
M A S T E R T H E S I S

Study and Creation of Datasets for Comparative

Questions Classification

vorgelegt von

Steffen Stahlhacke

MIN-Fakultät

Fachbereich Informatik

Studiengang: Master Informatik

Matrikelnummer: 7093326

Erstgutachter: Prof. Dr. Chris Biemann

Zweitgutachter: Dr. Seid Muhie Yimam

Betreuerin: Dr. Meriem Beloucif

Abstract

Recent research of question answering systems (QAS) has focused on answering factoid

questions rather than on answering comparisons. This thesis proposes two novel question

answering datasets for comparative questions. The datasets are created with open-domain

data in the English language. The data samples are collected from the community-driven

platforms Reddit and Yahoo! Answers. A novel linguistic-based taxonomy for comparative

questions has enabled the data mining of 245,000 potential comparative questions from

these platforms. The first dataset is built up out of 10,000 human labelled samples for the

binary classification of comparative questions. The second dataset contains 4,000 samples

that were assigned sequence labels for comparative objects and comparative aspects in

a human annotation task. In this thesis, both datasets are utilized in machine-learning

experiments to classify comparative questions and to extract the comparative objects

and aspects. In the classification task, a neural machine-learning model with ALBERT

embeddings reaches an F1 score of 0.876, 0.022 points below the human performance.

The identification of comparative objects and aspects, with a neural machine-learning

model that uses BERT embeddings, reaches the human performance with an F1 score of

0.8054. Furthermore, both models are combined in a web application for the classification

of comparative questions, in order to provide a simple way for users and QAS to receive

a comparative classification analysis.

Contents

1 Introduction 1

2 Related work 7

2.1 Question answering . 7

2.2 Question taxonomies . 13

2.3 Related work on comparatives . 17

3 Creation of comparative question datasets 23

3.1 Linguistic background on comparative questions 23

3.1.1 Rule-based comparisons . 23

3.1.2 Phrase-based comparisons . 28

3.1.3 Generation rules of questions . 29

3.1.4 Definition of a comparative question 32

3.2 Linguistic-based taxonomy for comparative questions 36

3.3 Data mining . 39

3.3.1 Evaluation of data sources . 39

3.3.2 Gathering and pre-processing of source data 53

3.3.3 Filtering for comparative questions 57

3.3.4 Data mining results . 63

3.4 Human annotation task 1: Classification . 68

3.4.1 Task preparations . 69

3.4.2 Pilot . 73

3.4.3 Main phase . 76

I

CONTENTS

3.4.4 Dataset statistics . 79

3.5 Human annotation task 2: Sequence tagging 83

3.5.1 Task preparations . 83

3.5.2 Pilot . 89

3.5.3 Main phase . 92

3.5.4 Dataset statistics . 94

4 Experiments with comparative question datasets 97

4.1 Classification of comparative questions . 97

4.1.1 Experimental setup . 98

4.1.2 Training and results . 104

4.2 Extracting comparative objects and aspects 109

4.2.1 Experimental setup . 109

4.2.2 Training and results . 112

4.3 Discussion of results . 116

4.4 Comparative classification web app . 119

5 Conclusion 123

6 Future work 125

List of figures X

List of tables XIII

List of listings XVII

List of abbreviations XIX

Appendices XXIII

II

Chapter 1

Introduction

Nowadays, we are surrounded by data and information. Especially the world wide web

seems to be an unlimited resource of information. The multinational technology company

Cisco Systems estimated that the world’s collective internet use entered the Zettabyte

Era in 2016 with over 1.2 zettabyte traffic per year. To get a better understanding of

this number, Cisco tried to quantify the number with this analogy: “If each terabyte in a

zettabyte were a kilometre, it would be equivalent to 1,300 round trips to the moon and

back (768,800 kilometres)” [1]. The company also estimated that the globally averaged

internet user will generate 84.6 gigabytes of traffic per month in 2022. The estimation

for the year 2017 was 28.8 gigabytes per month, which is an increase of 194% [2]. It is

estimated that there are more than 1.5 billion websites1 today (see Figure 1.1) [3]. For

users, it can be exhausting to find the information they desire within these millions of

documents. Using a search engine is one way to acquire the needed information.

Figure 1.1: The figure shows the total number of existing websites per year. Since 2016,
the number has stabilized above the 1 billion mark [3].

1Website in this context means a unique hostname, which can be resolved into an IP address [3]

1

CHAPTER 1. INTRODUCTION

Search engines like Google traditionally try to provide the user with links to webpages

that contain the desired information. In 2016, Google handled more than 2 trillion global

searches per year [4]. Even though Google is not releasing statistics on the search intent

of users, for the United States it was estimated that 8% of all searches are expressed as a

question searching with the intent to retrieve information [5]. Since 2012, Google shows

knowledge panels (see Figure 1.2) to provide an overview of information and to directly

answer questions [6]. The knowledge panels are based on Google’s large-scale knowledge

base (KB), covering over 70 billion facts gathered from various sources and providing in-

formation on entities like places, people and companies [7]. Today, the knowledge panels

are shown in 37% of the search queries made on Google [8].

Figure 1.2: The figure shows a knowledge panel, which provides the answer to a question
asked on Google (right-side). Google uses knowledge cards (top) to display information
related to the searched entity. For some search queries, Google also shows a collection of
questions similar to the one asked by the user (bottom).

2

CHAPTER 1. INTRODUCTION

In 2016, 85% of the costumers started their product research online for major purchases

of $500 or more. 38% of the customers checked online reviews before buying [9]. There

are countless websites that offer their users comparisons as a service. Product-comparison

websites like CNET2 (82nd in the US web-traffic ranking [10]) or product reviews and

comparisons on YouTube are a valid source for users to get information in order to decide

which product they should buy. Furthermore, websites with a wider range of compar-

isons, like Check243, offer their users a good way of comparing products, contracts or

memberships. These websites often focus on comparing the prices and some features of

the products.

On websites like Yahoo! Answers4, Quora5 or Reddit6 countless comparative questions

can be found. On these websites people are not restricted to a predefined topic or a specific

type of answer. These websites follow a community-driven approach by letting the users

both ask and answer questions. The provided answers for a question are then rated to

find the best fitting answer. This way, more complicated and opinion-based questions can

be answered. Especially Quora prefers their users to answer questions under their real

name. The people answering are supposed to have experience or expertise regarding the

question to provide factually based answers [11].

Example

1 What is better Xbox One or PS4?

2 What is the difference between a cappuccino and a latte?

3 Why is natural sugar better than added sugar? What’s different in the chemical
construction?

4 Should i buy or rent in California?

5 Why do children learn languages faster than adults?

6 Can you please explain the difference between ham and shortwave, like if i wanted
to set my parents (who live in ca fire country) up with a simple uncomplicated
means of 911 communication in case cell towers go down?

Table 1.1: Examples of comparative questions from Yahoo and Reddit.

The examples of comparative questions, taken from Yahoo and Reddit, illustrate the va-

riety of questions and topics (see Table 1.1). To comprehend a comparative question, it is

2https://www.cnet.com
3https://www.check24.de
4https://answers.yahoo.com/
5https://www.quora.com
6https://www.reddit.com/

3

CHAPTER 1. INTRODUCTION

necessary to understand which objects or situations are compared. In the first example,

the two gaming consoles “Xbox One” and “PS4” are compared. These linguistic objects

will be referred to as the objects or the entities of a comparison, while keeping in mind

that “object” can refer to feelings, situations, actions, people or any other non-material

thing. Some comparative questions aim to compare two objects with regard to a certain

aspect or feature of the objects. The fifth example demonstrates this. The two objects of

comparison are “children” and “adults”. They are not compared in an overall manner, but

instead, the question is asking for a comparison regarding the ability to learn languages.

This will be referred to as the aspect of a comparison.

To enable users to compare these open-domain entities, the University of Hamburg takes

part in the research project called Argumentation in Comparative Question Answering

(ACQuA) [12]. The goal of the project is to understand a user’s comparative question,

find supporting facts for an answer and then provide a fact-supported, comprehensible

answer in a natural language. To achieve this goal, the research team developed an au-

tomatic Comparative Argumentative Machine (CAM) for question answering (QA) in an

open-domain setting [13]. The CAM interface (see Figure 1.3) promotes users to input

two objects and multiple aspects of comparison. The answer is presented in a horizontal

bar chart showing the score that allows the users to get a general impression of the com-

parison. To provide a comprehensible answer, the Comparative Argumentative Machine

also displays the supporting sentences for both comparative objects. The data used by the

system is a preprocessed version of the Common Crawl Text Corpus8, which crawled from

the world wide web. Sentences containing both objects are retrieved from the corpus and

then classified into the categories better, equal, worse or none. The categories present the

relation of the first object to the second object. The sentence “Xbox One is better then

PS4” is an example for the category ”better”. The classified sentences are ranked and the

score is calculated.

The Comparative Argumentative Machine lacks a natural way for users to input a com-

parison and get a summed-up answer in natural language, such as the one a human being

would give (see Figure 1.3). Ideally, the system should work similar to a chatbot or a

spoken-dialogue system (e.g. Amazon Alexa). The user’s input to the interface should be

a comparative question expressed in natural language, similar to this example:

Question: I am thinking of buying a gaming console and have a budget of 300$.

Which one is better suited for me, Xbox One or PS4?

8https://commoncrawl.org/

4

CHAPTER 1. INTRODUCTION

Figure 1.3: The figure shows the Comparative Argumentative Machine (CAM)7 developed
by the team of the ACQuA project. The interface provides the users with an input mask
for two comparative objects and multiple comparative aspects (top). The system displays
score bars, to present a general impression of the comparison, and supporting sentences
for both comparative objects (bottom).

The system should answer in a natural language and sum up the key-supporting facts for

the answer:

Answer: An Xbox One is better suited for you. Even though the average price is

a bit higher, the Xbox One is equipped with the better hardware.

The primary purpose of this thesis is to comprehend the user’s natural-language questions.

5

CHAPTER 1. INTRODUCTION

This means, to identify questions that contain comparisons and to analyse which entities

are being compared. In case the entities are compared regarding a certain aspect, these

aspects also have to be obtained. The goal is to create an open-domain corpus containing

comparative questions for the English language with a binary classification of comparative

and non-comparative questions. Furthermore, the aim of this work is to create a second

dataset, which provides labels for comparative objects and aspects. The intention is to

evaluate various classifiers on their performance of comparative-question classification.

The second dataset will be utilized to extract comparative objects and aspects that can

be used in question answering systems (QAS). One example of QAS is the Comparative

Argumentative Machine as a part of the ACQuA project.

The thesis is composed of five additional chapters. The second chapter provides an insight

into the background information and the related work needed for this work. In the third

chapter, a definition of comparisons is presented and the creation of the human-annotated

dataset for comparative questions is explained in detail. The fourth chapter focuses on

working with the corpus to classify comparatives and to extract the entities of the com-

parison. The last two chapters conclude the work and present an overview about possible

future research.

6

Chapter 2

Related work

In this chapter, background knowledge about question answering systems (QAS) and Ques-

tion Classification is presented. The first section offers a general overview about question

answering systems and their latest research. In the second section, a more detailed look

on how questions can be classified is provided and it is explained why this is relevant for

QAS. The third section studies the related work on comparative sentences and questions.

2.1 Question answering

Question answering (QA) was one of the early topics for computer systems. BASEBALL,

one of the very first question answering systems, was proposed by Green et al. [14] in 1961.

This system was created to answer questions about baseball games from one season. One

of the typical questions could be “Who did the Red Sox lose to on July 5?”. The questions

were provided in the English language and read into the system by punched cards. The

system was limited in terms of the input structures of the questions. For example, logic

connectors like “and” or “not” were forbidden. Also questions were limited to a single

clause. Asking for sequential facts, such as “Did the Red Sox ever win six games in a

row?”, was not allowed. The input data was syntactically analysed and the question was

brought into a canonical format, which related to a predefined dictionary of input to value

pairs. If “Red Sox” or “Who” was the input, the canonical predefined relation would

be “Team”. For the following look-up, the data of the baseball season was hierarchically

stored. For each game, the day, month, place, teams and scores were stored. The final

response was not given in natural language, but as a list or a simple Yes/No.

A step in the direction of understanding a more natural English language was made by

the LUNAR Prototype. It was developed by Woods [15] for scientists of the NASA Apollo

7

CHAPTER 2. RELATED WORK

missions. The goal was to provide the NASA geologists with a system to access and

evaluate chemical analysis on lunar rock and soil in a natural way. The input questions

were limited to refer to the geological database and to not contain comparisons. Input

text was analysed syntactically by the use of a grammar that replicates “a large subset

of English” [15]. Furthermore, special rules and a dictionary of 3,500 words fitting the

geological domain were utilized. After parsing the input, a semantic interpretation of the

sentence was formed and converted into a formal query language. The data was stored

in a database table and could be accessed by the system trough the formal queries. The

output was shown to the users as listings or calculations.

Both systems are good examples of rule-based question answering systems in very spe-

cialized closed-domain settings. The input queries to the systems were limited in terms

of language syntax or vocabulary. In some cases, even simple paraphrasing of a sentence

was impossible to overcome for the systems [15]. In order to build and maintain the data

structures, experts were needed. This implied high costs and soon outdated or irrelevant

data. Furthermore, none of the systems generated natural language answers for the users.

With the following research, there was a shift from closed and very limited domains to

open-domain systems that rely on knowledge base (KB) representations of the data. Katz

et al. proposed the “SynTactic Analysis using Reversible Transformations” (START)

[16] system in 1988. START made a step towards understanding natural language in an

open-domain setting. The system was able to build and extend its knowledge base with

information, using English natural language texts as input. The START system was cre-

ated to comprehend and generate English sentences with the same grammar. Lexicons

and lexical classes helped to overcome key factors in understanding more complex parts

of the natural language, such as lexical disambiguates. In their following work, Katz et

al. used the Word Wide Web as a information resource for the START system [17]. In

2002, Katz et al. proposed Omnibase [18], a knowledge base for their START system to

use semi-structured resources from the web, such as the Internet Movie Database (IMDB).

The Omnibase knowledge base was built with an object-property-value data model, gener-

ated by the START system. Each sentence was interpreted as a relation of an object and

a property associated to a fitting answer value. For example, the question “Who wrote the

music for Star Wars?” is asking for the object “Star Wars” with the property “Composer”

and the associated value “John Williams”. Katz et al. were aware that not all types of

questions could be expressed by means of this kind of model [18]. They concluded that

robust systems that are able to understand natural language were not expected to exist

anytime soon, due to the fact that subjects like inter-sentence references, paraphrasing,

summarization and common-sense implication were still considered a problem [17].

8

CHAPTER 2. RELATED WORK

Today, one of the largest and broadest knowledge systems is Wolfram|Alpha [19]1. It

provides information for different kinds of questions that can be answered with facts.

Wolfram|Alpha relies on external and computational data, of which some is checked by

experts. Some types of data, e.g. financial data, is updated constantly. Users can ask

the system natural-language questions and get an answer of facts and computations. The

answers are structured in a table-like format. Wolfram|Alpha is limited to facts and does

not encompass opinions [20].

Figure 2.1: The figure shows an example input into Wolfram|Alpha. In this case, the
input “President Obama” is interpreted to be “Barack Obama”.

One of the most prominent question answering systems is IBM’s Watson, which competed

and won the quiz show Jeopardy! in 2011. Jeopardy! has been broadcasted in the United

States of America for more than 50 years. In a special episode, Watson won against the

two highest-ranked human players in the history of this show [21, 22]. In Jeopardy!, hu-

man contestants are provided with answers, called “clues”, to which they have to find

the fitting question. The clues are grouped together by a topic or knowledge category

and sorted by difficulty. The clues cover a broad range of topics, for example, culture,

literature, languages, history and science. Table 2.1 displays some examples taken from

the Jeopardy! episode with Watson [23].

IBM started the development of Watson in 2007. Their goal was to build a system power-

ful enough to understand the rich natural language of the clues and to master the complex

reasoning of Jeopardy’s game-system in real-time. Equivalent to the other participants,

Watson had to acquire all knowledge previous to the show and was not allowed to be

connected to the internet or any other resources. Unlike the previously presented systems,

Watson needed to generate correct answers in a limited period of time in order to win

the game. On average, Watson had just three seconds to parse a clue, understand it’s

meaning, find possible answers, determine the best one and, if confident enough, buzz in

and express the answer out loud [21]. The developers accomplished that Watson could

1https://www.wolframalpha.com

9

CHAPTER 2. RELATED WORK

Category Clue Answer

1 What to wear This plain-weave, sheer fabric made
with tightly twisted yard is also
used to describe a pie or a cake

What is Chiffon?
(Watson had a low
confidence)

2 Familiar
Sayings

Even a broken one of these on your
wall is right twice a day

What is clock?
(Watson answered cor-
rectly)

3 Actors who
Direct

A Bronx Tale Who is Robert De Niro?
(Candidate was faster)

4 Also on your
computer keys

A loose-fitting dress hanging
straight from the shoulders to
below the waist

What is a Shift?
(Watson answered wrongly:
Chemise)

5 Dialing for
Dialects

Sprechen Sie plattdeutsch? If you
do, you speak the low variety of this
language

What is German?
(Watson answered cor-
rectly)

Table 2.1: The table shows examples from the participation of Watson in the quiz show
Jeopardy!.

deliver correct answers with a precision higher than 85%, while buzzing in on at least

70% of the questions. This high target was necessary to be competitive. “Game Champi-

ons” buzzed in on an average of 45-50% of the clues, with an answer correctness of 85-95%.

The researchers of IBM made the success of Watson possible with an extensible software

architecture called DeepQA [21]. The pipeline architecture integrated hundreds of algo-

rithms that analysed the clues for features and found the evidence for the answers. For

the analysis of the clues, Lally et al. [24] found the following four critical elements:

1. Focus: The part of a clue that is a reference to the answer.

2. Lexical answer types (LAT): Terms in a clue that indicate the type of entity the

clue is looking for.

3. Question Classification: Classification of the clues into categories to tailor the

following answering approach to the question. As this is an important part for QA

systems and for this thesis, more information can be found in Section 2.2.

4. QSection: An annotated span in the clue or category that has a function in the

interpretation of the clue. For example, a lexical constraint such as “this 4-letter

word”.

10

CHAPTER 2. RELATED WORK

Instead of focusing on one answer candidate, each stage of the pipeline could find mul-

tiple answers from different algorithms. For each candidate, the system tried to find

supporting evidence. Every analysis taken for an answer was represented as a feature,

which was combined to a single score of confidence. DeepQA utilized statistical machine-

learning algorithms to weight the features. In DeepQA, structured and unstructured doc-

uments were used as knowledge sources for the candidate answers [25]. As unstructured

resources, Watson used title-oriented documents from different sources (e.g. Wikipedia)

and non-title-oriented documents, like news articles. To find answer candidates in these

unstructured documents, reading comprehension was adapted as a strategy from other QA

systems. For some clues, Watson relied on a structured knowledge-based representation

of the data. Even if it has been proven to be difficult to translate all natural language into

a machine-understandable knowledge representation, Chu-Carroll et al. considered this,

for example, for questions where the clue and the category asked for a relation between

the answer and a named entity (see Table 2.1 Example 3) [25]. While IBM Watson and

Wolfram|Alpha demonstrate an impressive performance and made astonishing progress in

question answering, both systems and their data are not open to the public but provided

as Software as a Service (SaaS). To create datasets for comparative question answering,

this thesis will use large-scale open-source data and make the datasets available to the

public afterwards.

In recent research on open-domain question answering, large-scale datasets for reading

comprehension have been published. Notable ones are the Stanford Question Answering

Dataset (SQuAD) [26, 27]2, the ReAding Comprehension Dataset (RACE) [28] dataset3

and the MAchine Reading COmprehension (MS MARCO) [29] dataset4. The SQuAD

dataset consists of 100,000 answerable and 50,000 unanswerable questions generated by

human workers. The questions refer to a passage of text taken from Wikipedia articles.

The answers are a span within these passages. The dataset provides the text passage, the

questions and the answers. On release, a logistic regression model performed an F1 score

of 51.0. The RACE dataset is collected from English middle and high school examinations

in China. The dataset consists of 100,000 questions on 28,000 text passages. For each

question there are four answer candidates available. On release, state-of-the-art models

achieved an accuracy of 43%.

In January 2018, a model from Alibaba’s artificial intelligence (AI) research arm exceeded

the average human performance on the SQuAD dataset by 0.1% in the exact match metric

for the first time [30, 31]. By that time, the unanswerable questions were not added to

2https://rajpurkar.github.io/SQuAD-explorer
3https://www.cs.cmu.edu/ glai1/data/race/
4https://microsoft.github.io/msmarco

11

CHAPTER 2. RELATED WORK

the dataset. In January 2020, the best models had a performance up to 3% higher than

humans on the complete dataset. Even though the human performance on the RACE

dataset has not been beaten so far, the leading models for both SQuAD and RACE are

based on Google’s “A Lite BERT” (ALBERT) [32] language model. For SQuAD, the

leading F1 score is 92.4 (41.4 higher compared to its release 5) and for RACE the leading

accuracy is 89.4% (46.4% higher compared to its release 6).

Most of these open-domain reading comprehension datasets have in common the fact

that they provide a small snippet of text in which the answer can be found (compare

SQuAD). Qi et al. [33, 34] argues that systems trained on SQuAD, for example, are good

in finding the answer in a provided text or article, but cannot help if the system does

not already know where to look for information. So, finding the director of “A Bronx

Tale” in the corresponding Wikipedia movie-article could be achieved, but finding it in

a general manner within a large text collection would not be possible. Qi et al. state

that this open-context and open-domain setting is much more challenging, but also more

useful because it is not always clear where to find the answer to a question. Following

Qi’s research, this work will only consider open-domain and open-context data sources to

create a most diverse, versatile and general dataset for comparative question classification.

5Leader board available at https://rajpurkar.github.io/SQuAD-explorer. Scores as of 01/24/2020.
6Leader board available at http://www.qizhexie.com/data/RACE leaderboard.html. Scores as of

01/24/2020.

12

CHAPTER 2. RELATED WORK

2.2 Question taxonomies

It is relevant for this thesis to study how comparative questions can be classified into

existing taxonomies. This classification, together with the description of the existing tax-

onomies, is explained in this section.

As explained in Chapter 1, search engines like Google cover a massive amount of searches

per year. The queried searches can be classified by a taxonomy proposed by Broder in

2002 [35].

• Informational queries

• Navigational queries

• Transactional queries

Informational queries have the purpose to address a information need of the users. Their

content can range from simple broad queries, such as “cars”, to more specific queries, for

example, “Game of Thrones Season 8 Review”. The informational class has the biggest

share over all search queries. Studies assume a range from 48% to 80% of all searches to be

informational [35, 36, 37]. The class of navigational queries ranges between 10% to 20%

of all searches. Despite the low overall share, navigational queries are the most prominent

in the US top 100 search queries of 2020 [38]. The class encompasses all queries with

the user’s intention to reach a particular website. The three most searched navigational

queries in 2020 are “facebook”, “youtube” and “amazon”7. Transactional queries cover all

searches performing a certain action, for example, “download HD screen saver”. The share

of transactional queries is estimated between 10-30% of all searches. In the search query

taxonomy, comparative questions can be considered a part of the informational queries.

Most question answering systems employ Question Analysis to a certain extend. Similar

to Watson’s analysis of clues (see Section 2.1), the systems need a question’s focus and a

question’s class to produce more precise answers. For Watson, the question classes were

very tailored to the Jeopardy! problem. Due to the nature of Jeopardy!’s categories and

clues, IBM used classes like “Definition”, “Fill-in-the-blank”, “Number” or “Puzzle” [24].

More general class sets were proposed in early research by Lehnert [40] and Graesser et

al. [41]. Lauer et al. [39] proposed the four psychological classes, shown in Table 2.2,

that drive humans to ask questions. It can be seen that comparative questions only fit

the categories “Correction of knowledge deficits” and “Monitoring common ground”.

7Data updated on the 04-12-2020 [38].

13

CHAPTER 2. RELATED WORK

Class Example

Correction of knowledge deficits. Problem solving / contradiction / gap in
knowledge

Monitoring common ground. Confirmation of belief / establishing common
ground / accumulating additional knowledge

Social coordination of action. Indirect request or advise / asking permission
/ offer

Control of conversation and attention. Greeting / change in speaker / reply to sum-
mons

Table 2.2: Psychological classes of questions proposed by Lauer et al. [39] in 1992.

In 2008, Graesser et al. [42] published a survey that summed up previous work on ques-

tion taxonomies in different fields of research (see Table 2.3). They collected 16 question

classes, which where either proposed by Graesser et al. or by Lehnert. In the survey,

Graesser sorted the categories according to their complexity. They classified categories

1-4 as simple/shallow, categories 5-8 as intermediate and categories 9-16 as complex/deep.

In this taxonomy, comparative questions belong to category eight. Therefore, Graesser et

al. consider comparative questions to have an intermediate complexity.

Lauer et al. [43] proposed a taxonomy within the class of comparative questions (see

Table 2.4). The study classified comparative questions into 12 classes and was conducted

in the context of financial auditing. Despite the context, the classes provide an extensive

overview of a speaker’s intend when asking a comparative question.

The proposed taxonomies address questions and queries from different angles and in dif-

ferent levels of detail. What those taxonomies have in common is that they are focused on

a question’s intention or meaning, such as the taxonomy proposed by Lauer et al., which

was based on the question’s intention for comparative questions. The goal of this thesis

is to provide a taxonomy with a better fit for comparative-question mining and classifica-

tion. Therefore, a taxonomy based on the question’s linguistic for comparative-question

classification is introduced in Chapter 3.

14

CHAPTER 2. RELATED WORK

Category Example

1 Verification Invites to give a yes or no answer.

2 Disjunctive Is X, Y, or Z the case?

3 Concept completion Who? What? When? Where?

4 Example What is an example of X?

5 Feature specification What are the proper-ties of X?

6 Quantification How much? How many?

7 Definition What does X mean?

8 Comparison How is X similar to Y?

9 Interpretation What does X mean?

10 Causal antecedent Why/how did X occur?

11 Causal consequence What next? What if?

12 Goal orientation Why did an agent do X?

13 Instrumental/procedural How did an agent do X?

14 Enablement What enabled X to occur?

15 Expectation Why didn’t X occur?

16 Judgmental What do you think of X?

Table 2.3: Taxonomy of questions proposed in a survey by Graesser et al. [42] in 2008.

15

CHAPTER 2. RELATED WORK

Class Description

Comparison with Verification. Asks for verification of a comparative rela-
tionship.

Comparison and Disjunctive. Asks which one of two comparative objects
is the case.

Comparison with Concept Completion. Compares the results of two implied ques-
tions.

Comparison and Feature Specification. Asks for the comparison of features of com-
parative objects.

Comparison with Quantification. Compares two quantities.

Comparison and Causal Antecedent. Asks for a comparison of causes that affect
two comparative objects.

Comparison and Causal Consequence. Asks for the comparison of the effects of
two causes.

Comparison and Goal Orientation. Asks for the comparison of two goals.

Comparison and Enablement. Compares the capabilities of two compar-
ative objects.

Comparison and Instrumental/Procedu-
ral.

Asks for differences between two compar-
ative objects.

Comparison and Expectational. Compares an accrued situation with an ex-
pected one.

Comparison and Judgmental. Asks for a comparison of two judgements.

Table 2.4: Taxonomy for comparative questions proposed by Lauer et al. [43] in the
context of financial auditing.

16

CHAPTER 2. RELATED WORK

2.3 Related work on comparatives

Additional to the previously proposed taxonomy for comparative questions by Lauer et

al., there has been some more recent work on the classification of comparatives and the

extraction of their comparative objects.

In their first paper from 2006, Jindal and Lui [44] proposed the Class Sequential Rule

(CSR) as method to classify sentences into comparative and non-comparative. A Class

Sequential Rule is a sequential pattern which gets assigned to a label. In this case, the

labels are binary: comparative and non-comparative. To mine an initial dataset, a set of

83 keywords, commonly used in comparatives, was collected. The keywords included part-

of-speech (POS) tags for comparative words, as well as manually collected phrases and

words that are utilized in comparisons. Jindal et al. composed the initial dataset out of

sentences containing at least one of the keywords. They found out that only 32% of their

collected sentences were genuine comparative (precision), while it was possible to match

94% of the comparative sentences (recall). With this initial dataset the Class Sequential

Rules were generated. The rules then acted as features for machine-learning classification

methods. Finally multiple classifiers were trained. A Näıve Bayes classifier performed

the best, with a precision of 79% and recall of 84%. The utilized source data came from

different, non-disclosed sources, in the categories of consumer reviews, forum discussions

and news articles. The datasets consisted of 4,985 non-comparative and 905 comparative

samples (total: 5,890), which were manually labelled by four human annotators.

Jindal and Lui extended their work in the same year towards the extraction of compar-

ative relations [45]. They defined a comparative relation as a set of entities that are

compared, a relation word and one or more features to which the comparison is made:

(<relationWord>, <features>, <entityS1>, <entityS2>). The definition allowed single

nouns and pronouns as entities and features, but also blanks. Verb forms of nouns, like

cost - costs, were left for future work. The comparative sentences taken from their previous

work were classified into four subclasses:

1. Non-Equal Gradable: The relation between the entities provides an ordering, e.g.

greater than, better than.

2. Equative: Equal relations between the entities, such as equal to.

3. Superlative: Superlative relations between multiple entities, e.g. less than all

others.

4. Non-Gradable: Comparative sentences that do not explicitly grade the entities

(e.g., “Toyota has GPS, but Nissan does not have”).

17

CHAPTER 2. RELATED WORK

For each keyword from the list of keywords proposed in [44], the fitting subclass label

(1-4) was determined. With this extended keyword list, the comparative sentences were

re-evaluated to fit into the finer-graded subclasses. For the extraction of entities they only

considered sentences from the gradable subclasses (1-3). Similar to the CSR approach,

they proposed the Label Sequential Rule (LSR) as method to identify entities and features

through sequential patterns. A naive base classifier archived an F1 score of 0.72. The pre-

cision of detecting the first entity was 100%, with a recall of 69%8, while the second entity

had a precision of 85% 8, with a recall of 59% 8. According to Jindal et al., the different

results of the prediction are due to the fact that the first entity had nicer characteristics,

for example, occurring at the start of a sentence. The second entity usually appeared

at any later point in a sentence and was harder to predict correctly. They stated that

the recall of the system was significantly impacted by errors in the utilized part-of-speech

tagger (POS tagger)9. An empirical evaluation of the dataset gave a distribution of 285

non-equal, 110 equative and 169 superlative sentences (total: 564). Between 65%-76% of

the entities and features were nouns and not every sentence contained all three elements

of the comparative relation set. Jindal et al. stated that for superlatives the second entity

is normally empty, implying that the second entity is implicit or the comparison is against

an open group like “all others”. The keyword list and annotated comparative questions

have not been published.

Specialized on the topic of web search and search engines, Jain and Pantel proposed to

use a comparable entity database to enable search engine users to perform a comparative

analysis [46, 47]. Their work mainly focused on extracting comparative tuples (E1, E2)

from a collection of 500 million web pages and 100 million query logs, both collected by the

Yahoo! search engine, to build the comparable entity database. To extract the comparable

entities from a text, they used a three stepped algorithm. In the first step, bootstrapping

methods were used to learn extraction patterns for entity tuples. The algorithm started

with a small set of given comparable tuples to find extraction patterns and then reapplied

the found patterns to the text in following iterations. Exemplary patterns are “E1 com-

pared to the E2”, “E1 versus E2” and “E1 or E2”. Further steps of the proposed algorithm

took care of improving the quality of the entity tuples. To generate a comparative analysis

Jain et al. furthermore proposed the use of a description database for each comparable

pair, including a meaningful description with characteristics and attributes of the entities.

In 2010 Li et al. [48] extended the work of Jindal and Lui [44]. Their paper combined

both, the classification of comparative sentences and the extraction of comparative entities,

through bootstrapping sequential label rules, similar to the ones from Jindal and Lui.

8The score was taken out of a diagram and might not be completely accurate.
9POS-tagger: An automated system to label parts of speech in text.

18

CHAPTER 2. RELATED WORK

The goal was to perform classification and extraction in on step. In contrast to Jindal,

Li et al. made several different assumptions for their work. They defined a comparative

question as a question that compares two or more entities (Comparators - $C). The entities

have to be explicitly stated in the question and can be a word, a POS tag or a symbol.

Furthermore, POS constraints were allowed for the comparative entities, for example,

“$C/NN” requiring the entity to be a noun. Li et al. called their sequential rules indicative

extraction pattern (IEP). They based their work on two assumptions:

1. “If a sequential pattern can be used to extract many reliable comparator pairs, it is

very likely to be an IEP.”[48]

2. “If a comparator pair can be extracted by an IEP, the pair is reliable.”[48]

For their experiment they utilized 60 million questions collected from Yahoo! Answers. To

generate an evaluation dataset (SET-A), 5,200 samples were manually annotated by two

human workers with the labels “comparative”, “non-comparative” and “unknown”. The

manual labelling resulted in 139 comparative questions and was therefore repeated with

more data. For this second set (SET-B) of 2,600 samples, a pre-filtering with a keyword

list was done to achieve a higher count of comparative samples. The list included keywords

like “or” and “prefer”, but it was not disclosed completely. SET-B was again manually

classified and also the comparative entities were annotated. The dataset contained 853

comparative questions. This results in an evaluation set of 7,800 questions with 992 com-

paratives. Li et al. implemented the CSR and LSR methods proposed by Jindal et al. and

trained them on the labelled datasets. After training and evaluation, Li et al. concluded

that the errors in Jindal’s experiments were caused by too specific rules and overfitting

the small training set, not only because of errors in the POS tagger. Due to the nature

of their approach, Li et al. could generate the sequential patterns in a weakly supervised

way on all the unlabelled data and tested it against the labelled datasets. In question

classification they achieved a precision of 83% and a recall of 82%. This is a plus of 35%

compared to their implementation of Jindal et al. in recall, while the precision was nearly

the same. For the extraction task, their method accomplished a precision of 92%(+6)10

and a recall of 76%(+14)10. Li et al. found 328,364 unique comparator pairs with 6,869

extraction rules. In total, 679,909 comparative questions were identified by their method

from 60 million samples. The keyword list, the extraction rules and the found comparative

questions have not been published.

A more recent research (2019) was done by Panchenko et al. [49] as a part of the ACQuA

project [12]. A dataset and a classifier to identify comparative sentences was proposed in

this research. They utilized entity pairs from three different domains to mine sentences

10Compared to the implementation of LSR by Li et al.

