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Abstract

Social media users enjoy discussing crucial plot developments in recently released media, often

to the dismay of those users who have yet to watch or read the TV series, book, or movie in

question. Users may have their enjoyment spoiled by discussions revealing major turns in the

plot. An automated approach, filtering out such spoilers, would be ideal as manual labeling

is impossible due to the sheer amount of content. Filtering would allow interested parties to

partake in the discussion while leaving others the option to stay uninformed. In this thesis,

we first approach the task of identifying spoilers as a classification task on the sentence or

paragraph level. Second, we conduct the more challenging task of sequence classification, where

each token is classified based on whether it constitutes (part of) a spoiler.

Our approach makes use of machine learning methods based on neural networks, relying on

user-generated content as training data. More specifically, BERT, a variant of the Transformer

architecture, is used, since BERT has recently shown promising results on various language

processing tasks.

The results show that while our approach outperforms many previous ones, it is still not

viable for real-world use. In real-world data, we observe an extreme class imbalance. As a result,

all of our models yielding sufficient recall also produce a very high number of false positives. In

other words, if enough of the actual spoilers are recognized as such, an unacceptable amount

of non-spoilers are also incorrectly marked as spoilers.
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1. Introduction

Information giving away a major turn in a plot or an important event can be considered a

so-called spoiler (see Section 1.2 for a more concise definition). Many people appear to perceive

spoilers as lessening their enjoyment of a TV series, movie, book, or even sports broadcast

rerun. The definition of what exactly constitutes a spoiler is fairly subjective. It is unclear

which piece of information is central enough to be considered a spoiler. Detecting spoilers is

a problem that has previously been tackled using natural language processing methods (Guo

and Ramakrishnan, 2010; Boyd-Graber et al., 2013; Jeon et al., 2013; Iwai et al., 2014; Maeda

et al., 2016). Some online platforms offer the option to manually annotate spoilers so that

users can be warned before viewing them.

For example, the second sentence in the Reddit1 comment in Figure 1.1, regarding a specific

movie, is marked as a spoiler.

Deus Ex Machina, I was totally taken in by the machine like the protagonist was. In
the end, when she left him to die trapped in the house it really stuck with me,
because like him I thought she wanted to be with him instead she was using him.

https://old.reddit.com/r/AskReddit/comments/7vf2ng/what_movie_was_so_disturbing_it_left_you_feeling/dts89dm/

[Retrieved: 20-02-12]

Figure 1.1.: In this comment containing a spoiler for the movie “Ex Machina”, the user-generated
spoiler annotation is visualized using bold font.

As spoiler annotations are not universally supported, and necessarily require manual effort,

an automatic approach would be preferable. The task of detecting spoilers is nontrivial. For

example, the information of a character dying could be part of the premise of a story and,

therefore, not a spoiler, but may also constitute a major turn in the plot. At the same time, it

seems likely that a simple heuristic, e.g., one looking for the word ’killed,’ would have some

degree of success at identifying spoilers.

We will use pre-trained language models, fine-tuning them using user-generated annotations

to predict which documents contain spoilers. On the same data, we will also build a model

that predicts the presence of spoilers on a token level, thereby marking sections of sentences as

containing spoilers.

1https://reddit.com

1
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1. Introduction

1.1. Motivation

For years now, Internet users have been discussing TV shows live, online, as they air (Harrington

et al., 2013). With the recent prevalence of nonlinear TV consumption, as found in Video-on-

demand services (Abreu et al., 2017), users may choose to watch TV shows well after their

original air date. They then have every opportunity to be presented with information that spoils

the plot for them. This risk also applies to other media like books and movies. The results on

whether being spoiled impacts people’s enjoyment are unclear (Johnson and Rosenbaum, 2018),

yet the prevalence of measures like spoiler tags shows that many users care about avoiding

spoilers. The implementation of automatic filtering could provide an easy way to enable users

to enjoy online discussions instead of having to stay away from them until they have caught

up with the latest TV episodes or most recent movie releases. Work on the task of spoiler

detection has the potential to yield advancements for other language processing tasks. Previous

work has, for example, suggested that objectivity is a good indication of spoilers (Jeon et al.,

2013), meaning posts containing more words indicative of emotions (i.e., those that are more

subjective) are less likely to contain spoilers. The feature of objectivity has also been used in

other tasks such as the detection of hate speech (Gitari et al., 2015). While deep learning

approaches, like the one we take, do not require feature engineering (Goodfellow et al., 2016,

p. 3), it is clear that knowledge from this task could still be transferred to other tasks.

1.2. Definition of Spoilers

In their paper specific to television spoilers, Jeon et al. (2016) define a spoiler as “any kind of

information that affects or spoils people’s enjoyment of a TV program by revealing unknown

facts to them.” They provide examples of what kind of information might be considered a

spoiler: “crucial events, important reversals of fortune, the final denouement of a suspense

drama or movie, the end results of reality TV shows or sports broadcasts including the identities

of the winner and loser of a contest or the final score of a match.”

Ultimately, a precise definition of what does and does not constitute a spoiler is not required

for our purposes. Central to the application of machine learning is only that some shared

understanding of spoilers exists between annotators. We assume that a sufficient agreement on

the definition of spoilers exists to enable detection using machine learning techniques. The

degree to which a shared understanding of spoilers exists implies an upper bound for how well

an automated system could perform.

1.3. Reddit

Reddit is a “social news aggregation, web content rating, and discussion website.”2 The

platform offers users the capability to discuss a wide range of topics. It is structured into

so-called subreddits, communities that are each focused on a specific topic.

2https://en.wikipedia.org/w/index.php?title=Reddit&oldid=936603154

2
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1.3. Reddit

A user can submit a post (sometimes called a submission) to a specific subreddit. They3

can either submit a link (e.g., to another website or an image) or a text. In either case, they

also provide a title for their post. Users can start discussing a post by submitting a comment.

Comments are associated with the post to which they are submitted in response. Comments

can also be posted in direct response to other comments, such that a tree of comments is

formed. Ultimately, a post has a set of comments associated with it, with each comment

having associated child comments. In this way, the tree of comments can, in principle, reach

an arbitrary depth. Figure 1.2 shows a Reddit comment tree, including individual comments

containing spoilers.

Figure 1.2.: This Reddit post4 links to a news article. Comments, arranged in a tree structure,
discuss the article while spoilers are redacted (following manual annotations by the
individual users) and only revealed on hovering over them. The ellipsis signifies an
omission made by us.

3Throughout this thesis, we will use “they” as a gender-neutral pronoun for singular entities in addition to its
plural usage.

4https://old.reddit.com/r/TheExpanse/comments/avd3ud/the_expanse_season_4_cast_adds_

belters_will_see/ehed83t/ [Retrieved: 20-02-07]

3
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1. Introduction

1.4. Research Questions

We will investigate the viability of neural methods for the detection of spoilers in user-generated

content. Specifically, we explore these four research questions, which are explained in more

detail in the next sections:

1. How can neural methods be used to classify comments as spoilers effectively?

2. How can sequence tagging approaches be applied to spoiler classification in order to find

spans of spoiler text within comments?

3. How can additional data, specifically story documents, be used to aid spoiler classification?

4. What can we learn about the models by inspecting the inner workings of the neural

networks we used?

1.4.1. Question 1: Document Classification

Question 1 involves investigating whether or not neural methods are suitable to detect documents

containing spoilers (i.e., classifying documents into two classes, based on whether or not they

contain spoilers). A document, in our case an entire Reddit comment, is classified as containing

a spoiler even if only a small part of it contains the relevant information. Exploring the question

involves building a neural classification model and comparing its results with those achieved by

other researchers, as well as evaluating the model’s performance against the requirements for

real-world usage. We will use a Transformer architecture for this task, more specifically the

BERT architecture (Devlin et al., 2019). We assume that previous models can be outperformed

using our approach because Transformers have improved results on many downstream language

tasks.

1.4.2. Question 2: Sequence Labeling

Question 2 builds on Question 1, but instead of providing a document level classification, this

task aims to make a distinction for each token. In this manner, a comment can be considered

only to partially be a spoiler. In the sentence, “We went to the cinema and loved the experience,

a pity that Snape was killed.” only the bold section might be considered a spoiler, whereas

the rest of the sentence would not. Take this real example by Reddit user cara123456789:

“Lets just say there were also some scenes involving or i thought might show a certain character

infantata that really scared me.”.5 The user tries to share their sentiment towards how scary

a particular episode of a TV is while redacting critical information they perceive to be a spoiler.

In this example, the annotation only covers a specific character’s name (“infantata”). We will

use the same underlying BERT model architecture as in Question 1.

5https://www.reddit.com/r/AmericanHorrorStory/comments/2o8l9h/how_scary_is_murder_house/

cmkv52g/ [Retrieved: 20-02-12]

4
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1.4. Research Questions

1.4.3. Question 3: Story Document

Question 3 is asking whether it is possible to beneficially employ background information on the

storyline in question, for spoiler detection. Knowing the work which a potential spoiler relates

to would enable the system to look for information on the work that could aid in identifying

information that constitutes a spoiler. In our approach, we assume that a spoiler’s background

information is given in the form of a natural language story summary.

Intuitively, the idea is to cast the question of “Is this a spoiler for this specific plot?” as

an information retrieval task, reducing it to checking if a piece of information is part of the

plot summary. Our model then operates on two texts instead of one, evaluating not only the

potential spoiler individually but also in conjunction with the summary. We expect that this

approach can slightly improve upon the results of classification without additional inputs as

motivated by Question 1. This expectation is caused by the previous success of incorporating

structured meta-information into spoiler detection tasks (see Chapter 3) and the fact that story

documents have been shown to contain information relevant to spoilers (see Section 3.2).

1.4.4. Question 4: Analyzing Models

Question 4 involves visualizing and inspecting the internal parameters of the networks built for

Questions 1, and 2. Specifically, attention mechanisms in modern neural architectures have

the potential to make the network interpretable. In this manner, we investigate the potential

to identify specific features that are important to our classification results. We suspect that

specific marker words will play a crucial role in the classification of spoilers. This expectation is

based on the success of previous methods using specific words as features (see Section 3.3).
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2. Background

This chapter provides background information required for understanding the techniques used

in later chapters. Specifically, we will discuss the Transformer architecture (Vaswani et al.,

2017) and BERT, an adaption of the architecture (Devlin et al., 2019). We will also provide

background information on how the Transformer approach differs from more traditional recurrent

neural network approaches like LSTMs (Hochreiter and Schmidhuber, 1997). Apart from neural

methods, we will also describe the fundamentals of Näıve Bayes, which we will use in our

baseline model. Traditional metrics for evaluation of machine learning systems are discussed as

well as less widely adopted, more task-specific metrics.

2.1. Neural Networks

This section will discuss some specific methods used in neural-network-based machine learning

models. Most concepts are only briefly touched upon, giving the necessary context for the rest

of this thesis.

In principle, neural networks are used to approximate functions; they map a vector of real

numbers to an output vector of real numbers (Goodfellow et al., 2016, p. 205). Neural networks

are said to have layers. The input layer accepts multiple input values (i.e., a single vector),

transforming them to fit the first hidden layer’s size. Subsequent hidden layers transform the

input further until the final transformation is performed by the output layer, resulting in the

desired number of output values.

For some domains, say for predicting price developments, real-valued inputs can be a natural

fit. This does not apply to the domain of text-processing, one way of transforming text into

a real-valued representation is using one-hot encoding (Goodfellow et al., 2016, p. 523) on a

word-by-word basis. This scheme represents any word in a given vocabulary using a vector the

size of the vocabulary, with all but one value being zero and a single non-zero value (typically

1) at the position corresponding to the given word. In the case of classification tasks, output

values are interpreted as classes by comparing them to decision boundaries or building pseudo

probabilities of class memberships (e.g., using the softmax function, Goodfellow et al. 2016,

p. 179). When considering a one-hot word encoding scheme, it is not apparent how a sentence

with an arbitrary number of tokens would be encoded, as a simple neural network only accepts

one fixed-size input. This problem is addressed in different ways by recurrent neural networks

(see Section 2.1.7) and Transformers (see Section 2.2).

Most classical machine learning approaches require feature engineering beyond an encoding

scheme like one-hot encoding. Machine learning engineers have to select suitable features

7



2. Background

derived from the raw data to serve as the model input. Such features have to be salient in

that they contain information relevant for modeling the specific function. Neural networks

are used in deep learning approaches, which alleviate the need for explicit feature engineering.

Neural networks can, while allowing for feature engineering approaches, also learn feature

representations on their own, which not only has the potential to save engineering efforts but

can also yield improved results (Goodfellow et al., 2016, p. 3).

In principle, a set of parameters could be handcrafted for a neural network to be able to

approximate a specific function. However, to use neural networks as a machine learning method,

the parameter choice is handled by a training process. In the training process, relying on a loss

function (see Section 2.1.6) that describes the deviation from the desired result, the parameters

are gradually adjusted (see Section 2.1.3). Neural networks are, in the simple case, trained in a

supervised manner, where the network’s parameters are adjusted to match the known, desired

output for a given input. The network can then be applied to input data for which the desired

output is unknown and, given the training set was representative of the unseen data, produce a

correct result. For a more detailed explanation of the training process, see Section 2.1.3.

Neural networks form the basis of the more specific deep neural architectures (Transformers,

specifically BERT) that we will be using in our spoiler detection tasks. For a more in-depth

introduction to neural networks, see Goodfellow et al. (2016) or Rojas (1996).

2.1.1. Multilayer Perceptrons

Multilayer perceptrons (MLPs) are a basic form of neural network. Based on an input vector

x, they produce an output vector y, also known as the hypothesis. Specifically, the input

is transformed using bias vectors b, weight matrices w, and an activation function g. The

transformation can be described as the function f(x;w, b) = g(x · w + b) (Goodfellow et al.,

2016, p. 167). A sequence of such transformations with different weight matrices and bias

vectors is called an MLP. Each application of the function represents a layer in the neural

network; each layer can use different matrices with different sizes. The weight and bias matrix

dimensions define the hidden, input, and output sizes of the network.

x1

x0

h2

h1

h0

j2

j1

j0

y1

y0

Figure 2.1.: Schematically, the MLP can be visualized by representing each vector element as
one node. The input layer is followed (from left to right) by two hidden layers (h
and j) and one output layer.

Figure 2.1 shows a multilayer perceptron with two hidden layers. The input and output

vectors each have a length of two, with both hidden layers having a size of three. The arrows

shown in the diagram are described and weighted using the matrices referred to as w above.

