o, f as activation function in the hidden layers as well as weight
matrices U, V, and W for input-to-hidden, hidden-to-output and hidden-to-hidden
connections. (Goodfellow et al., 2016, pp. 372-376)

Training

Gradient based learning and error backpropagation can be used on the unfolded RNN
computation graph. The backpropagation through time (BPTT) algorithm is gener-
alized from the backpropagation algorithm used for training a feedforward network
(see Section 2.2.2; page 13). It accounts for the shared parameters of the recurrent
connections.

To apply BPTT, the forward calculations have to be performed on the unfolded
network graph. As each time step depends on the previous computations, the process is
inherently sequential and cannot be parallelized. Thus, the runtime increases linearly
with the sequence length. Computing gradients and propagating the errors from the
loss function after the output layer back through the entire unfolded computation graph

2.2 Neural networks 17

requires all intermediate hidden states to be available. Hence, the backward pass requires
both space and time linear in the sequence length. Similarly, to the feedforward network,
these computations have to be performed for many training samples and iterations of
the entire dataset. Learning the weights in RNNs is therefore a very expensive process.
(Goodfellow et al., 2016, pp. 374-380)

The vanishing gradient and exploding gradient problems

Training a RNN is not only time-consuming but also extremely difficult with longer
sequences. Bengio et al. (1994) first described the wvanishing gradient and exploding
gradient problems. Both originate from the exponential behavior of the hidden weight
gradients. Their norm either grows exponentially (exploding) or goes to 0 exponen-
tially (vanishing). While the product of many real-valued numbers between 0 and 1
exponentially shrinks to 0, multiplying many numbers greater than 1 exponentially goes
to infinity. The matrix multiplications in a RNN have the same issues leading to the
exponential gradient behavior. When gradients vanish, the weights are only changed
according to the last positions in the sequence. With exploding gradients, the first few
positions of a sequence greatly outweigh the later positions in their effect on the weights.
In both cases, the network fails to learn temporal correlations between distant positions
in the sequence. (Pascanu et al., 2013)

Gated RNNs

Today’s most commonly used solution to the training problems of ordinary RNNs are
gated RNNs. The long short-term memory (LSTM) was the first gated RNN enabling
effective processing of sequences. The main idea is to create a computation graph
with connections through time having constant gradients that can neither explode nor
vanish. Long-term information is stored in an internal state per cell that is untouched
by gradient-based learning. Instead, the gated network learns additional weights in its
gates to decide when to overwrite the current state with new information. (Goodfellow
et al., 2016, pp. 404-407)

Hochreiter and Schmidhuber (1997) first introduced the long short-term memory model
with cells containing a self-loop and weights to control the weight change of the looped
connection. Instead of using simple neurons, a LSTM network consists of LSTM cells
having an internal recurrence (the self-loop) as well as a forget-, input- and output-gate
in addition to the usual input and output of an artificial neuron. Figure 2.8 shows a
single LSTM cell. These cells are still recurrently connected to each other and replace
the ordinary hidden neurons in a RNN. (Goodfellow et al., 2016, pp. 404-407)

Input, output- and forget-gate use the sigmoid function o squashing their input to a
range in (0, 1]. The forget-gate determines how much from the previous state vector is
retained based on the current input vector. A 1 keeps all information while a 0 discards
everything. The operation is applied by a pointwise vector multiplication allowing some
part of the hidden state to be erased and another to be kept fully intact. Input and
output gate work analogously and determine how much and which parts of the current

18 2 Theoretical background

output gate o

input unit

input vector 7 input gate ': state |

" /self-loop
forget gate o X k-

Figure 2.8: LSTM cell

output vector

input is incorporated into the hidden state respectively the hidden state is output. The
input unit can have any nonlinear squashing function such as tanh. (Goodfellow et al.,
2016, pp. 404-407)

LSTMs have been used successfully in many sequence processing tasks e.g. speech
recognition (Li and Wu, 2015), machine translation (Sutskever et al., 2014) or parsing
(Kiperwasser and Goldberg, 2016), often obtaining a new state of the art. While LSTMs
overcome training issues of classic RNNs and achieve great results, their computational
costs are enormous as they require four fully-connected linear layers per cell for each
time step in a sequence (Culurciello, 2018). These computations cannot be parallelized
and are limited by memory bandwidth so that implementations are inefficient on CPUs
and GPUs. Therefore, training LSTMs or other gated RNNs takes even longer than the
already time-consuming training of classic RNNs.

Apart from the original there are many LSTM variants. An important change adds
peephole connections allowing the gate layers to look at the hidden state (Gers and
Schmidhuber, 2000). This conditions the self-loop weights on the context, thereby
improving performance. In another variant, forget and input gates are coupled. Thus,
new information can only be stored when forgetting old information at the same time. The
Gated Recurrent Unit (GRU), introduced by Cho et al. (2014), is a minimalist variant of
the LSTM. It replaces the forget- and input-gate with a single update-gate. Additionally,
cell and hidden state are combined making the GRU a simpler and computationally
faster version of the LSTM while retaining the ability to dynamically control which
information to keep and which to forget. (Goodfellow et al., 2016, pp. 407-408)

2.2.4 Regularization

Regularization is important in parameter-rich neural networks to avoid overfitting. If
a network overfits, the training error is low but the test error is high. Parameter-rich
networks tend to memorize the training data by learning a too complex solution that
includes random noise. Many regularization techniques have been proposed to prevent

2.2 Neural networks 19

overfitting and to improve generalization, i.e. parameter norm penalties (L!, L?), data
augmentation, parameter sharing, early stopping and dropout. (Goodfellow et al., 2016,
pp. 224-225)

Parameter norm penalties Parameter norm penalties introduce an additional penalty
on the weights based on their norms. This can be achieved by adding a regularization
term (@) to the loss function L used for training. The regularized loss function L is
defined by

L(6:x,y) = L(0;x,y) + aQ(8), (2.7)
where « is a real-valued hyperparameter that weights the influence of the regularization
term €2(0) to the plain loss function L. The regularization term only depends on the
parameters @ unlike the loss function, which additionally operates on input x, correct
output y* and predicted output f(x,8). Parameter norm penalties for neural networks
are usually not applied on all parameters 8. The bias weights are excluded because their
values are essential to shift the activation function according to the problem. Regularizing
also the bias significantly reduces the performance of a model. Let w denote all network
parameters of @ that shall be affected by a norm penalty. The two common choices
for the penalty norm are L' and L? regularization. L? regularization is defined as
Q) =1 |wl|2. Tt is also called weight decay because it drives the weights closer to
zero. When performing a weight update with gradient descent, the weights are decreased
multiplicatively with each step. L' regularization is defined as Q(0) = ||w||, = X; |wil-
Using the sum of absolute values as a penalty term has the effect that solutions tend to
be sparser compared to L? regularization. Because many parameters are 0, it works as a

network-wide feature selection mechanism. (Goodfellow et al., 2016, pp. 226-233)

Data augmentation One of the best ways to help neural networks generalize is to
use more data for training. The idea of dataset augmentation is to create fake data by
making changes to the original training samples that should not affect the correct result.
While this is easy for classification tasks working on image or sound data, many tasks
cannot be augmented with fake data. When working on image classification tasks, new
training data can be created by small changes like lightly shifting an image or changing
its brightness. A similar method is to inject random noise into the network instead of
the input. (Goodfellow et al., 2016, pp. 236-238)

Parameter sharing Another approach to regularize a model is to incorporate domain
knowledge of the task. A common setting for parameter sharing is that some weights either
within a single network or between multiple networks should be similar. Tying related
parameters w; and wsy together is made possible by applying a parameter norm penalty
on their difference: Q(0) = 1 [w; — woll5. A stronger parameter sharing is achieved
when the same network parameter is reused for multiple inputs like in convolutional
neural networks (CNNs). CNNs are primarily used to work on image data. Instead of

having unique parameters i.e. weights for every input pixel, a fix number of parameters

20 2 Theoretical background

are reused for each pixel. This kind of parameter sharing effectively increases the number
of data points used to train a single weight. (Goodfellow et al., 2016, pp. 249-251)

Multi-task learning is a specific parameter sharing technique and thus has a regularizing
effect. Generalization is improved by the increased amount and diversity of training data
from multiple tasks. Sharing network parameters across multiple datasets constraints
the model to good values that are not specific to the random noise of a single dataset.
Multi-task learning will be described in greater detail in Section 2.3.

Early stopping A pragmatic technique to prevent overfitting based on a common
training process pattern is early stopping. While the training error decreases over time,
the validation error increases after a certain number of training epochs. From this point
on, the model overfits the training data. The validation error must be computed every
epoch to use early stopping. Every time a better value is obtained, the current network
parameters have to be stored. The training is stopped and the best parameters are
reloaded when there have not been any validation error improvements for a number of
epochs. Early stopping is simple to implement, has a low computational overhead and
is not constrained to specific network types. The theoretical effectiveness is similar to
L? regularization when the weights are initialized around zero because early stopping
restricts the parameters to a small space close to their initial values. (Goodfellow et al.,
2016, pp. 241-249)

Dropout Dropout (Srivastava et al., 2014) is a computationally inexpensive method
to approximate an ensemble of many similar neural networks. The primary principle is
to randomly remove non-output neurons from the network by multiplying their values
with zero. For each minibatch, each affected neuron is independently randomly masked
with a configurable probability p. Thus, many “subnetworks” are formed and trained
where some neurons are missing while all the other parameters are shared because it
is still a single network. All neurons are active during inference, which would lead
to stronger activations compared to the training. In order to correct this, all affected
weights are multiplied by p before inference. The so called “weight scaling inference rule”
approximates the expected output values of the network when dropout is not used at
all. Dropout is particularly effective due to the masking of hidden neurons. It randomly
disables some feature detectors, so the network has to learn similar, redundant neurons
or adjust the neurons in the next layer to infer the missing information. According to
Srivastava et al. (2014), dropout is more effective than other inexpensive regularizes
such as weight decay. Dropout works generally well for any kind of network and can be
combined with other regularization techniques. (Goodfellow et al., 2016, pp. 255-265)

2.2.5 Hyperparameter optimization

Designing a neural network to solve a task requires the configuration of many hyperpa-
rameters. Hyperparameters are all adjustable network and training parameters that are
no model weights, e.g. the number of hidden units or the learning rate. They can affect

2.2 Neural networks 21

both the performance of the model and the computational cost. All design decisions
can be seen as selecting hyperparameters, but usually the type of the network and its
architecture are considered fixed. Choosing hyperparameters can either be done manually
or automatically. While manual tuning requires a deep understanding of neural networks
and experience, automatic selection by an algorithm lowers the knowledge requirements
but increases the computational cost by orders of magnitude. In either case, the goal is
to increase the performance on unseen data, i.e. the test set, while complying to some
runtime and memory limitations. (Goodfellow et al., 2016, pp. 422-431)

Manual hyperparameter selection requires a thorough understanding of the relations
between training and test error, model capacity as well as the effects of hyperparameters
on these. The model’s capacity has to match the task complexity and amount of training
data. It depends on the representational capacity of the model, the learning algorithm’s
ability to minimize the cost function and the regularization effect of cost function,
architecture and training procedure. A higher number of neurons, i.e. more layers and
hidden units per layer, increase the representational capacity allowing approximating
more complex functions. However, the final model capacity is usually much lower as the
learning algorithm cannot learn all possible functions. Also, the applied regularization
may forbid many of these functions. (Goodfellow et al., 2016, pp. 422-426)

The effect of many hyperparameters can be explained with the model capacity. Adding
more hidden units increases the model capacity but also the consumed computation time
and memory. More neurons per layer and more layers behave similarly with regard to
these aspects but may have other effects on the model. Setting a higher dropout rate
decreases the capacity as it becomes more difficult for a group of neuron to perfectly
fit the training set. Dropout works by randomly disabling the output of some hidden
neurons in each step. Another way to decrease the model capacity is to increase the
weight decay coefficient, which restricts the weights to smaller values. The learning rate
significantly influences the effective capacity. If it is too high or too low for the specific
network and training setting, minimizing the cost function will fail. Looking at the error
surface the training will stay on a high plateau or shoot across areas descending to a
lower error level. (Goodfellow et al., 2016, pp. 422-426)

Automatic hyperparameter selection is an algorithm to find the hyperparameters
achieving the best result on a validation dataset. The difficulty of the manual tuning
is significantly reduced but not completely removed. Instead of directly choosing the
right value for a hyperparameter, a list or range of possible values has to be supplied.
(Goodfellow et al., 2016, p. 427)

When only few hyperparameters need to be set, trying all combinations, i.e. their
Cartesian product, in a brute-force manner is a simple solution. This approach is called
grid search. The candidate values per hyperparameter are usually chosen in a logarithmic
scale to cover a wide range. To find good results, it is necessary to repeat grid search
each time widening or narrowing the range of possible values for a hyperparameter. Due
to the exponential number of combinations, the cost of grid search is often too high as
each combination requires a full training run, which itself is typically already a very
expensive operation as pointed out before. (Goodfellow et al., 2016, pp. 427-429)

Bergstra and Bengio (2012) showed that random search is the better approach for

22 2 Theoretical background

automatic hyperparameter optimization. Instead of trying all combinations, changing
only a single hyperparameter in each iteration, random search chooses all hyperparameters
randomly from a range or distribution of possible values. This allows to reduce the
number of wasted iterations, when some hyperparameters do not have a measurable
effect on the performance. While random search converges faster to good values for the
hyperparameters, it is still necessary to make repeated runs each time refining the range
of the possible hyperparameter values. (Goodfellow et al., 2016, pp. 429-430)

2.2.6 Word embeddings

Word embeddings are commonly used in natural language processing. They allow words
to be represented as a numeric vector instead of text. This is a crucial component for
natural language processing with neural networks because artificial neurons can only
operate on numeric values but not on raw text. Each word vector points to a position
in a high-dimensional vector space. Numeric representations of words can be compared
using mathematical operations within the same vector space. By computing the distance
of vector representations, similar words can be found, e.g. words that are somehow
semantically related.

The construction of word embeddings is based on the distributional hypothesis of Harris
(1954). It states that words have similar meanings if they appear in similar contexts.
Bengio et al. (2003) and Collobert and Weston (2008) propose neural-network-based
approaches to embed words in a vector space. The breakthrough came with an efficient
embedding algorithm proposed by Mikolov et al. (2013a,b): By training the skip-gram
model with the negative-sampling method and using its representations as features for
various neural networks many state-of-the-art results on NLP tasks were achieved. The
open source implementation word2vec!' greatly helped to popularize the model. Baroni
et al. (2014) compare word2vec embeddings with classic distributional word vectors
obtained from positive Pointwise Mutual Information or Local Mutual Information and
reduced in dimensionality with Singular Value Decomposition. According to their results,
neural embedding methods significantly outperform the classic approaches on many tasks.
GloVe? (Global Vectors) is another model to obtain vector representations for words.
While word2vec is a predictive model, GloVe is count-based. Joulin et al. (2017) propose
fastText?® as a significantly faster method to train and use word embeddings. Additionally,
it allows using subword information, which increases performance in downstream tasks
especially for unseen words (Bojanowski et al., 2017). All these approaches have in
common that they produce the same vector representation for each word regardless of its
context. Peters et al. (2018) propose FLMo with deep contextualized word representations.
The word vectors are obtained from a character-based deep bidirectional LSTM network.
The exact numeric representation of a word depends on the current context. Thus,
every instance of a word within a text has a different vector representation, which allows
modeling polysemy, i.e. words having multiple meanings but the same surface form.

'https://code.google.com/archive/p/word2vec/
’https://nlp.stanford.edu/projects/glove/
3https://fasttext.cc/

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

2.3 Multi-task learning 23

Devlin et al. (2019) introduce BERT based on the Transformer model (Vaswani et al.,
2017), which is an attention based model with positional encodings to represent word
positions. BERT produces context-aware embeddings similar to ELMo, but it internally
uses subwords like fastText instead of characters or words.

2.3 Multi-task learning

The standard approach to solve a task in machine learning is to optimize some task-
specific metric. A single model or an ensemble of models is trained and fine-tuned on the
training data of the task to be solved. The single-task learning (STL) approach ignores
additional information from related tasks that might help to improve performance.

Multi-task learning (MTL), sometimes also referred to as joint learning or learning
with auxiliary tasks, is a solution to this shortcoming. Performance can be further
improved by sharing common representations in a model leading to better generalization
abilities (Caruana, 1997). MTL often uses more than one loss function, one for each task,
to train a model jointly on multiple tasks. It has been successfully applied in natural
language processing tasks such as sequence tagging (see Section 3.1, page 29) as well as
many other domains like computer vision (Misra et al., 2016).

2.3.1 Theory and application in neural networks

MTL requires sharing common representations, which is done by either hard or soft
parameter sharing. Hard parameter sharing, introduced by Caruana (1993), is the oldest
and most common approach. While the parameters of hidden layers are shared by all
tasks, each task has its own output layer. Baxter (1997) showed that joint training on T’
tasks reduced the overfitting of shared parameters by an order of T'. In soft parameter
sharing, each task has its own parameters in hidden layers, but the distance between
these weights is regularized by enforcing them to be similar. (Ruder, 2017)

While multi-task learning can be motivated via regularization (solving a loss function
with two optimization problems at once), it provides benefits beyond those of regular-
ization. The (theoretical) reasons why MTL works are manifold (Maurer et al., 2016).
Caruana (1997) first proposed many of the following mechanisms. (1) Inductive transfer:
An inductive bias provided by auxiliary tasks steers a model into the direction of pre-
ferring solutions that explain more than one task. This enables better generalization
to unseen data and new similar tasks. (2) Data augmentation: Increasing number of
training examples and averaging the different noise patterns of various tasks or datasets
allows ignoring data-specific random noise (Goodfellow et al., 2016, p. 241). (3) Attention
focus: Tt is often difficult to find relevant features in noisy, limited or high-dimensional
data. Useful features may be easier to find in auxiliary tasks, enabling to focus on the
important features while ignoring others (Ruder et al., 2019). (4) Regularization: The
inductive bias lowers the risk of overfitting and decreases the random noise fitting ability
of a model (Sggaard and Goldberg, 2016).

Figure 2.9 shows the structure of a hard parameter sharing neural network. While all

24 2 Theoretical background

output layers output vectors

input vector hidden layer(s)/> 01 —@
< O

task specific

shared

Figure 2.9: Generic hard parameter sharing multi-task learning neural network architec-
ture for ¢ different tasks

tasks share the inputs and hidden layer(s), each task has its own output layer producing
a separate output vector. Using training data with multiple labels, e.g. POS and NER
tags, the loss for each task is propagated back to the hidden layers from all output
layers. If the tasks are not performed on the same input instances because each task
is a different dataset, the network is only partially active. When task ¢ is currently
used for training, only the connections from hidden layer to output layer of task i are
active. Other output layers are ignored and do not produce an output. Changing the
weights with backpropagation is always done for hidden layer and the currently active
output layer. Parameters in shared hidden layers are therefore trained with the combined
error-signal of all tasks while the task-specific parameters are trained from less training
examples. Thus, the hidden layers tend to learn to generalize instead of overfitting to
the training data.

One difficulty of MTL is to decide what parameters to share. Hard parameter sharing
with manually specifying the layers is used in most papers as it is both easy to implement
and known as an effective regularizer. Apart from this approach, few other ideas have
been explored in hope of better architectures. In computer vision there are multilinear
relationship networks (Long et al., 2017), fully-adaptive feature sharing (Lu et al., 2016),
cross-stitch networks (Misra et al., 2016) and using uncertainty to weigh losses (Kendall
et al., 2018). In natural language processing, Segaard and Goldberg (2016) proposed a
hierarchy of tasks with low-level tasks supervised at lower layers. Based on this finding
Hashimoto et al. (2017) propose a hierarchical architecture for multiple tasks. Ruder et al.
(2019) propose sluice networks as a generalization of previous approaches (hard and soft
parameter sharing, cross-stitch networks as well as task hierarchies). The architecture
learns which layers to share and which layers provide the best output for each task.

2.4 Information theoretic clustering comparison measures 25

2.3.2 MTL variants and differences to transfer learning

Multi-task learning scenarios can differ along multiple dimensions. (1) While in some
cases the focus is only on the main task, in others a system has to perform well on all
tasks during both training and inference. (2) Older approaches assume tasks are from
the same distribution (Baxter, 1997). As this might only rarely be the case, more recent
papers are not based on this assumption. (3) In a homogeneous setting, all tasks share
an output of identical format. The more flexible heterogeneous setting allows a unique
output format per task (Ruder, 2017). (4) Training multiple tasks can either be done
on different datasets or on a single dataset (Sggaard and Goldberg, 2016; Schulz et al.,
2018). In the latter case, the data has multiple labels allowing different supervised tasks
to be trained. Alternatively, unsupervised tasks are combined with a single supervised
task.

Transfer learning is a somewhat similar idea to multi-task learning. Using auxiliary
data, the performance of the primary task should be improved, especially when training
data is scarce. In transfer learning a model is pre-trained on a huge dataset. This
pre-trained model is used to learn the specific target task. In computer vision, a common
approach is to reuse a large and complex convolution neural network model trained
on the large ImageNet dataset (Krizhevsky et al., 2012). The last, fully-connected
classification layers of these networks are then replaced or retrained to another task.
Weights in the lower layers stay fixed or are gradually “unfrozen” and fine-tuned from
the output layer back to the input layers. In natural language processing, Howard and
Ruder (2018) recently showed how to transfer knowledge based on large-scale language
modeling. Before, only partial knowledge transfer in form of word embeddings such as
word2vec (Mikolov et al., 2013a) or ELMo (Peters et al., 2018) was used extensively in
NLP (see Section 2.2.6).

Transfer learning is different from multi-task learning in multiple aspects. (1) Only
the results on the main task are relevant. (2) Typically, only two tasks are combined,
one universal task for pre-training and the main task. (3) Tasks must not necessarily be
trained in a supervised manner. (4) In MTL, all tasks are trained jointly, whereas in
transfer learning they are trained in sequence one after the other.

2.4 Information theoretic clustering comparison
measures

Clustering comparison measures enable the comparison of different clusterings. They
are typically used to select a clustering that is most similar to a given ground truth, i.e.
perfect clustering. While there are various types of clustering comparison measures, only
measures based on information theory will be presented in this section. Before these
clustering comparison measures are introduced, essential information theoretic measures
are presented that build the basis for the clustering comparison measures.

26 2 Theoretical background

2.4.1 Entropy, joint entropy and conditional entropy

Entropy is a measure for the uncertainty of a random variable. Intuitively, entropy
comes close to a measure of information. Cover and Thomas (2006, pp. 13-15) define
the entropy H(X) of a discrete random variable X with alphabet X' by

H(X) = -3 p(z)logp(z) (2.8)
zeX
where p(z) is the probability mass function p(x) = Pr{X = z},z € X. The log is
actually log,, i.e. to the base two, which also applies to the following equations in this
chapter. The unit of entropy is bits. Entropy cannot be a negative value. It is 0 when
p = 0 or 1 because the variable X is not random and maximal when p = ﬁ (uniform
distribution) corresponding to maximal uncertainty. The maximal entropy depends on
the number of elements in X and has an upper bound of H(X) < log|X| (Cover and
Thomas, 2006, p. 29).
Joint entropy extends entropy from a single to two random variables. Cover and
Thomas (2006, pp. 16-18) define the joint entropy H(X,Y") for a pair of discrete random
variables (X,Y’) with a joint probability distribution p(x,y) as

HX,Y)==>_ > plz,y)logp(z,y). (2.9)
zeX yey
The conditional entropy H(Y|X) can be defined by
HY|X)==3_ > p(z.y)logp(zly) (2.10)
zeX yey

and is bound in the range 0 < H(Y|X) < H(Y) (Cover and Thomas, 2006, p. 29). It
measures how much information is needed to describe the result of Y given knowledge of
X. The joint entropy of two random variables equals the entropy of a single variable
plus the conditional entropy of the other:

H(X,Y) = H(X) + H(Y|X) (2.11)

2.4.2 Mutual information

Mutual information (MI) is a measure describing the amount of information one random
variable contains about another. Cover and Thomas (2006, pp. 19-22) define the mutual
information I(X;Y') for the random variables X and Y with probability mass functions
p(z), p(y) and a joint probability mass function p(z,y) by

o - oe [PLY)
XY= 5 T ole s (p(x)p(y)) | (212)

Its value is always non-negative and not larger than the smaller entropy of X or Y
resulting in a range of [0, min{H(X), H(Y)}] (Vinh et al., 2010). Mutual information
can alternatively be defined by

[(X;Y) = H(X) — HX|Y) (2.13)

2.4 Information theoretic clustering comparison measures 27

as it describes the reduction of uncertainty of X based on knowledge of Y. It is a
symmetric measure and is identical to the entropy of one variable when both random
variables are the same.

2.4.3 Comparing clusterings

Clustering data is a common task in many disciplines. A clustering C is a way to
partition a dataset D into non-overlapping subsets {cy, co, ... } together containing all
N items of D. There are numerous algorithms to obtain a clustering from a dataset.
In order to find the best clustering for a specific task, clusterings have to be compared.
Another need for comparing clusterings arises when other problems are transformed
to a clustering comparison to the end that aforementioned powerful algorithms can be
leveraged. This can be done for many tasks, e.g. the comparison of lexical chains (Remus
and Biemann, 2013). Such a comparison requires a measure determining the quality of a
clustering according to a ground truth, i.e. the perfect solution. Thus, it should quantify
the amount of information shared between both clusterings. (Vinh et al., 2010)

A contingency table, also called confusion matrix, is a convenient tool to compare the
item overlap of two clusterings C' and C’ from the same dataset D. Table 2.1 shows the
structure of a contingency table with K clusters in C, J clusters in C' and N items in
D where n;; is the count of items being in clusters ¢; € C and c;- e (.

c, € ... Cg | X
/
Cq nyy M1z ... Mg | N.
/
Co Not MNo2 ... MNog | Na.
/
CJ nyg Ng2 ... Ngg | .
X|lni nas ... ng| N

Table 2.1: Structure of a contingency table

Different measures to compare clusterings have been proposed, which can be categorized
into a handful of classes (Vinh et al., 2010). Pair-counting and set based comparison
measures form together with information-theoretic measures the fundamental classes.
Another class is based on edit distances similar to the string metric. According to Amigd
et al. (2009), B® measures form an additional class.

2.4.4 Information theoretic similarity measures

Information theoretic similarity measures are based on a solid mathematical foundation
from information theory (Cover and Thomas, 2006) and are able to work with non-linear
similarities. They have become popular by the works of Strehl and Ghosh (2003) and
Meila (2005). Meila (2003, 2005, 2007) has shown many desirable properties for the
variation of information measure. Mutual information has been used as clustering

28 2 Theoretical background

comparison measure in Banerjee et al. (2005) and many normalized variants of mutual
information have been proposed by Kvalseth (1987), Strehl and Ghosh (2003), Yao (2003),
and Liu et al. (2008).

Generally desirable properties of clustering comparison measures include metric prop-
erty, normalization and a constant baseline property (Vinh et al., 2010). For a measure
to be a true metric, it must satisfy the positive definiteness and symmetry properties as
well as the triangle inequality. In order to be normalized, a metric must output a value
within a fixed range, e.g. [—1,1] or [0, 1]. The constant baseline property requires that
the measure outputs a constant value, preferably zero, when comparing two independent,
random clusterings. Meila (2005) and Amigé et al. (2009) list many more properties or
specific constraints and argue that a best general measure for all tasks does not exist.

Mutual information measures the information shared between two clusterings C' and C”.
A higher MI signals a greater help in predicting the cluster labels in C' with information
from C’. Several normalized variants can be derived from the mutual information:

_ I(c.c)

N Mo = 316 iy (2.14)
I(c,c)

NMma max(H(C), H(C")) (2.15)
21(C,C")

NMlum = g0 - 31 (2.16)

NMIy, — LG (2.17)

H(C)H(C)
NMI,y, = — HGC) (2.18)

min(H(C), H(C"))
They are all bounded in [0, 1], equaling 0 when two clusterings share no information at
all; i.e. are fully independent and 1 when two clusterings are identical. They differ in
their normalization factor, i.e. the chosen upper bound of the MI. Vinh et al. (2010) prove
that only two of unit-complements, i.e. the distance measures 1 — NM I, are metrics.
The normalized variation of information NV ;4 = 1 — N M4 and the normalized
information distance NID,,,, = 1 — NM1I,,,, are metrics. None of these conform to
the constant baseline property and when achieving this by an adjustment for chance,
they are not metrics anymore. Vinh et al. (2010) show via experimental results that
an adjustment for chance of the NM is not necessary when the number of item N is
large (factor 2 100) compared to the number of clusters K and J. Between NMI,,,,
and N M Iy, the former is preferable as it uses the range [0, 1] better due to the tighter
upper bound used for normalization.

In this chapter, the necessary theoretical background for the contributions of this
thesis has been explained. In the next chapter, other work is presented that is related to
the research question of this thesis. First, current approaches to multi-task learning for
sequence tagging are introduced. Second, related work regarding the effect of auxiliary
tasks and their similarity is presented.

3 Related work

3.1 Multi-task learning for sequence tagging

Multi-task learning (MTL) has been successfully used for various sequence tagging tasks
(Segaard and Goldberg, 2016; Bjerva et al., 2016; Plank et al., 2016; Martinez Alonso
and Plank, 2017; Kaiser et al., 2017; Bingel and Sggaard, 2017; Augenstein and Sggaard,
2017; Kim et al., 2017; Yang et al., 2017; Changpinyo et al., 2018; Liu et al., 2018; Schulz
et al., 2018). All of these approaches use hard parameter sharing in hidden layers. The
common architecture consists of shared word plus character embeddings, bidirectional
gated RNN and task-specific linear transform output layers.

Changpinyo et al. (2018) experiment with two additional architectures: They include
a task embedding in either the RNN or output layer and merge the labels of all tasks
allowing the output layer to be shared as well. Either bidirectional LSTMs or GRUs are
used in the hidden RNN layers, which are deep, stacked RNNs of two or three layers in
about half of the implementations. Yang et al. (2017) test the effect of sharing different
layers in three models. Character RNNs are always shared. Additionally, word RNNs
and finally the CRF is shared. Another architecture is proposed by Kim et al. (2017)
who use two bidirectional LSTMs in parallel. While one is shared for all tasks, the
other is task-specific. In most cases the character features are produced with another
bidirectional gated RNN, only Bjerva et al. (2016) use a convolutional neural network
instead. Kaiser et al. (2017) use a significantly more complex architecture as they work
not only on sequence tagging tasks but also sequence generation and sequence-to-sequence
tasks. Most word embeddings are initialized from pre-trained GloVe (Pennington et al.,
2014) embeddings and fine-tuned during training. Plank et al. (2016), Martinez Alonso
and Plank (2017), Bjerva (2017), and Ruder et al. (2019) decided against any form of
pre-trained word embeddings to avoid any influence on the comparison of singe-task
learning (STL) and MTL performance. In most approaches, the task specific output
layers are based on a linear transformation to the tag space followed by the softmax
function. Cross-entropy is used as loss function in these cases. Instead, Changpinyo et al.
(2018), Liu et al. (2018), Yang et al. (2017), and Schulz et al. (2018) use a conditional
random field to further improve performance on tasks with dependencies between labels.
Seggaard and Goldberg (2016) do not only use the last hidden layer as input for the
task-specific output layers. Instead, each RNN layer is associated with another task.
Ruder et al. (2019) propose sluice networks that can represent hard parameter sharing,
task-specific supervision of hidden layers (Sggaard and Goldberg, 2016) or cross-stitch
networks (Misra et al., 2016) by learning which layers to share.

Training is in most scenarios performed by randomly choosing a task, sampling either

29

30 3 Related work

a single training instance or a mini batch and computing the loss for the chosen task.
Changpinyo et al. (2018) sample a mini batch in a balanced manner with an equal number
of training examples from all tasks. The number of training epochs is fixed in some
cases while Bjerva et al. (2016), Spgaard and Goldberg (2016), Changpinyo et al. (2018),
Liu et al. (2018), and Ruder et al. (2019) use early stopping based on a development
set. In most approaches main and auxiliary tasks are seen as equally important, but
Bjerva et al. (2016) use differently weighted losses for main resp. auxiliary task. The
hyperparameters are fixed in almost all approaches, i.e. MTL uses the same parameters
as STL. No hyperparameter optimization like grid or random search is performed. Schulz
et al. (2018) train 50 hyperparameter combinations for STL and each MTL setting.

In the previously mentioned papers, the authors worked on over 16 different sequence
tagging tasks in some multi task learning scenario. The three most common tasks are
part-of-speech tagging, syntactic chunking and named entity recognition. The majority
combined a main task with a single, supervised auxiliary task that comes from another
dataset. Changpinyo et al. (2018), Kaiser et al. (2017), and Ruder et al. (2019) tried not
only pairwise auxiliary tasks but also using all auxiliary tasks simultaneously. Liu et al.
(2018) used language modeling as an unsupervised auxiliary task. Others (Plank et al.,
2016; Martinez Alonso and Plank, 2017; Schulz et al., 2018; Kim et al., 2017; Yang et al.,
2017) compared different datasets of the same task that vary in tagset or language.

Segaard and Goldberg (2016) see improvements for both chunking and CCG tagging
if additionally using the POS tags from the same dataset. Chunking also improved for
auxiliary POS tagging from another dataset. Semantic tagging was used as auxiliary
task for POS tagging by Bjerva et al. (2016) and improved performance. Plank et al.
(2016) experimented with POS tagging across 22 languages. They found that using extra
training data from other languages increases performance especially on rare words. Bingel
and Sggaard (2017) found that some tasks increase performance when using any auxiliary
task while others always decrease performance in an MTL setting. Martinez Alonso and
Plank (2017) tried to boost performance on five higher-level tasks with four different
low-level syntactic tasks. Most effects of MTL were negative.