19

CHAPTER 2. RELATED WORK

from a web-scale corpus derived from the Common Crawl and explicitly excluded ques-

tions. The final dataset consisted of 7,199 sentences of which 1,957 (27%) samples were

comparative. The sentences were labelled as BETTER, WORSE and NONE. The labels

BETTER / WORSE describe the relation of the first comparative entity to the second

entity in a sentence (“Golf is better than Tennis.” - Label: BETTER). The label NONE

marked non-comparative sentences. In their experiments Panchenko et al. compared a

variety of different machine learning models11 and feature sets12. The best result for clas-

sification of comparatives was accomplished by a gradient boosting model (XGBoost13)

with InferSent [50] sentence embeddings as a single feature. Over all three classes the

classifier could reach an F1 score of 0.85. According to Panchenko et al., tested neural

networks showed no improvement compared to the machine-learning models. The best

model of the work of Panchenko et al. was employed in the Comparative Argumentative

Machine (CAM), presented by Schildwächter et al. [13], for sentence retrieval and classifi-

cation. CAM is an open-domain information retrieval system to argumentatively compare

objects. According to Schildwächter et al., the system proved to be 15% more accurate

and 20% faster than a “traditional” users search. Users can enter two comparative entities

and multiple aspects in dedicated fields in the CAM frontend to get a comparative analysis

(see Figure 1.3). One goal of this thesis is to extract comparative entities and their aspects

from continuous text and to provide them to systems like CAM.

In the latest work on comparatives (2020), Bondarenko et al. [51] proposed a method

to identify comparative questions in a Russian dataset and to classify them into 10 fine-

grained subclasses. Their work used a combination of rule-based classification, encom-

passed by regular expressions and neural-based classifiers. The 10 classes categorized

comparative questions into 5 general classes known from question taxonomies (e.g. ar-

gumentative or factoid) and further five syntactic and semantic classes like superlative

questions, questions containing aspects or questions providing more context to the com-

parison. The ten classes were not mutually exclusive (multiple classes could be assigned

to a question). The work of Bondarenko et al. defined questions that display any intent

of a comparison between two or more sets of entities as comparative. The entities could

be explicit in the sentence or implicit as an open set, like in this example: “Which tablet

is best to buy?”. Four native Russian-speaking annotators labelled an individual share

of 62,500 samples as comparative or non-comparative (one vote per sample). The source

data came from a query log of the Russian search engine Yandex14(50,000 samples) and

the Russian question answering platform Otvety15 (12,500 samples). One of the goals

11The tested models include XGBoost, Logistic Regression, SVM , Decision Trees and more.
12The feature sets included Bag of Words, Bag of N-grams, POS-Tags, Word Embeddings and more.
13https://xgboost.readthedocs.io/
14https://yandex.ru/
15https://otvet.mail.ru/

20

CHAPTER 2. RELATED WORK

of Bondarenko’s work was to have near to perfect classification precision, to ensure that

comparative labelled questions had no false positives. To achieve this goal, they classified

questions first with a rule-based classifier, which only incorporated rules that had perfect

precision. In case the rule-based classifier labelled a question non-comparative, an ensem-

ble of a convolutional neural network (CNN) model and a logistic regression model were

used to classify the question again and find a consensus. In their experiments Bondarenko

et al. used their ensemble classifier to label their complete source data and then manually

annotated 5,000 comparative questions. Through this extension, the set of comparative

questions had a total size of 6,250 samples. Bondarenko et al. explained that the ensemble

of rule-based, CNN and logistic regression classifier is the preferred classifier because it is

faster, even though another combination had a 1% better recall. The ensemble reached a

recall of 59% at a precision of 100%. Furthermore, Bondarenko et at. extend their binary

classification with a following step of classifying the fine-graded subclasses of comparatives.

For this step CNN and BERT [52] models were utilized. The classification was optimized

for the micro-averaged F1 measure and achieved 0.91 F1 score (BERT). The not mutually

exclusive subclasses with the most training data performed the best (up to 0.97 F1 score).

The class for aspect-providing sentences had the worst F1 score (0.74). Together with the

results, Bondarenko et al. released a separate set of 15,000 English questions collected

from various QA datasets available for the public. The questions were manually labelled

as comparative or non-comparative.

This thesis will study the identification of comparatives and the extraction of the compar-

ative entities, similar to the goals of Jindal et al. [44]. For mining comparatives from a

large scale data source, a linguistic-based approach on comparatives and their generation

rules will be developed, as well as a keyword list similar to the one proposed by Jindal and

Lui [44]. Unlike Jindal et al. and Bondarenko et al. [51], the utilized source data will be

extracted from English open-domain datasets, which are publicly available. The data will

be manually labelled in crowed-sourced annotation tasks to create comparative question

datasets. In contrast to work from Bondarenko et al. [51] or Jindal et al. [44, 45], the clas-

sification and extraction of comparatives will be done with feature-based machine-learning

algorithms, as well as neural machine learning, without any dependency on predefined or

generated rules. Furthermore, this thesis aims to provide an entity extraction in an open

domain, without prior definition of entities or entity pairs (in contrast to [48, 49]). More-

over, a more restrictive definition of comparative questions than the one from Bondarenko

et al. [51], yet a more open one than the one from Jindal et al. [44], will be taken. To

explain this definition of comparative questions, the next chapter will give an insight into

the linguistic background of comparatives and questions.

21

Chapter 3

Creation of comparative question

datasets

In this chapter, the linguistic background on comparative sentences is studied and a def-

inition of comparative questions is formulated. With this definition a linguistic-based

taxonomy for comparative questions is proposed and used to mine comparatives from

publicly available data. This chapter will end with the creation of two novel open-domain

comparative question datasets with the help of crowd sourcing annotations.

3.1 Linguistic background on comparative questions

Classical explanations in English school textbooks describe a certain structure to be used

in comparatives. Despite these simplifications, the rich English language allows various

ways and structures to express a comparison. To have a clear definition that fits this the-

sis goals, the various linguistic structures of comparisons, the restrictions and adaptions

needed are studied and explained in this section.

3.1.1 Rule-based comparisons

Bas Aatrs explains comparisons in the book “Oxford modern English grammar”[53] as

clauses that describe an equality or inequality between two terms. A comparison of equality

is expressed with a comparative clause as a Complement of the preposition “as”. Whereas

an inequality is expressed with the preposition “than”. The creation of these structures

can be done using the comparative or superlative form of adjectives or adverbs.

23

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Comparison of equality: The oak tree is as tall as the maple tree.

Comparison of inequality: The oak tree is taller than the maple tree.

3.1.1.1 Comparative and superlative adjectives

Forming the comparative or superlative form of adjectives follows some easy rules. From

the base form (positive form) of an adjective there are two ways to create the comparative

or the superlative form: the Suffix Method and the Adverb Method [53, 54, 55, 56].

Suffix Method: Add the suffix -er for comparative adjectives and the suffix -est

for superlative adjectives.

Adverb Method: Add an adverb directly in front of the adjective. For example

more, less, most or least.

Comparative Adjectives

Rule Method Action Example

one syllable Suffix ADJ+er tall - taller

two syllable Adverb more/less ADJ evil - more evil

two syllable & end in y Suffix drop y & ADJ+ier angry - angrier

>= three syllables Adverb more/less ADJ important -
more important

consonant + single vowel
+ consonant

Suffix double last consonant
+ er

big - bigger

Table 3.1: Inflection rules to build comparative adjectives.

More than 500 adjectives use the suffix method, but it is even more common that adjec-

tives use the adverb method. The method that is needed mainly depends on the number

of syllables and the word ending. Tables 3.1 and 3.2 show the rules, the method and the

according actions in detail. Many adjectives are gradable and can be assigned a degree

of “strength”. This is done by adding an adverb in front of an adjective. Even though

this is similar to the Adverb Method for comparative and superlative inflections, both

modifications deal with a different matter of speech. Adverbs like very, extremely, mildly,

truly, etc. can be used to grade adjectives, for example, “Peter is an extremely kind child.”.

24

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Superlative Adjectives

Rule Method Action Example

one syllable Suffix ADJ+est tall - tallest

one or two syllable ending in e Adverb ADJ+st rare - rarest

two syllable & end in y Suffix drop y & ADJ+iest angry - angriest

all other two & >= three
syllables

Adverb more/less ADJ important -
most important

consonant + single vowel
+ consonant

Suffix double last consonant
+ est

big - biggest

Table 3.2: Inflection rules to build superlative adjectives.

There are very few irregular adjectives, which form their comparative and superlative

forms completely different and not based on the Suffix- or Adverb Method. From the six

adjectives in their base form, eight comparative forms can be created (see Table 3.3). Best

known are, for example, bad - worse - worst and good - better - best as irregular adjec-

tive inflections. A comparative sentence using the irregular adjective good is “Bananas are

better than apples.”. For the words far and old the comparative and superlative forms de-

pend on the intended meaning. The inflection far - farther - farthest is used for distances,

“London is 50km farther away than Paris.”, while far - further - furthest can be used for

distances or time, “London is 30 minutes further away than Paris.”. Similar, old - elder

- eldest can only be used for people, while old - older - oldest is used for people and things.

Base form Comparative Superlative

bad worse worst

good better best

little less least

many / some / much more most

far frarther farthest

far frurther furthest

old elder eldest

old older oldest

Table 3.3: Inflections of irregular adjectives.

25

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Apart from the irregular adjectives, some words do not follow the method indicated by

the rules or it is left as the author’s choice how to spell the word. For example, the base

adjective unlucky leaves the author the choice to say “He is the most unlucky person in

his class.” or “He is the unluckiest person in his class.”. Another rule braking word is

“clever”. The word has two syllables and should therefore follow the rule to add an ad-

verb like “more/less” in front. Instead, for “clever” the suffix -er is added. The sentence

“Batman is cleverer than the Joker.” illustrates this.

Rule breaking words that except a suffix or are up to the author’s choice

[54]: able, bitter, clever, eerie, evil, feeble, foolhardy, gentle, handsome, humble,

little, mellow, narrow, nimble, noble, pleasant, polite, quiet, remote, rotten, secure,

serene, severe, shallow, sincere, subtle, sulky, unhappy, unlikely, unlucky, unruly

Figure 3.1 gives examples of sentences created with the Suffix (1) and Adverb Methods

(2 & 3) using prepositions to express a comparison of equality (so/as) or inequality (than).

3.1.1.2 Comparative and superlative adverbs

Similar to forming comparisons and superlatives with adjectives, it is also possible to use

adverbs [53, 54, 57, 58]. The same two Suffix- and Adverb Methods from Section 3.1.1.1

are used to create the adverb inflections. In contrast to adjectives, nearly all adverbs

use the Adverb Method. Table 3.4 shows the 22 adverbs that use the Suffix Method.

According to Brager [54], this list of 22 suffix adverbs can be considered complete and

might only lack a few very uncommon adverbs. All -er and -est adverbs in the list are

also adjectives and spelled the same way. Adverbs have the same irregular forms as the

equivalent adjectives (marked with * in Table 3.4). For example, the adjective bad and

the adverb badly form the same inflection worse - worst. In many cases, it is possible to

add -ly to an adjective to create an adverb.

The Adverb Method works the same way as with adjectives. An adverb is added in front of

the comparative adverb, which keeps its base form. In comparative sentences the adverbs

more, most and least are most commonly added, for example, frequently - more frequently.

The sentences 4-6 in Figure 3.1 serve as examples of sentences created with the Suffix (4)

and Adverb Methods (5 & 6) using expressions for comparisons of equality (so/as) and

inequality (than).

26

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Figure 3.1: The figure shows examples of comparative sentences containing adjectives (1-
3) and adverbs (4-6) that can be constructed with the Suffix (1 & 4) and Adverb Method
(2-3 & 5-6). The examples display the expression of inequality (1-2 & 4-5) and equality
(3 & 6) between two terms.

Base form Comparative Superlative Base form Comparative Superlative

badly worse worst * little less least *

bright (ly) brighter brightest loudly louder loudest

close (ly) closer closest low lower lowest

deep deeper deepest much more most *

early earlier earliest near nearer neatest

far farther farthest * quick (ly) quicker quickest

far further furthest * slow (ly) slower slowest

fast faster fastest some more most *

hard harder hardest soon sooner soonest

high higher highest tight (ly) tighter tightest

late later latest well better best *

Table 3.4: Inflections of adverbs using the Suffix Method. The asterisk (*) marks the
irregular forms. Some adverbs can be utilized with or without the displayed -ly in the
parentheses.

27

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.1.2 Phrase-based comparisons

With the inflection of adjectives and adverbs, the English language provides a set of prop-

erly defined methods to create comparatives (introduced in Section 3.1.1). Furthermore,

we can utilize the language more, by using lexical items, like single words or phrases, to

create a comparative sentence. A well known example is the phrase compared with. As

there is no clear definition of which lexical items can be used to introduce a comparison,

an extensive list of possible words and phrases was collected from different sources [59, 60]

for this thesis. The list (see Table 3.5) contains 55 words or phrases and was created in

a non-restrictive way. In this case, non-restrictive means that many of the items are not

exclusive for comparative sentences. Many phrases and especially the single words can be

utilized in both, comparative and non-comparative sentences. They are included in the

list to gain a high coverage of possible words or phrases utilized by people to express a

comparison. For example, the word “like” (see example below) is not exclusively used in

comparative sentences.

Comparative: Istanbul is like Athens.

Non-comparative: I do not like oranges.

Furthermore, for many of the collected lexical items it is not clear how frequently they are

used by people to form a comparison. It might be possible to create an abstract example

with a phrase, yet nobody would use it in a natural way of speaking. To provide an initial

idea if a phrase or word can be used in a comparison, an example sentence was created for

every word and phrase. Moreover, in Section 3.3 the usage frequency of the phrases in a

set of questions, taken from online platforms, is analysed. Sorting the list by their part of

speech, phrases represent the majority with a count of 25 (45%) expressions. Prepositions

(27%) like versus and adjectives (22%) like close to represent the second biggest group.

Conjunctions (6%) like or conclude the list. An empirical test based on the creation of

examples, showed that at least 36 lexical items (65%) could be used in a comparative

question. The box below provides some example sentences.

Phrase: Athens is small compared to Rome.

Preposition: Apple’s technology is ahead of Google’s.

Adjective: Gold is equal to Platinum.

Conjunction: Amazon is a company, while Athens is a city.

28

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

The creation of a relationship between two ideas or subjects is achieved by words that

point out the similarities or the differences between them [61]. Showing similarities is

done by means of comparison transition words, while opposing concepts can be achieved

by means of contrast transition words. Some of the lexical items in the list can be assigned

to one of these classes. The words similar and dissimilar are prominent examples for each

class. Even though this classification can be made, this thesis will not distinguish between

comparison and contrasting, but it will go with the more general meaning of a comparison

of building a connection or relation between two objects, similar to the definition of the

Oxford English Dictionary “Comparison: A consideration or estimate of the similarities

or dissimilarities between two things or people.” [62].

after by comparison in contrast to/with or unequal to

against close to in relation to/with over against unlike

ahead of compared to/with just as related to/with unrelated

alike different to/from like relative to versus

all-time dissimilar to/from near to relative vs.

alongside equal to/with next to relatively speaking whereas

as much even not like seen against while

beside/s in comparison
to/with

not only ... but also similar to

between in contradistinction
to/from

not the same as the same (as)

Table 3.5: List of lexical items (phrases and words) utilized in comparisons. The full list
can be found in the appendix in Table 1 and Table 2

3.1.3 Generation rules of questions

According to the definition of the Oxford English Dictionary, a question is ”a sentence

worded or expressed so as to elicit information” [63]. Interrogative clauses are commonly

used to express a question. Interrogative clauses can be classified into open and closed

interrogative clauses leading to open and closed questions [53]. Closed questions can typ-

ically be answered with a simple yes or no while open questions aim for a more complex

and unrestricted response. The usual word order in interrogative clauses differs in the

initial questions word (wh-word) used in open questions (see box below) [64].

29

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Usual word order in open question:

question word + auxiliary/modal verb + subject + main verb (+ extra informa-

tion...)

Usual word order in closed question:

auxiliary/modal verb + subject + main verb (+ extra information...)

In open questions, wh-words usually start the sentence. There are nine question words

used in open questions [65]. Table 3.6 gives an easy example for each question word and

lists the expected subject of an answer. Even tough the content of an answer to open

questions is not limited, the used wh-word determines the expected subject of the answer.

For example, with the question When is the supermarket closing? the reader expects an

answer related to time.

Question Word Answer Subject Example

What Thing What is your name?

When Time When is the party?

Where Place Where is the bank?

Which Thing Which car is yours?

Who Person Who is your brother?

Whom Person Whom do you believe?

Whose Person Whose dog is this?

Why Reason Why is there pizza?

How Directions How is the weather?

Table 3.6: List of question words for open interrogative clauses and the expected subject
of the answer.

Closed interrogative clauses do not use wh-words but a auxiliary or a modal verb to express

a question. It can be distinguished between the core auxiliary verbs be, do, have and the

modal verbs can, could, may, might, must, ought to, shall, should, will, would [66]. Both

lists show the positive form of the verbs. For each of them there is a form of negation,

normally created with not and a short version of the negative form (e.g. could - could not -

couldn’t). Only the verbs may and might have no negative short form. In difference to the

core auxiliary verbs, the modal verbs never change their form in a question. Modal verbs

are used to express modality such as ability, possibility, necessity or intention. Thus, a

30

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

closed question with a modal verb asks for this modality. For example, the question “Might

there be rain today?” asks for the possibility of rain. It is clear that the answer to this

question can be yes or no and might be followed by a reasoning, for example “Yes, there

are clouds in the sky.”. Furthermore, this questions demonstrates the difference between

the type of expected answer and the response to a question. While the answer is deter-

mined by the closed interrogative clause (yes/no), the response could be “I hope so.” [53].

Table 3.7 provides examples of closed questions and their implied modality of modal verbs.

Verb type Verb base form Implied
Modality

Example

Core auxiliary Be Is she Canadian?

Core auxiliary Do Does she have a brother?

Core auxiliary Have Had i told him that?

Modal auxiliary Can ability Can i talk?

Modal auxiliary Could ability Could he jump?

Modal auxiliary May possibility May we go?

Modal auxiliary Might possibility Might there be rain?

Modal auxiliary Must necessity Must we fly?

Modal auxiliary Ought to necessity Ought she to call the police?

Modal auxiliary Shall intention Shall we walk home?

Modal auxiliary Should necessity Should we walk home?

Modal auxiliary Will intention Will i be rich?

Modal auxiliary Would intention Would a dog like to fly?

Table 3.7: List of core and modal auxiliary verbs to use in closed interrogative clauses.
For the modal auxiliary verbs the implied modality of the question is listed.

31

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.1.4 Definition of a comparative question

With the help of the previous sections about the generation of comparisons (Section 3.1.1

& 3.1.2) and questions (Section 3.1.3), it is possible to form a clear definition of what is

considered to be a comparative question for this work.

The first general requirement is that, in contrast to the work by Bondarenko et al. [51],

the questions need to be written in the English language. Therefore, in Section 3.3 only

English source data will be considered for this task. The following obvious requirement for

a comparative question, is to be a question in the sense of Section 3.1.3. Both open and

closed question are considered here. The only restriction made is that the sentence needs

to start with a question word (see Table 3.6) or, in case of a closed question, a core or

modal auxiliary verb (see Table 3.7). In closed questions, all positive and negative forms

of the core auxiliary verbs are allowed. It is not necessary for a sentence to follow the

common punctuation. As a result, the question mark (?) at the end of a sentence is not

considered a requirement for the English language. Furthermore, the semantics or further

syntactics of a question are not relevant.

For a question, in order to qualify as comparative question, a comparison needs to be

made. This work follows the linguistic definitions of a comparison introduced in Section

3.1.1 and extends it by the construction of comparative sentences through phrases, which

are presented in Section 3.1.2. Similar to the definition of comparison from the Oxford

English Dictionary [62], a sentence is considered a comparative question, if the question

asks for an assessment or estimate of the similarities or dissimilarities of two “things”. The

compared “things” are referred to as objects of the comparison or the comparative objects.

The group of sentences is limited to linguistic comparisons and, therefore, it excludes su-

perlatives. Not only is this restriction strongly connected to the linguistic definition of a

comparison, but also to the Comparative Argumentative Machine (CAM). Systems like

CAM receive the output created by the natural language processing (NLP) components

presented in Chapter 4. The goal is to provide exactly two comparative objects as an

output. The two comparative objects can be anything. Common examples of these ob-

jects are: material objects, situations, actions, people, abilities, feelings and any other

non-material things. Accordingly and in contrast to the work of Panchenko et al. [49],

the content of a question is not restricted to a specific domain.

Although anything can be compared, the objects need to fulfil the following three con-

ditions. Firstly, they must be comparable. Secondly, the objects must be in themself

complete. This means that it is not allowed for the comparative objects to represent an

32

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Example

1 Why is BMW better than others?

2 Is the left one higher than the right one?

3 Is it healthier to eat two burgers or to drink two litres of cola per day?

4 Are jewelleries in Hong Kong cheaper than in Singapore?

5 Why do children learn languages faster than adults?

6 Why is it that hot water cleans better than cold water, when washing a jeans?

Table 3.8: Example sentences for the definition of comparative questions.

open group or class of things. In the first example (see Table 3.8), the comparison is made

between the car manufacturer BMW and other car brands. These types of comparisons

against open groups are hard to argue over and to answer, even for humans. Moreover,

knowledge about the first comparative object is needed to correctly conclude that “others”

stands for car manufacturers. Additionally to being self complete and comparable, the

comparative object needs to be explicit in the sentence. For example, the second question

(see Table 3.8) makes perfect sense with a picture of two mountains, but it is impossible

to answer without this additional information, since the comparative objects are implicit

in the sentence. These restrictions are again based on systems like CAM as receivers of

the output. Restricting the objects to be self complete, explicit and comparable enables

the systems to find answers for the questions.

Furthermore, a comparative object does not need to be one word or a noun phrase. It

can be composed of multiple words and form longer structures. A typical example would

be the comparison of two situations (see Example 3 in Table 3.8). The structure “eat

two burgers” forms the first comparative object and “drink two litres cola” the second

one. Due to the flexibility of the English language, two comparative objects might have

a shared dependency within a sentence. The real-world example “Are jewelleries in Hong

Kong cheaper than in Singapore?” from Yahoo! Answers shows two things (see Table

3.8). Firstly, the two objects Hong Kong and Singapore have a shared dependency to the

word jewelleries. This shared dependency will be called a shared comparative object or

shared object. The complete objects, which are compared in this example, are Hong Kong

jewelleries and Singapore jewelleries. Secondly, the word “jewelleries” does not exist in

English. It may be that the author meant jewellers, the places where jewellery is sold,

or he refers to jewellery itself, which is uncountable and has no plural form. Anyhow,

sentences with mistakes like this one, or with other spelling mistakes, will still be consid-

ered comparative. Another general definition taken is that the data is not restricted to

single sentences, but it can also be made up out of multiple sentences. Besides, not every

33

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

sentence in these short texts has to be comparative.

Not only do some questions ask for a comparison of the two objects in an overall manner,

but also for certain abilities or features of the comparative objects. Example five (see Ta-

ble 3.8) displays one of these cases. The comparative objects are “children” and “adults”

and the question asks for their ability to learn languages. This concretization of the aim

of a comparison is referred to as the aspect of the comparison.

In addition to the definitions established so far, two features of comparisons, which are

recognised, but not taken into consideration for this work, must be mentioned. Firstly, a

sentence might contain a modulation or modification of an aspect. In example five (see

Table 3.8), “faster” modifies the aspect “learning languages”. The word “faster” must

not be a part of the aspect, as the sentence is not asking if children or adults are faster.

Therefore, these constructs will be called the attribute of the aspect. Secondly, a part

of a sentence can provide more information or restrict the context of the comparison.

Example six (see Table 3.8) demonstrates that, while comparing “hot water” to “cold

water” regarding the aspect of “cleaning”, the end of the question restricts the context

to “washing jeans”. Both, the attributes of aspects and the additional information, will

not be considered in this thesis, to keep the task simple enough for crowd sourcing (see

Chapter 3.5).

In conclusion, this definition of a comparative is more open regarding the lexical type and

word count of compared objects than, for example, Jindal and Lui’s work [44]. But also

it is more restrictive than Bondarenko et al. [51], trough the exclusion of superlatives or

comparisons against open groups and the restriction to English sentences. Furthermore,

there will be no prior definition of entities or entity pairs like Li et al. and Panchenko

et al did. [48, 49]. The box below sums up all the definitions taken in this section. In

the following section, a linguistic-based taxonomy is proposed based on this definition of

a comparative question and the generation rules from the previous chapters.

34

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Definition of a comparative question

• The text ...

... has to be written in the English language.

... might be multiple sentences long.

... has be an open or closed question, starting with a question word or auxiliary

verb.

... might contain spelling mistakes or incomplete punctuation.

• The question ...

... has to contain a comparative between two comparative objects.

... must not be a superlative or compare more than two comparative objects.

... might contain a shared object.

... might contain an aspect of comparison.

... might contain additional information or attributes of the aspect, which will

not be part of this study.

• The objects ...

... and sentences are not restricted in their domain.

... need to be comparable, explicit and in themself complete.

35

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.2 Linguistic-based taxonomy for comparative questions

Based on the definition of comparative questions and the background on their linguistic

structures in Section 3.1, this section provides a taxonomy for comparative questions. In

contrast to the work from Lauer et al. [43], the taxonomy is based on the linguistics of the

question and the comparative instead of its content or meaning. This taxonomy has been

developed to be suitable for data mining and classification of comparatives. The classes

of the taxonomy are organized in a hierarchical tree-like structure. With every level of

depth the definition of the class gets more detailed. The classes basically reassemble the

construction cases explained in Section 3.1. Instead of naming the classes, a decimal en-

coded number system is utilized to address each class.

Figure 3.2: The figure shows the first two levels of the linguistic-based taxonomy for
comparative questions. Each candidate sentence can be sorted into one of the groups.
The Groups 1-4 diverge into more detailed subtrees, while the Groups 5 and 6 end in the
first level.

Figure 3.2 shows the top level of the taxonomy tree (blue boxes). A candidate sentence

is sorted into one of the six groups. Too short or too long sentences are sorted under

Nodes 5 and 6. These two classes have no child nodes and are not divided any further.

All non-comparative sentences are collected under the fourth node. The node is further

divided into child nodes for closed questions (10), open questions (20) and non-questions

(30). The class number is composed of the top-level node number, multiplied by 100 and

followed by the number of the corresponding child. A non-comparative (4) open question

(20) has the class number 420. The box below shows more examples of the class-number

system. The top-level nodes one to three represent the comparative sentences, either as

a question (nodes 1 & 2) or as a statement (Node 3). Each of these three “comparative

nodes” has the same four children, which separate the candidate sentence further by its

comparative generation structure (see Section 3.1.1 & 3.1.2).

36

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Examples of the class-number system:

Class 110 : Comparative closed questions of inequality, generated with adjectives

and the Suffix Method.

Class 232 : Comparative open questions of equality where no adjective or adverb is

used.

Class 321 : Comparative statements of inequality, generated with adverbs and the

Adverb Method.

Class 410 : Non-comparative closed question.

Class 500 : A too short sentence.

Figure 3.3 displays the full sub-tree structure of the top-level Nodes 1-3. The second-level

nodes categorize the sentences into a rule-based generation by adjectives (Node 1), adverbs

(Node 2) and unknown word structures (Node 3). The fourth node categorizes the genera-

tion by phrases (Node 4). The rule-based nodes split up into for child nodes. The first two

children combine a comparison of inequality with the Suffix (Child 1) and Adverb Method

(Child 2). Children three and four are for comparatives of equality. The words written in

brackets symbolize the exchangeable part of the comparative generation. For example: a

candidate sentence with the class 210 is an open question with an adjective, generating

the comparative of inequality with the Suffix Method and the preposition “than”. In this

class the adjective and its suffix, as well as the verb, can change.

A special class is the second-level node for unknown structures. This node gathers all

sentences containing an unknown combination of words instead of the exchangeable adjec-

tives or adverbs between the fixed parts of a sentence. This is necessary since the rules to

build a comparison are very simple and the language allows more combinations of words

Figure 3.3: The figure shows the second and the third level of the linguistic-based taxon-
omy for comparative questions exemplary on the top-level node for open questions. The
children categorize a sentence by its comparative generation.

37

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

in this place. “Was Europe and Greenland hotter in the past than they currently are?”

is an example of a sentence in which a specification of the time is made. Furthermore,

some authors might not follow the existing rules, for example, due to colloquial language

or mistakes. By having a class for these unknown structures, the class system remains

open to recognize all possible comparatives.

The fourth node collects all comparatives which are generated by the use of phrases. The

node is further divided into a child for all comparative phrases and one for the special

case “or”. The conjunction “or” can be used so versatile in the English language, that

these sentences might have a high false-positive rate. For example, in the sentence “Could

someone explain how a touchscreen on an iphone or android smartphone works?” the ob-

jects clearly form a list and are not comparative. A more difficult example is the sentence

“Does coffee or espresso wake you up?”. It is not completely clear if the author had the

intention to compare coffee and espresso, regarding the aspect of “waking people up”. Or

if coffee and espresso are a list of examples for beverages containing caffeine.

38

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.3 Data mining

3.3.1 Evaluation of data sources

A large amount of data is needed to classify comparative questions with machine-learning

techniques. The class distribution in such a large dataset should be balanced to easily

achieve the goal. Because of this, the source data for those tasks needs to contain a high

amount of comparatives. Previous work, for example, from of Bondarenko et al., estimated

a ration of 3% of comparative sentences in the search engine logs they utilized. The goal

of this section is to find data sources that contain at least a few thousand comparative

question samples. Calculating with the estimated ratio of Bondarenko et al., this would

mean that the data source needs to be at least 160,000 samples large. Therefore, different

data sources are evaluated in this section. There are five main requirements that a data

source needs to fulfil. Firstly, it needs to have a high count of comparative questions.

Secondly, the goal is to work with human written text and not just with short, keyword-

focused, queries that are typical inputs in search engines. Thirdly, only data that is

available to the public should be considered. On the one hand, this allows a publication

of the final datasets created in this thesis and, on the other hand, it ensures that the

datasets are available for future work. For example, for the extension of the datasets with

more annotated data from the data sources. Fourthly, the goal of this thesis is to build an

open-domain dataset. Therefore, in the best case, the source is not restricting any type of

question or topic. The data should mirror the real behaviour of people and their language

in questions. As a last requirement, the source should provide additional information with

the question. This is not strictly necessary, but it would be much appreciated. A good

example for additional information are ranked answers to the questions. These could

be utilized in future research for information retrieval and for answering comparative

questions. The box below shows a summary of the requirements:

Requirements for source data:

1. High count of potential comparatives

2. Higher average sentence length

3. Publicly available data

4. Open-domain data

5. Providing additional information

In the following sections, data from 7 different sources will be evaluated according to these

requirements. Six out of the seven sources published the data as composed datasets. The

39

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

datasets can be downloaded directly, without further processing. Only the data from Red-

dit1 needs to be fetched trough an Application Programming Interface (API). In order to

evaluate the data for possible comparatives, two rudimentary keyword filters are imple-

mented. The first filter searches for question words in the beginning of a sentence. The

second filter searches for four indicator keywords: or, than, vs, compare/compared. All

keywords of the second filter need to be found within a question. These statistics are used

to get an overall assessment of how many questions and potential comparatives exist in a

dataset.

3.3.1.1 AOL User Collection

In 2006, the search engine AOL published a large amount of anonymised search requests

[67]2. The collection consists of 20 million queries requested by 650,000 users over a period

of three months. The dataset includes:

• AnonID - Anonymous user ID.

• Query - Search query issued by the user.

• QueryTime - The time at which the query was submitted.

• ClickURL - The search result’s URL the user clicked on.

• ItemRank - The rank of the search result.

The user’s identification was replaced by an anonymous ID. The queries were not filtered

and no content was removed, hence, explicit language and data is still present in the data.

Most of the queries do not include the URL click information. Normalizing the search

queries (e.g. lowercasing) results in a set of 10 million unique search queries. Directly

after the publication by AOL, the dataset gained massive public attention. Due to the

fact that the queries in the dataset are not anonymized, the data still contains personally

identifiable information. Individuals could be identified by information from their search

history, such as numerical account data or addresses [68].

Table 3.9 shows examples from the AOL dataset. A high amount of the queries in the

dataset are navigational queries, similar to the first example in Table 3.9. Also, as to be

expected from search engine queries, most queries are very short. The average length of

a query is 4.4 words. To have a more reliable prediction of how many comparatives are

contained in this dataset, queries with a length shorter than 3 words are excluded from the

1https://www.reddit.com/
2The data can be found here: http://www.cim.mcgill.ca/ dudek/206/Logs/AOL-user-ct-collection/

40

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

AnonID Query QueryTime ItemRank ClickURL

2005 www.weather.com 2006-05-08
01:07:49

1 www.weather.com

543587 gsm vs cdma 2006-05-05
12:12:52

2 www.bsnl.in

1036161 when kids eyes stay dilated more
than normal

2006-03-02
22:49:02

Table 3.9: Examples from the AOL dataset.

evaluation. Furthermore, queries that contain URL-specific parts like “www” or “http”

are also excluded from the data. This results in 4.6 million unique queries. An overview

of the evaluation statistics can be found in Table 3.16. In this set, at least 29,000 queries

are closed questions and 148,000 are open questions. Despite this high number of ques-

tions, the indicator keywords show that there might only be a low number of comparative

questions. The keyword “or” reaches the highest count of 1,807 samples and “than” has

371 occurrences. The conjunction “or” is expected to have a high false positive rate, this

means that even high counts for this keyword might not clearly indicate high amounts of

comparatives. Out of 4.6 Million samples, 2,490 (0.0005%) samples are potential compar-

atives. This low absolute values, the controversial release of the data and also the low

average length of the queries are strong arguments against using the AOL data as a source

for this thesis.

3.3.1.2 Google Natural Questions

The Google Natural Question (GNQ)3 dataset was published by Google in 2019 as a ques-

tion answering dataset [69]. The dataset is composed out of queries, issued by real users

to Google’s search engine. It consists of 323,000 questions with the following information:

• Question - A real user’s question seeking factual information.

• Wikipedia page - May or may not contain information to answer the question.

• Long answer - A bounding box on the Wikipedia page that contains all information

to infer the question.

• Short answer - May be one or more entities, yes, no or none.

While building the dataset, several heuristics were used to filter the search engine queries.

The goal was to find questions, which seek factual information. For example, queries

3The data can be found here: https://ai.google.com/research/NaturalQuestions

41

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

needed to start with the question words who, when, where or contain multiple entities as

well as an adjective, adverb, verb, or determiner. To gain a high complexity for natural

language understanding (NLU) tasks, Google focused on queries longer than 8 words.