8



2.1. Neural Networks

With the usage of non-linear activation functions, such as the sigmoid function, MLPs, given

sufficient size, can approximate all (Borel) measurable functions. This capability prompts their

designation as a “universal approximator”(Hornik et al., 1989).

2.1.2. Activation Functions

An activation function g(x) is used to introduce non-linear properties into neural networks, as

mentioned in Section 2.1.1. A variety of different activation functions have been explored, with

the sigmoid function σ traditionally being a popular choice. The Rectified Linear Unit (ReLU)

is perhaps the most popular in modern deep learning approaches. Ramachandran et al. (2017)

performed automated searches and found their “swish” function to perform the best. They

also analyzed the Gaussian Error Linear Unit (GELU) and found it to perform well. The GELU

activation function has been used by Devlin et al. (2019) and Radford et al. (2018), among

others.

−3 −2 −1 0 1 2 3

−1

0

1

x

g
(x
)

ReLU
GELU
Sigmoid

Figure 2.2.: The ReLU function is a common activation function (Goodfellow et al., 2016,
p.169) whereas GELU has only recently seen usage, for example, by Devlin et al.
(2019) and Radford et al. (2018)

2.1.3. Backpropagation and Stochastic Gradient Descent

Given the previously introduced elements of an MLP, an initialized network can already perform

classification and regression tasks. In order to use it as a machine learning method, however, a

technique to determine a suitable set of weights or matrices is required. Stochastic Gradient

Descent (SGD) is a technique to do just this. It describes the iterative alteration of the weights

(in this case, inside a neural network), which results in iteratively improving approximations of

the desired function.

Based on a differentiable loss function (indicating the divergence from the desired result),

the weights of the network are adjusted in accordance with the gradient of the loss function

(i.e., such that the loss is reduced). As a result, the weights are updated to produce output

that is closer to the desired result. For an example of a loss function, see Section 2.1.6.

The analytical calculation of the gradient, often across multiple network layers, is called

backpropagation (Rumelhart et al., 1986). In backpropagation, the (calculus) chain rule is

9



2. Background

used to calculate the loss function’s gradient with regard to each parameter in the network

(Goodfellow et al., 2016, p. 198).

SGD adjusts weights based on the gradient and a meta parameter ε, the learning rate. The

learning rate scales the amount by which weights are updated. As a result, too small values

for ε lead to slow convergence, whereas too large values can prevent convergence altogether

(Goodfellow et al., 2016, p. 286).

2.1.4. Learning Rate Schedules

Learning rate schedules are a way of dynamically changing the learning rate during training.

Some optimization algorithms, like Adam, already perform learning rate scaling of sorts by

keeping momentum on a per parameter basis (Goodfellow et al., 2016, p. 301). Heuristics

that adapt the learning rates have been shown to result in faster convergence (Jacobs, 1988).

Learning rate schedules have found application in stabilizing the learning process with large

batch sizes (Goyal et al., 2017).

2.1.5. Early Stopping

Early stopping is the practice of terminating the training of a machine learning model early,

usually in an effort to prevent overfitting (Prechelt, 2012). It is a regularization method, in

that overfitting is prevented by checking the error or loss on a validation set. Once overfitting

on the training data begins, the validation loss is no longer improving and will start to increase.

Prechelt (2012) analyzed different criteria for when to perform early stopping. He found the

criterion of stopping after a certain number of epochs with no improvement in validation loss

to have the best trade-off between the final result and training time. Specifically, stopping after

15, 20, or 30 epochs was found through experimentation to yield the best performance, with

only multiples of 5 epochs being considered in the experiment. These early stopping criteria

were applied by keeping weights (i.e., the network state) of previous epochs. After stopping,

the state of the network at the best performing epoch is saved. The performance at each epoch

is evaluated using the validation loss.

2.1.6. Binary Cross-Entropy Loss

Cross-Entropy loss is a loss function often used in the training of neural networks. Loss functions

guide the training of neural networks by indicating the divergence from the desired output.

Weights are adjusted, during training, to minimize the loss function. Its binary variant is used

to train binary classifiers that have a single output neuron.

BCE(ŷ, y) = −(y · log(ŷ) + (1− y) · (log(1− ŷ))) (2.1)

Where y is the class, and ŷ is the predicted value, as output by the model. As illustrated by

Figure 2.31, the loss decreases as the correct class (in this case 1) is approached by the model’s

1https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss [Retrieved 20-02-12]

10

https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss
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output. Similarly, the loss decreases as the prediction approaches 0 when the target class is 0.
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Figure 2.3.: The BCE-Loss for different network outputs, given the target class 1, decreases as
the output approaches 1.

2.1.7. RNN

Recurrent neural networks (RNN) are an extension of MLPs that can operate on sequences of

arbitrary length. Such networks, generally, operate on the current input and a hidden state,

producing an output and the next hidden state (Goodfellow et al., 2016, p. 363). The hidden

state, depending on the architecture, can be the output or an internal set of weights of the

previous iteration.

Consider a temporal sequence of inputs of arbitrary length. This sequence can not easily

be operated on by a traditional MLP, as the matrix dimensions would have to be adjusted.

In a recurrent network, in addition to the input xt at timestep t, the output of the previous

timestep yt−1 is used as an additional input. Alternatively, instead of the previous output, any

part of the previous hidden state can be used as an input. The different inputs are combined

by concatenating their vector representations.

This way, a sequence of arbitrary length can be used as an input, with an output value being

generated at each step in time. Importantly, the weights at each timestep remain constant,

allowing, in principle, for generalized learning across timesteps.

wxt yt

yt−1

Figure 2.4.: A recurrent neural network includes the previous timestep’s output in its calculations
(graphic inspired by Christopher Olah2).

Figure 2.4 visualizes the idea of a recurrent network; the previous iterations’ value in the

network is involved in the next step’s computation. Note that unlike Figure 2.1, we now

2http://colah.github.io/posts/2015-08-Understanding-LSTMs/ [Retrieved 20-01-19]
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model an entire hidden layer using a box instead of multiple nodes, focusing on information

transformation over network-state.

Training of recurrent networks can be performed using a variant of backpropagation (Rumel-

hart et al., 1986), called Backpropagation Through Time (BPTT) (Mozer, 1989). BPTT

runs into the issue of vanishing gradients (Goodfellow et al., 2016, p .391). Since the same

functions using the same parameters are applied iteratively, the gradient value can quickly

vanish or explode. For this reason, training recurrent networks to model long term dependencies

is often infeasible. Vaswani et al. (2017) set out to circumvent this problem, among others, by

introducing the Transformer, which uses a fixed-sized architecture instead.

LSTM

Long Short-Term Memory (LSTM) units are an extension of RNNs, attempting to solve the

vanishing gradient problem (Hochreiter and Schmidhuber, 1997). The approach taken is to

hold an internal state that represents the information on previous elements in the sequence and

to only change this state when required. This internal memory (or state) and its protection

are modeled using multiplications with learned weights. That way, the entire network can be

trained via BPTT like other RNN variants.

State
Forget Gate

Input Gate

st−1

×σ

+

st yt

×

σ

×

it

×σ

σ

it

it

it

Figure 2.5.: The internal state of an LSTM is protected by the input gate (graphic inspired
by Christopher Olah3, showing the variant of LSTMs proposed by Gers and
Schmidhuber 2001).

In Figure 2.5, yellow boxes indicate transformations using learned weight matrices with

σ indicating a sigmoid activation function. it represents the input at timestep t, which is

the concatenation of the input xt and the previous hypothesis yt−1. Red circles indicate

transformations performed on the data, either addition (+) or multiplication (×). Merging

lines in the diagram represent concatenation operations.

The internal state st, can only be changed using the input and forget gates. Instead of using

3http://colah.github.io/posts/2015-08-Understanding-LSTMs/ [Retrieved 20-01-19]
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the previous output, as is the case in traditional RNNs, the state is used as an input to the

next iteration of the network. Thereby the problem of vanishing and exploding gradients can

be, at least partially, mitigated.

The particular variant of an LSTM shown here adds peephole connections, which is the

inclusion of the state into the input and forget gates. Gated Recurrent Units (GRU), introduced

by Cho et al. (2014), are an adaption of LSTMs that are simpler to implement and compute.

They only have two gating units as opposed to four in the LSTM.

2.2. Transformer Architecture

The Transformer model architecture, introduced by Vaswani et al. (2017), is a non-recurrent

approach to sequence modeling. RNNs have an inherently sequential property as their previous

iteration provides part of their input. Due to the non-recurrent nature of Transformers,

performance gains over recurrent models are possible through parallelization. Models with this

architecture were able to achieve state-of-the-art results on machine translation tasks (Devlin

et al., 2019). Transformers form the architectural basis for our spoiler classification models.

Generally, the Transformer architecture follows an encoder-decoder pattern; such an archi-

tecture involves creating a hidden state using one section of a neural network (the encoder)

and creating an output from said hidden state (the decoder). This means that a sequence of

layers transforms the input into a hidden state, from which another sequence of layers builds

the output. The input and output comprise a fixed number of tokens, called the context size.

A central component of the architecture is attention, an approach that allows the network to

focus on relevant elements, instead of always considering the entire sequence.

Different adoptions of the Transformer architecture focus on the pre-training aspect, enabling

fine-tuning of models with comparatively little resources (Radford et al., 2018; Devlin et al.,

2019).

2.2.1. Attention

Transformers, as originally proposed by Vaswani et al. (2017), use self-attention in an attempt

to model dependencies between different tokens. Attention can generally be described as the

model focusing on specific aspects of the input instead of having to handle all information

(Bahdanau et al., 2015).

The specific attention variant used is called scaled dot-product attention. The model uses

this attention mechanism in three places: in each of the decoder layers to attend (i.e., pay

attention to) to the final encoder state, in each of the encoder layers to attend to the previous

layer’s representation, and finally in each decoder layer in order to attend to the previous

decoder layer’s representation. The desire to decrease the length of the path information takes

is listed as a motivation for the attention mechanism. In the case of a simple recurrent model,

this path’s length is bounded by O(n), where n is the length of the input sequence. The

self-attention mechanism reduces this to a low constant length, as each attention-head can

13
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directly attend to any token’s representation in the previous layer.

Scaled dot-product attention is an attention mechanism that relies on three inputs. The key

(K) and the query (Q) are used to select important aspects of the value (V). As illustrated

by Figure 2.6, key, and query are multiplied and scaled, with the optional mask being applied

only in certain cases. Finally, a softmax transformation is performed. After said transformation,

the attention score is multiplied with the value (V), scaling it in accordance with the attention

scores. Consequently, the matrix after the softmax operation (but before the final multiplication)

is a representation of which tokens are to be paid attention to. Visualizing this matrix allows

some insight into which part of a sequence is considered in a given layer.

Figure 2.6.: Scaled dot-product attention is based on three inputs: (key) K, (query) Q, and
(value) V (graphic is taken from Vaswani et al. 2017).

Specific knowledge of the attention mechanism is required for our model analysis in Section 6.4.

2.2.2. BERT

BERT (Bidirectional Encoder Representations from Transformers) is a language model pre-

training approach and model architecture introduced by Devlin et al. (2019). It is based on the

Transformer architecture but implements only the encoder aspect. The absence of a decoder

means BERT is not capable of language generation, but classification tasks and extractive

question answering can be performed by operating on the final encoder state.

Different pre-trained BERT models are available. The intended use of the pre-trained models

is to fine-tune them with task and domain-specific training data, thereby adapting them for the

task at hand. Such fine-tuning, when following the recommendation of the authors’, is done in

only 3 to 4 epochs across the training data. The BERT model, fine-tuned in this manner, was

able to achieve state-of-the-art performance on multiple downstream language tasks (Devlin

et al., 2019). BERT is pre-trained using two tasks:

• The first task is called masked language models, meaning the model is tasked to predict

a set of words that are hidden from the input. Masked words are predicted using an

output softmax layer on the masked token’s internal representation.

14
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• The second task is known as next sentence prediction. It involves presenting the network

with a pair of sentences. The model then predicts if the two sentences are consecutive

sentences in the training data.

Both approaches can be considered unsupervised learning in that the target label is only derived

from the input data but not known ahead of time.
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(a) Document classification is based on the in-
ternal representation corresponding to the
[CLS] token.
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(b) Each token is classified based on its internal
representation

Figure 2.7.: BERT can be used for sequence and token classification. (graphic taken from
Devlin et al. 2019)

Figure 2.7 schematically shows BERT as used for the classification of tokens or entire

documents. Devlin et al. (2019), in this case, consider any text to be a sentence, meaning what

is labeled as a sentence in the illustration can be an entire document. The encoder produces

an internal representation of each token. A single linear layer can be used to transform this

representation into a class, such that the model performs classification on a token basis. For

the document classification, the final transformation step is performed on the representation C,

which corresponds to a special token (referred to as the [CLS] token) that is inserted at the

start of each sequence. The representation C is, in pre-training, only trained for next-sentence

prediction. For that reason, it is not a meaningful representation of the whole document until

fine-tuning is applied (Devlin et al., 2019).

Crucially, in fine-tuning, a final layer is trained to transform internal representations into a

class, while the rest of the model is also updated using backpropagation. Earlier layers in the

encoder are adapted to the task as a result of backpropagation affecting the whole network. C

thereby can be trained to be a task-specific representation.

WordPiece

WordPiece, originally proposed by Schuster and Nakajima (2012), is the tokenization model

used by BERT. The tokenization scheme aims to solve the problem of out-of-vocabulary words.
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Instead of being unable to handle an unknown word, the model splits it up into known subsets,

so-called WordPieces. In this way, “eating” might be represented as “eat” and “ing.”

An algorithm iteratively builds a set of WordPieces. The approach taken is to iteratively

introduce new WordPieces, starting from a set of all known characters. A new WordPiece

is formed by combining those two existing pieces that are the most likely, according to a

language model. No WordPieces are removed during the process. The merging of WordPieces

is repeated until a pre-defined amount of WordPieces is found. The vocabulary size (i.e., after

how many iterations to stop), therefore, is parametrizable. The initial set of pieces contains

all characters that were encountered; out-of-vocabulary word pieces are only possible when

unknown characters are encountered.

The process of tokenization into word pieces begins with simple whitespace separation. After

the initial whitespace tokenization, further separation into WordPieces is required. Schuster

and Nakajima (2012) use the language model they built to find the most likely segmentation.