Kim et al. (2017) performed MTL on POS tagging across 14 languages. In almost
all cases, they observed significant performance improvements on the main task. They
found that the similarity of the languages is important as the performance increased
stronger for languages from the same family. Augenstein and Sggaard (2017) tested one
main task with two different datasets combined with five auxiliary tasks. Performance
of one main dataset was improved by all auxiliary tasks while the other dataset mostly
showed decreasing effects in the MTL setting. Yang et al. (2017) worked on the three
most common tasks with artificially reduced training datasets. MTL was able to increase
the main score in all cases. The highest improvements were achieved when sharing all
layers (character and word RNN as well as CRF) of the network. They attribute the
degree of performance increase to three aspects: (1) label abundance for the main task,
(2) task resp. dataset similarity and (3) number of shared parameters.

Changpinyo et al. (2018) compared eleven tasks and observed mixed results from MTL
over STL. Using all auxiliary tasks instead of only one was better overall. They found
some tasks increase the main task performance in almost all cases while tasks with a

3.2 Effect of auxiliary task similarity 31

small tagset usually decrease the main task performance. All the results were similar
across their three tested MTL architectures. The unsupervised language modeling task
of Liu et al. (2018) increased performance on POS, chunking and NER. Schulz et al.
(2018) combined argumentation mining training data with datasets of the same task.
Performance significantly increased over STL in four out of five cases, especially with
scarce training data. Ruder et al. (2019) try their proposed sluice networks across several
domains on chunking, NER and semantic role labeling with POS tagging as auxiliary
task. MTL significantly outperforms STL in 17 of 21 cases and improves over other MTL
architectures in 15 of 17 comparable cases.

3.2 Effect of auxiliary task similarity

Auxiliary tasks can have various relationships to the main task. In theory, adversarial
learning, hints, focus attention, input prediction and representation learning can be
used to connect an auxiliary task to the main task (Ruder, 2017). When choosing an
additional task, a typical idea is to select a task that is considered helpful for a human,
e.g. POS should help NER because most named entities are nouns. The assumption is
that a task related to the main task helps in predicting.

In practice, the most common choice is to use a somehow related resp. similar task.
When working with natural languages, task relatedness might be meant in linguistic sense.
Caruana (1997) argues that tasks are similar if the same features are used for making
predictions. Baxter (2000) suggest similar tasks must have the same inductive bias.
Ben-David and Schuller (2003) indicate that tasks generated from the same probability
distribution, with arbitrary transformations applied, are similar and perform well in a
MTL setting. As of now, there is no universal measure for task similarity, but such a
measure is needed to know which task should be preferred for training (Ruder, 2017).

Although multi task learning is applied frequently in recent work, few elaborate on
the effect of task and dataset similarity on the main task performance. Recent work on
MTL with deep neural networks found different hints indicating task similarity, but they
are only applicable to each specific scenario. Martinez Alonso and Plank (2017) show
results that auxiliary tasks with few labels and a uniform label distribution perform
better for MTL in neural sequence tagging. Auxiliary tasks having many labels or high
entropy harm the performance on the main task. While these findings are confirmed by
Ruder et al. (2019), mixed results are reported by Bingel and Sggaard (2017). Bjerva
(2017) found no evidence of label entropy correlating with MTL performance gains or
losses. Martinez Alonso and Plank (2017) found a significant difference between two
POS datasets when used as an auxiliary task. Converting an auxiliary dataset to another
tagset changes the effect of MTL significantly.

Kim et al. (2015) propose a method to map labels from similar auxiliary datasets
to the target tagset or vice versa. They use label embeddings induced by canonical
correlation analysis to reduce a case of non-matching labels to a simple case of identical
tagsets. This allows framing a MTL scenario as single task learning with an increased
amount of training data. Further, they propose a method to find the nearest domain

32 3 Related work

resp. dataset based on the tagsets: Fine-grained labels are reduced to general coarse
labels and these are counted in each dataset. The lowest [y distance between pairs of
source and target multinomial distribution of the counts is chosen.

Bingel and Sggaard (2017) examine prediction of MTL gains and losses from dataset
and STL learning curve features. Used dataset features include e.g. size, number of labels,
label entropy and out of vocabulary rate in GloVe embeddings. From STL two features
are extracted: Curve gradients at fixed percentages of the overall training instances and
parameters of a fitted log-curve describing the steepness of the learning curve. Logistic
regression with binary classification is run on the features normalized to the range [0, 1]
to predict performance increase or decrease. Because correctly predicting the relationship
and magnitude failed, a binary classification was used instead of a continuous output.
The classification output was correct for three out of four cases. The learning curve
features were most important — dataset features alone were not enough to make good
predictions. From the dataset features, the number of labels on the main task and the
auxiliary label entropy showed the most predictive potential. The differences in dataset
size were insufficient features in the logistic regression model. Bingel and Sggaard (2017)
summarize that performance improves when the training error surface on the main task
reaches a plateau while the auxiliary task does not.

Bjerva (2017) estimates the effect of an auxiliary task in MTL with information theoretic
measures. He correlates label entropy, conditional entropy and mutual information with
change in accuracy compared to STL. POS tagging is used as the main task and
various dependency relation tasks are chosen to be auxiliary data. Computing the joint
probabilities on the labels requires the datasets to be tagged with gold standard labels
for each task. Therefore, tasks must be automatically taggable with almost perfect
results. For POS tagging this certainly is the case and according to Bjerva (2017)
the difference in the information theoretic measures between dual gold annotated data
and automatic POS tags is negligible. Averaged Spearman correlations between the
three information theoretic measures and the accuracy change are 0.07, 0.26 and 0.42
for entropy, conditional entropy and mutual information. Further experiments were
performed on the semantic task results of Bjerva et al. (2016) and Martinez Alonso and
Plank (2017) indicating that mutual information for helpful auxiliary tasks is higher
than for harmful tasks.

Augenstein et al. (2018) propose an architecture that learns label embeddings for
natural language classification tasks. Their analysis indicates that these label embeddings
give hints regarding the gains or harms of MTL.

Ruder et al. (2019) correlate task properties with performance differences and learned
meta network parameters of the sluice network. They find that (1) ,multi-task learning
gains, also in sluice networks, are higher when there is less training data* and (2) ,sluice
networks learn to share more when there is more variance in the training data®

In the next chapter, new methods to measure the similarity of datasets will be designed.

4 Dataset similarity concepts

Based on the related work presented in the previous chapter, new approaches to compute
the similarity of sequence tagging datasets will be developed throughout this chapter.

4.1 Hypotheses

Most previous work (see Section 3.1, page 29) used related tasks and datasets to boost
performance on the main task. The implicit assumption underlying the most common
choice of auxiliary training data can be formulated as the following hypothesis.

Hypothesis 1: Auziliary data being more similar to the main training data results in a
stronger main task performance compared to unrelated auxiliary data.

Note that using related auxiliary data does not necessarily increase the performance on
the main task, but it also might affect the main task performance less negatively than
unrelated auxiliary data. Moreover, it certainly is not an absolute rule as outliers are
always a possibility. However, the hypothesis should hold true in the majority of cases.
In order to use Hypothesis 1, dataset similarity and main task performance have to be
measured. The latter is measured identical to the single-task learning scenario without
using any auxiliary data. The performance measurement is typically defined by the
specific task and performed on a holdout test set. Common performance measurements
are accuracy, precision, recall and the F score, which is the weighted harmonic mean of
precision and recall (Derczynski, 2016).

Dataset similarity describes the relatedness between two or more datasets. There are
many dimensions in which a dataset can be related to another dataset. Two datasets
could be considered related based on their content when they share the same language or
refer to the same topic etc. For labeled datasets, the labels need to be taken into account
as well. While two datasets might agree on the same words and labels, the actual pairing
of words and labels could be e.g. inverted or entirely unrelated. For this thesis, dataset
similarity shall include all these properties. As a universal measurement for dataset
similarity does not exist (see Section 3.2, page 31), a suitable dataset similarity measure
will be developed during this chapter. The similarity of two datasets should only depend
on data-inherent properties to be generally applicable. Assuming this is possible, one
can come up with the following hypothesis.

Hypothesis 2: The similarity of two datasets D1 and Dy can be measured independently
of a specific machine learning model.

33

34 4 Dataset similarity concepts

In the general case, the training data for any sequence tagging task consists of a sequence
of tokens, possibly divided into segments or sentences, and any number of labels per
token. The tokens and corresponding labels are the obvious candidates for extracting a
similarity signal from the data. Labels or their distributions and embeddings seem to
have some signal as many found respective hints or even correlations in their experiments
(Kim et al., 2015; Martinez Alonso and Plank, 2017; Bjerva, 2017; Bingel and Sogaard,
2017; Augenstein et al., 2018; Ruder et al., 2019). Both tokens and labels on their own
are not enough for measuring dataset similarity (Bjerva, 2017). Imagine comparing a
dataset with a transformed version of itself. While the original is left untouched, in
the other labels or tokens are randomly shuffled. Measuring token and label similarity
independent of each other via entropy of token resp. label distribution results in identical
values for both the original and shuffled dataset. While a machine learning model can
learn from the former, it can only try to model random noise for the latter. Because
learning something random is impossible, original and shuffled transformation should not
be similar. Consequently, the idea further pursued in this work is to compare pairs of
token and label in different datasets in order to measure dataset similarity. Bjerva (2017)
was the first to use the joint probability of tokens and labels, which requires token-label
pairs, but he obtained the pairs from a single dataset annotated with two tagsets in
parallel. To my knowledge, this is the first attempt to compare token-label pairs across
different datasets.

4.2 Requirements

The requirements for a solution to measure the similarity of datasets are derived from
the goal of comparing sequence tagging datasets with each other without any further
restrictions. Working on raw data of arbitrary sequence tagging tasks is necessary for
this goal and to comply with Hypothesis 2. In addition, the way to measure dataset
similarity must be independent of the model that will be using the datasets for training.
Comparing only the same dataset with multiple labels per token would be a severe
limitation. A comparison ,without any further restrictions” implies that there are no
restrictions on tokens or labels in the data. This allows comparing datasets that have a
different tagset with or without overlap, are written in another language or in no natural
language at all.

While Bjerva (2017) limited comparison to automatically taggable tasks, the solution
developed in this work is not restricted to automatically taggable tasks. Labeling a
dataset for comparison has two major drawbacks. (1) The majority of tasks is not
automatically taggable with sufficient results, i.e. almost indistinguishable from the gold
standard annotation. (2) The similarity of the compared datasets is now dependent on
a specific model. Thus, the results are not universally applicable anymore. Instead, a
solution has to work with the information given in the compared datasets.

Apart from requirements regarding input or processing, the properties of the similarity
measure itself have be considered. The output, i.e. the similarity score or value, should be
minimal when two datasets are completely unrelated (e.g. one of them is entirely random).

4.3 Framing label similarity as a clustering comparison problem 35

Comparing identical datasets has to result in a maximal similarity score. Both minimal
and maximal value have to be independent of the datasets, e.g. the similarity score is
normalized to a value in the range [0, 1]. This normalization is crucial to compare one
main dataset with a number of auxiliary datasets because it enables a direct comparison
of the absolute scores. Otherwise, a similarity score of 10 for one dataset might in
fact be lower than a score of 0.5 for another if the maximal scores for datasets are 100
respectively 1. While the comparison of highly related but not identical datasets should
be close to the maximal similarity score, the opposite should be true for almost unrelated
datasets.

Other important aspects are the time and resources it takes to obtain a similarity
score for two datasets. It is only useful if it needs a fraction of the time and resources
used for training the machine learning model with multi-task learning on both datasets.
While this requirement is certainly vague and dependent on the applied machine learning
model, the method of obtaining the similarity score has to be generally considered fast
and cheap in the machine learning community.

4.3 Framing label similarity as a clustering comparison
problem

Transforming the problem of token-label dataset similarity to a clustering comparison
problem has a great benefit: Existing ideas and algorithms from clustering comparison
with solid theoretical foundations can be reused for this new problem. The idea is quite
straightforward: A clustering represents one label set and each label is a cluster within
the clustering. This means that all tokens having the same label belong to one cluster.

As shown in Section 2.4.3, a contingency table is a handy tool to work on the comparison
of clusterings. For now, let us assume that a dataset D is annotated with two labels in
parallel from two tasks T" and T” with possibly different label sets L and L’. Converting
the simplified problem of comparing L with L’ on D to a clustering comparison can
be done in the following way. The clusters for T" are the labels ly,ls, ...,y when the
label set L has N different labels in total. The clusters for 7”7 are labeled analogously
1,0, ..., 1, for the M labels in the set L’. Table 4.1 shows the resulting contingency
table for the described setting. The values ¢, are the counts how many tokens are in
the dataset that are labeled as / belong to cluster I, in task 7" and simultaneously I in
the task T".

To make the described approach less abstract, an example is provided below. Let
the dataset D use named entity recognition (NER) as task 7" and part-of-speech (POS)
tagging as task 7" having the label sets!:

L = {organization (ORG), person (PER), location (LOC), other (OTH)}
L' = {noun (NN), verb (VB), determiner (DT), other (X)}

LA simplified variant of the typical NER tagging scheme is used for ease of demonstration: Beginning
and intermediate tags are combined, e.g. B-ORG and I-ORG are reduced to ORG.

36 4 Dataset similarity concepts

A Y D) NN VB DT X | X
ll C11 Cl2 ... Cim C1. ORG 3 0 0 0 3
lg Co1 Co2 ... Copnm Co. PER 2 0 0 0 2
LOC | 2 0 0 012
lN CN1 CN2 ... CNM | CN. OTH 3 2 2 2 9
Xlec1 ca ... cpm | cC b 10 2 2 2116
Table 4.1: Contingency table for a compar- ~ Table 4.2: Counts from example Sentences
ison of label sets L and L' with 4.1 and 4.2 for comparison of
N resp. M unique labels NER and POS tagsets
Let dataset D contain the following two sentences:
(4.1) ORG ORG ORG OTH OTH OTH OTH PER PER
NN NN NN VB DT NN NN NN NN
Walt Disney Productions created the cartoon character Donald Duck
(4.2) LOC OTH OTH OTH OTH OTH LOC
NN VB DT X NN X NN
Hamburg is a large city in Germany

Table 4.2 shows the contingency table filled with the counts from both example sentences.
The last row resp. column shows the sum of the counts in each column resp. row. The
count cora Ny is three because there are exactly three tokens (Walt Disney Productions)
tagged both ORG and NN. Other label-pairs are derived analogously from the remaining
tokens of the dataset D.

Based on the counts in the contingency table, it is straightforward to calculate
information theoretic measures such as entropy, joint entropy, conditional entropy (see
Section 2.4.1, page 26) or mutual information (see Section 2.4.2; page 26). For ease of
reading, the definition of mutual information (MI) is provided here once more:

p(z,y)
E:E:pxyl%@(<>mw> (13)

reX ye) xr

Because the (joint) probability mass functions p(z), p(y) and p(x,y) are unknown
for the label sets L and L' in dataset D, the equation needs to be rewritten to use
an approximation. The probabilities are replaced by the relative frequencies of the
label-pairs. With the notation from Table 4.1, the MI definition becomes

ZZ”M%;J ZZ%1<%> (4.4)

i=1j=1 i=1j=1 € Ci.Cj

4.4 Evaluation of clustering comparison measures 37

The different entropy measures can be changed analogously to use relative frequencies
instead of probability mass functions. Note that the logarithm is only defined for positive
values, but the counts ¢;; are often zero. In line with Cover and Thomas (2006, p. 14),
the convention 0log(0) = 0 is used to mitigate this issue because xlog(z) — 0 when
x — 0. To complete the example, calculating the mutual information for the data in
Table 4.2 is shown below:

3 3. 16 9 2. 16
I(L; L) = —1 () 1 < >
(L) = q5losz (379) T+ g losz (55

= 0.187510g,(1.6) + - - - + 0.125 log,(1.7)
= 0.1271 + - -~ + 0.1038
= 0.4379

So far, transforming label similarity as a clustering comparison problem has been limited
in application due to the need of parallel labels for two tasks. Solutions on how to lift
this restriction will be developed in Section 4.5. To answer whether I(L; L") = 0.4379
means that the two tasks are similar or not, the entropy of both label sets has to be
taken into account. Different measure variants are compared in the following section to
find a useful similarity score. This is required regardless of the current limitation as the
idea of filling a contingency table to compute clustering comparison measures remains
the same.

4.4 Evaluation of clustering comparison measures

As there are various information-theoretic clustering comparison measures available, it is
beneficial to find that particular measure which is most suitable for the problem of dataset
similarity estimation. In Section 4.3 is shown how to transform the dataset comparison
to a clustering comparison problem. Multiple information-theoretic measures and some
of their properties were introduced in Section 2.4. Together, both form the foundation
to define a comparison measure that fulfills the requirements set in Section 4.2.

In previous work (see Section 3.2, page 31) entropy, conditional-entropy and mutual
information have been applied to compute label, dataset and task similarity. To allow
for a comparison, these measures are included in the upcoming evaluation process.
Apart from those basic measures, Section 2.4.4 introduced more sophisticated measure
candidates that are constructed from the simpler ones. Two normalized variants of
the plain mutual information are to be compared against the other similarity measures
as they posses the best theoretical properties. NMI,,,, and NM1I;y,: can both be
converted into a proper distance metric.

The selected measurements will be evaluated both in theory and in practice on a
few simple examples. Hands-on evaluation will be performed on task-agnostic contin-
gency tables filled with counts to illustrate certain relationships of the two label sets.
The measure-specific requirements are enumerated below to enable an easier reference
hereafter.

38 4 Dataset similarity concepts

(1) The minimal and maximal value of the measure should be in a fixed range inde-
pendent of the dataset.

(2) Identical label sets should result in a maximal similarity score.
(3) Unrelated label sets, e.g. random, should have a minimal similarity score.

(4) Label sets that can be mapped directly to each other with only few errors should
have a high similarity score close to maximal value.

(5) If label sets are not related but still not random, their similarity score should be
close to the minimum.

(6) When two label sets are partly identical and random, the similarity score should
be an average value in the middle of the minimum and maximum.

Entropy, conditional entropy and mutual information cannot be negative and always
have 0 as their minimum value. Hence, they fulfill a part of the fixed range requirement
req:fixed-range. The maximal values of both conditional entropy and mutual information
depend on the entropy of the label sets. Because the maximal entropy value is dependent
on the number of labels H(L) < log,(N), conditional entropy and mutual information
do not have a dataset-independent maximum value. Consequently, these three measures
do not provide a fixed range similarity score and fail to fulfill requirement (1). As the
NMI variants are normalized to the fixed range of [0, 1], they satisfy requirement (1).

To examine the measures regarding the requirements (2-6), a number of scenarios,
presented in Table 4.3, are used to evaluate the outputs of the different measures. The
count distribution for the first three examples (a—c) is easily justified. In (a) each label
[, is mapped to exactly one label l;. There are no outliers. The counts for the second
example (b) were drawn randomly from a uniform distribution. In (c) an identical
mapping (diagonal line from [y, [} to l4, l}) was used as the initial situation. A few outliers
with significantly lower counts were added to transform the perfect relation to a highly
related scenario. For example (d) one label-pair is an exact match between both label
sets, but the other three are evenly distributed. The counts should reflect that most label
information is unrelated while there is still some similarity signal. The last example (e)
has different label set sizes. While labels from L are split across multiple corresponding
labels in L', in the other direction there are good fits with only few outliers.

The results for each combination of information-theoretic measure and scenario are
shown in Table 4.4. As entropy and conditional entropy are not symmetric, results for
both directions are shown. It becomes clear immediately from the results that entropy
is an unsuitable measure to compare clusterings. The values are almost identical for
all except one scenario. Due to the greater number of labels H(L') is 50% higher than
the other entropy values. Conditional entropy is not a similarity measure, but it might
work as a distance measure so that requirements regarding minimal and maximal values
have to be swapped. For identical (a) label sets the value is minimal and the random
(b) scenario shows the highest conditional entropy. While H(L|L’) value for case (d) is
placed correctly among the five scenarios, the remaining two cases (c, e) are not in line

4.4 Evaluation of clustering comparison measures 39

A DY A DY A DY
L1 0 0 0|17 L7 6 3 31|19 {10 0 O 1|11
I 0 0 0 12|12 b2 4 2 3|11 lrb1 1 11 0 0 |12
Is| 0 19 0 019 Is| 4 2 3 8|17 3|0 2 12 0|14
Iy 0 0 12 0 |12 sy 9 4 8 5|26 ly| 0 0 3 13|16
|17 19 12 12|60 122 16 16 19|73 |11 13 15 14|53

(a) Identical (b) Uniform random (c) Highly related

A DY L A A A A O A A P DY
L1115 0 0 015 {10 0 0 20 0O 0O O O O 2| 32
lob| 0 5 5 5|15 lb{0 12 12 0 0 0 0 0 1 0|25
Is| 0 5 5 5|15 Ils{0 0 0 4 2 15 0 5 0 0|26
lsy| 0 5 5 5|15 Iy 10 0O O 1 0O 10 0 14 0O | 26
|15 15 15 15|60 |11 12 12 24 3 15 10 5 15 2 |109

(d) Rather unrelated (e) Medium related, different label set sizes

Table 4.3: Contingency tables for different scenarios comparing label sets L and L'

Scenario H(L) H(L) H(LIL) H(L|L) I(L;L)) NMIjym NMIp,
Identical (a) 197 1.97 0.00 0.00 1.97 1.00 1.00
Random (b) 1.94 1.99 1.84 1.89 0.09 0.02 0.05
Related (c) 1.98 1.9 0.55 0.55 1.44 0.57 0.72
Unrelated (d) 2.00 2.00 1.19 1.19 0.81 0.25 0.41
Mixed (e) 1.99 3.07 0.26 1.34 1.73 0.52 0.56

Table 4.4: Results for the evaluated measures on each scenario from Table 4.3

with the expected outcome. Their order should have been changed. The other direction
H(L'|L) has a similar issue because (e) should have a lower conditional entropy than (d).
A combination, e.g. average, of the values from both directions could solve the issue in
the shown examples. It is unclear whether this workaround would generalize well.

The results for mutual information look promising as it is clearly a similarity measure.
While the random setting (b) has by far the lowest value, the score in the identical
setting (a) is maximal. The values for scenarios (c, d) are close to the expected outcome.
Similar to the result for conditional entropy, the order of settings (c) and (e) is contrary
to the expected order.

40 4 Dataset similarity concepts

Both evaluated NMI variants perform great as a similarity measure. Apart from being
normalized to range of [0, 1], they manage to produce scores for all five scenarios agreeing
to the expected order. Starting with the lowest value of almost zero in the random case
(b), both put the score of scenario (d) in the lower half. The mixed example (e) is placed
correctly in the middle and followed by case (c). Both score the identical label sets (a)
with the maximum value of 1.

The theoretical and experimental results of this section can be summarized as follows.
Entropy is unsuitable and fails to fulfill any of the requirements. Conditional entropy
(as a distance measure) and mutual information are usable, but both only satisfy four
out of six requirements. Only the two NMI similarity measures are able to fulfill all six
requirements and produce scores as expected for each example scenario. Which of these
NMI measures is best suited in a real application cannot be answered from this basic
evaluation. Both need to be compared on a larger scale.

4.5 Calculation of dataset similarity from labels

Having identified suitable similarity measures in the previous section, the question of how
to obtain the necessary label-pair counts to fill a contingency table remains. The counts
for each pair of labels allow to approximate the joint probabilities, which are essential
for the computation of the similarity measures. Until now, obtaining such counts from
labeled text has been restricted to a single dataset with parallel annotations for two
label sets as shown in Section 4.3. This restriction has to be lifted to compare arbitrary
sequence tagging datasets and tasks.

Bjerva (2017) applies automatic tagging to mitigate the issue. When two tasks
from two different datasets have to be compared, one of the datasets has to be tagged
automatically with the other task’s labels. This effectively reduces the problem to the
restricted case mentioned above. However, this approach has multiple issues. Most
notably, a comparison is only possible if at least one of the tasks can be automatically
tagged with almost perfect accuracy. Otherwise, the counts and thus the similarity
score does not resemble the actual data at all. While the necessary performance-level
(inter-annotator agreement) has been reached for a few simple tasks, the performance
on the majority of tasks is insufficient. Another downside is that the similarity score
is not only data-inherent anymore because it implicitly depends on the model used to
perform the automatic labeling. Finally, a comparison of two datasets for the same task
cannot be meaningfully performed because automatic tagging would remove the ability
to compare the subtle differences between both datasets.

In this work, other approaches are proposed to lift those restrictions on the datasets and
tasks. In the following subsections two solutions are developed that enable a comparison
of arbitrary task and dataset combinations.

4.5 Calculation of dataset similarity from labels 41

4.5.1 Text overlap

An idea to compare different datasets is to use a label mapping function. If a manually
defined one-to-one mapping from labels of one dataset to another one exists, datasets
can be compared to each other because the problem can once again be reduced to
the easy case of a single dataset with two parallel label sets. The obvious issue with
this idea is that in many cases there is no bijective label mapping function. While
mapping a fine-grained label set to a coarse label set is certainly possible, the reverse is
not easily done. It is unclear to which of the finer sub-labels a coarse label should be
mapped. Moreover, the predefined label mapping function causes the similarity score to
be dependent on the specific mapping function used.

The basic idea of the text overlap approach is to generate an implicit label mapping
from the token-label pairs of both datasets. This has the advantage of being independent
of external knowledge and enabling a probabilistic mapping from coarse to fine-grained
label sets specific for both datasets. The method uses only the labels for words that are
contained in both datasets.

Instead of comparing the label of each token in dataset D; with Ds, tokens occurring
multiple times in a dataset are aggregated. Thus, the dataset in form of a stream of
token-label pairs is transformed to a set of unique words. Each word is associated with
the number of times it is contained in a dataset and the counts for each label that
this word has been tagged with. Below are two example datasets annotated with the
extremely reduced POS tagset introduced in Section 4.3.

(4.5) VB DT NN X VB DT NN VB DT X NN X
Creating an example to explain the process is an impossible task
X VB DT NN X NN X NN X NN VB VB X
To process the data , counts of words and labels are needed

(4.6) X VB DT NN X DT X NN X DT NN X VB DT
This is the data for the second dataset . The process to find the
X NN X X NN VB DT NN X

right words for this example took a second

Table 4.5 shows the two datasets (4.5, 4.6) after the transformation. Only words occurring
in both datasets can be used to fill in the counts of a contingency table in order to
compute a similarity score for the datasets. Filling in the counts of the contingency table
is not straightforward. There are multiple options to consider how exactly the counts
from both datasets are fused together. It becomes even more difficult if a word does not
have the same label within one dataset. In the examples above, this is the case for the
words process and second because they are ambiguous without context. Table 4.6 shows
two possible ways to combine the counts from both datasets into a single contingency
table.

The additive (a) approach is based on the assumption that the problem can once more
be reduced to the simple case of a single dataset with parallel labels. By looking only at
the intersection of words contained in both datasets, a new virtual dataset is created. In

42 4 Dataset similarity concepts

Word # DT NN VB X
Creating 1 0 0 1 0
an 2 2 0 0 O
example 1 0 1 0 0 Word # DT NN VB X
to 1 0 0 0 1 This 1 0 0 0 1
explain 1 0 0 1 0 is 1 0 0 1 0
the 2 2 0 0 0 the 3 3 0 0 0
process 2 0 1 1 0 data 1 0 1 0 0
is 1 0 0 1 0 for 2 0 0 0 2
impossible 1 0 0 0] second 2 0 1 0 1
task 1 0 1 0 0 dataset 1 0 1 0 O
. 2 0 0 0 2 . 2 0 0 0 2
To 1 0 0 0 1 The 1 1 0 0 0
data 1 0 1 0 0 process 1 0 1 0 0
1 0 0 0 1 to 1 0 0 0 1
counts 1 0 1 0 0 find 1 0 0 1 0
of 1 0 0 0 1 right 1 0 0 0 1
words 1 0 1 0 0 words 1 0 1 0 0
and 1 0 0 0 1 this 1 0 0 0 1
labels 1 0 1 0 0 example 1 0 1 0 0
are 1 0 0 1 0 took 1 0 0 1 0
needed 1 0 0 1 0 a 1 1 0 0 O
(a) Counts for words and their labels in (b) Counts for words and their labels in
Dataset 4.5 Dataset 4.6

Table 4.5: Transformation of word-label pairs to an associated count-based representation.
The grayed out words do not occur in both datasets.

this virtual dataset each word is tagged from two different label sets. Label counts for
words contained in both datasets are summed up because they are viewed as multiple
instances from a single dataset. The word example occurs once in each dataset and is
both times tagged as NN. In the contingency table (a) the count for NN-NN, i.e. row 2
column 2, is increased by two. The word the occurs two resp. three times in the datasets
and is always labeled DT. Consequently, the count in the contingency table at DT-DT,
i.e. row 1 column 1, is increased by five. For process the situation is not that simple
because it has multiple labels in the first dataset: NN and VB. In the second dataset,
there is only a single occurrence of process with label NN. The counts in the contingency
table are increased by two for the positions NN-NN and VB-NN. The problem is that
the single occurrence is now used twice. Alternatively, the count could be split by the
number of labels in the other dataset, so that the two affected positions are not increased

4.5 Calculation of dataset similarity from labels 43

DI NN VB X | X DI NN VB X | X
DT | 5 0 0 015 DT | 6 0 0 01]6
NN | 0O 8 0 018 NN | O 4 0 014
VB | 0 2 2 014 VB | 0 1 1 0] 2
X 0 0 0O 66 X 0 0 0 5|5
by 5 10 2 6|23 x 6 5 1 5|17
(a) Additive (b) Multiplicative

Table 4.6: Contingency table derived from the counts of words in Table 4.5 that are
contained in both datasets.

by two but by one and a half.

Another idea is to use a multiplicative (b) procedure by combining the counts for
matching words via multiplication instead of addition. The words example and the
increase the counts in the contingency table (b) at the positions NN-NN resp. DT-DT
by 1-1 =1 resp. 2-3 = 6. For words with multiple labels like process, the counts
for each label-combination are multiplied and added at the corresponding position in
the contingency table. An effect of this approach is that words being frequent in both
datasets contribute more to be counts. Whether this effect is desirable or not has to be
evaluated in a large scale experiment on real data. From a theoretical point of view, it
has the benefit that matching words, which are often seen in both datasets, are very
unlikely outliers and can aid in a robust comparison. However, overweighting frequent
words is usually not helpful for data understanding because common words are almost
identical in each dataset of the same language.

There are more possible weighting schemes how to combine the raw counts from the
different datasets into a mutual contingency table. In any case, all contingency tables
obtained from these methods can be used to compute similarity measures such as the
NMI as shown in Section 4.4. To decide which approach yields the best results with
regard to the use case, an extensive end-to-end experiment including similarity score
calculation should be performed.

The general advantage of the approaches proposed here is that they are fast because
they only involve text processing and a few counts. The downside is that these methods
can only identify an identical dataset with 100% similarity if each word always has the
same label. In real datasets many words occur with different labels multiple times both
erroneously and because they are ambiguous. This will very likely affect the similarity
comparison negatively. Another issue is that only a fraction of each dataset is used for the
actual comparison. Information from words occurring only in one of the datasets cannot
be leveraged. Whether the comparison of real-world datasets is affected (negatively) by
these shortcomings, will be evaluated experimentally in Chapter 7.

44 4 Dataset similarity concepts

4.5.2 Vector space similarity

In Section 2.2.6, word embeddings were presented. They allow representing words in
form of dense vectors within a vector space instead of a specific character sequence in the
language’s vocabulary. Thus, it is possible to perform mathematical operations on these
vectors and compute e.g. the semantic similarity of two words by computing their cosine
similarity within the vector space (Elekes et al., 2017). These word vector techniques
can be used to tackle the problems of the previously shown text overlap approach.

A first extension allows incorporating words that do not occur in both datasets into the
comparison process. Identical to the text overlap approach, each dataset is transformed
into an associative array of words with the occurrence counts for each label. The unique
words from each dataset are embedded to obtain vector representations. Instead of
ignoring words only contained in one dataset, the most similar word from the other
dataset is chosen for the pairwise label comparison. An issue is that some words may
be used multiple times because each word can have one direct text match and multiple
similar matches via embeddings. This further complicates the necessary weighting and
combination schemes presented in the previous section. The remaining process and
similarity measure computation stays the same.

Applying this extension to the two example datasets shown in Table 4.5 would make
use of the grayed out words. Creating from Dataset 4.5 might have the closest match
with process from Dataset 4.6 depending on the word embeddings used. Thus, the count
for VB-NN would be increased, which clearly is a mismatch. The word an might have
the lowest vector space distance to a from the other dataset. This accurate match would
increase the count for DT-DT. The remaining, so far unused, words from Dataset 4.5
have to be matched with their semantically most similar counterparts from Dataset 4.6.
For each pair of words, the count for the corresponding label-pair needs to be increased
in the contingency table. While most vector representation matches between those two
example datasets are arguably inadequate, the quality of these matches is considerably
higher with proper, large datasets.

A more radical approach allows differentiating between the various labels of the same
word depending on its context. Instead of working on the aggregated list of unique
words, the raw datasets are used. For each token, a specific vector representation
is obtained via contextual embeddings such as ELMo (Peters et al., 2018) or BERT
(Devlin et al., 2019). The counts in the contingency table for the label-pair can either
be incremented by 1 or by the vector space similarity of the two tokens. A similarity
measure like NMI can be calculated from these counts as before. Identical datasets can
be scored with 100% similarity when the contextual embeddings are able to produce
unique vector representations for each token deterministically. In general, this method
handles ambiguity in a language much better compared to the plain text approach, which
should help to improve the similarity comparison between various datasets.