After the pre-processing, the questions were anonymized and aggregated from multiple

similar questions. The Wikipedia page that was assigned to a question was determined

by running the questions through the Google search engine. Therefore, it may or may

not contain the information to answer the question. The answers, generated by human

workers, are two fold. A long answer provides a bounding box on the Wikipedia page

which contains all information to infer the question. The short answer is composed out of

entities from the Wikipedia page, or a simple yes or no. Either one or both of the answer

fields can be empty.

Question Wikipedia page Long Answer Short
Answer

who plays casey kelso on
that 70s show

Luke Wilson ... Wilson also had a role on
That ’70s Show, as Michael Kelso’s
older brother Casey Kelso, appear-
ing sporadically from 2002 through
2005.

when did the battle of
palmito ranch happen

Battle of Palmito
Ranch

The Battle of Palmito Ranch is
considered by some criteria as the
final battle of the American Civil
War. It was fought May 12 and
13, 1865, on the banks of the Rio
Grande ...

May 12
and 13,
1865

lighting reaches a temper-
ature four times greater
than the sun’s surface

Solar energy

Table 3.10: Examples from the Google Natural Questions dataset.

Table 3.10 shows examples from the Google Natural Questions dataset. As it can be

seen in the third example, not every query is a question. The evaluation of the dataset

shows that at least 232,500 samples are sentences starting with a question word. The

open questions represent the majority with 225,000 samples. The dataset contains only

2,700 (0.009%) potential comparative questions. These low numbers of comparatives can

be explained by Google’s intention to provide a dataset containing factoid questions. The

average sentence length of 9.2 is fitting good for the purpose of this thesis. An overview

of the evaluation statistics can be found in Table 3.16. Even though the data can be

considered open-domain and “natural”, the strong regulation for factoid questions and

the overall low comparative indicator number are arguments against using the GNQ as a

data source.

42

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.3.1.3 MSMarco

The large scale MAchine Reading COmprehension (MS MARCO)4 dataset was published

by Microsoft (MS) in 2018 [29]. The open-domain dataset consists of 1,010,916 anonymized

questions from Microsoft’s Bing search engine. The dataset contains the following infor-

mation:

• Question - A real user’s question from MS Bing.

• Passages - Up to 10 paragraphs that may contain the answer to the question.

• Answer - Natural language, human written, answers.

• Question Type - Categories are Description, Numeric, Entity, Location and Person.

The questions used for the dataset were automatically collected from the Bing search query

logs by a machine-learned classifier. For each question 10 text passages, taken from web

documents, were provided. Human annotators were asked to answer the questions only

with the help of these passages. If the answer could not be found in one of the passages,

the question counted as unanswerable and the answer field was left empty. Some answers

were enhanced in a review-and-rewrite process. For example, answers that could not be

understood without knowledge of the question were rewritten (see Example 2 in Table

3.11). Furthermore, the type of answer a question was expecting, was annotated by a

machine-learned classifier.

Question Passages Answer Question
Type

what is a
corpora-
tion?

Corporation definition, an association
of individuals, created by law or under
authority of law, having a continuous
existence independent of the existences
of its members, and powers ...

A corporation is a company
or group of people authorized
to act as a single entity and
recognized as such in law.

Description

albany
mn pop-
ulation

Albany, Minnesota, as per 2017 US
Census estimate, has a community
population of 2,662 people. Albany is
located in Stearns County ...

The population of Albany,
Minnesota is 2,662. (original
answer: 2,662)

Numeric

Table 3.11: Examples from the Microsoft MAchine Reading COmprehension (MS
MARCO) dataset. The passages are shortened for this table.

The evaluation of the dataset shows that at least half a million samples are open questions

and at least 64,000 are closed questions. The data contains 6,100 potential comparatives,

of which 4,900 are built with the conjunction “or”. The average length of a question is

4The data can be found here: https://microsoft.github.io/msmarco/

43

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

6.3 words. Due to the way Microsoft selected the data, it can be assumed that the data

is open domain. Taking all these estimates into account, the MS Marco dataset could be

an option as a data source. However, it can be expected that there will be a high number

of false positives because of the high number of potential comparatives with “or”.

3.3.1.4 Quora Datasets

The community QA platform, Quora5, provides people with a place to ask questions and

get user created answers. The answers are rated by the community to find the answer

with the best fit. In the recent years, Quora has released two datasets that contain ques-

tions sampled from their platform. Firstly, in 2017, a “Duplicate Question Pairs” dataset

was released with the aim to machine classify questions with duplicate content [70]. Sec-

ondly, in 2018, the “Insincere Questions” dataset was released [71]. The dataset’s research

purpose was to identify questions in which the author is insincere and intends to make a

statement instead rather than searching for helpful answers. In the following sections, both

datasets are evaluated in terms of their suitability for providing source data for this thesis.

Quora Duplicate Question Pairs dataset

The Quora “Duplicate Question Pairs” dataset [70] contains 400,000 lines of potential

duplicate questions, which were sampled from questions asked on the Quora website. The

dataset is structured in the following way:

• Sample-ID - A unique ID to identify each sample of the dataset.

• Questions-IDs - Each question has a unique identifier within the whole dataset.

• Question1 & Question 2 - A pair of questions that are potential semantic duplicates

of each other.

• Duplicate - A binary indicator whether the questions pair is a duplicate.

Each sample of the dataset is built out of two questions that might be semantic duplicates

of each other. Different sampling and sanitation methods were combined to create the

dataset out of Quora’s data. Because of this, the distribution of questions can not be

considered to be representative of the distribution of questions asked on the website [70].

The authors do not elaborate further on which methods were utilized for the sampling.

Therefore, it is not clear if a semantic or content-related selection was performed. It is to

5https://www.quora.com

44

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

be expected that the data might not be open-domain. Moreover, their sampling created

a highly unbalanced dataset towards true duplicates. This was fixed by adding negative

examples, which were taken from the related questions section of a duplicate question.

The topic of the added question was similar to the original, but not semantically equiv-

alent. This way, it was ensured that a true negative sample was added to the dataset.

Furthermore, the authors pointed out that the labels contain noise and are not guaranteed

to be perfect.

Question 1 Question 2 Duplicate?

What are natural numbers? What is a least natural number? No

How do you start a bakery? How can one start a bakery business? Yes

Did Ben Affleck shine more than
Christian Bale as Batman

No fanboys please, but who was the true
batman, Christian Bale or Ben Affleck?

Yes

Table 3.12: Examples from the Quora Duplicate Question Pairs dataset.

The examples in Table 3.12 demonstrate the semantic similarities (see Example 2). The

dataset is slightly unbalanced with 255,027 (63%) samples classified as non-duplicate ques-

tions. For the research goal of this thesis, a semantic similarity may be ignored as long

as the wording of the sentence is not an exact duplicate. In the dataset, questions are

reused in different sample pairs. This reduces the total number of questions to 537,933

unique questions. 340,000 of these are open questions and 82,000 are closed questions.

The comparative indicator shows that there are 30,900 potential comparative questions

in the dataset. A high amount of 73% of these potential comparatives are generated with

the conjunction “or”. The average sentence length of 11.6 words fits the requirements.

Quora’s restrictive license to republish the data and the likelihood that the data is not

open-domain, are arguments against using it as a data source. Furthermore, the dataset

does not contain additional information and the provided question identifiers are not equal

to the ones used on the Quora platform. Therefore, there is no easy way to collect the

answers to these questions.

Quora Insincere dataset

The Quora “Insincere Question” dataset has a total of 1.3 million labelled samples (training

data). Additionally, for an online competition on the data-science platform Kaggle6,

375,000 unlabelled test samples were released. The training dataset contains the following

information:

6https://www.kaggle.com/

45

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

• Sample-ID - A unique ID to identify each sample of the dataset.

• Question - A question that is potentially insincere.

• Label - A binary indicator that shows whether the question is insincere.

The dataset has a very simple structure. It provides a question with a label. The label in-

dicates if a question is sincere or not. Sincere questions are questions that look for helpful

answers. For insincere questions the authors defined a few characteristics. An insincere

question may have a non-neutral tone, for example, meant to imply a statement about a

group of people. Furthermore, a insincere question may be disparaging or inflammatory,

not be grounded in reality or contain sexual content for shock value. Similar to the “Du-

plicate Question Pairs” dataset, the authors do not guarantee that the distribution in the

dataset is representative for the distribution of questions asked on Quora. Moreover, they

advise again that the labels may contain noise and are not guaranteed to be perfect.

Question Insincere?

What are the theories in critical thinking? No

Has the United States become the largest dictatorship in the world? Yes

Can acid absorb heat faster than water? No

Do you think like me that mother Russia is better than the pussies of America? Yes

Table 3.13: Examples from the Quora Insincere Question dataset.

Table 3.13 shows examples for sincere and insincere questions. The third and fourth ex-

ample are comparative examples. The dataset is very unbalanced in favour of the sincere

questions. Only 6% of the samples are labelled as insincere. The dataset has 265,000

closed and 829,000 open questions. The filtering indicates that 86,300 samples are po-

tential comparatives. Out of these, 66,000 (76%) samples contain the word “or”. Similar

to the “Duplicate Question Pairs” dataset, this is a very high number, but the absolute

number of comparisons generated with the other filter words is higher than in any re-

viewed dataset so far. In total, there are 20,247 potential comparative samples that are

not generated with “or”. The average sentence length in the dataset is 12.5 words. This

fits with the requirements and is also close to the value of the “Duplicate Question Pairs”

dataset. This indicates that the filtering and the pre-processing for both datasets was

executed in a similar way. The dataset was published under the same restrictive licence as

the “Duplicate Question Pairs” dataset and also has the same constraints, as no additional

data is provided. Therefore, the dataset does not meet all the requirements.

46

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.3.1.5 Yahoo Answers

From Yahoo’s data platform Webscope7, two datasets are evaluated for this thesis. The

first one is a large log of search queries from the Yahoo! search engine (Webscope L18) [72].

The second one is a collection of questions and answers from the community QA platform

Yahoo! Answers (Webscope L6) [73]. Both datasets are publicly available for research.

After an initial manual review, the search query logs can be ruled out as a data source

for this research. Before publication, Yahoo anonymized the data completely. By then,

the textual search queries were converted into an 8-character alphanumeric string, which

makes them useless for building the comparative question dataset. The data from the

QA platform looks more promising. The dataset contains a total of 4.48 million questions

with their answers. The data was collected from the Yahoo! Answers platform as of 2007.

The dataset comes with an extensive amount of information and has a total size of 12GB

data. The following list only shows the most important features:

• Question subject - A question taken from the QA platform Yahoo! Answers.

• Question content - A longer text providing context or specifying the question. This

field is optional for each question.

• Best answer - The best answer is selected by the asker or by vote of the users. This

field is mandatory.

• All answers - A list of all answers to the question. This field is mandatory.

• Taxonomy - The question is classified into a hierarchical taxonomy using a main

category (e.g. ”Travel”), a category (e.g. ”China”) and a sub-category (e.g. ”Asia

Pacific”). The taxonomy elements are optional.

The sample of the dataset at least provides a question, the best answer to the question and

a list of other answers. The best answer is either picked by the asker or by the community,

in case the asker does not choose one. For the list of answers, no ranking is provided and

it is not clear if they are sorted by a ranking system. Optional to these fields, the dataset

contains a content field in which a question can be further elaborated by the asker. A

manual data review shows that the subject field is not always used to formulate the ques-

tion. In some cases, it serves as a headline and the actual question is asked in the content

field. Further to these fields, the sample might provide a taxonomy field. A question is

classified by a not clearly specified question taxonomy with three hierarchical elements.

Table 3.14 shows example samples taken from the dataset. The second example in Table

3.14 is a comparative question with an factoid answer. The third example demonstrates

that in some cases the question is not written in the subject field. Furthermore, the text

7http://webscope.sandbox.yahoo.com

47

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

in the subject field and the content field can also be a duplicate (see Example 4 in Table

3.14). For the evaluation of the dataset, both fields are utilized in the case that the content

is not a duplicate. This strategy results in a total of 7.03 million samples for the evalua-

tion. The evaluation shows that the dataset contains at least 922,000 closed question and

1.86 million open questions. The comparative indicator lists 265,000 possible comparative

samples. At least 32,000 of these do not use the conjunction “or”. The samples have an

average length of 21.2 words, which is a bit high. An evaluation that only uses the question

subject fields shows 184,000 comparatives and an average word count of 10.6 words per

sample. The dataset can be considered open-domain, as it is a copy of the QA platform’s

data, without the application of any filters or restrictions.

3.3.1.6 Yelp

The online platform Yelp8 provides its users with the possibility to review local businesses.

In 2019, Yelp published a large-scale dataset with 8 million reviews from over 200,000

businesses in 10 metropolitan areas [74].

• Identifiers - Identifiers for the user, the business and the review.

• Review text - The review text written by the users of the platform.

• Vote counters - Counters for votes the users can place on a review, for example,

“stars” or “useful”.

The dataset contains the user written review text, several identifiers to link the reviews

to businesses and users and a number of vote counters. The reviews have an average

word count of 111.5 words. This high word count can be expected as reviews are mainly

continuous text in which people, for example, describe their experiences with a restaurant.

The complete dataset contains only 165,000 closed questions and 94,000 open questions.

78,000 of the questions might be a comparative with a high amount of 55,000 samples

containing the word “or”. Even though the dataset is available for the public, it enforces

very strict terms of use. The usage for academical research is allowed, but it is forbidden

to publish any part of the original dataset. Therefore, no examples from this dataset can

be listed here. This strict policy, the closed-domain setting with reviews, as well as the

high average word count rule out the Yelp data as a source for this thesis.

8https://www.yelp.com

48

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

S
u

b
je

ct
C

on
te

n
t

B
es

t
a
n

sw
er

T
a
x
o
n

o
m

y

W
h

at
is

th
e

b
es

t
off

-r
oa

d
m

ot
or

cy
cl

e
tr

ai
l

?
lo

n
g-

d
is

ta
n

ce
tr

a
il

th
ro

u
g
h

o
u

t
C

A
i

h
ea

r
th

a
t

th
e

m
o

ja
ve

ro
a
d

is
a
m

a
zi

n
g
!

S
p

o
rt

s
H

u
n
ti

n
g

O
u

td
o
o
r

R
ec

re
a
ti

o
n

w
h

at
h

as
m

or
e

ca
ff

ei
n

e?
a

d
ou

b
le

la
tt

e
or

a
la

rg
e

co
ff

ee
?

ch
o
os

in
g

b
et

w
ee

n
a

d
o
u

b
le

la
tt

e
(o

r
si

m
i-

la
r)

an
d

a
1
6
o
z

cu
p

o
f

d
ri

p
co

ff
ee

,
w

h
ic

h
w

ou
ld

h
av

e
m

o
re

ca
ff

ei
n

e?

B
a
se

d
o
n

th
is

(L
IN

K
)

i
w

o
u

ld
sa

y
th

a
t

a
la

rg
e

co
ff

e
h

a
s

a
b

o
u

t
8
0
-1

3
5
m

g
o
f

ca
ff

ei
n

e,
b

u
t

a
d

o
u

b
le

la
tt

e
(w

h
ic

h
h

a
s

2
es

p
re

ss
o

sh
o
ts

)
h

a
s

a
b

o
u

t
2
0
0
m

g
+

F
o
o
d

&
D

ri
n

k
N

o
n

-A
lc

o
h

o
li

c
D

ri
n

k
s

V
ac

at
io

n
re

n
ta

ls
in

th
e

T
u

rk
s

an
d

C
ai

co
s

W
e

ar
e

co
n

si
d
er

in
g

re
n
ti

n
g

a
h

o
u

se
in

th
e

T
u

rk
s

an
d

C
a
ic

o
s.

..
a
n
y

re
co

m
m

en
d

a
ti

o
n

s
of

w
h

ic
h

is
la

n
d

s
m

ig
h
t

b
e

b
es

t,
a
n
d

g
o
o
d

p
la

ce
s

to
re

n
t

fr
o
m

?

I
li

ke
P

ro
v
id

en
ci

a
le

s
b

es
t.

B
ea

u
ti

fu
l

b
ea

ch
es

a
re

sc
a
tt

er
ed

o
n

a
ll

si
d

es
o
f

P
ro

v
-

id
en

ci
a
le

s,
th

e
m

o
st

sp
ec

ta
cu

la
r

o
f

w
h

ic
h

is
a

1
2

m
il

e
st

re
tc

h
lo

ca
te

d
o
n

G
ra

ce
B

ay
,

w
h

ic
h

is
p

ro
te

ct
ed

b
y

a
h

ea
lt

h
y

b
a
rr

ie
r

re
ef

.
P

ro
vo

h
a
s

a
n

1
8

h
o
le

g
o
lf

co
u

rs
e,

a
ca

si
n

o
,

sh
o
p

p
in

g
ce

n
tr

es
,

th
re

e
m

a
ri

n
a
s,

a
g
ro

w
in

g
n
u

m
b

er
o
f

o
f

b
a
rs

a
n

d
ex

ce
ll

en
t

re
st

a
u

ra
n
ts

.
P

ro
vo

is
a
ls

o
a

d
iv

er
s’

a
n

d
w

a
te

r
lo

ve
rs

’
p

a
ra

d
is

e.

T
ra

ve
l

T
u

rk
s

&
C

a
ic

o
s

C
a
ri

b
b

ea
n

W
h

at
’s

th
e

b
es

t
w

ay
to

h
ea

t
u

p
a

co
ld

h
am

b
u

rg
er

?
W

h
at

’s
th

e
b

es
t

w
ay

to
h

ea
t

u
p

a
co

ld
h

am
b

u
rg

er
?

If
y
o
u

m
u

st
ea

t
a

h
ea

te
d

h
a
m

b
u

rg
er

th
en

I
su

g
g
es

t
th

e
fo

ll
ow

:
F

ir
st

,
sc

ra
p

e
th

e
ke

tc
h
u

p
,

m
ay

o
a
n

d
a
n
y

o
th

er
sa

u
ce

th
a
t

is
o
n

th
e

h
a
m

b
u

rg
er

a
n

d
p

u
t

it
a

si
d

e.
A

ls
o

ta
ke

th
e

ve
g
et

a
b

le
s

o
u

t.
S

ec
o
n

d
,

p
re

-
h

ea
t

a
st

ea
k

p
a
n

;
p

u
t

th
e

h
a
m

b
u

rg
er

se
p

-
a
ra

te
fo

rm
th

e
b

u
n

o
n

th
e

h
o
t

p
a
n

.
T

h
ir

d
,

h
ea

t
u

p
b

o
th

p
a
rt

s
o
f

th
e

b
u

n
n

ea
r

th
e

h
a
m

b
u

rg
er

o
n

th
e

sa
m

e
h

o
t

p
a
n

(y
o
u

ca
n

g
et

so
m

e
so

u
ce

fr
o
m

th
e

h
a
m

b
u

rg
er

o
n

it
).

F
o
u

rt
h

,
y
o
u

ca
n

ei
th

er
p

u
t

b
a
ck

th
e

o
ri

g
-

in
a
l

ke
tc

h
u

p
,

m
ay

o
a
n

d
th

e
v
eg

et
a
b

le
s

o
r,

b
et

te
r

ye
t,

g
et

n
ew

o
n

es
fr

o
m

w
h

a
t

yo
u

h
av

e
a
t

h
o
m

e.
B

o
n

A
p

p
et

it
e

F
o
o
d

&
D

ri
n

k
C

o
o
k
in

g
&

R
ec

ip
es

T
ab

le
3.

14
:

E
x
am

p
le

q
u

es
ti

on
s

ta
ke

n
fr

om
th

e
Y

ah
o
o!

A
n

sw
er

s
d

at
as

et
.

49

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.3.1.7 Reddit data

The last data source is Reddit9. Reddit is a large group of online forums, which registered

users can use to talk about nearly everything. People are able to publish text (posts),

upload images and share links, as well as vote and comment on other users content. Spe-

cialized forums are called subreddits and are linked with r/“topic”, for example, r/science.

People can subscribe to a subreddit to receive news about the latest uploads. The top

three most subscribed subreddits are r/funny (31 million users), r/AskReddit (28 million

users) and r/gaming(26 million users). The subreddit r/AskReddit is according to its self

description “the place to ask and answer thought-provoking questions”[75]. When publish-

ing a post in this subreddit, people have to follow a few simple rules. There are two rules

that regulate the subject of the question:“No personal or professional advice requests” and

“No loaded questions”10. In order to allow a open-ended discussion, another requirement

is that the question needs to be an open question. Since March 2019, every single day

more than 10,000 new posts were created in r/AskReddit [76]. These enormous numbers

give an idea of how big Reddit is in terms of user-generated content, which could be used

in a dataset. However, there is no ready-to-use dataset available. On the one hand, this

means that the data can only be manually collected through an Application Programming

Interface (API). On the other hand, it allows to create a unique dataset fitting the needs

of the task. To evaluate the usefulness of Reddit as a source for comparative questions,

a set of posts from r/AskReddit is fetched trough the API. A detailed explanation of the

programming and the utilized API can be found in Section 3.3.2. A total of 437,900 posts

are collected with the following informations:

• Identifier - Identifies the post and is also part of the URL.

• Title - The user written text or question.

• URL - Address linking directly to the post.

• Author - Username of the Reddit user that created the post.

• Subreddit - The name of the subreddit in which the post is published. In this case,

always r/AskReddit.

• Creation Date - The data of the publication. For this set all dates are between

31.07.-28.08.2019.

The dataset provides the post title, which is the users question. In the AskReddit sub-

reddit only the title is utilized and the body of a post remains empty. For future work

9https://www.reddit.com/
10No questions including an opinion, bias, or that lead respondents towards expressing a specific opinion.

[75]

50

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

the identifier, the URL and the author are part of the dataset. The data was published

between the 31. July and the 27. August in 2019. For this evaluation the data is not

filtered and not preprocessed.

Post title

What was your worst day ever?

Why do Americans write the date month/day/year and not day/month/year?

Let’s assume they could go on a journey through time. In what time would you travel and why?

Which TV show is better than Friends?

Does modern life give us more freedom or less freedom than in the past?

What TV shows pilot is most different compared to the rest of the series?

Why are robot lawn movers so outdated compared to robot vacuum cleaners?

Table 3.15: Examples from the Reddit forum r/AskReddit.

Table 3.15 shows examples of questions taken from the dataset. The last three questions

contain comparatives and superlatives. The dataset has 179,000 sentences starting with an

open-question word and 28,000 sentences begin with a closed-question word. The compar-

ative indicator shows 22,000 possible comparatives with a high number of sentences built

with the word “or”. Only 2,900 comparative questions are generated with the other indica-

tor words. The majority of these (2,500 sentences) is using the word “than”. The average

word count per sentence is 13.9 and, therefore, it fits the requirements. Even though the

comparative numbers are low, Reddit provides huge amounts of possible source data. The

subreddit r/AskReddit alone has 23.5 million11 posts. Furthermore, Reddit has various

smaller and more specialized question-centred forums. Trough the API it is possible to

extract more information, for example, a list of answers and their user-provided rank.

3.3.1.8 Conclusion of the dataset evaluation

Table 3.16 displays a summary of the statistics on each dataset. The evaluation shows

that the Yahoo data and the data from Reddit is the best fitting one for the task of this

thesis. Both sources provide open-domain data and are available to the public. For both

datasets the percentage of possible comparatives is high, compared to datasets like AOL,

GNQ or MSMarco. Furthermore, both sources provide a high amount of data. The Yahoo

dataset provides up to 7 million samples and the Reddit dataset provides 400,000 sam-

ples. For the Yahoo data it is the maximum number of samples, since more data is not

11As of 15.06.2020 via https://api.pushshift.io/reddit/search/submission/?subreddit=askreddit&metadata=true

51

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Name Dataset
Size

Questions
(Open/
Closed)

Comparative
indicator

Average
Sentence
Length

Open-
domain

Public

AOL 4,600,000 148,000/
29,000

2,500 (0.0005%) 4.4 Yes Yes

GNQ 323,000 225,000/
7,500

2,700 (0.009%) 9.2 Partly Yes

MSMarco 1,010,000 524,000/
64,020

6,100 (0.0075%) 6.3 Yes Yes

Quora:
Insincere

1,225,000 829,000/
265,000

86,300 (0.070%) 12.5 Unknown Partly

Quora:
Duplicates

537,000 340,000/
82,000

30,900 (0.064%) 11.6 Unknown Partly

Reddit:
r/AskReddit

437,900 179,000/
28,000

22,000 (0.050%) 13.9 Yes Yes

Yahoo 7,030,000 1,860,000/
922,000

265,600 (0.038%) 21.3 Yes Yes

Yelp 6,686,000 94,000/
165,000

78,700 (0.011%) 111.5 No Partly

Table 3.16: Statistics on the data sources. The table shows the dataset size, as well as
general statistics and information about the dataset. The comparative indicator provides
a rough measure on how many comparatives are contained in a dataset.

available. In the case of Reddit, 400,000 samples is just the exemplary evaluation. More

data can be collected from the AskReddit subreddit and other similar question subreddits.

Additionally, both datasets provide answers to the questions. The answers can be used

in future research on information retrieval and question answering. Even though the Yelp

dataset has a high count of possible comparatives, the data is ruled out for this task. The

review data’s average word count is too high and it is closed-domain data by its nature.

Moreover, the terms of use, enforced by Yelp, are very restrictive. The two Quora datasets

can be an alternative to the Reddit and Yahoo data. Both Quora datasets have a high

enough number of possible comparatives, a fitting average word count and a high number

of source samples. However, it is not completely clear if the data is open-domain, since

some undisclosed filtering and pre-processing was performed by Quora. Moreover, the

Quora datasets provide no further information than the question itself. This disadvantage

might not be relevant for this task, but could be obstructive for future work with the

data. The following section will work with the Reddit and Yahoo data and briefly include

the Quora datasets to have a backup. First, the datasets will be preprocessed and then,

the comparatives will be filtered out with the help of the taxonomy described in Section 3.2.

52

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.3.2 Gathering and pre-processing of source data

In this section, the gathering and pre-processing of the data is described. These steps

are described for both data sources, Yahoo and Reddit, and briefly for the backup source

Quora, which have been chosen to fit the task requirements in Section 3.3.1.8.

Gathering the data is fairly easy for Yahoo and Quora, while Reddit needs programming.

In the case of the Yahoo data, an application on the Yahoo Webscope data platform is

necessary to gain access to the data. After the access is granted, the datasets can be

downloaded from the website and are ready to be used. The Quora data can be down-

loaded without any application from the Quora website. Solely the Reddit data needs to

be fetched through an API. To make use of the API, a Python12 script was implemented.

The script is described in the following paragraph.

Reddit provides a RESTful13 Application Programming Interface14 to access different

endpoints in order to fetch data, ranging from personal account details to subreddit posts

and comments. To use the API, the authentication with a Reddit user agent is required.

An easy way to utilize the API is to use the Python Reddit API Wrapper (PRAW)15. The

wrapper provides methods to create an instance of PRAW with user credentials and then

interact with Reddit, for example, by creating a comment or retrieving a submission. Even

though the API is granting full access to Reddit and the user profile, the major drawback

is that clients can only make up to 60 requests per minute [77]. A solution is provided

by the website Pushshift16. Pushshift is a big-data storage and analytics project created

by the Reddit user Jason Baumgartner. Pushshift is a copy of all Reddit’s comments and

submissions and provides access to all these Reddit objects via its own Pushshift Python

API Wrapper (PSAW) [78, 79]. In contrast to the PRAW API, PSAW does not limit the

requests per minute and supports the filtering and the sorting of comments, submissions

and subreddits. The downside of Pushshift is the point on which the data is copied. The

copy procedure into Pushshift happens directly after a data object (e.g. a comment) is

published. The data objects are not updated at any later point. Therefore, the data does

not include any changes that are made after publishing and may not reflect the version

that is visible on Reddit. Most importantly, this includes edits of a submission’s title or

body text and, for example, the rating scores of comments. To overcome the restrictions

of both APIs, the program code shown in Listing 3.1 uses the PSAW API to collect

submissions (posts) from a dedicated subreddit after a specific start date. If activated, the

12Python is an interpreted, object-oriented, high-level programming language.
13A web service with a Representational State Transfer (REST) software architecture style.
14https://www.reddit.com/dev/api
15https://github.com/praw-dev/praw
16https://pushshift.io/

53

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

script collects the three highest ranked answers to a submission from the live Reddit data

via the PRAW API. For the data gathering in this thesis, the collection of the answers

is not activated, since it would take 1 second per submission to retrieve this information.

With millions of available data samples, this practise would consume too much time. For

future research, a retrieval of the ranked answers is possible, if the samples are limited to

positive identified comparatives. This will result in only a few thousand API calls and it

will be a matter of hours for collecting the information.

1 #Reddit data scraper (redditScraper.py)
2 #PRAW user setup
3 reddit = praw.Reddit(user_agent=’user account’)
4 #Pushshift API Warpper setup
5 api = PushshiftAPI()
6 #Subreddit to scrape provided as commandline argument
7 subredditname = sys.argv[1]
8 #Configure collection of best ranked answers
9 downloadAnswers = False

10

11 with open(outfile, ’w’) as tsvfile:
12 writer = csv.DictWriter(tsvfile, fieldnames=fieldnames, delimiter=’\t’)
13 #Define the earliest date for the collection
14 start_epoch = int(dt.datetime(2011, 7, 27).timestamp())
15 #Retreive submissions from the subreddit
16 gen = api.search_submissions(after=start_epoch, subreddit=subredditname,)
17 for rPost in gen:
18

19 #If activated, collect the best 3 comments
20 topCommentsList = []
21 if downloadAnswers and rPost[’num_comments’] > 0:
22 submission.comment_sort = ’best’
23 submission.comment_limit = 3
24 for comment in submission.comments:
25 if isinstance(comment, MoreComments):
26 continue #continue if comment is not topLevel
27 topCommentsList.append([comment.id, comment.body, comment.score])
28

29 #Write blanks if no comment was fetched
30 if len(topCommentsList) < 3:
31 topCommentsList.append([’-’,’-’,’-’])
32

33 #Write submission fields directly as a new line in the document after retreival
34 writer.writerow(retreivedFields)

Listing 3.1: Pseudocode of the Reddit scraper script with an optional collection of the
highest ranked answers.

The Python pseudocode shows the general structure of the Reddit data collector. The

user agent, required for using the PRAW API, is set up with a separate configuration

file and referenced when initializing the API (see Listing 3.1 Line 3). The Pushshift API

can be initialized without a user agent (Line 5). The name of the subreddit from which

submissions are collected is provided via a command line parameter (Line 7). To keep

the memory footprint small, the retrieved posts from Reddit are directly processed and

written as data lines in a tab-separated file (lines 11-12 + 34). For simplicity, the retrieved

fields are not listed in the pseudocode. In total, for each post 29 values are saved, including

the submission ID, the title, various metadata and the best answers. Table 3.17 shows the

list of saved data fields. The Pushshift API fetches posts sorted from the newest post to

54

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

the oldest one. It stops at the start date, which can be configured in Line 14. If activated,

the script collects the three best comments to a submission (Lines 20-27). Only top-level

comments (comments directly replying to the submission) are collected. If less than three

answers are found or if the feature is deactivated, the fields are filled with a hyphen (Lines

30-31). The pseudocode neither displays the code for outputs to the user, sanity checks of

the data for empty submissions nor the feature to break after a certain amount of collected

data.

id created stickied best answer 2 body

title is original content score best answer 2 score

selftext is video total awards received best answer 3 id

url is self removed by best answer 3 body

author num comments best answer 1 id best answer 3 score

author fullname num crossposts best answer 1 body

subreddit over 18 best answer 1 score

subreddit id pinned best answer 2 id

Table 3.17: List of data fields stored for each submission from Reddit.

The script allows to collect data from any subreddit. In Section 3.3.1, only the largest

question-centred subreddit, r/AskReddit, was evaluated for possible comparatives. Never-

theless, Reddit has many more subreddits, which are centred around asking and answering

questions. All of these are smaller than r/AskReddit in terms of daily submissions, however

some of these subreddits have multiple hundred thousands or even millions of submissions.

As no predefined list or dictionary of subreddits with high amounts of questions exists,

a list of ten subreddits was collected. By manual evaluation, through reading the sub-

missions, subreddits that seemed to be centred on asking questions were chosen. The list

below provides the subreddit names and a short description for each subreddit:

• r/AskReddit - The biggest subreddit for questions (evaluated in Section 3.3.1).

• r/ask - For “thought-provoking” open questions. No technical support, legal or

medical advice is allowed.

• r/AskMen - Open questions typically answered by men. The title must contain the

question. No medical advice is allowed.

• r/AskWomen - Open questions typically answered by women. The title must contain

the question. No exclusion of minorities.

55

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

• r/AskEngineers - Questions must be about engineering. The title must contain the

question.

• r/askscience - Questions about science. No medical advice is allowed.

• r/explainlikeimfive - Subreddit to provide easily understandable explanations for

complex topics. Questions must seek objective explanations.

• r/NoStupidQuestions - Open to all serious questions. No joke questions, no illegal

or disturbing question subjects. No medical advice is allowed.

• r/Questions - Open to any type of question without specific rules.

• r/technology - Dedicated to news articles about the creation and use of technology.

• r/techsupport - For people that seek help on technical issues.

The subreddits vary in size and topic. For example, r/explainlikeimfive has a total of

1.4 million submissions and has the aim to provide easily understandable explanations for

complex topics. In comparison to r/explainlikeimfive, the subreddit r/Questions is com-

pletely open to any type of questions, including biased or “stupid” questions. The list also

contains subreddits which are limited to a certain domain. For example, the subreddit

r/AskWomen is supposed to hold questions that are directed at women and that should

be answered by women. The subreddits r/technology and r/techsupport clearly define the

topic technology as a domain. For each subreddit in the list, a data-sample of one month

of submissions is collected with the Reddit collector script. Section 3.3.3 will evaluate the

number of possible comparatives in each of these subreddit datasets.

With the successful collection of Reddit data through the script, all datasets are available

as single data files. Nevertheless, the datasets come as various data structures and with

different data fields. To be able to load the data, each dataset needs its own reader func-

tion and some simple pre-processing. These reader functions are part of the script to filter

out potential comparatives (see Section 3.3.3).

1 ##### Reddit Dataset #####
2 if(datatype == "REDDIT"):
3 querys = {}
4 with open(infile, ’r’, newline=’’, encoding=’utf-8’) as csvfile:
5 reader = csv.DictReader(csvfile, delimiter=’\t’, quoting=csv.QUOTE_ALL)
6 for row in reader:
7 querys[row[’id’]] = row[’title’]
8 filterQuerys(querys, outfile)

Listing 3.2: Pseudocode of the Reddit data reader script.

56

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Loading the Reddit data can be done by simply parsing each line of the tab-separated file

that was created by the Reddit collector script. Listing 3.2 shows the pseudocode for this.