In BERT, however, a greedy solution is used instead. In said greedy approach, the longest

WordPiece matching the start of the remaining input is used. Markers on the tokens are used

to indicate whether they are separated by whitespace from the next token or are immediately

followed/preceded by them. In BERT, an output for the input “unaffable” might look like this:

[‘‘un’’, ‘‘##aff", ‘‘##able’’]. 4

A similar algorithm to WordPiece is called Byte Pair Encoding or BPE. BPE, designed initially

for compression, takes the more straightforward approach of combining the most frequent

character bigram into a newly created character (Shibata et al., 1999). Consequently, no

language model is involved in the creation of BPE based embeddings.

2.3. NCRF++

NCRF++ is a sequence modeling toolkit; it makes use of neural networks in addition to

conditional random fields (Yang and Zhang, 2018). Conditional Random Fields (CRFs) are a

discriminative model for labeling sequence data (Lafferty et al., 2001). In our sequence tagging

approach, this toolkit will be used as our baseline model.

The underlying model architecture used by NCRF++ is shown in Figure 2.8. It consists of

character-level RNNs followed by a word-level RNN. The final classification is performed using

either a softmax layer or a CRF on the RNN’s output. In the case of the CRF, the Viterbi

algorithm (Forney, 1973) is used for finding the optimal output. While the word-level RNN

relies on words being contained in the vocabulary, the character-level RNN does not. Through

the usage of configuration files, it is possible to use the toolkit without writing additional code

(Yang and Zhang, 2018). The RNNs can, through configuration parameters, be replaced by

convolutional neural networks (CNN) (Goodfellow et al., 2016, p. 321).

4https://github.com/google-research/bert/blob/88a817c3/tokenization.py#L311 [Retrieved: 20-
02-12]
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Figure 2.8.: NCRF++ makes use of a CRF in combination with RNNs (graphic taken from
Yang and Zhang 2018).

2.4. Multivariate Näıve Bayes

Näıve Bayes is a standard method in machine learning and can be used for text classification.

We make use of it in our spoiler classification baseline models. Its Bernoulli model variant

considers the binary feature of a given word’s occurrence in the document. The multinomial

variant of the model takes into account the number of occurrences of a word (Sammut and

Webb, 2010, p. 714).

P (c|d) = P (c)
∏

1≤k≤nd

P (tk|c) (2.2)

Equation (2.2) shows how, using Näıve Bayes, the probability of a given document d belonging

to a given class c is calculated. nd is the number of tokens in a document and tk the k-th

token, with P (c) being the probability of a specific class.

P (t|c) = Tct
Tc

(2.3)

The probabilities for a token t given the class c are calculated on the training data as detailed

in Equation (2.3). Here, Tct and Tc are the number of occurrences of the term t in c, and the

total number of tokens in c respectively (Manning et al., 2008, p. 253).

A Näıve Bayes classifier classifies a document by maximizing Equation (2.2) for a given

document. Näıve Bayes, when applied to terms in a document, is a bag-of-words model,

meaning that the order of words in the document is not relevant. An approach to remedy this

loss of information is to operate on n-grams of terms instead of terms themselves, thereby

capturing some contextual information.

The application of Näıve Bayes operates under the assumption of conditional independence

of features, that is P (A,B|C) = P (A|C) · P (B|C), where A,B and C are random variables

(Blitzstein and Hwang, 2019, p. 65). In other words and applied to the domain of text

classification, the presence of a specific token does not give an indication as to the probability of

the presence of a different token in the same document. In practice, however, this assumption

is often violated when operating on text (Manning et al., 2008, p. 258). For example, in a
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corpus related to programming, the word “hello” would presumably be very likely to occur in

conjunction and thus in one document with the word “world.”

Smoothing

A problem that often arises when classifying documents using Näıve Bayes is the probability

of unseen words, meaning words that are not in the training data. Any unseen word has the

probability P (t|c) = 0
Tc

= 0. The probability zero of a single word presents a problem, as the

probability of any document containing this word will also be zero (due to the multiplication in

Equation (2.2)). A simple approach to fix this is to use Laplace Smoothing (Manning et al.,

2008, p. 258), which sets the minimal count of any unseen word to one, such that:

P (t|c) = Tct + 1

Tc + |V |
(2.4)

In Equation (2.4), |V | is the vocabulary size, i.e., the number of known terms. In effect, any

word now occurs at least once in each document. Smoothing makes Näıve Bayes more robust

as even documents with unknown words produce sensible class probabilities. Juan and Ney

(2002) have empirically shown that the Laplace smoothing approach is suboptimal, finding

other methods to be preferable. Generally, the suboptimal performance of Laplace Smoothing

can be attributed to the fact that frequencies of words follow the power-law (i.e., there is a

long tail of very infrequent words) (Gale and Church, 1994). In this thesis, we only use Näıve

Bayes with Laplace-Smoothing as a baseline model; as a result, the potential shortcomings of

the approach are not a substantial problem.

2.5. Evaluation Metrics

This section starts by discussing widely adopted metrics for classification tasks. Subsequently,

less widely adopted metrics, specific to segmentation tasks, are discussed.

2.5.1. Accuracy, Recall, Precision, and F1F1F1 Score

Traditionally, many machine learning tasks are evaluated using the measures accuracy, recall,

precision, and F1 score. These metrics can be explained using the confusion matrix. Figure 2.9

shows such a matrix, listing the names for certain categories in a binary classification task.

While the rows show the actual class of a given sample, the columns show the predicted class.

The number of true positives is the number of samples with the actual class 1, which were also

predicted to be of class 1 by a model. In our case, this would be the number of spoilers that

are recognized as such. The other elements of the confusion matrix follow the same general

pattern, indicating the number of samples for all true and predicted class combinations.

Accuracy is defined as the number of correct predictions divided by the number of total

predictions (Sammut and Webb, 2010, p. 9). In the case of the confusion matrix, this is
TP+TN

TP+TN+FP+FN . While accuracy works well for the balanced classification case, it is not well
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Predicted Class
1 0

True Class
1 True Positives (TP) False Negatives (FN)
0 False Positives (FP) True Negative (TN)

Figure 2.9.: A confusion matrix (Sammut and Webb, 2010, p. 209) shows the number of
examples per actual and predicted class.

suited for tasks with class imbalance. To remedy the class imbalance problem, we use two other

metrics: precision and recall calculated using TP
TP+FP and TP

TP+FN , respectively (Sammut and

Webb, 2010, p. 209,p. 902). A combination of the two into just one number allows for easier

comparisons of models. This is called the F1 score and is calculated as follows: 2·precsion·recall
precision+recall .

The generalized form of this score is called Fβ , in which the precision’s impact on the general

score can be increased by increasing β (with β = 1 being equivalent to the F1 score) (Sammut

and Webb, 2010, p. 397). Specificity is defined as TN
TN+FP (Sammut and Webb, 2010, p. 209),

and can be understood as the recall for the negative class.

Another approach to deal with class imbalance is to calculate metrics on a per-class basis

and average them. This per-class approach is referred to as macro averaging (Sammut and

Webb, 2010, p. 292), and increases the impact of small classes. In this case, the accuracy

would then be calculated as
TP

TP+FN
+ TN

TN+FP

2 , meaning the average of recall and specificity, and

is referred to as average class accuracy (Kelleher et al., 2015, p. 417).

2.5.2. WindowDiff and WinPR

WindowDiff and WinPR are evaluation metrics specifically designed for segmentation tasks

(Scaiano and Inkpen, 2012). We will make use of these metrics for evaluating our spoiler

sequence tagging efforts. These metrics can be used to interpret near misses in segmentation

as partially correct results while allowing the leniency with regard to partial correctness to be

adjusted. When segmenting natural language, placing segment boundaries wrong by just one

word can often mean that the solution is close to being correct. When only interpreting a

segmentation as correct, if all segment boundaries are correct, this means that the resulting

score gives little insight into an approach’s actual performance. While F1 score and related

metrics on a word level do take partially correct solutions into account, there is no way to

adjust how far a boundary can be misplaced to be considered acceptable.

Both WindowDiff and WinPR operate on sequences of class labels. They additionally work

with the notion of boundaries. A boundary occurs between any two neighboring labels wherever

they are different from each other.

WindowDiff

WindowDiff, originally introduced by Pevzner and Hearst (2002), works by comparing the

predicted number of segment boundaries with the number of actual segment boundaries.

WindowDiff was developed as an adaption of the Pk metric (Beeferman et al., 1997) to
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overcome several problems with the older metric.

In WindowDiff, a sliding window is moved across the data. The number of windows with the

number of predicted boundaries being equal to the number of actual boundaries is counted.

The equation 1 − number of correct windows
total number of windows gives the actual WindowDiff score. More formally,

with N being the number of items to be segmented and k the window size, the score is given

by Equation (2.5), where Ri,i+k and Ci,i+k denote the number of real and computed class

boundaries, between two class labels, respectively. i represents the start index and i+ k the

end index of the segment.

WindowDiff =
1

N − k

N−k−1∑
i=0

(Ri,i+k 6= Ci,i+k) (2.5)

Figure 2.10 illustrates WindowDiff by showing the first three windows over two given sequences.

Lines indicate boundaries, and background colors indicate the element classes, meaning that

in the case of text segmentation, each token might be represented by a square. The first

window is considered correct; the second one is not as only the gold-data contains a boundary.

The third window, however, illustrates the idea of WindowDiff. While the boundaries are not

perfectly aligned, in this case, they both fall into the same window, which is considered correct.

Gold

Predict

B0,2

B1,3

B2,4

Figure 2.10.: In WindowDiff, different positions of the sliding window are evaluated based on
the number of boundaries they contain (graphic inspired by Scaiano and Inkpen
2012).

This way, WindowDiff produces a score that is equal to 1−accuracy for all windows (where a

window is correct if the number of boundaries inside it is correct). Consequently, for WindowDiff,

lower scores indicate a better result. Note that a window size of k = 3 means that only two

potential boundaries are considered in each window.

Scaiano and Inkpen (2012) list, among others, these potential shortcomings of WindowDiff:

• The single score of WindowDiff does not allow for prioritizing some errors over others.

This is, for example, useful when false positives have less cost associated with them than

false negatives.

• Adjusting the tolerance for near misses is only possible by changing the window size.

This, however, also changes the fraction of windows that have a boundary on them,

altering the ratio of positive and negative samples. Due to WindowDiff working similarly

to accuracy, it is greatly affected by class imbalance.
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WinPR

In an effort to address the potential issues with WindowDiff, WinPR was developed by Scaiano

and Inkpen (2012). WinPR works differently to WindowDiff in that it produces a confusion

matrix of error types. Said matrix can be used to calculate variants of precision and recall

(called WinP and WinR, respectively). WinPR works similarly to WindowDiff in that it also

evaluates sliding windows across the entire sequence. In WinPR, however, for each window, the

evaluation is not only a check of whether or not the numbers of boundaries match. Instead,

extra boundaries are counted as false positives, missing ones as false negatives, extending

to all four classes of the confusion matrix. In contrast to WindowDiff, WinPR considers the

boundaries of each window to be included. I.e., instead of 2 boundaries being considered with

a window size of k = 3, WinPR considers 4.

2.6. Information Gain

Information gain is a measure of how two random variables correlate. In this thesis, it is used as

a means for identifying features, specifically unigrams, indicative of spoilers (see Section 7.4.3).

Equation (2.6) gives a formula for calculating the information gain for two discrete such variables

S and Z. Where H(X) is the entropy of a random variable, and H(X,Y ) is the joint entropy

of two random variables (Li et al., 2014).

IG(S;Z) = H(S) +H(Z)−H(S,Z) (2.6)

Equation (2.7) defines the entropy of a random variable P . Entropy is a measure for the

probability distribution of the i values a discrete random variable can take, with a low entropy

value indicating even distributions (Downarowicz, 2007). When using the base-two logarithm,

entropy is measured in bits or shannons. In the case of the natural logarithm, entropy is

measured in nats (Latham and Roudi, 2009).

H(P ) = −
n∑
i=1

pilog2(pi) (2.7)

In the case of classification in machine learning, information gain can be used as a means of

measuring the correlation of a random feature variable with the random class variable (Li et al.,

2014). Intuitively, if the information gain of a feature, with regard to a class, is high, the

feature is salient.
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3. Related Work

In this chapter, we will discuss previous work on the automatic detection of spoilers. We will

discuss the different approaches to the task that have been taken and how they relate to the

questions we explore in this thesis.

3.1. TV Tropes Dataset

Boyd-Graber et al. (2013) introduced a dataset for detecting spoilers. The dataset is based

on TV Tropes data. Users of the TV Tropes platform collect occurrences of common motifs

in TV shows and other media; these are provided in free text form by users. Sections of

sentences can be tagged as spoilers. The released dataset is a collection of sentences, the

title of the work (TV show or movie) they concern, and a binary feature indicating if the

sentence constitutes a spoiler. Figure 3.1 shows one instance of a spoiler and one instance of a

non-spoiler from the TV Tropes dataset. Note the second example ends in a period that is not

an actual sentence ending; this is evidence of the fact that individual sentences in this dataset

were extracted from longer documents. Sentences in the dataset have an average length of

20.03 whitespace-separated tokens. The dataset is balanced, meaning it has as many spoilers

as non-spoilers. Additionally, each included work only occurs in exactly one of the dev1, dev2,

test, and train splits. The exact sizes of each of the four splits are listed in Table 3.1.

Boyd-Graber et al. target a relative size of 10% for each of the development and test sets

with the training set containing 70% of the total sample count. The actual distribution diverges

from that target, presumably to satisfy the constraint of not including a single work in two

separate sets.

A newspaper Easter Egg in “The Reichenbach Fall” reveals that Arthur Conan Doyle
exists in the Sherlock universe as a well-known writer.

Non-Spoiler

“The Hounds of Baskerville”: The Grimpen Minefield , which is prominently introduced
soon after Sherlock and Watson arrive on Dartmoor (like the original story’s Grimpen
Mire) , then forgotten about until the climax, when Dr.

Spoiler

Figure 3.1.: The dataset by Boyd-Graber et al. (2013) consists of single sentences extracted
from TV Tropes pages on TV shows or movies, in this case the TV show “Sherlock.”
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Table 3.1.: The splits of the Boyd-Graber et al. (2013) have different sizes.

Split Number of Examples Number of Different Works

Dev1 1066 71
Dev2 1748 72
Test 1477 62
Train 11974 679

As a classifier, Boyd-Graber et al. (2013) use an SVM (Support Vector Machine), initially

classifying documents based on their tokens, token-bigrams, and stemmed tokens. The authors

calculated the information gain of meta-information, specifically the genre, with regards to the

sentence being a spoiler. They successfully used this metadata and other metadata, such as

runtime and initial air date, to enhance their classification model. Chang et al. (2018) operate

on this dataset and achieve the best results known to us to date. Their approach is discussed

in detail in Section 3.4.