The application of this approach on the two example Datasets 4.5 and 4.6 would
work in the following way. All tokens in the two datasets are augmented with their
corresponding contextual vector representations, thereby creating an associative array
from a numeric vector to a label. Tables 4.7a and 4.7b show the result for the first five

4.5 Calculation of dataset similarity from labels 45

Token Embedding Label Token Embedding Label
Creating [0.01,0.14,0.03,...] VB This [0.01,0.14,0.03, .. .] X

an [0.23,0.07,0.01,...] DT is [0.23,0.07,0.01,...] VB
example [0.01,0.02,0.22,...] NN the [0.01,0.02,0.22,...] DT
to 0.08,0.19,0.05,...] X data [0.08,0.19,0.05,...] NN
explain [0.02,0.13,0.03,...] VB for 0.02,0.13,0.03, .. .] X

(a) First five tokens from Dataset 4.5 with (b) First five tokens from Dataset 4.6 with
their vector representations and labels their vector representations and labels

This is the data for
Creating 0.87 0.23 0.76 0.50 0.61

an 040 045 032 0.68 0.72
example 0.53 0.86 0.59 0.37 0.60
to 0.77 043 0.63 0.84 040

explain 0.89 033 045 0.64 0.72

(c) Pairwise distances between the vector representations of tokens from (a) and (b). Closest
distances from rows to columns are shown in bold.

Table 4.7: Using vector space similarity to match tokens between two datasets to obtain
counts for a similarity calculation based on a contingency table. Note that
both embeddings and distance numbers are artificially chosen to be intuitively
comprehensible and help to explain the various cases.

tokens of Dataset 4.5 resp. 4.6 using artificially constructed embeddings. For each word
embedding in the first dataset, the vector representation with the closest distance from
the other dataset has to be found. This is shown in Table 4.7c. The five matches are
Creating—is, an—the, example—data, to—for and explain—is. Consequently, the counts in a
contingency table have to be increased for the label-pairs VB-VB, DT-DT, NN-NN, X-X
and VB-VB. Because the process of selecting the closest vector representation either
from rows to columns or vice versa can result in different combinations, the counts in the
contingency table will be different depending on the direction. Thus, for a symmetric
similarity measure like NMI, two possibly different scores will be produced. When using
a similarity measure that is not symmetric such as conditional entropy, this would result
in four scores per dataset comparison.

The first extension to use words not occurring in both datasets solves the smaller
problem of the two issues with the text overlap method. Compared to the raw text
processing without any word embeddings, it requires a lot more computational resources
to work with the vector representations. The upside is that obtaining context-independent
vector representations from words is fast. A fast and simple lookup table mapping a

46 4 Dataset similarity concepts

word to its vector is enough. More importantly, the number of unique words within any
dataset is small compared to the number of tokens according to Zipf’s law (Zipf, 1935).
Therefore, increasing dataset sizes has almost no effect on the amount of expensive
vector representation computations. The situation completely changes when contextual
embeddings are used for each token. Matching single tokens instead of using aggregated
counts requires many expensive word vector computations because every token from
one dataset has to be compared to every token in the other dataset to find the closest
match. The benefits of this contextual approach are achieved by a severe increase in
computational costs.

4.6 Calculation of dataset similarity from gradients
observed during training

Alternatives to the methods described previously in this chapter will be outlined in this
section. Instead of calculating dataset similarity from raw text tokens and labels, it could
be approximated from gradients during training. This is an entirely different approach
compared to the previous work in this chapter because it is not based on the datasets
alone but uses the training process of a neural network as information source. Note
that this approach will not be further pursued in this thesis as it does not meet the
requirements set in Section 4.2. The ideas are still described here in case of having a
similar problem but different requirements than assumed in this work.

The basis for this approach is the assumption that related tasks or datasets are solved
with similar solutions. In case of neural networks, similar solutions are described by
parameters i.e. weights being close to those of another network. To arrive at a similar
parameter solution, the training gradients used to update the parameters have to be very
similar as well. Note that actually the reverse is true, i.e. the same gradients must always
lead to the same solution (assuming other factors such as the learning rate are constant).
In practice, it is highly unlikely to arrive at the same solutions within a high-dimensional
parameter space when following different gradients. In any case, highly similar gradients
will result in a similar solution, which in turn indicates that two datasets are related.

A first idea working under the assumption above is to train two identical models
separately for both datasets. In order to enable a fair comparison of the training
gradients, the models have to be identical with respect to both hyperparameters and
initial network weights. During the training process, gradient vectors obtained on the
main dataset can be compared to those from the auxiliary dataset. It is possible to
compare the gradient vectors of every training iteration, their running average or fixed
points similar to Bingel and Sggaard (2017), who selected the gradients at 10, 20,
... percent of the total training process. Gradient vectors can be compared by computing
e.g. their cosine similarity, which will only compare the direction but not the magnitudes
of both vectors. Additionally, other features such as the steepness may be used for a
comparison.

Another idea is to use a single model and train it in an alternating manner with both

4.6 Calculation of dataset similarity from gradients observed during training 47

auxiliary and main data. Training on single sentences usually results in inconsistent
gradients. Thus, (mini-)batches of each dataset should be used to obtain more consistent
gradients. These gradient vectors can again be compared with cosine similarity. The
intuition is that gradients pointing in roughly the same direction indicate similar datasets.
If gradient vectors point in orthogonal or opposite directions, the training will likely fail
to converge, which should be a good indicator that the datasets are dissimilar. Instead of
alternating training batches from the beginning, it might be beneficial to mix in auxiliary
data when a plateau on the main task is reached. The findings from Bingel and Sggaard
(2017) indicate that if the main task reaches a training or validation error plateau, using
auxiliary data can help to decrease the validation error on the main task. For similar
datasets the validation error should be decreased while an unrated auxiliary dataset will
probably increase the validation error.

An approach based on pure trial and error could test varying amounts of auxiliary
data and compare the performance on the main task. The underlying assumption is the
more related two datasets are, the more from one dataset can be mixed in the training
without decreasing the performance on the other dataset. If the main task performance
decreases (compared to the single task learning) when only a small fraction of auxiliary
data is included in the training, this is another indicator for unrelated datasets.

All the ideas outlined above share a common problem. They (partly) rely on trial and
error, which can be a time-consuming process. Only the strategy of alternating batches
of main and auxiliary data from the beginning provides results faster than a full training.
If the goal is to learn more about data similarity, such expensive experiments can be
justified. In case the best performing auxiliary dataset has to be predicted before the
actual multi-task learning, the gradient-based approaches are of little help.

In this chapter, new concepts have been developed to calculate the similarity of
sequence tagging datasets. To evaluate these methods, the similarity between datasets
has to be compared with the effect of using the datasets in a neural network. A suitable
neural network implementation will be developed in the following chapter.

5 Neural MTL system implementation

Verifying any hypothesis experimentally needs data from appropriate experiments to
perform a statistical evaluation. Hypothesis 1 states that more similar auxiliary training
data achieves a better performance on the main task. To check the performance effect of
auxiliary data for training a neural network, a neural network implementation is required
that is capable of multi-task learning. In the first section of this chapter, the specific
goals and the scope of the neural system implementation are defined. They form the basis
to explain and justify the network architecture, design decisions and implementation
details in subsequent sections.

5.1 Objectives

The primary objective of the neural network implementation is to show a difference in
performance when using various (auxiliary) datasets for training. Further, the neural
model must not prefer any of the datasets to enable a fair comparison of the results.
A problem is that these are quite unspecific goals, i.e. it is unclear how the network
implementation can achieve those goals. To mitigate this issue, a number of smaller,
more specific objectives will act as proxy for the broader goals.

The network architecture has to support both single-task and multi-task learning.
Multiple additional datasets with possibly different tagsets have to be usable as auxiliary
tasks in the multi-task implementation without giving an advantage in case of identical
main and auxiliary tagsets. These points shall ensure that any sequence tagging datasets
can be used in the experiments and that the comparison between them is as fair as
possible.

The following objectives should allow differentiating the performance of various auxil-
iary datasets. Any amount of additional data shall be usable for training regardless of the
size of the main dataset. Otherwise, only equal amounts of auxiliary and main training
data can be used, which is a common setting to limit negative effects of auxiliary data
to main task. The network hyperparameters and architecture should be configurable.
Thus, networks with a large variety in model capacity can be constructed and trained
consistently. It is especially critical that the degree of regularization can be adjusted from
none to strong in order to account for the regularizing effect of more data. Otherwise,
either a larger dataset might not provide any performance gains or a small dataset
achieves an unnecessarily poor performance.

Apart from result-focused objectives, there are few general aspects. A simple, minimal-
ist architecture is easier to understand, reproduce and compare with other approaches.
The architecture should be based on hard parameter sharing because it is the most

49

50 5 Neural M'TL system implementation

commonly used method in related work. This allows a better comparison and results
obtained from such an architecture are more likely to apply to other experiments, which
are also performed with the common hard parameter sharing architecture. Besides, the
neural network implementation has to be fast and efficient on GPUs. Otherwise, a large
number of experiments would both be wasteful with resources and take too long to
complete.

Finally, it is explicitly out of scope in this work to create the best-performing system
for a specific task. Thus, no new state-of-the-art results have to be obtained in the
experiments. Instead, the results should be helpful in understanding the connection
between data similarity and effective main task performance in a multi-task learning
approach.

5.2 Architecture

As mentioned before, the neural network architecture should be in line with most related
work. If the similarity evaluation turns out to be model dependent, a widely used
architecture is preferable. Thus, the most common hard parameter sharing architecture
for sequence tagging should be resembled. As summarized in Section 3.1, the commonly
used neural network consists of word embeddings, character embeddings and features, a
bidirectional gated RNN, a linear transformation to the label space and a final classifier.
While the last two layers are task-specific, the other layers are shared among all tasks
during multi-task learning. The abstract network architecture is shown in Figure 5.1.
There are several options for word embeddings: They can be randomly initialized and
trained like the other network parameters via backpropagation. Alternatively, fixed, pre-
trained word vectors are used, which are not updated during training. It is also possible
to use pre-trained vectors for initialization and continue to train the parameters. The last
two options are the far more common choices in recent single- and multi-task learning
approaches that are focused on achieving state-of-the-art performance. In extensive
tests by Reimers and Gurevych (2017) and Yang et al. (2018), pre-trained word vectors
provided a significant performance increase. In case the focus is on the comparison of
STL versus MTL performance, an understanding of multi-task characteristics or task
similarity, pre-trained embeddings were avoided in related work (Plank et al., 2016;
Martinez Alonso and Plank, 2017; Bjerva, 2017; Ruder et al., 2019). As the goal of this
work is clearly the latter and not the former, no pre-trained word vectors will be used
in this neural network implementation. This way, any influence on the performance of
various auxiliary datasets should be avoided in order to ensure a fair comparison.
Automatically learned character features are a common component in state-of-the-art
neural sequence tagging architectures. Surprisingly, Reimers and Gurevych (2017) did
not see significant performance improvements in their sequence tagging experiments
when testing both convolutional (Ma and Hovy, 2016) and recurrent (Lample et al.,
2016) neural networks for character representations. However, similar tests of the same
two approaches by Yang et al. (2018) showed significant performance increases for many
tasks, which is consistent with the broad usage of character representations in related

5.2 Architecture 51

Labels t; Labels t,
T |
Classifier t; Classifier t
| |
Linear t; Linear t,

\ /
Bidirectional Word RNN |

T
+
AN

Bidirectional Word

Character RNN Embeddings
|
Character
Embeddings

N
Words ¢ + t

Figure 5.1: Generic MTL-capable neural network architecture for sequence tagging

work. Reimers and Gurevych (2017) and Yang et al. (2018) agree that the differences
between convolutional and recurrent neural networks for extracting character features are
negligible and neither approach decreases performance over a baseline without character
representations. Thus, following the majority of related work, character RNNs will also
be used in this neural network architecture. In contrast to word vectors, there is no need
for pre-trained character embeddings as they can be easily learned from scratch due to
their small vocabulary (language alphabet plus punctuation etc.). In most related work,
a character RNN is implemented as a single-layer, bidirectional LSTM or GRU (see
Section 2.2.3, page 17). Both types and their hyperparameters, e.g. number of hidden
units, are made configurable for experiments.

The core component of most recent neural networks for natural language processing is
a recurrent neural network operating on a sequence of word vector representations and
their character features. For such a word RNN, a multi-layer, bidirectional LSTM or
GRU is chosen in most related work. In this neural network implementation, the type of
word RNN and hyperparameters, e.g. number of layers and hidden units, are configurable.
The word RNN output is the last part that is shared across tasks in case of multi-task
learning. For each task, this fixed-size representation has to be mapped to a vector with
its size equal to the number of labels. This operation is performed by task-specific linear
transformations, which are fully-connected feedforward neural networks. Consequently,
any number of auxiliary datasets can be incorporated into the network as there is an
output layer for the main dataset and for each individual auxiliary dataset.

52 5 Neural M'TL system implementation

The final component of the architecture is a classifier that produces label probabilities
for each word in the sequence. For sequence tagging, two options are widely used.
The Softmax function normalizes a real-valued vector into a probability distribution,
so that each value is in range (0,1) and the resulting vector has a sum of 1. The
Softmax function has no internal state or parameters and is directly applied onto the
outputs from the task-specific linear transformations. A potentially stronger performing
alternative is a conditional random field (see Section 2.1.3, page 8). A CRF (Lafferty
et al., 2001) considers dependencies between labels and optimizes the probability of the
whole sequence. Especially for tasks with high dependency between tags, e.g. named
entity recognition, a CRF outperforms the simpler Softmax according to Reimers and
Gurevych (2017) and Yang et al. (2018). However, their results show that for a few
tasks, a CRF performs slightly worse than the Softmax. Because a CRF has trainable
parameters, each task will need its own instance analogous to the task-specific linear
transformations. In order to let each task or dataset perform best using either Softmax
or CRF, both will be implemented and made configurable in this network architecture.

In summary, the architecture is highly configurable and applicable to any sequence
labeling task in a single- or multi-task learning setup. It consists of a shared bidirectional
LSTM or GRU that uses character representations from another LSTM or GRU and
word embeddings that are learned from scratch. For MTL, the main and auxiliary tasks
have individual linear transformation and either Softmax or CRF layers. The model
should be able to extract and combine morphological, structural and possibly semantic
features from any sequence tagging dataset to predict tags for each word.

5.3 Design decisions and training process

Regularization is a key aspect in parameter-rich neural networks to avoid overfitting.
So far, the above described network architecture is completely unregularized, which is
especially harmful for single-task learning performance. In case of multi-task learning the
shared parameters are implicitly regularized due to the larger and more diverse training
data. More explicit regularization is required to make STL more competitive. Otherwise,
the comparison of STL and MTL performance would not be fair because the STL is
more likely to overfit and perform poorly on an unseen test set.

Many regularization techniques have been proposed for neural networks, e.g. parameter
norm penalties (L', L?), data augmentation, parameter sharing, early stopping and
dropout. Refer to Section 2.2.4 on page 18 for a description of these techniques. Data
augmentation and parameter sharing are not generally applicable for recurrent neural
networks processing natural language data. Convolutional neural networks working
on image data can share the convolution kernel weights across all pixels of an image.
Although RNNs already share parameters by using the same weights for multiple time
steps in a sequence, the degree of parameter sharing is lower than in CNNs by an order
of magnitude. Additional parameter sharing can be achieved with multi-task learning,
but that does not make the STL setting more competitive. Data augmentation requires
modifying the input data without impacting the results a human would be capable to

5.3 Design decisions and training process 53

obtain. For natural languages, even slight modifications, e.g. swapping words in a sentence
or characters in words, typically result in invalid training instances. Consequently, only
parameter norm penalties, dropout and early stopping remain as regularization methods
for the developed neural network.

Parameter norm penalties are applied by adding a term to the loss function used
for training. Thus, it is automatically applied to all weights that are updated during
backpropagation. The weight decay i.e. L? regularization factor can be globally configured
as a hyperparameter. Early stopping affects the training procedure by limiting the number
of training epochs. To apply it, the network implementation has to support checkpoints,
i.e. the network parameters have to be saved and restored. As soon as the validation
score has not increased for n epochs, the checkpoint with the best validation score is
reloaded and the training is stopped. The number of epochs n, also called patience level,
is a configurable hyperparameter in this implementation.

Dropout operations can be placed at multiple locations within the overall network
architecture. In this implementation, dropout is performed on the output vectors of
character and word embeddings, character representations and after each layer of the word
RNN. This is in accordance with the sequence tagging implementations of flair®, a state-
of-the-art NLP framework (Akbik et al., 2018, 2019), and AllenNLP?, a NLP research
library (Gardner et al., 2018; Peters et al., 2018). In contrast to those sophisticated
networks, the dropout rate is the same at each position in this implementation. Thus, it
is a single configurable, real-valued hyperparameter in the interval [0, 1).

Another important aspect is the runtime speed of the implementation. All building
blocks of the network operate on batches of data in order to optimally utilize GPUs.
Graphic and specialized tensor processing units can only achieve a high throughput when
working on problems with lots of parallel arithmetic operations. Because the character
RNN and the CRF Viterbi decoding significantly slowdown the computation (Yang
et al., 2018), these implementations were carefully tuned to achieve a high degree of
parallelism to be fast on GPUs. Processing data in mini batches is the commonly used
strategy between the two extremes of processing either a single sentence or the whole
dataset in one large batch. Smaller batch sizes tend to increase both the convergence
rate of the training and the achieved test performance (Li et al., 2014; Masters and
Luschi, 2018). Thus, the optimal batch size should be as small as possible while still
almost fully utilizing the parallel processing capabilities of the hardware. Applying
batch normalization (Ioffe and Szegedy, 2015) and using large datasets allows to increase
the batch size without sacrificing convergence or performance according to Masters
and Luschi (2018). However, for recurrent neural networks batch normalization does
either not perform well (Laurent et al., 2016) or greatly increases computational cost
(Cooijmans et al., 2016). Layer normalization (Ba et al., 2016) is a related method that
is applicable to recurrent neural networks, but it is unknown whether layer normalization
enables an increase in batch size similar to batch normalization. Hence, in this network
implementation neither layer nor batch normalization is applied. Instead, the batch size

https://github.com/zalandoresearch/flair
2https://allennlp.org/

https://github.com/zalandoresearch/flair
https://allennlp.org/

54 5 Neural M'TL system implementation

is made a configurable hyperparameter that should be set in accordance with the above
findings for experiments.

Operating on batches of data affects the training process in case of multi-task learning.
When training on multiple datasets, one mini batch has to be filled with data from
a single dataset. This allows computing the whole chain of operations including the
task-specific output and calculating the loss with a task-specific loss function. During
error backpropagation, the parameters specific to other tasks remain untouched as they
were not involved in the forward computation. Mixing batches of the main dataset with
possibly multiple auxiliary datasets can be done in many ways. The most common
approach is to randomly select a task and sample the mini batch from its data (see
Section 3.1, page 29). This process is repeated for either a fixed number of epochs or
until the early stopping criterion is fulfilled. Another approach is to alternate the tasks
and create mini batches from a dataset, which is shuffled per iteration. This ensures that
every training instance is used exactly once per iteration if the dataset sizes are equal. In
case the dataset sizes for the tasks differ significantly, there are multiple options of when
to stop an iteration. It is possible to end the current iteration as soon as any dataset —
alternatively, the main dataset — has been fully used. Consequently, the amount of data
used from larger datasets is limited to the size of the smallest resp. the main dataset.
To use the remaining training samples of the larger dataset, training is continued even
after other datasets are exhausted. If one dataset is e.g. twice as large as the other, in
the second half of the iteration, the network weights are only updated to improve on
the larger dataset, which might drive the network parameters to suboptimal values for
the smaller dataset. This especially becomes an issue if the main task is defined by the
smallest dataset, which is a common scenario in multi-task learning as there are the
highest possible gains from auxiliary training data. A solution is to weight the parameter
updates by the inverse of the dataset size. This reduces the effect of the larger (auxiliary)
data to be equal to the smaller (main) data. Thus, the effective training size can at most
be doubled without favoring the task with the larger dataset during training.

An alternative to mitigate the above issue could be to interleave batches from all
datasets according to their number of samples. Batches from the smaller dataset are
evenly distributed across the whole iteration. This combines the advantages of randomly
choosing a task and alternating tasks. The network is no longer trained solely on the
larger dataset for the majority of an iteration and each training sample is used exactly
once per iteration. To achieve a similar effect while randomly selecting the tasks, a task
must be chosen from a distribution weighted by the dataset size. Thereby, tasks with
larger datasets will be chosen more often compared to a uniform distribution. Table 5.1
shows a comparison for the different strategies. From the example sequence it becomes
clear that four out of six strategies have significant downsides. Selecting tasks randomly
from a uniform distribution uses batches from smaller datasets multiple times. The
alternating approaches either do not fully use the available training samples or repeatedly
sample batches from the largest dataset at the end. The interleaving strategy uses each
batch exactly once and distributes the batches from different datasets evenly across
the whole sequence. The random selection weighted by dataset size approximates the
interleaving strategy.

5.4 Implementation summary 55

batch combination strategy possible example sequence

random (uniform task distribution) By, Ay, C1, A1, By, C1, Ay, By, C1, Ay, B3, Bs
alternating (stop when any empty) Bs, Ay, Cy

alternating (stop when main empty) By, Ay, C1, Bs, Ay

alternating (use all remaining) B3, Ay,C1, By, Ay, By, B, Bs

interleaving B4, Bl, Ag, Bg, Cl, Al, BQ, B5

random (weighted by dataset size) By, By, Ay, By, Cy, Ay, By, Ay, Bs

Table 5.1: Batch combination strategies for three datasets A, B, C' consisting of 2,5, 1
batches each. A is the main task.

5.4 Implementation summary

The neural network is implemented in Python® on top of the PyTorch* framework.
PyTorch features a dynamic computation model, i.e. functions used in the forward path
are automatically differentiated for backpropagation (Paszke et al., 2017). This is a
perfect fit for the processing of variable-length sequences and dynamic architecture
changes as required by the multi-task learning approach. The network implementation
for this work is divided into separate functionalities for data loading, configuration,
training, hyperparameter search and the actual neural network model. The source code
can be found on the UHH Informatics Git server at https://git.informatik.uni-
hamburg.de/7schroed/mtl-nn. A copy is also contained on the attached disc. For
details, please refer to the Git repository or to the Appendix A.1 starting on page 111.

In this chapter, the neural multi-task learning system used to analyze the effect of
auxiliary training data was described. To examine whether these effects coincide with the
similarity concepts from the previous chapter, a program implementing the computation
of those similarity measures is needed. This will be presented in next chapter.

Shttps://www.python.org
“https://pytorch.org

https://git.informatik.uni-hamburg.de/7schroed/mtl-nn
https://git.informatik.uni-hamburg.de/7schroed/mtl-nn
https://www.python.org
https://pytorch.org

6 Dataset similarity tool

In this chapter, an implementation of the dataset similarity concepts shown in Chapter 4
is described. After an initial outline of the objectives for the implementation, an overview
of the software architecture is given. While the implementation’s core contributions —
filling the contingency tables, fast word embedding comparison and computing similarity
measures — will be explained in greater detail in subsequent sections, common function-
alities are treated briefly within the architecture overview. The source code can be found
on GitHub at https://github.com/zoodyy/seq-tag-sim and on the attached disk.

6.1 Objectives

The primary objective of this implementation is to apply and verify Hypothesis 2 —
dataset similarity can be measured from data-inherent features — on real datasets, which
in turn is needed to verify Hypothesis 1 experimentally later on. Thus, the program has
to compare two datasets and output their similarity score as a result. To accomplish
these objectives, the implementation has to read commonly used sequence tagging data
formats, work on any tagsets and languages and provide a command line interface for
easy automation in experiments.

Further, the different techniques developed in Section 4.5 for filling in the counts of
a contingency table need to be implemented. This includes text overlap, vector space
distance for unknown words and a fast contextual embedding comparison for each token.
For the text overlap approach, different strategies to combine the counts from two
datasets have to be developed. Finally, multiple similarity resp. distance measures, e.g.
(normalized) mutual information and conditional-entropy, have to be calculated based
on the contingency table counts.

In order to enable an easy usage for other researchers, the program should be instantly
usable without a complex installation. It would be preferable to download a single binary
file and run it. Optionally, a feature for printing or plotting (intermediate) results would
be a convenient addition to see which tags are matched between two datasets.

6.2 Architecture overview

The software architecture of the implementation closely resembles a data-processing
pipeline or buffered stream model. The pipeline model enables straightforward unit tests,
delivers a high performance, allows reusing components and is easily extensible. In this
implementation, multiple building blocks with well-defined APIs can be combined into

57

https://github.com/zoodyy/seq-tag-sim

o8 6 Dataset similarity tool

a pipeline This allows using various similarity computation techniques with any data
formats without excessive code duplication. Figure 6.1 shows the architecture and data
flow. The various parts depicted in the chart are referenced in the paragraphs below.

The entry point for the program resp. pipeline is a command line argument parser,
which transforms the arguments into a tuple of configuration options such as input data
formats, filenames etc. The actual pipeline composition is chosen based on the selected
configuration options. This includes the type of input data parser, the approach to
obtain label-pair counts to fill in the contingency table and optionally the type of word
embedding to use.

The data readers share a common interface, i.e. they all produce a stream of sentences
with token-tag pairs from a filename and file format. Multiple readers are grouped by
their common data format, e.g. XML, CSV or TSV, to allow reusing code that is always
needed to process a certain file format. The input files are assumed to be encoded as
ASCII or UTF-8, which is able to represent any Unicode character and thus most written
languages.

Regardless of the specific reader used to parse the input, a nested stream of sentences
with word-tag pairs is supplied as input for one of the implementations that create a
count-based contingency table from it. In the pipeline, the actual implementation is
chosen at run time depending on the configuration. Thus, this step in the pipeline is a
function mapping a stream of sentences to a real-valued, two-dimensional matrix. The
details of the different implementations are described in Sections 6.3 and 6.4.

Another building block is the functionality to create (contextual) word embeddings
from sentences. It is not part of the main pipeline, but included as a sub functionality in

Per || Aggregated

(TSV] [XML] [Other| ~ (Token][Words
flos Reador | token-tag Matrix 2-dim Measurement
— stream Filler matrix Calculation
‘ |
args ‘ select & measurements
select &

configure

batch of batch of L

sentences vectors Output

select & \ \\/Nl”it%
Argument | config | Pipeline| configure Bmbedder b plots

Parser Creator |

| ELMo || fast Text || BERT |

configure

Figure 6.1: Software architecture for the dataset similarity tool. While black elements
are part of the data flow, gray elements show the configuration possibilities.
The path indicated by thicker arrows is the primary data-processing pipeline.

6.3 Text overlap 59

some implementations of the previous step. The supported word embedding libraries
are fastText (Joulin et al., 2017), ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019). Independently of the chosen embedding type, the interface for this functionality
is the same. A batch of sentences, consisting only of words, is transformed into a batch
of lists containing word vectors.

The contingency table in form of a two-dimensional matrix is the input for the
functionality that computes various information-theoretic clustering comparison measures.
Details of this pipeline step are shown in Section 6.5. The output is a named tuple
of single, real-valued measurements. The final step in the processing pipeline is a
functionality to print the computed similarity scores to the console and optionally plot
the contingency table to a separate window or file.

The entire system is implemented in the D programming language®, which is a general
purpose, multi-paradigm, statically-typed language with a C-like syntax. It compiles
to native code, which allows creating a standalone runnable binary and provides great
performance at run time including multi-threading. High performance and productivity
combined with easy integration of existing C/C++ and Python libraries make D a perfect
fit for the implementation of the dataset similarity tool. For a description of the program
usage as well as implementation details going beyond the explanations in the following
sections, please refer to Appendix A.2 starting on page 113.

6.3 Text overlap

The implementation for the text overlap approach closely follows the concept described
in Section 4.5.1. The first step is to reduce all token-label pairs from a dataset to a set of
unique words together with the corresponding label counts. This is achieved with a hash
table that maps a word to the counts for each label. The input stream of token-label
pairs is processed one pair at a time. If a word does not exist in the hash table, it is
added with the initial label count 1. Otherwise, the label count for the existing entry in
the hash table is increased by 1. Both datasets are stored in separate hash tables and
are fully processed before the next step. To compare only the words contained in both
datasets, the hash table for the first dataset is iterated. Only if a word is contained in
the second dataset, the label-pair counts in the contingency table are increased according
to the specific label count combination method. The implementation is highly efficient
as hash table lookups have a constant O(1) time complexity. Processing two datasets of
over 100 million tokens each takes only about two seconds.

Label count combination methods

For the text overlap approach, the label counts of a word contained in both datasets can be
combined either via multiplication or addition per label. There are two optional weighting
schemes for both multiplication and addition that may be applied simultaneously. First,
the counts of each label per word can be divided by the total number of occurrences for

https://dlang.org

https://dlang.org

60 6 Dataset similarity tool

that word in one dataset. This has the effect that label counts are split, i.e. they are no
longer used multiple times. Second, the counts of each label per word can be divided
by the number of times the specific label was seen in the entire dataset. When using
the inverse label frequency weighting, all labels — both frequent and rare — contribute
equally to the resulting contingency table. Table 6.1 summarizes the eight possible
methods to combine the per word aggregated label counts. These methods transform
the information contained in the aggregated label counts per word into a contingency
table. An evaluation of the different methods will be performed in Section 7.1.

Inverse frequency
Method Word Label Formula

MULTIPLICATIVE METHODS

mul C,=1" l]2

mulIwf \/ Cz] = (lzl/ Z ll) ’ (l?/ ZF)

mulI1f v Ci; = (I;/L;) - (IZ/L3)

mulIvfIlf v Cij =/ (LX) - (2/(L321?))
ADDITIVE METHODS

add Ci=1l+10

addIwf v Cij = (lil/zﬁ) + (l?/(zll)

addI1f v z] = ll/L1 +13/L

addIwfIlf v v Cy = (I /(leﬂ + (/L2 1)

Table 6.1: Overview of methods to combine per word aggregated label counts into a
contingency table C. The counts per label for a single word in dataset 1 resp.
2 are denoted as Ij resp. [whereas L] resp. L? denotes the total number of
occurrences of a label in a dataset. The method name parts Iwf / I1f are
abbreviations for inverse word / label frequency.

Incorporate non-shared words via vector representations

To use words, which are not contained in both datasets, word embeddings are required.
Vector representations are obtained from all words of the second dataset. Because the
words are aggregated from the whole dataset, they are no longer seen in context. Thus,
using contextual embeddings does not provide any benefit over classic word embeddings,
which are simply obtained from a lookup table mapping word to vector. The downside
of these simplistic word embeddings is that they can only produce vector representations
for words seen during creation of the embeddings. A solution is to use embeddings that
include sub-word information like characters or morphemes. Therefore, a custom C++
wrapper for the fastText library is called for each word to be embedded. This enables
fastText to use sub-word information to create vector representations even for unknown
words.

6.4 Vector space similarity 61

To incorporate non-shared words into the comparison, the text overlap process is
augmented. When iterating the first dataset and finding a word that is not found in
the second dataset, the following steps are performed. The cosine similarities of the
corresponding word vector to all word embeddings from the second dataset are calculated.
Next, the word from the second dataset with the highest cosine similarity is chosen.
The process described for the text overlap scenario is continued with the chosen word
as if it was a direct match. However, the values added to the contingency table from
both words’ label counts are weighted by the previously computed cosine similarity. No
strategy is implemented to mitigate the potential double use or other issues mentioned
in Section 4.5.2.

The run time performance of this approach is acceptable because it operates on unique
words instead of all tokens in the dataset. Additionally, non-contextual embeddings are
rather fast to obtain. Moreover, comparing vector representations from the first dataset
is only necessary for words that are not contained in the other dataset. Combined with
an efficient implementation, these factors allow two datasets of one million tokens each
to be compared in a minute or less on a modern multi-core computer.

6.4 Vector space similarity

Using vector space similarity exclusively requires to embed each token in both datasets.
It is necessary to have different vector representations for two identical tokens occurring
in different contexts. Thus, only contextual embeddings such as ELMo (Peters et al.,
2018) or BERT (Devlin et al., 2019) are meaningful to use. ELMo is included into the
system by calling the appropriate AllenNLP (Gardner et al., 2018) Python functions
with help of the PyD library?. Because the raw ELMo vector representations consist of
multiple layers, those are averaged to a single-layer vector. The integration of BERT
embeddings is achieved by connecting a custom client to a bert-as-service (Xiao, 2018)
server. The client sends a batch of sentences via network to the service and receives a
batch of vector representations in return.

Regardless of which contextual word embedding library is used, batches of sentences
are transformed to batches of lists with vectors that are inserted into a huge continuous
tensor. For each dataset, this tensor contains the embeddings of every single token in
the order of appearance within the dataset. An array of the same length holds the labels
for each token in the same order. Thus, finding the label for a specific token vector can
be done by looking at the same index in the label array.

To fill in the contingency table, the vector representations v; and labels /; of the first
dataset are iterated in lockstep. For each vector v; the cosine similarity needs to be
computed against all token vectors from the second dataset. After finding the vector v/
with maximum similarity and the corresponding label I’ via its index, the count in the
contingency table at the position [[;,[7] is increased. Two different matrices are filled in
parallel. While the count is incremented by the fix value 1 in the unweighted matrix, it
is increased by the cosine similarity value in the weighted matrix.

2PyD (https://code.dlang.org/packages/pyd) allows calling Python code from D and vice versa.

https://code.dlang.org/packages/pyd

62 6 Dataset similarity tool

The implementation as described above should certainly outperform the text overlap
approach with respect to the comparison quality. It does not have any inaccuracies
compared to the probabilistic combination of aggregated label counts. It does, however,
have a serious run time issue. Only tiny datasets containing a few thousand tokens can
be compared in a short time with such a naive implementation. Let the first dataset
contain n tokens and the second m tokens. Every vector v; needs to be compared via
cosine similarity against all vectors v/ .. Thus, in total n - m comparisons are needed,
resulting in a run time complexity of O(n - m). Computing the cosine similarity of two
vectors a and b with d dimensions is defined as

a-b

cos(f) = ——
O) = L, o,

(6.1)

where a-b = S2¢ | a;b; is the dot or scalar product and ||a||, = />, a? is the Euclidean
norm.

For a single d-dimensional vector, computing the Euclidean norm requires d multiplica-
tions and additions. The dot product of two d-dimensional vectors needs d multiplications
and additions. Computing the cosine similarity of two vectors consists of at least 6d
operations. Consequently, filling the count matrix for two datasets with n resp. m
tokens using d-dimensional vectors requires at least 6nmd operations. Common word
embeddings use hundreds and some even thousands of dimensions for their vector repre-
sentations. In case of BERT or ELMo, official, pre-trained embeddings have 512, 768
or 1024 dimensions. Commonly used datasets such as the dataset for the CoNLL-2003
task on named entity recognition (Tjong Kim Sang and De Meulder, 2003) contain more
than 300 000 tokens.