Only the submission’s title (containing the question) and the submission’s ID (identifying

the exact submission later) are necessary at this point. Both values are loaded into a

Python dictionary with the submission ID as the dictionary key (Lines 3-7). The Quora

data is also provided in a value separated format and can be loaded in a similar way as the

Reddit data. Only the field names and the delimiter (tab and comma) are different. For

the Quora “Duplicate Question Pairs” dataset, the questions are preprocessed to gather

only unique questions (see Section 3.3.1 for more details). The Yahoo data requires the

highest amount in pre-processing because the data comes as a complex structured XML17

file. Listing 3.3 shows the code that extracts the questions and the question’s IDs and

writes them into a Python dictionary.

1 ##### YAHOO Dataset #####
2 if(datatype == "YAHOO"):
3 querys = {}
4 # Get an iterable
5 context = ET.iterparse(infile, events=("start", "end"))
6 is_first = True
7 for event, elem in context:
8 #Get the root element
9 if is_first:

10 root = elem
11 is_first = False
12 #Find the element that holds a question (vespaadd element)
13 if event == "end" and elem.tag == "vespaadd":
14 subject = elem[0][1].text
15 if len(subject) > 0:
16 #Get the ID and the text
17 querys[elem[0][0].text] = elem[0][1].text
18 if elem[0][2].tag == "content":
19 if elem[0][1].text != elem[0][2].text:
20 querys[elem[0][0].text+’c’] = elem[0][2].text
21 #Clear elements in order to not run out of memory
22 root.clear()
23 filterQuerys(querys, outfile)

Listing 3.3: Pseudocode of the Yahoo data reader script.

3.3.3 Filtering for comparative questions

After describing the evaluation of data sources and the gathering of data in the Sections

3.3.1 and 3.3.2, this section describes the process of the actual data mining for compara-

tive questions. Regarding the data mining, the taxonomy and the linguistic creation rules

for comparatives from Section 3.1 are implemented into program code. The program is

written as a Python script and it extends the data-reader functions explained in Section

3.3.2.

17Extensible Markup Language (XML) is a markup language that defines a human and machine readable
file format.

57

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

For this thesis, the three-digit classes starting with 1 or 2 (1xx or 2xx) from the taxonomy

are of interest. Sentences categorized in these classes start with a question word and are

comparative. The goal of the filtering is to narrow down the amount of source data to a

level that is reasonable to process in a human annotation task. For example, the compar-

ative indicator for the Yahoo dataset (see Section 3.3.1) shows that only 0.038% of the

samples in the dataset might be comparative questions. To produce a final dataset with

5,000 positive comparative questions, human annotators would need to annotate around

131,000 samples. Therefore, the filtering will help to reduce the amount of annotation

data to a more reasonable level. The target is to annotate twice the amount of positive

comparative questions. To match the goal of collecting 5,000 comparative questions, the

annotation dataset should be at least 10,000 samples big. It also means that the filtered

data needs to have a precision of 50% on comparative questions. While keeping the pre-

cision at a medium level, the recall should be high enough, to include as many relevant

comparative questions in the filtered data as possible.

The Python script implements this concept by means of a decision pipeline. Every sen-

tence runs through the decision pipeline to categorize the text into one of the taxonomy’s

classes. Figure 3.4 shows the decision pipeline on a abstract level. The first step of the

pipeline performs necessary pre-processing steps on each sentence. For example, all words

are converted to lowercase for the following analysis. The second step is a token counter,

which sorts out too short or too long sentences. Sentences that are not sorted out reach

the third step of the pipeline, which determines whether the text is a question simply by

looking up if the first word is a question word. The last two steps sort the text into one of

the comparative categories. The category is determined by searching for keywords in the

text. For example, the rule filter searches the text for “than” or “as”. If the text contains

one of these, they are classified as comparative. The same rules apply to the phrase filter:

the script will only check if the text contains one of the phrases from Table 3.5. For these

steps there are no rules implemented, for example, regarding the position of the keyword

in a sentence or regarding the connection of other words to the keyword. Only the deter-

mination of the subtype requires the evaluation of neighbouring words. In the case that

the rule filter finds a “than”, it evaluates if the sentence contains “more” or “less”. If

this is true for any point of the sentence, the word previous to “than” will be evaluated

to check if it belongs to the the group of adjectives or adverbs. This last step finalizes

the classification. In case the last two filters of the pipeline do not classify the text, it is

ruled as not comparative. The inaccuracies and relaxations in the pipeline’s filters allow

variations in the language and the achievement of a possible high recall on comparative

questions. Although these inaccuracies are intentional, they comes at the price of having

the possibility of a high amount of non-comparatives in the filtered data. For example,

the text “Why is it raining? I like sun more than rain” will be tagged as comparative

58

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

question by the script. The reason is that the text starts with a question word (Why -

open question) and contains the keyword “than” in the second sentence. Furthermore, the

second sentence is a statement and there is no adjective or adverb between “more” and

“than”. The filtering will finalize with the class 131 for unknown comparative subtypes.

Figure 3.4: The figure shows the decision pipeline for comparative question filtering, which
was implemented into code.

To get an initial idea of how good the script performs, data from the Yahoo dataset was

fed through the pipeline. The classified results were manually evaluated. This was done by

finding wrong categorized samples in the filtered data and then trying to confirm the exis-

tence of a pattern for the mistake. For example, the sentence “what about technique, why

is your approach better than anyone else?” makes a comparison against a non-comparable

entity (anyone). As these kind of sentences are not allowed in the final dataset, an exclu-

sion rule is formulated. For this case, all sentences in which the word “than” is followed

by an indefinite pronoun should be excluded from the comparative classes. This manual

evaluation resulted in 13 exclusion rules (see Table 3.18). Furthermore, every phrase from

Table 3.5 was manually evaluated for its suitability to classify as a comparative phrase

word. It was counted how many appearances out of the evaluated sentences with the

phrase are comparative (see Table 3.19). For example, sentences containing the phrase

“against” are comparative in 0 out of 200 evaluated sentences (e.g. Are you against ... /

Is it against god / law / someone ...). The phrase with the most controversial ratio was

“the same” with 41 comparatives out of 200 evaluated sentences. 39 of these 41 samples

used “and” as a connection word in the sentence, for example, “is lacoste and crocodile

the same?”. To solve this problem, the sole phrase “the same” was excluded from the

list of phrases and a special rule was added to the script searching for the word “and”

at any position of the sentence when “the same” is found. All 23 exclusion rules were

implemented in the script after this evaluation.

With the exclusion rules in place, the source data was filtered again. This time, large

amounts of samples from the Yahoo dataset, from both Quora datasets and from Reddit

r/AskReddit were filtered. For each of the filtered datasets, 200 samples were taken and

manually classified into three classes. One class (Class 0) for non-comparative questions

59

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Rule Target
class

Example / Notes

1. than + personal pronoun
(object form)

by rules “is it okay to date someone nine years younger
than me?”

2. as/so + as + personal pro-
noun (object form)

by rules “is there anyone as pathetic as me?”

3. than + intensive pronoun by rules “I am looking for someone who is somewhat
younger than myself and loves to laugh?”

4. as/so + as intensive
pronoun

by rules “is it possible for a human to develop artificial
intelligence as good as himself?”

5. than + indefinite pronoun by rules “what about technique , why is your approach
better than anyone else?”

6. as/so + as + indefinite
pronoun

by rules “is iming as good as everyone says it is?”

7. word distance (so/as) > 5
AND so before as

by rules For queries where “as” is farther away than 5
words from “so”

8. word distance (as/as) > 5
AND so before as

by rules For queries where the first “as” is farther away
than 5 words from the second “as”

9. or + Q-Word 141/241 “should cell phones and pdas be allowed in
school? why or why not?”

10. ADJ or ADJ 141/241 “is chocolate good or bad for health?”

11. ADV or ADV 141/241 “what dates will be best to travel to colorado
in the spring time, late may or early june?”

12. or + preposition 141/241 “are you for or against gay marriage?”

13. or + pronoun 141/241 “is it harmful for her or her partner?”

Table 3.18: The table shows the exclusion rules that were established after a manual
evaluation of the filtered data.

and two classes (Class 1 and Class 2) for comparative questions. Class 1 is considered a

“normal comparative”. Class 2 is also comparative, but might be hard to answer, hard to

detect for a machine classification system or even hard to annotate for a human reader.

Samples where tagged with class two in order to identify harder classification cases for later

parts of this thesis, like the evaluation of human workers. Table 3.20 shows the distribution

of the classes in the manual annotated data. It can be seen that the Yahoo and the Quora

Duplicates datasets come near to the defined precision of 50% on comparative questions.

Reddit performed way worse than expected from the analysis results in Section 3.3.1. For

all filtered datasets, it can be seen that the sentences with the phrase “or” have a high

rate of false positives. This was already expected after the evaluation of the data sources

in Section 3.3.1. To achieve a higher precision on sentences with “or”, more exclusion

rules were defined after this manual annotation. In total, six new exclusion rules were

60

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Rule Comparative
/ Evaluated

Examples / Notes

1. against 0/200 “are you against / is it against (god/law/someone)”

2. ahead of 0/6 “ahead of (their time / my classmate / me)”

3. beside/besides 1/100 Mainly open groups and personal pronouns compared
with entities, e.g., “what is the best client besides
azureus”

4. close to 0/50 Used only for directions / locational

5. just like 3/50 Non-comparative example: “Is anyone sad and lonely
just like me?”

6. like 0/100 Mainly used to express “to like something/somebody”
e.g. “Do you like ponies?”

7. near 0/100 Mainly directional or time related e.g. “what is the
cheapest parking lot near lax?”

8. next to 1/50 Non-comparative example: “how do i get an icon next
to the web address in my browser?”

9. the same +
and

41/200 Excluding queries without “and” in the sentence

10. vs - It specifies the use of “vs” better by requiring a blank
space in front of “vs”, e.g, the word “Tvs” is no longer
matched

Table 3.19: The table shows the phrases that were excluded after a manual evaluation of
the ratio of comparative to non-comparative sentences.

added (see Table 3.21). Four rules were formulated in connection with “or”. The first rule

changed the program structure in order to search for all phrases first and then separately

check for “or” afterwards. Rules 2-4 extended the limitations for “or” in combination

with other words. The second one omit sentences in which “or” is used after punctuation,

for example, “Are all roses red? Or is there another color?”. The third rule excludes

sentences in which “or” is used and followed by a dedicated list of words, for example, in

the sentence “Are roses red or not?”. The fourth rule is restricting the use of “or” followed

by numbers. For example, “do you own a 2005 or 2006 honda odyssey?” is omitted by

this rule. Numbers followed by “or” are explicitly not excluded because a lot of products

use numbers in their name and it is not intended to exclude these. For example, “should

I buy an xbox 360 or wait for the ps 3?” is a valid comparison and, therefore, kept in

the dataset. Furthermore, two more phrases were removed from the keyword list because

they mainly produced false positives.

As a next step, the filter script was run again with the new rules implemented. From the

filtered data output the same samples were taken for a re-evaluation. Table 3.22 shows

61

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Overall (%) Only “or” (%)

Data source Class 1 Class 2 Precision Class 1 Class 2 Precision

Yahoo 37 11 48 18 13 31

r/AskReddit 7 3 10 5 1 6

Quora Duplicates 34 15 48 15 5 20

Quora Insincere 28 11 39 9 9 18

Table 3.20: Class distributions after the manual classification of data from the datasets.
Precision is measured for all true positive comparative questions. (comparative = Class
1; hard comparatives = Class 2)

the distribution after annotating the samples again. The figures in brackets denote the

change to the first annotations from Table 3.20. For all data sources the overall precision

improves between 2-9%. Taking a closer look, the precision within the samples containing

an “or” also improved for all data sources except for “Quora Insincere Questions”. Fur-

thermore, it can be observed that the number of true positive samples was reduced by

the use of the new rules. This is a trade-off which can be accepted because the absolute

numbers for non-comparatives with “or” is significantly reduced. For the Yahoo dataset

it was reduced from 72 to 43 samples. This is a reduction of 29 non-comparative sam-

ples, while only 9 true positive comparative samples were excluded through these measures.

Rule Target class Example / Notes

1. Search list of phrase be-
fore “or”

by phrases -

2. PUNCTUATION or 141/241 To exclude all sentences where or is used
after punctuation, e.g., in sentence begin-
nings

3. or + [not, no, so, yes,
something, against, if,
like, is, do]

141/241 “Are roses red or not?”

4. NUMBERS + or 141/241 “do you own a 2005 or 2006 honda
odyssey?”

5. between by phrases “how do you manage time between work
and study?”

6. the same time by phrases It matches trough “the same”

Table 3.21: Exclusion rules formed after the manual classification of samples from the
source datasets.

62

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Overall (%) Only “or” (%)

Data source Class 1 Class 2 Precision Class 1 Class 2 Precision

Yahoo 43 (+6) 11 (0) 54 (+6) 24 (+6) 13 (0) 37 (+6)

r/AskReddit 9 (+2) 4 (+1) 13(+3) 7 (+2) 1 (0) 8 (+2)

Quora Duplicates 42(+12) 15(0) 57(+11) 23(+8) 8(+3) 31(+11)

Quora Insincere 29 (+1) 11 (0) 41 (+2) 11 (+2) 6 (-3) 17 (-1)

Table 3.22: Class distributions after the manual classification of the datasets with the
implemented rules from Table 3.21. Precision is measured for all true positive comparative
questions. The figures in brackets denote the change to the first annotations from Table
3.20. (comparative = Class 1; hard comparatives = Class 2)

3.3.4 Data mining results

In this section, all data sources are filtered with the script from the previous section and

then, for each data source a manual annotation and a evaluation is performed. Through-

out this section, statistics and estimations for all data sources are presented and, at the

end of the section, it is finally decided which data sources will be utilized for the following

human annotation tasks.

The Python filtering script from Section 3.3.3 is used to filter the data from all 14

sources. For computational simplicity, the sample count was reduced for the filtering. For

r/AskReddit, the dataset containing submissions from August 2019 (see Section 3.3.1) was

utilized. In the case of the other 10 subreddits, the submissions within a one year period,

with a breakpoint at a maximum of 400,000 samples, were collected. Only the subreddit

r/NoStupidQuestions reached the breakpoint. The filter was set up to cut texts with less

than 5 words and more that 50 words. Table 3.23 shows a list of all data sources with the

corresponding statistics from filtering. The second column of the table shows the abso-

lute counts of comparatives and the percentage of filtered comparatives in relation to the

source data size. It can be observed that the Quora datasets, Reddit r/NoStupidQuestions

and r/askscience are the only sources breaking the mark of 5% filtered comparatives. The

columns three to six show the distribution within the filtered comparatives according to

their generation structure. The subreddits r/NoStupidQuestions, r/askscience and r/ex-

plainlikeimfive show high percentages of possible comparatives generated by the linguistic

rules described in Section 3.1.1. The generation of comparatives by phrases is split up into

the taxonomy classes 140 and 240 for keyword based phrases (x40) and the “or” classes

(141 / 241) with open and closed questions. The distributions of the three categories

vary significantly depending on the data source, for example, r/AskReddit compared to

r/explainlikeimfive. Furthermore, the values within one class vary widely. For example,

63

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Data source Filtered
comparatives

by rule
(%)

by phrase
(x40)(%)

phrase “or”
(141)(%) (241)(%)

Quora Duplicates 25,511 (5.26%) 24 46 12 19

Quora Insincere 64,183 (5.2%) 27 34 17 21

Yahoo 7,304 (2.6%) 24 23 23 30

Reddit r/AskReddit 10,907 (2.5%) 25 15 15 45

Reddit r/ask 508 (2.7%) 24 21 31 25

Reddit r/Questions 310 (2.3%) 28 20 34 18

Reddit r/NoStupidQuestions 23,946 (6.0%) 37 23 21 18

Reddit r/askscience 9,326 (6.9%) 42 29 16 14

Reddit r/AskWomen 2,990 (2.9%) 27 18 21 34

Reddit r/AskMen 3,610 (2.5%) 26 18 23 32

Reddit r/AskEngineers 359 (2.2%) 24 31 26 19

Reddit r/explainlikeimfive 2,519 (1.7%) 46 31 3 21

Reddit r/technology 450 (0.4%) 27 19 16 39

Reddit r/techsupport 1,137 (0.6%) 24 21 38 16

Table 3.23: Statistics from filtering the source data. The second column shows the absolute
count of filtered comparatives for each data source. The following columns show the
distribution of the samples by their generation structure.

the values for the generation by phrases vary between 15% and 46%, for the class 141 even

between 3% and 38%.

Similar to the manual annotation of the filtered data from Yahoo, Quora and Reddit

r/AskReddit in Section 3.3.3, data from the 10 new subreddits were manually classified

into the following three classes: non-comparative (0), normal comparative (1) and hard

comparatives (2). Table 3.24 provides an overview of the precision of the filtered data

for all data sources. The “overall precision” is given in relation to all taxonomy classes.

Three data sources break the 50% mark, with the Quora “Duplicate Question Pairs” data

reaching the highest value (57%), followed by Yahoo (54%). A separation of the texts

without “or” and with “or” provides further details about the data. In case both classes

for “or” (141 / 241) are excluded from the data, the precision reaches up to 72%, while

in total four data sources reach at least 62% precision. Once again, the Quora “Dupli-

cate Question Pairs” dataset reaches the highest precision value (72%), followed by Yahoo

(67%). Most Reddit sources show a large improvement in precision when excluding the

“or” classes. For example, r/NoStupidQuestions improves by 23% and has the third best

precision (63%) in the group without “or”. It is followed by r/explainlikeimfive with one

64

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Data source Precision
overall

Precision
without OR

Precision
only OR

Annotation
factor

Needed
Samples

Quora Duplicates 57 72 31 1.8 8,772

Quora Insincere 41 57 17 2.4 12,195

Yahoo 54 67 37 1.9 9,259

Reddit r/AskReddit 13 21 8 7.7 38,462

Reddit r/ask 24 37 16 4.2 20,833

Reddit r/Questions 25 39 11 4.0 20,000

Reddit r/NoStupidQuestions 40 63 0 2.5 12,500

Reddit r/askscience 34 52 0 2.9 14,706

Reddit r/AskWomen 22 46 0 4.5 22,727

Reddit r/AskMen 28 29 27 3.6 17,857

Reddit r/AskEngineers 32 50 5 3.1 15,625

Reddit r/explainlikeimfive 50 62 15 2.0 10,000

Reddit r/technology 40 55 29 2.5 12,500

Reddit r/techsupport 18 38 3 5.6 27,778

Table 3.24: Columns 2-4 show the precisions after manually annotating data from the
filtered data sources. The precision is measured for all true positive comparative questions.
The fifth column calculates an annotation factor, indicating how many samples need to be
annotated by a human annotator in order to get one true positive comparative question.
The last column offers the calculation of how many filtered samples need to be annotated
to receive 5,000 comparative questions.

percent less. Taking a look only at texts that contain “or”, it can be determined that the

Quora data source (31%) and Yahoo as a source (37%) have again the highest precisions.

To allow an easier ranking of the results, the fifth column calculates an annotation fac-

tor, indicating how many samples need to be annotated by a human annotator in order

to get one true positive comparative question. The goal of the filtering is to reach an

annotation factor of 2 (50% precision). The values go as high as 7.7 samples per one

true positive for the r/AskReddit source data. By means of the annotation factor, the last

column offers the calculation of how many filtered samples need to be annotated to receive

5,000 comparative questions. Because the calculated precision for each data source can

only be considered an estimate (only a small part of the filtered data was manually clas-

sified), the values in the last column can only be considered as a magnitude of needed data.

Based on the precision of the filtering methods and following the conclusion of the eval-

uation of the data sources (see Section 3.3.1.8), Yahoo is selected for the further use in

this thesis and for building the dataset for the human annotation (annotation dataset).

65

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Furthermore, to extend the data pool, the submissions of the Reddit subreddits r/NoS-

tupidQuestions and r/explainlikeimfive are selected. Both sources (Yahoo and Reddit)

proved to be most suitable for the task of building a comparative question dataset accord-

ing to the evaluation in Section 3.3.1.8. This is also the reason why the Quora data is

not used further on, even though it has the highest precision overall. It is uncertain if the

Quora data is open-domain and no further information (e.g., answers) is available for the

data. The three chosen data sources also provide high absolute counts of data, although

the percentage of possible comparatives in the Yahoo and r/explainlikeimfive data is low

compared to r/NoStupidQuestions or compared to the Quora datasets. To make use of

the boost in precision for the Reddit data in the case that the texts containing “or” are

omitted, the taxonomy classes 141 and 241 will be excluded from the Reddit data for

building the annotation dataset. This will enable the decrease of the overall needed num-

ber of human annotations to a greater extend. In order not to leave linguistic comparative

structures containing “or” out from the dataset, all samples from the Yahoo data, includ-

ing samples with “or”, are allowed.

Data source Source size Filtered
comparatives

by rule
(%)

by phrase
(x40)(%)

phrase “or”
(141/241)(%)

Yahoo 7,037,759 132,749 (1.89%) 23.1 20.3 56.5

Reddit
r/NoStupidQuestions

1,174,971 38,827 (3.3%) 60.1 39.8 -

Reddit
r/explainlikeimfive

1,402,561 73,847 (5.27%) 60.7 39.3 -

Table 3.25: Statistics after fetching and filtering the full data sources. The third column
shows the absolute count of filtered comparatives for each data source. The following
columns show the distribution of the samples by their generation structure.

In order to proceed with the maximum amount of source data, all submissions from the

two subreddits were fetched with the Reddit scraper script. Furthermore, the complete

Yahoo dataset is utilized now. The source data totals in 9.6 million samples. Applying the

filter script to the data results in a total of 245,423 filtered possible comparative samples.

Multiplying the filtered samples by the precision for each of the data sources leaves an

estimate of 141,931 true comparative question samples. This high estimate of comparative

questions exceeds the expectations and also the necessary figure of positive samples by far.

Table 3.25 shows the distribution of sample classes for the full-size filtered data sources.

The subreddit r/explainlikeimfive has 5.3% possible comparatives. In comparison to the

previous filtering, the number of comparatives for r/NoStupidQuestions has decreased by

2.7% to 3.3% and Yahoo has decreased by 0.7 to 1.9% of filtered comparatives.

66

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

The false omission rate (FOR) for the data is 1%, that means that 1% of the total num-

ber of negative (not comparative) calls are wrong. Therefore, 1% of the non-comparative

tagged data might actually be comparative. That would result in 93,600 missed compara-

tives. Calculating the recall out of these numbers indicates that the recall over all datasets

is 60.2%.

This section utilized the comparative taxonomy and the filtering scripts to decide which

data source should be used for creating a comparative question dataset. It was decided

to proceed with Yahoo and Reddit data. Data from both sources is provided as filtered

datasets, ready for the annotation by human workers. The next section will describe this

process of using the filtered data as annotation datasets in human annotation tasks. The

goal is to build two datasets: one for the task of machine-classifying comparative questions

and one for identifying the comparative objects and their aspects.

67

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.4 Human annotation task 1: Classification

This and the following section describe the process of labelling the annotation datasets

from Section 3.3.4 in crowd sourced annotation tasks. As previously explained in Chap-

ter 1, one goal of this thesis is to provide datasets for two tasks. The first task is the

classification of comparative questions. This task aims to identify comparative questions

in a set of given samples. The second task is the identification of comparative objects

and aspects within the set of comparative questions. For both tasks, a different labelled

dataset is needed in order to use supervised machine learning. The following subsections

outline the process of building the labelled dataset for the classification task. Section

3.5 describes the process of building the sequence labelled dataset for the second task.

Both tasks will be conducted with the Mechanical Turk (MTurk)18 platform provided by

Amazon Web Services (AWS). MTurk is a crowdsourcing marketplace, which provides a

distributed workforce for digital tasks to businesses and researchers. Figure 3.5 shows

the working principle of MTurk. The marketplace provides requesters and workers with

a common platform to conduct projects together. It is a marketplace in the sense that

the requester publishes a project and sets a reward for a Human Intelligence Task (HIT).

A HIT is a small part of a project that a worker needs to complete in order to be paid.

For example, the project is to classify 1,000 sentences into categories. Each task might

contain 10 sentences that a worker needs to read and classify. Workers can complete mul-

tiple tasks in a row and will, for example, be paid 20 cents per finished task. To get a

more reliable answer, a HIT can be assigned to many unique workers and the answers

can be accumulated afterwards. Projects are often split into multiple batches containing

a number of tasks.

Figure 3.5: The figure shows the working principle of Amazon Mechanical Turk. Source:
mturk.com

To create both datasets with MTurk, a total budget of $1,000 was available. Each annota-

tion project is split into two phases: the pilot phase and the main phase. The purpose of

18https://www.mturk.com/

68

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

the pilot phase is to evaluate workers and find high quality ones for the main phase. In the

pilot, workers are presented tasks to which the answers are known by the requester. This

way, workers participating in the pilot can be evaluated, for example, on their accuracy

at classifying sentences. In the main phase, the project data is provided in batches to the

workforce for annotation. Only workers that completed the pilot and fulfilled the project’s

requirements can take part in this phase. As a result, the budget needs to cover two pilot

phases and two main tasks. A cost calculation shows that with the budget a maximum

of 11,000 samples can be classified. The samples with a positive label can be sequence

labelled by human workers in the second annotation project (more details see appendix

Table 3). For the calculation, an annotation rate of 2 was applied. This results in 5,500

samples for the sequence tagging. The costs per classification HIT (with 20 questions)

was estimated at $0.22. The costs for a sequence tagging HIT is estimated higher due to

the larger effort and, therefore, longer work time per task. The sequence tagging HITs are

estimated at $0.25 for 10 questions. Both tasks have three assignees per HIT. Including

an estimation of $60 for both pilot phases, this would lead to total cost of $990. As Me-

chanical Turk is a marketplace, it will become clear during the execution of the projects

if workers, whose work quality is good enough, accept this price per HIT. Often, prices

might change between batches depending on the response of the workers. The aim is to

get as many annotations as possible with the budget. Classifying around 10,000 samples

in the first task seems like a reasonable goal.

3.4.1 Task preparations

There are two essential parts in the task preparation for Mechanical Turk. Firstly, a Web-

site providing an interface for the assignment is needed for the workers to conduct the

task. Secondly, the data that should be used in the task needs to be prepared for the task,

for example, the data needs to be split in batches. The following paragraphs explain the

steps that were taken for the comparative classification task.

Mechanical Turk allows requesters to create a task specific website for a project. The

website is shown to the workers and their inputs are recorded. MTurk allows HTML, CSS

and JavaScript to customize the websites for the requester’s needs. The requester can

define placeholders in a template, which will be filled with data when the task is active.

A batch of data must be uploaded to MTurk when publishing the task. A simple exam-

ple is a template website displaying a line of text and some options to be chosen by the

worker. The text line is exchanged in each HIT and the option that the worker clicked on

is recorded when sending the HTML form.

69

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Figure 3.6: The figure shows the top part of the template for sentence classification.

Basically, the same approach is used for the pilot and the main classification task. Figure

3.6 is a screenshot of the template shown to the workers. Instead of one line of text,

the template displays up to 10 samples from the annotation data to the worker (in the

$text place holders). For each sample, three options are given to the worker: “Compara-

tive question”, “Not comparative or not a question”, “I am not sure”. Furthermore, the

worker can find a button on the top of the page to open the task instructions and a list of

ten labelled examples with explanations (see appendix Figures 1 and 2). A special “Tell

us about yourself” part of the template is dedicated only to the pilot task (see Figure 3.6

2.). The workers are asked to introduce their age, their country and, most importantly, if

they are a native English speaker. In case they are not native English speakers, the form

asks them to introduce their native language. The age is entered via a drop-down field,

allowing the selection of an age group (e.g. 18-24). The country and language fields pro-

70

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

vide a convenience function that suggests country names and languages via a JavaScript

function. This might simplify the post-processing of the data because the workers have

the chance to select the proposed language or country. Since the provided list might not

be complete, the fields allow free typing of text. The data can also be used to filter the

workers after the pilot. Because the annotation datasets are completely in the English

language, native English speakers or residents of countries with English as an official lan-

guage might comprehend the texts better. Understanding the questions and having a large

vocabulary to understand the comparisons and to know the compared objects is essential

for the tasks. Moreover, these personal information fields are utilized to calculate some

statistics about the workers. For example, the rough number of workers that are native

speakers can be determined. This number might not be accurate, since nothing prevents

the workers from lying about their personal information. The last part of the page (see

Figure 3.6 3.) provides a comment field, which is not required to use. Only the classifi-

cation radio buttons and the personal information fields are required. To avoid that the

workers cheat in the classification task, by sending an empty form, the required fields are

checked. The MTurk template is based on a template from a task previously conducted

by the UHH Language Technology Group 19. The template was modified to fit the classi-

fication task and a Bootstrap20 based design was added to provide a clean and clear layout.

To carry out the task with the template, the data needs to be prepared. Amazons’s

Mechanical Turk demands a comma-separated file format that contains the data for one

batch. Each line in the file needs to contain all data for one HIT. Regarding the classifica-

tion task of this thesis, one HIT needs text input for 10 questions and the question’s IDs

to be able to identify them after the task is completed. Furthermore, the file contains a

sub-batch counter and the data source for each HIT. To generate the batch files, a Python

script is implemented. Listing 3.4 shows the most important parts of the script. At the

top of the script, important parameters need to be set. Most importantly, the sub-batch

size (Line 1) and the total data count for a batch, as well as the distribution of samples

from the source data (Lines 2-5). The general function of the script is based on three

parts. Firstly, an exclusion database for already used IDs (KeyExclusionList) in form of a

comma-separated file, which is loaded at the beginning of the main function (Lines 22-32)

and stored at the end of it (Lines 58-63). Used IDs from previous batches are loaded

this way and, after the creation of the new batch, all used keys are saved again. This

ensures that each sentence is only processed once in the human annotation. In case no key

exclusion list can be found, the scrip generates a new one. Secondly, the source data is

loaded and processed. In this case, the Yahoo data, the Reddit r/explainlikeimfive (eli5)

and r/NoStupidQuestions (NSQ) data sources are loaded (Line 34).

19Code repositories can be found here: https://github.com/uhh-lt
20https://getbootstrap.com/

71

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

1 subBatchSize = 10
2 dataCount = 1020 # pick a number devidable by part
3 yahooPart = 3 # in 1/part totaling up 1/1
4 eli5Part = 3 # in 1/part totaling up 1/1
5 nsqPart = 3 # in 1/part totaling up 1/1
6

7 def shuffleKeyList(keyList, part):
8 #Shuffles a list of given keys and gives back a list in the size of the data sources part
9 shuffle(keyList)

10 calcSize = (int(dataCount / part))
11 roundUp = 0
12 if (calcSize % subBatchSize > 0):
13 roundUp = subBatchSize - (calcSize % subBatchSize)
14 dataSize = roundUp + calcSize
15

16 if (dataSize > len(keyList)):
17 dataSize = len(keyList)
18 print("The source data count was not high enough. The maximum is taken.")
19 shuffledKeyPart = keyList[:dataSize]
20 return shuffledKeyPart
21

22 if __name__ == ’__main__’:
23 ###Load KeyExclusion file, if it exists##
24 usedKeys = [[], [], []]
25 try:
26 with open("KeyExclusionList.csv", ’r’, newline=’’, encoding=’utf-8’) as csvfile:
27 yReader = csv.DictReader(csvfile, delimiter=’\t’)
28 #.... Read found Kexfile into usedKeys[]
29 except EnvironmentError:
30 with open("KeyExclusionList.csv", ’w’, newline=’’, encoding=’utf-8’) as tsvfile:
31 #Create new keyExclusionList as non was found
32 print(’KeyExclusionList.csv not found. An Empty one was created.’)
33 ###Load data source files###
34 yahooQuerys = open(yahoofile)
35 #...do the same for the other datasets
36

37 ### Create Random ID lists ###
38 unUsedYahoo = list(set(yahooQuerys.keys()) - set(usedKeys[0]))
39 yahooShuffledKeys = shuffleKeyList(unUsedYahoo, yahooPart)
40 #...do the same for the other datasets
41

42 ### Generate Output for MTurk ###
43 with open(outfile, ’w’, newline=’’, encoding=’utf-8’) as tsvfile:
44 writer = csv.DictWriter(tsvfile, fieldnames=fieldnames, delimiter=’,’)
45 batchID = 0
46 for subBatch in range(0,int(len(yahooShuffledKeys)/subBatchSize)):
47 row = {’batch_id’: batchID, ’source’: "yahoo"}
48 for b in range(0, subBatchSize):
49 str_id = str("id" + str(b + 1))
50 row[str_id] = yahooShuffledKeys[b+subBatch*subBatchSize]
51 str_text = str("text" + str(b + 1))
52 row[str_text] = yahooQuerysClean[yahooShuffledKeys[b + subBatch *

subBatchSize]]
53 writer.writerow(row)
54 batchID += 1
55 print(’Exported ’ + str(batchID) + ’ Batches for Yahoo’)
56 #...do the same for the other datasets
57

58 with open("KeyExclusionList.csv", ’w’, newline=’’, encoding=’utf-8’) as tsvfile:
59 writer = csv.DictWriter(tsvfile, fieldnames=fieldnames, delimiter=’\t’)
60 for key in usedKeys[0] and for key in yahooShuffledKeys:
61 row = {’key_id’: key, ’source’: "yahoo"}
62 writer.writerow(row)
63 #write previous used and new keys to exclusion list

Listing 3.4: Pseudocode of the MTurk data preparation script for the human classification
project.

72

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

From the loaded data, the unused IDs are filtered out and shuffled in the function shuf-

flekeyList (Line 7). The function also cuts from the list of IDs the number required by

the script’s parameters. Thirdly, the data is exported in a MTurk compatible way (Lines

43-56). In this step, the data of each data source is broken down to the parts needed for

a sub-batch. Each HIT (sub-batch) contains samples only from the same source.

3.4.2 Pilot

The first step of the human classification task is dedicated to find good, reliable and ac-

curate workers. For this, the workers need to classify a series of sentences from which the

answer is known. The sentences are selected from the source data. The manual classi-

fication from Section 3.3.3 and the categorization into normal comparative and complex

comparative sentences allows to find fitting examples. Whereas the pilot provides three

answer possibilities to the workers, only comparative or non-comparative examples are se-

lected. The “Not sure” option has the sole purpose to filter out workers that pick random

answers or do not know the answer. Even though some sentences might be controversial,

the goal is to find workers that read the task rules and follow the task definition of the

comparative questions. From the source data, 10 sentences are selected: five negative and

five positive ones. A category is assigned to each sentence, in order to try to estimate its

level of difficulty. The aim is to have a set of easy, medium and hard questions for the

pilot. The selected sentences with their correct label (gold label) and their difficulty can

be found in Table 3.26. Question 2 is considered to be of medium difficulty because it has

no real comparative objects. These objects form a listing. Question 5 is considered hard

to answer because, even if it uses the language of a comparison, the comparative objects

are not explicit in the sentence. Therefore, it is not comparative by definition. Question 7

is considered of medium difficulty because it is a listing of things and not a comparative.