Table 3.2.: Classification results on the TV Tropes dataset are evaluated using the accuracy and
F1 score. Models using genre information outperform equivalent models not using
it. Approaches using additional meta-information are marked using the * symbol.

Model Accuracy F1 Score

Boyd-Graber et al. Baseline SVM 0.6019 0.6947
Boyd-Graber et al. SVM with Genre* 0.6777 0.6327

Chang et al. CNN 0.7082 0.7351
Chang et al. Sentence Encoder of HAN 0.7231 0.7480
Chang et al. Sentence Encoder 0.7183 0.7584
Chang et al. Sentence Encoder + Genre Encoder + Last Hidden State* 0.7556 0.7847

Table 3.2 shows a selection of existing results on the TV tropes dataset. Some approaches,

in addition to the TV Tropes sentences themselves, also rely on additional meta-information.

3.2. Using Story Documents

Guo and Ramakrishnan (2010) interpret the problem of spoiler detection as a ranking problem,

ranking texts by their likelihood to contain a spoiler. They build their model on a manually

annotated dataset of IMDb reviews. Their basic approach is to use LDA (Latent Dirichlet

Allocation) models (Blei et al., 2003) to assess how well a movie review matches the movie’s

synopsis.

Maeda et al. (2016) propose a method to detect spoilers based on word co-occurrence with

story documents in the domain of Japanese novels. They build a set of words associated

with spoilers for each document, using a combination of manual annotations and automatic

extraction. They establish that many of these spoiler words tend to occur in the latter half of

story documents. Based on this, they suggest checking word co-occurrences of reviews with
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the latter half of story documents they relate to, in order to determine if a review constitutes a

spoiler.

We will also make use of story documents in our case summaries (see Section 6.3). Relatively

simple aspects like word co-occurrence and document similarity are established as meaningful

features, with regard to detecting spoilers. In light of this, we suspect that our model will be

able to improve its results based on story document input.

3.3. Feature Engineering for Spoiler Detection

Jeon et al. (2016) used an SVM to classify tweets about TV programs regarding whether they

contain spoilers. To facilitate this, they extract different features from the raw text to then

train the SVM. They used four different sets of features, comparing their effectiveness:

1. Named Entity: The frequency of named entities in a tweet. Named entities are, among

others, the names of “people, organizations, and geographic locations” (Grishman and

Sundheim, 1996; Yadav and Bethard, 2018).

2. Frequently used verb: The frequencies of a set of specific, frequently used verbs in a

tweet.

3. Objectivity: The objectivity of a tweet, meaning the absence of words conveying emotion

in the tweet. They extract this feature using existing subjectivity estimation models.

4. Tense: The predominant tense in the document.

In their experiments, objective tweets were also often those referencing another web page; for

that reason, the binary feature of URLs being contained in the document was also included. The

feature was not analyzed separately but only applied in conjunction with objectivity, which is

why we do not explicitly list is. They found that, while tense, when used as the only features in

an SVM, yielded the best F1 score, it was outperformed by other features in terms of precision.

This insight, combined with experiments on the performance of combined features, led them to

the conclusion that a combination of the features was necessary to achieve the best results

in spoiler detection. Generally, they found each of the features to contribute to the model’s

performance significantly.

Iwai et al. (2014) took a sentence-based approach to spoiler detection. They worked on

a dataset that they extracted from review comments on the IMDb platform1, which they

manually annotated. In their bag-of-words approach, they used stemmed versions of contained

words without any stop-word filtering as features. Additionally, they generalize over names

in the input by replacing them with specialized tokens for categories of names (e.g., author,

character, other). They compared five different learning algorithms (Näıve Bayes, SVM,

Logistic Regression, Decision Tree, and k-Nearest Neighbor), with Näıve Bayes yielding the

best performance. Finally, a user interface to enable users to use these models is proposed.

1https://imdb.com
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Their proposed interface involves blacking out sections that are predicted as spoilers. A slider

lets the user decide at which level of certainty to start blocking out sections.

For our purposes, the feature engineering efforts are not directly required, as we are using a

deep learning approach. However, we are interested in inspecting our model (see Question 4).

For these purposes, it is useful to know which features have previously been found to work well.

The knowledge of which features have successfully been used allows us to assess if our models

make use of similar features.

3.4. Neural Approaches

Ueno et al. (2019) rely on an LSTM model to classify spoilers in Japanese review comments.

As word representation, fastText2 vectors are used. They perform binary classification on a

sentence level using an LSTM model, with the model’s input being the sequence of word vectors

for words in the sentence.

Chang et al. (2018) have produced the best results (that are known to us) to date on the

TV Tropes dataset, using a deep learning approach. They use a GRU-based model with GloVe

embeddings3. Specifically, a bidirectional GRU model is used, meaning recurrent units from

both temporal directions are used in any given token’s classification (Goodfellow et al., 2016,

p.383). They make use of meta-information in the form of genres by building genre embeddings.

The genre embeddings are used as input to an attention layer, thereby attributing importance

to different tokens based on which genre a spoiler is associated with. Chang et al. list an

example to motivate this design: “the word ’kill’ is more likely to be a spoiler in the thriller

genre than in the romance genre.”

Both the neural approaches discussed here use recurrent architectures based on word embed-

dings. The word embedding approach means less training data is required as word embeddings

were pre-trained using different texts (Ueno et al., 2019). Especially the work by Chang et al.

(2018) is relevant to us in that they operate on the TV Tropes dataset and provide a basis for

comparison with other recent approaches. In contrast to these two approaches, we will not use

external word embeddings. Instead, BERT is used as an end-to-end model.

2https://fasttext.cc/
3https://nlp.stanford.edu/projects/glove/
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In this chapter, we discuss the Reddit dataset and the processing necessary for our purposes of

using it as a machine learning dataset for spoiler detection. For an introduction into the basic

terminology and concepts associated with Reddit, see Section 1.3.

We will first explore the dataset and provide an understanding of the specific information

required for building a spoiler dataset. Later on, the data processing to obtain our final dataset

is detailed.

The Reddit data is readily available to the research community due to the work of Jason

Baumgartner1; we will refer to this as the Pushshift dataset. On his website2, he provides posts

and comments dating back to the inception of Reddit. The data is available in a JSON based

format. Implementation details for work with this dataset are explained in Chapter 5.

Gaffney and Matias (2018) pointed out that the dataset is not complete and that a relatively

large number of items are missing. While missing data has the potential to bias machine learning

models, they point out that, as long as no “claims about the population” are made, the impact

on the models’ validity should be minimal. Since building our dataset will involve resampling

for class balance, we estimate the chances of quality reduction due to biases introduced by the

sampling to be minimal.

We aim to build a dataset that, while specific to Reddit, is as generally applicable as

reasonably possible. While any models trained on this data are specific to Reddit, we aim to

make this bias as small as possible to allow the transfer of experiences from this specific task

to the general detection of spoilers. Our desire to not be overly Reddit specific means we strive

to remove examples that would not generally be recognized as spoilers. An example of this is

the use of spoiler tags to mark solutions to riddles, which will be discussed in Section 4.2.1. In

Section 4.1.1, we explore the relevant data to aid us in designing the data cleaning process in

such a way that the final dataset satisfies our requirements.

We operate on a dataset of 5.6 billion comments (all Reddit comments available in the

Pusshift dataset up to April 2019). After filtering as described in this chapter, the dataset

reduces to 2.6 million comments, with 50% of them containing spoilers.

4.1. Spoilers On Reddit

Generally, an essential distinction between two types of spoilers annotations on Reddit is to be

made:
1https://old.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_

reddit_comment/ [Retrieved: 19-06-24]
2https://files.pushshift.io/reddit
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1. Inline Spoiler annotations: a specific part of a post’s or comment’s text is marked as a

spoiler. An example of this is the sentence “Apocrypha. Makes the College look like

childish scribbles.”3, in which only the name of a place is marked as a spoiler.

2. Post spoiler annotations: An entire post is marked as containing spoilers, meaning the

comments may contain spoilers, or the linked content contains spoilers. An example

of this is the post titled: “Book Readers Episode Discussion - S03E06 ’Immolation’ -

Spoilers All”4 calling for discussions of an episode and allowing all spoilers, even those

for an associated book series, in the comments.

We will mainly focus on inline spoilers, as these will provide positive spoiler examples for our

dataset. Not every comment associated with a spoiler post, or even the original spoiler post’s

text, should be considered as a positive spoiler example. The tag might just have been added to

mark the content linked in the original post as containing spoilers. Post annotations, however,

are required in our approach when building the set of negative examples (see Section 4.2.3).

4.1.1. Data Exploration
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Figure 4.1.: The amount of inline spoilers per month increases with the total number of
comments per month.

Figure 4.1 shows the number of comments containing inline spoilers per month in recent

Reddit history. These are the comments we are interested in and those that form the basis for

our dataset. The graph shows a significant spike in December of 2015. Figure 4.2 is a stacked

bar chart; it was built to explain spikes in the data such as the one in late 2015. The total size

of the bar represents the total number of spoilers in that month; its color shows how these

comments are distributed among the different subreddits. “Others” includes all subreddits that

are not individually colored in the plot. We combined two of the largest communities discussing

the TV series “Game Of Thrones” to help identify the impact of the series on the total number

3https://old.reddit.com/r/skyrim/comments/18mf36/where_would_you_live/c8g559p/ [Retrived 20-
02-13]

4https://old.reddit.com/r/TheExpanse/comments/8jybvs/book_readers_episode_discussion_

s03e06_immolation/ [Retrieved 20-02-13]
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Figure 4.2.: The color indicates to which subreddit inline spoilers were posted.

of spoilers. In December 2015, a new Star Wars movie was released5, and the spike can largely

be explained by the comments that were posted to the StarWars subreddit in this month (see

Figure 4.2). Many spikes in the plot seem to be, at least to a degree, explained by a significant

uptick in comments containing spoilers in a single community (e.g., masseffect in 2018-03 and

2017-03). The spike in September of 2018, however, can not be explained in this way. In

fact, none of the top 5 subreddits in this month exceeded anime in terms of the number of

spoilers. Therefore, we would need to seek the effect in the long tail of subreddits with few

spoiler comments. Both plots show all inline spoilers, not just those from subreddits that are

included in our final dataset (see Section 4.2.1). The graphs do not show any data before

2010. The first month with a significant amount of inline spoilers is October 2009 (with 125

examples), while the very first spoiler annotation appears in December of 2008. Only roughly

0.042% of all comments contain inline spoiler annotations.
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Figure 4.3.: Comparing comment lengths for the spoiler and non-spoiler comments reveals that
spoiler comments are, on average, longer.

5https://www.imdb.com/title/tt2488496 [Retrieved: 20-02-12]
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Figure 4.3 shows a breakdown of the length distributions of comments belonging to the

different two classes (either containing a spoiler or not containing one). Note that this is a

visualization of the lengths before any filtering, which will be introduced later in this chapter.

Specifically, two potential issues for our final dataset we observed in this data exploration step,

each of these will be addressed later in this chapter.

• The very early spike in non-spoiler comments is due to comments with the text [deleted].

These represent comments that were deleted by their poster and can easily be filtered

out.

• The spike at 335 is caused by an automated comment in the manga subreddit, explaining

their spoiler policy and giving an example; this problem is addressed in Section 4.2.2.

4.1.2. Subreddit-Specific Rules

Different subreddits on Reddit set up their own rules for how to handle spoilers. While there are

subreddits that allow all spoilers without tagging them (e.g., www.reddit.com/r/freefolk,

a community discussing the TV series “Game of Thrones” and its associated book series),

many others have a strong policy that explicitly forbids untagged spoilers. When looking for

negative spoiler samples, this means we must implement a policy to prevent such subreddits

from occurring in our data. We chose to use a manual white list of subreddits that are

well-moderated and have explicit rules on spoilers (the exact approach is detailed during dataset

creation in Section 4.2.1).

4.1.3. Spoiler Annotations

Both types of spoilers, inline and post based, as introduced at the beginning of Section 4.1,

have been used by users long before Reddit actively supported such annotations. They were

implemented by the users using different workarounds. Post spoiler annotations have been an

official Reddit feature since early 2017.6 In mid-2018 Reddit introduced official inline spoiler

annotations.7 Due to official options only becoming available recently, there is a large variety

of workarounds that were, historically, used on Reddit.

For post spoiler annotations we found there to be two workarounds that are commonly

used:

1. Users mark the post as NSFW (not safe for work), which is a long-standing Reddit feature

that, among other things, prevents a thumbnail picture of a link’s content from being

shown.

2. Users start the title of the post with an explicit mention of spoilers, often in brackets or

parentheses.

6https://www.reddit.com/r/announcements/comments/5or86n/spoilers_tags_for_posts/ [Retrieved:
20-02-12]

7https://www.reddit.com/r/modnews/comments/8ybmnq/markdown_support_for_spoilers_in_

comments_is_live/ [Retrieved: 20-02-12]
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We found a large variety of different formats in our exploration of inline spoiler annotations;

various formats were used in different communities and at different times. All annotations follow

the schema of marking a section of text. Some annotations, optionally, allow for supplying

a topic which the spoiler concerns. For example, the official notation that has recently been

introduced marks spoilers like this: >!spoiler!<, with some communities advertising the option

to provide the topic of the spoiler [spoiler topic] >!spoiler!<. See Appendix A for a full list

of the notations we used for in our data gathering.

4.2. Building The New Dataset

Based on the historical data from Reddit published by Jason Baumgartner8, we build a new

dataset. Our dataset differs from previously published spoiler datasets in that it not only allows

for a binary classification task but also for a token-based approach. Iwai et al. (2014) built a

sentence based model (see Section 3.3), but their dataset is not available. Further, our dataset

is much larger than existing datasets, covering millions of samples rather than thousands.

Much of the previous work relied largely on content manually annotated during the research

process (Iwai et al., 2014; Jeon et al., 2013, 2016) to use as training data. Following Boyd-

Graber et al. (2013), we work on user-generated content with user-generated annotations.

As pointed out by Boyd-Graber et al. (2013), collaborative editing, as is performed on TV

Tropes articles, means that “users will edit the post until a consensus [spoiler] annotation is

achieved”. On Reddit, no such collaborative editing takes place. Instead, users create posts

and are expected to follow certain, subreddit-specific rules (see Section 4.1.2). No process

of finding the correct balance is in place. Instead, users might opt to defensively annotate

their comments as containing spoilers, to avoid repercussions. Such an approach would lead

to a high number of false positives in spoiler annotations. An example of this would be this

comment: “Not sure if this is a spoiler but Can you heal your robot ride or is it better

to just find a new one?”9 (where bold font indicates tagged spoilers) which tags a minor

detail in a game as a spoiler. On the other hand, poor moderation and careless users could lead

to many false-negative annotations. An example of this would be this excerpt from a longer

comment, detailing the death of a Star Wars character: “Rey is too impulsive and Snoke dies.