Assuming d = 1000 and n, m = 300000 the total number of operations is 6 - 1000 -
300000 - 300000 = 5.4 x 10'*. A single core processor with a clock frequency of 3 GHz
can perform 3 x 10° operations per second. It would need 180000 seconds or 50 hours
iff it does not need to wait for data to be loaded from or written to memory. Certainly,
the processor must wait for data from memory as it exceeds the processor’s cache
by far. While vectors from the first dataset have to be read only once during the
comparison, every vector from the second dataset must be read n-times from memory.
This significantly slows down the computation because the processor cannot calculate
at full speed. However, as all the vector operations are easily parallelizable, using a
processor with ¢ cores could theoretically reduce the time by a factor of ¢. The problem
is that even if additional cores provide a speedup, processing is still limited by memory
bandwidth and latency. Experiments to quantify this phenomenon by comparing the
run time with an optimized implementation will be shown in Section 7.1.3.

The problem of finding the closest vector as described above is an instance of the
nearest neighbor search (NNS) optimization problem. Word embeddings in form of
vectors create a d-dimensional vector space, in which the closest neighbor of a certain
vector is searched with cosine similarity as the distance measure. The method described
above to find the closest neighbor is called linear search. Other methods also providing
exact results are space partitioning approaches, where the vector space is recursively split

6.4 Vector space similarity 63

into two parts until the closest vector is found. While space partitioning algorithms can
have a logarithmic time complexity for some distance measures and spaces, the linear
search outperforms space partitioning approaches as the dimensionality of the search
space increases. According to Weber et al. (1998), the threshold cz, when a linear search
becomes in practice faster than any partitioning algorithm, is far below 610 dimensions.
As the contextual embeddings have 512, 768 or 1024 dimensions, a linear search is
preferable to space partitioning algorithms.

An alternative are approximation methods. While there are many approximate
nearest neighbor (ANN) approaches, neighborhood-graph-based methods such as HNSW
(Malkov and Yashunin, 2018) are the current state of the art when measuring speed
versus recall according to Aumiiller et al. (2017) and Li et al. (2019). They independently
compared various ANN libraries on different datasets including word embeddings like
GloVe (Pennington et al., 2014) using Euclidean distance or cosine similarity. The
problem with any approximation method is that no exact results are obtained. Whether
and how severely this would affect the dataset similarity calculation, has to be tested
and thus to be compared with an exact method. Another downside is that the fast ANN
approaches are designed for a different purpose. They require an index that is expensive
to create, but can be used to answer any number of queries efficiently. For these reasons,
the vector space similarity is implemented as a linear search. However, in case the run
time of the sequential search cannot be reduced and remains impracticably high, trying
an ANN library might be a possible solution.

A first step to reduce the run time of the linear search is to decrease the number of
operations. Instead of computing the cosine similarity from scratch for every pair of
vectors, the vector norms can be computed before the actual comparison. Dividing each
vector by its norm produces normalized unit vectors. Calculating the cosine similarity
of two unit vectors requires only the computation of the dot product, which reduces
the number of operations from 6d to 2d. Applying this simplification reduces the total
operation count to 2nmd resp. 1.8 x 104, With the single-core processor from above,
the theoretical run time is now 60 000 seconds or ~17 hours.

The next step is to ensure that the real run time is not orders of magnitudes higher
than the theoretical numbers due to memory bandwidth limitations. For both datasets,
all vector representations are stored in one huge, continuous tensor. It is possible to
exploit this fact. Instead of calculating n matrix-vector products, i.e. linear searches,
which requires reading all m vectors n times, to compute all pairwise dot products, the
problem can be reformulated as a single matrix-matrix product. The resulting matrix
of size n x m contains the cosine similarity for every pair of tokens from both datasets.
This has following advantage over the previous approach: Matrix-matrix multiplications
can be both implementationally and algorithmically more efficient.

The matrix-matrix product is supported by the general matrix multiplication (gemm)
procedure of the Basic Linear Algebra Subprograms (BLAS) (Dongarra et al., 1990).
Advanced BLAS implementations such as ATLAS (Whaley and Dongarra, 1998), BLIS
(Van Zee and van de Geijn, 2015), OpenBLAS (Xianyi et al., 2012), Intel MKL (Intel
Corporation, 2009) or NVIDIA cuBLAS (NVIDIA Corporation, 2007) perform the gemm
operations highly efficient on modern hardware. They use a block-wise computation that

64 6 Dataset similarity tool

is optimized to read the input data less often from memory than the naive algorithm.
Because this mitigates the memory latency and bandwidth issues, the implementations
can further increase the processing speed multiple times by means of multithreading and
SIMD (single instruction, multiple data) operations.

Assuming both datasets and vector length are of equal size [, it is possible to improve
over the naive O({%) time matrix multiplication algorithm. Strassen (1969) was the first
to show matrix multiplication can be faster for large, square matrices and proved an
O(I1?8°7) time algorithm (Strassen’s algorithm). An asymptotically faster O([*2375477)
time algorithm (Coppersmith-Winograd algorithm) was shown by Coppersmith and
Winograd (1987) with subsequent, small improvements by Williams (2012), Davie and
Stothers (2013), and Le Gall (2014). While the Coppersmith-Winograd algorithm and
improved versions of the algorithm are not applicable to practical problems due to large
constant factors and implementation difficulties on current hardware, Strassen’s algorithm
can be applied in practice even for small, non-square matrices on both CPUs and GPUs
yielding a performance increase of 10-20 percent over the previously mentioned BLAS
libraries (Huang et al., 2016, 2018).

Unfortunately, the fast implementation of Strassen’s algorithm is not publicly available.
Thus, classic BLAS libraries are used to compute the vector space similarity. In particular,
NVIDIA’s cuBLAS library is used because it builds on CUDA (Compute Unified Device
Architecture) (Nickolls et al., 2008) to run on GPUs, which achieve a significantly
higher throughput than CPUs on massively parallelizable workloads such as matrix
multiplication. The approach described so far requires to multiply an n x d matrix M,
with an d x m matrix My, which produces an enormous n x m matrix M.. Because the
matrix M., storing the pairwise similarities for all tokens, exceeds the memory of most
GPUs for larger datasets, the operation is performed in batches. While the matrix M, is
fully copied onto the GPU, only a part of the matrix M, is copied and processed at a
time. Instead of copying M, back to main memory, the indices with the highest similarity
are computed and saved on the GPU with a custom CUDA kernel. This procedure is
repeated until the matrix M, is completely processed. For this approach to work, the
only two requirements are that the smaller of both input matrices completely fits into
the GPU memory and that some megabytes are still free for storing a part of the other
matrix as well as the result. The batch size is automatically inferred from the amount of
available GPU memory. The fewer batches are needed, the more efficient is the entire
computation because M, needs to be read less often. Preliminary tests indicate that
filling the contingency table counts from contextual word embeddings with this custom
implementation takes only a few minutes for datasets with one million tokens on a GPU
with 11 GB of memory. See Section 7.1.3 for a more detailed analysis.

6.5 Contingency table similarity measures

Once the difficult work of filling the contingency table from the datasets is done, cal-
culating their similarity is straightforward. The method to frame label similarity as
a clustering comparison problem proposed in Section 4.3 shows how to compute the

6.5 Contingency table similarity measures 65

mutual information as a similarity measure from a count-based contingency table in
Equation (4.4).

While in the theoretical considerations division by zero or the convention 0log(0) = 0
do not pose problems, an actual implementation requires a workaround for these cases.
Although it is possible to clutter the calculation with conditional statements checking
whether a count is zero, a simpler, faster and more robust approach is to use smoothing.
The value of every cell in the contingency table is initially not set to zero. Instead, the
smallest possible, positive number € is used that can be correctly represented in IEEE
754 floating-point format. For double precision this value is € ~ 4.94 x 107324, which
should not have a measurable effect greater than the inevitable rounding errors inherent
to floating-point math.

To easily compute the various information-theoretic measures outlined in Section 4.4,
the probability estimates, i.e. frequencies, are pre-computed for all subsequent operations.
Summing the contingency table separately by both dimensions returns a vector with the
total counts per label for each dataset. Summing one of these vectors again yields the
total count, which is then used to divide the original counts in the contingency table to
produce relative frequencies i.e. joint probabilities.

Entropy is calculated twice, from both row and column probability vectors. Joint
entropy is computed directly from the joint probability matrix. Mutual information is
calculated according to Equation (2.12) from the joint probability estimates as well as row
and column probability estimates. The measures compared in Section 4.4 are all derived
from the previously computed entropy, joint entropy and mutual information values.
Conditional entropy is obtained twice by rearranging and applying Equation (2.11) on
both row and column entropy. The different variants of normalized mutual information
are calculated by dividing the mutual information value by the joint entropy for N M I
resp. the maximum of row and column entropy for N M [,,4..

In this chapter, the implementation of the various dataset similarity measures and their
exact mechanics was explained. The similarity measures can now be quickly computed
for the datasets that are used for training the neural network designed in the previous
chapter. With the final piece of the puzzle in place, experiments can be performed in
the next chapter to evaluate the similarity measures and assess their correlation with
the effects of different auxiliary training datasets.

{ Experiments

The primary goal of this chapter is to experimentally verify the two hypotheses declared
in Section 4.1. Hypothesis 1 states that ,auxiliary data being more similar to the
main training data results in a stronger main task performance compared to unrelated
auxiliary data“. To test Hypothesis 1 an independent measure of dataset similarity is
required. According to Hypothesis 2, ,the similarity of two datasets D; and D, can be
measured independently of a specific machine learning model®. Based on Hypothesis 2
different similarity measures were developed in Chapter 4 and implemented in Chapter 6.
Before these measures can be used to test Hypothesis 1, preliminary experiments will
be performed in Section 7.1 to evaluate implementation decisions and finalize the
similarity measures. In subsequent sections, the final similarity measures will be used to
experimentally verify Hypothesis 1.

The basic idea to test Hypothesis 1 is to verify it experimentally on different sequence
tagging tasks with multiple datasets each. The scores from all multi-task learning
combinations of datasets will be correlated against the corresponding dataset similarities.
In Section 7.2, the experimental setup for performing meaningful experiments to test the
hypothesis is outlined. The experiment results are shown and analyzed in Section 7.3.
Finally, in Section 7.4 it is evaluated whether the multi-task performance can be predicted
based on single-task performance and dataset similarity.

7.1 Preliminary evaluation of dataset similarity design
decisions

While different variants of the similarity measures were applied to tiny, artificial datasets
in Sections 4.4 and 4.5, they have yet to be evaluated on real-world datasets. In this
section, preliminary experiments will be performed to select and finalize the similarity
measure algorithms. Thereby, Hypothesis 2 is tested independently before the similarity
measures are used in the full-sized end-to-end experiments that will test Hypotheses 1
and 2 simultaneously. The preliminary experiments are used to evaluate procedures for
combining the counts in a contingency table and possible weighting schemes. Further, the
theoretical shortcomings of the purely textual comparison will be checked experimentally.
Likewise, the assumed benefits of embeddings for unused words and completely using
contextual embeddings are to be tested. Last, the run time efficiency of embedding
comparison algorithms is verified to ensure these techniques can be applied in the full-size
experiments.

67

68 7 Experiments

identity NMI,,,, scores for datasets
Method WSJ UD EWT CoNLL’03 OntoNotes H

mul 0.967 0.875 0.324 0.040 0.132
mulIwf 0.892 0.880 0.876 0.798 0.860
mulIlf 0.950 0.813 0.521 0.311 0.539
mulIwfIlf 0.887 0.970 0.843 0.929 0.905
add 0.005 0.009 0.026 0.049 0.011
addIwf 0.895 0.818 0.785 0.486 0.705
addIfl 0.003 0.007 0.011 0.003 0.004
addIwlIfl 0.858 0.776 0.617 0.387 0.600
tokCtx 0.999 0.993 0.955 0.996 0.985

Table 7.1: Comparison of label count combination methods for the text overlap approach.
The similarity scores are obtained by comparing a dataset with itself. Methods
should produce NMI,,,, similarity scores close to 1.0. H is the harmonic
mean across all datasets: WSJ (English Penn Treebank Wall Street Journal
release 3 (LDC99T42), POS), UD EWT (Universal Dependencies English Web
Treebank (LDC2012T13), POS) ConLL’03 (English CoNLL-2003 Shared Task,
NER), OntoNotes (English OntoNotes release 5.0 (LDC2013T19), NER). For
more information about the datasets, refer to Table 7.3.

7.1.1 Evaluation of the similarity of identical datasets

For the text overlap approach explained in Section 4.5.1, the label counts of a word
contained in both datasets can be combined by different methods described in Section 6.3.
These methods transform the information contained in the aggregated label counts per
word into a contingency table. The multiplicative and additive methods with optional
weighting by inverse word frequency and/or inverse label frequency are referred to as
mul, mulIwf, mulIfl and mulIwfIfl resp. add, addIwf, addI1lf and addIwfIlf as in
Table 6.1. A simple means to assess their quality is to measure how much information is
lost during the transform. When comparing two identical datasets, the similarity score
should be exactly 1.0. Because normalized mutual information measures (e.g. NM [;pin:
or NM1I,,..) can produce a score of 1.0 for contingency tables representing identical
datasets, the root cause for lower scores is in earlier processing steps. As the aggregation
of token-label pairs (into a list of unique words with multiple label counts) is fixed, the
only remaining variable is the label count combination method. Thus, producing a NMI
score close to 1.0 for identical datasets is a beneficial property. The tokCtx method
uses BERT word embeddings to compare each individual token as in Section 4.5.2. It is
included as a reference in the comparison.

Table 7.1 shows the NMI,,,, similarity score when comparing a dataset with itself.

7.1 Preliminary evaluation of dataset similarity design decisions 69

In all but one cases, the multiplicative methods are far superior to the corresponding
additive approaches regarding the identity similarity. Only on the WSJ dataset, addIwf
minimally exceeds the value of mulIwf, which may easily originate from floating-point
inaccuracies. Within the additive methods, both add and addIfl produce scores close
to zero for each tested dataset and thus completely fail the identity test. The simplest
multiplicative method mul without any weighting shows highly different scores across the
dataset. While its score on the POS tagging datasets is high with 0.967 resp. 0.875, the
scores for the NER datasets are very low at 0.324 resp. 0.040. The additional weighting
by the inverse word frequency (mulIwf) is especially helpful in case of the NER datasets.
Weighting by the inverse label frequency is not enough to obtain high values for mulI1f,
but it still increases the NER scores significantly. The highest scores over all datasets are
achieved by the multiplicative method mulIwfI1f with both weighting schemes applied.
Because the identity comparison test is not a perfect criterion to select good methods, it
will only be used to sort out those methods that failed the identity test. The four worst
methods mul, mulIlf, add and addI1lf are discarded from the main experiments.

The data from Table 7.1 may also be used to partly check the theoretical shortcomings
of the purely textual comparison. Words occurring with different labels multiple times
are not only a theoretical problem but are also visible in the experimental data. If there
were no ambiguous words with different labels, the NM[,,,,, similarity scores would be
exactly 1.0 for all count combination methods in Table 7.1 when comparing identical
datasets. The absolute counts in the contingency table do not matter as long as each
label from the first dataset is mapped to exactly one label from the other. Consequently,
the methods to combine the label counts are crucial to reduce the negative effect of
ambiguity that is inherent to the aggregated label counts. The similarity scores from
Table 7.1 show that some methods are able to handle this shortcoming of the text overlap
approach as the harmonic mean of the NMI across four datasets can be 0.905, which is
close to the optimal value of 1.0. Nevertheless, there is still room for improvement. By
using contextual embeddings to circumvent the ambiguity problem, the tokCtx method
achieves a harmonic mean value of 0.985.

7.1.2 Comparison of the approaches to fill the contingency table

The issue of using only a fraction of each dataset does not apply to the case of comparing
identical datasets. However, in every other case, this will have a negative impact on the
similarity score quality. Quantifying this effect on its own is rather difficult because it is
not known upfront how similar two non-identical datasets should be. In order to estimate
this effect and the possible benefits of using word embeddings, the following experiments
will be performed. Non-overlapping datasets will be sampled randomly from all sentences
contained in the original datasets. The pairwise NMI scores, which are obtained from
the text overlap approach with and without word embeddings for unused words and
the token-based approach using contextual embeddings, are compared with each other.
Under the assumption that the similarity within samples from the same dataset is higher
than the similarity between samples from different datasets, the pairwise NMI scores
may not be compared on the basis of the absolute values but their relative order. Each of

70 7 Experiments

the datasets shown in Table 7.1 will be used to sample three new datasets. The samples
have sizes equal to Y6, /5 resp. Y2 of the original number of tokens to account for effects
when comparing datasets of different sizes. They are named e.g. WSJ-1, WSJ-2 and
WSJ-3 because they have %6, % resp. %6 of the original number of tokens.

Figure 7.1 shows a few selected results of the pairwise comparison experiments. The
full results for every label count combination method as well as with and without word
embeddings can be found in Appendix A.3. The mulIwf label count combination method
has the most promising results of all text overlap methods. Figures 7.2a and 7.2b show a
clearly visible diagonal line due to the high identity similarity score. The 3 x 3 blocks
along the diagonal are aligned with comparisons of samples within the same original
dataset. Every value within these four blocks is higher than any other value outside. It is
the only technique where the pairwise similarity scores within the same original dataset
are always higher than between samples of different datasets. Another interesting result
is that the similarity between the two POS tagging dataset samples (WSJ, EWT) is
higher than the similarity between any POS-NER pair. The same is true for the NER
dataset samples (CoNLL, OntoNotes). The overall results for mulIwfI1f (Figure A.3d)
are similar to mulIwf, but not as good because the method seems to give higher scores to
the POS samples than the NER samples. While the mulIwf scores shown in Figure 7.2a
are symmetric, this is no longer true when using word embeddings for unused words
as shown in Figure 7.2b. The similarity scores when using additional embeddings are
generally lower or very similar. From these experiments, there does not seem to be an
immediate benefit of using word embeddings for the multiplicative text overlap approach.

Figure 7.2c shows results for addIwf. Although the identity diagonal is not clearly
visible, the identity scores are still higher than in the surrounding 3 x 3 block. However,
the similarity within the OntoNotes samples is significantly lower than the scores between
samples of the two POS datasets. The method addIwfIlf (Figure A.4d) has overall
similar but lower scores. Using fastText word embeddings further reduces the similarity
scores of all additive methods but does not help to correct the relative order of the scores
between samples from the same resp. different original dataset.

While the text overlap approach does not seem to benefit from word embeddings to
utilize non-overlapping vocabulary, the use of contextual embeddings for every token
removes the necessity of complex label count combination methods. The results for
tokCtx are shown in Figure 7.2d. Its performance is similar to mulIwf regarding the
relative ordering of the scores. However, the similarity scores of samples from different
datasets are lower except for the comparison of two POS datasets. In contrast to all
text overlap methods, the token-based approach uses every token of the first dataset for
the similarity calculation. Whether this property or the ability to handle ambiguously
labeled words provides benefits, will have to be tested during the main experiments.
Overall, the relative ordering of the similarity scores presented in Figure 7.1 indicate that
Hypothesis 2 is valid, i.e. the similarity of two datasets can be measured independently
of a specific machine learning model.

7.1 Preliminary evaluation of dataset similarity design decisions 71

Figure 7.1: Selected pairwise N M [,,,,, similarity scores for different methods to fill in

the counts of the contingency table. The heatmaps encode the values from

0.0 in black to 1.0 in white.

W, W, Mg, © Ong Ong. Ong %
N N N S

won-ooni i
wsj-2 -0.79 0.90 0.79 m 0.1
wsj-3 -0.79 0.79 0.90 m .

(a) mulIwf

We, Wo. Wo. © %ng. Ong. Co,
9 o o S S 0. 0 30 P O 000

wsj-3 -0.89 0.89 0.90 0.66 0.66 0.66

ewt-1 -0.66 0.66 0.66 0.84 0.80 0.80

onto-3 - W..@E..
B
o.75 0.810.75

(@W1s 0.75 0.75 0.80

(c) addIwf

We, M, W e g Ong. Ong op,, s, 0y,
S/J 3/38/3%1%9%3 olfo,e 03 410024

prsps

wsj-1 _o.01 8 B m
s}0.4500.270.27)0.2

wsj-2 -0.64 0.90 0.68 m

wsj-3 -0,62 0.65 0.90 m
ewt-1 — M 0.90 0.66 0.67

onto-1 -(Up¥i (08

I I
mw@@nnﬁn
onto-3 — 0
conll-1 — 0.91 0.64 0.66
conll-2 — 0
o BEEEEE

(b) mulIwf with fastText embeddings

We, Wo. Wo. © Q, Sy, %N, g 9n, Co,
S S My ey e 5 e 5 o,y o5 f030/A1 '7//9 .5

onto-1 .1 00 0'63 0:64 B .
onto-2 - . .

onto-3 —EO 62 1. OO
conll-1 M 0.98 0.670.67
conll-2 w 0.64 0.97 0.69
conll-3 — 0.63 0.67 0.95

(d) tokCtx with BERT embeddings

72 7 Experiments

7.1.3 Run time efficiency of word vector comparisons

While the text overlap comparison of two 2-million-token-sized datasets takes less than
0.5 seconds, the vector similarity approach requires computationally expensive operations.
In Section 6.4 two methods are described to compute the pairwise similarity of all word
vectors from two datasets. For each vector from the first dataset, the naive method
performs a linear search through all vectors of the second dataset. The matMul method
instead performs matrix-matrix multiplications in batches followed by operations to find
the maximum similarity per row and column. Table 7.2 shows the run time of the two
methods for different sizes of datasets and varying number of threads. While the naive
method is only implemented on the CPU, the matrix multiplication method is tested on
both CPU and GPU.

The naive algorithm scales very well with the number of cores resp. threads. Doubling
the number of threads reduces the run time by 45 % on average. However, it is & 7 times
slower than the matrix multiplication approach. Although the algorithmic complexity
is identical and both methods produce approximately the same results, the optimized
algorithm utilizes the computation capabilities of the hardware much better — probably
due to optimized memory and cache usage. Doubling the number of threads for the
matrix multiplication method does not result in a consistent performance increase. While
there is a speedup of 17-25% for the smaller datasets, larger datasets do not show any
gains using more threads than physical cores. Increasing the number of threads reduces
the amount of available cache per thread, which in turn reduces the computational
efficiency of each thread.

The GPU implementation of the optimized method is significantly faster than the
CPU variant. On the smallest dataset, the GPU only needs /4 of the processing time.
This factor changes to Y11, V14 resp. Y10 for the next larger datasets. Using multiple
GPUs does not provide any benefit on the two smallest datasets. For larger datasets,
the run time is reduced linearly with the number of GPUs.

With increasing dataset sizes, the run times of all methods roughly increase quadrati-
cally. This is expected as comparing every word vector with all other word vectors has a
quadratic complexity. The GPU implementation manages to hide this behavior when
only looking at the three smallest datasets because the hardware might not be fully
utilized on the smaller datasets and constant time operations such as data copying take
up a lot of the total run time.

Summarizing the run time experiments, the optimized matrix multiplication method
is far superior to the naive method. The former compares two datasets of 300 000 tokens
in less than five minutes while the latter requires about 40 minutes for the same task on
identical hardware. Using GPUs, it becomes feasible to compare huge datasets consisting
of two million tokens each. The comparison process takes less than five minutes when
using four GPUs. Computing the pairwise similarities of all datasets used in the main
experiments is easily possible with a single GPU as each comparison takes only a few
seconds because one of the two datasets is always small. Most importantly, the run time
of any similarity computation is only a minuscule fraction of time it takes to perform
the actual training of the neural network.

7.1 Preliminary evaluation of dataset similarity design decisions 73
Dataset Tokens Algorithm Threads GPUs Batches Time Memory
conll-1 48760 naive 10 - 165s 0.4GB
conll-1 48 760 naive 20 - 106s 0.4GB
conll-1 48760 mnaive 40 - 494s 0.4GB
conll-1 48 760 matMul 10 1 12.2s 9.5GB
conll-1 48760 matMul 20 1 9.1s 9.5 GB
conll-1 48760 matMul 40 1 6.5s 9.5GB
conll-1 48760 matMul 1 1 1.6s 9.5GB
conll-1 48 760 matMul 2 2x1 20s 2x5GB
conll-2 97524 naive 10 - 635s 0.6 GB
conll-2 97524 naive 20 - 397s 0.6 GB
conll-2 97524 nalve 40 - 205s 0.6 GB
conll-2 97524 matMul 10 1 454s 36 GB
conll-2 97524 matMul 20 1 37.1s 36 GB
conll-2 97524 matMul 40 1 32.2s 36 GB
conll-2 97524 matMul 1 4 2.88 11GB
conll-2 97524 matMul 2 2 x 2 28s 2x11GB
conll 292563 naive 10 - 06741s 1.8GB
conll 292563 naive 20 - 3857s 1.8GB
conll 292563 naive 40 - 22458 1.8GB
conll 292563 matMul 10 4 399s 105GB
conll 292563 matMul 20 4 271s 105 GB
conll 292563 matMul 40 4 268s 105 GB
conll 292563 matMul 1 36 18.2s 11GB
conll 292563 matMul 2 2x17 10.7s 2x11GB
wsj 1282931 matMul 20 66 3490s 105GB
wsj 1282931 matMul 40 66 3576s 105 GB
wsj 1282931 matMul 1 1910 348s 11GB
wSj 1282931 matMul 2 2x608 174s 2x11GB
wSj 1282931 matMul 4 4 x 836 85s 4x6GB
onto 2001102 matMul 4 4x3127 281s 4 x9GB

Table 7.2: Run time and memory usage of the naive and matrix multiplication methods
to compute the pairwise closest vectors when comparing a dataset with itself.
The computation time is measured for the two-way comparison including
any necessary additional operations such as copying data from/to the GPU.
Times to read the datasets from disk and to obtain the 768-dimensional BERT
embeddings for each token are not included. The tests were performed on
systems with two Intel(R) Xeon(R) Silver 4114 (10 cores / 20 hyper threads
@ 2.2-3.0 Ghz), 128 GB RAM and up to four Nvidia GeForce GTX 1080 Ti
(3584 CUDA cores @ 1.5 Ghz, 11 GB memory).

74 7 Experiments

7.2 Experimental Setup

The plan to experimentally verify Hypotheses 1 and 2 will be described in this section. The
hypotheses state that more similar auxiliary training data results in a stronger increase
of the main task performance and that this similarity can be measured independently of
a specific machine learning model. Both hypotheses will be tested jointly by correlating
the similarities between pairs of datasets with the multi-task learning scores using one
dataset from the same pair as training and the other as auxiliary data. The idea is that
a positive correlation between dataset similarity and main task performance verifies both
hypotheses jointly as it is unclear how to test each hypothesis on its own.

The experiments to correlate dataset similarity and the network’s multi-task learning
performance will be performed a) using two neural network models with different classi-
fiers, b) for the tasks of part-of-speech tagging and named entity recognition and c¢) on
multiple datasets per task. From each original dataset, a new training dataset will be
sampled as a smaller subset to show a larger influence of auxiliary data. This is done
for reasons similar as given by Yang et al. (2017). Recent neural network models are
able to achieve almost perfect performance for easy tasks such as POS tagging when
supplied with large datasets. There would be no room for improvement using auxiliary
data. In addition, the artificially shrunk training sets are of equal size, which allows
a fair comparison of the performance effect when using the same auxiliary datasets.
Similar to the training data sets, multiple subsets of different sizes will be sampled from
the auxiliary datasets. This makes analyzing the effect of various proportions between
training and auxiliary data comparably over all original datasets.

The primary concern of the experiments is to enable significant differences in the
neural network classification results when using different auxiliary datasets. If the
performances using various auxiliary datasets were always insignificantly different, it
would be inaccurate to correlate the values with the dataset similarity scores. To allow
every training and auxiliary dataset combination to use their full potential, all relevant
hyperparameters have to be tested for each pair of training and auxiliary dataset. Beside
the number of hidden units, regularization has to be tuned individually per pair of
datasets to obtain a fully regularized model, where the training, development and test
loss resp. score become very similar. It enables a fair comparison between the multi-task
and the single-task performance per training dataset. This is necessary as the difference
between MTL and STL performance of combinations of training and auxiliary data has
to be correlated with the dataset similarity of each pair. Comparing the relative change
instead of the absolute performance values should be more generalizable when correlating
with the dataset similarity.

Apart from selecting the best hyperparameters per combination of training and auxiliary
dataset, it is necessary to share many parameters in the neural network to show the effect
of different auxiliary datasets during multi-task learning. Sharing as many networks
parameters as possible should show the strongest effect of different datasets — both
positive and negative. The neural network architecture described in Chapter 5 builds
on the commonly used bidirectional recurrent neural networks. Apart from self-learned
word embeddings, character features are included. The neural network is designed to

7.2 Experimental Setup 75

ID Dataset Reference Tokens Tags
POS TAGGING DATASETS
BNC British National Corpus BNC Consortium, 2007 111973625 91
WSJ Penn Treebank Wall Street Journal Marcus et al., 1999 1286 980 45
BC Penn Treebank Brown Corpus Marcus et al., 1999 1162358 45
EWT UD English Web Treebank Silveira et al., 2014 254 854 17
GSD UD German GSD McDonald et al., 2013 297 836 17
NER DATASETS
ONT English OntoNotes Release 5.0 Weischedel et al., 2013 2001102 37
CNLE CoNLL’03 Shared Task (English) Tjong Kim Sang and 301418 9
CNLG CoNLL’03 Shared Task (German) De Meulder, 2003 310318 9
EPG Part of EUROPARL (German) Faruqui and Padé, 2010 110405 9
GEN GermEval 2014 NER Shared Task Benikova et al., 2014 591 005 24
GMB Groningen Meaning Bank 2.2.0 Bos et al., 2017 1354149 17
SEC SEC filings Salinas Alvarado et al., 2015 54 256 8
WIKI Wikigold Balasuriya et al., 2009 39152 8
WNUT W-NUT’17 Shared Task Derczynski et al., 2017 101736 13

Table 7.3: Original POS tagging and NER datasets used to sample new training or
auxiliary datasets. The number of tags is a generic count of the surface forms,
where e.g. B-PER and I-PER are considered to be different tags.

share all parameters except those in the last two layers. These transform the RNN’s
hidden state to the task-specific labels and apply either a Softmax or conditional random
field to obtain the most probable label prediction.

To perform reliable experiments, each training instance is run with multiple random
seeds to mitigate performance fluctuations due to the random initialization of the network
weights. Instead of choosing the result of the best random initialization, the results are
averaged for all used random seeds. This is done for both the development scores used
during hyperparameter search and the test score. The variance due to random weight
initialization should be lower than the effects of using different auxiliary training datasets
for the same main dataset. Averaging the scores for multiple random seeds and showing
their standard deviation in the results helps to gauge the reliability of the experiments.
The random seeds will be fixed so that any experiment is reproducible.

The exact experiment configurations are now made more concrete. From the POS
tagging datasets shown in Table 7.3, a new training dataset of 25000 tokens is sampled
for WSJ, Brown and EWT while the BNC and GSD datasets are only used to sample
auxiliary data. From all five POS tagging datasets, auxiliary datasets of increasing size
are sampled containing 25, 50, 100, 250, 500, 1000 x 1000 tokens limited by the size of the
original dataset.

For the NER datasets, the approach is similar to the POS tagging datasets. Training
sets are sampled from all datasets except GMB because it is automatically annotated.
As NER is a more difficult task, the sampled training datasets contain 50000 tokens.

76 7 Experiments

Auxiliary datasets containing 50, 100, 250 x 1000 tokens are created whenever possible.

For both POS tagging and NER, the canonical development and test sets of the
original datasets are used for the newly sampled training sets if available. For datasets
that have a test set but no development set, a new development set is sampled from the
original training set. Otherwise, randomly sampled development and test sets, which are
obtained from the entire corpus, do not overlap with any training or auxiliary dataset.

The range of the hyperparameter search for training the neural network model (see
Chapter 5, page 49) was narrowed by manual testing. Training for both POS tagging
and NER performs at most 100 epochs with an early-stopping patience of 10 using a
batch size of 256. As the dimensions of the character embeddings and hidden units did
not show a large effect, they are fixed at 32 and 64 for embeddings resp. hidden units.
128 and 256 dimensions are tested for the word embeddings and the hidden units of the
word RNN that can have either one or two layers. Each combination of hyperparameters
is run with three random seeds. For POS tagging, the learning rate is fixed at 0.002. The
best dropout value is chosen from the values 0, 0.25, 0.5, 0.75. Additional regularization
via weight decay is selected from the values 0, 0.1, 0.01, 0.001. For NER, the learning
rate is set to 0.005 and weight decay uses a fixed value of 0.05. The range for dropout
is narrowed to the values 0.3,0.4,0.5,0.6. While the POS tagging experiments only
used a Softmax classifier, both Softmax and conditional random field are tested for each
hyperparameter combination.

Hyperparameter search and thus training of the neural network is performed once
without any additional data and multiple times for each auxiliary dataset and size.
The main and auxiliary training datasets are combined deterministically via interleaved
batches from both datasets (see Section 5.3). Auxiliary data is only used for the same
task, i.e. no POS tagging dataset is used as auxiliary training data for NER and vice
versa. For POS tagging, there are 81 pairs of training and auxiliary datasets. For each
of these, 64 hyperparameter combinations are tested with three random seeds. This
results in a total of 15552 training runs for the POS tagging experiments. In case of
NER, 168 pairs of training and auxiliary datasets exist. Each pair is tested with two
neural network models, 16 hyperparameter combinations and three random seeds. In
total, 16 128 training runs are performed for the NER datasets.