Question 8 is considered of hard difficulty, as it is a comparison by language, but not

by definition. This sentence compares “some people” to “others”, which are both open

groups. And finally, Question 9 is considered of hard difficulty because the language and

the topic of the question are complicated. The topic might not be known to everyone,

especially non-native speakers may have problems here. Using hard and medium difficult

questions aims at finding workers that have read and understood the definition and the

examples of the task.

With the samples from Table 3.26, the pilot project was published and a maximum of 100

workers were allowed to take part in it. After the project was completed on Mechanical

Turk, the results were evaluated. The most important measure for each worker is the

classification correctness. The pilot project resulted in one worker with 100% correct clas-

73

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Gold label Difficulty Sentence

1 Comp Easy what is the difference between a cappuccino and a latte?

2 Non-Comp Medium what can i do with a bachelors degree in history? should i
stay in grad school or try to find a real job?

3 Comp Easy+ should i buy or rent in california?

4 Comp Easy what is the difference between burning and ripping?

5 Non-Comp Hard what are the differences between the those beams?

6 Comp Easy+ can you please eli5 the difference between ham and shortwave,
like if i wanted to set my parents (who live in ca fire country)
up with a simple uncomplicated means of 911 communication
in case cell towers go down?

7 Non-Comp Medium what calculations can only be done by supercomputers or
quantum?

8 Non-Comp Hard why some people tolerate alcohol less than others ?

9 Comp Hard why does everyone say hitting a pitch from a mlb pitcher is
so impossible but catching the throw is expected every time
when the difference is still less than a quarter of a second

10 Non-Comp Easy why are objects in my mirror closer than they appear?

Table 3.26: The samples for the MTurk classification pilot with their correct label (gold
label) and the estimated difficulty for the workers. The samples are taken from the filtered
datasets and were only converted to lower case letters.

sifications, 8 workers with 90% and 19 workers with 80% correct classifications. 85% of

the workers stated that they were native speakers. With the aim of increasing the amount

of workers who achieve a correctness higher than 80%, a second pilot was conducted. In

order to receive a finer gradation of the calculated correctness, the number of pilot ques-

tions was increased to 15. The added samples are shown in Table 3.27. Question 14 can

be considered of medium difficulty as it compares “other colors” with black, which is not

considered a comparison by definition. The other four questions are categorized as easy.

The evaluation of the second pilot results in four workers with a perfect score, 9 workers

with 93% correctness (one question wrong), 16 workers with a score of 87% and 24 workers

with 80% correct classifications. 79% of the workers from the second pilot stated that they

are native speakers. Accumulated with the first pilot on all 15 questions, this results in

81 workers with a correctness higher than 80% and still 22 workers with a correctness

higher than 90%. In total, 5 workers managed to score 100% correctness (see Table 3.28).

The evaluation of the Samples 1-10, which were the same in both pilots, shows that 7

workers have a 100% correct classification and 63 workers have answered more than 80%

of the samples correct. The evaluation of the samples that were categorized with a hard

74

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Gold label Difficulty Sentence

11 Comp Easy why do girls walk diffrent than men?

12 Non-Comp Easy do ghosts or unseenable creatures exist?

13 Comp Easy+ what is the difference between a load balancer and a reverse
proxy server?

14 Non-Comp Medium when printing out a resume, are there any other colors than
black you can use to print?

15 Non-Comp Easy how do i make a google doc as secure as possible?

Table 3.27: The additional samples for the second MTurk classification pilot with their
correct label (gold label) and the estimated difficulty for the workers. The samples are
taken from the filtered datasets and were only converted to lower case letters..

difficulty, shows that less than half (40%) of the 200 workers could answer more than one

sample right.

In this paragraph, statistics over both pilots are described. In total, workers from 15 dif-

ferent countries participated in the pilots. 69% of the workers are from the United States

of America and 90% are from countries that have English as an official language 21. 83%

of the workers consider English as their native language. The biggest group of workers

is between 30 to 39 years old (39%). The mean time to classify one sample was 19.71

seconds. For the people with 100% correct classifications, the mean time per question was

15,91 seconds. This indicates that these people were more efficient in using their time or

could understand the samples more easily. The evaluation of the workers correctness only

on the hard questions shows that 8% were able to answer all of them correctly. Table 3.29

shows the percentage of correct answers for each question. It can be seen that the allotted

21USA, United Kingdom, Canada and India.

Samples Classification correctness

0% 20%
-29%

30%
-39%

40%
-49%

50%
-59%

60%
-69%

70%
-79%

80%
-89%

90%
-99%

100%

1-15 3 1 3 11 15 40 46 59 17 5

1-10 3 1 6 12 22 35 58 41 15 7

5,8,9
(hard)

40 - 79 - - 65 - - - 16

Table 3.28: The table shows the number of workers sorted by their classification correctness
(%). The data is accumulated from both pilots and evaluated on the samples shown in
column one.

75

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

categories fit with the resulting correctness. Only Questions 13 and 14 seem to be easier

than expected. This affirmation regarding the suitability of the categories determines that

the pilot was a success and the high scoring workers might be good for the task at hand.

Anyway, it was to be expected that workers might make efforts only once in the pilot to

take part in the main task and “just” collect the money. Furthermore, the examples do

not necessarily represent all types or difficulties of samples in the data. Therefore, an eval-

uation and a constant monitoring was still necessary in the main phase to get good results.

Gold label Difficulty Correct Sentence

1 Comp Easy 92% what is the difference between a cappuccino and a latte?

2 Non-Comp Medium 62% what can i do with a bachelors degree in history? ...

3 Comp Easy+ 71% should i buy or rent in california?

4 Comp Easy 91% what is the difference between burning and ripping?

5 Non-Comp Hard 43% what are the differences between the those beams?

6 Comp Easy+ 71% can you please eli5 the difference between ham ...

7 Non-Comp Medium 67% what calculations can only be done by ...

8 Non-Comp Hard 53% why some people tolerate alcohol less than others ?

9 Comp Hard 33% why does everyone say hitting a pitch from a mlb ...

10 Non-Comp Easy 82% why are objects in my mirror closer than they appear?

11 Comp Easy 85% why do girls walk diffrent than men?

12 Non-Comp Easy 92% do ghosts or unseenable creatures exist?

13 Comp Easy+ 91% what is the difference between a load balancer and ...

14 Non-Comp Medium 84% when printing out a resume, are there any other ...

15 Non-Comp Easy 94% how do i make a google doc as secure as possible?

Table 3.29: The table shows the samples of the MTurk classification pilot with their correct
label (gold label), the estimated difficulty for the workers and the percentage of correct
answers from the 200 workers (Samples 11-15 were classified by 100 workers only).

3.4.3 Main phase

The main phase of the human classification task uses the workers from the pilot phase to

classify the data from the three sources. The goal is to get 10,000 human labelled samples.

Each sample is classified by three unique human workers. The classification project is run

in batches. The data for the batches is evenly split using a third from each source per

batch. The human classification began with a test batch containing only 180 samples.

The batch had 20 samples per HIT and, therefore, 9 unique HITs and 60 samples from

76

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

each source. All workers with a classification score better than 80% in the pilot could

participate. In total, 62 workers were unlocked for the task. The purpose of the first small

test batch was to validate the process of the HIT publication and the unlocking of workers.

Furthermore, the batch was run to test the post-processing of the classified data. For each

finished batch, a Python script analysed the results and a manual analysis in Excel was

carried out.

The Python script extracts the important information from the recorded data of the batch.

In this case, the extracted data is the input text and the sample ID, as well as the ID

of the worker, the work time and the answer classification. The answers of the workers

are assigned an integer, “Comparative” - 100, “Non-Comparative or No Question” - 10

and “Not sure” - 1. To find a common answer from all three workers for a sample, the

assigned integers are summed up. This will be called “vote” from now on. A majority vote

(>50%) can result in the four categories “comparative”, “non comparative”, “not sure”,

“inconclusive”. This means that a sample, which was voted comparative twice (2*100)

and once not comparative (10), will be a comparative (210) by vote of 66.6% of the voters.

This simple majority vote will be called “66%votes” as an abbreviation. A stricter voting

process is the absolute majority vote, where 100% of the workers have to agree. This

will be called “100%votes” as a short form. Besides the clear votes for comparative or

non-comparative, there are votes that are inconclusive (111) and votes in which “not sure”

has the majority.

After the automated analysis with Python, the data of the test batch was manually anal-

ysed. Using an Excel file, statistics on the votes and workers were generated. For example,

the first batch has 50% comparative votes and 43% non-comparative majority votes. The

mean time per sample is 14.7 seconds, a bit lower than in the pilot, but expected as the

personal information fields are not part of the main task. The inconclusive votes and the

“not sure” votes were utilized to find workers that might not answer honestly. For this,

the answers of a worker are manually reviewed and it was tried to estimate if the answers

are reasonable. Workers for whom tha answers seemed random or who had impossible low

task completion times, for example 51 seconds for 20 questions, were excluded from the

following batches. In order to get a clearer vote from the workers, a fourth option was

included after the test batch. The “Not comparative or Not a question” option was split

up into “Not comparative” and “Not a question”. This provides a clearer result about how

many of the samples are actually not a question. In the examples shown to the workers

during the HIT, it was added that a comparative statement should be tagged as “Not a

question”. Further to a clearer result, the fourth option made it easier to find workers that

classified randomly or not honestly. The “no question” label was integrated into the votes

with the integer 1000. In the voting process, every sample, which was classified as “Not a

77

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

question” by at least one user, was flagged and assigned the vote as “no question”, even

though this might not have been the majority vote. In the manual analysis, these samples

and users could then be easily reviewed. Table 3.30 shows the votes and the possible

categories. Further to the generation of statistics on the workers and the votes, a manual

classification of at least 100 randomly picked samples was made for each batch. Samples

flagged as “No question” are excluded from the manual evaluation. Binary gold labels

(Comparative / Non-comparative) were assigned to the samples. With this gold labels,

the precision, the recall and the F1 score of the workers could be calculated for each batch.

Comparative Non-
comparative

Inconclusive Not sure No question

201 21 111 12 1xxx

210 120 102 2xxx

300 30 3 3000

Table 3.30: The table shows the vote categories with the calculated votes in each column.
In the case that at least one worker voted “No question”, the sample is flagged and assigned
to the category.

The process of preparing a batch of data, conducting the HIT online, analysing the results

and generating the gold labels was conducted for ten full sized batches with 1,020 samples

each batch. The batches can be separated in Series A and Series B. Series A contains

Batches 2-4 (the test batch is Batch 1) and Series B includes Batches 5-11. The difference

between the two series is the type of worker. In Series A, workers with a correctness of

80% or higher in the pilot were allowed. In total, this were 62 workers. The first three

full batches showed a good participation of the workers. Yet the macro F1 scores were in

average at 0.848, showing that an improvement was possible. Therefore, in Series B the

number of workers was reduced to everyone who had a correctness of 90% or higher in the

pilots. This resulted in 22 workers that were allowed to participate in the project. In Series

B, the average macro F1 score increased to 0.918 through this measures. More statistics

about the complete classification task and the complete human annotated dataset for com-

parative classification are described in the following section.

78

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.4.4 Dataset statistics

This section provides statistics about the final dataset as a result of the human annotation

task for classification of comparative questions. The data from the eleven separate batches

was collected and post processed with a Python data collector script. The post-processing

steps in the generation of the final dataset include:

1. Loading and merging of the original annotation data and the results of the classifi-

cation batches.

2. Excluding “No question”, “Inconclusive” and all votes that have at least one vote

“Not sure”.

3. Excluding the gold labelled data from the set and exporting it as a test dataset.

4. Correcting the comparative votes based on pronouns keywords like “others”, “an-

other”, “everyone” and “somebody” to non-comparative.

5. Revoteing the samples tagged as non-comparative in the second human annotation

task (sequence tagging).

6. Extending the dataset with non-comparative data that was filtered out in the data-

mining step (taxonomy class 410-430).

7. Exporting the dataset and generating statistics. The most important exported

fields are: ID, text, comparative class, vote and the vote label (comparative /

non comparative).

The Steps 1,2 and 7 are mandatory. All other steps can be set up in order to be skipped.

This way, there is not one final dataset but various datasets that contain different data.

This approach has the advantage that the different methods (3-6) that might improve

the quality of the data can be evaluated and compared in the machine-learning task (see

Chapter 4). Without the additional steps, the workers labelled 10,380 samples. 10,106

samples have non-comparative or comparative votes and can be used further on (Step 2).

Out of these 10,106 samples, 4,539 (44.91%) are labelled comparative and 5,567 (55.09%)

are labelled non-comparative. Therefore, the goal of 5,000 comparative samples (see Sec-

tion 3.3.3) out of 10,000 annotated samples was nearly met and the dataset has a almost

balanced distribution of comparatives and non-comparatives. The “100%votes” have the

majority (66%) of votes in the dataset. Within the category of the “100%votes”, 38% are

non-comparative and 28% are comparative votes. The “66%votes” are represented with

17% for each class. This distribution indicates that 66% of the samples were more clear

or easier for the workers to answer.

79

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

When analysing the distribution of all samples of the dataset within the classes of the

comparative question taxonomy, it can be seen that the open question class with phrases

(240) is the biggest part of the data with 24.5%, followed by the open questions with “or”

(241: 9.9%), the closed questions with phrases (140: 8.5%) and “or” (141: 8.4%) and the

open questions with “than” and an unknown word combination (230: 8.4%). The other

classes have a maximum of 5.3% and a minimum of 0.02% (or 2 samples) per class. 10

out of the 28 classes have less than 0.62% (or 63 samples) samples per class. All of these

ten classes belong to the xx2: as/as or the xx3: so/as constructs. A detailed overview can

be found in Table 4 of the appendix.

Analysing the distribution of all comparative samples within the classes of the comparative

question taxonomy shows that the open question class with phrases (240) holds a third of

all comparatives (32.3%). The closest following classes are 230 and 140 with 8.8% each.

Five classes do not have any comparatives. Looking at the data from the perspective of the

generation type, the comparatives are evenly split. 50.3% of the samples are generated by

phrases (140/141/240/241) and 49.7% generated by rules. Sentences containing “or” make

up 9.2% (141/241) of all the comparatives. In total, there are 1,854 sentences containing

“or” in the dataset and only 419 comparatives with “or”. This means that only 22.5% of

the questions containing “or” are comparative. From the perspective of question type, the

open questions make up the majority with 73.9%. Furthermore, the distribution of the

samples per source has changed. The data input was evenly split between the three data

sources. In the comparative samples eli5 has a share of 41.6%, NSQ has 35.0% and Yahoo

has 23.6%. With this data, the precisions for the filtering task can be calculated again.

All three sources remain behind the precision expectations from the filtering process in

Section 3.3.4 (see Table 3.24). Reddit NSQ has a precision of 49% (-14%), eli5 a precision

of 55% (-7%) and Yahoo a precision of 31% (-23%) on the comparative samples. While

the Reddit data performs close to the 50% precision target, Yahoo remains far from it.

Throughout the human annotation phase, random samples were taken from each batch

for a manual classification in order to get gold labels. With these gold labels the accuracy

and scores such as the F1 measure could be calculated for each batch and series22. For

each batch approximately 10% of the data was evaluated. For Series A the macro F1

score is 0.848 over all votes and for both classes, comparative and non-comparative. The

“100%votes” in Series A reach a macro F1 score of 0.940 and the “66%votes” a F1 score

of 0.717. For Series B the workers needed a higher classification correctness in the pilot to

participate. The overall macro F1 score for Series B is 0.918 (+0.07). This is an increase

of 8.25% by changing the workers. The “100%votes” in Series B reach a macro F1 score

of 0.981 and the “66%votes” a F1 score of 0.772. Changing to better workers in Series B

22Series A: Batch 2-4; Series B: Batch 5-11.

80

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

increased the scores for both vote types, but it could not close the gap between the vote

types. The “66%votes” are still 0.21 behind the “100%votes”, indicating again that the

samples that only have a two third agreement seem to be harder or more controversial

sentences. The macro F1 score over both classes for the complete data from both series is

0.898. A total of 1,096 samples were manually classified for that.

The four steps to improve the dataset are independent of each other and change the statis-

tics of the dataset. Step 3 excludes the samples that were gold labelled after each batch

from the dataset. As a result of this measure, there will be a dedicated test dataset that

represents a gold standard. In total, 796 samples are excluded from the dataset. Step 4

cares about the requirement that comparatives against open groups should be considered

non-comparative. The human annotation shows that the workers had difficulties with this.

Therefore, this step corrects the votes for few selected keywords to a non-comparative vote.

This measure is a big intervention into the voting process. All keywords were manually

evaluated in terms of the frequency of positive comparatives. Only the non-ambiguous

keywords are excluded. Step 5 is a revote on samples that were tagged non-comparative

in the second human annotation task. Even though this step is listed here, it could only

happen after the annotation in Section 3.5 was finished. The revote was done with a

total of six votes for votes that were flagged with at least one non-comparative vote in

the second task. In total, 28 samples were revoted to be non-comparative and 52 samples

were inconclusive after the revote and were excluded. The last optional step (6) extends

the dataset with non-comparative data. The data is taken from the filtering process of the

data mining (see Section 3.3) in which non-comparative statements and questions were

filtered out. The number of added non-comparative samples can be set up in the script.

For the machine-learning task, datasets from 1,500 up to 9,000 added samples were cre-

ated. The dataset with all options activated and an extra of 6,000 non-comparative data

samples has a total of 15,278 samples, of which 3,814 samples are comparative.

81

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Name Size Comparative Non-Comparative

1 AllData 10,106 4,539 (44.9%) 5,567 (55.1%)

2 AllData
ExtraTest

9,330 4,152 (44.5%) 5,178 (55.5%)

3 AllData
ExtraTest
NoOpenGroup

9,330 3,894 (41.7%) 5,436 (58.3%)

4 AllData
ExtraTest
Revote

9,278 4,072 (43.9%) 5,206 (56.1%)

5 AllData
ExtraTest
NoOpenGroup
Revote

9,278 3,814 (41.1%) 5,464 (58.9%)

6 AllData
ExtraTest
NoOpenGroup
Revote
NonCompData1.5k

10,778 3,814 (35.4%) 6,964 (64.6%)

7 AllData
ExtraTest
NoOpenGroup
Revote
NonCompData3k

12,278 3,814 (31.1%) 8,464 (68.9%)

8 AllData
ExtraTest
NoOpenGroup
Revote
NonCompData6k

15,278 3,814 (25.0%) 11,464 (75.0%)

9 AllData
ExtraTest
NoOpenGroup
Revote
NonCompData9k

18,278 3,814 (20.9%) 14,464 (79.1%)

Table 3.31: The table shows the nine different classification datasets. As a result of
the different post-processing steps on the human annotated data, the data samples and
the balance between the two classes varies in the final datasets. The name of a dataset
indicates the post-processing steps that were used.

82

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.5 Human annotation task 2: Sequence tagging

This section describes the process of labelling the comparative data from Section 3.4 in

a crowd sourced annotation task. The goal of this annotation task is the identification

of comparative objects and aspects within the set of comparative questions to use it for

the training of machine-learning models. The following subsections describe the process

of building the sequence labelled dataset. The human annotation task will be conducted

by means of the Mechanical Turk (MTurk)23 platform provided by Amazon Web Services

(AWS).

3.5.1 Task preparations

The task preparation is similar to the one from the classification task. Firstly, a website

providing an interface for the assignment is needed for the workers to conduct the task.

Secondly, the comparative data of the classification task needs to be prepared. And thirdly,

the results need to be analysed and a voting process on the sequences needs to take place.

The following paragraphs explain the steps that were taken for the sequence-tagging task.

This sequence-tagging task is also conducted by means of Mechanical Turk and, therefore,

it has to respect the same requirements as the classification task. Due to the nature of the

annotations, the task has a different requirement regarding the user interface compared

to the classification task. The aim is to mark a sequence of a provided text and add a

label to that sequence. The template from the first human annotation task serves as a

base for the new template. Especially the already proven concept for the Instructions,

Examples and the “Tell us about yourself” part is useful for the second task. For the

second task it is even more important to provide a clear and easy useable interface to

the workers, as this task is more complicated and detailed. Marking a span of words or

letters is the necessary core function of the template. There are two approaches for this:

the first one is to mark single characters in the text with the mouse (click and drag) and

record the position of the start and the end of the marking. The second approach is to

separate the text in a pre-processing step before publication (tokenization). This way,

each token (word, punctuation and so on) can be made clickable in the template and gets

a unique ID. The ID needs to be recorded when clicking. In order to provide the user

with the simplest tool possible, the second option was chosen. The Tool for Annotation of

Low-resource ENtities (TALEN)24 project provides a function similar to what is needed

for this task. The MTruk classification template was extended by code snippets taken

from the TALEN and the code was modified to fit the sequence labelling task. The final

23https://www.mturk.com/
24https://github.com/CogComp/talen

83

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

template is shown in Figure 3.7. The template is split up into two areas: the demo area on

the top of the page and the task area below. The demo area gives a very short description

of the task and displays an animated image of how to use the labelling tool. The labelling

tool provides the functionality to left-click on a token and select a fitting label from a

pop-up menu. Clicking and dragging the mouse can be used to select multiple tokens in

a sequence and then pick a label. Right clicking on an already set label can be used to

remove this label. The workers can label up to four distinct comparative objects, common

shared objects and the aspect of the sentence (see the definition of comparatives for more

details in Section 3.1.4). The pop-up menu also supplies another way of removing a label.

The task area of the template gives more detailed information and example pop-ups and a

definition search in the same way as in the classification task. The “work” area is separated

in three parts. The first part shows the comparative questions that need to be labelled.

Here, each question can be individually tagged with the labels provided by the labelling

tool. Due to the fact that the human classified data only has an precision of 89% for the

comparative samples, one out of ten questions might be not comparative. Therefore, the

workers of the second task are also provided with the option to label a question as non-

comparative. In order to prevent the workers from cheating, the “Comparative Objects

annotated” option is selected automatically by the script if the worker tags a sequence and

can not be set by the worker. The second and third part of the “work” area are the same as

in the classification task. The “tell us about yourself” part is only visible in the pilot phase.

The second part of the task preparation is to supply the MTurk template with data. The

basic functionality of the Python script remains the same as in the classification task.

The exclusion of already utilized question IDs, the loading of the source data and the

export to an MTurk valid format are only slightly changed. The main difference in the

data preparation is the pre-processing of the data. The sentences of the source data need

to be split into single tokens. The tokenization is an important step in the generation

of the dataset. The format of a sequence dataset is often a tab-separated file in which

each line holds a token and one or more tags. The tagging mechanism for this human

annoation task works the same way. The tokens are individually labelled by the workers.

Therefore, changing the separation of the tokens afterwards might result in complications.

The box below shows an example text, which contains some difficult separation cases. For

example, punctuation should be separated from neighbouring characters. Yet, there are

exceptions in which this should not happen. For example, “N.Y.” as abbreviation of the

city New York should not be split. Furthermore, short forms of words (contractions) like

“is” in “Who’s” or “not” in “can’t” should be separated. For words that are separated by

a hyphen, like “j-lo” or “large-scale”, it is difficult establish rules. The highlighted cases in

the box below can be categorized as separation with hyphens and separation of negative

short forms. To avoid the edge cases with hyphens and to have a more natural separation

84

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Figure 3.7: The figure shows the template for the MTurk sequence-tagging task. The
template has a demo area (top) with a video explaining how the the labelling tool works
and the main task area (bottom) including the pilot questions. Note: The distance of the
elements is displayed compressed to fit the figure.

85

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

for the workers, it is decided not to perform a contraction or a hyphen separation. In case

it becomes necessary in future work, the separation can still be made, which might be

easier than reversing an already fulfilled separation.

Original text:

Who’s best elliot/melissa or j-lo? N.Y. can’t beat Boston and isnt worth the

large-scale attention...

Tokenized text:

“Who”, “’s”, “best” “elliot” “/” “melissa” “or” “j-lo” “?” “N.Y.” “can’t” “beat”

“Boston” “and” “isnt” “worth” “the” “large-scale” “attention” “...”

For the tokenization of sentences the spaCy library 25 is utilized. The library provides

natural language processing (NLP) with, for example, tokenization, lemmatization, part-

of-speech tagging (POS) and named entity recognition (NER) for English texts and various

other languages. SpaCy is chosen because of its easy use, its open source and because it

allows the customization of its components. Listing 3.5 shows the Python code of the

text pre-processing functions using the spaCy library. SpaCy provides general-purpose

pretrained machine-learning models for the different languages. For the English language

there are three sizes available. The script uses the medium sized model (Lines 1-4). With-

out any changes, spaCy would split words with hyphens and contractions into separate

tokens. Therefore, the tokenizer rules are redefined in the preProcessing function (Line 6

and following).

The function receives a text as parameter upon call and returns the tokenized text as

a list. Line 7 assigns a list of special cases, which should never be split, like “v.s.”

and “a.m.”, to the tokenizer. The lists in Line 9-37 define cases that should be split

by characters or more complex regular expressions. The definitions are taken from the

original implementation of spaCy. Commenting the regular expression for infixes with

hyphens prevents the separation of the words (Line 35). Lines 39-46 activate the new

rules. Not defining any rules for splitting contractions prevents the default behaviour.

In order to optimize the results of the tokenization, the incoming text (query) is altered

(Lines 48-54). Tab stops and line breaks are removed, words directly connected to a

question-mark are separated and on both sides of brackets a white space is added. As a

last step, multiple white spaces are reduced to only one. These alternations do not take

care of all possibilities and edge cases, but they cover frequent mistakes.

25https://spacy.io

86

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

1 #load spacy
2 import spacy
3 import en_core_web_md #English core model medium size
4 nlp = en_core_web_md.load()
5

6 def preProcessing(query):
7 nlp.tokenizer.rules = special_cases #Load special cases for daytime and and abriviation

like v.s.
8

9 prefixes = (
10 ["§", "%", "=", "", "", r"\+(?![0-9])"]
11 + LIST_PUNCT + LIST_ELLIPSES + LIST_QUOTES + LIST_CURRENCY + LIST_ICONS)
12

13 suffixes = (
14 LIST_PUNCT + LIST_ELLIPSES + LIST_QUOTES + LIST_ICONS
15 + ["’s", "’S", "s", "S", "", ""]
16 + [
17 r"(?<=[0-9])\+",
18 r"(?<=◦[FfCcKk])\.",
19 r"(?<=[0-9])(?:{c})".format(c=CURRENCY),
20 r"(?<=[0-9])(?:{u})".format(u=UNITS),
21 r"(?<=[0-9{al}{e}{p}(?:{q})])\.".format(
22 al=ALPHA_LOWER, q=CONCAT_QUOTES, p=PUNCT
23),
24 r"(?<=[{au}][{au}])\.".format(au=ALPHA_UPPER),
25])
26

27 infixes = (
28 LIST_ELLIPSES + LIST_ICONS
29 + [
30 r"(?<=[0-9])[+\-*^](?=[0-9-])",
31 r"(?<=[{al}{q}])\.(?=[{au}{q}])".format(
32 al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
33),
34 r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
35 #r"(?<=[{a}])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS),
36 r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA),
37])
38

39 prefixes_re = compile_prefix_regex(prefixes)
40 nlp.tokenizer.prefix_search=prefixes_re.search
41

42 suffixes_re = compile_suffix_regex(suffixes)
43 nlp.tokenizer.suffix_search=suffixes_re.search
44

45 infix_re = compile_infix_regex(infixes)
46 nlp.tokenizer.infix_finditer = infix_re.finditer
47

48 query = query.replace(’\n’, ’ ’)
49 query = query.replace(’\t’, ’ ’)
50 query = re.sub(r’(\w\w)\?(\w\w)’, r’\1 ? \2’, query)
51 query = query.replace(’(’, ’ (’)
52 query = query.replace(’)’, ’) ’)
53 query = query.replace(’ ’, ’ ’)
54 query = query.replace(’ ’, ’ ’)
55

56 doc = nlp(query)#work the query with spaCy
57 tokens = []
58 for token in doc:
59 if token.text != ’ ’:
60 tokens.append(token.text)
61 if len(tokens) == 0:
62 print("Zero token sentence detected!")
63 return tokens

Listing 3.5: Pseudocode of the text pre-processing functions for the human sequence-
tagging project. The code loads the spaCy NLP library and redefines its tokenizer rules.

87

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Line 56 is the execution of the spaCy tokenizer on the query and the following writing of

the separated tokens to the return list. The overall data preparation script proceeds from

then on in a similar way to the Python script of the classification task. Solely the export

of the tokens is different, as each token gets its own ID within a sentence. The complete

text, including the necessary HTML tags, is exported to the batch data file.

The third major part of the task preparation is to provide an analysis and a voting script

for the completed sequence-tagging task. Compared to the classification task, the voting is

more challenging. Instead of a voting process with 3 labels per sample, this task has seven

labels per token and also labels per sample. The labels per sample are binary. In case that

the worker tags at least one token with a label, the sample is considered comparative. If no

token or sequence is labelled, the worker must choose to label the sample non-comparative.

Within a sample text, each worker can tag as many single tokens as necessary with labels.

Furthermore, the workers can tag tokens sequences with labels. In total seven labels for

tokens exist. There are four comparative object labels (Obj1-Obj4), a shared comparative

object label and a label for the aspect of a sentence. Implicitly, by not tagging a token, a

“no label” is set. As a result, for each token a voting process on each of the seven labels

needs to take place. To have a simple and correct voting process, a series of steps needs

to be performed. The steps described below are implemented in a Python script with the

necessary peripheral functions.

1. Loading the process data and accumulating the relevant data (WorkerID, work-time,

annotated-sequence, sample-label) for each question from all workers.

2. Loading the original dataset and joining the original question text with the process

data.

3. Dividing the worker’s annotations by label and merging or slicing the token IDs in

order to group consecutive IDs.

4. Tokenizing the original question text with the tokenizer from the preparation script.

5. Calculating the vote per label type for a sample. The calculation is implemented for

votes by majority (e.g 2 out of 3 workers) and votes by absolute majority (e.g.g 3

out of 3 workers).

6. Fetching the token texts of the vote from the original question and saving it with

the voted sequences.

7. Aggregating convenience data out of the votes. For example, setting a boolean if a

sample has an majority aspect or setting a boolean if a sample has successful votes

for Obj1 and Obj2. Furthermore, a boolean-flag is set if one of the workers tags a

sample as non-comparative.

88

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

8. Writing all aggregated data as an intermediate format (tab separated values) to be

imported in Excel for further analysis.

3.5.2 Pilot

It is essential to find good workers for the sequence-tagging project in order to receive good

results. Compared to the classification task, this annotation project is more detailed and

requires a better understanding of the language, as well as some dedication to comprehend

and to conduct the task. To find these dedicated good workers, a pilot study is performed

with questions for which the answers are known and the workers can be evaluated on.

In order to select fitting questions for the pilot study, 10 samples were selected from the

classification dataset for each source. The data consisted of comparative and a few selected

non-comparative samples. Four people were asked to tag the 30 questions in a pre-pilot

study. With the results from the pre-pilot, a guess on how difficult questions are for the

workers could be made. This helped to choose 15 questions for the pilot study. Twelve

questions are comparative and three questions are non-comparative by choice. To each

question a category, which tries to estimate the difficulty of the sentence, is assigned. The

goal is to have a set of easy, medium and hard questions for the pilot. The correct labels

(gold labels) for the pilot study were agreed by three people familiar with comparative

questions and the task of creating the dataset. The selected sentences with their gold

labels and their difficulty can be found in Figure 3.8.

There are five questions in the set that are considered to be hard to label for the workers.

Sentence 2 is considered of hard difficulty because the aspect of the sentence is split up

into small pieces and the word “more” is an attribute of the aspect and not part of the

aspect. Question 6 is considered of hard difficulty because of the shared object “resident”

and the complexity of the sentence’s content. Question 10 is considered hard to label be-

cause of the shared object and the aspect of the sentence, which does not include “better”.

Sentence 12 is part of the hard category, due to the sentence’s complexity and the split-up

objects. And finally, Sentence 15 is considered of hard difficulty because “enjoy food” is

an attribute of the aspect and not part of it. All non-comparative samples (Samples 5, 9,

14) are estimated with a medium or easy difficulty.

Five pilots needed to be conducted in order to find enough workers with a good labelling

accuracy. The pilots were consecutive and the task was adapted for each new pilot as a

measure to boost the performance of the workers. After each pilot, for each worker the F1

score was calculated sentence by sentence. This emphasized the importance of the correct

annotation for each sentence’s tokens. To get a meaningful value, the mean of all F1 scores

was calculated. The list below describes the pilots and the consecutive changes made:

89

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

Figure 3.8: The figure shows the correct labels (gold labels) and the assigned category of
difficulty for the pilot questions.

1. Pilot: A basic template without the “demo” area of the page was used. The pilot

was open to everyone and, additionally, the workers that participated in the classi-

fication task were invited.

Result: 35 workers just marked “non-comparative” for every sentence in order to

just receive the reward that was paid for the task. 5 workers sent an empty form.

Only 6 workers achieved a mean F1 score higher than 0.8 on the comparative ques-

tions and 21 workers reached a F1 score of 0.7 or higher.

90

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

2. Pilot: The measures against sending an empty form were improved, the “No Label”

button was added to the annotation overlay and the pop-up explaining the labelling

tool was added.

Result: 45 workers just marked “non-comparative” for every sentence. Only 3

workers achieved a mean F1 score higher than 0.8 on the comparative questions and

15 workers reached a F1 score of 0.7 or higher.

3. Pilot: The “demo” area was added on the top of the page in order to avoid the

workers having problems with the use of the annotation tool.

Result: 24 workers just marked “non-comparative”. This was less than in the first

two pilots. It might be that the “demo” area helped. Anyway, the F1 scores did

not improve: 3 workers are better than an F1 score of 0.8 and 19 workers are better

than an F1 score of 0.7 on comparative samples.

4. Pilot: In this pilot, only workers that participated in the classification task, who

had not already participated in Pilot1-3 were approved and invited to participate

via e-mail.

Result: No workers participated.

5. Pilot: In order to simplify the task, the non-comparative questions and the option

to select “not comparative” were removed.

Result: The number of workers with higher scores improved slightly. 10 work-

ers achieved an F1 score higher than 0.8 and 34 workers higher than 0.7. But

the improvement might not necessarily be connected to the the removal of non-

comparatives, as roughly 25-30% of the annotations can be considered random an-

notations.

The pilots show that the identification of comparative objects and comparative aspects is

a difficult task. Table 3.32 provides a detailed overview of the worker distribution on F1

scores. Just 3 out of 400 participants have a mean F1 score of 0.85-0.9 on the comparative

samples and only 22 workers achieve a score higher than 0.8. Excluding those workers

who scored less than 0.4 points, most workers have an F1 score between 0.6 and 0.7. The

workers reach better F1 scores when identifying comparative objects instead of aspects.