[..]”10.

It is therefore conceivable that the Reddit data, due to the lack of collaborative editing, is less

reliable. Another problem that we see is that of which words exactly spoiler annotations cover.

It is not at all clear where a boundary should be placed (see Section 7.1.1). The problem of

handling non-expert annotations in language processing has been explored before, for example,

by Snow et al. (2008).

8https://old.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_

reddit_comment/ [Retrieved: 19-06-24]
9https://old.reddit.com/r/PS4/comments/5wkws6/horizon_zero_dawn_launch_week_discussion/

dee2zgp/ [Retrieved: 20-02-12]
10https://old.reddit.com/r/StarWars/comments/8j1yb6/what_is_a_character_flaw_of_rey/

dywylce/ [Retrieved: 20-02-12]
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Input:
5.6 Billion comments

Filtered Comments
No duplicates, low score comments etc.

Filtered Spoiler Comments
≈ 0.024%≈̂1.2 · 106 samples

Filtered Non-Spoiler Comments

Non-Spoiler Comments Balanced

Final dataset
2.6 million samples

Filtering

Extract Negative Samples

Split

Merge

Figure 4.4.: A simplified representation of the dataset transformation process shows that a
matching number of non-spoiler comments is collected.

We take several measures to improve the overall quality of the data. The basic procedure we

followed when building the dataset is as follows:

• Filter:

– Build a whitelist of subreddits deemed suitable, filter comments based on this

whitelist.

– Remove comments based on different criteria to improve the data quality (see

Section 4.2.2).

• Split: Remove comments containing spoilers and build a separate set from them.

• Extract negative samples: For each spoiler-comment select a non-spoiler comment

from the same subreddit.

• Merge: The extracted non-spoiler and spoiler comments form the final dataset

Figure 4.4, illustrates this procedure.

Unlike Boyd-Graber et al. (2013) we do not assign documents to the training, validation,

and test sets based on their topic. Instead, we randomly distribute comments into the different

splits. A temporal ordering (i.e., everything to a specific point in time is included in the training

set, with subsequent data making up development and test set) would also be possible. It could

yield interesting insights, especially when comparing the performance of models on shuffled

data with those of the temporal data. Building datasets based on topics would also, at least to

a limited extent, be possible by including only specific subreddits in each dataset, we leave this

as an approach for further investigations of the topic.
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4.2.1. Subreddit Whitelisting

As discussed in Section 4.1.2, we need to implement subreddit filtering to include only well-

moderated communities with a reasonably strict spoiler policy. Broadly speaking, we encountered

three different spoiler policies:

• None: Everything is allowed to be posted without tagging (e.g., www.reddit.com/r/

freefolk)

• Limited: Some subreddits allow posting of information that would usually be considered a

spoiler after a certain time. An example of this would be www.reddit.com/r/survivor,

which has an express policy of prohibiting unmarked spoilers for a specific time after the

airing of an episode. “There is a spoiler protection period in place for new episodes. It

starts as the episode begins airing and lasts until Friday morning.”11.

Another example would be specifically allowing older content to be posted. The “harry-

potter” subreddit, for example, allows spoilers from the original book and movie series

but requires those for newer movies in the franchise to be tagged.12

We also consider subreddits that make spoiler tagging optional to be in this category if

spoiler tagging is prevalent.

• Strict: Spoilers need to be marked, no matter how long ago the content released.

We exclude the first category from our dataset but include both the second and third. The

reasoning for this is that we would like a model trained on the dataset, to be able to approximate

human policies on spoilers. It is, therefore, useful to limit our dataset to subreddits, which, at

least to a certain extent, limit the visibility of spoilers.

Practical concerns also limit us from ensuring all subreddits have a strict spoiler policy.

Reviewing the policy and its application is already a time-consuming task for 200 subreddits,

but validating this for the entire history of Reddit (as spoiler policies may change over time)

would make it even more time-consuming. Another reason for excluding subreddits from our

whitelist is the use of spoiler tags for other purposes. An example of this is the subreddit

PictureGame13, where spoilers are used to hide the solutions to picture-based riddles. Such

uses of the tags could also be considered spoilers; we still decide to exclude them as they are

very specific to Reddit. As laid out in the introduction for Chapter 4, we aim to make the

dataset non-specific to Reddit.

We collected a list of the 200 subreddits with the most inline-spoilers. Based on the criteria

outlined above (which we manually applied) we eliminated the following subreddits from this

list:

11https://reddit.com/r/survivor/wiki/spoilerpolicy?v=cee5368c-7a55-11e9-a64e-0e5b1453035a

[Retrieved: 20-02-12]
12https://old.reddit.com/r/harrypotter/wiki/oursub?v=54bd1b34-9c12-11e9-9730-0ec7dedeebd0

[Retrieved: 20-02-12]
13www.reddit.com/r/PictureGame/
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• alttpr

• chess

• geoguessr

• JapaneseInTheWild

• NFLstreamLives

• PictureGame

• puzzles

• riddles

• crosswords

All of these are removed for misappropriating spoiler tags. In many cases, spoiler tags are used

for hiding solutions to specific riddles or questions. No subreddits are excluded for having no

spoiler policy. While there are candidates for this (e.g., /r/funny which has no explicit policy)

subreddits that show up in the top 200 list do by definition have a culture of actively using

spoiler tags. The remaining subreddits make up our whitelist and are listed in Appendix B. It is

important to note that just by taking the list of subreddits with the most spoiler annotations,

we are already likely to select subreddits with a stricter spoiler policy. Although, we are also

biasing towards subreddits with a large number of comments since we are looking at absolute

spoiler counts instead of the percentages of comments containing spoilers.

4.2.2. Comment Filtering

The task of ensuring good data quality can be separated into ensuring it for each of the classes,

both non-spoilers, and spoilers. In the case of the spoiler class, we strive only to include

comments which are marked as spoilers for their actual content constituting a spoiler. A

counterexample, which we would like to exclude, are templated comments that instruct the user

on how to use spoiler annotations (as these comments usually do not contain actual spoilers).

Moderator Comments

An example of what we encountered in terms of false-positive spoilers are instructional posts

explaining, using examples, how a spoiler should be tagged.14 Such comments often follow

subreddit specific templates and therefore represent easily classifiable examples. They are

not useful for our dataset, as a model, expected to work on unseen comments, would barley

benefit from arbitrary and repetitive examples like this. They can, usually, be caught using the

simple heuristic of blacklisting moderator’s comments. More specifically, we filter all comments

distinguished as moderator comments. Distinguished comments indicate that moderators are

posting in their role as moderators.

Duplicates

Duplicate comments, both in the spoiler and non-spoiler examples, are a potential source of

unwanted data. For example, posts explaining the usage of spoilers, as explained in Section 4.2.2,

14https://old.reddit.com/r/manga/comments/3h9vzp/slany_groups_actively_translating_break_

blade/cu5ohf0/ [Retrieved: 20-02-12]
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might not always be marked as moderator comments. If they are not marked as moderator

comments, they can be caught by removing all duplicates. Generally, user-created comments are

unlikely to constitute duplicates, meaning any duplicates are unlikely to be real user comments.

The exception to this are very short comments like “Awesome!”.

We do not consider those to be relevant examples for our dataset; no meaningful language

understanding is necessary if the exact comment has been seen before. As a result, duplicates

likely represent examples not fit for our dataset.

Ideally, near duplicates could also be eliminated, for example, if a moderator comment

explicitly addressed a specific user, but everything else was following a template. Since the full

dataset’s size is in the order of billions of samples, a full cross-product to find duplicates would

be computationally very expensive. We considered two approaches to duplicate detection:

1. Locality Sensitive Hashing (LSH): One approach to avoid a full cross product would be

to use a locality sensitive hashing algorithm like MinHash or SimHash. These approaches

would enable us to find near matches without performing comparisons of all document

content combinations. It, however, still requires comparisons on the full cross-product

of hashes. In the case of 5.6 billion comments we consider this to be computationally

infeasible.

2. Conventional Hashing : Conventional hashing functions aim to minimize the probability

of collisions. Therefore they are only suitable to find exact duplicates. This does, however,

significantly decrease the computational burden of finding duplicates as, after a hashing

operation for each document, only a grouping operation is needed to find duplicates.

Given our computational resources, this effectively gave us the choice of two approaches:

1. Use LSH: Instead of using LSH on the whole comment corpus, it would also be possible

to only apply it to the dataset that was already filtered to be balanced. This balanced

dataset contains 2.6 million comments, making the computation feasible. A drawback

would be that the dataset could potentially become unbalanced as duplicates are unlikely

to be evenly distributed across both classes.

2. Conventional Hashing : Due to the nature of exact matches, only a groupBy operation

is needed, making this approach feasible to use on the entire comment corpus.

We decided to use a conventional hashing function. md5 was chosen for its wide availability

and relative speed. The chances of collision can, therefore, be calculated to be minimal; in

fact (using an approximation of the birthday problem), a 50% risk of any collision occurring

would only be reached at around
√
2 · 2128 · ln( 1

1−0.5) =
√
2129 · ln(2) ≈ 2.17 ·1019 documents.

Cryptographic weaknesses of md5 are not relevant as we are not dealing with adversarial data.

4.2.3. Extracting Negative Samples

We collect non-spoiler comments to, in combination with the spoiler comments, build a balanced

dataset. The näıve approach is to consider any comment that does not contain a spoiler
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annotation to be a negative example. This approach is susceptible to including false negatives

due to the, apparently, common practice of allowing untagged spoilers in comments, if the

posts themselves are marked as spoilers. For this reason, we only sample comments from posts

that are not marked as a spoiler. To avoid topic bias, for each comment containing a spoiler, a

spoiler-free comment from the same subreddit is sampled. Biases could potentially be further

reduced by sampling from the same time period; we did not choose to do this.

4.2.4. Dataset Format

The document dataset is provided as a simple collection of JSON documents with a field

indicating the spoiler status and another containing the text. For the token classification task,

tokenization has to be provided to enable token-specific metrics to be consistent across different

approaches. We, therefore, build a dataset in the CoNLL-U Plus format15. As detailed in

Section 1.3, different spoiler annotation schemes were and are in use on Reddit, all of these are

unified into a single, token-level, binary feature in the dataset.

4.3. Summary and Final Dataset

We built a dataset based on collected Reddit comments. After finding all spoiler comments

(roughly 2.4 million), we excluded many of them based on different quality criteria, resulting in

around 1.3 million comments. Finally, we joined each spoiler comment with a non-spoiler one

to form a balanced dataset. This balanced dataset consists of 2.6 million comments from 191

subreddits. 79% of documents are longer than 10 (white-space separated) tokens.

15https://universaldependencies.org/ext-format.html
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This chapter first discusses the approach we took to implementing the data processing pipeline

for creating the spoiler dataset. It continues by giving some practical information related

specifically to working with the Pusshift dataset by Jason Baumgartner1.

The majority of this chapter targets those who want to work with the Pushshift dataset

themselves, regardless of which aspect they want to analyze. We aim to provide practical

insights to avoid pitfalls in the early stages of developing programs to analyze the dataset.

Finally, we provide some insight into the machine learning tools we used.

5.1. Software Toolkit

Initially, we took the approach of importing the data into a PostgreSQL (Stonebraker and

Rowe, 1986) database instance. This has the benefit of potentially allowing for a much smaller

database size when committing to a fixed schema and only extracting the desired fields. In the

process of analyzing the data, however, requirements for additional data fields and different

data ingestions logic emerged numerous times. For example, we initially did not import the

comment score but later decided to add it as a criterion for filtering. The parsing of spoiler

tags had to be iterated on as we discovered different spoiler tagging syntax. While importing

the dataset initially was a process of a few days on a single desktop machine, the prospect of

rerunning the entire data ingestion when encountering any additional issues led us to look at

different options.

In the end, we used PySpark (Zaharia et al., 2016) on a Hadoop2 cluster for our processing

instead, relying on PySpark’s SQL abstractions to perform operations on the dataset. While

this approach is resource-intense, it allowed for relatively quick iteration on the data ingestion

logic.

5.2. Working with the Pushshift Dataset

The dataset is split into separate compressed files on a monthly basis, with comments and

posts being split into individual files. The monthly datasets include some comments and posts

that, according to the creation timestamp, were actually posted in the next month. When

working with one or several monthly subsets of the data, it is also important to realize that

1https://old.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_

reddit_comment/ [Retrieved: 19-06-24]
2https://hadoop.apache.org/
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comments from the beginning of the given month are usually in response to posts from the

previous month.

The dataset comes compressed using different compression schemes (bz2, xz, and zstd),

which are all supported by recent HDFS (Hadoop Distributed File System)3 versions, making it

is a good fit for an HDFS based storage system.

When working with the content of the individual JSON documents, the following facts might

be helpful:

• Ids of the form ’t1 19az’ are, in fact, base 36 encoded integers, prefixed with the item

type. t1 represents the item type, in this case, a comment. Further item types are

specified in the official Reddit documentation4 This way, each element can actually be

identified by an integer instead of a string.

• The characters < and > are represented using their HTML escaped form (&lt; and

&gt;).

• There are posts with a subreddit id that is not present in the file subreddits.csv,

which is also offered as part of the dataset. We believe that this is due to subreddit ids

having been changed at one point in time. As a result, it is advisable to rely on the

subreddit names instead of their ids.

• Some posts come without subreddit information; these appear to be advertisements. For

our application, we just ignore them.

• Deleted and removed comments are included in the dataset, their text and author are

replaced by “[deleted]” or “[removed].”

• As is to be expected in a document-based representation, the format of comments and

posts does, in fact, change slightly over time. New fields for new concepts on the page

are introduced which sometimes replace old fields.

• While examples of this are exceedingly rare, there are cases of strange data inside the

text field. We did, for example, encounter a comment including a null byte as well as a

comment including ASCII control characters.

We operated on 5.6 billion comments, starting from the inception of Reddit, up to and including

April 2019. This data comes up to a total of 614.026 GB in size when bz2 compressed.

Our implementation for the data processing is available on GitHub5.