The dataset similarity tool developed in the previous chapter is used to compute the
similarities for pairs of training and auxiliary datasets in three ways. The text overlap
approach is used with and without word embeddings. For the latter, 300-dimensional
fast Text embeddings! with sub-word information are used that consist of 2 million
word vectors trained on the Common Crawl (Mikolov et al., 2018). Contextual BERT
embeddings (Devlin et al., 2019) are used for the third, token-based approach. More
specific, the embedding model is ,BERT-Base Multilingual Cased“?, which has 12 layers,
768 hidden units, 12 heads and 110 million parameters.

!The pre-trained word vectors crawl-300d-2M-subword.zip were obtained from https://fasttext.
cc
’multi_cased_L-12_H-768_A-12.zip obtained from https://github.com/google-research/bert

https://fasttext.cc
https://fasttext.cc
https://github.com/google-research/bert

7.3 Results and analysis 7

7.3 Results and analysis

In this section, the results are shown and analyzed that were obtained by performing the
experiments defined in the previous section. The evaluation will be performed separately
for the part-of-speech tagging and named entity recognition results.

7.3.1 Part-of-speech tagging

Table 7.4 shows the test scores achieved by the neural network with the best hyperpa-
rameter combinations for each pair of training and auxiliary dataset. Due to the small
amounts of training data, the effect of different random initializations is larger than usual
as can be seen from the standard deviation. Nevertheless, the mean accuracy across

Aux. data BC-25 EWT-25 WSJ-25
none 85.61 £0.35 88.35+0.42 86.35+0.26
BC-25 87.19+0.15 89.89+0.39 89.29 + 0.99
BC-50 89.32+£0.18 90.22+0.68 90.35 + 0.57
BC-100 91.09 +£0.43 91.66 +0.39 91.35+1.31
BC-250 92.19£0.58 91.59+0.04 93.20 + 0.30
BC-500 92.33+0.29 92.424+0.58 93.57+£0.75
BC-1000 93.79 £1.00 92.62+0.56 93.73+£0.25
EWT-25 86.58 2 0.61 91.84 +0.46 87.99 £ 0.62
EWT-50 86.93 £0.46 94.00£0.38 8R8.72+1.22
EWT-100 87.564+0.19 96.75+0.17 88.92+0.11
EWT-250 88.554+0.52 95.87+0.09 87.46+0.54
WSJ-25 87.21 +£0.47 89.73+0.39 89.79 £ 0.09
WSJ-50 87.73+£0.27 90.87+0.35 91.80+0.14
WSJ-100 89.90 £0.54 91.41+0.41 92.67 +0.80
WSJ-250 91.22 +0.77 92.53+0.33 94.15+ 0.65
WSJ-500 91.9240.69 93.18+0.40 95.07 & 0.48
WSJ-1000 92.73+£0.53 93.35£0.32 95.70 +0.29
BNC-25 87.89 £0.78 89.92+0.35 89.65 £ 0.42
BNC-50 88.92+0.33 90.83+0.30 89.55 % 0.60
BNC-100 90.30+1.00 91.84+0.15 90.82+ 0.46
BNC-250 90.46 +£0.81 91.14 +£0.98 92.01 £0.27
BNC-500 92.2240.53 92.34 +0.73 89.47 £+ 0.62
BNC-1000 92.81 +0.16 93.06 +0.27 89.47 £ 0.61
GSD-25 86.32+0.69 88.16+1.31 86.94+1.01
GSD-50 85.60 = 0.65 88.75+1.05 86.98 £ 0.46
GSD-100 86.65 +0.48 89.07+0.83 87.58 +0.51
GSD-250 86.75+0.53 89.294+0.69 86.31+0.14

Table 7.4: POS tagging MTL performance on three training datasets when combined with
different auxiliary datasets. The mean accuracy and its standard deviation
are obtained from three runs with different random seeds.

78 7 Experiments

three runs generally shows a strong increase when using auxiliary data compared to the
baseline without additional data. As expected, the performance increases more with
larger amounts of auxiliary data. The strongest increase per training dataset is obtained
when auxiliary data is used from the same original dataset, e.g. EWT-25 is paired with
additional EWT data. All three training datasets (BC-25, EWT-25, WSJ-25) show only
small gains or even losses in accuracy when the German GSD dataset is used as auxiliary
training data. Within the English datasets, there are significant differences in accuracy
depending on the combination of training and auxiliary dataset. For example, the BC-25
training data profits significantly more from WSJ or BNC than EWT as auxiliary dataset
when comparing the same sizes of extra data. The POS tagging scores show clearly
distinguishable performances regarding combinations of training and auxiliary datasets,
which are perfect conditions to compare and possibly correlate the test scores with the
similarity of the datasets.

The accuracy values are now compared with various similarity measures to find a
measure that correlates with the accuracy. In Figure 7.4a, the difference in accuracy
over the baseline is plotted against the N M I;,;,; similarity measure that was obtained
via the text overlap approach using the mulIwf method to combine the label counts.
The figure shows all 78 data points differentiated in three dimensions. First, the color
denotes the main training dataset (BC, EWT or WSJ). Second, the form of the marker
symbol indicates which auxiliary dataset (BC, BNC, EWT, GSD, WSJ) is used. Third,
the size of the marker symbol relates to the size of the auxiliary dataset (25, 50, 100,
250, 500 or 1000 x 1000 token). This notation is also used in the other scatter plots.

In Figure 7.4a, multiple patterns can be identified. Overall, the data points are
scattered from bottom left to top right, i.e. there are no cases of low similarity coinciding
with high accuracy increase and vice versa. Data points obtained from the same training
and auxiliary dataset mostly form a straight line. This is the effect of the varying
auxiliary dataset sizes. In case of higher similarity values (Z 0.5), these lines are vertical,
i.e. the similarity is independent of dataset size. Another interesting observation can be
made from the data points with auxiliary data from the German GSD dataset. They are
all clustered close to the bottom left i.e. low similarity and almost no gain in accuracy.
This correlation concurs with the intuition that using a German auxiliary dataset for an
English training dataset should not lead to a significant performance increase because
the datasets are dissimilar.

In order to compare the similarity with the difference in accuracy, only data points
belonging to the same main training dataset and the same size of auxiliary data may
be considered. For a perfect correlation between accuracy and similarity within those
data points, each point having a higher similarity than another point must also have
a higher accuracy. When looking at all data points obtained with WSJ as the main
training dataset, this monotone relative ordering is true for most auxiliary datasets. By
starting at the bottom left, it is easy to see that the next group of green, same shape
data points is always to the upper right, i.e. has both higher similarity and increase of
accuracy. When performing this comparison for each set of comparable data points, the
ordering is fully correct in the majority of cases. Moreover, the wrongly placed data
points are no remote outliers but close to a correct position.

7.3 Results and analysis

79

Figure 7.3: Scatter plots comparing different similarity measures with the same differences
in accuracy of the POS tagging multi-task learning over the single-task
learning score. Plots for more methods can be found in Appendix A.4.

10 A .
Auxiliary data

°
n
o +
*
*

BC
EWT
ws)

BNC
GSD

Training data
1 mm BC
s EWT
. Ws)

w o 00
|]

A accuracy

03 0.4 05 0.6 0.7
similarity
(a) plain mulIwf NMIjoins: Text overlap ap-
proach without word embeddings using
the mulIwf method and NMIjyn: mea-

10 o
Auxiliary data
@ &C L
B EwT m L
g *+ ws .+
® BNC [
* GSD *
6 Training data *
. . BC PY = &
8 e EWT °
3 S| ° *’
® &
S 4- ® .‘ .,
* . *
o HY 0 .
2 S .
. N v
*% 4)
* wk **
04 * Kk
0.4 0.5 0.6 0.7 0.8 0.9

similarity
(b) mean fastText emb. addIwf NMIy4,:
Harmonic mean of both directions of the
text overlap approach with fastText word
embeddings using the addIwf method and
NMI,,.. measure

10 L
Auxiliary data
@ &C L
B oewT - &
s + ws q_
® BNC
* GSD "
6 Training data +I-
> I BC . h
8 m EWT
3 . WS) .‘
O { } *
©
S 44 ° .
'?"’ *
3
21 .t
, .. []
» [|
e 5(
04 ,* %

sure
10 A —
Auxiliary data
@® BC "'
B EwT .'|'
gl + ws o
® BNC "
* GSD * ’
— ° 9
6 Training data L L
Il BC * & =
>
) . EWT ° ® "+
3 - WS ® r
® &+
a 47 ® ° °
* - L)
2° ’
*
*
2 [|)
LI ’ L] []
*k ¥ m:
*x ¥
*
04 4 * N
030 035 040 045 050 055 060 0.65
similarity
(c) bwd. BERT emb. tokCtx NMIjoin:

Backward direction (comparing auxiliary
with training data) of the token-based ap-
proach with contextual BERT embeddings
and NM1I,n measure

01 02 03 04 05 06 07 08
similarity
(d) SV & mulIwf N M Ijoins: Harmonic mean
of shared vocabulary and the text overlap
approach using the mulIfw method and
NMI;yins measure

80 7 Experiments

Figure 7.4b shows the data obtained from the text overlap approach with fastText
embeddings using the addIwf method and NMI,,,, as similarity measure. The usage of
embeddings results in different similarity scores depending on the direction (comparing
training with auxiliary or vice versa). Therefore, the harmonic mean is used to combine
these two values into a single similarity score. While this figure looks similar to the
previous figure, there is a notable difference. The data points originating from the
same training and auxiliary dataset now form a line or curve that slightly leans to the
right when seen from the bottom. Thus, the usage of word embeddings for otherwise
unmatched words indirectly encodes the size of the auxiliary dataset into the similarity
measure. This is the case because the chance of finding a highly similar word vector in
the auxiliary dataset is higher with increasing size of the second dataset. More similar
words tend to have a matching label, which finally increases the similarity score of the
dataset comparison. Whether this effect is desirable or not, depends on the specific
use case of the dataset similarity measure. The effect is stronger when the dataset
comparison is performed with the token-based approach using vector similarity as shown
in Figure A.14a. Again, the harmonic mean is used to combine the similarity scores of
both directions. When only considering the direction from auxiliary to training dataset,
the similarity measure is independent of the auxiliary data size as shown in Figure 7.4c.
Regarding the quality of the embedding-based approach, the relative ordering of auxiliary
datasets for the same training set is overall very similar to the text overlap approach.
However, similarity and increase in accuracy correspond better for the EWT training
dataset.

One possible downside of the text overlap approach without word embeddings is that
the degree of shared vocabulary is not included in the measure. It is therefore easily
possible to have a “false positive”, i.e. a high similarity is reported for two datasets
although they share only a single word. An effective solution to mitigate this potential
issue is to combine the measure with the fraction of shared vocabulary. Figure 7.4d
shows the harmonic mean of the text overlap approach from Figure 7.4a and the fraction
of shared vocabulary. Using the harmonic mean instead of the arithmetic mean ensures
that the combined similarity measure can only be a high value if both components are
high as well. Including the vocabulary overlap into the similarity measure changes the
look of the scatter plot significantly as the dataset size now has a dominant effect on
both accuracy increase and similarity.

In order to quantify the findings from the figures and find the best similarity computa-
tion method, the correlation between accuracy increase and similarity will be calculated.
However, computing the correlation across all data points has two issues. First, corre-
lating across different auxiliary dataset sizes defeats the purpose as data size can have
a stronger effect than the actual similarity. Methods implicitly including the auxiliary
dataset size would perform exceptionally well while the actual data similarity is mostly
ignored. Second, the correlation across different training datasets has the problem that
both absolute and relative increase or decrease ignore the fact that it is usually easier to
increase the accuracy or F1 score from e.g. 40 to 45 % than from 90 to 95 %. An idea
could be to look at the relative error reduction, e.g. increasing the score from 90 to 95 %
is a error reduction of 50 % because the error is reduced from 10 to 5 %. However, it is

7.3 Results and analysis 81

Kendall Pearson

Method 7 p-value T p p-value o

bwd. BERT emb. tokCtx NMIjsint 0.76 0.0004 0.74+0.07 0.88 0.0006 0.87+£0.06
fwd. fastText emb. mulIwf NM I, 0.74 0.0000 0.74+0.07 0.87 0.0000 0.87=+£0.05
mean fastText emb. mulIwf NMI,,., 0.74 0.0000 0.70£0.11 0.87 0.0001 0.87+0.04

SV & addIwf NMIjoin 0.74 0.0003 0.744+0.08 0.85 0.0005 0.84+0.04
SV & addIwf NM Iy 0.74 0.0003 0.744+0.08 0.84 0.0005 0.84+0.04
SV & mulIwf NMIjoine 0.74 0.0001 0.74+0.04 0.85 0.0002 0.85+0.04
SV & mulIwf NMI, ., 0.74 0.0003 0.724+0.06 0.85 0.0002 0.85+0.04
SV & mulIwfIlf NMLjoin: 0.73 0.0004 0.70+£0.06 0.84 0.0004 0.84+0.04

fwd. fastText emb. mulIwf NMIjze 0.72 0.0001 0.724+0.05 0.87 0.0001 0.87£0.04
mean fastText emb. mulIwf NMIjon: 0.72 0.0001 0.68£0.10 0.86 0.0001 0.86£0.04
mean BERT emb. tokCtx NMIjoint 0.72 0.0005 0.72£0.09 0.89 0.0005 0.88 % 0.06
mean BERT emb. tokCtx NMI,, .z 0.72 0.0007 0.71£0.07 0.86 0.0013 0.85=+0.07
mean BERT emb. tokCtx NMI,, .. 0.72 0.0007 0.71+£0.07 0.86 0.0014 0.85+0.07
SV & mulIwfIlf NMI,, .. 0.72 0.0005 0.71+£0.06 0.83 0.0005 0.83+0.04
fwd. BERT emb. tokCtx NMI,,qz 0.72 0.0005 0.70+£0.05 0.87 0.0012 0.85+0.07
fwd. BERT emb. tokCtx NMIjsin: 0.71 0.0002 0.704+0.08 0.89 0.0005 0.8740.06
bwd. fastText emb. mulIwf NMI,,,, 0.70 0.0001 0.67+0.08 0.85 0.0001 0.84 + 0.05
mean BERT emb. tokCtx NMIjgin: 0.70 0.0007 0.71+£0.10 0.89 0.0005 0.88+ 0.06

plain mulIwf NMIjoine 0.69 0.0015 0.69+0.07 0.82 0.0010 0.83+£0.07
bwd. fastText emb. addIwf NMI,., 0.69 0.0010 0.68+0.08 0.84 0.0006 0.84=£0.06
shared vocabulary (SV) 0.60 0.0031 0.594+0.14 0.77 0.0008 0.77 £0.06

Table 7.5: Correlation between various similarity measures and the change in POS tagging
accuracy using multi-task learning. The entries show the median and mean of
Kendall’s and Pearson’s correlation coefficients. They are sorted in descending
order by the median of Kendall’s rank correlation coefficient.

non-trivial to perfectly model this characteristic because the maximum does not need to
be 100 % for every dataset as datasets resp. test sets might differ in their inter-annotator
agreement. As the relative error reduction did not provide benefits with regard to the
correlation, the absolute increase resp. decrease in accuracy or F1 score will be used in
the further analysis.

Another idea is to calculate the correlation within groups of comparable data points,
i.e. same training dataset and same auxiliary data size. The downside of this approach
is that the number of data points to calculate a correlation coefficient is as small as
five samples. A middle ground between both extremes is to perform the correlation
calculation for larger groups, where data points belong to different training datasets but
still are obtained with auxiliary datasets of identical size. As the three POS tagging
training datasets have similar accuracy values without any additional data, the effect of
comparing across auxiliary dataset sizes is by far the predominant issue.

Table 7.5 shows the median and mean correlation of similarity with change in accuracy

82 7 Experiments

for the best 20 methods averaged over fix groups of data points obtained with the same
auxiliary data size. As a baseline, the correlation with the ratio of shared vocabulary is
added. Overall, the correlation between the similarity measures and change in accuracy
is strong according to both Kendall’s rank correlation and Pearson’s linear correlation
coefficients, which is in line with the previously shown scatter plots. The median p-values
for most methods are below 0.001, which makes it very unlikely that similarity and
accuracy are not correlated. The strongest correlation according to Kendall’s 7 is achieved
with the tokCtx method comparing contextual BERT-embeddings from auxiliary to
training data and applying the NM ;s as similarity measure, which is depicted in
Figure 7.4c. According to Pearson’s p, the strongest linear correlation is again using
contextual embeddings with NM I,y but it combines the values of both directions
via the harmonic mean. Regarding the correlation performance of the text overlap
approach, there is an interesting pattern. The correlation coefficients are consistently
higher when using word embeddings or combining with the ratio of shared vocabulary
than the correlation coefficients of the pure text overlap approach. This is an indicator
that the theoretical downside of only working on the shared vocabulary also has practical
implications. Fortunately, combining the raw measure with the fraction of shared
vocabulary via the harmonic mean is an effective fix as the correlation performance is
similar to the text overlap approach with word embeddings. Interestingly, the shared
vocabulary on its own has a much lower correlation. Its theoretical issue of being oblivious
to the labels is very likely also a problem for real-world datasets.

7.3.2 Named entity recognition

The neural network results for named entity recognition are shown in Table 7.6. These
results were obtained with the neural network using a conditional random field as classifier.
Similar to the POS tagging results, using auxiliary data from the same original dataset
improves the performance the most. Unfortunately, the difference in F1 score between
different auxiliary datasets is often smaller than the standard deviation of the values.
The problem is especially dire for the training datasets EPG and ONT, where there is
almost no change in the F'1 score except for the case of using EPG resp. ONT as auxiliary
dataset. When the data is correlated against the different similarity measures as in
POS tagging, the correlation would be affected more by the randomness than anything
else. For the training datasets CNLG, SEC, WIKI and WNUT, the F1 score differences
between various auxiliary datasets have an acceptable level compared with the standard
deviation. In order to avoid conclusions based on randomness, the datasets CNLE, EPG,
GEN and ONT will be removed as training datasets from the further analysis. However,
they will remain as auxiliary data for the four remaining datasets to use as many data
points as possible. Because the numbers are very similar and have the same issues when
using the Softmax classifier instead of a CRF classifier, those results will not be analyzed
separately. For reference, the F1 scores obtained with the Softmax classifier are shown
in Table A.1.

Figure 7.6a shows the scatter plot for the text overlap approach. Form, color and size
of each point are used analogously to the POS tagging plots. Overall, the data points

83

"IOYISSB[D YD oY) UM [opout
YI0M9U [RINDU 1]} SUISTL SPIds WOPURI JUSISHIP M SUILI 901} WIOI] PIUIRICO I8 UOIJRIASD PIEPURIS) PUR 91008
1.0 weowr oy], "sjosejep AIRI[IXNE JUSISPIP [}IM PIUIqUIOD UM sjosejep Sururel) N 201y} uo soueurioprad TN :9°2 9[9R],

7.3 Results and analysis

GLOFTILGT 68 T+F8E0L 099+89GE 9G0F9TFr GLCFI88LE OV IFIESR €CTFCU'Ty L8TFLTCL 04C-HND
LVTF+P89T 6€C+LV0L 0C€E+PEGE 99 T+0697 C90+PELe CSTF+VILR G60+F1Ic¢cr G9¢+L¢cl 001-dND
GEOF8TIT 090F6VTL 99€F8ECE TLOFGELY G90FL269C SLTF8YEY 6T TFGLTY 8ITFLVEL 0S-dIND
V/N 660 FLL69 68C+LEECS BIT'TFO089F GCC+L99¢ 61CF+6LT8 TVIT+2L98E ¢CITF+06TL O0G-LOANM
86°0 F €V'ST V/N 69°CF 676V STO0F+GI98Y €V'CF+608C ¢60F908 ILTFI96E 9¥'c+99¢cL 0S-IDIIM
SO'TF+09GT 690+ 9989 V/N CI'TFECLY 6I'C+LLLe €LTF+¢E98 T0OC+EEOr €L TF0STL 0S-DHS
60T+ LV8T CI'T+F8TL T9C+2L08G €LO0FITT9 99TF+080€ 20TF+6998 €60+FIV0F I¥VI+699L 09¢-LNO
OT'TF+GT9T €€CF69FL €GC+999¢ GV IT+LVLS BETFLVEE OT'€FLEG P¢¢c+056E 80¢+8'cL 00I-LNO
WI+60GT ¢90+¥6¢cL T0GFICTIS 6CTFETCE €9C+BEVE OVT+FPE88 EICHFVI0F 860+ G5€EL 06-LNO
16'0FCO¥VT 9L TF+CT0L TSGTFERSCE TOCHIT'LY 88¢C+GLI99 06CF+EC8S LOCFTIREY SV1+GLITIL 0S¢-NHD
670+ LCGT PST+86'L9 €GCFIL8Y 8SITFEII LCCFHEOEY VOTFVI® LEOFC6'EY L6°0+F T1E€CL 00T-NHD
ST'TF+9GGT COT+9€G9 TOCF+G6LY TPOFVILY O8TFILREE GGTFIVI8 66TF€E0Cy 90€+F€60L 0G-NHDO
STOFGSVL II'C+PL69 PLOFIGI 6E0+F0VLVy 660F€ECTIE 060FF986 LV0+LLTYV 691+ 0802 00T-DdH
BG0OFICTT €S T+¥¢0L C80FILEY CGTFIRIY GLO0FL60E 0€E0FEVTE6 LTCFELTY <CTcF+IvIL 05-OdH
ITc+90¥T P9€FL92L9 00T+¥68 L60F+0G9F <CI'T+83G8 080+L698 6L0+FEVIS LoT+cLTL O00T-DIND
9P 0FSG0VL 8CT+0969 <¢OGF+098y 0€0F9I8Iy L8OFVE8 GOTF2498 61T €Fcrvs SGOT+CSTL 0G-DTIND
VETF+V60Cc LLOF6C9L 6C6CTHO0LEY 66'TF6839F L60+FLc0€ TLOF6L98 SV0+86Ty E€I'TFIG9%6 0S¢-HIND
0€°C¢+ L2961 9¢'T+8LGL L6EF6ECE €E0FILLY 60TF+2060 €G0F80G €L0F8ECYy <¢I'0+.L868 00T-HIND
FI'TF6E8T L90FT199L FLYVFI9E8G LEOFTILY FEOFC6Lc €CTFETIR €COTFE8Ir 680F8€EE 0G-HIND
G80FL9CT 8ETF6TL9 TCO0FISEY €80FETLY 9I'TF+L69C CV0+6698 LZ0+C9Ty 098¢+ 0€0L ouou
0G-LONM 0G-IMIM 0S-DHS 0S-LNO 0S-NHDO 0S-Odd 0S-OIND 0S-H'IND vlep xny

84

7 Experiments

Figure 7.5: Scatter plots comparing multiple similarity measures with the difference in
multi-task learning F'1 score over the baseline on NER datasets. Plots for
more methods can be found in Appendix A.5.

50
Auxiliary data Training data (]
@® CNLG B CNLG
W SEC m SEC
404 4 WIKI . WIKI
® WNUT s WNUT
* GMB
V CNLE
3071 4 EpG
= » GEN
2 A ONT
T 20 v
<
* v ®
10 * ¢
7 *
b‘ A * Vv ’ v
° -n*; v >
T
04 =‘*<V * >
0.0 0.1 0.2 0.3 0.4 0.5
similarity

(a) plain addIwf NMIjsins: Text overlap ap-
proach without word embeddings using
add1Ifw method and N M1, measure

50
Auxiliary data Training data (]
@® CNLG B CNLG
W SEC m SEC
40 1 + WIKI Bl WIKI
® WNUT B WNUT
* GMB
V CNLE
3071 4 EpG
g p» GEN
2 A ONT
T 20 v
<
A ! ¢
10 A oo °
| 2 e) § W
A+ . ‘ A
™
w5 0w
0 4‘ < >
>e
0.1 0.2 0.3 0.4
similarity

(b) mean fastText emb. mullwf NMI.,:
Harmonic mean of both directions of
the text overlap approach with fastText
embeddings using mulIwf method and
NMI,,.; measure

50 A 50 A
Auxiliary data Training data [) Auxiliary data Training data [)
@® CNLG B CNLG @® CNLG BN CNLG
W SEC B SEC W SEC I SEC
404 < WIKI B WIKI 404 < WIKI B WIKI
® WNUT mmm WNUT ® WNUT mmm WNUT
* GMB * GMB
CNLE CNLE
301 v 30 1 v
« EPG 4 EPG
g » GEN g p» GEN
g A ONT g A ONT
T 20 v T 20 v
< <
& v [J ‘* v [
10 A * ¢ 104 * °
> ,*'AA YvwW ¢ > *{ A w
V & A * A
s * *
oo %> e 'F ™
0 > <> o1 & 4.
> Hah Ty >
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
similarity similarity

(c) SV & mulIwf N M Ijoim: Harmonic mean
of shared vocabulary and text over-
lap approach using mulIwf method and
NMI;yins measure

(d) mean BERT emb. tokCtx N M Iy Har-
monic mean of both directions of the

token-based approach using contextual
BERT embeddings and N M I, measure

7.3 Results and analysis 85

show a slight upward trend with increasing similarity. The three data points originating
from CNLG as training and auxiliary data stand out because it is the only combination
where data from the same original dataset is used. The datasets for SEC, WIKI and
WNUT are so small that no distinct auxiliary dataset could be sampled. When looking at
the data points for each training set in isolation, an increase in similarity often coincides
with the change in F1 score. While most data points for CNLG, WIKI and WNUT
are placed on a line, a stronger spread is visible for the SEC dataset. The scatter plot
obtained by additionally using word embeddings for the text overlap approach is shown
in Figure 7.6b. An interesting effect is that all data points with the WNUT training
dataset are now cramped together. However, the majority of those data points is still
ordered as expected. For the other training datasets, the relative order within data
points of the same training set is very similar to the comparison without embeddings.
Combining the text overlap approach with the ratio of shared vocabulary is depicted in
Figure 7.6¢c. It has the effect that more data points with low or no change in F1 score now
have a similarity very close to zero. Figure 7.6d shows a scatter plot for the token-based
approach using contextual embeddings. The placement of data points originating from
the same training dataset seems to be adequate in most cases. Comparisons between
data points of different training sets are probably not feasible because there are many
data points with almost identical similarity that point to a largely different change in F1
score. Admittedly, this is also true for the other three scatter plots, but only to a lower
degree.

To quantify the results and compare the different approaches and methods, the
similarity can be correlated with the change in F1 score. In contrast to the POS results,
the NER results have highly spread baseline scores ranging from F'1 = 12.67 for WNUT
to F'1 = 67.19 for WIKI without auxiliary data. As explained in the previous section,
correlating similarity and different levels of F1 scores does not make sense. A partial
solution is to only correlate data points originating from the same training dataset, but
this reduces the sample size for the correlation coefficient calculation to 8 resp. 9, which
in turn reduces the confidence and statistical significance. The median and mean of
Kendall’s 7 and Pearson’s p correlation coefficients are calculated over twelve groups
of data points. Within each group, both training dataset and the size of the auxiliary
data are same for every data point. For the best 20 methods and shared vocabulary,
median and mean of those correlation coefficients are shown in Table 7.7. The ranking
of the various methods is overall quite similar to the POS correlation results. However,
the previously highest ranked method using contextual embeddings for a unidirectional
comparison is now slightly worse than the baseline of shared vocabulary. The top five
methods according to Kendall’s 7 from the NER results are placed on position two
to seven in the POS results. Again, combining shared vocabulary with the plain text
overlap approach yields a higher correlation than either of the single values. The strongest
linear correlation is obtained by the two-directional tokCtx method, which is in line
with the POS results. Overall, the correlation coefficients are lower for NER than POS
dataset comparisons. This is also visible in the scatter plots. The p-values are orders of
magnitude higher because of both reduced sample size and lesser correlation. However,
according to the p-values for Pearson’s p, most similarity methods show a statistically

86 7 Experiments

Kendall Pearson
Method T p-value T p p-value p
mean fastText emb. mulIwf NMI,,,., 0.67 0.1575 0.63+0.18 0.79 0.0326 0.81+0.10
SV & mulIwf NMIjoint 0.65 0.1278 0.65+0.16 0.79 0.0345 0.80+0.08
SV & mulIwf NMI,, 4z 0.65 0.1278 0.644+0.13 0.80 0.0403 0.80+0.07
SV & addIwf NMIjoin: 0.65 0.1141 0.64+0.18 0.76 0.0362 0.77+0.13
SV & addIwf NMI,, 4z 0.65 0.1224 0.64+0.18 0.76 0.0393 0.77+0.13

mean fastText emb. mulIwf NMI;u,, 0.65 0.1575 0.62£0.16 0.82 0.0270 0.83+£0.10
bwd. fastText emb. addIwf NMI,., 0.65 0.1575 0.62+0.09 0.82 0.0559 0.78 £0.12
bwd. fastText emb. mulIwf NMIj,,: 0.64 0.1361 0.63+£0.11 0.80 0.0438 0.78+0.10
bwd. fastText emb. addIwf NMI;,,, 0.64 0.1575 0.63+£0.11 0.79 0.0588 0.78 +0.12
bwd. fastText emb. mulIwf NMIl,., 0.64 0.1575 0.62+0.12 0.79 0.0475 0.79£0.11
mean fastText emb. addIwf NM s, 0.63 0.1361 0.61£0.19 0.76 0.0373 0.79+0.14
fwd. fastText emb. addIwf NMIjzm: 0.63 0.1575 0.60+£0.22 0.73 0.0525 0.754+0.14
mean BERT emb. tokCtx NMI;ins 0.63 0.2347 0.57+£0.24 086 0.0754 0.76+0.21

plain mulIwf NM Ijoine 0.63 0.2347 0.55£0.33 0.67 0.1218 0.64+0.34
shared vocabulary (SV) 0.60 0.1260 0.61+0.11 0.77 0.0446 0.79£0.09
mean fastText emb. addIwf NMI,,, 0.60 0.1575 0.60+0.18 0.78 0.0318 0.78£0.14
plain addIwf NMI;oin: 0.60 0.1361 0.60£0.21 0.72 0.0768 0.73+0.18
plain addIwf NM I,q. 0.60 0.2056 0.56+0.23 0.69 0.0958 0.71+0.19

bwd. BERT emb. tokCtx NMI;oint 0.60 0.3028 0.56 +£0.20 0.67 0.1074 0.68£0.23
bwd. BERT emb. tokCtx NMI,,qx 0.58 0.2347 0.54+£0.23 0.66 0.1421 0.67+0.22
plain mulIwf NMI,, 0z 0.55 0.3333 047+0.34 061 03036 0.53£0.41

Table 7.7: Correlation between various similarity measures and the change in NER F1
score using multi-task learning. The entries show the median and mean of
Kendall’s and Pearson’s correlation coefficients. They are sorted in descending
order by the median of Kendall’s rank correlation coefficient.

significant linear correlation with the change in F1 score.

Summarizing the findings of the experiment analysis is a challenging task. Overall,
there is a strong correlation between multi-task learning scores and dataset similarity
computed by the methods developed in Chapters 4 and 6. In case of POS tagging,
the correlation is impressive and statistically significant — it is obviously visible in the
scatter plots and accompanied by high-confidence correlation coefficients. The results
for NER are less clear as the scores obtained from the various training datasets are
not easy to compare. However, there is still a strong indication that similarity and
test set performance are correlated. Many ways to compute dataset similarity have
been compared with respect to their correlation with the neural network test scores.
While there is some consistency regarding which combinations work better than others,
inaccuracies in the raw data make it difficult to select a single best method.

A computationally cheap yet high-quality measure is the harmonic mean of shared
vocabulary and normalized mutual information calculated from the contingency table filled

7.4 Multi-task learning test score prediction 87

by the text overlap approach. Possibly slightly better is the usage of word embeddings
to match words not contained in the other dataset, which intrinsically adds the fraction
of shared words to the similarity measure. The strongest linear correlation is achieved
by using contextual embeddings to compare every token in the datasets.

In short, the similarity measures allow distinguishing good from bad candidates for
usage as auxiliary data. This is an immensely valuable information because the number of
expensive neural network training runs can be reduced to a fraction while still finding the
best auxiliary dataset(s) to increase performance on the main task. Furthermore, both
Hypotheses 1 and 2 can be considered valid as more similar data correlates significantly
with a stronger increase of the main task performance in the majority of all examined
cases. Thus, the similarity between datasets can be measured independently of a machine
learning model and this similarity can be used to estimate the effect a specific auxiliary
dataset will have on a neural network’s test set performance.

In the next section will be explored whether the dataset sizes and multiple similarity
measure methods can be combined to predict the multi-task learning performance based
on the single-task learning test score of a neural model.

7.4 Multi-task learning test score prediction

Estimating the multi-task learning score from the single-task learning score and some
data-specific features would be a highly convenient functionality. As the number of data
points is very small, only simple models with few parameters can be reasonably fitted.
The classic choice is linear regression, which is unsuitable in its basic form because it
does not work well with multicollinearity. Multicollinearity describes a situation where
the features used for prediction are correlated with each other. Since this is certainly true
for the variations of the similarity measures, another model is needed. Ridge regression
(Hoerl and Kennard, 1970) is a regularized linear regression model with L? regularization.
It allows working on correlated features and helps to prevent overfitting. The ridge
regression model shall predict the absolute multi-task learning score given the single-task
learning score and features such as the size of training and auxiliary data, the fraction of
shared vocabulary and numerous similarity measures.

In order to use the few collected data points most efficiently, nested cross validation
(Stone, 1974) is applied. While the inner cross validation is necessary to select the
regularization parameter, the outer cross validation is used to obtain an averaged error
score on unseen data. The mean absolute error is selected for scoring because it allows
an easy interpretation and is less sensitive to outliers than mean squared error. As the
data points are not independent and identically distributed, the grouped k-fold cross
validation is used. The data points are grouped by their single-task learning training
dataset. This ensures that the test fold in each iteration contains data points belonging
to an unseen training dataset. The data points obtained in the NER experiments using
the Softmax neural network model were used to perform semi-automatic feature selection.
The final evaluation uses the nested cross validation on the data points obtained from
POS tagging and NER with the neural network CRF model.