The peak of the F1 distribution is at 0.7-0.75 for comparative objects and at 0.6-0.65 for

the aspects of the comparison. The evaluation of the questions that had been assigned

to the category “hard” shows that only 4 workers have an F1 score between 0.8-0.85 and

no other worker is better than this. Aggregating the F1 scores for each question shows

that the assigned classes of difficulty most of the cases. For example, Question 1, which

is assigned with “easy”, reaches a mean F1 score of 0.75 and Question 11 (hard) reaches

a mean F1 score of 0.43. For both “hard” questions, Question 2 (mean F1 0.58) and

Question 6 (mean F1 0.64), the results were better than expected. For question 12, which

91

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

was assigned “easy” before the pilots, the results indicate that it was more difficult (mean

F1 0.53) for the workers to tag the right sequences. Evaluating the workers’ classification

skills of the three non-comparative samples shows that 46% of the workers have classified

all three questions correctly as non-comparative. 20% of the workers answered 2 ques-

tions correctly, 22% only one question and 12% did not give any correct answer. In total,

workers from 13 different countries participated in the pilots. 50% of the workers come

from the United States of America and 78% come from countries that have English as an

official language 26. 71% of the workers consider English as their native language. The

biggest group of workers is between 30 to 39 years old (30%), directly followed by 25 to

29 years old workers (29%). The mean time to tag one sample was 48.3 seconds, which is

28.6 seconds longer than in the classification pilots.

Samples Mean F1 scores

<0.4 0.4
-0.45

0.45
-0.5

0.5
-0.55

0.55
-0.6

0.6
-0.65

0.65
-0.7

0.7
-0.75

0.75
-0.8

0.8
-0.85

0.85
-0.9

Comp 148 7 16 13 24 48 48 34 33 19 3

Hard 190 32 35 51 32 24 14 8 3 4 -

Table 3.32: The table shows the number of workers sorted by their mean F1 score on
identifying comparative objects and aspects. The data is accumulated from all 5 pilots.

3.5.3 Main phase

The main phase of the human sequence-tagging task uses the workers from the pilot phase

to annotate the comparative data from the classification task. The goal is to provide

sequence labels for 4,260 comparative samples. Each sample is annotated by three unique

human workers. The sequence-tagging project is run in batches. The data for the batches

is evenly split using a third from each source per batch (Yahoo, NSQ and eli5). The

human classification began with a test batch containing only 180 samples. The batch had

10 samples per HIT and, therefore, 18 unique HITs and 60 samples from each source. All

workers with an F1 score higher than 0.8 in the pilot study could participate. In total,

22 workers were unlocked for the task. The purpose of the first small test batch was to

validate the process of the HIT publication and the unlocking of workers. Furthermore,

the batch was run to test the post-processing of the annotated data. For each finished

batch an analysis and voting process was conducted with the Python script explained in

Section 3.5.1.

26USA, India, Canada, United Kingdom and Australia.

92

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

In total, 5 batches were conducted on the Mechanical Turk platform, the first test batch

and 4 batches with 1,020 samples per batch. In the analysis of the batches no irregularities

regarding the workers annotations could be observed. The average time per question was

49.9 seconds in the first batch and it decreased to 22-32 seconds in the following batches.

93

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

3.5.4 Dataset statistics

This section provides statistics about the final dataset as a result of the human sequence

annotation task on comparative questions. The data of the 5 batches was collected and

post processed by means of a Python data collector script. The post-processing steps for

the generation of the final dataset include:

1. Loading the sequence annotation data batches.

2. Merging the annotation data with the results of the human classification task in

order to include already known information.

3. Exporting the non-comparative flagged samples.

4. Excluding samples that have more than two non-comparative votes.

5. Reducing the dataset to samples that have only two comparative-objects (Obj1 and

Obj2).

6. Generating statistics.

7. Excluding the gold labelled samples from the data.

8. Exporting the dataset with three different formats:

(a) Line-separated: Each token is in one line with its tab-separated sequence label.

The samples are split by an empty line.

(b) Multi-info: Each line holds information about one token. The original question-

ID, the token, the POS-tag and the sequence label. Samples are not separated,

but they can be identified by the same question-ID.

(c) Flair-format: As a convenience method, the data is split up into train, devel-

opment and test sets for machine learning.

All these steps are mandatory in the post-processing, except for the exclusion of the gold

labelled data (Step 7). Step 3 exports the non-comparative flagged samples that are used

to refine the comparative classification dataset in Section 3.4. In total, 428 samples were

tagged as non-comparative by at least one worker. Steps 4 and 5 exclude samples that

are not helpful for the final dataset. Step 4 excludes samples that have a majority vote

on non-comparative. In Step 5, samples that do not have two comparative objects are

excluded. This might happen because the voting was inconclusive or because the workers

did not tag a second object. Furthermore, samples that have more than two objects are

excluded so that the data fits the definition of a comparative question. These measures

reduce the dataset to 3,998 samples. With these samples the following statistics are gener-

ated. 278 (6.9%) out of the 3,998 samples have one vote for non-comparative. 3,440 (81%)

94

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

of the samples have two objects on which all three workers agreed. 1,001(23%) samples

have an aspect on which all three workers agreed and 2,454 (57%) samples have an aspect

on which the majority agreed. Table 3.33 shows the distribution of samples that only

have comparative objects, objects and aspects and both combined with shared objects.

It can be seen that comparative questions with objects and aspects is the most common

configuration with 44%, followed by sentences that only contain two objects (32%).

OBJ1&2 Aspect Shared Counts Percentage (%)

True False False 1298 32

True False True 301 8

True True False 1755 44

True True True 644 16

Table 3.33: The table shows the number of samples by the labels that are contained in
the sample.

In order to rate the worker’s annotation quality, 420 (10%) samples of the data were

randomly picked and manually annotated. This way gold labels for the sequence-tagging

dataset were received. 25 out of the 420 samples are non-comparative and 10 do not

have exactly two objects. This results in 385 gold labelled samples. Table 3.34 shows

the evaluation of the main task with the gold labelled data. For the comparative objects

the workers achieved a high F1 score of 0.88 and 0.89. The comparative aspect has an

average F1 score of 0.6 with a higher precision of 0.72. The shared objects turn out to

have the lowest F1 score of 0.49 and only reach a precision of 0.42. The micro F1 score,

calculated over all classes, is 0.8. These metrics further indicate that it is easier for the

workers to identify the comparative objects than the aspects. The shared objects might

take a special position because they are not only more complex from a language point of

view, but also less represented in the data (24%).

Precision (%) Recall (%) F1 score

OBJ-1 87 90 0.88

OBJ-2 86 93 0.89

SHARED 42 60 0.49

ASPECT 72 52 0.60

micro avg 81 80 0.80

Table 3.34: The table shows the measures of the workers’ performance from the sequence-
tagging task, which was evaluated with 420 gold-labelled samples.

95

CHAPTER 3. CREATION OF COMPARATIVE QUESTION DATASETS

The next chapter will use this sequence-tagging dataset and the classification dataset

from Section 3.4, which were created with the help of human workers, in machine-learning

classification and sequence labelling tasks.

96

Chapter 4

Experiments with comparative

question datasets

This chapter describes the experiments that were conducted with the two comparative

question datasets, which were created in Chapter 3. Both datasets serve a different pur-

pose. The first dataset is a set of sentences collected from QA web-platforms and provides

labels for classifying comparative questions. The experiments on classifying comparative

questions with the help of machine learning and neural networks is described in Section

4.1. The second dataset is a set of comparative questions and provides labels for com-

parative objects and aspects. The experiments of extracting the objects and aspects from

comparative questions is described in Section 4.2. The results of both experiments will

be discussed in Section 4.3 and both experiments will be joined together in a comparative

extraction pipeline. The pipeline will be used in a web app with a user interface and an

API in Section 4.4. The aim of the experiments is to show the benefit of the datasets

created and to provide a base for future research and optimization. This chapter does not

aim to propose state-of-the-art implementations of the corresponding research problems,

but it will aim to provide a good baseline for research with the datasets.

4.1 Classification of comparative questions

This section describes the experiments with the data of the first crowd sourcing task (see

Section 3.4). The goal is to provide a machine classifier for comparative questions. In the

experiments, feature-based machine learning and neural machine learning will be utilized

to fulfil the task. Section 4.1.1 provides a description of the different tools, methods and

the program structures used in the experiments. Section 4.1.2 provides information about

the training of the classifiers, the parameters and the data that was utilized. Furthermore,

Section 4.1.2 presents the results of the classification experiments.

97

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

4.1.1 Experimental setup

In order to conduct the experiments, two platforms were used. The first platform is a

local instance of Python with Jupyter Notebook1. Jupyter Notebook is a web application

that allows to collaborate on documents and program code. The tool is structured by cells

of program code and their results. It supports the interactive execution of the separate

code blocks within one file. This allows a better handling of program changes during

the development. For example, the processing of data can be repeatedly changed and

executed while the heavy and time-intensive loading of data is only executed once. The

second platform is Google Colab2, a cloud-based instance of Jupyter Notebook. Google

Colab can be used without a setup and provides free access to computing resources such

as powerful Graphics Processing Units (GPU). The local instance of Jupyter Notebook

is utilized for the machine-learning algorithms that are feature-based. Google Colab is

utilized for the computationally and resource-intensive neural machine learning.

4.1.1.1 Feature-base machine learning

The local environment is used for conducting experiments with a feature-based machine-

learning classification of the comparative samples. To perform the experiments in the

local environment, the tools of scikit-learn3 are utilized. Scikit-learn is an open-source

machine-learning library for Python and it provides various implementations of supervised

classification algorithms, for example, the support-vector machine (SVM) model or the

logistic regression model. Scikit-learn also provides a feature called “pipeline”, that serves

the purpose to sequentially assemble different machine learning steps. This sequential

assembly allows parts of the pipeline to be exchanged or run with different parameters.

For example, the classification algorithm at the end of the pipeline can be easily exchanged.

This scikit-learn feature is utilized to implement a classification script, which can evaluate

multiple classifier algorithms and feature sets in a row for the same data. The script can

be divided into the following functional parts:

1. Loading the data, the pre-processor tool (spaCy) and the Global Vectors for Word

Representation (GloVe)4 embeddings.

2. Pre-processing the data with spaCy.

3. Stratified n-fold splitting of the data into train and test folds.

4. Selection of the fold combination.
1https://jupyter.org/
2https://colab.research.google.com
3https://scikit-learn.org/
4https://nlp.stanford.edu/projects/glove/

98

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

5. Definition of transformers for the data in order to generate features from the text.

For example, the term frequency–inverse document frequency (tf-idf) vectorizer.

6. Concatenating the results of the different features in a scikit-learn feature union.

7. Setting up the scikit-learn pipeline with the feature union and the different classifiers.

8. Execution of the pipeline with three options:

(a) Random grid search with cross-validation over a set of parameters (not imple-

mented for all classifiers).

(b) Exhaustive grid search with cross-validation over a set of parameters.

(c) Running all models with one parameter set and prediction against the test fold.

9. Calculating the mean F1 score for each model over all folds.

Overall, the script provides a way to perform a nested cross-validation in order to find

a reliable method for classifying the comparative questions. In general, the set of open

variables is very high in this scenario, since the pre-processing decisions, the feature selec-

tion and the parameters of the features, as well as the classification algorithms and their

hyper-parameters are open for optimization and selection. The script implements various

options for all these variables. The experiments do not attempt to explore every possible

variable option, but to focus at some point on promising models and parameters.

Step 1 of the script focuses on loading all resources, like the spaCy model for the English

language and the GloVe word vectors (6B.50d) that were trained on Wikipedia and the

Gigaword5 corpus. The second step deals with pre-processing the data. In this step, the

sentences are lowercased, tokenized and part-of-speech tags (POS), as well as detailed-

part-of-speech tags (DTAG) are generated with spaCy. Additionally, the inflected forms

of tokens can be grouped together (lemmatized), the stop words and the punctuation can

be removed and the pronouns can be replaced by the “-PRON-” identifier. The separate

information is saved for each sentence and also combined as “token + POS”, for example,

“canVERB”. Step 3 performs the split of the data into train and test sets. In this step,

the scikit-learn function “StratifiedKFold” is utilized, in order to shuffle the data and to

generate 5 folds, while preserving the percentage of samples for each class. Step 4 marks

the start of the outer loop of the cross validation by selecting one fold as test set and the

other folds as trainings set.

Step 5 defines the various transformers as separate scikit-learn pipeline objects. Three

groups of transformers are implemented: tf-idf transformers, n-gram transformers and

5https://catalog.ldc.upenn.edu/LDC2011T07

99

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

transformers for embeddings. The tf-idf and the n-gram transformers use scikit-learn

functions and can be parametrized on execution of the pipeline. As for the tf-idf two

vectorizers are implemented: one uses the processed text as input and the other one uses

the combined “token + POS”. For the n-gram transformers, a count vectorizer is applied

to count the frequency of a word or token. The transformers are set up for the processed

text, the tokens, the POS tags and the DTAGs as inputs. Unigrams (single words) are

counted by default. This parameter can be changed on execution to arbitrary values for

the n-gram size. The GloVe embeddings have dedicated vectorizers, which generate the

mean or the sum of the GloVe word vector representations of a sentence. Step 6 con-

catenates the results of the selected features. This union of features can be fed into an

estimator. The estimators (classifiers) are set up in Step 7. Various algorithms provided

by scikit-learn are utilized as classifiers. Some of these have already proved to generate

good results in the research of Panchenko et al. [49] and Bondarenko et al. [51]. Table

4.1 shows the classifiers that are utilized in the local environment. All models are feature-

based machine-learning classifiers, except for the multi-layer perceptron (MLP) which is a

neural network. The support-vector machine (SVM) is by default operated with a linear

kernel and the SGD classifier works by default with a linear SVM.

Type Implementation (Source)

Support-vector machine (SVM) Support Vector Classifier (scikit-learn)

Logistic regression Logistic Regression Classifier(scikit-learn)

Random forest Random Forest Classifier (scikit-learn)

Extra Trees (Etree) Extra Trees Classifier (scikit-learn)

Stochastic gradient descent (SGD) SGD Classifier (scikit-learn)

Näıve Bayes (NB) Bernoulli NB (scikit-learn)

XGBoost XGBoost (XGBClassifier)

Multi-layer perceptron (MLP) MLPClassifier (scikit-learn)

Table 4.1: The table shows the classifiers utilized in the local environment with their
implementation source. A list of all ML model sources can be found in the appendix in
Table 5.

Step 8 is the inner part of the nested cross validation. In this step, the grid search for

parameters are performed. The grid search is executed on the training data and it splits

the data into sub-folds in order to find the best parameters by cross-validation. To find

the parameters, an exhaustive grid search can be used for SVM, random forest, logistic

regression, SGD and Etree. Random grid search functions are implemented for SVM,

Random Forrest, Etree and MLP. This completes the inner part of the cross validation.

The parameters found by the grid search can be set for each classifier to be trained on

100

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

the complete training data and evaluated against the test fold. The evaluation F1 scores

are saved for each classifier and each test fold. The mean F1 score for each classifier is

calculated in Step 9. Although it does not provide the best possible results for the data,

because the parameters found only apply to one fold, the nested cross validation allows to

indicate good features and classifiers for the task.

4.1.1.2 Neural machine learning

The Google cloud platform Colab is utilized to conduct the compute heavy experiments

that use artificial neural networks. The approach to neural networks is twofold. One ap-

proach executes a fine-tuning of a BERT model [52] and the other approach uses the Flair

framework (Version 0.4.5). Flair is an open-source natural-language-processing (NLP)

framework [80]6. The framework uses the open-source machine-learning framework Py-

Torch7. Flair was first introduced by Zalando Research8. Flair enables the the user to

perform sequence labelling and text classification on text by means of the framework’s

state-of-the-art NLP models. Moreover, Flair acts as a text embedding library by sup-

porting the use and the combination of various word and document embeddings like GloVe,

Flair or ALBERT embeddings. The ALBERT model is the state-of-the-art model for tasks

like question answering on the SQuAD dataset and reading comprehension on the RACE

dataset (see related work in Section 2.1). Language models like ALBERT can be accessed

through the Huggingface Transformers9 library, which provides pretrained models for more

than 100 languages. The Huggingface Transformers enable the second approach on neural

networks, a direct fine-tuning of a BERT model. With this method, a pretrained model

can be loaded and fine-tuned for the task of classifying comparative sentences.

In order to work with Google Colab, three steps are necessary, which are not needed in

a local environment. Firstly, hardware instances need to be reserved. The CPU and the

system memory resources are automatically allocated with the execution of the script.

GPU resources must be reserved in program code and then assigned to PyTorch. Figure

4.1 shows the program code and the result of the GPU allocation. Secondly, software

packages that are necessary for the project, but not set up by default, need to be installed

on the hardware instance. For the classification project, the Flair and the Huggingface

Transformers packages need to be installed. Thirdly, a connection to Google Drive should

be initiated. Drive is used to store the Colab files and acts as a long-term storage for

Colab. Through the Drive connection, the input datasets can be loaded and the final

models can be saved. These three steps are necessary every time the hardware instance

6https://github.com/flairNLP/flair
7https://pytorch.org/
8https://research.zalando.com/
9https://github.com/huggingface/transformers

101

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

Figure 4.1: The figure shows the allocation of resources in Google Colab. In this example
the system is assigned a Tesla P100 GPU.

is initiated. As long as the session is not terminated, multiple executions of the script

require these three steps only once.

Using Flair for text classification is fairly easy. The first two steps load the dataset and

generate a label dictionary (see Figure 4.2). In this example, the classification dataset with

dedicated gold label test data and additional 6.000 non-comparative samples is loaded. For

the comparative question data, the classification is binary and, therefore, the label dictio-

nary only contains “comparative” and “non-comparative” as labels.

Figure 4.3 shows the initialization of the word embedding. Flair supports to load “clas-

sic” word embeddings like GloVe and it also provides various embeddings for different

languages created by its developers. Trough the Huggingface Transformers library, Flair

supports transformer-based architectures like ALBERT. In the example (see Figure 4.3),

the Flair multi-language embeddings and the large ALBERT embeddings are utilized. All

Figure 4.2: The figure shows the code to load the text corpus and to generate a label
dictionary with Flair in Google Colab.

102

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

Figure 4.3: The figure shows the code to initialize several embeddings with Flair in Google
Colab.

embeddings are automatically downloaded on the first execution of the script.

The loaded embeddings can be combined to build a document embedding. This way, one

embedding for the entire text is generated out of the word embeddings. In the example of

Figure 4.4, a document embedding that trains a recurrent neural network (RNN) over the

word embeddings is utilized. This example uses ALBERT and GloVe embeddings. This

easy way of loading and combining different embeddings allows the evaluation of multiple

combinations of embeddings. With the document embedding it is possible to create a

classifier (see Figure 4.4 Line 4).

Figure 4.4: The figure shows the code to initialize document embeddings out of several
word embeddings and to create the Flair classifier.

As a last step, the training class needs to be initialised with the classifier and the cor-

pus. With the definition of hyper-parameters, like the learning rate, the training can get

started. The training and the final evaluation against the test set are done automatically.

Once the training is finished, the results and the best model can be saved in Google Drive.

With Flair the embeddings of transformers like BERT can be utilized. In order to directly

Figure 4.5: The figure shows the code to execute the model training with Flair.

103

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

train a BERT model, the Huggingface Transformers library can be utilized. As training a

complete transformer is computational expensive, pretrained BERT models are available,

which then are fine-tuned for the task at hand. Chris McCormick and Nick Ryan pub-

lished a tutorial on how to fine-tune BERT with PyTorch [81]. The tutorial shows how to

fine-tune a model for sentence classification on an open dataset with the Huggingface li-

brary and PyTorch. This is exactly what is needed for the comparative classification task.

Therefore, the tutorial and the code is used to create the fine-tuning for the comparative

question classification task. The code of McCormick et al. is extended to load and fit the

comparative data.

4.1.2 Training and results

The experiments of classifying comparative questions are split into 4 parts. The first part

was conducted in an very early stage in order to get a baseline for the task. The other

three series of experiments are built upon each other. The first series had the aim to

evaluate the data pre-processing steps. The second series of experiments was conducted

to find the best fitting classification algorithm. And the third series of experiments was

dedicated to analyse the impact of the input data on the classification results.

The development and training of classifiers was started during the first human annota-

tion task. The first baseline was generated after the fourth human annotation batch was

run. This means that there were only 3,240 samples in the dataset. At that point, the

machine-learning script was only implemented partially. The first training was done with

a linear SVM and tf-idf as a single feature on the text. This setup reached an F1-Score of

0.646 and will serve as the baseline of the classification task.

Once the human annotations were completed and the local machine-learning script was

implemented as described in Section 4.1.1, the first series of experiments began. The goal

of the first series was to evaluate the data pre-processing features. There are three pre-

processing options that were evaluated. Firstly, to exclude or keep stop words. Secondly,

to exclude or keep punctuation. And thirdly, to convert all pronouns to “-PRON-” or

leave them as original text. Table 4.2 shows the F1 scores for some selected combinations.

Except for the logistic regression (logReg) the best results can be achieved by keeping stop

words in the text, removing punctuation and converting all pronouns into the “-PRON-”

variable. This pre-processing configuration was utilized for the following machine-learning

experiments.

With the pre-processing in place, the second series of experiments was started. The aim

104

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

Model Stop words Punctuation -PRON- F1 score

SVM Yes Yes No 0.6075

logReg Yes Yes No 0.5991

MLP Yes Yes No 0.5974

SVM Yes No No 0.6126

logReg Yes No No 0.6035

MLP Yes No No 0.6010

SVM Yes No Yes 0.6127

logReg Yes No Yes 0.6044

MLP Yes No Yes 0.6074

SVM No No Yes 0.6067

logReg No No Yes 0.6154

MLP No No Yes 0.6042

Table 4.2: The table shows combination of pre-processing features and the corresponding
F1 score on a selection of models. “Yes” and “No” indicate if the feature is a part of the
data.

was to find the best fitting classification model for the task. To evaluate the machine-

learning classifiers, grid searches were run for various models. Exhaustive grid searches

were run for SVM, random forest, logistic regression, SGD and Etree. For SVM, random

forest, Etree and MLP, random grid searches were run. The search spaces can be found

in the appendix in Listings 1 - 6. Each search used three parameter types that could

vary. Firstly, the model specific hyper parameters were searched, for example, the kernel

of an SVM. Secondly, single features were turned on or off, for example, the n-grams of

the POS-tags. Thirdly, the parameters of the features were varied, for example, the n-

gram range and the maximum considered of n-grams. Because grid searches are extremely

resource and time intensive, not all parameter combinations could be tested at the same

time and the number of maximum iterations for the random grid search ranged between

100 and 250. The grid searches indicate a good performance for a linear SVM and SGD

with hinge loss (SVM), as well as logistic regression with n-gram features of the tokens,

the POS-tags and the DTAGs. The best parameters of each model were used to train the

models and test against five revolving test folds. The input data for classification was the

complete human annotated data without further post-processing (AllData). The test folds

contained around 2,000 samples. The F1 test scores of the models were recorded for each

fold. The mean F1 score was calculated after completion of the experiment. Table 4.3

shows the mean macro F1 scores of the models utilized in the first series of experiments 10.

10The training parameters for each model can be found in the appendix in Listing 7

105

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

SGD has the highest score (0.7936), directly followed by the linear SVM (0.7903). This is

logical, as the SGD is trained with a linear SVM. The logistic regression and MLP models

also achieve good results. In general, all evaluated models exceed the baseline by far.

Model SGD SVM Log.
Regression

MLP XGBoost Bernulli
NB

Rand.
Forrest

Etree

F1
score

0.7936 0.7903 0.7895 0.7803 0.7752 0.7537 0.7438 0.7199

Table 4.3: The table shows the mean F1 scores of the machine-learning models from the
first series of experiments.

To evaluate the neural machine learning, the Flair framework was utilized. The experiment

utilized three stacked embeddings: GloVe Word embeddings, Flair “news-forward-fast”

and Flair “news-backward-fast”. Both flair embeddings support the English language and

were trained on the 1-billion-word corpus11. Based on the word embeddings, document

embeddings were generated by an RNN (DocumentRNNEmbeddings) with a hidden layer

size of 512. The training was conducted with the values shown in Table 4.4 Experiment

2. The training used the complete human annotated data without further post-processing

(AllData). Both, the development set and test set hold 15% of the data (1,515 samples),

which leaves 7,073 samples for the training. It took 9 hours to train the model on CPU and

a macro F1 score of 0.7922 was reached, placing it between the SGD and SVM classifier.

The same setup was used with GloVe and ALBERT embeddings (albert-base-v2) instead

of the GloVe and Flair embeddings. Only the learning rate was changed to 0.05 (see Table

4.4 Experiment 3). The model took 6 hours for training and reached a macro F1 score

of 0.8104. Therefore, the ALBERT embeddings exceeded the performance of the Flair

embedding by 0.018 points. Changing the document embedding RNN type from gated

recurrent unit (GRU) to long short-term memory (LSTM) and training on GPU increased

the macro F1 score to 0.8405 and reduced the training time to one hour (see Table 4.4

Experiment 4). In the fifth experiment, the fine-tuning of a BERT model was carried out

(see Table 4.4). A BERT model (bert-base-uncased), pretrained for sequence classifica-

tion, was utilized for the experiment. The model was trained for 3 epochs and operated

with the same input data as the experiments before. The fine-tuned model achieves a

macro F1 score of 0.8452, which is a slightly better result (+0.0047) than the one from

the ALBERT embeddings in Flair.

The last series of experiments had the purpose to study the impact of the dataset on the

classification performance and to identify the best post-processed dataset for the classifica-

11https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark

106

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

Dataset Framework Embeddings /
Model

Document
embedding

Learning
rate

F1 score
(macro)

2 AllData Flair CPU GloVe
news-forward-fast
news-backward-fast

GRU 0.1 0.7922

3 AllData Flair CPU GloVe
albert-base-v2

GRU 0.05 0.8104

4 AllData Flair GPU GloVe
albert-base-v2

LSTM 0.05 0.8405

5 AllData Huggingface
Transformers

BERT-base-uncased - 0.00002 0.8452

Table 4.4: The table shows the macro F1 scores and the configuration of the experiments
with neural networks.

tion. Due to the simplicity of the Flair framework and the good results with the ALBERT

embeddings, it was decided to proceed with the setup from Experiment 4. Another point

in favour of using Flair are the already integrated methods that save and load trained mod-

els and the available methods that predict single sentences with the models. These will

be useful to fulfil the thesis goal of providing a classification of comparative sentences to

systems like the Comparative Argumentative Machine. For this series of experiments the

embeddings were changed to the ALBERT large embeddings (albert-large-v2). The hyper

parameters did not change in the series of experiments, only the dataset was changed.

The first experiment of the series established a baseline for the ALBERT large embed-

dings with the untouched complete dataset (AllData). The macro F1 score for the sixth

experiment is 0.8267 and, therefore, 0.014 points lower than in Experiment 4 (see Table

4.5). For the following experiments the data samples that have gold labels were excluded

from the training data. This left 9,330 samples for the training and for the development

set. The development set was chosen to contain 15-16% of the data. The test set contained

the 2,111 samples that were manually gold labelled. Table 4.5 shows the configurations

and the results from the experiments. In Experiment 7, only the test data is excluded,

which results in a macro F1 score of 0.8621. This is the highest value so far, but it can

also be determined that the F1 score for the comparative samples decreased to 0.813.

Experiments 8 and 9 show that the post-processing methods of relabelling comparatives,

which were made against open groups, and the revote with data from the second human

annotation task increase the macro F1 performance and the performance on comparative

samples. Experiment 10 combines both post-processing methods in the data, which re-

sults in another increase of the F1 scores. The experiments 11 to 14 extend the dataset

with non-comparative data samples, which were filtered out in the data-mining process.

Both, the experiment with 1,500 and the one with 3,000 samples increase the macro F1

score, as well as the F1 score for comparatives. The experiment with 6,000 additional

107

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

non-comparative samples has slightly worse values than the one with 3,000 extra samples.

Experiment 14, which adds 9,000 non-comparative samples, could not be conducted due

to GPU memory restrictions. The training of this experiment exceeded 16GB of memory.

Dataset Train+Dev
Samples

Test
Samples

F1 score
(macro)

F1 score
(comp)

F1 score
(non-comp)

6 AllData 8,590 1,516 0.8267 0.8299 0.8435

7 AllData
ExtraTest

9,330 2,111 0.8621 0.813 0.9112

8 AllData
ExtraTest
NoOpenGroup

9,330 2,111 0.8642 0.8164 0.912

9 AllData
ExtraTest
Revote

9,278 2,111 0.8672 0.8207 0.9136

10 AllData
ExtraTest
NoOpenGroup
Revote

9,278 2,111 0.8731 0.8273 0.9188

11 AllData
ExtraTest
NoOpenGroup
Revote
NonCompData1.5k

10,778 2,111 0.8742 0.8294 0.9189

12 AllData
ExtraTest
NoOpenGroup
Revote
NonCompData3k

12,278 2,111 0.8760 0.8316 0.9204

13 AllData
ExtraTest
NoOpenGroup
Revote
NonCompData6k

15,278 2,111 0.8753 0.8311 0.9195

14 AllData
ExtraTest
NoOpenGroup
Revote
NonCompData9k

18,278 2,111 - - -

Table 4.5: The table shows the F1 scores using the different classification datasets. Exper-
iment 14, which adds 9,000 non-comparative samples, could not be conducted due to GPU
memory restrictions. The parameters were not changed in these experiments. Parame-
ters (Framework: Flair with DocumentRNNEmbeddings (LSTM). Embeddings: GloVe +
ALBERT-large-v2. Training: Batchsize 32, learning rate 0.05.)

108

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

4.2 Extracting comparative objects and aspects

This section describes the experiments with the data annotated in the second crowd sourc-

ing task (see Section 3.5). The goal of the experiments is to provide a sequence classifier

for comparative sentences. In the experiments, feature-based machine learning and neural

networks are used to classify comparative objects and comparative aspects. Section 4.2.1

provides a description of the different tools, methods and the program structures utilized

in the experiments. Section 4.2.2 provides information on the training of the classifiers, the

parameters and the data that was used. Furthermore, Section 4.2.2 presents the results

of the classification experiments.

4.2.1 Experimental setup

Similar to the comparative question classification experiments, the experiments on se-

quence classification are conducted on two platforms. For the feature-based machine-

learning experiments, a local Python environment with Jupyter Notebooks is set up. For

the neural machine learning, Google Colab is utilized again as a cloud instance based on

Jupyter Notebooks. The local environment utilizes the classifiers and tools provided by

the scikit-learn library. The ML classifiers are implemented in a Python script, which can

be separated into four functional parts.

1. Loading the multi-info dataset. The dataset contains the tokens, POS-tags and the

sequence labels.

2. Generating features with the tokens and the additional information available.

3. Splitting the data into a train and a test set.

4. Running machine-learning models with a set of features and a prediction against the

test set.

The first step loads the multi-info dataset and groups the words with the corresponding

POS-tag and the comparative sequence tag together as a Python tuple. The tuples that

belong to the same sentence are structured in a Python list. The second step generates

features out of these lists of tuples. Listing 4.1 shows the pseudocode for the generation of

features out of one token. There are three types of features: features based on the current

token, features generated from tokens previous to the current one and features generated

from the token following the current one. The features are: the lower cased word itself, the

POS-tag, a boolean indicating if the token is a digit and a boolean indicating if the token

is a titlecased word (Lines 8-11). Further to these features, the endings of the word can be

extracted (Lines 14-17). The same features are extracted for following and previous words.

109

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

This generates a regional context for each token in a sentence. Step three splits the data

into a train set and a test set. The test set is 15% the size of the input data. The last step

allows to run various sequence classifiers on the data. A SGD model with linear SVM, a

Multinomial Näıve Bayes model, a passive-aggressive classifier model, a Perceptron model

and a conditional random fields (CRF) model are implemented in the script. A list of all

ML model sources can be found in the appendix in Table 5.

1 def word2features(sent, i):
2 word = sent[i][0]
3 postag = sent[i][1]
4

5 ####Word Features
6 features = {
7 ’bias’: 1.0,
8 ’word.lower()’: word.lower(),
9 ’word.istitle()’: word.istitle(),

10 ’word.isdigit()’: word.isdigit(),
11 ’postag’: postag,
12 }
13

14 if len(word) > 3:
15 features.update({’wordend[-3:]’: word[-3:]})
16 if len(word) > 2:
17 features.update({’wordend[-2:]’: word[-2:]})
18

19 ###previous words features
20 if i > 0:
21 word1 = sent[i-1][0]
22 postag1 = sent[i-1][1]
23 features.update({
24 ’-1:word.lower()’: word1.lower(),
25 ’-1:word.istitle()’: word1.istitle(),
26 ’-1:word.isdigit()’: word.isdigit(),
27 ’-1:postag’: postag1,
28 })
29

30 ###following words features
31 if i < len(sent)-1:
32 word1 = sent[i+1][0]
33 postag1 = sent[i+1][1]
34 features.update({
35 ’+1:word.lower()’: word1.lower(),
36 ’+1:word.istitle()’: word1.istitle(),
37 ’+1:word.isdigit()’: word.isdigit(),
38 ’+1:postag’: postag1,
39 })

Listing 4.1: Pseudocode of the feature generation for seqence classification with feature-
based machine learning.

The computationally heavy experiments with neural networks are conducted with the

Flair NLP framework on the cloud-platform Colab. The script utilized in the classifi-

cation experiments with Flair (see Section 4.1.1) can be modified and applied for this

sequence-tagging task. The initialization of the hardware resources and the loading of

the data remains the same. After loading the data, a dictionary of the tags needs to be

generated (see Figure 4.6).

110

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

Figure 4.6: The figure shows the code to generate a tag dictionary used by the Flair
framework.

In comparison to the classification task, the step of loading the embeddings changes in a

way that the separate embeddings are only initialized and then stacked upon each other

(see Figure 4.7). The script allows to choose the embeddings by commenting in the desired

embeddings. For this step, Flair supports “classical” word and character embeddings, as

well as transformer-based architectures like ALBERT through the Huggingface Transform-

ers library.

Figure 4.7: The figure shows the code to initialize several embeddings as a stacked em-
bedding with Flair.

The major difference of the script is the creation of a sequence tagger, which is handed

over to the model trainer. The sequence tagger takes the previously initialized stacked

embeddings and the tag dictionary as an input. All other parts of the script, including

the model trainer, do not need to be changed. The model trainer will train the sequence

tagger and generate a model that can be saved to Google Drive for a future usage.

Figure 4.8: The figure shows the code to create a sequence tagger with the stacked em-
beddings in Flair.