5.3. Machine Learning Models

The BERT models we use are based on the Transformers library (Wolf et al., 2019), which

integrates with PyTorch (Paszke et al., 2019). Our neural network implementation, based

3https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html [Retrieved: 20-02-12]
4https://www.reddit.com/dev/api/ [Retrieved: 20-02-12]
5https://github.com/hatzel/spoiler-data-processing
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on the Transformers library and PyTorch, is also available on GitHub6. It includes code

paths for mixed-precision learning using apex7. While mixed-precision could yield performance

improvements, we did not end up using it for the final results. Our repository also includes

implementations for the WindowDiff and WinPR metrics. Sklearn (Pedregosa et al., 2011) was

used for many of the evaluation metrics, as well as for the Näıve Bayes baseline model.

6https://github.com/hatzel/neural-spoiler-detection
7https://github.com/NVIDIA/apex
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This chapter discusses the models we use and their architecture. We make comparisons of

results possible by applying our model architecture to the dataset previously introduced by

Boyd-Graber et al. (2013). This means our models are trained on two datasets, the TV Tropes

dataset and our own Reddit dataset. We additionally train a baseline model on each of the

datasets. The two main tasks derived from our research questions are sequence classification

and token classification. We will also consider story-document-supported models for document

classification. To facilitate the exploration of model internals, we discuss our methodology for

visualizing attention as well as possible shortcomings of such an approach.

6.1. Document Classification

The document classification task involves classifying entire documents into two classes: spoilers

and non-spoilers. The same classification has been applied previously to the TV Tropes dataset

by Boyd-Graber et al. (2013) and Chang et al. (2018).

6.1.1. Baseline Classification Model

We hypothesize that specific marker words are very indicative of a comment containing spoilers,

making it a suitable and simple feature for a baseline model. If a sentence contains the

word “killed,” for example, we presume this makes it vastly more likely to be a spoiler. This

is supported by the fact that Jeon et al. (2016) successfully used specific verbs as features

(see Section 3.3). Boyd-Graber et al. (2013) published a list of unigrams that had the most

information gain with respect to spoiler classification in their dataset.

Our implementation is based on the multivariate Näıve Bayes classifier, with Laplace Smooth-

ing, developed by Pedregosa et al. (2011). We use their simple regular expression-based tokenizer

to extract the tokens. Any sequence of two or more alphanumeric patterns is considered a token,

while punctuation is ignored. Our baseline model works using both unigrams and bigrams,

meaning not only individual terms, as discussed in Section 2.4, are used as features, but also

pairs of consecutive words. This has the potential of capturing some contextual information of

words.

6.1.2. BERT Classification Model

To assess the performance of current Transformer-based neural approaches for the spoiler

detection task, we make use of the BERT model (Devlin et al., 2019). We use the pre-trained
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BERT model, as provided by Devlin et al. (2019), and apply additional fine-tuning. While there

are other Transformer-based pre-trained models available (Radford et al., 2018; Yang et al.,

2019; Radford et al., 2019), we use BERT for its wide adoption and available tooling.

Our model is based on the cased variant of the BERT model. We chose this variant as

previous work has shown named entities to be a salient feature for spoiler detection (Jeon et al.,

2013) and due to the fact that BERT’s cased variant was used for named entity recognition

tasks by Devlin et al. (2019). Capitalization of words is a good feature in named entity

recognition due to named entities (in English) generally being capitalized. The BERT model

is extended by a final classification layer with a single output value. This way, binary spoiler

annotation on the document level can be performed. Figure 6.1 shows the general architecture

of our model. In the graphic, the blue box represents the standard BERT architecture; the

dashed arrows represent the fact that all inputs affect all outputs, albeit over several encoder

steps. w represents the linear layer that transforms the sequence representation C into a single

real-valued output, which is converted to a class by comparing it to a decision boundary.

BERT’s application to the sequence labeling problem is discussed in Section 6.2.2.
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Figure 6.1.: We add a single linear layer on top of the BERT architecture. In the case of
document classification, the linear layer operates on the C representation. (Graphic
inspired by Devlin et al. 2019)

Data Preparation

We use the BERT tokenizer for preparing data for all of our BERT models. Additional

preprocessing, such as parsing of Reddit’s Markdown syntax, is discussed in Chapter 4.

Sun et al. (2019) explore multiple methods of handling documents that surpass the model’s

token limit. On sentiment data, they found the best method to use the first 128 and last

328 tokens. The TV Tropes dataset does not contain any documents that exceed BERT’s

512-token limit, so this is only relevant for the Reddit dataset. Other approaches to deal with

longer sequences have the potential to improve performance; however, even on the Reddit

dataset, only roughly 2% of the documents are affected by the token limit. While it is not
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immediately clear if the exact splitting approach by Sun et al. (2019) transfers well to our

dataset, we take this approach for the 2% of documents that exceed the limit.

Training Process

Our chosen error metric is binary cross-entropy, which is well suited for binary classification

tasks. No class weighting needs to be applied, as we are dealing with balanced data (both in

our own Reddit dataset as well as the TV Tropes dataset). During fine-tuning, the output

layer, as well as the original network’s components, are updated using backpropagation. The

original paper by Devlin et al. (2019) suggests specific hyperparameters, which we generally

use as a starting point and change where necessary.

We use a dropout probability of 0.1 for all hidden layers, as suggested, while the final layer

uses no dropout. For the activation function, we adhere to their training setup and use the

GELU activation function. Due to memory limitations, we initially had to set the batch size,

which Devlin et al. (2019) suggest setting to 16 or 32, to just 8. This approach was used for

the TV tropes dataset. For Reddit models, different hardware was used, enabling us to make

use of larger batch sizes. Batch size has previously been shown to have an impact on the ideal

learning rates (Goyal et al., 2017). We performed an informed hyperparameter search to find

the appropriate learning rate given our batch size and specific task. We employ early stopping

to be able to perform a hyperparameter search across fewer parameters. Whenever the last

three epochs yield no improvement in validation loss, we stop early, saving the best performing

model from any previous epoch.

For training on the data by Boyd-Graber et al. (2013), we only use early stopping to find a

good value for the number of epochs. We felt that we could not afford to expend a validation

set purely for stopping, as additional data yielded large performance increases. So early stopping

is performed in a first run on the validation set to find an appropriate number of epochs. In

our final run to produce the final model, we instead include the validation set in the training

data and perform no early stopping. On our own dataset, however, we felt that performing

early stopping using a validation set was a good choice due to the larger dataset size.

We schedule learning rates based on Slanted Triangular Learning Rates, which was

introduced by Howard and Ruder (2018) and validated to work well on BERT by Sun et al.

(2019). Our parameters are cutfrec = 0.1 and ratio = 32 with ηmax being our learning rate,

determined via an informed search. It is worth noting that if early stopping is performed, the

schedule can be interrupted at any point. In the case of training on the TV Tropes dataset, we

ensure that in the final run, the learning rate schedule is applied consistently with the early

stopping run. This means that even if early stopping terminated training after 2 epochs, with

the schedule being specified for 6, the final training run would also be run using the first 2

epochs of a 6-epoch training schedule.

We considered implementing a scheme to decrease learning rates of lower layers in BERT

but found no clear indication in any previous experiments (Sun et al., 2019) that it would yield

improved results, and thus decided against implementing this approach. The hope would be
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for those schemes to allow training for more epochs without breaking BERT’s fundamental

knowledge, which we would intuitively assume to be located in lower layers.

During our hyperparameter search, we found that we needed small learning rates compared

to those in Devlin et al. (2019) to prevent overfitting. Our final hyperparameters are listed in

Table 6.1.

Table 6.1.: The fine-tuning parameters were chosen similarly for all tasks after hyperparameter
exploration. All our models are based on the BERT “base-cased” pre-trained model.

Task Learning Rate Epochs Schedule Epochs Batch Size

Reddit Sequence Classification 7 · 10−7 6 10 16
Reddit Token Classification 7 · 10−7 6 10 16
TV Tropes 7 · 10−7 5 10 8
Story Documents 7 · 12−7 8 10 8

Figure 6.2 illustrates the effect of different learning rate parameters on training using the

TV Tropes data. While Figure 6.2a shows that only the smaller two learning rates actually

converge, Figure 6.2b shows that the larger learning rate is not unstable but instead just overfits

on the training data. We are not sure why our learning rates had to be much lower than those

suggested by Devlin et al. (2019). One possible explanation could be the much smaller size of

the TV Tropes dataset in comparison with the down-stream tasks evaluated by Devlin et al.

(2019). Additionally, there is a relationship between learning rate and batch size (Goyal et al.,

2017), which could contribute to us requiring smaller learning rates, given our relatively smaller

batch sizes.
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(a) Binary cross-entropy loss on the development set
after each epoch of training
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Figure 6.2.: Depending on the learning rate, we observe different convergence speeds or even
divergence.
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6.2. Token Model

For a token-based model, given the lack of previous work on this problem, we decided to use a

strong baseline model based on the NCRF++ framework (Yang and Zhang, 2018). We expected

this baseline to perform well, potentially on par with the BERT model, due to NCRF++ being

a modern architecture and even simple models showing good results in the domain of spoiler

detection, in previous work. In Chapter 7, the results will be analyzed validating or invalidating

this hypothesis.

6.2.1. NCRF++-based Model

We build a baseline model using the NCRF++ toolkit (see Section 2.3). NCRF++ is a toolkit

for neural language modeling, which allows for performing token classification without significant

software development effort.

We configure the NCRF++ model to be trained using SGD. SGD used a learning rate of

0.015, with a learning rate decay of 0.05. The learning rate was determined using manual

experiments. We use a bidirectional LSTM as the word level recurrent network with CNNs for

the character level networks. For the final layer, we make use of the framework’s CRF.

6.2.2. BERT Sequence Model

Just as in Section 6.1.2, we rely on a pre-trained BERT model. Now, instead of classifying

entire documents, we instead classify each token individually. In the case of the sequence

model, a single linear layer is applied to each token’s representation, such that each token is

classified based on if it is part of a spoiler. The layer weights are the same for all token positions.

Figure 6.3 visualizes this process. As mentioned in Section 6.1.2, around 2% of comments in

our dataset are longer than BERT’s 510 content tokens. In the document classification task,

this was solved by using only a subset of the input. Seeing that we now need to produce a

result for each token, the same approach is not possible. Instead, for any tokens outside the

model’s output, we pick the majority class, thereby classifying them as non-spoilers.

6.3. BERT Story-Document-Supported Model

We build a story-document-supported model based on the TV Tropes data. The aim of this

model is, for a given story document and a given text, to find out if the text contains spoilers

for this document.

As show names and genres are not present in the dataset by Boyd-Graber et al. (2013), we

have to perform our own extraction. Like Chang et al. (2018) we extract additional information

using the work’s name. Due to limitations on IMDb’s usage, we make use of the OMDb API1.

We perform an automated search on a title basis.

1http://www.omdbapi.com/
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Figure 6.3.: In the case of token classification, a single linear layer operates on each individual
token representation. The weights for transforming each token representation to
the class output are shared across all token positions. (Graphic inspired by Devlin
et al. 2019)

The samples in the TV Tropes dataset, as mentioned, do not exceed BERT’s token limit.

With the addition of story documents, however, we found many samples to exceed the token

limit. This presented us with two options of either using a larger model or performing input

sub-sampling as before. The approach we chose is to always include the full potential spoiler in

the model’s input and to cut off tokens from the end of the story document. It is worth noting

that previous work suggests (see Section 3.2) this could be improved upon by sampling the end

of the story document instead.

It is important to point out that we are not performing a full information retrieval task.

To train a model that actually evaluates whether a given text is a spoiler with regard to a

document–which would be an information extraction task—we would need to add training

samples that are spoilers for different documents than the one they are associated with. These

samples would serve as negative samples, making the task one of detecting spoilers relating to

the specific document, rather than generally detecting spoilers.

We are interested in improving the spoiler detection model, similar to the genre approaches

taken by Chang et al. (2018) and Boyd-Graber et al. (2013). Instead of using structured genre

information, we use story documents as an information source. The approach we take has severe

limitations in that some story documents are not available in the OMDb API, and others might

be incorrectly associated. To be specific: out of roughly 16,000 documents, we were unable

to retrieve 1333 from the API with an additional 666 works not having a summary available

via the API. This means that roughly 12.3% of the documents come without a summary. We

are unsure of the amount of noise with respect to mismatches of story documents and works

referred to by the posts. Another potential issue is the quality of story summaries, from our

manual inspection, it is clear that some “summaries” are more akin to tag lines and only

describe the premise. An example of this is the summary of the comedy series “Yo soy Betty, la

fea”: ”An outcast in a prominent fashion company, a sweet-hearted and unattractive assistant
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falls hopelessly in love with her boss.”2 The problem, in this case, could also be that we only

retrieved a single plot description for the whole series as opposed to one for each episode.

These limitations, while significant, do not, in principle, prevent us from showing what we set

out to, seeing that any significant improvement would indicate the utility of story documents

in these classification tasks.

6.4. Extracting and Visualizing Attention

We would like to gain some insight into the decision process of the model. One approach to

this is to visualize the attention paid to different tokens.

We extract attention similarly to Kovaleva et al. (2019). For the document classification

task, this means that the attention corresponding to the final [CLS] token is extracted for each

token in the input sequence. The final [CLS] token is what the final linear classification layer

operates on, which means that in the document case, only the attention associated with [CLS]

is relevant to the final result. Our visualization omits the attention relating to the special [CLS]

and [SEP] tokens. The weights associated with these special tokens typically (at least in the

last encoder layer which we are considering here) heavily outweigh those of content tokens. As

a result, a large portion of the representation that is built up in the lower layers of the model is

not visualized. The insight we can gain from them is, however, limited, as they are not easily

interpretable. An input token that has no attention associated with it can still be represented

in the internal state of other tokens, so this visualization is by no means perfect. The fact that

such internal states can not easily be inspected has been pointed out as a potential issue when

analyzing attention (Jain and Wallace, 2019).

For the token classification case, it is important to note that the attention associated with

all tokens is now relevant. In an effort to simplify visualization, we average the attention across

all output tokens, which does involve a loss of information and potentially makes it harder

to attribute the classification of a specific token. Using attention as a method of explaining

models has been called into question by Jain and Wallace (2019). Wiegreffe and Pinter (2019)

argue that information useful for interpreting a model can be gained from analyzing attention,

rejecting some of the claims by Jain and Wallace (2019). Additionally, experiments specific to

BERT have also shown that attention does correlate with meaningful features (Kovaleva et al.,

2019). Given these three results, we feel attention visualization is an appropriate approach to

understanding the model, but care needs to be taken to not over-interpret the results. We

visualize attention by highlighting words in blue, with increasing intensity indicating increased

attention. An example of our highlighting scheme can be seen in Figure 6.4.