88 7 Experiments

single-task score —

fwd. BERT emb. tokCtx NM;pin:
shared vocabulary (SV) -

plain addIwf NMI;oin:

fwd. fastText emb. mulIwf NMIjoin:
log. auxiliary size -

log. train size -

auxiliary size -

training size

bwd. fastText emb. mulIwf NMI;pin:
fwd. fastText emb. addIwf NMIjoin:
plain mulIwf NMI;oin:

bwd. fastText emb. addIwf NMI;in:
mean fastText emb. mulIwf NMIjqims
SV & mulIwf NMIjoint —

mean fastText emb. addIwf NMIjoint
mean BERT emb. tokCtx NMI;qint |
training/auxiliary size ratio

bwd. BERT emb. tokCtx NMI;oin:
SV & addIwf NMIjoint —

T T T T
0.2 0.4 0.6 0.8

o IIIII.III-_

o

Figure 7.7: Ridge regression coefficients obtained from predicting the MTL score from
dataset features and various similarity measures

Figure 7.7 shows the coefficients of the ridge regression for selected features. As
expected, the single-task learning score is by far the most important feature. Manual
tests without this information resulted in a very low prediction performance. Because
the analysis in the previous section showed a large effect of the auxiliary dataset size on
the MTL score, the five dataset size features were manually added. Interestingly, four
of these are unused with coefficients near zero. It seems, the necessary information is
encoded more easily in other features such as the fraction of shared vocabulary. Averaged
over 100 runs of the above described nested cross validation method, a mean absolute
error of 3.44 is obtained. If the deviations in the original F1 score resp. accuracy values
are taken into account, this error is acceptable. When the same setup is used only on
the POS tagging data, a mean absolute error of 1.01 is obtained, which is actually quite
precise. As a comparison, all similarity measures are removed from the features. This
results in a mean absolute error of 1.89 for POS tagging and 4.58 across all data points.
Admittedly, these results should be taken with a grain of salt as the mean errors are of
similar scale as the deviations in the STL and MTL scores due to random initialization
of the neural network weights. Nevertheless, it is plausible that an accurate estimation
of the multi-task learning scores based on dataset similarity and single-task learning
score is possible given less erratic scores.

8 Summary, Conclusion & Future
Work

8.1 Summary

Throughout this thesis, the research question — how the effect of auxiliary training data
can be estimated in a multi-task learning scenario without performing the actual training
— has been thoroughly examined. On the basis of the two hypotheses that a) auxiliary
datasets of higher similarity with the main training data achieve a better performance
on the main task and that b) the similarity between datasets can be measured solely
from data-inherent features, theoretical concepts to measure dataset similarity based
on the contained words and labels have been developed. The new methods to measure
the similarity of sequence tagging datasets were developed with the goal to improve
over existing approaches with regard to their applicability. The methods can be applied
to any sequence tagging datasets without having any constraints on the label sets or
requiring the tasks to be automatically taggable. The general idea is a two-step process.
First, a probabilistic mapping between both label sets is obtained from pairs of words
and labels either via aggregated counts per unique word or for each individual token.
This information in form of a contingency table is used by multiple clustering comparison
measures to calculate the mapping quality and thus the dataset similarity.

For the approach of working on aggregated label counts per word in the first step,
various methods have been developed to combine these counts from both datasets into
the single contingency table. Additionally, word embeddings have been included to
match the words, which are not contained in both datasets, and compare their labels.
The other approach uses contextual word embeddings to directly match the label from
each token of one dataset to the most similar token of the other dataset. To make this
pairwise comparison of large numbers of word vectors feasible, a sophisticated vector
comparison has been developed that is both fast and efficient. Due to the modularity
and existence of various alternatives for each part of the dataset similarity computation,
there are many possible combinations for concrete similarity measures, which were
subsequently implemented and tested experimentally both individually and together
with the multi-task learning scores of a neural network.

Results of preliminary experiments on part-of-speech tagging and named entity recog-
nition datasets are confirming to the intuition that pairs of datasets sampled from the
same source have higher similarity scores than pairs of datasets from different sources.
In large-scale experiments on real-world datasets, the correlation between the similarity
measures and the change in the multi-task learning performance was analyzed. For

89

90 8 Summary, Conclusion & Future Work

part-of-speech tagging, a significant and strong correlation of the neural network’s test
set accuracy and the similarity between training auxiliary dataset was found. Because
the test scores obtained on the named entity recognition datasets are largely affected
by random effects, the correlation to the auxiliary dataset similarity is only significant
for some methods. When predicting the multi-task learning score of a specific auxiliary
dataset from the single-task learning score, using various similarity measures as features
improved the prediction performance over the baseline.

8.2 Conclusion

It is possible to estimate the effect of auxiliary training data on the main task performance
in a multi-task learning scenario — without performing any expensive MTL training
runs of the neural network! Overall, the experiments show that similarity measures allow
ordering the effects of auxiliary datasets by direction and intensity for an individual
training dataset. This is a strong indication for the validity of both hypotheses. As the
performance of predicting the multi-task learning score for a specific auxiliary dataset
could be increased by using various similarity measures as features, it seems plausible
that an estimation of a neural network’s multi-task learning score is possible.

The experimental findings are also supported from a theoretical point of view. The
developed methods working on both words and their labels have a substantial advantage
over approaches that are based only on word overlap between two datasets or the label
distributions. While the similarity score might not be used as an absolute value, it
provides a way to find a good auxiliary dataset for a given training dataset without
actually performing the training. Consequently, the number of datasets that are actually
used for training and expensive hyperparameter search can be reduced by only choosing
the n auxiliary datasets most similar to the training data.

Depending on the exact similarity method, computing the similarity between two
sizable datasets takes less than second for the approach without any word embeddings
and a few seconds to a few minutes when using contextual embeddings depending on the
exact dataset size and hardware. Thus, the dataset similarity can be leveraged to find
the best auxiliary dataset(s) and improve the main task performance in a fraction of
the time required by the full search through all possible datasets. The quick similarity
calculation can even help to improve the main task performance further since better
datasets might be tried as auxiliary data that would never have made it through the
otherwise necessary, purely manual preselection process.

8.3 Future work

The possibilities for future work are vast. Based on the existing experiment results,
it could be analyzed whether dataset similarity allows making estimates about the
right amount of additional data. An intuitive hypothesis is that with a low similarity
score, only small amounts of auxiliary data increase the performance, whereas larger

8.3 Future work 91

quantities will result in a reduced performance. For highly similar datasets, even a
multiple amount of auxiliary data compared to the amount of training data could still
improve the performance as it is the case for some part-of-speech datasets analyzed in
the previous chapter. A similar direction is to investigate whether the dataset similarity
could act as an indicator for the right amount of shared parameters in the neural network.
For example, sharing all layers could be beneficial in case of a high similarity while for
less similar datasets sharing only the lower layers would achieve a better performance.

Another possibility could be to compare the similarity measures developed in this work
with related work, e.g. the results obtained by Bjerva (2017). The similarity measures
would have to be computed on the same datasets used in the related work. Further, the
values showing the change in test scores from single- to multi-task learning need to be
available for each auxiliary dataset. This would allow correlating the similarity measures
designed in this work with the results produced in related work. The other direction
might not be possible because the approaches in related work compute task similarity
and cannot compare the similarity of same-task datasets as used in the experiments of
this thesis.

Improving the similarity measures is another possibility. By combining the newly
developed similarity measuring methods via an oracle or majority voting, the estimation
of the effect on the multi-task learning performance might be improved. Besides, the
similarity measures could be easily extended to better support sequence tagging tasks
where labels span multiple tokens or even whole sentences. Instead of using contextual
embeddings per token, multi-token or sentence embeddings could be integrated while the
remaining parts of the similarity calculation can stay untouched. Going further, sentence
or paragraph embeddings could be used to compute the similarity for classification task
datasets.

Finally, the prediction of multi-task learning scores based on single-task learning scores
and dataset similarity measures could be improved and generalized. Existing results from
other multi-task learning or transfer learning experiments could be used to obtain more
data points of dataset similarity and test score. Additionally, new experiments could
be run with other sequence taggers that are M'TL-capable to gather more data points.
Having a substantially larger set of these data points should improve the prediction
substantially and might allow gaining new insights into the connection of data similarity
and the effect of auxiliary training data.

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8
2.9

5.1
6.1

7.1

7.3

7.5

7.7

Al
A2

A3

A4

A5

High-level approach example

MEMM: Example illustrating the label bias problem
Comparison of HMM, MEMM and CRF
Perceptron
Activation functions: Sigmoid, tanh and ReLU
Two-layer fully-connected feedforward neural network with n input fea-
tures, m hidden neurons and o output neurons
A two-layer recurrent neural network with n input features, m hidden
neurons and o output neurons
Different types of sequence processing with recurrent neural networks
LSTM cell e
Generic hard parameter sharing multi-task learning neural network archi-
tecture for t different taskso 0L

Generic MTL-capable neural network architecture for sequence tagging
Software architecture for the dataset similarity tool

Selected pairwise N M I,,,, similarity scores for different methods to fill in
the counts of the contingency table
Scatter plots comparing different similarity measures with the differences
in accuracy of the POS tagging multi-task learning results
Scatter plots comparing similarity measures with the difference in multi-
task learning F1 score on NER datasets
Ridge regression coeflicients obtained from predicting the MTL score from
dataset features and various similarity measures

Pairwise relative vocabulary resp. token overlap
Pairwise NM1,,,. scores for the token-based methods using contextual
BERT embeddings
Pairwise NM1,,,. scores for the multiplicative label count combination
methods in the plain text overlap approach
Pairwise N M I,,,.. scores for the additive label count combination methods
in the plain text overlap approach
Pairwise NMI,,,. scores for the multiplicative label count combination
methods in the text overlap approach with fastText embeddings for non-
overlapping words L

93

94

List of Figures

A.6 Pairwise NMI,,,, scores for the additive label count combination methods
in the text overlap approach with fastText embeddings for non-overlapping
wWords

A.7 Scatter plots comparing the plain text overlap similarity measures with
the differences in accuracy of the POS tagging multi-task learning results

A.9 Scatter plots comparing the harmonic mean of shared vocabulary (SV)
and text overlap similarity measures with the differences in accuracy of
the POS tagging multi-task learning results

A.11 Scatter plots comparing similarity measures of the text overlap approach
plus embeddings with the differences in accuracy of the POS tagging
multi-task learning results o oL

A.13 Scatter plots comparing token-based similarity measures with the differ-
ences in accuracy of the POS tagging multi-task learning results

A.15 Scatter plots comparing the plain text overlap similarity measures with
the differences in accuracy of the NER multi-task learning results

A.17 Scatter plots comparing the harmonic mean of shared vocabulary (SV)
and text overlap similarity measures with the differences in accuracy of
the NER multi-task learning results

A.19 Scatter plots comparing similarity measures of the text overlap approach
plus embeddings with the differences in accuracy of the NER multi-task
learning results

A.21 Scatter plots comparing token-based similarity measures with the differ-
ences in accuracy of the NER multi-task learning results

123

List of Tables

2.1

4.1
4.2
4.3
4.4
4.5
4.6

4.7

5.1

6.1

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Al

Structure of a contingency table

Contingency table for a comparison of label sets L and L' with N resp.
M unique labels
Counts from example Sentences 4.1 and 4.2 for comparison of NER and
POS tagsets
Contingency tables for different scenarios comparing label sets L and L .
Results for the evaluated measures on each scenario from Table 4.3
Transformation of word-label pairs to an associated count-based represen-
tationo
Contingency table derived from the counts of words in Table 4.5 that are
contained in both datasets.o
Using vector space similarity to match tokens between two datasets to
obtain counts for a similarity calculation based on a contingency table . .

Batch combination strategies for three datasets

Overview of methods to combine per word aggregated label counts into a
contingency tableo L oL

Comparison of label count combination methods for the text overlap
approacho
Run time and memory usage of the naive and matrix multiplication
methods to compute the pairwise closest vectors when comparing a dataset
with itself
Original POS tagging and NER datasets used to sample new training or
auxiliary datasetso
POS tagging MTL performance on three training datasets when combined
with different auxiliary datasets
Correlation between various similarity measures and the change in POS
tagging accuracy using multi-task learning
MTL performance on three NER training datasets when combined with
different auxiliary datasets L.
Correlation between various similarity measures and the change in NER
F1 score using multi-task learning

NER F1 score mean and standard deviation across three runs with different
random seeds using the neural network model with a Softmax classifier. .

95

128

Bibliography

Akbik, Alan, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and
Roland Vollgraf (2019). ,FLAIR: An Easy-to-Use Framework for State-of-the-Art
NLP*“. In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics (Demonstrations). Minneapolis, Minnesota:
Association for Computational Linguistics, pp. 54-59. DOI: 10.18653/v1/N19-4010.
URL: https://www.aclweb.org/anthology/N19-4010.

Akbik, Alan, Duncan Blythe, and Roland Vollgraf (2018). ,,Contextual String Embeddings
for Sequence Labeling“. In: Proceedings of the 27th International Conference on
Computational Linguistics. Santa Fe, New Mexico, USA: Association for Computational
Linguistics, pp. 1638-1649. URL: https://www.aclweb.org/anthology/C18-1139.

Amigé, Enrique, Julio Gonzalo, Javier Artiles, and Felisa Verdejo (2009). ,,A Comparison
of Extrinsic Clustering Evaluation Metrics Based on Formal Constraints“. In: Informa-
tion Retrieval 12.4, pp. 461-486. 1SSN: 1386-4564. DOI: 10.1007/s10791-008-9066-8.
URL: http://dx.doi.org/10.1007/s10791-008-9066-8.

Augenstein, Isabelle, Sebastian Ruder, and Anders Sggaard (2018). ,,Multi-Task Learning
of Pairwise Sequence Classification Tasks over Disparate Label Spaces®. In: Proceedings
of the 2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long Papers). New
Orleans, Louisiana: Association for Computational Linguistics, pp. 1896-1906. DOTI:
10.18653/v1/N18-1172. URL: https://www.aclweb.org/anthology/N18-1172.

Augenstein, Isabelle and Anders Sggaard (2017). ,,Multi-Task Learning of Keyphrase
Boundary Classification®. In: Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short Papers). Vancouver, Canada:
Association for Computational Linguistics, pp. 341-346. DOI: 10.18653/v1/P17-2054.
URL: https://www.aclweb.org/anthology/P17-2054.

Aumiiller, Martin, Erik Bernhardsson, and Alexander Faithfull (2017). ,,ANN-Benchmarks:
A Benchmarking Tool for Approximate Nearest Neighbor Algorithms®. In: 10th In-
ternational Conference on Similarity Search and Applications (SISAP 2017). Ed. by
Christian Beecks, Felix Borutta, Peer Kroger, and Thomas Seidl. Munich, Germany:
Springer International Publishing, pp. 34—49. 1SBN: 978-3-319-68474-1.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton (2016). ,,Layer normalization*®.
In: arXiv:1607.06450.

Balasuriya, Dominic, Nicky Ringland, Joel Nothman, Tara Murphy, and James R. Curran
(2009). ,Named Entity Recognition in Wikipedia“. In: Proceedings of the 2009 Workshop
on The People’s Web Meets NLP: Collaboratively Constructed Semantic Resources
(People’s Web). Suntec, Singapore: Association for Computational Linguistics, pp. 10—
18.

97

https://doi.org/10.18653/v1/N19-4010
https://www.aclweb.org/anthology/N19-4010
https://www.aclweb.org/anthology/C18-1139
https://doi.org/10.1007/s10791-008-9066-8
http://dx.doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.18653/v1/N18-1172
https://www.aclweb.org/anthology/N18-1172
https://doi.org/10.18653/v1/P17-2054
https://www.aclweb.org/anthology/P17-2054

98 Bibliography

Banerjee, Arindam, Inderjit S. Dhillon, Joydeep Ghosh, and Suvrit Sra (2005). ,,Clustering
on the Unit Hypersphere Using Von Mises-Fisher Distributions“. In: Journal of
Machine Learning Research (JMLR) 6, pp. 1345-1382. 1SSN: 1532-4435. URL: http:
//dl.acm.org/citation.cfm?id=1046920.1088718.

Baroni, Marco, Georgiana Dinu, and Germén Kruszewski (2014). ,Don’t count, pre-
dict! A systematic comparison of context-counting vs. context-predicting semantic
vectors®. In: Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Baltimore, Maryland: Association
for Computational Linguistics, pp. 238-247. por: 10.3115/v1/P14-1023. URL:
https://www.aclweb.org/anthology/P14-1023.

Baum, Leonard (1972). ,,An inequality and associated maximization technique in sta-
tistical estimation of probabilistic functions of a Markov process®. In: Inequalities 3,
pp. 1-8.

Baxter, Jonathan (1997). ,A Bayesian/Information Theoretic Model of Learning to Learn
via Multiple Task Sampling®. In: Machine Learning 28.1, pp. 7-39. 1SSN: 1573-0565. DOI:
10.1023/A:1007327622663. URL: https://doi.org/10.1023/A:1007327622663.

— (2000). ,A Model of Inductive Bias Learning®. In: Journal of Artificial Intelligence
Research (JAIR) 12.1, pp. 149-198. 1SsN: 1076-9757. URL: http://dl.acm.org/
citation.cfm?id=1622248.1622254.

Ben-David, Shai and Reba Schuller (2003). ,Exploiting Task Relatedness for Multiple
Task Learning®. In: Learning Theory and Kernel Machines. Ed. by Bernhard Schélkopf
and Manfred K. Warmuth. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 567-580.
ISBN: 978-3-540-45167-9.

Bengio, Y., P. Simard, and P. Frasconi (1994). ,Learning Long-term Dependencies
with Gradient Descent is Difficult®. In: IEEE Transactions on Neural Networks 5.2,
pp. 157-166. 1SSN: 1045-9227. DOI: 10.1109/72.279181. URL: http://dx.doi.org/
10.1109/72.279181.

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Jauvin (2003). A
neural probabilistic language model“. In: Journal of Machine Learning Research
(JMLR) 3.Feb, pp. 1137-1155.

Benikova, Darina, Chris Biemann, and Marc Reznicek (2014). ,NoSta-D Named Entity
Annotation for German: Guidelines and Dataset®. In: Proceedings of the Ninth Inter-
national Conference on Language Resources and Evaluation (LREC’14). Reykjavik,
Iceland: European Language Resources Association (ELRA), pp. 2524-2531. URL:
http://www.lrec-conf.org/proceedings/lrec2014/pdf/276_Paper.pdf.

Bergstra, James and Yoshua Bengio (2012). ,Random Search for Hyper-parameter
Optimization®. In: Journal of Machine Learning Research (JMLR) 13, pp. 281-305.
ISSN: 1532-4435. URL: http://dl.acm.org/citation.cfm?id=2188385.2188395.

Bingel, Joachim and Anders Sggaard (2017). ,Identifying beneficial task relations for
multi-task learning in deep neural networks“. In: Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers. Valencia, Spain: Association for Computational Linguistics, pp. 164-169.
URL: http://aclweb.org/anthology/E17-2026.

http://dl.acm.org/citation.cfm?id=1046920.1088718
http://dl.acm.org/citation.cfm?id=1046920.1088718
https://doi.org/10.3115/v1/P14-1023
https://www.aclweb.org/anthology/P14-1023
https://doi.org/10.1023/A:1007327622663
https://doi.org/10.1023/A:1007327622663
http://dl.acm.org/citation.cfm?id=1622248.1622254
http://dl.acm.org/citation.cfm?id=1622248.1622254
https://doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/72.279181
http://www.lrec-conf.org/proceedings/lrec2014/pdf/276_Paper.pdf
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://aclweb.org/anthology/E17-2026

Bibliography 99

Bjerva, Johannes (2017). ,Will my auxiliary tagging task help? Estimating Auxiliary
Tasks Effectivity in Multi-Task Learning“. In: Proceedings of the 21st Nordic Conference
on Computational Linguistics. Gothenburg, Sweden: Association for Computational
Linguistics, pp. 216-220. URL: https://www.aclweb.org/anthology/W17-0225.

Bjerva, Johannes, Barbara Plank, and Johan Bos (2016). ,,Semantic Tagging with Deep
Residual Networks®. In: Proceedings of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016
Organizing Committee, pp. 3531-3541. URL: https://www.aclweb.org/anthology/
C16-1333.

BNC Consortium (2007). The British National Corpus, version 3 (BNC XML Edition).
URL: http://www.natcorp.ox.ac.uk/.

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov (2017). ,En-
riching Word Vectors with Subword Information“. In: Transactions of the Association
for Computational Linguistics 5, pp. 135-146. DOI: 10.1162/tacl_a_00051. URL:
https://www.aclweb.org/anthology/Q17-1010.

Bos, Johan, Valerio Basile, Kilian Evang, Noortje Venhuizen, and Johannes Bjerva (2017).
»The Groningen Meaning Bank*. In: Handbook of Linguistic Annotation. Ed. by Nancy
Ide and James Pustejovsky. Vol. 2. Springer, pp. 463-496.

Brejové, Brona, Daniel G. Brown, and Tomas Vinaf (2007). ,, Advances in Hidden Markov
Models for Sequence Annotation®. In: Bioinformatics Algorithms. John Wiley & Sons,
Ltd. Chap. 4, pp. 55-91. ISBN: 9780470253441. DOI: 10.1002/9780470253441 . ch4.

Caruana, Rich (1993). ,,Multitask Learning: A Knowledge-Based Source of Inductive
Bias“. In: Proceedings of the Tenth International Conference on Machine Learning.
Ambherst, Massachusetts, USA, pp. 41-48.

— (1997). ,Multitask Learning®“. In: Machine Learning 28.1, pp. 41-75. 1SSN: 0885-
6125. DOI: 10.1023/A:1007379606734. URL: https://doi.org/10.1023/A:
1007379606734.

Changpinyo, Soravit, Hexiang Hu, and Fei Sha (2018). ,, Multi-Task Learning for Sequence
Tagging: An Empirical Study*. In: Proceedings of the 27th International Conference on
Computational Linguistics. Santa Fe, New Mexico, USA: Association for Computational
Linguistics, pp. 2965-2977. URL: http://aclweb.org/anthology/C18-1251.

Cho, Kyunghyun, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio (2014). , Learning Phrase Representa-
tions using RNN Encoder—Decoder for Statistical Machine Translation“. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational Linguistics, pp. 1724-1734.
DOI: 10.3115/v1/D14-1179. URL: https://www.aclweb.org/anthology/D14-1179.

Collobert, Ronan and Jason Weston (2008). ,,A Unified Architecture for Natural Language
Processing: Deep Neural Networks with Multitask Learning®“. In: Proceedings of the
25th International Conference on Machine Learning. ICML ’08. Helsinki, Finland:
ACM, pp. 160-167. 1SBN: 978-1-60558-205-4. DOI: 10.1145/1390156.1390177. URL:
http://doi.acm.org/10.1145/1390156.1390177.

Cooijmans, Tim, Nicolas Ballas, César Laurent, Caglar Giilgehre, and Aaron Courville
(2016). ,Recurrent Batch Normalization®. In: arXiv:1603.09025.

https://www.aclweb.org/anthology/W17-0225
https://www.aclweb.org/anthology/C16-1333
https://www.aclweb.org/anthology/C16-1333
http://www.natcorp.ox.ac.uk/
https://doi.org/10.1162/tacl_a_00051
https://www.aclweb.org/anthology/Q17-1010
https://doi.org/10.1002/9780470253441.ch4
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
http://aclweb.org/anthology/C18-1251
https://doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://doi.org/10.1145/1390156.1390177
http://doi.acm.org/10.1145/1390156.1390177

100 Bibliography

Coppersmith, D. and S. Winograd (1987). ,Matrix Multiplication via Arithmetic Pro-
gressions®. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing. STOC '87. New York, New York, USA: ACM, pp. 1-6. 1SBN: 0-89791-221-7.
DOI: 10.1145/28395.28396. URL: http://doi.acm.org/10.1145/28395.28396.

Cover, Thomas M. and Joy A. Thomas (2006). Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). New York, New York, USA:
Wiley-Interscience. ISBN: 0471241954,

Culurciello, Eugenio (Apr. 13, 2018). The fall of RNN / LSTM. URL: https://towards
datascience.com/the-fall-of-rnn-1stm-2d1594c74ce0 (visited on 10/22/2019).

Davie, Alexander M. and Andrew J. Stothers (2013). ,,Improved bound for complexity of
matrix multiplication®“. In: Proceedings of the Royal Society of Edinburgh: Section A
Mathematics 143.2, pp. 351-369. DOI: 10.1017/50308210511001648.

Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin (1977). ,Maximum Likelihood
from Incomplete Data via the EM Algorithm®. In: Journal of the Royal Statistical
Society. Series B (Methodological) 39.1, pp. 1-38. 1SSN: 00359246.

Derczynski, Leon (2016). ,Complementarity, F-score, and NLP Evaluation“. In: Pro-
ceedings of the Tenth International Conference on Language Resources and Evaluation
(LREC’16). Portoroz, Slovenia: European Language Resources Association (ELRA),
pp. 261-266. URL: https://www.aclweb.org/anthology/L16-1040.

Derczynski, Leon, Eric Nichols, Marieke van Erp, and Nut Limsopatham (2017). ,,Results
of the WNUT2017 Shared Task on Novel and Emerging Entity Recognition®. In:
Proceedings of the 3rd Workshop on Noisy User-generated Text. Copenhagen, Denmark:
Association for Computational Linguistics, pp. 140-147. DOI: 10.18653/v1/W17-4418.
URL: https://www.aclweb.org/anthology/W17-4418.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019). ,BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding®. In:
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics,
pp. 4171-4186. URL: https://www.aclweb.org/anthology/N19-1423.

Dongarra, Jack, Jeremy Du Croz, Sven Hammarling, and Tain S. Duff (1990). ,A Set of
Level 3 Basic Linear Algebra Subprograms®. In: ACM Transactions on Mathematical
Software 16.1, pp. 1-17. 1sSN: 0098-3500. DOI: 10.1145/77626.79170. URL: http:
//doi.acm.org/10.1145/77626.79170.

Elekes, Abel, Martin Schiler, and Klemens Bohm (2017). ,,On the Various Semantics of
Similarity in Word Embedding Models®. In: Proceedings of the 17th ACM/IEEE Joint
Conference on Digital Libraries. JCDL 17. Toronto, Ontario, Canada: IEEE Press,
pp. 139-148. 1SBN: 978-1-5386-3861-3. URL: http://dl.acm.org/citation.cfm?id=
3200334 .3200350.

Faruqui, Manaal and Sebastian Padé (2010). ,Training and Evaluating a German
Named Entity Recognizer with Semantic Generalization“. In: Semantic Approaches in
Natural Language Processing: Proceedings of the 10th Conference on Natural Language
Processing, KONVENS 2010. Saarbriicken, Germany, pp. 129-133.

https://doi.org/10.1145/28395.28396
http://doi.acm.org/10.1145/28395.28396
https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0
https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0
https://doi.org/10.1017/S0308210511001648
https://www.aclweb.org/anthology/L16-1040
https://doi.org/10.18653/v1/W17-4418
https://www.aclweb.org/anthology/W17-4418
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.1145/77626.79170
http://doi.acm.org/10.1145/77626.79170
http://doi.acm.org/10.1145/77626.79170
http://dl.acm.org/citation.cfm?id=3200334.3200350
http://dl.acm.org/citation.cfm?id=3200334.3200350

Bibliography 101

Freund, Yoav and Robert E Schapire (1999). ,Large margin classification using the
perceptron algorithm®. In: Machine learning 37.3, pp. 277-296.

Gardner, Matt, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F.
Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer (2018). ,AllenNLP: A
Deep Semantic Natural Language Processing Platform®. In: Proceedings of Workshop
for NLP Open Source Software (NLP-0OSS). Melbourne, Australia: Association for
Computational Linguistics, pp. 1-6. DOI: 10.18653/v1/W18-2501. URL: https:
//www.aclweb.org/anthology/W18-2501.

Gers, Felix A. and Jirgen Schmidhuber (2000). ,Recurrent nets that time and count*.
In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the
New Millennium. Vol. 3. Como, Italy: IEEE, pp. 189-194. 1SBN: 0-7695-0619-4. DOTI:
10.1109/ijcnn.2000.861302. URL: http://dx.doi.org/10.1109/ijcnn.2000.
861302.

Glorot, Xavier and Yoshua Bengio (2010). ,,Understanding the difficulty of training
deep feedforward neural networks“. In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. Ed. by Yee Whye Teh and Mike
Titterington. Vol. 9. Proceedings of Machine Learning Research. Chia Laguna Resort,
Sardinia, Italy: PMLR, pp. 249-256. URL: http://proceedings .mlr.press/v9/
glorot10a.html.

Goodfellow, lan, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.
ISBN: 9780262035613. URL: http://www.deeplearningbook.org.

Harris, Zellig S (1954). , Distributional structure®. In: Word 10.2-3, pp. 146-162.

Hashimoto, Kazuma, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher (2017). ;A
Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks®. In: Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.
Copenhagen, Denmark: Association for Computational Linguistics, pp. 1923-1933. DOTI:
10.18653/v1/D17-1206. URL: https://www.aclweb.org/anthology/D17-1206.

Hochreiter, Sepp and Jurgen Schmidhuber (1997). , Long Short-Term Memory*“. In: Neural
Computation 9.8, pp. 1735-1780. 1sSN: 0899-7667. DOI: 10.1162/neco.1997.9.8.1735.
URL: http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Hoerl, Arthur E and Robert W Kennard (1970). ,,Ridge regression: Biased estimation
for nonorthogonal problems®. In: Technometrics 12.1, pp. 55-67.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). ,Multilayer feedforward
networks are universal approximators®. In: Neural Networks 2.5, pp. 359-366. 1SSN:
0893-6080. DOI: https://doi.org/10.1016/0893-6080(89)90020-8.

Howard, Jeremy and Sebastian Ruder (2018). ,,Universal Language Model Fine-tuning for
Text Classification. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association
for Computational Linguistics, pp. 328-339. URL: https://www.aclweb.org/anthol
ogy/P18-1031.

Huang, Jianyu, Tyler M. Smith, Greg M. Henry, and Robert A. van de Geijn (2016).
yotrassen’s Algorithm Reloaded“. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. SC ’16. Salt Lake

https://doi.org/10.18653/v1/W18-2501
https://www.aclweb.org/anthology/W18-2501
https://www.aclweb.org/anthology/W18-2501
https://doi.org/10.1109/ijcnn.2000.861302
http://dx.doi.org/10.1109/ijcnn.2000.861302
http://dx.doi.org/10.1109/ijcnn.2000.861302
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://www.deeplearningbook.org
https://doi.org/10.18653/v1/D17-1206
https://www.aclweb.org/anthology/D17-1206
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.aclweb.org/anthology/P18-1031
https://www.aclweb.org/anthology/P18-1031

102 Bibliography

City, Utah: IEEE Press, 59:1-59:12. 1SBN: 978-1-4673-8815-3. URL: http://dl.acnm.
org/citation.cfm?id=3014904.3014983.

Huang, Jianyu, Chenhan D. Yu, and Robert A. van de Geijn (2018). ,Implementing
Strassen’s Algorithm with CUTLASS on NVIDIA Volta GPUs®. In: arXiv:1808.07984.

Intel Corporation (2009). Intel Math Kernel Library. Reference Manual. Santa Clara,
California, USA: Intel Corporation. 1ISBN: 630813-054US. URL: https://software.
intel.com/en-us/mkl.

loffe, Sergey and Christian Szegedy (2015). ,,Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift“. In: Proceedings of the 32Nd
International Conference on International Conference on Machine Learning - Volume
37. ICML’15. Lille, France: JMLR.org, pp. 448-456. URL: http://dl.acm. org/
citation.cfm?7id=3045118.3045167.

Joulin, Armand, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov (2017). ,,Bag of
Tricks for Efficient Text Classification®. In: Proceedings of the 15th Conference of the
Furopean Chapter of the Association for Computational Linguistics: Volume 2, Short
Papers. Valencia, Spain: Association for Computational Linguistics, pp. 427-431. URL:
https://www.aclweb.org/anthology/E17-2068.

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing (2Nd
Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc. 1SBN: 0131873210.

Kaiser, Lukasz, Aidan N. Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion
Jones, and Jakob Uszkoreit (2017). ,,One Model To Learn Them All“. In: arXiv:1706.05137.
URL: http://arxiv.org/abs/1706.05137.

Karpathy, Andrej (May 21, 2015). The Unreasonable Effectiveness of Recurrent Neural
Networks. URL: http://karpathy.github.io/20156/05/21/rnn-effectiveness
(visited on 10/22/2019).

Kendall, Alex, Yarin Gal, and Roberto Cipolla (2018). ,Multi-task Learning Using
Uncertainty to Weigh Losses for Scene Geometry and Semantics“. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7482-7491. pDoOI: 10.
1109/CVPR.2018.00781.

Kim, Joo-Kyung, Young-Bum Kim, Ruhi Sarikaya, and Eric Fosler-Lussier (2017). , Cross-
Lingual Transfer Learning for POS Tagging without Cross-Lingual Resources”. In: Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.
Copenhagen, Denmark: Association for Computational Linguistics, pp. 2832-2838. DOI:
10.18653/v1/D17-1302. URL: https://www.aclweb.org/anthology/D17-1302.

Kim, Young-Bum, Karl Stratos, Ruhi Sarikaya, and Minwoo Jeong (2015). ,New Transfer
Learning Techniques for Disparate Label Sets“. In: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers). Beijing,
China: Association for Computational Linguistics, pp. 473-482. por: 10.3115/v1/P15-
1046. URL: http://aclweb.org/anthology/P15-1046.

Kiperwasser, Eliyahu and Yoav Goldberg (2016). ,Simple and accurate dependency
parsing using bidirectional LSTM feature representations®. In: Transactions of the
Association for Computational Linguistics 4, pp. 313-327.

http://dl.acm.org/citation.cfm?id=3014904.3014983
http://dl.acm.org/citation.cfm?id=3014904.3014983
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167
https://www.aclweb.org/anthology/E17-2068
http://arxiv.org/abs/1706.05137
http://karpathy.github.io/2015/05/21/rnn-effectiveness
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.18653/v1/D17-1302
https://www.aclweb.org/anthology/D17-1302
https://doi.org/10.3115/v1/P15-1046
https://doi.org/10.3115/v1/P15-1046
http://aclweb.org/anthology/P15-1046

Bibliography 103

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). ,Imagenet classification
with deep convolutional neural networks®. In: Advances in neural information processing
systems. Lake Tahoe, Nevada, USA, pp. 1097-1105.