111

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

4.2.2 Training and results

The experiments on the extraction of comparative objects and aspects are split into four

parts. The first part is the general evaluation of the feature-based ML models. The sec-

ond part of the experiments optimizes the combination of features for a linear SGD model

within the hardware resource limits. The third part of the experiments evaluates various

parameter and embedding combinations for the neural machine learning. The last part of

the experiments uses a dedicated test set to evaluate selected models in Flair.

Dataset Samples Model Memory use F1 score (micro)

1 Multi-info 2,568 Perceptron 25GB 0.59

2 Multi-info 2,568 Multinomial Näıve Bayes 25GB 0.59

3 Multi-info 2,568 Passive Aggressive Classifier 25GB 0.64

4 Multi-info 2,568 SGD with linear SVM 25GB 0.65

5 Multi-info 3,998 CRF 2GB 0.68

Table 4.6: The table shows the micro F1 scores and the configuration of the first series of
experiments with feature-based machine-learning models.

The first part of the experiments utilized feature-based machine learning to tag sequences.

All models were run with the same data and a train/test split of 85% to 15%. The features

generated in the second step of the script (see Section 4.2.1) resulted in a high memory

usage. The local environment had a maximum of 25GB RAM available for the training.

Training with all features and the whole dataset exceeded this mark. Therefore the size

of the dataset had to be reduced to 2,568 samples (2,182 training / 385 test). Table 4.6

shows the F1 results of the models for the different tags and the micro F1 score. The

SGD with linear SVM has the highest micro F1 score (0.65). In contrast to these four

models, the CRF model could be trained with all features on the complete dataset. For

this model a random grid search with cross validation was used to find the best parameters

on a development set of 600 samples. After the grid search the model was tested against

a set of 600 samples (15%) and achieved a micro F1 score of 0.68. Because the sizes of the

training and of the test sets are different for the CRF and the SGD model, their results are

not necessarily directly comparable. In order to overcome these differences in the size of

the datasets, the features were varied in the second part of the experiments. The aim was

to maximize the data size and to generate competitive micro F1 results. Table 4.7 shows

the feature variation for the linear SGD, the resulting micro F1 scores and the models

memory footprint. The memory footprint was used as an indicator for the reduction of

features or the possibility to extend the dataset size.

112

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

Samples Feature 1 Feature 2 Memory
use

F1 score
(micro)

4 2,568 Word (local, -3/+3) POS/endings/title/digit 25GB 0.65

6 2,568 Word (local, -3/+3) POS/title/digit 24GB 0.62

7 2,568 Word (local, -3/+3) POS/(local title/digit) 23.9GB 0.62

8 2,568 Word (local) POS/title/digit 4GB 0.63

9 2,568 Word (local, +1) POS/title/digit 7.5GB 0.58

10 2,568 Word (local, -1/+1) POS/title/digit 11.1GB 0.64

11 2,568 Word (local, -2/+2) POS/title/digit 17.7GB 0.65

12 3,998 Word (local) POS/title/digit 7.9GB 0.61

13 3,998 Word (local, +1) POS/title/digit 15GB 0.61

14 3,998 Word (local, -1/+1) POS/title/digit 22.7GB 0.62

15 3,136 Word (local, -2/+2) POS/title/digit 24.5GB 0.63

Table 4.7: The table shows the micro F1 scores and the feature configurations of the
second series of experiments with a linear SGD model. Experiment four is the same as in
Table 4.6. Feature 1 describes the usage of the token and the neighbouring words. The
abbreviation “Word (local -3/+3)” means that the word of the token itself and the three
previous and following words are used as a feature. Feature 2 describes the usage of the
additional information for the local and the three previous and following words.

Experiments 6-8 show that a reduction of the additional information had only a low im-

pact on the memory footprint. Removing the word endings and reducing the titlecased

and digit flags to the local token reduced the F1 score to 0.62, while the memory footprint

was reduced only by 1GB. Removing neighbouring words as a feature (Experiment 8) had

a big impact on the memory footprint and resulted in the smallest model (4GB). Exper-

iments 9-11 show that the memory footprint was increased up to 17.7GB when adding a

maximum of two previous and following words as features. Experiment 11 achieved the

same F1 score with less features than Experiment 4. Experiments 12-15 utilized the fea-

ture combinations from Experiments 8-11, with the maximum dataset size possible. For

the Experiments 12-14 it was possible to use the complete dataset without hitting the

hardware memory limit. Experiment 15 enabled the use of 3,136 samples. As a result of

the second series of experiments, the Experiments 12-14 can be compared to Experiment

5. The dataset sizes are the same, however they do not overcome the result of the CRF

model from Experiment 5.

The third series of experiments evaluates various embeddings utilized with the Flair se-

quence tagger in the cloud environment Colab. Colab provides hardware resources, such

as GPUs, for the computationally-intensive neural machine learning. All experiments were

113

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

conducted with the full dataset (3,998 samples). 70% of the data was used for the training

and 15% was hold out for both the development and the test set. In Flair, a bidirectional

LSTM model with optional conditional random fields was utilized as a sequence tagger.

Model Embedding 1 Embedding 2 Embedding 3 F1 score
(micro)

16 Bi-LSTM-CRF GloVe - - 0.6972

17 Bi-LSTM-CRF GloVe Flair-fwd/bwd - 0.7504

18 Bi-LSTM-CRF GloVe Char-Embedding Flair-Fwd/Bwd 0.7697

19 Bi-LSTM GloVe Char-Embedding Flair-Fwd/Bwd 0.7365

20 Bi-LSTM-CRF GloVe Char-Embedding DistilBert-base-
cased

0.7855

21 Bi-LSTM-CRF GloVe DistilBert-base-
cased

- 0.7846

22 Bi-LSTM-CRF GloVe Bert-large-cased - 0.8033

23 Bi-LSTM-CRF GloVe Albert-base-v2 - 0.8089

24 Bi-LSTM-CRF GloVe Albert-large-v2 - 0.7929

25 Bi-LSTM-CRF GloVe Char-Embedding Albert-large-v2 0.7936

Table 4.8: The table shows the micro F1 scores and the embedding configurations of the
experiments with neural networks in Flair.

Table 4.8 shows the results of the experiments with different embeddings combinations

in Flair. Experiment 16 utilized GloVe embeddings and it performed 0.017 points better

than the CRF model from Experiment 5. Experiments 17-18 added the English Flair-

forward and Flair-backward embeddings, as well as character embeddings. Both changes

increased the micro F1 score. Deactivating the CRF feature of the sequence tagger re-

sulted in a decrease of the F1-Score (Experiment 19). Experiments 20-25 explored various

combinations of BERT embeddings in different sizes and types. The best micro F1 score

was achieved by a combination of GloVe and ALBERT (base-v2) embeddings with a F1

score of 0.8089. The Configurations 22-25 generated the leading results on the full dataset.

In the fourth series of the experiments, these four configurations are trained on the full

dataset (15% development set) and tested against the dedicated gold-labelled sequence

data. Table 4.9 shows the results of this training with dedicated F1 scores for each of the

tags. Experiment 26 has the overall best results for classifying the sequence tags, with a

micro F1 score of 0.8054 against the manually-labelled test set. This experiment reaches

the highest scores for the OBJ-1 tag and aspects of the comparison. The F1 score for the

OBJ-2 tag and the shared objects is exceeded by Experiment 27.

114

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

Embeddings F1 score
(micro)

F1 score
(OBJ-1)

F1 score
(OBJ-2)

F1 score
(ASPECT)

F1 score
(SHARED)

26 GloVe + Bert-large-cased 0.8054 0.8863 0.8936 0.613 0.3429

27 GloVe + Albert-base-v2 0.802 0.8653 0.895 0.6076 0.4135

28 GloVe + Albert-large-v2 0.7857 0.8463 0.8856 0.596 0.3137

29 GloVe + Char-Embedding
+ Albert-large-v2

0.7888 0.8566 0.8885 0.5908 0.3396

Table 4.9: The table shows the F1 scores and the embedding configurations of the Bi-
LSTM-CRF sequence tagger in Flair. The model was tested against a dedicated gold
labelled test set of 385 samples.

115

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

4.3 Discussion of results

The experiments on classifying comparative questions show that it is possible with the

proposed datasets to classify comparatives with a good F1 score. The baseline F1 score of

0.646 is exceeded by the feature-based machine learning, as well as by the neural machine

learning. With a macro F1 score of 0.7936, the linear SGD model reaches the highest score

of the feature-based machine-learning models. In comparison to the human performance

of 0.8983 (macro F1)12, this is a notable result, which is only exceeded by more complex

BERT transformer networks. This result should only be considered as an indicator of the

performance because the test and the training data differ between the experiments. In ad-

dition to the results achieved, experiments with feature-based machine-learning methods

also have a higher potential. The long run-times of the hyper-parameter and feature grid

searches allowed only a partial exploration of the parameter spaces. An extended analysis

might increase the performance of the models.

Model F1 score
(macro)

F1 score
(comp)

F1 score
(non-comp)

Flair LSTM with ALBERT large embeddings 0.8760 0.8316 0.9204

Human performance 0.8983 0.8912 0.9052

Table 4.10: The table shows the performance of the best Flair-based NN with ALBERT
embeddings compared to the human performance on classifying comparative questions.

Flair Framework provides an easy-to-use approach to neural machine learning with vari-

ous possibilities of embeddings to choose from. The Flair classification provides the best

results with the ALBERT embeddings on the dedicated test data (macro F1 score 0.8760).

The score is only 0.022 points lower than the human performance of 0.8983 (macro F1).

Table 4.10 compares the performance of best neural network and the human performance

for the classes. Furthermore, the experiments of the third series (see Table 4.5) show that

the results benefit from the improvements to the human annotated classification data. Ex-

tending the amount of non-comparative data is beneficial up to 3,000 samples. With 6,000

additional non-comparative samples, the F1 scores slightly drop, which may be related to

the high imbalance of the classes (4,000 comparatives to 11,000 non-comparatives). The

Flair implementation with ALBERT embeddings provides a good foundation for further

research. The replacement of the embeddings, for example, a change to ALBERT large

embeddings or other derivates of BERT, has the potential of future performance increases.

Furthermore, a parameter optimization through a grid search might increase the perfor-

mance of the model.

12The human performance was evaluated by manually labelling 10% of the human labelled data (see
Section 3.4).

116

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

The experiments on the identification of comparative objects and aspects show how in-

tensive the training is in terms of resources. The feature-based machine-learning models

reach the system memory limit with their complex and extensive features. Series two (see

Table 4.7) of the experiments shows that a reduction of the features results in a decrease

of the micro F1 score. Only the feature-reduced Experiment 11 can reach a micro F1

score of 0.65, which is also reached when training with all features. Anyhow, the feature

set can not be trained with the complete dataset, as this exceeded the memory limit.

The other experiments with reduced features are not able to reach the F1 score of the

CRF model (Experiment 5). The CRF model is the only model that had its parame-

ters optimized trough a random grid search with cross validation. On the one hand, this

increases the reliability of the results of the CRF model, but on the other hand, it also

means that there might still be potential for the other feature-based models that was not

exhausted. However, the grid searches have high training times and are computationally

expensive. The integration of new features, for example, the word shape or the utiliza-

tion of word embeddings, might be beneficial for the feature-based classifiers and their

resource needs. Recognizing that a simple Bi-LSTM-CRF model that solely uses GloVe

embeddings exceeds the performance of the CRF model, provides an argument against

any further exploration of feature-based machine-learning models in this context. Series

three and four of the experiments show that using ALBERT and BERT embeddings with

a Bi-LSTM-CRF model results in the best F1 scores. A combination of BERT and GloVe

embeddings achieves the best overall micro F1 result of 0.8054 on a manually-labelled

test set (Experiment 26). This model reaches the human micro F1 score (see Table 4.11).

Comparing the results for each tag shows that the F1 scores for the comparative objects

and the aspect of the comparison exceed human performance. Solely the classification of

the shared objects has a higher magnitude difference with 0.15 points. It is likely that the

model lacks support for this tag, as only 24% of samples have a SHARED tag and humans

have only a 42% accuracy on SHARED tags. In comparison to the SHARED tag, 100%

Model F1 score
(micro)

F1 score
(OBJ1)

F1 score
(OBJ2)

F1 score
(ASPECT)

F1 score
(SHARED)

Flair Bi-LSTM-CRF with
GloVe and BERT large cased
embeddings

0.8054 0.8863 0.8936 0.613 0.3429

Human performance 0.8049 0.8839 0.8937 0.6022 0.4943

Table 4.11: The table shows the performance of the best Flair based NN with BERT
embeddings compared to the human performance on the sequence classification of com-
parative objects (OBJ), shared objects (SHARED) and comparative aspects (ASPECT)
in comparative questions.

117

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

of the samples have two comparative objects and 60% of the samples have an ASPECT

tag. Although the BERT model has the overall highest F1 score, ALBERT models should

be considered depending on the use case. The ALBERT model from Experiment 27 is 5.5

times smaller than the BERT model (2 GB). Furthermore, the experiments were limited

to “large” BERT and ALBERT models because bigger models exceeded the GPU memory

limit. A research with less limitations in terms of hardware could increase the results.

Moreover, a resource-intensive parameter optimization was not performed with the neural

ML models. This provides another point of improvement for future research.

118

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

4.4 Comparative classification web app

This section describes the practical use of the models, presented in the previous sections,

in a “classification pipeline”. The pipeline incorporates the two main goals of the thesis.

Firstly, to classify if a question is a comparative question. And secondly, to classify each

word of a sentence to find comparative objects and comparative aspects. The pipelines

features are accessible through a RESTful Application Programming Interface, which is

made available trough a Flask13 micro service. Flask is a micro web framework that in-

cludes only the most necessary web functions by default. For example, there is no database

layer integrated by default. The framework can be extended by third-party libraries and

packages. For the classification pipeline, Flask is extended by the Flask-RESTX14 pack-

age, which supports building REST APIs.

The pipeline is divided into four main functions, which are processed one after the other.

The first function tokenizes the sentence with the spaCy tokenizer in the same way as

described in the experiments in Section 4.1.1. The second function generates a classifica-

tion for the sentence with a classifier from the Flair framework. The function predicts a

binary label (comparative / non-comparative) and supplies a confidence for that predic-

tion. The third part of the pipeline predicts a sequence tag for each token of the sentence

with a sequence classifier from Flair framework. For each token the function returns the

three highest ranking labels with their corresponding confidence. The sequence tags are

predicted even if the comparative classification of the sentence was negative. The last

function of the pipeline accumulates the data and organizes and aggregates. The data

package is send in the JavaScript Object Notation (JSON)15 format trough the API. In

order to be functional, the two classification functions need to be provided with models

that were trained in Flair on the comparative datasets. The deployment of the pipeline

on a local Windows 10 machine and on a remote Linux server showed that Flair models,

trained on each of the systems, are not interchangeable. The models contain hard coded

paths to temporary files, which can not be found on computers with another operating

system than the one the model was trained on.

The API has two endpoints to interact with the pipeline. The first endpoint handles the

classification and extraction of a sentence (path: /api/compq/extract). A client can send a

sentence to the endpoint (via HTTP POST16) and will receive the analysis of the sentence

as an answer. The second endpoint creates an analysis with an example sentence (path:

13https://flask.palletsprojects.com
14https://flask-restx.readthedocs.io
15JSON: A human-readable open standard file format to transmit attribute-value pairs of data.
16Hypertext Transfer Protocol (HTTP) POST method to send data to a server.

119

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

Field name Function Example

sentence The analysed sentence “Can men run faster than women?”

label Binary label of the sentence:
“comparative” or “non-comparative”

“comparative”

score The confidence for the label 0.9478

tokens A list of tokens from the sentence with
three tags and scores

(men, OBJ-1, 0.99)

OBJ1 The first comparative object as continu-
ous text

“men”

OBJ2 The second comparative object as contin-
uous text

“women”

SHARED The shared object as continuous text “ ”

ASPECT The aspect as continuous text “run faster”

annotated
Sentence

The sentence with inline tags “Can men (OBJ-1) run (ASPECT)
faster (ASPECT) than women
(OBJ-2)?”

htmlOut Formatted HTML output with separation
and highlighting of the tokens

“Can 〈span class=OBJ-1〉 men
〈/span〉 〈span class=ASPECT〉 run
〈/span〉 ...”

Table 4.12: The table shows the data fields of a response from the extraction pipeline API.
The answer has the same structure for both API endpoints (/extract and /example). The
example column shows the response for the query “Can men run faster than women?”.

/api/compq/example). A client can invoke the endpoint (via HTTP GET17) without any

further specification and will receive the analysis of a randomly picked example sentence

as an answer. The response has the same structure for both API endpoints (/extract and

/example). Table 4.12 shows the response fields of the endpoints. The most important

fields are the label and score(confidence), as well as the list of tokens with their assigned

labels and confidences. The remaining fields are convenience fields that provide a faster

access to the results.

Providing the API enables systems to easily get access to the analysis of comparative

sentences without the need of further programming and without the direct interaction

with the trained classifiers. In order to enable access to the classification functionality for

human users, a web front end was developed. Together with the API as a server back

end, the front end assembles a small web app. The front end uses the JavaScript web

framework React18 to provide the user interface. Figure 4.9 shows the interface of the

web app. The user can enter a question in the input field or request an example at the

17Hypertext Transfer Protocol (HTTP) GET method to request data from a server.
18https://reactjs.org/

120

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

top of the page. The result is presented at the bottom half of the page. The results are

structured into four tiles. The “Analysis” tile shows the sentence and the comparative

label, as well as the confidence for the label. The tokens, which are comparative objects

and aspects are marked with a colour. The legend for the colours is provided in the bottom

right tile. The top right tile shows the extractions for the found comparative objects and

aspects as a contentious text. In the case that no aspect or shared object is found, the

fields are not displayed. The bottom left tile gives a detailed view for each token. The

tokens are displayed in separate boxes, which can be extended with a mouse click. After

the extension of a box (see Figure 4.9 Token 7), the interface shows up to three tags with

their corresponding confidence. The tags are sorted by their confidence. The tag on top

(in bold) is the label that was assigned to the token by the system. In the case that the

confidence for a tag is lower than 0.01% the tag is not displayed.

121

CHAPTER 4. EXPERIMENTS WITH COMPARATIVE QUESTION DATASETS

Figure 4.9: The figure shows the interface of the comparative classification web app. A
user can query a sentence to the system and gets a detailed analysis on the comparative
classification, as well as the comparative objects and aspects.
122

Chapter 5

Conclusion

The linguistic-based taxonomy for comparative questions proposed in Chapter 3 has en-

abled the creation of two open-domain datasets, which have been utilized to successfully

classify comparative questions and extract their comparative objects and their compara-

tive aspects.

An analysis of the linguistic background on comparatives and questions has shown that

comparative questions can be generated with a set of textbook rules, as well as with special

words and phrases. The results of this analysis and the project requirements have laid

the foundation of the definition of a comparative question (see Section 3.1.4). Hence, the

definition complies with the needs of this thesis and is not universally valid. It requires

the question to be written in the English language and to hold exactly two comparative

objects. The definition allows the question to contain multiple sentences, spelling mis-

takes or incomplete punctuation and does not limit the domain of the question or its

comparative entities. This way, the definition ensures that systems like the Comparative

Argumentative Machine, specialized on providing fact supported answers for comparisons

with two entities, can handle all valid comparisons while keeping the domain of the data

open. Based on the definition and the linguistic background of comparative questions,

a linguistic-based taxonomy for comparative questions has been proposed in Section 3.2.

The taxonomy has been developed to be suitable for the data mining of comparative ques-

tions. It is organized in a hierarchical tree-like structure that reassembles a more detailed

generation of a comparative question with every level of depth.

The taxonomy has enabled the data mining for comparative questions out of 9.6 million

open-domain sentences from the platforms Reddit and Yahoo Answers. A total of 245,000

possible comparative samples have been found through the data-mining process. In the

first crowed-sourced human annotation task (see Section 3.4), 10,380 samples have been

classified under the classes “comparative” and “not comparative”. In a second human

123

CHAPTER 5. CONCLUSION

annotation task, 4,260 comparative labelled sentences have been provided with sequence

tags for comparative objects and comparative aspects (see Section 3.5). As a result, two

novel open-domain datasets have been created in the English language for the classification

of comparative questions and the identification of comparative objects and comparative

aspects.

Experiments with the datasets have shown that good results, close to the human perfor-

mance, can be reached by means of neural networks that use ALBERT embeddings. In

the classification task, the model reaches a macro F1 score of 0.876, 0.022 points below

the human performance. The identification of comparative objects and aspects reaches

the human performance with a micro F1 score of 0.8054. The results of the experiments

and the human performance reveal how difficult comparative questions are. In 34% of the

samples, only two out of three human annotators agreed on a classification for a sentence.

In the process of identifying the comparative objects and aspects, the human annotators

only had a micro average precision of 81% over all classes. Shared comparative objects

were the most difficult class for human annotators with a precision of only 42%. This

highlights the importance of good quality data and high-precision human annotations, in

order to be able to train reliable classifiers.

The comparative classification web app, proposed in Section 4.4, brings together all the

information of the thesis. The classification models are utilized in an extraction pipeline,

providing a simple way for users to classify sentences and to extract the comparative

objects and aspects through a website. For systems like CAM, the web app allows the

access to an API to query comparative classification analyses. With the created datasets

and the performed experiments, the thesis comes one step closer to comprehend people’s

natural-language questions in form of comparative questions.

124

Chapter 6

Future work

There are several aspects that could be proposed for future research. Some can improve

or change the datasets, others might optimize the classification results of the machine-

learning models.

Human annotation has shown that it is hard for humans to agree on one label for some

sentences. To reach a higher classification precision, difficult sentences could be classified

again under a new human annotation task. The sentences for the task could be selected

by choosing those that do not have an absolute agreement vote. Another option would

be to select sentences in which the machine classifier has a low confidence. Widening the

definition of a comparative question could also be beneficial for the annotation quality.

Allowing more than two comparative objects as well as comparisons against open-group

entities would make the classification more natural for the human annotators. But this

measure would come at the price that question answering systems would need to be able

to handle comparisons with more than two objects and especially comparisons against

groups like one entity versus all others.

With the existing classifiers it is possible to extend the dataset. A higher amount of la-

belled data could be collected by classifying the samples, which were not annotated yet,

from the filtered dataset. The set contains 235,000 samples that could be used for this

data increment. Furthermore, Reddit has been proven to be a good resource for open-

domain comparative questions. Question-centred subreddits (see Section 3.3.4) could be

exploited for more comparative samples. The content of information in the datasets can

be extended by annotating the attributes of the comparative aspects. The datasets con-

tain 2,400 samples, which hold a comparative aspect. A human annotation with skilled

workers would be needed to annotate these attributes. Furthermore, gathering the best

answers to the samples in the dataset would extend the quantity of information in the

datasets and allow the creation of news tasks.

125

CHAPTER 6. FUTURE WORK

The experiments could be performed by more advanced hardware in order to optimize

their classification results. This would especially help to enable the use of larger embed-

dings for both experiments. In the case of the feature-based ML for the sequence tagging,

an operating system with more than 25GB free memory would be able to execute the ex-

periments with more text features. Moreover, implementing a parameter optimization (for

example a grid search) for the Flair neural networks could improve the classifiers’ results.

Apart from the optimizations, the comparative classification model could be tested on

out-of-scope data. Bondarenko et al. [51] proposed a comparative dataset in the English

language without reference classification scores.

These are just a few examples of what future research could incorporate to improve the

dataset and the classification tasks. The publication of the datasets under a Creative

Commons license would provide the research community with new research opportunities.

Argumentative question answering systems (e.g., CAM) could be extended and enhanced

and the research on classifying comparative questions could advance further.

126

Bibliography

Article references

[13] M. Schildwächter, A. Bondarenko, J. Zenker, M. Hagen, C. Biemann, and A. Panchenko,

“Answering comparative questions: Better than ten-blue-links?” In Proceedings of

the 2019 Conference on Human Information Interaction and Retrieval, L. Azzopardi,

M. Halvey, I. Ruthven, H. Joho, V. Murdock, and P. Qvarfordt, Eds., ACM, 2019,

pp. 361–365, isbn: 9781450360258.

[14] B. F. Green, A. K. Wolf, C. Chomsky, and K. Laughery, “Baseball,” in Papers

presented at the May 9-11, 1961, western joint IRE-AIEE-ACM computer conference

on - IRE-AIEE-ACM ’61 (Western), W. F. Bauer, Ed., ACM Press, 1961, p. 219.

[15] W. A. Woods, “Progress in natural language understanding,” in Proceedings of the

June 4-8, 1973, national computer conference and exposition on - AFIPS ’73, ACM

Press, 1973, p. 441.

[16] B. Katz, “Using english for indexing and retrieving,” in Artificial Intelligence at

MIT Expanding Frontiers, MIT Press, 1991, pp. 134–165, isbn: 0262231506.

[17] B. Katz, “Annotating the world wide web using natural language,” in Computer-

Assisted Information Searching on Internet, ser. RIAO ’97, Centre de hautes études

internationales d’informatique documentaire, 1997, pp. 136–155.

[18] B. Katz, S. Felshin, D. Yuret, A. Ibrahim, J. Lin, G. Marton, A. Jerome McFarland,

and B. Temelkuran, “Omnibase: Uniform access to heterogeneous data for question

answering,” in Natural Language Processing and Information Systems, B. Andersson,

M. Bergholtz, and P. Johannesson, Eds., Springer Berlin Heidelberg, 2002, pp. 230–

234, isbn: 978-3-540-36271-5.

[21] D. A. Ferrucci, “Introduction to “this is watson”,” IBM Journal of Research and

Development, vol. 56, no. 3.4, 1:1–1:15, 2012.

III

BIBLIOGRAPHY

[24] A. Lally, J. M. Prager, M. C. McCord, B. K. Boguraev, S. Patwardhan, J. Fan,

P. Fodor, and J. Chu-Carroll, “Question analysis: How watson reads a clue,” IBM

Journal of Research and Development, vol. 56, no. 3.4, 2:1–2:14, 2012.

[25] J. Chu-Carroll, J. Fan, B. K. Boguraev, D. Carmel, D. Sheinwald, and C. Welty,

“Finding needles in the haystack: Search and candidate generation,” IBM Journal

of Research and Development, vol. 56, no. 3.4, 6:1–6:12, 2012.

[26] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for

machine comprehension of text,” in Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, Association for Computational Linguistics,

2016, pp. 2383–2392. [Online]. Available: https://www.aclweb.org/anthology/

D16-1264.

[27] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable

questions for squad,” in Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), Association for Computa-

tional Linguistics, 2018, pp. 784–789. [Online]. Available: https://www.aclweb.

org/anthology/P18-2124.

[28] G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy, “Race: Large-scale reading comprehen-

sion dataset from examinations,” in Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, Association for Computational Linguistics,

2017, pp. 785–794. [Online]. Available: https://www.aclweb.org/anthology/D17-

1082.

[29] P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao, X. Liu, R. Majumder, A. Mc-

Namara, B. Mitra, T. Nguyen, M. Rosenberg, X. Song, A. Stoica, S. Tiwary, and

T. Wang, Ms marco: A human generated machine reading comprehension dataset,

2016. [Online]. Available: http://arxiv.org/pdf/1611.09268v3.

[32] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, Albert:

A lite bert for self-supervised learning of language representations, 2019. [Online].

Available: http://arxiv.org/pdf/1909.11942v4.

[34] P. Qi, X. Lin, L. Mehr, Z. Wang, and C. D. Manning, Answering complex open-

domain questions through iterative query generation, 2019. [Online]. Available: http:

//arxiv.org/pdf/1910.07000v1.

[35] A. Broder, “A taxonomy of web search,” ACM SIGIR Forum, vol. 36, no. 2, p. 3,

2002.

[36] D. E. Rose and D. Levinson, “Understanding user goals in web search,” in Pro-

ceedings of the 13th International Conference on World Wide Web, ser. WWW ’04,

IV

BIBLIOGRAPHY

Association for Computing Machinery, 2004, pp. 13–19, isbn: 158113844X. [Online].

Available: https://doi.org/10.1145/988672.988675.

[37] B. J. Jansen, D. L. Booth, and A. Spink, “Determining the informational, naviga-

tional, and transactional intent of web queries,” Information Processing & Manage-

ment, vol. 44, no. 3, pp. 1251–1266, 2008.

[40] W. G. Lehnert, “The process of question answering,” PhD thesis, Yale University,

USA, 1977.

[41] A. C. Graesser, K. Lang, and D. Horgan, “A taxonomy for question generation,”

Questioning Exchange, vol. 2, pp. 3–15, 1988.

[42] A. Graesser, V. Rus, and Z. Cai, Question classification schemes, 2008.

[43] T. W. Lauer and E. Peacock, “An analysis of comparison questions in the context

of auditing,” Discourse Processes, vol. 13, no. 3, pp. 349–361, 1990.

[44] N. Jindal and B. Liu, “Identifying comparative sentences in text documents,” in

Proceedings of the 29th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, ser. SIGIR ’06, Association for Com-

puting Machinery, 2006, pp. 244–251, isbn: 1595933697. [Online]. Available: https:

//doi.org/10.1145/1148170.1148215.

[45] N. Jindal and B. Liu, “Mining comparative sentences and relations,” in Proceedings

of the 21st National Conference on Artificial Intelligence - Volume 2, ser. AAAI’06,

AAAI Press, 2006, pp. 1331–1336, isbn: 9781577352815.

[46] A. Jain and P. Pantel, “Identifying comparable entities on the web,” in Proceed-

ings of the 18th ACM Conference on Information and Knowledge Management,

ser. CIKM ’09, Association for Computing Machinery, 2009, pp. 1661–1664, isbn:

9781605585123. [Online]. Available: https://doi.org/10.1145/1645953.1646198.

[47] A. Jain and P. Pantel, “How do they compare? automatic identification of compa-

rable entities on the web,” in 2011 IEEE International Conference on Information

Reuse Integration, 2011, pp. 228–233.

[48] S. Li, C. Lin, Y. Song, and Z. Li, “Comparable entity mining from comparative

questions,” IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 7,

pp. 1498–1509, 2013.

[49] A. Panchenko, A. Bondarenko, M. Franzek, M. Hagen, and C. Biemann, “Categoriz-

ing comparative sentences,” in Proceedings of the 6th Workshop on Argument Min-

ing, Association for Computational Linguistics, 2019, pp. 136–145. [Online]. Avail-

able: https://www.aclweb.org/anthology/W19-4516.

V

BIBLIOGRAPHY

[50] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, “Supervised learning

of universal sentence representations from natural language inference data,” in Pro-

ceedings of the 2017 Conference on Empirical Methods in Natural Language Process-

ing, Association for Computational Linguistics, 2017, pp. 670–680. [Online]. Avail-

able: https://www.aclweb.org/anthology/D17-1070.

[51] A. Bondarenko, P. Braslavski, M. Völske, R. Aly, M. Fröbe, A. Panchenko, C. Bie-

mann, B. Stein, and M. Hagen, “Comparative web search questions,” in Proceedings

of the 13th International Conference on Web Search and Data Mining, ser. WSDM

’20, Association for Computing Machinery, 2020, pp. 52–60, isbn: 9781450368223.

[Online]. Available: https://doi.org/10.1145/3336191.3371848.

[52] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep

bidirectional transformers for language understanding,” in Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

Association for Computational Linguistics, 2019, pp. 4171–4186. [Online]. Available:

https://www.aclweb.org/anthology/N19-1423.

[67] G. Pass, A. Chowdhury, and C. Torgeson, “A picture of search,” in Proceedings

of the 1st International Conference on Scalable Information Systems, ser. InfoScale

’06, Association for Computing Machinery, 2006, 1–es, isbn: 1595934286. [Online].

Available: https://doi.org/10.1145/1146847.1146848.

[69] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Ep-

stein, I. Polosukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W.

Chang, A. M. Dai, J. Uszkoreit, Q. Le, and S. Petrov, “Natural questions: A bench-

mark for question answering research,” Transactions of the Association for Compu-

tational Linguistics, vol. 7, no. 15, pp. 453–466, 2019.

[80] A. Akbik, T. Bergmann, D. Blythe, K. Rasul, S. Schweter, and R. Vollgraf, “Flair:

An easy-to-use framework for state-of-the-art nlp,” in Proceedings of the 2019 Con-

ference of the North American Chapter of the Association for Computational Lin-

guistics (Demonstrations), Association for Computational Linguistics, 2019, pp. 54–

59. [Online]. Available: https://www.aclweb.org/anthology/N19-4010.

Book references

[39] T. W. Lauer, E. Peacock, and A. C. Graesser, Eds., Questions and information

systems. Hillsdale, N.J: L. Erlbaum, 1992, isbn: 978-0805810189.

[53] B. Aarts, Oxford modern English grammar. Oxford: Oxford University, 2011, isbn:

978-0-19-953319-0.

VI

BIBLIOGRAPHY

Online references

[1] T. Barnett. (2016). The zettabyte era officially begins. Cisco Systems, Ed., [Online].

Available: https://blogs.cisco.com/sp/the-zettabyte-era-officially-

begins-how-much-is-that (visited on 02/17/2020).

[2] Cisco Systems. (2020). Vni forecast highlights: 2022 forecast highlights. Cisco Sys-

tems, Ed., [Online]. Available: https://www.cisco.com/c/m/en_us/solutions/

service-provider/vni-forecast-highlights.html (visited on 02/17/2020).

[3] InternetLiveStats.com. (2020). Total number of websites. InternetLiveStats.com,

Ed., [Online]. Available: https://www.internetlivestats.com/total-number-

of-websites/ (visited on 02/17/2020).

[4] Danny Sullivan. (2016). Google now handles at least 2 trillion searches per year.

searchengineland.com, Ed., [Online]. Available: https://searchengineland.com/

google-now-handles-2-999-trillion-searches-per-year-250247 (visited on

01/14/2020).

[5] Rand Fishkin. (2017). The state of searcher behavior revealed through 23 remarkable

statistics. moz.com, Ed., [Online]. Available: https://moz.com/blog/state-of-

searcher-behavior-revealed (visited on 01/14/2020).

[6] Amit Singhal. (2012). Introducing the knowledge graph: Things, not strings. Google

Blog, Ed., [Online]. Available: https://search.googleblog.com/2012/05/intro

ducing-knowledge-graph-things-not.html (visited on 01/14/2020).

[7] James Vincent. (2016). Google boasts about how good its ai is. TheVerge.com, Ed.,

[Online]. Available: https://www.theverge.com/2016/10/4/13122406/google-

phone-event-stats (visited on 01/14/2020).

[8] Moz Inc. (2020). Google serp feature graph. moz.com, Ed., [Online]. Available: htt

ps://moz.com/mozcast/features (visited on 01/14/2020).

[9] Synchrony Financial. (2016). Fifth annual major purchase consumer study. Syn-

chrony Financial., Ed., [Online]. Available: https://www.synchrony.com/downloa

d/2016_Major_Purchase_Study_White_Paper.pdf (visited on 02/17/2020).