To systematically analyze attention, we can consider the attention score (between 0 and 1)

and its correlation with specific token types. For this, we consider the token type to be a binary

feature on the token level (e.g., “is the token a noun?”). We determine the Pearson correlation

of such a feature with the attention score (Benesty et al., 2009).

2http://www.omdbapi.com/?t=Yo+Soy+Betty+La+Fea&plot=full [Retrieved 20-02-13]
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Great movie , nauseatingly cliche ending . I can ’ t get pregnant , I ’ ll never get pregnant

. . . oh , I ’ m pregnant now !

https://old.reddit.com/r/movies/comments/1niy4a/what_was_the_last_movie_you_watched_and_what_did/ccj7x9a/ [Retrieved: 20-02-12]

Figure 6.4.: The attention a token receives is shown using the intensity of the blue background.
This comment is a spoiler incorrectly classified as a non-spoiler.
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In this chapter, we evaluate our models by producing results and comparing them to those of

previous work. Additionally, we explore the classification network’s internal decision-making

process by analyzing the models’ attention. Section 7.2 will list results for models trained on

the TV Tropes dataset, whereas in Section 7.3 the results of different models on the Reddit

dataset are presented.

7.1. Evaluation Metrics

For the classification task, we will be using two different metrics: accuracy and F1 score.

Accuracy is used as the primary metric for our binary classification, mostly to enable comparisons

with Boyd-Graber et al. (2013) and Chang et al. (2018).

The impact of misclassifications on the perceived quality of the model is potentially very

different for different classes. When using the model, a false positive is just a minor annoyance,

whereas a false negative reveals a spoiler to a reader. We look at precision and recall (in the

form of F1 score) over accuracy, although the exact weighting of false negatives compared to

false positives is not clear and out of scope for this thesis. We follow previous work in using F1

score as a metric, allowing us to use a single point of comparison.

7.1.1. Token Model

Due to the class imbalance on the token model, we will not be using accuracy as a metric for

it. While the documents themselves still have an equal class distribution, the tokens inside

them do not. In fact, when looking at the tokens, we encounter class-imbalance of roughly

1:10, meaning there are ten times more non-spoiler tokens than spoiler tokens. This means

that F1 score on the token level is our metric of choice. In this case, accuracy (when not class

balanced) is a poor metric, because a model always choosing the majority class would yield a

90% accuracy.

Poorly Defined Boundaries

An additional problem we encounter in this task is that of poorly defined boundaries. This task

potentially has poorly defined class boundaries. See Figure 7.1 for an example to illustrate this.

The actual spoiler information is covered by the model, and exact boundary placement is, in

this case, debatable. A desirable trait of any metric we use would, therefore, be to recognizes

near misses and assign some reward to them.
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In Section 2.5.2, we discussed two error metrics: WindowDiff and WinPR, which can be

used for segmentation tasks. They both fulfill the requirement of treating near misses differently

from complete misclassifications. This is also the case for metrics like F1 score on a token level.

Metrics like the F1 score do not, however, allow for adjusting the tolerance of near misses. We

can easily adapt the tolerance with regards to near misses by changing the window size when

using WindowDiff or WinPR.

no i watched the show and movie
it was just years ago forgot some bits
does kyoko kill herself and take sayaka with her? i knew kyoko died just not sure
at what exact time her taking sayaka with her makes sense

https://old.reddit.com//r/anime/comments/82bton/what_is_your_ultimate_im_watching_something/dvbgpkn/

Figure 7.1.: This comment shows that it is not clear at which token the spoiler annotation
should start. Boldness indicates the target label and underlined text the model’s
prediction.

As explained in the introduction to this section, different error classes could have a very

different impact on the utility of the model in real-world scenarios. For this reason, we chose

to focus on WinPR, which allows differentiating between different error classes. Both metrics

have a window size parameter. While the WindowDiff score is sensitive to changes in the

window size, WinPR is less so. Due to our dataset containing samples without spoiler sections,

we run into a potential class imbalance issue when using WindowDiff. We apply WinPR to

all results by adding up the resulting confusion matrices for each document and calculating

WinP and WinR from the resulting matrix. WindowDiff is averaged over all windows across

the dataset. (We do not include windows spanning multiple documents.) This is a form of

micro averaging, which means that long documents will have a comparatively larger impact

than smaller documents. Half of the average sequence length is the recommended value for

the window size (Pevzner and Hearst, 2002). For the Reddit dataset, the average sequence

length for spoilers is ≈ 32.2 and ≈ 46 for non-spoilers. Following the literature, this means a

window size of 16 or 23 would be appropriate, with the weighted average of the classes being

≈ 41.42. We evaluate the following window sizes: 41, 16, and 5. The lowest number is chosen

as we feel it does a good job of representing the uncertainty boundary of classes in our task.

7.2. TV Tropes Dataset

The test dataset provided by Boyd-Graber et al. (2013) shows a small class imbalance in some of

the splits. We still use an accuracy measurement over all samples rather than a class-balanced

accuracy. This is required to retain comparability to the previous results, as they use the same

variant of the metric (Boyd-Graber et al., 2013; Chang et al., 2018).

Table 7.1 shows the results different models achieve on the TV Tropes dataset. Our baseline

model, Näıve Bayes document classification, reaches an accuracy of 67.6% on the TV tropes
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Table 7.1.: Classification results on the TV Tropes dataset by Boyd-Graber et al. (2013) indicate
that more recent neural approaches yield the best performance. Näıve Bayes is
shortened to NB.

Model Accuracy F1 Score

Boyd-Graber et al. Baseline SVM 0.6019 0.6947

Chang et al. CNN 0.7082 0.7351
Chang et al. Sentence Encoder of HAN 0.7231 0.7480
Chang et al. Sentence Encoder 0.7183 0.7584

Our NB Model (Unigrams) 0.6764 0.7042
Our NB Model (Unigrams + Bigrams) 0.6635 0.7145
Our Bert Model 0.7422 0.7438

dataset, with an F1 score of 0.70. Boyd-Graber et al. (2013) reached an accuracy of 60%

without employing metadata (the model for this result also used bigram features). It seems

surprising that our Näıve Bayes classifier would beat the SVM based model by Boyd-Graber

et al. (2013). These results might be explained by their use of an SVM instead of Näıve

Bayes classification, which has more hyperparameters that need to be optimized for optimal

results. Further reasons for this result are explored in Section 7.4.2. Additionally, as we detail

in Section 7.4.3, stop words are a salient feature when using a Näıve Bayes model for this task.

The approach by Boyd-Graber et al. excluded those, potentially negatively impacting the result.

Our BERT Model is slightly outperformed in terms of F1 score but beats the model by

Chang et al. (2018) in terms of accuracy. Both neural approaches significantly outperform the

baseline results.

7.2.1. Story Document Supported Model

The story-document-supported model operates on the TV Tropes document as well as a

summary for the work in question. Table 7.2 shows that our BERT story document model does

outperform our BERT model without story documents from the perspective of the F1 score.

The clear improvement in F1 score illustrates that the inclusion of the story document feature

can improve the model, even considering the accuracy drops slightly for that model.

Table 7.2.: Classification approaches using meta-information perform better than those that do
not.

Model Meta Information Accuracy F1 Score

Boyd-Graber et al. SVM with Genre Genre 0.6777 0.6327
Chang et al. best Model1 Genre 0.7556 0.7847
Our BERT Story-Document model Story Document 0.7393 0.7562

Chang et al. Sentence Encoder – 0.7183 0.7584
Our Bert Model – 0.7422 0.7438
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The usage of story documents does not quite yield the same improvement as the usage of

genre in Chang et al.’s work. There could be several reasons for this related to our specific

implementation:

• Our automated story document search could yield incorrect results

• The model’s token limit is exceeded in 3.7% of cases

• For 12.3% of documents, no story document was retrieved

We know that at least ≈ 16% of documents have some limitations in their usage of story

documents; we are not sure how many come with the wrong one. This does indicate that story

documents help in the classification, but at least in our implementation, they do not reach the

same improvement as the inclusion of genre meta-information.

7.3. Reddit Dataset

After exploring the results on the TV Tropes dataset, we now show the results achieved on the

Reddit dataset.

7.3.1. Classification Model

For training, we took a hyperparameter optimization approach. Due to the huge amount

of data, we performed optimization on a random subset of 75 thousand randomly sampled

documents from the Reddit-spoiler dataset. The same learning rates as for the TV Tropes data

emerged as the best ones.

Table 7.3.: Classification results on the Reddit dataset show neural models outperforming the
baseline.

Model Accuracy F1 Score

NB Model (Unigram) 0.7341 0.7295
NB Model (Unigram + Bigram) 0.7381 0.7650
BERT Based Model 0.8213 0.8134

Attention

To understand the decision process of the model, we employ the analysis of attention in the

final layer. Consider the examples in Figure 7.2; they seem to indicate that named entities are

focused on. The words “Josh,” “Stark,” “Asuka,” and “Shinji” receive a relatively large share

of attention, indicating that named entities are a feature the model focuses on. At the same

time, the marker word “kills,” which we expect to receive a lot of attention, receives relatively

little. Overall the attention to named entities aligns, at least partially, with our expectations.

Previous work has found the presence of named entities to be a good feature for this task

(see Section 3.3). Additionally, specific frequently used words and tenses were recognized as
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Ok this could be sort of spoilerish . I just had a look at the outcomes of that decision

and The saw kills Josh no matter what .

https://old.reddit.com/r/TwoBestFriendsPlay/comments/3k4ncv/two_best_friends_play_until_dawn_part_6/cuuuhb5/ [Retrieved:
20-02-12]

(a) This spoiler comment is incorrectly classified as a non-spoiler.

Call me sappy , but I want the Stark siblings to get back together again .

https://old.reddit.com/r/gameofthrones/comments/4b0k6j/allwhich_two_characters_would_you_like_to_see/d158vbw/ [Retrieved:
20-02-12]

(b) This comment is classified as a non-spoiler, in agreement with the label.

Turns out that Asuka knew about Shinji coming .

https://old.reddit.com/r/anime/comments/8f7f5r/free_talk_fridays_week_of_april_27_2018/dy3qvaz/ [Retrieved: 20-02-12]

(c) This comment is correctly classified as a spoiler.

Figure 7.2.: Named entities and specific marker words, in this case, “spoilerish” appear to
receive more attention than many other tokens.

salient features. The significance of the frequently used word feature is supported by the good

performance of Näıve Bayes models on the task TV Tropes task (see Section 7.2). In an effort

to understand whether our model makes use of these features, we can inspect which features

the model focuses on. To systematically analyze which features the model focuses on, we

calculate correlations of the attention score with different token-level binary features. In order

to ascertain if the focus on a feature is specific to our task, we compare the correlations on the

fine-tuned model with those on the base model.

Table 7.4 shows different features and their correlation with a token’s attention. Marker

words are words in a list of words that have a high information gain associated with them

(specifically these words: end, ending, spoiler, also, way, story, like, spoilers, made, get).

Table 7.4.: Of all tested features, a token being a named entity has the highest Pearson
correlation with the attention it receives.

Feature Correlation base model Correlation fine-tuned

Named entity 0.017 0.130
Common noun −0.040 0.004

Marker word −0.017 0.055
Verb with past tense −0.040 −0.044

We see that the model does, in fact, place a lot of focus on named entities. Somewhat

surprisingly, these are focused on even more than our marker words. Interestingly, there appears

to be no correlation of a verb’s tense with its associated attention. This presumably has to

do with the fact that earlier layers extract such grammatical features as tense. We speculate

that the information is, at such a late stage in the encoding process, associated with the whole
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sentence (i.e., the [CLS] or [SEP] tokens), rather than individual words.

7.3.2. Sequence Model

This approach is only evaluated on our own dataset, as the TV Tropes dataset offers no

sequence annotations. We focus on the F1 score for this model as it deals well with the class

imbalance we encounter in this task. Additionally, the metrics WindowDiff and WinPR are

used.

Table 7.5.: Different window sizes can impact which model yields better performance scores.
For everything but WindowDiff, larger values are better.

Model k F1 Score WinPk WinRk WindowDiff k

NCRF++
3

0.6485 0.2957 0.6559 0.0481
BERT based model 0.6684 0.3475 0.3970 0.0610

NCRF++
16

- 0.3236 0.7179 0.1347
BERT based model - 0.3985 0.4552 0.1434

NCRF++
41

- 0.3481 0.7723 0.2457
BERT based model - 0.4385 0.5009 0.2382

The results illustrate WinPR’s stability with regard to adjusting window sizes. The results

also show that the BERT model generally is much more precise, whereas the NCRF++ model

achieves a better recall. This results in F1 scores that are relatively close to each other for both

models.

We hypothesize that the NCRF++ (Yang and Zhang, 2018) model’s advantage could be

explained by the explicit modeling of subsequent output labels through the use of CRFs. In

our dataset, a token is vastly more likely to be a spoiler if it is preceded and followed by likely

spoiler tokens. The BERT based model, however, can, in principle, learn such interdependencies

as well, and, given the size of the dataset, it seems likely that it would.

Did you watch End Of Evangelion? It’s the movie the real ending of the show

https://old.reddit.com/r/anime/comments/9xmkv0/anime_noob_here_just_finished_neon_genesis/e9tsala/ [Retrieved: 20-02-12]

(a) A vague comment is, in part, classified as a spoiler while it is not tagged as such.

Tip that will make smelter demon much easier: Gyrm Greatshield has 100% fire
resistance.

https://old.reddit.com/r/DarkSouls2/comments/24zlg0/dear_everybody_who_summons_a_dragon_bro/chcjf7t/ [Retrieved: 20-02-12]

(b) The second sentence is correctly predicted to not be a spoiler. Interestingly, the named entitiy does not recieve a
lot of attention.

Figure 7.3.: Attention on the sequence model shows which tokens receive the attention during
final classification.

Figure 7.3 shows the attention and labels for two Reddit comments. As previously, bold text
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indicates gold labels, with underlining showing the prediction. Additionally, the intensity of red

now indicates the model’s certainty for a specific token; thick underlining indicates the certainty

clears the threshold for the token to be designated as a spoiler. In the case of Figure 7.3a,

a spoiler annotation is not present in the dataset, but the model predicts one. Likely this

misclassification can likely be attributed to the marker word “ending,” which often indicates

spoilers. The example Figure 7.3b shows a spoiler that is correctly identified. Surprisingly the

named entity receives little attention in this case. Generally, noisy results are to be expected

and why we performed a systematic analysis (see Table 7.4).