Kvalseth, T. O. (1987). ,Entropy and Correlation: Some Comments®. In: IEEE Trans-
actions on Systems, Man, and Cybernetics 17.3, pp. 517-519. 1sSN: 0018-9472. DOT:
10.1109/TSMC. 1987.4309069.

Lafferty, John D., Andrew McCallum, and Fernando C. N. Pereira (2001). ,,Conditional
Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data“. In:
Proceedings of the Fighteenth International Conference on Machine Learning. ICML
’01. San Francisco, California, USA: Morgan Kaufmann Publishers Inc., pp. 282-289.
ISBN: 1-55860-778-1. URL: http://dl.acm.org/citation.cfm?id=645530.655813.

Lample, Guillaume, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer (2016). ,Neural Architectures for Named Entity Recognition®. In:
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. San Diego, California:
Association for Computational Linguistics, pp. 260—270. DOI: 10.18653/v1/N16-1030.
URL: https://www.aclweb.org/anthology/N16-1030.

Laurent, César, Gabriel Pereyra, Philémon Brakel, Ying Zhang, and Yoshua Bengio
(2016). ,,Batch normalized recurrent neural networks®. In: 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China,
pp. 2657-2661. DOI: 10.1109/ICASSP.2016.7472159.

Le Gall, Frangois (2014). ,,Powers of Tensors and Fast Matrix Multiplication®. In: Pro-
ceedings of the 39th International Symposium on Symbolic and Algebraic Computation.
ISSAC ’14. Kobe, Japan: ACM, pp. 296-303. 1SBN: 978-1-4503-2501-1. DOT1: 10.1145/
2608628.2608664. URL: http://doi.acm.org/10.1145/2608628.2608664.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). ,Deep learning®. In: Nature
521, pp. 436-444. DOI: 10.1038/nature14539.

Li, Mu, Tong Zhang, Yuqgiang Chen, and Alexander J. Smola (2014). , Efficient Mini-batch
Training for Stochastic Optimization®“. In: Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’14. New
York, New York, USA: ACM, pp. 661-670. 1SBN: 978-1-4503-2956-9. DOI: 10.1145/
2623330.2623612. URL: http://doi.acm.org/10.1145/2623330.2623612.

Li, Wen, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin
(2019). ,Approximate nearest neighbor search on high dimensional data-experiments,
analyses, and improvement®. In: IEEE Transactions on Knowledge and Data Engi-
neering (Early Access), pp. 1-1. DOI: 10.1109/TKDE.2019.2909204.

Li, Xiangang and Xihong Wu (2015). , Constructing long short-term memory based deep
recurrent neural networks for large vocabulary speech recognition“. In: 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
Brisbane, Australia, pp. 4520-4524.

Liu, Liyuan, Jingbo Shang, Frank F. Xu, Xiang Ren, Huan Gui, Jian Peng, and Jiawei
Han (2018). ,Empower Sequence Labeling with Task-Aware Neural Language Model“.
In: AAAI Conference on Artificial Intelligence. New Orleans, Louisiana USA.

https://doi.org/10.1109/TSMC.1987.4309069
http://dl.acm.org/citation.cfm?id=645530.655813
https://doi.org/10.18653/v1/N16-1030
https://www.aclweb.org/anthology/N16-1030
https://doi.org/10.1109/ICASSP.2016.7472159
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664
http://doi.acm.org/10.1145/2608628.2608664
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/2623330.2623612
https://doi.org/10.1145/2623330.2623612
http://doi.acm.org/10.1145/2623330.2623612
https://doi.org/10.1109/TKDE.2019.2909204

104 Bibliography

Liu, Zhenqiu, Zhongmin Guo, and Ming Tan (2008). ,Constructing Tumor Progression
Pathways and Biomarker Discovery with Fuzzy Kernel Kmeans and DNA Methylation
Data“. In: Cancer informatics 6, pp. 1-7. DOI: 10.1177/117693510800600007.

Long, Mingsheng, Zhangjie Cao, Jianmin Wang, and Philip S. Yu (2017). , Learning
Multiple Tasks with Multilinear Relationship Networks®. In: Advances in Neural
Information Processing Systems 30. Ed. by I. Guyon, U. von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc.,
pp. 1593-1602. URL: http://papers.nips.cc/paper/6757-1learning-multiple-
tasks-with-multilinear-relationship-networks.pdf.

Lu, Yongxi, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogério
Schmidt Feris (2016). , Fully-Adaptive Feature Sharing in Multi-Task Networks with
Applications in Person Attribute Classification“. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1131-1140.

Ma, Xuezhe and Eduard Hovy (2016). ,,End-to-end Sequence Labeling via Bi-directional
LSTM-CNNs-CRF“. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association
for Computational Linguistics, pp. 1064-1074. po1: 10.18653/v1/P16-1101. URL:
https://www.aclweb.org/anthology/P16-1101.

Malkov, Y. A. and D. A. Yashunin (2018). ,Efficient and robust approximate near-
est neighbor search using Hierarchical Navigable Small World graphs®. In: IEEFE
Transactions on Pattern Analysis and Machine Intelligence. 1SSN: 0162-8828. DOT:
10.1109/TPAMI.2018.2889473.

Manning, Christopher D. and Hinrich Schiitze (1999). Foundations of Statistical Natural
Language Processing. Cambridge, Massachusetts, USA: MIT Press. 1SBN: 0-262-13360-1.

Marcus, Mitchell P., Beatrice Santorini, Mary Ann Marcinkiewicz, and Ann Taylor (1999).
Penn Treebank 3. Philadelphia. URL: https://catalog.ldc.upenn.edu/LDCI9T42.

Martinez Alonso, Héctor and Barbara Plank (2017). ,,When is multitask learning effective?
Semantic sequence prediction under varying data conditions“. In: Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics:
Volume 1, Long Papers. Valencia, Spain: Association for Computational Linguistics,
pp. 44-53. URL: https://www.aclweb.org/anthology/E17-1005.

Masters, Dominic and Carlo Luschi (2018). , Revisiting small batch training for deep
neural networks®. In: arXiv:1804.07612.

Maurer, Andreas, Massimiliano Pontil, and Bernardino Romera-Paredes (2016). ,, The
Benefit of Multitask Representation Learning“. In: Journal of Machine Learning
Research (JMLR) 17.1, pp. 2853-2884. 1SSN: 1532-4435. URL: http://dl.acm.org/
citation.cfm?id=2946645.3007034.

McCallum, Andrew, Dayne Freitag, and Fernando C. N. Pereira (2000). ,Maximum
Entropy Markov Models for Information Extraction and Segmentation®. In: Proceedings
of the Seventeenth International Conference on Machine Learning. ICML ’00. San
Francisco, California, USA: Morgan Kaufmann Publishers Inc., pp. 591-598. ISBN:
1-55860-707-2.

McDonald, Ryan, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan
Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Téackstrom, Claudia

https://doi.org/10.1177/117693510800600007
http://papers.nips.cc/paper/6757-learning-multiple-tasks-with-multilinear-relationship-networks.pdf
http://papers.nips.cc/paper/6757-learning-multiple-tasks-with-multilinear-relationship-networks.pdf
https://doi.org/10.18653/v1/P16-1101
https://www.aclweb.org/anthology/P16-1101
https://doi.org/10.1109/TPAMI.2018.2889473
https://catalog.ldc.upenn.edu/LDC99T42
https://www.aclweb.org/anthology/E17-1005
http://dl.acm.org/citation.cfm?id=2946645.3007034
http://dl.acm.org/citation.cfm?id=2946645.3007034

Bibliography 105

Bedini, Niria Bertomeu Castell6, and Jungmee Lee (2013). ,,Universal Dependency
Annotation for Multilingual Parsing®“. In: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). Sofia, Bulgaria:
Association for Computational Linguistics, pp. 92-97. URL: https://www.aclweb.
org/anthology/P13-2017.

Meila, Marina (2003). ,,Comparing Clusterings by the Variation of Information“. In:
Learning Theory and Kernel Machines. Ed. by Bernhard Scholkopf and Manfred K.
Warmuth. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 173-187. ISBN: 978-3-
540-45167-9.

— (2005). ,Comparing Clusterings: An Axiomatic View“. In: Proceedings of the 22Nd
International Conference on Machine Learning. ICML '05. Bonn, Germany: ACM,
pp- H77-584. 1SBN: 1-59593-180-5. DOI: 10.1145/1102351 . 1102424. URL: http:
//doi.acm.org/10.1145/1102351.1102424.

— (2007). ,,Comparing clusterings—an information based distance“. In: Journal of Mul-
tivariate Analysis 98.5, pp. 873-895. 1SSN: 0047-259X. DOIL: https://doi.org/10.
1016/j . jmva.2006.11.013.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013a). , Efficient Estimation
of Word Representations in Vector Space®. In: 1st International Conference on Learning
Representations (ICLR), Workshop Track Proceedings. Scottsdale, Arizona, USA. URL:
http://arxiv.org/abs/1301.3781.

Mikolov, Tomas, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand
Joulin (2018). ,Advances in Pre-Training Distributed Word Representations®. In:
Proceedings of the Eleventh International Conference on Language Resources and
FEvaluation (LREC 2018). Miyazaki, Japan: European Language Resources Association
(ELRA). URL: https://www.aclweb.org/anthology/L18-1008.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean (2013b).
,Distributed Representations of Words and Phrases and Their Compositionality®. In:
Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2. NIPS’13. Lake Tahoe, Nevada: Curran Associates Inc., pp. 3111-
3119.

Minsky, Marvin (1987). Perceptrons: An Introduction to Computational Geometry, Ez-
panded Edition. The MIT Press. 1SBN: 0262631113. URL: https://www.xarg.org/
ref/a/0262631113/.

Misra, Ishan, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert (2016). ,,Cross-
Stitch Networks for Multi-task Learning”. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3994-4003.

Nickolls, John, Ian Buck, Michael Garland, and Kevin Skadron (2008). ,Scalable Parallel
Programming with CUDA“. In: Queue 6.2, pp. 40-53. 1SSN: 1542-7730. DOI: 10.1145/
1365490.1365500. URL: http://doi.acm.org/10.1145/1365490.1365500.

NVIDIA Corporation (2007). NVIDIA cuBLAS library. URL: https ://developer .
nvidia.com/cublas (visited on 08/30/2019).

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2013). ,,On the Difficulty of Train-
ing Recurrent Neural Networks®. In: Proceedings of the 30th International Conference

https://www.aclweb.org/anthology/P13-2017
https://www.aclweb.org/anthology/P13-2017
https://doi.org/10.1145/1102351.1102424
http://doi.acm.org/10.1145/1102351.1102424
http://doi.acm.org/10.1145/1102351.1102424
https://doi.org/https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/https://doi.org/10.1016/j.jmva.2006.11.013
http://arxiv.org/abs/1301.3781
https://www.aclweb.org/anthology/L18-1008
https://www.xarg.org/ref/a/0262631113/
https://www.xarg.org/ref/a/0262631113/
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas

106 Bibliography

on International Conference on Machine Learning. Vol. 28. ICML’13. Atlanta, Georgia,
USA: JMLR.org, pp. IT1I-1310-111-1318.

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer (2017). ,,Au-
tomatic Differentiation in PyTorch“. In: 31st Conference on Neural Information
Processing Systems (NIPS 2017), Autodiff Workshop: The future of gradient-based
machine learning software and techniques. Long Beach, California, USA, pp. 1-4.

Pennington, Jeffrey, Richard Socher, and Christopher Manning (2014). ,,Glove: Global
Vectors for Word Representation®. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, pp. 1532-1543. DOI: 10.3115/v1/D14-1162. URL: https:
//www.aclweb.org/anthology/D14-1162.

Peters, Matthew, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer (2018). ,Deep Contextualized Word Representations®. In:
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers).
New Orleans, Louisiana: Association for Computational Linguistics, pp. 2227-2237. DOI:
10.18653/v1/N18-1202. URL: https://www.aclweb.org/anthology/N18-1202.

Plank, Barbara, Anders Sggaard, and Yoav Goldberg (2016). ,Multilingual Part-of-
Speech Tagging with Bidirectional Long Short-Term Memory Models and Auxiliary
Loss“. In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Berlin, Germany: Association for Computational
Linguistics, pp. 412-418. por: 10.18653/v1/P16-2067. URL: https://www.aclweb.
org/anthology/P16-2067.

Rabiner, Lawrence R. (1989). ,A tutorial on hidden Markov models and selected appli-
cations in speech recognition®“. In: Proceedings of the IEEE 77.2, pp. 257-286. 1SSN:
0018-9219. por: 10.1109/5.18626.

Reimers, Nils and Iryna Gurevych (2017). ,,Optimal Hyperparameters for Deep LSTM-
Networks for Sequence Labeling Tasks“. In: arXiw:1707.06799. URL: https://arxiv.
org/abs/1707.06799.

Remus, Steffen and Chris Biemann (2013). ,Three Knowledge-Free Methods for Au-
tomatic Lexical Chain Extraction“. In: Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Atlanta, Georgia, USA: Association for Computational Lin-
guistics, pp. 989-999. URL: https://www. inf .uni-hamburg.de/en/inst/ab/1t/
publications/2013-remusetal-naacl.pdf.

Rosenblatt, Frank (1957). The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory.

Rosenfeld, Ronald (2000). ,, Two decades of statistical language modeling: Where do we
go from here?* In: Proceedings of the IEEFE 88.8, pp. 1270-1278.

Ruder, Sebastian (2017). ,,An Overview of Multi-Task Learning in Deep Neural Networks®.
In: arXiv:1706.05098. URL: http://arxiv.org/abs/1706.05098.

Ruder, Sebastian, Joachim Bingel, Isabelle Augenstein, and Anders Sggaard (2019). | La-
tent Multi-task Architecture Learning®. In: Proceedings of the Thirty-Third Conference

https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://doi.org/10.18653/v1/P16-2067
https://www.aclweb.org/anthology/P16-2067
https://www.aclweb.org/anthology/P16-2067
https://doi.org/10.1109/5.18626
https://arxiv.org/abs/1707.06799
https://arxiv.org/abs/1707.06799
https://www.inf.uni-hamburg.de/en/inst/ab/lt/publications/2013-remusetal-naacl.pdf
https://www.inf.uni-hamburg.de/en/inst/ab/lt/publications/2013-remusetal-naacl.pdf
http://arxiv.org/abs/1706.05098

Bibliography 107

on Artificial Intelligence (AAAI-2019). Honolulu, Hawaii, USA: Association for the
Advancement of Artificial Intelligence, pp. 4822-4829. DOI: https://doi.org/10.
1609/aaai.v33101.33014822.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). ,Learning
representations by back-propagating errors®. In: Nature 323, pp. 533-536. DOI: 10.
1038/323533a0.

Salinas Alvarado, Julio Cesar, Karin Verspoor, and Timothy Baldwin (2015). ,,Domain
Adaption of Named Entity Recognition to Support Credit Risk Assessment®. In:
Proceedings of the Australasian Language Technology Association Workshop 2015.
Parramatta, Australia, pp. 84-90.

Schmidhuber, Jirgen (2015). ,,Deep learning in neural networks: An overview*. In: Neural
networks 61, pp. 85-117.

Schulz, Claudia, Steffen Eger, Johannes Daxenberger, Tobias Kahse, and Iryna Gurevych
(2018). ,Multi-Task Learning for Argumentation Mining in Low-Resource Settings“. In:
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Pa-
pers). New Orleans, Louisiana: Association for Computational Linguistics, pp. 35-41.
DOI: 10.18653/v1/N18-2006. URL: http://aclweb.org/anthology/N18-2006.

Silveira, Natalia, Timothy Dozat, Marie-Catherine de Marneffe, Samuel Bowman, Miriam
Connor, John Bauer, and Chris Manning (2014). ,A Gold Standard Dependency
Corpus for English“. In: Proceedings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14). Reykjavik, Iceland: European Language
Resources Association (ELRA), pp. 2897-2904. URL: http://www.lrec-conf.org/
proceedings/lrec2014/pdf/1089_Paper.pdf.

Sogaard, Anders and Yoav Goldberg (2016). ,Deep multi-task learning with low level
tasks supervised at lower layers“. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). Berlin, Germany:
Association for Computational Linguistics, pp. 231-235. DOI: 10.18653/v1/P16-2038.
URL: http://aclweb.org/anthology/P16-2038.

Srivastava, Nitish, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov (2014). ,Dropout: a simple way to prevent neural networks from
overfitting®. In: Journal of Machine Learning Research (JMLR) 15.1, pp. 1929-1958.

Stone, Mervyn (1974). , Cross-validatory choice and assessment of statistical predictions®.
In: Journal of the Royal Statistical Society: Series B (Methodological) 36.2, pp. 111-133.

Strassen, Volker (1969). ,Gaussian Elimination is Not Optimal®. In: Numerische Math-
ematik 13.4, pp. 354-356. 1SSN: 0029-599X. DOI: 10.1007/BF02165411. URL: http:
//dx.doi.org/10.1007/BF02165411.

Strehl, Alexander and Joydeep Ghosh (2003). ,,Cluster Ensembles — a Knowledge Reuse
Framework for Combining Multiple Partitions®. In: Journal of Machine Learning
Research (JMLR) 3, pp. 583-617. 1SSN: 1532-4435. DOI: 10.1162/153244303321897735.
URL: https://doi.org/10.1162/153244303321897735.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). ,,Sequence to Sequence Learning
with Neural Networks®“. In: Proceedings of the 27th International Conference on Neural

https://doi.org/https://doi.org/10.1609/aaai.v33i01.33014822
https://doi.org/https://doi.org/10.1609/aaai.v33i01.33014822
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.18653/v1/N18-2006
http://aclweb.org/anthology/N18-2006
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1089_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1089_Paper.pdf
https://doi.org/10.18653/v1/P16-2038
http://aclweb.org/anthology/P16-2038
https://doi.org/10.1007/BF02165411
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1007/BF02165411
https://doi.org/10.1162/153244303321897735
https://doi.org/10.1162/153244303321897735

108 Bibliography

Information Processing Systems - Volume 2. NIPS’14. Montreal, Canada: MIT Press,
pp. 3104-3112.

Sutton, Charles and Andrew McCallum (2012). ,An Introduction to Conditional Random
Fields®“. In: Foundations and Trends in Machine Learning 4.4, pp. 267-373. 1SSN: 1935-
8237. Dor: 10.1561/2200000013. URL: http://dx.doi.org/10.1561/2200000013.

Tjong Kim Sang, Erik F. and Fien De Meulder (2003). , Introduction to the CoNLL-2003
Shared Task: Language-independent Named Entity Recognition®“. In: Proceedings of the
Seventh Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4.
CONLL ’03. Edmonton, Canada: Association for Computational Linguistics, pp. 142—
147. po1: 10.3115/1119176.1119195. URL: https://doi.org/10.3115/1119176.
1119195.

Van Zee, Field G. and Robert A. van de Geijn (2015). ,BLIS: A Framework for Rapidly
Instantiating BLAS Functionality“. In: ACM Transactions on Mathematical Software
41.3, 14:1-14:33. URL: http://doi.acm.org/10.1145/2764454.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin (2017). , Attention is all you need“. In:
Advances in neural information processing systems. Long Beach, California, USA,
pp- 5998-6008.

Vinh, Nguyen Xuan, Julien Epps, and James Bailey (2010). , Information Theoretic Mea-
sures for Clusterings Comparison: Variants, Properties, Normalization and Correction
for Chance®. In: Journal of Machine Learning Research (JMLR) 11, pp. 2837—2854.
ISSN: 1532-4435. URL: http://dl.acm.org/citation.cfm?id=1756006.1953024.

Weber, Roger, Hans-Jorg Schek, and Stephen Blott (1998). A Quantitative Analysis
and Performance Study for Similarity-Search Methods in High-Dimensional Spaces*.
In: Proceedings of the 24rd International Conference on Very Large Data Bases. VLDB
’98. San Francisco, California, USA: Morgan Kaufmann Publishers Inc., pp. 194-205.
ISBN: 1-55860-566-5. URL: http://dl.acm.org/citation.cfm?id=645924.671192.

Weischedel, Ralph, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan,
Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mo-
hammed El-Bachouti, Robert Belvin, and Ann Houston (2013). OntoNotes Release
5.0 LDC2015T19. Ed. by Linguistic Data Consortium. URL: https://catalog.1ldc.
upenn.edu/LDC2013T19.

Whaley, R. Clint and Jack J. Dongarra (1998). ,,Automatically tuned linear algebra soft-
ware“. In: SC’98: Proceedings of the 1998 ACM/IEEE conference on Supercomputing.
IEEE. Orlando, Florida, USA, pp. 38-38.

Williams, Virginia Vassilevska (2012). ,Multiplying Matrices Faster Than Coppersmith-
winograd®. In: Proceedings of the Forty-fourth Annual ACM Symposium on Theory of
Computing. STOC '12. New York, New York, USA: ACM, pp. 887-898. 1SBN: 978-1-
4503-1245-5. DOIL: 10.1145/2213977.2214056. URL: http://doi.acm.org/10.1145/
2213977 .2214056.

Xianyi, Zhang, Wang Qian, and Zhang Yunquan (2012). ,Model-driven Level 3 BLAS
Performance Optimization on Loongson 3A Processor®. In: Proceedings of the 2012
IEEFE 18th International Conference on Parallel and Distributed Systems. ICPADS *12.
Washington, DC, USA: IEEE Computer Society, pp. 684—691. 1SBN: 978-0-7695-4903-3.

https://doi.org/10.1561/2200000013
http://dx.doi.org/10.1561/2200000013
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
http://doi.acm.org/10.1145/2764454
http://dl.acm.org/citation.cfm?id=1756006.1953024
http://dl.acm.org/citation.cfm?id=645924.671192
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
https://doi.org/10.1145/2213977.2214056
http://doi.acm.org/10.1145/2213977.2214056
http://doi.acm.org/10.1145/2213977.2214056

Bibliography 109

DOI: 10.1109/ICPADS.2012.97. URL: http://dx.doi.org/10.1109/ICPADS.2012.
97.

Xiao, Han (2018). bert-as-service. https://github.com/hanxiao/bert-as-service.

Xing, Eric (Oct. 29, 2007). Probabilistic Graphical Models. Hidden Markov Model and
Conditional Random Fields. Carnegie Mellon School of Computer Science. URL: http:
//www.cs.cmu.edu/~epxing/Class/10708-07/Slides/lecturel12-CRF-HMM. pdf
(visited on 10/21/2019).

Yang, Jie, Shuailong Liang, and Yue Zhang (2018). ,Design Challenges and Misconcep-
tions in Neural Sequence Labeling“. In: Proceedings of the 27th International Conference
on Computational Linguistics. Santa Fe, New Mexico, USA: Association for Computa-
tional Linguistics, pp. 3879-3889. URL: https://www.aclweb.org/anthology/C18-
1327.

Yang, Zhilin, Ruslan Salakhutdinov, and William W. Cohen (2017). ,Transfer Learning
for Sequence Tagging with Hierarchical Recurrent Networks®. In: 5th International
Conference on Learning Representations, ICLR 2017, Conference Track Proceedings.
Toulon, France. URL: https://openreview.net/forum?id=ByxpMd9olx.

Yao, Yiyu (2003). ,Information-Theoretic Measures for Knowledge Discovery and Data
Mining“. In: Entropy Measures, Mazimum Entropy Principle and Emerging Appli-
cations. Ed. by Karmeshu. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 115—
136. 1SBN: 978-3-540-36212-8. DOI: 10.1007/978-3-540-36212-8_6. URL: https:
//doi.org/10.1007/978-3-540-36212-8_6.

Zipf, George (1935). The Psychobiology of Language. Oxford, England: Houghton-Mifflin.

https://doi.org/10.1109/ICPADS.2012.97
http://dx.doi.org/10.1109/ICPADS.2012.97
http://dx.doi.org/10.1109/ICPADS.2012.97
https://github.com/hanxiao/bert-as-service
http://www.cs.cmu.edu/~epxing/Class/10708-07/Slides/lecture12-CRF-HMM.pdf
http://www.cs.cmu.edu/~epxing/Class/10708-07/Slides/lecture12-CRF-HMM.pdf
https://www.aclweb.org/anthology/C18-1327
https://www.aclweb.org/anthology/C18-1327
https://openreview.net/forum?id=ByxpMd9lx
https://doi.org/10.1007/978-3-540-36212-8_6
https://doi.org/10.1007/978-3-540-36212-8_6
https://doi.org/10.1007/978-3-540-36212-8_6

A Appendices

A.1 Neural MTL system implementation details

This neural network implementation is designed for multi-task learning on sequence
tagging problems. It is implemented in Python on top of the PyTorch! (currently
stable version 1.3) and optimized for training speed to perform large numbers of ex-
periments. There are separate functionalities for data loading, configuration, training,
hyperparameter search apart from the actual neural network model.

Usage

Run python main.py -h to print the commandline help. An example configuration file
and some dummy data can be found in the example folder. To run the example configu-
ration on the dummy data, use python main.py -c example/example_config.yaml.
This will perform training with hyperparameter search via validation on the development
set and finally evaluate the best model on the test set.

Model architecture

The model follows the common sequence tagging network architecture with a multi-
layered, bidirectional Recurrent Neural Network (RNN) as its core. Instead of the classic
LSTM, a Gated Recurrent Unit (GRU) is used in the implementation due to its faster
run time speed. The input for the GRU comes from a concetenation of word embeddings
and character features, which are learned by another bidirectional GRU. The hidden
state of the word-level GRU is transformed via a linear layer to the label space. To
obtain label probabilities as the last layer either a Softmax or a Conditional Random

Field (CRF) can be used.

Multi-task learning

Multiple datasets with possibly different tag sets can be used as auxiliary data. In
order to enable this, each dataset has its own linear transform layer and optionally CRF
depending on the configuration. All other parameters in the network are shared between
the various datasets. During the training process, each batch contains only data from
one dataset, which make the computation efficient as the data must not be split at the

'https://pytorch.org

111

https://pytorch.org

112 A Appendices

last layers. Batches from different datasets are processed interleaved, so that every each
dataset is fully used.

Implementation overview

The separate functionalities are organized in the following files:

Data loading data.py features a class Data that reads input data separated by tabs
and newlines. It creates index tensors for to build character and word embeddings via
two simple dictionaries. It supports multiple tag sets and differentiates between training
and development / test data. To add support for another input file format, you would
have to change the __iter file function or overwrite it in a sub class.

Configuration config.py contains a single class Config to parse commandline argu-
ments and configuration files in YAML or JSON format. Commandline arguments overwrite
the settings from the chosen configuration file to quickly try changes and enable easy
automation. Configurable are general settings (logging, threads, configuration file, multi-
task learning yes/no, random seed etc.), input files (training, development, test, model
storage path, etc.) and typical hyperparameters.

Utilities util.py is the home of some utility functions such as the different strategies
to combine batches of training and auxiliary data. These are implemented with efficient
Python generators and iterators.

Trainer trainer.py has a single class Trainer that instantiates the model, makes the
batch of tensors and runs the training loop. It further contains functions for prediction,
scoring, validation, test, check-pointing and early stopping.

Hyperparameter hyperparameter.py features a single class HyperParameter that
performs grid search across all combination of hyperparameters. The values to be tried
are read from a separate configuration file.

Model model.py features reusable neural network building blocks. Every operation is
fully batched and tuned for run time performance to enable fast training on a GPU. On
the top-level, there is the class SequenceTagger that combines the other blocks into a
functional neural sequence tagger. It uses the default PyTorch embedding module to learn
word embeddings. The WordRNN contains the primary multi-layered bidirectional GRU.
Dropout is applied between the layers and on the final output. Packed processing is used
for efficiency. The CharRNN uses self-learning character embeddings to convert the index
tensors to a dense representation. A single-layer bidirectional GRU extracts character
features from the embeddings. Dropout is used for regularization. The operations
are performed in a packed manner to increase efficiency. The CRF module features a

A.2 Dataset similarity tool implementation details 113

linear-chain CRF implementation. It automatically chooses between the computation of
Viterbi loss for training and Viterbi decoding for prediction.

Main main.py contains the logic to run the Trainer class once or multiple times (when
performing hyperparameter search). If an existing model is found at the configured
location, training is skipped to directly perform a validation on the test set.

External libraries

Only three external libraries are used apart from Python’s standard library:
e NumPy https://numpy.org
o PyTorch https://pytorch.org
« PyYAML https://pyyaml.org

A.2 Dataset similarity tool implementation details

This program computes the similarity of two annotated sequence tagging datasets based
on the contained words and their labels. The designated use case is to ease and speed up
the tedious process of selecting suitable auxiliary training data for neural networks using
multi-task learning to augment the primary training with auxiliary data. Knowing the
similarity between the training dataset and different auxiliary datasets quickly allows
selecting the most similar dataset, which should also provide the most improvement of
the neural network’s performance on the main task.

The program computes multiple similarity measures at once. There are no restrictions
on the tagsets used in the datasets. Arbitrary sequence tagging task / datasets can be
compared. As of now, the similarity computation is only working well for tasks where
each token is tagged individually, e.g. part-of-speech (POS) tagging, or the grouped
tokens are short, e.g. named entity recognition (NER).

Installation

Portable, stand-alone binary builds are available for download on the GitHub release
page. Extract the archive and copy the seq-tag-sim file into a directory on your PATH.
Alternatively, call the program via its absolute or relative path.

Usage

Run seq-tag-sim -h to print the commandline help. The general usage is straightfor-
ward. Run seq-tag-sim path/to/datasetl path/to/dataset2 to compare dataset 1
with dataset 2 and compute various similarity measures, which are written to the standard
output stream. In case the automatic data format selection (based on file types) fails,

https://numpy.org
https://pytorch.org
https://pyyaml.org

114 A Appendices

use the —f option once or twice to manually select the input format. If your datasets are
split across multiple files, use shell glob operations to select the files. It is now necessary
to distinguish both datasets by placing an -- in between the to datasets. The exam-
ple seq-tag-sim -f bncP0S -f ptbPOS datasetl/*.xml -- dataset2/*.pos shows
how to compare multiple XML files from the British National Corpus with some files in
the Penn Treebank POS tagging format. Windows users can use the ——pattern option
to select files with glob-like selectors.

Advanced installation and usage

Optional, advanced features are to use word embeddings to improve the quality of the
similarity calculation. To use advanced features, additional software and data may be
required. Depending on the type of embedding to be used

« download a fastText (Joulin et al., 2017) model from https://fasttext.cc

o install AllenNLP (https://github.com/allenai/allennlp) in your active Python
environment to use contextual ELMo (Peters et al., 2018) embeddings

« install bert-as-a-service (Xiao, 2018) from https://github.com/hanxiao/bert-
as-service in your active Python environment, download a suitable model from
https://github.com/google-research/bert and start the service to use contex-
tual BERT (Devlin et al., 2019) embeddings.

To use non-contextual word embeddings, i.e. fastText, supply the —e path/to/emb.bin
option when running the program. As the fastText library takes some time to load the
model, this may add considerable run time overhead when comparing small datasets.
The preferred option, is to use BERT embeddings. To do so, run seq-tag-sim -c bert.
If the bert-as-a-serice server is not running on the same computer, use the —e option to
set the embedding server’s network address.

Functioning principle

The overlapping vocabulary between the two datasets builds the bridge to compare
the corresponding labels of these words. Without contextual embeddings, the general
workflow is the following:

1. Read a dataset and count for each unique word, how often it is tagged with each
label

2. Match and compare words of both datasets

a) If a word from the fist dataset is not contained in the second dataset and fast-
Text embeddings are used, the most similar word in second dataset according
to the word vectors’ cosine similarity is chosen.

https://fasttext.cc
https://github.com/allenai/allennlp
https://github.com/hanxiao/bert-as-service
https://github.com/hanxiao/bert-as-service
https://github.com/google-research/bert

A.2 Dataset similarity tool implementation details 115

b) The counts how often a word has a certain label are combined from both
datasets by increasing the counts at the label-pair’s position in a global
contingency table. In total, there are eight slightly different methods to
combine the label counts.

3. Once all words are processed, the contingency table with the label counts acts as a
probabilistic mapping between both tagsets. For example, the counts for the tag
NOUN from dataset 1 may correspond to 85% to NN from dataset 2. The remaining
15% could be distributed in roughly equal parts over other labels from dataset
2. Based on this label count contingency table, multiple information theoretic
measures are calculated.

The information theoretic measures include e.g. entropy, cross-entropy, mutual informa-
tion, variation of information and multiple variants of normalized mutual information.
They represent the similarity of the two input datasets. When contextual embeddings
(BERT or ELMo) are active, individual tokens are matched and their the counts at their
labels’ position is increased. The matching of tokens works by computing all most similar
vector pairs.

Implementation overview

The source code is structured into the main application and independently usable
subpackages. The main functionality is in the source folder with app.d defining the
entry point. In subfolders are the implementations of the vocabulary overlap approach
(word.d), the token-based approach using contextual embeddings (token.d) and the
information theoretic measures (measures.d).

The top-level folder subpackages contains various additional functionalities. Of these
subpackages, only reader and util are essential. File readers for various common
sequence tagging file formats can be found in the reader subpackage. As its name
suggests, the util subpackage contains utility functions and structures. The remaining
subpackages are all related to the option word embeddings.

The blas subpackage contains an efficient functionality to compute the most similar
vector pairs between two huge arrays of vectors. It uses a batched matrix multiplication
implementation, which can efficiently multiply matrices that do not fit into memory.
Along with the computation of these batches, the maximal similar vectors are found.
An API-wise identical implementation for CUDA exists in the cuda subpackage. It
can automatically divide the computation up across multiple GPUs, which decreases
the run time for large datasets of 200 000 tokens or more. The embedding subpackage
contains structures and functions to use the three different embeddings libraries resp.
services with a uniform API. The fasttext subpackage is home to the external fastText
source code and some custom wrapper code to make the usage as a library instead of
commandline program possible.