[10] Alexa.com. (2020). Competitive analysis, marketing mix and traffic for cnet.com.

Alexa.com, Ed., [Online]. Available: https://www.alexa.com/siteinfo/cnet.com

(visited on 01/14/2020).

[11] Quora.com. (2019). How does quora work? Quora.com, Ed., [Online]. Available:

https://www.quora.com/How-does-Quora-work (visited on 01/14/2020).

VII

BIBLIOGRAPHY

[12] Language Technology Group. (2018). Acqua: Argumentation in comparative ques-

tion answering, [Online]. Available: https://www.inf.uni-hamburg.de/en/inst/

ab/lt/research/acqua.html.

[19] Wolfram Alpha. (2020). Wolfram alpha: About. Wolframalpha.com, Ed., [Online].

Available: https://www.wolframalpha.com/about/ (visited on 01/20/2020).

[20] Wolfram Alpha. (2020). Wolfram alpha: Frequently asked questions. Wolframal-

pha.com, Ed., [Online]. Available: https://www.wolframalpha.com/faqs/ (visited

on 01/20/2020).

[22] J. Best. (2013). Ibm watson: The inside story of how the jeopardy-winning super-

computer was born, and what it wants to do next. Tech Republic, Ed., [Online].

Available: https://www.techrepublic.com/article/ibm-watson-the-inside-

story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-

it-wants-to-do-next/ (visited on 01/22/2020).

[23] S. Shippy. (2011). Questions asked to watson on jeopardy. Quora.com, Ed., [Online].

Available: https://www.quora.com/What- questions- were- asked- in- the-

Jeopardy-episode-involving-Watson (visited on 01/23/2020).

[30] S. Kumar. (2018). Ai outperforms humans in question answering. medium.com, Ed.,

[Online]. Available: https://medium.com/the-new-nlp/ai-outperforms-humans

-in-question-answering-70554f51136b (visited on 01/24/2020).

[31] S. Pham. (2018). Computers are getting better than humans at reading, [Online].

Available: https://money.cnn.com/2018/01/15/technology/reading-robot-

alibaba-microsoft-stanford/index.html (visited on 01/25/2020).

[33] P. Qi. (2019). Answering complex open-domain questions at scale, [Online]. Avail-

able: http://qipeng.me/blog/answering-complex-open-domain-questions-

at-scale.html (visited on 01/25/2020).

[38] T. Soulo. (2020). Top google searches (as of 2020). ahrefs.org, Ed., [Online]. Avail-

able: https://ahrefs.com/blog/top-google-searches/ (visited on 03/23/2020).

[54] P. Barger. (2019). Adjectives and adverbs: Comparative and superlative forms –

complete lists. patternbasedwriting.com, Ed., [Online]. Available: https://patt

ernbasedwriting.com/elementary_writing_success/adjectives- adverbs-

comparative-superlative-complete-lists (visited on 12/11/2019).

[55] British Council. (2020). Comparative and superlative adjectives. British Council,

Ed., [Online]. Available: https://learnenglish.britishcouncil.org/english-

grammar- reference/comparative- and- superlative- adjectives (visited on

03/23/2020).

VIII

BIBLIOGRAPHY

[56] Cambridge Dictionary. (2020). Comparison adjectives. Cambridge University Press,

Ed., [Online]. Available: https://dictionary.cambridge.org/de/grammatik/

britisch-grammatik/comparison-adjectives-bigger-biggest-more-interes

ting (visited on 05/14/2020).

[57] British Council. (2020). Comparative and superlative adverbs. British Council, Ed.,

[Online]. Available: https://learnenglish.britishcouncil.org/english-gramm

ar-reference/comparative-and-superlative-adverbs (visited on 03/23/2020).

[58] Cambridge Dictionary. (2020). Comparison adverbs. Cambridge University Press,

Ed., [Online]. Available: https://dictionary.cambridge.org/de/grammatik/

britisch - grammatik / comparison - adverbs - worse - more - easily (visited on

05/14/2020).

[59] Cambridge Dictionary. (2020). Prepositions. Cambridge University Press, Ed., [On-

line]. Available: https://dictionary.cambridge.org/de/grammatik/britisch-

grammatik/prepositions (visited on 05/15/2020).

[60] Macmillan Dictionary. (2020). Ways of comparing things: Thesaurus. Macmillan

Education, Ed., [Online]. Available: https://www.macmillandictionary.com/the

saurus-category/british/ways-of-comparing-things (visited on 12/11/2019).

[61] 7ESL.com. (2019). Transition words and phrases: Useful list, types and examples.

7ESL.com, Ed., [Online]. Available: https://7esl.com/transition-words/ (vis-

ited on 05/15/2020).

[62] Oxford University Press. (2019). Definition: Comparison. Lexico.com and Oxford

University Press, Eds., [Online]. Available: https://www.lexico.com/definition/

comparison (visited on 05/15/2020).

[63] Oxford University Press. (2019). Definition: Question. Lexico.com and Oxford Uni-

versity Press, Eds., [Online]. Available: https://www.lexico.com/definition/

question (visited on 05/15/2020).

[64] Cambridge Dictionary. (2020). Clause types. Cambridge University Press, Ed., [On-

line]. Available: https://dictionary.cambridge.org/de/grammatik/britisch-

grammatik/clause-types (visited on 05/16/2020).

[65] Cambridge Dictionary. (2020). Question words. Cambridge University Press, Ed.,

[Online]. Available: https://dictionary.cambridge.org/de/grammatik/britis

ch-grammatik/question-words (visited on 05/16/2020).

[66] Cambridge Dictionary. (2020). Verb types. Cambridge University Press, Ed., [On-

line]. Available: https://dictionary.cambridge.org/de/grammatik/britisch-

grammatik/verbs-types (visited on 05/16/2020).

IX

BIBLIOGRAPHY

[68] M. Barbaro and T. Zeller. (2006). A face is exposed for aol searcher no. 4417749.

nytimes.com, Ed., [Online]. Available: https://www.nytimes.com/2006/08/09/

technology/09aol.html (visited on 05/23/2020).

[70] Quora. (2017). Quora duplicate question pairs dataset, [Online]. Available: https:

//www.kaggle.com/c/quora-question-pairs (visited on 08/20/2019).

[71] Quora. (2018). Quora insincere question dataset, [Online]. Available: https : / /

www.kaggle.com/c/quora-insincere-questions-classification (visited on

08/20/2019).

[72] Yahoo. (2007). Yahoo! search logs: L18, [Online]. Available: https://webscope.

sandbox.yahoo.com/catalog.php?datatype=l (visited on 08/20/2019).

[73] Yahoo. (2007). Yahoo! answers dataset: L6, [Online]. Available: https://webscope.

sandbox.yahoo.com/catalog.php?datatype=l (visited on 08/20/2019).

[74] Yelp. (2019). Yelp open dataset, [Online]. Available: https://www.yelp.com/

dataset (visited on 08/20/2019).

[75] Reddit. (2020). Reddit r/askreddit, [Online]. Available: https://www.reddit.com/

r/AskReddit/ (visited on 06/27/2020).

[76] Subredditstats. (2020). Subredditstats for r/askreddit, [Online]. Available: https:

//subredditstats.com/r/AskReddit (visited on 05/27/2020).

[77] Reddit. (2020). Reddit api wiki, [Online]. Available: https://github.com/reddit-

archive/reddit/wiki/API (visited on 08/07/2020).

[78] J. M. Baumgartner. (2020). Pushshift reddit api documentation, [Online]. Available:

https://github.com/pushshift/api (visited on 08/07/2020).

[79] J. M. Baumgartner. (2020). Pushshift reddit faq, [Online]. Available: https://www.

reddit.com/r/pushshift/comments/bcxguf/new_to_pushshift_read_this_

faq/ (visited on 08/07/2020).

[81] C. McCormick and N. Ryan. (2019). Bert fine-tuning tutorial with pytorch, [Online].

Available: http://www.mccormickml.com (visited on 08/07/2020).

X

List of Figures

1.1 Number of existing websites . 1

1.2 Google’s knowledge panels . 2

1.3 Comparative Argumentative Machine (CAM) 5

2.1 Wolfram Alpha . 9

3.1 Examples of rule-based comparisons . 27

3.2 First two levels of the Comparative Question Taxonomy 36

3.3 Third level of the Comparative Question Taxonomy 37

3.4 Decision pipeline for comparative question filtering 59

3.5 MTurk: How it works . 68

3.6 MTurk sentence classification template . 70

3.7 MTurk sequence-tagging template . 85

3.8 MTurk sequence tagging gold labels . 90

4.1 Colab Resource Allocation . 102

4.2 Flair load corpus . 102

4.3 Flair initialize embeddings . 103

4.4 Flair initialize classifier . 103

4.5 Flair initialize trainer . 103

4.6 Flair sequence tagger tag dictionary . 111

4.7 Flair sequence tagger initialize embeddings 111

4.8 Flair create sequence tagger . 111

4.9 Comparative classification web app . 122

XI

LIST OF FIGURES

1 MTurk classification template instruction XXVIII

2 MTurk classification template instruction XXIX

XII

List of Tables

1.1 Examples of comparative questions . 3

2.1 Examples of the participation of Watson in Jeopardy! 10

2.2 Psychological classes of questions by Lauer et al. 14

2.3 Taxonomy of questions by Graesser et al. 15

2.4 Taxonomy of comparative questions by Lauer et al. 16

3.1 Inflection of adjectives . 24

3.2 Inflection of adjectives (superlative) . 25

3.3 Irregular adjectives . 25

3.4 Suffix Adverbs . 27

3.5 Comparative phrases and words . 29

3.6 Open questions with wh-words . 30

3.7 Closed questions with auxiliary verbs . 31

3.8 Example sentences for the definition of comparative questions 33

3.9 Examples from the AOL dataset . 41

3.10 Examples from the GNQ dataset . 42

3.11 Examples from the MS MARCO dataset . 43

3.12 Examples from the Quora duplicate question dataset 45

3.13 Examples from the Quora Insincere Question dataset 46

3.14 Examples from the Yahoo! Answers dataset 49

3.15 Examples from the Reddit r/AskReddit . 51

3.16 Statistics on the data sources . 52

3.17 Fetched Reddit fields . 55

XIII

LIST OF TABLES

3.18 Exclusion rules after manual evaluation . 60

3.19 Exclusion of phrases after manual evaluation 61

3.20 Class distribution after manual classification 62

3.21 Exclusion rules after manual classification 62

3.22 Class distribution after manual reclassification 63

3.23 Statistics: Filtered datasets . 64

3.24 Precisions after filtering the source data . 65

3.25 Statistics: Full data source filtering . 66

3.26 MTurk pilot classification samples . 74

3.27 MTurk additional pilot classification samples 75

3.28 MTurk classification pilot distribution of workers 75

3.29 MTurk classification pilot sample correctness 76

3.30 Classification vote categories . 78

3.31 Comparative questions classification datasets 82

3.32 MTurk sequence pilot distribution of workers 92

3.33 Sequence tagging: dataset statistics . 95

3.34 Sequence tagging: worker performance . 95

4.1 Feature-based ML: classifiers . 100

4.2 ML pre-processing combinations . 105

4.3 Feature-based ML: classification scores . 106

4.4 Neural ML: classification scores . 107

4.5 Classification scores with different datasets 108

4.6 Feature-based ML: sequence-tagging scores 112

4.7 SGD: sequence-tagging scores . 113

4.8 Neural ML: sequence-tagging scores . 114

4.9 Neural ML: sequence-tagging scores 2 . 115

4.10 Comparison of NN classification to human performance 116

4.11 Comparison of NN sequence tagging to human performance 117

4.12 Extraction Pipeline API response . 120

XIV

LIST OF TABLES

1 Comparative phrases and words . XXIII

2 Comparative phrases and words . XXIV

3 MTruk Calculation . XXV

4 Classification Dataset taxonomy distribution XXVI

5 ML model source list . XXVII

XV

Listings

3.1 Pseudocode of the Reddit scraper script with an optional collection of the

highest ranked answers. 54

3.2 Pseudocode of the Reddit data reader script. 56

3.3 Pseudocode of the Yahoo data reader script. 57

3.4 Pseudocode of the MTurk data preparation script for the human classifica-

tion project. 72

3.5 Pseudocode of the text pre-processing functions for the human sequence-

tagging project. The code loads the spaCy NLP library and redefines its

tokenizer rules. 87

4.1 Pseudocode of the feature generation for seqence classification with feature-

based machine learning. 110

1 Pseudocode of the random grid search parameter space for the SVM model. XXX

2 Pseudocode of the random grid search parameter space for the Random

Forrest model. XXX

3 Pseudocode of the random grid search parameter space for the MLP model. XXXI

4 Pseudocode of the random grid search parameter space for the Etree model. XXXI

5 Pseudocode of the grid search parameter space for the SGD model. XXXII

6 Pseudocode of the grid search parameter space for the Logistic Regression

model. XXXII

7 Pseudocode of the training parameters for the the feature-base ML models

(see Section 4.1.2). XXXII

XVII

List of abbreviations

ACQuA Argumentation in Comparative Question Answering

AI artificial intelligence

ALBERT A Lite BERT

API Application Programming Interface

AWS Amazon Web Services

BERT Bidirectional Encoder Representations from Transformers

CAM Comparative Argumentative Machine

CNN convolutional neural network

CRF conditional random fields

CSR Class Sequential Rule

DTAG detailed-part-of-speech tag

eli5 Reddit r/explainlikeimfive

Etree Extra Trees

FOR false omission rate

GloVe Global Vectors for Word Representation

GNQ Google Natural Question

GPU Graphics Processing Units

GRU gated recurrent unit

HIT Human Intelligence Task

HTTP Hypertext Transfer Protocol

IEP indicative extraction pattern

IMDB Internet Movie Database

XIX

List of abbreviations

JSON JavaScript Object Notation

KB knowledge base

LSR Label Sequential Rule

LSTM long short-term memory

MLP multi-layer perceptron

MS MARCO MAchine Reading COmprehension

MS Microsoft

MTurk Mechanical Turk

NB Näıve Bayes

NER named entity recognition

NLP natural language processing

NLU natural language understanding

NSQ Reddit r/NoStupidQuestions

POS part-of-speech

POS tagger part-of-speech tagger

PRAW Python Reddit API Wrapper

PSAW Pushshift Python API Wrapper

QA question answering

QAS question answering systems

RACE ReAding Comprehension Dataset

REST Representational State Transfer

RNN recurrent neural network

SaaS Software as a Service

SGD stochastic gradient descent

SQuAD Stanford Question Answering Dataset

START SynTactic Analysis using Reversible Transformations

SVM support-vector machine

tf-idf term frequency–inverse document frequency

XML Extensible Markup Language

XX

Appendices

XXI

Structure Type Useful for a questions? Example

after Preposition ?

against Preposition Yes, as a abbreviation Muhammad Ali against Joe
Frazier

ahead of Preposition Yes Apple’s technology is ahead of
Google’s.

alike Adjective Yes The cities Istanbul and Athens
are alike.

all-time Adjective No, part of adjectives

Alongside Preposition No, not comparative?

as much Adjective No, part of adjectives (as
.. as)

beside Preposition Yes Gold looks better beside Silver.

besides Preposition Yes Besides Gold, Sliver is a expen-
sive metal.

between Preposition Yes One can tell the difference be-
tween Gold and Silver.

by comparison (with) Phrase Yes Athens is small by comparison
with Rome.

close to Adjective Yes Apple’s technology is close to
Google’s.

Compared to Phrase Yes Athens is small compared to
Rome.

Compared with Phrase Yes Gold is expensive compared
with Silver.

different from Phrase Yes Istanbul is differnt from
Athens.

different to Phrase Yes Gold is different to Silver.

dissimilar to Phrase Yes Istanbul is dissimilar to
Athens.

equal to Adjective Yes Gold is equal to Platin.

even Adjective No, part of adjectives

in (marked/sharp/stark/strik-
ing) contrast to

Phrase Yes In contrast to Gold, Silver is
cheap.

in comparison Phrase ? In comparison, Silver is
cheaper than gold.

in comparison to Phrase Yes In comparison to Gold, Silver
is cheap.

in comparison with Phrase Yes Gold is expensive in compari-
son with Silver.

Table 1: Full list of lexical items (phrases and words) used in comparisons (A-I).

XXIII

Structure Type Useful for a questions? Example

in contradistinction to some-
thing

Phrase ?

in contrast to someone Phrase Yes In contrast to Trump, Obama
traveled less.

in relation to Phrase Yes Prices for Gold are high in re-
lation to Silver.

it’s one thing to..., it’s anoth-
er/a different thing to

Phrase No

just as Adjective No, part of adjectives (as
.. as)

just as... so (too) Phrase No

just like Preposition Yes The cities Istanbul and Athens
are just like each other.

like Preposition Yes Istanbul is like Athens.

near to Preposition Yes Apple’s technology is near to
Google’s.

next to Phrase Yes Next to Google, Apple is
shitty. (Could be biased in
questions)

not like Preposition Yes Istanbul is not like Athens.

not only ... but also Phrase No, not comparative?

not the same as Phrase Yes Gold is not the same as Silver.

or Conjunction Yes Who won, Muhammad Ali or
Joe Frazier?

over against Phrase Yes Google should be prefered over
against Apple.

people like someone/like that Phrase No, not comparative?

related Adjective Yes Gold is related to Silver.

relative to Phrase Yes ?

relative Adjective ?

Relatively speaking Phrase No, not comparative?

seen against (something) Phrase Yes Seen against Gold, Silver is
cheap.

similar to Preposition Yes Istanbul is similar to Athens.

the same Pronoun Yes Gold and Aurum are the same.

the same as Phrase Yes Google is the same as Apple.

the... the... Phrase No, part of adjectives

unequal to Adjective Yes Gold is unequal to Silver.

unlike Adjective Yes Istanbul is unlike Athens.

unrelated Adjective Yes Gold is unrelated to Silver.

versus Preposition Yes Muhammad Ali fought versus
Joe Frazier in 1971.

vs. Preposition Yes, as a abbreviation Muhammad Ali vs Joe Frazier

Whereas Conjunction No? Implying Answer? Amazon is a company, whereas
Athens is a city.

while Conjunction No? Implying Answer? Amazon is a company, while
Athens is a city.

Table 2: Full list of lexical items (phrases and words) used in comparisons (I-Z).

XXIV

MTurk cost calculation

Estimated Classification correctness rate 50%

Queries to classify 11,000

Positive Comparatives 5,500

Classification:

Reward per HIT: $ 0.220

Amazon fee 20%

Samples per HIT 20

Assignees per HIT: 3

Cost Classification $ 435.6

Sequence Tagging:

Reward per HIT: $ 0.250

Amazon fee 20%

Samples per HIT 10

Assignees per HIT: 3

Cost Sequence Tagging $495.0

Costs for Pilots $60

Sum $990.6

Budget $ 1,000

Table 3: MTruk cost calculation to determine how many samples can be annotated with
the budged.

XXV

Class Counts Percentage (%)

110 154 1.52

111 114 1.12

112 250 2.47

113 6 0.059

120 251 2.48

121 174 1.72

122 27 0.26

123 2 0.019

130 363 3.59

131 178 1.76

132 25 0.24

133 2 0.019

140 856 8.47

141 851 8.42

210 416 4.11

211 287 2.83

212 254 2.51

213 19 0.18

220 540 5.34

221 401 3.96

222 63 0.62

223 2 0.019

230 853 8.44

231 495 4.89

232 29 0.28

233 7 0.069

240 2484 24.57

241 1003 9.92

Table 4: Distribution of the classification dataset samples in the comparative question
taxonomy. All samples (positive and negative) are part of this distribution.

XXVI

Model Implementation Source

Support Vector Classifier (scikit-learn) SKLEARN/sklearn.svm.SVC.html

Logistic Regression Classifier (scikit-learn) SKLEARN/sklearn.linear model.LogisticRegression.html

Random Forest Classifier (scikit-learn) SKLEARN/sklearn.ensemble.RandomForestClassifier.html

Extra Trees Classifier (scikit-learn) SKLEARN/sklearn.ensemble.ExtraTreesClassifier.html

SGD Classifier (scikit-learn) SKLEARN/sklearn.linear model.SGDClassifier.html

Bernoulli NB (scikit-learn) SKLEARN/sklearn.naive bayes.BernoulliNB.html

XGBoost (XGBClassifier) https://xgboost.readthedocs.io

MLPClassifier (scikit-learn) SKLEARN/sklearn.linear model.Perceptron.html

Multinomial Näıve Bayes (scikit-learn) SKLEARN/sklearn.naive bayes.MultinomialNB.html

Passive-aggressive Classifier (scikit-learn) SKLEARN/sklearn.linear model.PassiveAggressiveClassifier.html

Conditional Random Fields (CRF) model https://sklearn-crfsuite.readthedocs.io

Table 5: The table shows the models used in this thesis with their implementation
source.Note: The “SKLEARN” variable stands for the standard scikit-learn website link:
“https://scikit-learn.org/stable/modules/generated”

XXVII

Figure 1: The figure shows the overlay with instructions provided to the workers for
sentence classification on MTurk.

XXVIII

Figure 2: The figure shows the overlay with examples provided to the workers for sentence
classification on MTurk.

XXIX

1 modelName ="SVM Linear"
2 gamma = np.power(10, np.arange(-5, -1, dtype=float))
3 C = [0.001, 0.01, 0.1, 0.5, 1, 2,5, 10]
4 random_grid = [
5 {’classifier__kernel’: [’rbf’],
6 ’classifier__gamma’: gamma,
7 ’classifier__C’: C},
8 {’classifier__kernel’: [’sigmoid’],
9 ’classifier__gamma’: gamma,

10 ’classifier__C’: C},
11 {’classifier__kernel’: [’linear’],
12 ’classifier__C’: C},
13 {
14 ’features__bowTokenNGram’: [bowTokenNGram,’drop’],
15 ’features__bowTokenNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2)

,(1,3),(1,4),(1,5)],
16 ’features__bowTokenNGram__vect__max_features’: [100,200,300,400,500,1000,None],
17 ’features__bowPOSNGram’: [bowPOSNGram,’drop’],
18 ’features__bowPOSNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
19 ’features__bowPOSNGram__vect__max_features’: [100,200,300,400,500,1000,None],
20 ’features__bowDTAGNGram’: [bowDTAGNGram,’drop’],
21 ’features__bowDTAGNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
22 ’features__bowDTAGNGram__vect__max_features’: [100,200,300,400,500,1000,None],
23 ’features__tfidfTokens’: [tfidfTokens,’drop’],
24 ’features__tfidfTokens__tfidf__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
25 ’features__tfidfTokens__tfidf__max_features’: [100,200,300,400,500,1000,None],
26 ’features__tfidfTokensPOS’: [tfidfTokensPOS,’drop’],
27 ’features__tfidfTokensPOS__tfidf__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2)

,(1,3),(1,4),(1,5)],
28 ’features__tfidfTokensPOS__tfidf__max_features’:

[10,20,30,40,50,100,200,300,400,500,1000,None],
29 }
30]

Listing 1: Pseudocode of the random grid search parameter space for the SVM model.

1 modelName ="Random Forrest"
2 n_estimators = [int(x) for x in np.linspace(start = 100, stop = 1000, num = 10)]
3 max_features = [’auto’, ’sqrt’]
4 max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
5 max_depth.append(None)
6 min_samples_split = [2, 5, 10, 12]
7 min_samples_leaf = [1, 2, 4]
8 bootstrap = [True, False]
9 random_grid = {

10 ’classifier__n_estimators’: n_estimators,
11 ’classifier__max_features’: max_features,
12 ’classifier__max_depth’: max_depth,
13 ’classifier__min_samples_split’: min_samples_split,
14 ’classifier__min_samples_leaf’: min_samples_leaf,
15 ’classifier__bootstrap’: bootstrap,
16 ’features__bowTokenNGram’: [bowTokenNGram,’drop’],
17 ’features__bowTokenNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
18 ’features__bowTokenNGram__vect__max_features’: [100,200,300,400,500,1000,None],
19 ’features__bowPOSNGram’: [bowPOSNGram,’drop’],
20 ’features__bowPOSNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
21 ’features__bowPOSNGram__vect__max_features’: [100,200,300,400,500,1000,None],
22 ’features__bowDTAGNGram’: [bowDTAGNGram,’drop’],
23 ’features__bowDTAGNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
24 ’features__bowDTAGNGram__vect__max_features’: [100,200,300,400,500,1000,None],

25 ’features__tfidfTokens’: [tfidfTokens,’drop’],
26 ’features__tfidfTokens__tfidf__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
27 ’features__tfidfTokens__tfidf__max_features’: [100,200,300,400,500,1000,None],
28 ’features__tfidfTokensPOS’: [tfidfTokensPOS,’drop’],
29 ’features__tfidfTokensPOS__tfidf__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2)

,(1,3),(1,4),(1,5)],
30 ’features__tfidfTokensPOS__tfidf__max_features’:

[10,20,30,40,50,100,200,300,400,500,1000,None],
31 }

Listing 2: Pseudocode of the random grid search parameter space for the Random Forrest
model.

1 modelName ="mlp"
2 random_grid = {
3 ’classifier__hidden_layer_sizes’: [(50,50,50), (50,100,50), (100,)],
4 ’classifier__activation’: [’tanh’, ’relu’],
5 ’classifier__solver’: [’sgd’, ’adam’],
6 ’classifier__alpha’: [0.0001, 0.05],
7 ’classifier__learning_rate’: [’constant’,’adaptive’],
8 ’features__bowTokenNGram’: [bowTokenNGram,’drop’],
9 ’features__bowTokenNGram__vect__ngram_range’ : [(1,4)],

10 ’features__bowTokenNGram__vect__max_features’: [100,200,300,400,500,1000,None],
11 ’features__bowPOSNGram’: [bowPOSNGram,’drop’],
12 ’features__bowPOSNGram__vect__ngram_range’ : [(3,3)],
13 ’features__bowPOSNGram__vect__max_features’: [100,200,300,400,500,1000,None],
14 ’features__bowDTAGNGram’: [bowDTAGNGram,’drop’],
15 ’features__bowDTAGNGram__vect__ngram_range’ : [(2,2)],
16 ’features__bowDTAGNGram__vect__max_features’: [100,200,300,400,500,1000,None],
17 ’features__tfidfTokens’: [tfidfTokens,’drop’],
18 ’features__tfidfTokens__tfidf__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
19 ’features__tfidfTokens__tfidf__max_features’: [100,200,300,400,500,1000,None],
20 ’features__tfidfTokensPOS’: [tfidfTokensPOS,’drop’],
21 ’features__tfidfTokensPOS__tfidf__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2)

,(1,3),(1,4),(1,5)],
22 ’features__tfidfTokensPOS__tfidf__max_features’:

[10,20,30,40,50,100,200,300,400,500,1000,None],
23 }

Listing 3: Pseudocode of the random grid search parameter space for the MLP model.

1 modelName ="etree"
2 n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 10)]
3 max_features = [’auto’, ’sqrt’]
4 max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
5 max_depth.append(None)
6 min_samples_split = [2, 5, 10, 12]
7 min_samples_leaf = [1, 2, 4]
8 bootstrap = [True, False]
9 random_grid = {

10 ’classifier__n_estimators’: n_estimators,
11 ’classifier__max_features’: max_features,
12 ’classifier__max_depth’: max_depth,
13 ’classifier__min_samples_split’: min_samples_split,
14 ’classifier__min_samples_leaf’: min_samples_leaf,
15 ’classifier__bootstrap’: bootstrap,
16 ’features__bowTokenNGram’: [bowTokenNGram,’drop’],
17 ’features__bowTokenNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2)

,(1,3),(1,4),(1,5)],
18 ’features__bowTokenNGram__vect__max_features’: [100,200,300,400,500,1000,None],
19 ’features__bowPOSNGram’: [bowPOSNGram,’drop’],
20 ’features__bowPOSNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2)

,(1,3),(1,4),(1,5)],

XXXI

21 ’features__bowPOSNGram__vect__max_features’: [100,200,300,400,500,1000,None],
22 ’features__bowDTAGNGram’: [bowDTAGNGram,’drop’],
23 ’features__bowDTAGNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2)

,(1,3),(1,4),(1,5)],
24 ’features__bowDTAGNGram__vect__max_features’: [100,200,300,400,500,1000,None],
25 ’features__tfidfTokens’: [tfidfTokens,’drop’],
26 ’features__tfidfTokens__tfidf__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2)

,(1,3),(1,4),(1,5)],
27 ’features__tfidfTokens__tfidf__max_features’: [100,200,300,400,500,1000,None],
28 ’features__tfidfTokensPOS’: [tfidfTokensPOS,’drop’],
29 ’features__tfidfTokensPOS__tfidf__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2)

,(1,3),(1,4),(1,5)],
30 ’features__tfidfTokensPOS__tfidf__max_features’:

[10,20,30,40,50,100,200,300,400,500,1000,None],
31 }

Listing 4: Pseudocode of the random grid search parameter space for the Etree model.

1 modelName ="SGD"
2 modelParameters = {
3 "classifier__loss" : ["hinge","log"],
4 "classifier__alpha" : [0.001, 0.01, 0.1, 0.5, 1, 2,5, 10],
5 "classifier__penalty" : ["l2","l1"],
6 ’features__bowTokenNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
7 ’features__bowTokenNGram__vect__max_features’: [100,200,300,400,500,1000,None],
8 ’features__bowPOSNGram’: [bowPOSNGram,’drop’],
9 ’features__bowPOSNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
10 ’features__bowPOSNGram__vect__max_features’: [100,200,300,400,500,1000,None],
11 ’features__bowDTAGNGram’: [bowDTAGNGram,’drop’],
12 ’features__bowDTAGNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
13 ’features__bowDTAGNGram__vect__max_features’: [100,200,300,400,500,1000,None],
14 }

Listing 5: Pseudocode of the grid search parameter space for the SGD model.

1 modelName ="Logistic Reg"
2 C = [0.001, 0.01, 0.1, 0.5, 1, 2,5, 10]
3 modelParameters = {
4 ’classifier__C’: C
5 ’classifier__max_iter’: [10,50,100,200,300,400,500],
6 ’features__bowTokenNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
7 ’features__bowTokenNGram__vect__max_features’: [100,200,300,400,500,1000,None],
8 ’features__bowPOSNGram’: [bowPOSNGram,’drop’],
9 ’features__bowPOSNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
10 ’features__bowPOSNGram__vect__max_features’: [100,200,300,400,500,1000,None],
11 ’features__bowDTAGNGram’: [bowDTAGNGram,’drop’],
12 ’features__bowDTAGNGram__vect__ngram_range’ : [(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3)

,(1,4),(1,5)],
13 ’features__bowDTAGNGram__vect__max_features’: [100,200,300,400,500,1000,None],
14 }

Listing 6: Pseudocode of the grid search parameter space for the Logistic Regression
model.

1 svcParameters = {
2 ’classifier__kernel’: ’linear’,
3 ’classifier__C’: 0.01,
4 ’features__bowTokenNGram__vect__ngram_range’ : (1,4),

XXXII

5 ’features__bowPOSNGram__vect__ngram_range’ : (1,2),
6 ’features__bowDTAGNGram__vect__ngram_range’ : (1,5),
7 ’features__bowTokenNGram__vect__max_features’: None,
8 ’features__bowPOSNGram__vect__max_features’: 300,
9 ’features__bowDTAGNGram__vect__max_features’: 200,}

10

11 randForestParameters = {
12 ’classifier__n_estimators’: 900,
13 ’classifier__max_features’: ’auto’,
14 ’classifier__max_depth’: 70,
15 ’classifier__min_samples_split’: 10,
16 ’classifier__min_samples_leaf’: 1,
17 ’classifier__bootstrap’: True,
18 ’classifier__random_state’: 42,
19 ’features__bowTokenNGram__vect__ngram_range’ : (1,5),
20 ’features__bowPOSNGram__vect__ngram_range’ : (1,4),
21 ’features__bowDTAGNGram__vect__ngram_range’ : (1,1)}
22

23 logRegParameters = {
24 ’classifier__max_iter’: 500,
25 ’classifier__random_state’: 42,
26 ’features__bowTokenNGram__vect__ngram_range’ : (1,5),
27 ’features__bowPOSNGram__vect__ngram_range’ : (1,4),
28 ’features__bowDTAGNGram__vect__ngram_range’ : (1,1),}
29

30 sgdParameters = {
31 "classifier__loss" : "hinge",
32 "classifier__alpha" : 0.01,
33 "classifier__penalty" : "l2",
34 ’features__bowTokenNGram__vect__ngram_range’ : (1,5),
35 ’features__bowPOSNGram__vect__ngram_range’ : (1,4),
36 ’features__bowDTAGNGram__vect__ngram_range’ : (1,1)}
37

38 bernNBParameters = {
39 ’features__bowTokenNGram__vect__ngram_range’ : (1,5),
40 ’features__bowPOSNGram__vect__ngram_range’ : (1,4),
41 ’features__bowDTAGNGram__vect__ngram_range’ : (1,1)}
42

43 etreeParameters = {
44 ’classifier__n_estimators’: 200,
45 ’classifier__min_samples_split’: 5,
46 ’classifier__min_samples_leaf’: 2,
47 ’classifier__max_features’: ’sqrt’,
48 ’classifier__max_depth’: 60,
49 ’classifier__bootstrap’: False,
50 ’features__bowTokenNGram__vect__ngram_range’ : (1,5),
51 ’features__bowPOSNGram__vect__ngram_range’ : (1,4),
52 ’features__bowDTAGNGram__vect__ngram_range’ : (1,1)}
53

54 xgbParameters = {
55 ’features__bowTokenNGram__vect__ngram_range’ : (1,5),
56 ’features__bowPOSNGram__vect__ngram_range’ : (1,4),
57 ’features__bowDTAGNGram__vect__ngram_range’ : (1,1)}
58

59 mlpParameters = {
60 ’classifier__max_iter’: 500,
61 ’classifier__solver’:’sgd’,
62 ’classifier__learning_rate’: ’adaptive’,
63 ’classifier__hidden_layer_sizes’: (50, 50, 50),
64 ’classifier__alpha’: 0.001,
65 ’classifier__activation’: ’relu’,
66 ’classifier__random_state’:42,
67 ’features__bowTokenNGram__vect__ngram_range’: (1, 4),
68 ’features__bowPOSNGram__vect__ngram_range’: (3, 3),
69 ’features__bowDTAGNGram__vect__ngram_range’: (3, 3)}

Listing 7: Pseudocode of the training parameters for the the feature-base ML models (see
Section 4.1.2).

XXXIII

Versicherung an Eides statt

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudien-

gang Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel -

insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen - benutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wurden, sind

als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht

in einem anderen eingereicht habe und die eingereichte schriftliche Fassung der auf dem

elektronischen Speichermedium entspricht.

Hamburg, den September 11, 2020

Steffen Stahlhacke

XXXV