7.4. Discussion

In this section, we will summarize the results, exploring the model’s fitness for real-world

applications. We will discuss the class imbalance in real-world data and the implications for our

model.

Generally, our results show that Transformers represent a promising approach to the task of

spoiler detection. At the same time, we have not seen significant improvements over previous

neural network approaches using recurrent neural networks for the TV Tropes dataset. In the

case of Reddit, this evaluation is more difficult, but we suspect that existing models, when

trained on our dataset, would perform similarly to ours. The results for the sequence model

also seem promising but are hard to set in context due to the lack of previous token-based

approaches.

Story documents showed some ability to improve the results but lacked behind our expec-

tations, given the success of previous metadata-supported approaches. It is feasible that this

could be explained by specific issues with our approach, such as misattributed and missing

story documents for many examples in the dataset.

We found our baseline models to perform surprisingly well. In the case of the sequence

model, this was to be expected due to our choice of baseline model. For the Näıve Bayes

model, however, the performance was better than expected; we discuss possible reasons for this

in Section 6.1.2.

Given these results and the examples, it is, however, also important not to unduly emphasize

the ability of attention to explain our model’s decision, at least when visualized in this limited

manner. While systematic analysis shows a correlation, we have also seen examples (e.g., the

named entity in Figure 7.3b), which seem to contradict these results.

7.4.1. Real-World Application

Spoilers are very rare in real-world data. In fact, only 0.042% of comments on Reddit contain

spoilers (see Section 4.1.1). To illustrate this, we built a subset of the dataset in accordance

with this distribution. This dataset of 20,000 random samples from our test set contains five

spoilers. Figure 7.4 shows the confusion matrix on this dataset. Our model on this distribution

yielded a precision of 0.0015 with a recall of 0.8. While the sample is too small to draw any real
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conclusions with regard to the recall, we can observe that the precision drops significantly. We

have no clear data to indicate which recall or precision would be acceptable for the application

of the model. It seems clear, however, that having more than 10% of comments erroneously

marked as containing a spoiler would be unacceptable.

Predicted Class
Spoiler Non-Spoiler

True Class
Spoiler 4 1

Non-Spoiler 2734 17266

Figure 7.4.: A confusion matrix of documents distributed in accordance with the actual data
shows that the precision drops considerably.

7.4.2. Overperformance of our baseline model

Our baseline model for the TV Tropes dataset performs on par with the models created by

Boyd-Graber et al. (2013). This is an unexpected result, considering that their model also

makes use of genre information, which significantly improves results. One contributing factor

to this was that Boyd-Graber et al. performed stop word removal. Our unigram- and bigram

model’s performance decrease to an F1 score of 0.68 and 0.70, respectively, when removing

stop words. This might be explained, in part, by stop words working as a substitute feature for

the length of documents. Näıve Bayes, which does not consider document length as a feature,

can instead approximate length by relying on the frequency of very common words (which

often are stop words). The salience of document length, as well as the significance of different

tokens as features, are explored in Section 7.4.3. Another observation that is important in

this context is that Iwai et al. (2014) also found Näıve Bayes to perform best on their data,

having compared it with four other approaches, including an SVM (see Section 3.3). Ultimately,

while the application of Näıve Bayes is simple and very appropriate for the unigram and bigram

feature set, the large improvement over an SVM approach remains surprising.

7.4.3. Comparative Difficulty of the Task

Our models perform better on Reddit data than they do on TV Tropes data. There could

be two obvious reasons for this: the size of the dataset, and the inherent properties of the

documents making classification easier. We focus on exploring the latter aspect. From a

manual review, we found many Reddit comments to contain explicit warnings of spoilers (see

Figure 7.5 for an example) in addition to the actual notation. As a result, we hypothesize

that specific features are much more indicative of the spoiler class in the Reddit dataset when

compared to the TV Tropes dataset.

To understand if this really is the case or if the dataset size is the only contributing factor,

we calculated the information gain (see Section 2.6) of individual words (i.e., unigrams) with

regards to the class of a document. The information gain for a random sample of 10,000

documents from our Reddit training set is shown in Table 7.6.
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Spoiler: So were the mirrors trapping the thing and when she broke them, it let
it out? This makes me want to create!

https://old.reddit.com/r/pics/comments/adj6fr/i_flew_all_the_way_from_canada_to_la_and_won_my/edi50to/

Figure 7.5.: While the bold text is marked using spoiler tags, an additional explicit spoiler
warning is included in this comment.

Table 7.6.: The top 10 words by their information gain (given in bits) in a 10,000-word subset
of the Reddit dataset contain many stop words and show a high information gain.

Word Information Gain

the 0.1244
to 0.0886
and 0.0835
was 0.0721
that 0.0629
of 0.0610
it 0.0581
in 0.0573
but 0.0532
for 0.0478

(a) (including stop words)

Word Information Gain

end 0.0323
ending 0.0317
spoiler 0.0267
also 0.0264
way 0.0263
story 0.0258
like 0.0244
spoilers 0.0234
made 0.0221
get 0.0214

(b) (stop words removed)

Table 7.7.: The top 10 words by their information gain in the TV Tropes dataset contain many
stop words but yield significantly less information gain.

Word Information Gain

he 0.0107
show 0.0066
his 0.0063
to 0.0058
finale 0.0058
after 0.0058
her 0.0055
the 0.0053
out 0.0052
killed 0.0052

(a) (including stop words)

Word Information Gain

show 0.0066
finale 0.0058
killed 0.0052
death 0.0045
turns 0.0045
season 0.0043
end 0.0038
kills 0.0033
dead 0.0033
revealed 0.0032

(b) (stop words removed)
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Figure 7.6.: The length distribution in sequences of spoiler and non-spoiler tokens differ.
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The abundance of words that are filtered by a stop word list is interesting: We suspect it to

be caused by the correlation of comment length with the class. The point-biserial correlation

(Tate, 1954) of the class with the document length for our Reddit dataset, specifically the

same 10,000 document subset as used for the information gain calculation, is 0.3132, meaning

longer comments are in fact much more likely to contain spoilers. This correlation is illustrated

in Figure 7.6, which shows the frequency for different lengths in tokens for both classes. Tokens

were created using white space tokenization. The single spike at around 240 is caused by a

specific comment format that was not excluded in our dataset creation. Many of the posts

of this length are a table summarizing e-sports match results.2 The TV Tropes dataset, by

comparison, only shows a correlation of 0.1206 for comment lengths.

As proved by the correlation values, comment length is a good feature in spoiler classification

on both datasets. Our baseline model does, however, not directly use this information. We

suspect the counts of stop words to serve as a substitute feature that is captured by the Näıve

Bayes model, potentially further increasing the value of stop words as a feature.

These results indicate that classification on our dataset is easier than on the TV Tropes

dataset and that performance differences in the models are not merely caused by a difference

in the size of the training data. Due to this fact and the presence of more training examples, it

is unsurprising that all models produced better results on the Reddit dataset.

2https://old.reddit.com/r/DotA2/comments/5b00bz/for_those_interested_in_why_kuro_played_

carry_for/d9lnoon/ [Retrieved: 20-02-12]
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In this thesis, we built a new dataset for spoiler classification. The dataset, to our knowledge,

is the first to offer token-based spoiler coverage where previous datasets have only operated on

sentences or documents. It also represents the largest spoiler dataset known to us. This larger

dataset should allow for new approaches that were previously infeasible due to small training

sets.

We used BERT, a Transformer-based, neural architecture to perform spoiler classification

on a document basis, building on existing pre-trained models. Our approach for classifying

documents outperforms our baseline model and performs on par with previous publications that

also use neural methods. These results indicate to us that generally, Transformer architectures

are a good fit for the problem but are not a substantial improvement over existing approaches.

We did encounter the issue of sequences being too long for BERT to operate on, which we

identify as a potential issue with the approach. Overall we can answer our initial Question

1 in the affirmative: Transformers—specifically BERT—can be used to classify comments

with regard to their spoiler status effectively. Currently, however, real-world application of the

model is infeasible due to the severe class imbalance encountered in real data. Many smaller

optimizations to the model and training could—applied together—probably yield a substantial

performance increase. Nevertheless, a clear path to improving the model dramatically enough

to make real-word usage feasible is not apparent to us.

We established that sequence classification using BERT works well on the dataset, although

it was still, depending on the exact evaluation method, outperformed by the NCRF++-based

approach. It is, however, hard to find any specific points of comparison as no previous work we

know of operated on token level annotations. Segmentation metrics were used to show that

different models perform the best, depending on how tight of a boundary is required. So in

response to our Question 2, we can say that sequence classification works well in principle, but

in order to assess the quality in detail, more points of comparison are required.

Since we were able to show a significant increase in the model’s performance when augmenting

it using story documents, we can answer Question 3 positively as well. However, we did not

reach the same levels of improvements enabled by the use of genre information in previous

approaches. As there are numerous ways our approach to this task could be improved, we are

hopeful that the use of story documents could bring more significant benefits and outperform

genre information as a feature.

Inspecting the model’s attention indicates that specific marker words, as well as named-

entities, are an important feature for classification. These features have previously been used

in manual feature engineering efforts in the domain of spoiler detection, indicating that our
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model does, in part, rely on the same information. Our inspection of the model did not allow

us to confirm that more complicated linguistic clues, like tense, were used. We suspect that

generally, the attention visualization method, at least when only inspecting the last layer, can

not yield such information. Given the results of the neural architecture outperforming other

approaches, it seems very likely that some additional information like tense is taken into account.

In conclusion, and as an answer to Question 4, we were able to gain some insight into the

model with clear indications that the models rely on features that have previously also been

used in human feature engineering efforts.

8.1. Future Work

Some measures of the quality of the user-generated annotations on our dataset would be

desirable. Such measures would allow for assessing the expected limits to any machine learning

model’s performance. The performance of human annotators on a subset of the data would

have to be measured to enable this comparison. Similarly, an understanding of the minimum

performance scores required for users to perceive automatic spoiler detection as useful would

also be desirable.

Some comments require the comment tree as context to classify them accurately. For

example, a comment answering “Yes” to another comment may or may not be a spoiler

depending on the previous comment. Including parent comments or the post’s text could enable

the classification and sequence models to make use of the context.

An intriguing piece of information in the Reddit dataset that we have paid little attention

to is the topic information. Using this topic tag could potentially enable some classification

topic modeling. It seems likely that many people only care about spoilers on specific topics,

so adding this aspect could be vital for real-world applications. Additionally, the tags could

aid in extracting relevant story documents, thereby enabling the application of the document

supported model. The quality of tags has, however, not been throughly explored and might

pose a problem.

8.1.1. Potential Model Improvements

Sun et al. (2019) investigated the effect of further in-domain pre-training, meaning continuing

non-task-specific, pre-training on data from the target domain. In our case, this would mean

further pre-training on Reddit data. Generally Sun et al. (2019) found this pre-training step to

have a positive impact, so we would expect that our results could be improved by employing

this technique. We believe that this approach, when applied to TV Tropes data, could also

yield better results on the dataset by Boyd-Graber et al. (2013). Given the size of our dataset,

the impact would probably be greater for the TV Tropes data.

In addition to the in-domain pre-training, Sun et al. (2019) also suggest using in-task pre-

training. In our case, this would mean applying the results of either the Reddit or the TV

Tropes task to the other task. Especially in the case of the TV Tropes data, we suspect that a
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8.1. Future Work

model retrained on the Reddit data could yield improvements.

A relatively simple way to slightly improve the token model would be to handle documents

that are too long for BERT’s 512-token limit (roughly 2% of the data) in a better way. Currently,

the majority class is picked for any token in the document beyond the limit. A simple approach

might be to split the document into several, possibly overlapping, windows each being small

enough for the model. These sub-documents would then be classified as usual, with overlapping

sections (those that are present in multiple sub-documents) being combined using some pooling

operation (e.g., max pooling). A simpler alternative still might be the usage of large pre-trained

architectures. This would only affect roughly 2% of documents in the Reddit dataset, which

places an upper bound on the possible improvement.
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Raúl Rojas. 1996. Neural networks: a systematic introduction. Springer-Verlag, Berlin; Heidel-

berg.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J Williams. 1986. Learning representations

by back-propagating errors. Nature, 323(6088):533–536.

66

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1162/089120102317341756
https://doi.org/10.1162/089120102317341756
https://doi.org/10.1007/978-3-642-35289-8_5
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf


Bibliography

Claude Sammut and Geoffrey I. Webb. 2010. Encyclopedia of Machine Learning, 1st edition.

Springer US, Boston, MA, United States.

Martin Scaiano and Diana Inkpen. 2012. Getting more from segmentation evaluation. In

Proceedings of the 2012 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 362–366, Montréal,
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A. Reddit’s Inline Spoiler Annotations

A. Reddit’s Inline Spoiler Annotations

As discussed in Section 4.1 a variety of inline spoiler annotation formats were used on Reddit

over time and in different communities. We found this list of different annotations in our

exploration, where <spoiler topic> denotes where the topic the spoiler is on is to be put in

and <spoiler text> denotes where the actual text that is considered a spoiler should go.

• (<spoiler topic>)[/s "<spoiler text>"]

• (<spoiler topic>)[/spoiler "<spoiler text>"]

• (<spoiler topic>)[#s "<spoiler text>"]

• (<spoiler topic>)[#spoiler "<spoiler text>"]

• (spoiler)[/s "<spoiler text>"]

• (<spoiler text>)[/s]

• >!<spoiler text>!<

• [<spoiler topic>] >!<spoiler text>!<

B. Whitelisted Subreddits

As laid out in Chapter 4 we built our whitelist from the top 200 subreddits containing the most

spoiler comments. The remaining subreddits are listed below.

• 40kLore

• AceAttorney

• anime

• anime irl

• Animemes

• Animesuggest

• araragi

• arrow

• AskReddit

• AskScienceFiction

• asoiaf

• assassinscreed

• awwnime

• batman

• bindingofisaac

• Bioshock

• blackmirror

• boardgames

• BokuNoHeroAcademia

• books

• Borderlands

• breakingbad

• comicbooks

• Cosmere

• criticalrole

• danganronpa

• dankmemes

• darksouls

• DarkSouls2

• darksouls3

• dbz

• DCcomics

• DDLC

• DestinyTheGame

• Deusex

• Diablo

• dishonored

• DivinityOriginalSin

• doctorwho

• DotA2

• dragonage

• Falcom

• fallenlondon

• Fallout

• Fantasy

• FanTheories

• fatestaynight

• FFBraveExvius

• ffxiv

• FFXV

• FinalFantasy
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