116 A Appendices

Building from source

Builder the program from source should be possible on any most current POSIX-like
systems (e.g. Linux, FreeBSD, MacOS) and Windows. To build the software from
source, first clone this repository. A recent D language (https://dlang.org) compiler
needs to be installed, e.g. DMD (https://dlang.org/download.html#dmd) (version
2.086.1 or higher) or LDC (https://github.com/ldc-developers/ldc#installation)
(tested with version 1.16.0 and higher). If the D compiler installation does not include
DUB (https://dub.pm/getting_started) (the D package manager), downloading and
installing DUB separately is necessary. Further, the system’s default compiler C/C++
compiler (e.g. gcc or clang) and linker has to be installed. Building the basic version of
the program without support for word embeddings is straightforward: Run dub build
-b release to produce the seq-tag-sim binary.

To build with all word embeddings, additional steps are required. Run git submodule
update -init -recursive to get the referenced fastText library sources. In addition,
Python and the development version of the ZeroMQ (https://zeromq.org) library
1ibzmq needs to be installed on the build system. Next, run dub build -c embedding
-b release to the produce the runnable binary. Note that the use of contextual embed-
dings greatly increases the run time as a naive approach of word vector comparison is
used. To mitigate this problem, additional libraries are required.

If the system has a CUDA-capable GPU, it can be leveraged to speed up the similarity
computation process by an order of magnitude. This requires the NVIDAI CUDA Toolkit
(in version 10.1, available at https://developer.nvidia.com/cuda-toolkit) to be
installed and configured correctly. Run dub build -c cuda -b release to build an
optimized version using CUDA for word vector operation acceleration. If CUDA cannot
be used, installation of the Intel Math Kernel Library (MKL) is recommended, which
can be found at https://software.intel.com/en-us/mkl. After sourcing the environ-
ment variables with e.g. source ~/intel/bin/compilervars.sh intel64, compiling
the software with MKL can be done with dub build -c blas -b release.

A.3 Preliminary dataset similarity evaluation results

This section includes additional heatmaps showing the datasets’ self similarity for all
label count combination methods tested in Section 7.1.2.

https://dlang.org
https://dlang.org/download.html#dmd
https://github.com/ldc-developers/ldc#installation
https://dub.pm/getting_started
https://zeromq.org
https://developer.nvidia.com/cuda-toolkit
https://software.intel.com/en-us/mkl

A.3 Preliminary dataset similarity evaluation results

117

W, W, Wg, S e, g, n, R
Gy 5 ”"1 "2 ”’“s 0702 ’03"“1 "//e K

wsj-1 -1.00 0,67 0.73 . 5168 0.75
wsj-2 - ¥ 1.00 0,65 g . @ 0.69
wsj-3 . 1.oo@.o.es
ewt-1 . 0.63 0.67 1.00 - 0.67 0.65 0.70 0.74 m .
4 1.00 . . 0.65 0.68
7% 1.00 .Eo.as @
1.000.72 0.78

.

(a) Shared vocabulary

"y, 5" S ;e f%g%;”%g% LA 10’7// 5
wsj-1 -1.00 0.96 0.97 0.78 0.83 0.85 0.94 0.96 0.96 0.81 0.85 0.87
wsj-2 -0.94 1.00 0.97 0.79 0.83 0.85 0.94 0.96 0.97 0.81 0.85 0.87
wsj-3 -0.94 0.96 1.00 0.78 0.83 0.85 0.94 0.96 0.96 0.81 0.85 0.87
ewt-1 -0.87 0.90 0.91 1.00 0.91 0.93 0.91 0.92 0.93 0.81 0.85 0.86
ewt-2 -0.87 0.89 0.91 0.87 1.00 0.93 0.91 0.92 0.93 0.81 0.85 0.86
ewt-3 -0.87 0.90 0.91 0.87 0.91 1.00 0.91 0.92 0.93 0.81 0.85 0.86
onto-1 -0.92 0.94 0.95 0.83 0.87 0.89 1.00 0.98 0.98 0.83 0.86 0.88
onto-2 -0.92 0.94 0.95 0.83 0.87 0.89 0.96 1.00 0.98 0.83 0.86 0.88
onto-3 -0.92 0.94 0.95 0.83 0.87 0.89 0.96 0.98 1.00 0.83 0.86 0.88
conll-1 -0.80 0.82 0.83 0.72 0.76 0.78 0.81 0.83 0.83 1.00 0.90 0.92
conll-2 -0.80 0.83 0.84 0.72 0.77 0.79 0.81 0.83 0.84 0.86 1.00 0.92

conll-3-0.80 0.83 0.83 0.72 0.77 0.79 0.81 0.83 0.84 0.86 0.90 1.00

(b) Shared tokens

Figure A.1: Pairwise relative vocabulary resp. token overlap

Wy, s, gy, Oty 2ty Oy Onyy o
g 5757 e S S5 ., o, 5 0. 2, 2n S,

3

(a) tokCtx

we, W, W . 9n, o, oy, €0,
3/1 S/e S/v “’fz ”‘e ”’fs o7 %0 3% 3 3

onto-2 -{UNey (08

.
- DEUREEE

conll-3 - 0,63 0.68 0.95

(b) tokCtx with weighting by vector similarity

Figure A.2: Pairwise N M [,,,,.. scores for the token-based methods using contextual BERT

embeddings

118

A Appendices

We. Wo. We. € Q &, %% On. On, Co, Co
Y Vo LVAJ bl’l‘? "V[\\? 1‘9\1 1‘0\2 (‘0\3 . 17//9 /;//3

wsj-1-0.98 0.98 0.98 0.73 0.73 0.73
wsj-2 -0.98 0.98 0.98 0.73 0.73 0.73 0.

wsj-3-0.98 0.98 0.98 0.73 0.73 0.73 [sN¢
ewt-1-0.73 0.73 0.73 0.88 0.88 0.88

ewt-2 -0.73 0.73 0.73 0.88 0.87 0.87 [{N¢

Sy Sy Sy, Oty Oty Oty “Ony, o,
S/~1 S/~e 6‘/\\9 1‘] (“e (56 0y, Oe 0.5 / //? /7//

wsj-1-0.96 0.95 0.96 0.72 0.72 0.72

wsj-2 -0.95 0.95 0.95 0.71 0.71 0.71 39

ewt-3 072071072081081081..
o EEEREE
- BT EEEE

conll-1 -

vz TR D

MMHWWW@@IIIIII

(c) mulIlf

We. We. W, Sy, Sy, Sy, % g g Cop, 05, o,
g Vo Ty ey 5 e 5 Mo, o, 5 o 3 U, '7//9 L7

wsj-1 -0.91 0.79 0.79 [JELt @ 0.48

wsj-2 -0.79 0.90 0.79

ewt-1 E @ 0.90 0.73 0.72
ewt-2 E 0.73 0.89 0.72 (BT o1
7

HHMWIHI
091074074

. 074089074
.0 74 0.74 0.89

(b) mulIwf

conll-3 -

We. We, W, Sy, Sy, Sy, % g g o4, 05, o,
S/Q S/? Sy My S 5 o, o 5o 3y 5

wsj-1 -1.00 0.99 0. 99076073072.
wsj-2 - 099092074077070070 . .
wsj-3 -0.99 0.74 0.89 0.75 0.72 0.66
ewt-1-0.76 0.77 0.75 0.97 0.87 0.87 0.19
ewt-2 -0.73 0.70 0.72 0.87 0.97 0.88
ewt-3 -0.72 0.70 0.66 0.87 0.88 0.97 0

onto-1 — 0.950.71 0.71

onto-2 — 0.710.91 0.71 22

onto-3 - 6
mwmuumnmunnwmw

conll-2 - 062086064
e O O O O

(d) mulIwfIlf

Figure A.3: Pairwise NMI,,,, scores for the multiplicative label count combination
methods in the plain text overlap approach

A.3 Preliminary dataset similarity evaluation results

119

W, W W, S g, g, n, Co,,, o,
S " s “’1‘1 ”Vte 5 %o, , o, o, ’7/A\7 L7/

w2 WW.WWWWW-WWW

wsi3 WWWWWWWWWMWW

ewt1 - 1 -. -.

ewt-2 0.010.
-3 - 1§0.0 03]

onto-2 -
onto-3 -
conll-1 - 0.0

- IEEEOEEE OGS

(a) add

0, O,

", 5 S ;S e 3o, o, e/%* oy, 5 7 %y, 5
YRR oo oop.oclo.ocfo.oof oo oo ocp.ccfo.ocf oo o
R0 0]°-0cfo-ocfo.ocfo-oofo-oofo.oofo.oofo.ocko oofo.oofo.oq
wsi-3 WWWWWWWWWWWW

v IEEEEEEEEEE
o> 0 O O D O D O D
- EEEEEEEEEEED

01 1]

(c) addIlf

8, g, g, n, oy, o,
S/] S/e S/\;h’l“lh’{eh’l‘gto Z(Oefo /7//~1/7//\2/7//\3

wsj-2 -0.89 0.90 0.89 0.66 0.66 0.66
wsj-3 -0.89 0.89 0.90 0.66 0.66 0.66
ewt-1 -0.66 0.66 0.66 0.84 0.80 0.80

ewt-2 -0.66 0.66 0.66 0.80 0.83 0.80

onto-2 -ww 0.10J0

{ - DEEE o
oo O O O O 6 o

(b) addIwf

We, W, Ws; Suy Sy Sy, Oy g, gy on,, <, o,
G TGS Yy My S 5 0, oe 05 /LJ //2 7.5

wsj-1 -0.87 0.86 0.86 0157 0157 0157
2

wsj-3 -0.86 0.86 0.86 ﬁ.ss @ Es% @ww
ewt-1 - 057ﬁ P 6080076075.
ewt-2 -0i57 P.se @ 0.76 0.79 0.76

o

(d) addIwfIlf

Figure A.4: Pairwise NMI,,,, scores for the additive label count combination methods
in the plain text overlap approach

120 A Appendices

w oy, ng. Ong. Oy oy, o, 0, w Py O On. On. Cop, Cop, O,
Y B °°/e st e, R .3 o,y o 5 Mo 51, S 4 "7 5 5% S S o, o, 5o, 32n 0 52

wsj-1-0.98 0.98 0.98 B B
0

ewt-2 - M 0,62 0.89 0.66
- BT E

onto-2 -
ontos-J

conll-2 - 020 0.21]
conll-3 - 020020021022 .0.610.89

(b) mulIwf

C C
o e% 3 SRS

.
SEE

We, W, W, L
5/1 5793/3[1’1‘1”’(“2@[(”01

wsj-1 - 100099099070072066

pa

(c) mulIlf (d) mulTwfI1f

Figure A.5: Pairwise NMI,,,. scores for the multiplicative label count combination
methods in the text overlap approach with fastText embeddings for non-
overlapping words

A.3 Preliminary dataset similarity evaluation results 121

w, ., g, n, Co,,,, <o, S ¢, g, 9n, oy, o,
8 S/Q »3%\,%9%3% foefogﬂ/alﬁaeﬁ/ﬂ3 s/J S/Q »3%\,%9%3% foefogﬁ/ajﬁagﬁ/ﬂ3

wsj-1-0.90 0.87 0.88 0.62 0.63 0.63 [¢}

Wm@@.@@@@@.@@@ w2 -0:85 030 0.87 6183 83 63
v BRI ZRTT 00 0sc 050 063 63 06 |

ewt-1 - .M. . .. ewt-1 -0.63 0.65 0.66 0.84 0.79 0.79

ewt-2 -w
ewt-3 -w
onto-1 -
e OEEEEE
- G
conll-1 - w

ewt-2 -0.63 0.65 0.66 0.77 0.83 0.78

ewt-3 -0.61 0.63 0.63 0.77 0.78 0.82

oo g
oo o4 -t
- DG pr

51 0.64 0.81 0.69
- GICEENIEEOEE - CEEEEDEE

0.66 0.68 0.80
(a) add (b) addIwf

onto-3 -

conll-1 -{eAey]

We, W, Ws; Suy Suy Sy Oty Oty Oty On,, “on,, “on, We, W, Ws; Suy Suy Sy Oty Oty Oty On,, “on, “on,
g T Ty ey e S e 010903//1//?//3 S T Yy My S 010903// //?//

v+ T T T T T T A A A K
SR} 0 oo oo oofo ocfoocfoachooh oo oo o
WWMMMM@MMMMMMM

I

o T IIMMMMMM
Gl oo ocfoocfoochoacho-oo oo oo oo ocfoog
MMMWMMMMMMMMMMWMEEHIIEIIHNHI
oreo - A R A N A -+ W I

MMMMWM@M@NMMW l
By |0 o oofo otfooch odp oo ocfoocho
MMMW@I@@I@@II

(c) addI1f (d) addIwfI1f

Figure A.6: Pairwise N M I,,,, scores for the additive label count combination methods
in the text overlap approach with fastText embeddings for non-overlapping
words

122 A Appendices

A.4 Experiment results POS tagging

This section contains additional scatter plots of various dataset similarity measures and
the difference in accuracy of the part-of-speech tagging multi-task learning results over
the single-task learning results. A description of the experiments and notation used in
the figures can be found in Section 7.3.1.

A.4 Experiment results POS tagging

123

Figure A.7: Scatter plots comparing the plain text overlap similarity measures with the
differences in accuracy of the POS tagging multi-task learning results

10 A

[
[
+
L]
*

Auxiliary data

BC
EWT
WsJ
BNC
GSD

A accuracy

Training data
I BC
. EWT

¥
o0
oy
o“l
* & X s
e *.

&+

0.45 050 0.55 0.60 0.65 0.70 0.75 0.80

similarity

(a) plain addIwf N M Ijoint

10 A

Auxiliary data

[]
|
+
*
*

BC
EWT
WSJ
BNC
GSD

Training data

N BC
. EWT
. Ws)

digh o

A accuracy

w e 00
|

o %
*

4
(]
[}

'|'-|-+

0.5 0.6

similarity

(c) plain mulIwf NM Ijoint

0.4

0.7

A accuracy

A accuracy

10 A

10 A

Auxilia
[
|
+
*
*

ry data
BC
EWT
wsj
BNC
GSD

Training data
I BC
. EWT
s Ws)

i
o

I

*

* Xy
b ¢

*

*
*
*

»

&+ o ’..'I- .’ ”+.++

0.7 0.8

similarity

(b) plain addIwf NMIq,

0.5 0.6

0.9

Auxiliary data

[]
|
+
*
*

Train

BC
EWT
WSJ
BNC
GSD

ing data

mm BC
e EWT
. WS)

0.6 0.7

similarity

(d) plain mulIwf NMIpa.

0.8

124

A Appendices

Figure A.9: Scatter plots comparing the harmonic mean of shared vocabulary (SV) and
text overlap similarity measures with the differences in accuracy of the POS
tagging multi-task learning results

104

A accuracy

Auxiliary data

[]
|
+
*
*

BC +
EWT on

ws)
BNC
GSD

Training data]
I BC
e EWT
. ws)

A accuracy

0.4 0.6 0.8

similarity

(a) SV & addIwf NMIjoint

10

A accuracy

Auxiliary data

[]
|
+
*

BC +
EWT L

WS)
BNC

* GSD

Training data
Il BC
. EWT
. Ws)

0.4 0.5 0.6 0.7

similarity

(C) SV & mulIwf NMIjo,mt

0.3

0.8

A accuracy

10 A

Auxiliary data

®
u
+
]
*

BC
EWT
WsJ
BNC
GSD

Training data
I BC
e EWT
. ws)

% *

R

*
#**

*

0.2

0.6 0.8 1.0

similarity

0.4

(b) SV & addTwf NMI,nq,

10 A

Auxiliary data

[]
|
+
*
*

BC
EWT
WS)
BNC
GSD

Training data
Il BC
. EWT
. Ws)

X,

% % K
& K

0.4 0.6 0.8

similarity

(d) SV & mulIwf NMIpa,

0.2

A.4 Experiment results POS tagging

125

Figure A.11: Scatter plots comparing similarity measures of the text overlap approach
plus embeddings with the differences in accuracy of the POS tagging multi-
task learning results

A accuracy

10 1 —
Auxiliary data
® &C L
B EwT - L]
g4 + ws
® BNC m L)
*x GSD *
6 Training data *
Il BC e =
. EWT .‘."'
. Ws) ° *
4 "‘ o:
[]] *
£ -
*
] n .
* []
w 5
*
*i
04 *, %
0.3 0.4 0.5 0.6 0.7 0.8
similarity

(a) mean fastText emb. addIwf NMIjoin

A accuracy

10 L
Auxiliary data
@ BC &
B ewr . L
sl + ws o
® BNC [
*x GSD . +
6 Training data * L]
I BC * * ™
s EWT °®
. WS ® !
4 A " o:
* L
°
" %
21 N *
.i'.. +*0
g* e
01 M
0.1 0.2 0.3 0.4 0.5
similarity

(c) mean fastText emb. mulIwf N M Ijine

A accuracy

A accuracy

10 A

Auxiliary data
@® BC
B EwT
+ ws)
® BNC
* GSD

Training data
I BC
. EWT
Il ws)

.
.
¢
&

*

[|

|
| |
[J
.'ll

] ...

+*
L

0.6
similarity

0.8

0.9

(b) mean fastText emb. addIwf NM I,,q,

10 A L
Auxiliary data
® &C &
B eEwr --|-
gl + ws o
® BNC -"’
* GSD *
6 Training data * L]
I BC * * ™
. EWT ° *
- WS L] 'h
4 4 * ‘ + 0:
|
g o -
' []
e B,
2 A B &+
* o L
. Fox
04 k*
0.2 0.3 0.4 0.5 0.6 0.7
similarity

(d) mean fastText emb. mulIwf NM 4.

126

A Appendices

Figure A.13: Scatter plots comparing token-based similarity measures with the differences
in accuracy of the POS tagging multi-task learning results

10 -
Auxiliary data

@® BC
W eEwr
+ ws)
® BNC
* GSD

Training data
m BC
e EwT
. ws)

o
L

A accuracy

H
L

*ak

et
e

F

0 A

;:

+
°
&
(]

¢

+
"il
]
.-l-

o"s

)

¢ *

a
'n

L L]

+

T

0.3 0.4

T

0.5 0.6

similarity

T

0.7

0.8

(a) mean BERT emb. tokCtx NMIjoin

10 4 —
Auxiliary data
@ sC L
B EwT .lll
s + ws o
® BNC "
* GSD L ‘ °
6 Training data * o L
17 mmm BC
o) o + o ",
8 EWT °
3 WS ®
® &
a 4 | J L
n 9 o
[]
£,
21 TIPS *
L IEY ' L] °
* o, W
*x ¥ o
04 % * .
030 035 040 045 050 0.55 060 0.65
similarity

(c) backward BERT emb. tokCtx NM Ijyin

A accuracy

A accuracy

10 A

10 A

Auxiliary data
@® BC
B EwT
+ ws)
® BNC
* GSD

Training data
Il BC
e EWT
Il ws)

0.7 0.8

similarity

(b) mean BERT emb. tokCtx NM [,,,q,

0.9

Auxiliary data
@® BC
B eEwr
+ ws
® BNC
* GSD

B 5

Training data
Il BC
. EWT
. Ws)

‘> ? o0
e & ©O
s

% oy 0@

4
¢
e

)
]
*
*
H

L]

+
[J
** b
Joxe ¥

Y *x

.
ki

060 0.65 0.70 0.75

similarity

045 050 0.55

(d) backward BERT emb. tokCtx NMIq,

A.5 Experiment results NER 127

A.5 Experiment results NER

This section contains the raw F1 scores on the NER datasets using the neural network
with the Softmax classifier. The corresponding experiments are described in Section 7.3.2.
Further, scatter plots are contained that show additional dataset similarity measures and
the difference in accuracy of the named entity recognition multi-task learning results
over the single-task learning results.

A Appendices

128

Aux. data CNLE-50 CNLG-50 EPG-50 GEN-50 ONT-50 SEC-50 WIKI-50 WNUT-50
none 70.30 £0.69 41.62£0.37 86.99+3.70 26.97+086 47.53+1.13 43.86+1.02 67.19+£2.62 12.67=£0.46
CNLE-50 83.86 £2.10 41.91£1.50 84.40+0.32 28984396 47.84+0.89 51.03+1.85 74.66=+0.80 18.68£1.28
CNLE-100 90.21 £0.43 42.32+£0.52 85.82+1.41 30424+1.16 47.324+0.65 56.97+2.87 73.32+1.07 18.86£0.73
CNLE-250 96.77£0.27 42.86 £0.74 85.54+0.99 29.05+0.97 46.82+0.59 64.67+3.21 72.86+£1.98 21.51£1.96
CNLG-50 71.47+1.80 53.73+£1.75 86.124+2.08 29.19+1.06 46.32+2.04 47.32+3.89 68.86+£0.40 14.06=+0.81
CNLG-100 71.30£2.30 59.03£2.51 86.85+0.87 30.87+2.18 4593+0.76 47.17+3.05 69.97£0.25 13.24£1.43
EPG-50 70.47+2.80 41.12+£1.51 93.89+0.97 31.44£0.57 46.79+1.12 47.40£4.82 71.31+1.27 14.70£0.65
EPG-100 72.26 £1.20 4235+£2.11 99.144+0.27 2824+£1.39 4587+2.05 4485£180 6881+0.12 13.11+1.63
GEN-50 70.49 £2.77 4228 £0.69 86.58 +1.85 39.45£250 46.88+1.31 47.57£0.73 69.37+0.40 15.57+1.03
GEN-100 71.76 £1.13 42.70£1.60 87.77+£0.59 43.61£1.98 46.37+1.87 49.06£3.95 68.65+1.80 13.83£1.05
GEN-250 71.85+1.34 47.75£0.92 86.65+1.70 69.31 £4.17 45.74+1.14 50.13£4.10 69.63 +1.75 14.55+1.03
ONT-50 73.37£2.58 40.05£1.24 87.01£1.18 29.50%£0.76 51.76+1.32 51.90+3.94 70.24+1.15 15.64+1.11
ONT-100 7291 £0.64 40.35£1.95 84.55+2.05 28514350 5811+0.72 52.18+2.68 72.74+1.41 16.32£0.72
ONT-250 75.42+0.93 39.96+231 85.724+045 30.44+248 63.41+0.94 59.99+2.58 74.86+1.51 18.89+0.94
SEC-50 73.40 £0.84 40.57£2.80 86.62+1.05 28.06£1.25 47.244+0.57 N/A 68.63 +£2.87 14.80 £ 1.40
WIKI-50 73.07£233 4089+£1.99 8799+£048 29.33+£241 47.30+£0.25 53.45+£1.03 N/A 18.84 £0.75
WNUT-50 70.28+1.67 38.44+0.23 83.444+0.81 2791+£219 45.13+0.67 50.17£4.95 69.88+2.38 N/A
GMB-50 73.10+1.06 41.30£1.10 87.85+0.79 28.50£1.77 48104+0.59 53.45£1.51 71.324+0.51 15.62+2.42
GMB-100 73.34£1.28 42.26+£0.47 85.77+0.34 28894142 45.63+2.38 56.38+£5.46 69.46£2.56 16.13+0.94
GMB-250 73.12+£0.83 41.29+1.56 85.07+1.76 27864047 44.79+0.91 56.44+9.17 69.94+0.81 15.85+0.59

model with a Softmax classifier.

Table A.1: NER F1 score mean and standard deviation across three runs with different random seeds using the neural network

A.5 Experiment results NER 129
Figure A.15: Scatter plots comparing the plain text overlap similarity measures with the
differences in accuracy of the NER multi-task learning results
50 50
Auxiliary data Training data [] Auxiliary data Training data [)
@® CNLG mmm CNLG @® CNIG = CNLG
Il SEC [SEC W SEC B SEC
404 4 WK . WK 404 o WIKI mEE WIKI
® WNUT s WNUT ® WNUT mEm WNUT
* GMB * GMB
V CNLE V CNLE
307 4 ErG 301 4 erc
g > GEN g > GEN
7 A ONT ¥ A ONT
T 20 A v T 20 1 v
< <
v [] v []
10 ¢ * ¢ 10 £ * ¢
7 L] 7 *
AT oA T T
® o
0 ot S 4 ol Lx X2
0 \ *qV %V > 0+ lk.v*nﬂd >
0.0 0.1 0.2 0.3 0.4 0.5 00 01 02 03 04 05 06 07
similarity similarity
(a) plain addIwf NMIjoins (b) plain addIwf NM 4,
50 50 4
Auxiliary data Training data [] Auxiliary data Training data [)
@ CNIG W CNLG @® CNLG mmm CNLG
W SEC B SEC W SEC B SEC
401 4 WK . WK 404 4 WK . WK
® WNUT @l WNUT ® WNUT mmm WNUT
* GMB * GMB
V¥V CNLE V CNLE
301 4 erc 301 4 erc
g > GEN g > GEN
2 A ONT 3 A ONT
T 201 v T 20 v
< <
v [] v []
ﬂ = [] ﬂ * []
101 10
> “ w > * w
"A v Y vfo"
% P> >
< [ﬂ ’ >
01 A < 0 ¢ <«
A, et
01 0.2 0.3 0.4 0.5 0.6 0.7 01 02 03 04 05 06 07 08
similarity similarity

(c) plain mulIwf NM Ijoint

(d) plain mulIwf NM 4.

130

A Appendices

Figure A.17: Scatter plots comparing the harmonic mean of shared vocabulary (SV) and
text overlap similarity measures with the differences in accuracy of the

504

40 1

301

A F1 score

10 A

504

40 A

30

A F1 score

10 A

201

201

NER multi-task learning results

Auxiliary data Training data [)
@® CNLG Il CNLG
B SEc mm SEC
+ wii . WIKI
® WNUT @l WNUT
* GMB
V CNLE
4 EPG
» GEN
A ONT
v
A v {]
*k ¢
L v
- AR
o S S
= i
<< >
>
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
similarity
(a) SV & addIwf NMIjoint
Auxiliary data Training data [)
@ CNLG mmm CNLG
B SEC m SEC
+ Wik WK
® WNUT e WNUT
* GMB
V CNLE
4 EPG
p» GEN
A ONT
v
4 « °
v
VLAY
@ *
'Y *’
> <<
>
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
similarity

(C) SV & mulIwf NMIjm'nt

A F1 score

A F1 score

50 4
Auxiliary data Training data ()
@® CNLG B CNLG
W SEC mm SEC
404 < WIKI Em WIKI
® WNUT mmm WNUT
* GMB
V CNLE
301 4 erG
» GEN
A ONT
20 v
‘ v [
10 wk °
[2 1 :f' vYvyY
* .V
°
| *:* * ‘*»
0 > «<q P>
>
00 01 02 03 04 05 06 07 08
similarity
(b) SV & addIwf NM [4z
50 4
Auxiliary data Training data [)
@® CNLG B CNLG
W SsEC m SEC
404 = WIKI . WIKI
® WNUT mEE WNUT
* GMB
V CNLE
301 g erc
» GEN
A ONT
20 v
4 ¢
10 & *
1 v
> Av'::AA \A4
[- *
* o V’
01 > «<>
>
0.0 0.2 0.4 0.6 0.8
similarity

(d) SV & mulIwf NMIpa,

A.5 Experiment results NER 131

Figure A.19: Scatter plots comparing similarity measures of the text overlap approach
plus embeddings with the differences in accuracy of the NER multi-task
learning results

50 50
Auxiliary data Training data [) Auxiliary data Training data [)
® CNLG B CNLG @® CNLG B CNLG
W SEC [SEC W SEC [SEC
404 = WIKI l WIKI 404 = WIKI . WIKI
® WNUT mmm WNUT ® WNUT mmm WNUT
* GMB * GMB
V CNLE V CNLE
301 4 EpG 307 4 Erc
g » GEN g » GEN
9 A ONT 9 A ONT
T 20 v T 20 v
< <
v o v [J
10 ‘A wk 10 A al °
| ° v E * v
> N N *y v w > N v w
Py * A¥ * ["\4
4 ne* x> W o F K
o1 4 NV << 01 <« EWIV <« »
g »
(] *
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.0 0.1 0.2 0.3 0.4 0.5
similarity similarity

(a) mean fastText emb. addIwf NMjoint

(b) mean fastText emb. addIwf NM Iq.

50 A 50 4
Auxiliary data Training data [] Auxiliary data Training data []
@® CNLG Bl CNLG @® CNLG B CNLG
Il SEC B SEC Il SEC B SEC
40 A 4+ WIKI Bl WIKI 40 A 4+ WIKI B WIKI
® WNUT B WNUT ® WNUT B WNUT
* GMB * GMB
V CNLE V CNLE
301 4 EpG 307 4 Erc
g » GEN g » GEN
9 A ONT 9 A ONT
T 20 v T 20 v
< <
v [] v ®
10 “ Ing ° 10 A oo y
> D A, 4 > * 1 W
A+ - * A o~ A . ‘ A
>
%h X ok] wgl s> *ok
0 g < > 01 <x < >
% >e
0.05 0.10 0.15 0.20 0.25 0.30 0.1 0.2 0.3 0.4
similarity similarity

(c) mean fastText emb. mulIwf N M Ijoine

(d) mean fastText emb. mulIwf NM Ia,

132

A Appendices

Figure A.21: Scatter plots comparing token-based similarity measures with the differences
in accuracy of the NER multi-task learning results

50
Auxiliary data Training data ([)
@® CNLG BN CNLG
W SEC m SEC
404 == WIKI . WIKI
® WNUT mEE WNUT
* GMB
CNLE
30 v
4 EPG
g » GEN
9 A ONT
T 20 v
<
Ak v [
10 * °
'>A*{' w
+ A
% N
0_
EA + >
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
similarity

(a) mean BERT emb. tokCtx NMIjoint

50
Auxiliary data Training data ()
@ CNLG B CNLG
W SEC mm SEC
404 < WIKI . WIKI
® WNUT mmm WNUT
* GMB
V CNLE
301 4 erG
g » GEN
I A ONT
T 20 v
<
2 N o
10 1 *
. > *Va ‘ v
A A *
o®
<8, > * N *
0 «
i A +
*
0.05 0.10 0.15 0.20 0.25
similarity

(c) backward BERT emb. tokCtx NM Ijgin

A F1 score

A F1 score

50
Auxiliary data Training data ()
@® CNLG B CNLG
Wl SEC | SEC
40 1 4+ WK B WIKI
® WNUT @l WNUT
* GMB
V¥V CNLE
301 4 EpG
» GEN
A ONT
20 v
.7 ¢
10 A * :
o *{v A w
> * A
ﬁ‘ s
o] e
e S
°
0.1 0.2 0.3 0.4 0.5
similarity

(b) mean BERT emb. tokCtx NM [;q4

50
Auxiliary data Training data ()
@® CNLG I CNLG
B SEC m SEC
40 1 4+ WK B WIKI
® WNUT @l WNUT
* GMB
V CNLE
301 4 EpG
» GEN
A ONT
20 v
* v o [
10 A *
@ | X W
P A A * ‘ *
®
Cogmpk 2o
0 < < #'
- A > +
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
similarity

(d) backward BERT emb. tokCtx NMI,,q,

Eidesstattliche Erklarung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudiengang
Informatik selbststandig verfasst und keine anderen als die angegebenen Hilfsmittel —
insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen — benutzt
habe. Alle Stellen, die wortlich oder sinngeméfl aus Veroffentlichungen entnommen
wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit
vorher nicht in einem anderen Priifungsverfahren eingereicht habe und die eingereichte
schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Vorname Nachname

Veroffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Ort, Datum Vorname Nachname

	1 Introduction
	1.1 Motivation
	1.2 Research question
	1.3 High-level overview

	2 Theoretical background
	2.1 Sequence tagging with statistical modeling methods
	2.1.1 Hidden Markov Model (HMM)
	2.1.2 Maximum Entropy Markov Models (MEMM)
	2.1.3 Conditional Random Fields (CRF)

	2.2 Neural networks
	2.2.1 Fundamentals
	2.2.2 Feedforward neural networks
	2.2.3 Recurrent neural networks
	2.2.4 Regularization
	2.2.5 Hyperparameter optimization
	2.2.6 Word embeddings

	2.3 Multi-task learning
	2.3.1 Theory and application in neural networks
	2.3.2 MTL variants and differences to transfer learning

	2.4 Information theoretic clustering comparison measures
	2.4.1 Entropy, joint entropy and conditional entropy
	2.4.2 Mutual information
	2.4.3 Comparing clusterings
	2.4.4 Information theoretic similarity measures

	3 Related work
	3.1 Multi-task learning for sequence tagging
	3.2 Effect of auxiliary task similarity

	4 Dataset similarity concepts
	4.1 Hypotheses
	4.2 Requirements
	4.3 Framing label similarity as a clustering comparison problem
	4.4 Evaluation of clustering comparison measures
	4.5 Calculation of dataset similarity from labels
	4.5.1 Text overlap
	4.5.2 Vector space similarity

	4.6 Calculation of dataset similarity from gradients observed during training

	5 Neural MTL system implementation
	5.1 Objectives
	5.2 Architecture
	5.3 Design decisions and training process
	5.4 Implementation summary

	6 Dataset similarity tool
	6.1 Objectives
	6.2 Architecture overview
	6.3 Text overlap
	6.4 Vector space similarity
	6.5 Contingency table similarity measures

	7 Experiments
	7.1 Preliminary evaluation of dataset similarity design decisions
	7.1.1 Evaluation of the similarity of identical datasets
	7.1.2 Comparison of the approaches to fill the contingency table
	7.1.3 Run time efficiency of word vector comparisons

	7.2 Experimental Setup
	7.3 Results and analysis
	7.3.1 Part-of-speech tagging
	7.3.2 Named entity recognition

	7.4 Multi-task learning test score prediction

	8 Summary, Conclusion & Future Work
	8.1 Summary
	8.2 Conclusion
	8.3 Future work

	List of Figures
	List of Tables
	Bibliography
	A Appendices
	A.1 Neural MTL system implementation details
	A.2 Dataset similarity tool implementation details
	A.3 Preliminary dataset similarity evaluation results
	A.4 Experiment results POS tagging
	A.5 Experiment results NER

